whisper_call_audio / README.md
yoona-J's picture
Upload processor
09834d1 verified
metadata
base_model: openai/whisper-base
datasets:
  - yoona-J/whisper_call_audio
language:
  - ko
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper_call
    results: []

Whisper_call

This model is a fine-tuned version of openai/whisper-base on the whisper_call_audio dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5226
  • Cer: 81.2616

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.8139 2.0 200 0.7714 37.8221
0.3977 4.0 400 0.4928 33.9313
0.1864 6.0 600 0.4458 78.8698
0.0907 8.0 800 0.4532 72.4187
0.0357 10.0 1000 0.4712 89.8265
0.015 12.0 1200 0.4899 88.2432
0.007 14.0 1400 0.5035 85.6325
0.0043 16.0 1600 0.5162 83.3839
0.0037 18.0 1800 0.5205 82.0448
0.0034 20.0 2000 0.5226 81.2616

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1