Hebrew-Mixtral-8x22B
Hebrew-Mixtral-8x22B is an open-source Large Language Model (LLM) pretrained in hebrew and english pretrained with 141 billion parameters, based on Mixtral-8x22B from Mistral.
It is continuesly pretrained from Mixtral-8x22B on tokens in both English and Hebrew.
The resulting model is a powerful general-purpose language model suitable for a wide range of natural language processing tasks, with a focus on Hebrew language understanding and generation.
Usage
Below are some code snippets on how to get quickly started with running the model.
First make sure to pip install -U transformers
, then copy the snippet from the section that is relevant for your usecase.
Running on CPU
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B")
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?"
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
Running on GPU
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B", device_map="auto")
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
Running with 4-Bit precision
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mixtral-8x22B", quantization_config = BitsAndBytesConfig(load_in_4bit=True))
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0])
Notice
Hebrew-Mixtral-8x22B is a pretrained base model and therefore does not have any moderation mechanisms.
- Downloads last month
- 64