Update Log
- 2024.01.08: Initial Test version Release of Solar-Ko
Open-Solar-Ko โญ๐ฐ๐ท
Solar-Ko represents an advanced iteration of the upstage/SOLAR-10.7B-v1.0 model, featuring an expanded vocabulary and the inclusion of a Korean corpus for enhanced pretraining.
Open-Solar-Ko exclusively utilizes publicly accessible Korean corpora, including sources such as AI Hub, Modu Corpus, ๋ชจ๋์ ๋ง๋ญ์น, and Korean Wikipedia.
As training was conducted solely with publicly available corpora, this model is open for unrestricted use by everyone, adhering to the Apache2.0 open source License.
Model Details
Model Developers: Junbum Lee (Beomi)
Variations: Solar-Ko is available with one parameter sizes โ 10B with Continual Pretrained version.
Input: The model accepts only text input.
Output: The model produces text output exclusively.
Model Architecture:
SOLAR-KO-10.7B is an auto-regressive language model that leverages an optimized transformer architecture derived from Llama-2.
Training Data | Parameters | Content Length | GQA | Tokens | Learning Rate | |
---|---|---|---|---|---|---|
SOLAR-KO-10.7B | A curated mix of Publicly Accessible Korean Corpora | 10.7B | 2k | โ | >15B* | 5e-5 |
Training Corpus
The model was trained using selected datasets from AIHub and Modu Corpus. Detailed information about the training datasets is available below:
- AI Hub: corpus/AI_HUB
- Only the
Training
segment of the data was used. - The
Validation
andTest
segments were deliberately excluded.
- Only the
- Modu Corpus: corpus/MODU_CORPUS
The final JSONL dataset used to train this model is approximately 61GB in size.
Total token count: Approximately 15 billion tokens (*using the expanded tokenizer. With the original SOLAR tokenizer, >60 billion tokens.)
Vocab Expansion
Model Name | Vocabulary Size | Description |
---|---|---|
Original Solar | 32000 | Sentencepiece BPE |
Expanded SOLAR-KO-10.7B | 46592 | Sentencepiece BPE. Added Korean vocab and merges |
Tokenizing "์๋ ํ์ธ์, ์ค๋์ ๋ ์จ๊ฐ ์ข๋ค์."
- SOLAR-10.7B: 26 tokens
- SOLAR-KO-10.7b: 8 tokens
Model | Tokens |
---|---|
SOLAR-10.7B | ['โ', '์', '<0xEB>', '<0x85>', '<0x95>', 'ํ', '์ธ', '์', ',', 'โ', '์ค', '<0xEB>', '<0x8A>', '<0x98>', '์', 'โ', '๋ ', '<0xEC>', '<0x94>', '<0xA8>', '๊ฐ', 'โ', '์ข', '๋ค', '์', '.'] |
SOLAR-KO-10.7B | ['โ์๋
', 'ํ์ธ์', ',', 'โ์ค๋์', 'โ๋ ', '์จ๊ฐ', 'โ์ข๋ค์', '.'] |
Tokenizing "Meet 10.7B Solar: Elevating Performance with Upstage Depth UP Scaling!"
- SOLAR-10.7B: 22 tokens
- SOLAR-KO-10.7b: 22 tokens
Model | Tokens |
---|---|
SOLAR-10.7B | ['โMeet', 'โ', '1', '0', '.', '7', 'B', 'โSolar', ':', 'โE', 'lev', 'ating', 'โPerformance', 'โwith', 'โUp', 'stage', 'โDep', 'th', 'โUP', 'โScal', 'ing', '!'] |
SOLAR-KO-10.7B | ['โMeet', 'โ', '1', '0', '.', '7', 'B', 'โSolar', ':', 'โE', 'lev', 'ating', 'โPerformance', 'โwith', 'โUp', 'stage', 'โDep', 'th', 'โUP', 'โScal', 'ing', '!'] |
LICENSE
Apache 2.0
Model Benchmark
LM Eval Harness - Korean (polyglot branch)
- Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot
0 | 5 | 10 | 50 | |
---|---|---|---|---|
kobest_boolq (macro_f1) | 0.853949 | 0.88098 | 0.898139 | 0.902354 |
kobest_copa (macro_f1) | 0.804531 | 0.826736 | 0.837656 | 0.860899 |
kobest_hellaswag (macro_f1) | 0.507174 | 0.500983 | 0.487287 | 0.512182 |
kobest_sentineg (macro_f1) | 0.3517 | 0.972291 | 0.977321 | 0.984884 |
kohatespeech (macro_f1) | 0.258111 | 0.403957 | 0.386808 | 0.462393 |
kohatespeech_apeach (macro_f1) | 0.337667 | 0.651697 | 0.705337 | 0.827757 |
kohatespeech_gen_bias (macro_f1) | 0.124535 | 0.503464 | 0.498501 | 0.443218 |
korunsmile (f1) | 0.3814 | 0.356939 | 0.369989 | 0.296193 |
nsmc (acc) | 0.5356 | 0.87162 | 0.88654 | 0.89632 |
pawsx_ko (acc) | 0.5435 | 0.5245 | 0.5315 | 0.5385 |
Citation
@misc {solar_ko_junbum_2023,
author = { {L. Junbum} },
title = { Solar-Ko-10.7b },
year = 2024,
url = { https://huggingface.co/beomi/SOLAR-KO-10.7B },
publisher = { Hugging Face }
}
Acknowledgements
- Training support was provided by the TPU Research Cloud program.
- The training corpus includes data from AI Hub, Modu Corpus, and Korean Wikipedia.
- Downloads last month
- 6