yakazimir's picture
End of training
58f3217 verified
metadata
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
  - alignment-handbook
  - trl
  - simpo
  - generated_from_trainer
  - trl
  - simpo
  - generated_from_trainer
datasets:
  - yakazimir/ultrafeedback_binarized
model-index:
  - name: qwen_orpo_entropy_0_01
    results: []

qwen_orpo_entropy_0_01

This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5589
  • Sft Loss: 3.3163
  • Rewards/chosen: -3.1855
  • Rewards/rejected: -4.1739
  • Rewards/accuracies: 0.7226
  • Rewards/margins: 0.9884
  • Logps/rejected: -4.1739
  • Logps/chosen: -3.1855
  • Logits/rejected: 0.1645
  • Logits/chosen: 0.0521

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Sft Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.7198 0.2141 400 0.7213 1.4421 -1.5116 -1.6721 0.5556 0.1605 -1.6721 -1.5116 0.3831 0.2918
0.6256 0.4282 800 0.6211 2.0645 -2.1064 -2.5196 0.6654 0.4133 -2.5196 -2.1064 0.4328 0.3408
0.6247 0.6422 1200 0.5880 2.6367 -2.5144 -3.0951 0.6966 0.5807 -3.0951 -2.5144 0.4051 0.3038
0.5355 0.8563 1600 0.5751 2.5635 -2.4305 -2.9974 0.7062 0.5669 -2.9974 -2.4305 0.4192 0.3133
0.6075 1.0704 2000 0.5675 2.6770 -2.5347 -3.1956 0.7166 0.6609 -3.1956 -2.5347 0.3536 0.2455
0.5886 1.2845 2400 0.5600 2.9406 -2.8008 -3.5986 0.7292 0.7978 -3.5986 -2.8008 0.2408 0.1351
0.5549 1.4986 2800 0.5573 2.8692 -2.7229 -3.5062 0.7248 0.7833 -3.5062 -2.7229 0.2546 0.1468
0.5785 1.7127 3200 0.5549 2.8827 -2.7303 -3.5085 0.7240 0.7782 -3.5085 -2.7303 0.2599 0.1531
0.5649 1.9267 3600 0.5509 2.9742 -2.8066 -3.6363 0.7240 0.8296 -3.6363 -2.8066 0.2062 0.0982
0.4683 2.1408 4000 0.5601 3.3501 -3.1588 -4.1100 0.7196 0.9512 -4.1100 -3.1588 0.1350 0.0257
0.491 2.3549 4400 0.5604 3.3569 -3.2270 -4.2111 0.7203 0.9841 -4.2111 -3.2270 0.2088 0.0922
0.4967 2.5690 4800 0.5589 3.2861 -3.1626 -4.1414 0.7226 0.9787 -4.1414 -3.1626 0.1660 0.0539
0.439 2.7831 5200 0.5584 3.3040 -3.1772 -4.1641 0.7211 0.9869 -4.1641 -3.1772 0.1462 0.0352
0.4704 2.9972 5600 0.5590 3.3163 -3.1855 -4.1739 0.7226 0.9884 -4.1739 -3.1855 0.1645 0.0521

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1