π¦ EmertonMonarch-7B
EmertonOmniBeagle-7B-dpo is a DPO fine-tune of mlabonne/Monarch-7B using the yleo/emerton_dpo_pairs_judge preference dataset created from Intel/orca_dpo_pairs by replacing gpt 3.5 answer by a gpt4 Turbo answer. Then, LLM-Blender is used to judge between GPT4 and GPT4 Turbo.
π Applications
This model uses a context window of 8k. It is compatible with different templates, like chatml and Llama's chat template.
π Evaluation
Open LLM Leaderboard
To come...
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "yleo/EmertonMonarch-7B"
messages = [{"role": "user", "content": "How to improve LLM fine-tuning?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yleo/EmertonMonarch-7B
Base model
mlabonne/Monarch-7B