Edit model card

all-MiniLM-L6-v2-triplet-loss

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Kimono',
    'fringe kaftan',
    'mug',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9168
dot_accuracy 0.0832
manhattan_accuracy 0.9135
euclidean_accuracy 0.9168
max_accuracy 0.9168

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss all-nli-dev_max_accuracy
0 0 - - 0.9168
0.0029 100 4.7115 - -
0.0059 200 4.6948 - -
0.0088 300 4.6548 - -
0.0118 400 4.6055 - -
0.0147 500 4.5234 4.3878 -
0.0177 600 4.4338 - -
0.0206 700 4.2938 - -
0.0235 800 4.1176 - -
0.0265 900 3.9373 - -
0.0294 1000 3.7241 3.4721 -
0.0324 1100 3.5965 - -
0.0353 1200 3.4949 - -
0.0383 1300 3.4542 - -
0.0412 1400 3.4345 - -
0.0442 1500 3.3955 3.2453 -
0.0471 1600 3.3818 - -
0.0500 1700 3.3608 - -
0.0530 1800 3.3377 - -
0.0559 1900 3.326 - -
0.0589 2000 3.3061 3.1692 -
0.0618 2100 3.308 - -
0.0648 2200 3.2887 - -
0.0677 2300 3.2963 - -
0.0706 2400 3.2744 - -
0.0736 2500 3.2601 3.1416 -
0.0765 2600 3.271 - -
0.0795 2700 3.2501 - -
0.0824 2800 3.2536 - -
0.0854 2900 3.2689 - -
0.0883 3000 3.2362 3.1196 -
0.0912 3100 3.2281 - -
0.0942 3200 3.2351 - -
0.0971 3300 3.2173 - -
0.1001 3400 3.2055 - -
0.1030 3500 3.2198 3.1081 -
0.1060 3600 3.2116 - -
0.1089 3700 3.2088 - -
0.1118 3800 3.2043 - -
0.1148 3900 3.1943 - -
0.1177 4000 3.1897 3.1027 -
0.1207 4100 3.2131 - -
0.1236 4200 3.198 - -
0.1266 4300 3.1892 - -
0.1295 4400 3.1753 - -
0.1325 4500 3.1722 3.0840 -
0.1354 4600 3.1599 - -
0.1383 4700 3.166 - -
0.1413 4800 3.1585 - -
0.1442 4900 3.1698 - -
0.1472 5000 3.1766 3.0782 -
0.1501 5100 3.1515 - -
0.1531 5200 3.1487 - -
0.1560 5300 3.1579 - -
0.1589 5400 3.1533 - -
0.1619 5500 3.1433 3.0735 -
0.1648 5600 3.1454 - -
0.1678 5700 3.1397 - -
0.1707 5800 3.1422 - -
0.1737 5900 3.1372 - -
0.1766 6000 3.137 3.0710 -
0.1795 6100 3.1297 - -
0.1825 6200 3.1202 - -
0.1854 6300 3.1256 - -
0.1884 6400 3.1185 - -
0.1913 6500 3.1266 3.0667 -
0.1943 6600 3.1197 - -
0.1972 6700 3.1286 - -
0.2001 6800 3.1239 - -
0.2031 6900 3.1166 - -
0.2060 7000 3.1054 3.0664 -
0.2090 7100 3.1103 - -
0.2119 7200 3.0929 - -
0.2149 7300 3.1051 - -
0.2178 7400 3.1023 - -
0.2208 7500 3.0946 3.0636 -
0.2237 7600 3.0958 - -
0.2266 7700 3.0907 - -
0.2296 7800 3.1051 - -
0.2325 7900 3.0965 - -
0.2355 8000 3.0954 3.0617 -
0.2384 8100 3.0693 - -
0.2414 8200 3.0906 - -
0.2443 8300 3.0881 - -
0.2472 8400 3.0867 - -
0.2502 8500 3.0867 3.0610 -
0.2531 8600 3.0909 - -
0.2561 8700 3.0877 - -
0.2590 8800 3.0837 - -
0.2620 8900 3.0865 - -
0.2649 9000 3.0846 3.0607 -
0.2678 9100 3.0798 - -
0.2708 9200 3.0928 - -
0.2737 9300 3.0794 - -
0.2767 9400 3.0797 - -
0.2796 9500 3.0685 3.0623 -
0.2826 9600 3.0768 - -
0.2855 9700 3.0657 - -
0.2884 9800 3.0838 - -
0.2914 9900 3.0775 - -
0.2943 10000 3.0667 3.0587 -
0.2973 10100 3.088 - -
0.3002 10200 3.0824 - -
0.3032 10300 3.0754 - -
0.3061 10400 3.064 - -
0.3091 10500 3.0637 3.0578 -
0.3120 10600 3.0754 - -
0.3149 10700 3.0703 - -
0.3179 10800 3.0697 - -
0.3208 10900 3.0635 - -
0.3238 11000 3.0872 3.0573 -
0.3267 11100 3.0722 - -
0.3297 11200 3.0633 - -
0.3326 11300 3.058 - -
0.3355 11400 3.0601 - -
0.3385 11500 3.0732 3.0583 -
0.3414 11600 3.0565 - -
0.3444 11700 3.0735 - -
0.3473 11800 3.0656 - -
0.3503 11900 3.0583 - -
0.3532 12000 3.0714 3.0574 -
0.3561 12100 3.0647 - -
0.3591 12200 3.0522 - -
0.3620 12300 3.0668 - -
0.3650 12400 3.071 - -
0.3679 12500 3.0667 3.0556 -
0.3709 12600 3.0568 - -
0.3738 12700 3.0642 - -
0.3767 12800 3.0607 - -
0.3797 12900 3.0679 - -
0.3826 13000 3.0547 3.0547 -
0.3856 13100 3.0714 - -
0.3885 13200 3.0692 - -
0.3915 13300 3.0597 - -
0.3944 13400 3.067 - -
0.3974 13500 3.0626 3.0551 -
0.4003 13600 3.0708 - -
0.4032 13700 3.065 - -
0.4062 13800 3.0619 - -
0.4091 13900 3.0556 - -
0.4121 14000 3.0708 3.0524 -
0.4150 14100 3.0634 - -
0.4180 14200 3.0605 - -
0.4209 14300 3.0555 - -
0.4238 14400 3.0624 - -
0.4268 14500 3.0468 3.0510 -
0.4297 14600 3.0534 - -
0.4327 14700 3.0671 - -
0.4356 14800 3.0714 - -
0.4386 14900 3.0493 - -
0.4415 15000 3.0457 3.0467 -
0.4444 15100 3.0599 - -
0.4474 15200 3.0554 - -
0.4503 15300 3.0466 - -
0.4533 15400 3.0471 - -
0.4562 15500 3.0465 3.0500 -
0.4592 15600 3.0556 - -
0.4621 15700 3.0444 - -
0.4650 15800 3.0468 - -
0.4680 15900 3.0554 - -
0.4709 16000 3.0573 3.0469 -
0.4739 16100 3.049 - -
0.4768 16200 3.0539 - -
0.4798 16300 3.052 - -
0.4827 16400 3.0538 - -
0.4857 16500 3.045 3.0444 -
0.4886 16600 3.0381 - -
0.4915 16700 3.0517 - -
0.4945 16800 3.0598 - -
0.4974 16900 3.046 - -
0.5004 17000 3.0478 3.0447 -
0.5033 17100 3.054 - -
0.5063 17200 3.0471 - -
0.5092 17300 3.0383 - -
0.5121 17400 3.0539 - -
0.5151 17500 3.0457 3.0432 -
0.5180 17600 3.05 - -
0.5210 17700 3.05 - -
0.5239 17800 3.0512 - -
0.5269 17900 3.0399 - -
0.5298 18000 3.048 3.0431 -
0.5327 18100 3.0367 - -
0.5357 18200 3.0442 - -
0.5386 18300 3.0472 - -
0.5416 18400 3.0335 - -
0.5445 18500 3.0465 3.0459 -
0.5475 18600 3.054 - -
0.5504 18700 3.0489 - -
0.5533 18800 3.037 - -
0.5563 18900 3.0432 - -
0.5592 19000 3.0401 3.0426 -
0.5622 19100 3.0369 - -
0.5651 19200 3.0561 - -
0.5681 19300 3.0469 - -
0.5710 19400 3.0468 - -
0.5740 19500 3.0455 3.0433 -
0.5769 19600 3.0512 - -
0.5798 19700 3.0474 - -
0.5828 19800 3.043 - -
0.5857 19900 3.0473 - -
0.5887 20000 3.0448 3.0415 -
0.5916 20100 3.0441 - -
0.5946 20200 3.0403 - -
0.5975 20300 3.0516 - -
0.6004 20400 3.0459 - -
0.6034 20500 3.0415 3.0415 -
0.6063 20600 3.034 - -
0.6093 20700 3.0483 - -
0.6122 20800 3.0538 - -
0.6152 20900 3.0458 - -
0.6181 21000 3.0445 3.0372 -
0.6210 21100 3.0414 - -
0.6240 21200 3.0476 - -
0.6269 21300 3.0638 - -
0.6299 21400 3.0375 - -
0.6328 21500 3.0425 3.0397 -
0.6358 21600 3.0394 - -
0.6387 21700 3.0443 - -
0.6416 21800 3.0381 - -
0.6446 21900 3.0387 - -
0.6475 22000 3.0255 3.0381 -
0.6505 22100 3.0355 - -
0.6534 22200 3.0411 - -
0.6564 22300 3.0436 - -
0.6593 22400 3.038 - -
0.6623 22500 3.0336 3.0325 -
0.6652 22600 3.0404 - -
0.6681 22700 3.0374 - -
0.6711 22800 3.0342 - -
0.6740 22900 3.0385 - -
0.6770 23000 3.0329 3.0342 -
0.6799 23100 3.0391 - -
0.6829 23200 3.0366 - -
0.6858 23300 3.0284 - -
0.6887 23400 3.0328 - -
0.6917 23500 3.0322 3.0333 -
0.6946 23600 3.0353 - -
0.6976 23700 3.0371 - -
0.7005 23800 3.0321 - -
0.7035 23900 3.0365 - -
0.7064 24000 3.0302 3.0342 -
0.7093 24100 3.0352 - -
0.7123 24200 3.0277 - -
0.7152 24300 3.0402 - -
0.7182 24400 3.0364 - -
0.7211 24500 3.0439 3.0336 -
0.7241 24600 3.0396 - -
0.7270 24700 3.0475 - -
0.7299 24800 3.0258 - -
0.7329 24900 3.0345 - -
0.7358 25000 3.0326 3.0350 -
0.7388 25100 3.0357 - -
0.7417 25200 3.0413 - -
0.7447 25300 3.0326 - -
0.7476 25400 3.0401 - -
0.7506 25500 3.0313 3.0365 -
0.7535 25600 3.04 - -
0.7564 25700 3.0382 - -
0.7594 25800 3.0344 - -
0.7623 25900 3.0325 - -
0.7653 26000 3.0475 3.0340 -
0.7682 26100 3.0256 - -
0.7712 26200 3.0331 - -
0.7741 26300 3.0325 - -
0.7770 26400 3.0431 - -
0.7800 26500 3.04 3.0372 -
0.7829 26600 3.0393 - -
0.7859 26700 3.0374 - -
0.7888 26800 3.0406 - -
0.7918 26900 3.0343 - -
0.7947 27000 3.0374 3.0325 -
0.7976 27100 3.0262 - -
0.8006 27200 3.0393 - -
0.8035 27300 3.0255 - -
0.8065 27400 3.0305 - -
0.8094 27500 3.0324 3.0323 -
0.8124 27600 3.0317 - -
0.8153 27700 3.0267 - -
0.8182 27800 3.0299 - -
0.8212 27900 3.0305 - -
0.8241 28000 3.0336 3.0319 -
0.8271 28100 3.0373 - -
0.8300 28200 3.0342 - -
0.8330 28300 3.0436 - -
0.8359 28400 3.0354 - -
0.8389 28500 3.0373 3.0291 -
0.8418 28600 3.0292 - -
0.8447 28700 3.0229 - -
0.8477 28800 3.0348 - -
0.8506 28900 3.041 - -
0.8536 29000 3.031 3.0324 -
0.8565 29100 3.0354 - -
0.8595 29200 3.0242 - -
0.8624 29300 3.026 - -
0.8653 29400 3.0373 - -
0.8683 29500 3.0298 3.0276 -
0.8712 29600 3.0341 - -
0.8742 29700 3.0304 - -
0.8771 29800 3.0241 - -
0.8801 29900 3.0304 - -
0.8830 30000 3.0279 3.0278 -
0.8859 30100 3.026 - -
0.8889 30200 3.0272 - -
0.8918 30300 3.0372 - -
0.8948 30400 3.0241 - -
0.8977 30500 3.0347 3.0276 -
0.9007 30600 3.0335 - -
0.9036 30700 3.0316 - -
0.9065 30800 3.0372 - -
0.9095 30900 3.0234 - -
0.9124 31000 3.0303 3.0278 -
0.9154 31100 3.0466 - -
0.9183 31200 3.0391 - -
0.9213 31300 3.0334 - -
0.9242 31400 3.029 - -
0.9272 31500 3.0322 3.0280 -
0.9301 31600 3.0272 - -
0.9330 31700 3.0315 - -
0.9360 31800 3.0297 - -
0.9389 31900 3.0228 - -
0.9419 32000 3.0246 3.0272 -
0.9448 32100 3.0215 - -
0.9478 32200 3.0246 - -
0.9507 32300 3.0333 - -
0.9536 32400 3.0334 - -
0.9566 32500 3.029 3.0271 -
0.9595 32600 3.0328 - -
0.9625 32700 3.0284 - -
0.9654 32800 3.0327 - -
0.9684 32900 3.0228 - -
0.9713 33000 3.0321 3.0267 -
0.9742 33100 3.0277 - -
0.9772 33200 3.0309 - -
0.9801 33300 3.0265 - -
0.9831 33400 3.029 - -
0.9860 33500 3.0315 3.0257 -
0.9890 33600 3.0233 - -
0.9919 33700 3.0208 - -
0.9948 33800 3.0296 - -
0.9978 33900 3.0271 - -
1.0007 34000 3.0258 3.0261 -
1.0037 34100 3.0233 - -
1.0066 34200 3.0283 - -
1.0096 34300 3.0277 - -
1.0125 34400 3.0233 - -
1.0155 34500 3.0296 3.0270 -
1.0184 34600 3.0321 - -
1.0213 34700 3.0314 - -
1.0243 34800 3.0458 - -
1.0272 34900 3.0415 - -
1.0302 35000 3.0271 3.0261 -
1.0331 35100 3.0252 - -
1.0361 35200 3.0327 - -
1.0390 35300 3.0302 - -
1.0419 35400 3.0264 - -
1.0449 35500 3.0314 3.0269 -
1.0478 35600 3.0252 - -
1.0508 35700 3.0302 - -
1.0537 35800 3.0339 - -
1.0567 35900 3.0277 - -
1.0596 36000 3.0314 3.0232 -
1.0625 36100 3.0339 - -
1.0655 36200 3.0233 - -
1.0684 36300 3.0264 - -
1.0714 36400 3.0246 - -
1.0743 36500 3.0252 3.0242 -
1.0773 36600 3.027 - -
1.0802 36700 3.0202 - -
1.0831 36800 3.0245 - -
1.0861 36900 3.0239 - -
1.0890 37000 3.022 3.0229 -
1.0920 37100 3.0164 - -
1.0949 37200 3.0289 - -
1.0979 37300 3.012 - -
1.1008 37400 3.027 - -
1.1038 37500 3.0283 3.0229 -
1.1067 37600 3.0289 - -
1.1096 37700 3.0264 - -
1.1126 37800 3.0295 - -
1.1155 37900 3.0245 - -
1.1185 38000 3.0301 3.0226 -
1.1214 38100 3.0276 - -
1.1244 38200 3.0264 - -
1.1273 38300 3.0264 - -
1.1302 38400 3.022 - -
1.1332 38500 3.0308 3.0243 -
1.1361 38600 3.022 - -
1.1391 38700 3.027 - -
1.1420 38800 3.0189 - -
1.1450 38900 3.0282 - -
1.1479 39000 3.0226 3.0228 -
1.1508 39100 3.0257 - -
1.1538 39200 3.0201 - -
1.1567 39300 3.0282 - -
1.1597 39400 3.0395 - -
1.1626 39500 3.042 3.0340 -
1.1656 39600 3.0432 - -
1.1685 39700 3.0214 - -
1.1714 39800 3.022 - -
1.1744 39900 3.0245 - -
1.1773 40000 3.032 3.0276 -
1.1803 40100 3.0389 - -
1.1832 40200 3.0332 - -
1.1862 40300 3.0689 - -
1.1891 40400 3.0476 - -
1.1921 40500 3.0626 3.0399 -
1.1950 40600 3.0357 - -
1.1979 40700 3.0282 - -
1.2009 40800 3.0276 - -
1.2038 40900 3.032 - -
1.2068 41000 3.0189 3.0256 -
1.2097 41100 3.0276 - -
1.2127 41200 3.0276 - -
1.2156 41300 3.0276 - -
1.2185 41400 3.0301 - -
1.2215 41500 3.0238 3.0262 -
1.2244 41600 3.0326 - -
1.2274 41700 3.0295 - -
1.2303 41800 3.0307 - -
1.2333 41900 3.0351 - -
1.2362 42000 3.0301 3.0242 -
1.2391 42100 3.0238 - -
1.2421 42200 3.0232 - -
1.2450 42300 3.0301 - -
1.2480 42400 3.0201 - -
1.2509 42500 3.0295 3.0242 -
1.2539 42600 3.0326 - -
1.2568 42700 3.0232 - -
1.2597 42800 3.0213 - -
1.2627 42900 3.0263 - -
1.2656 43000 3.0351 3.0236 -
1.2686 43100 3.0295 - -
1.2715 43200 3.0232 - -
1.2745 43300 3.0207 - -
1.2774 43400 3.027 - -
1.2804 43500 3.0276 3.0234 -
1.2833 43600 3.0257 - -
1.2862 43700 3.0263 - -
1.2892 43800 3.0163 - -
1.2921 43900 3.0282 - -
1.2951 44000 3.0276 3.0270 -
1.2980 44100 3.032 - -
1.3010 44200 3.0326 - -
1.3039 44300 3.0288 - -
1.3068 44400 3.0263 - -
1.3098 44500 3.0251 3.0231 -
1.3127 44600 3.0188 - -
1.3157 44700 3.0213 - -
1.3186 44800 3.0157 - -
1.3216 44900 3.0238 - -
1.3245 45000 3.0263 3.0214 -
1.3274 45100 3.0194 - -
1.3304 45200 3.0301 - -
1.3333 45300 3.0232 - -
1.3363 45400 3.0163 - -
1.3392 45500 3.0157 3.0214 -
1.3422 45600 3.0219 - -
1.3451 45700 3.0169 - -
1.3481 45800 3.0232 - -
1.3510 45900 3.0344 - -
1.3539 46000 3.0219 3.0209 -
1.3569 46100 3.0183 - -
1.3598 46200 3.0207 - -
1.3628 46300 3.0351 - -
1.3657 46400 3.0244 - -
1.3687 46500 3.0194 3.0208 -
1.3716 46600 3.0176 - -
1.3745 46700 3.0244 - -
1.3775 46800 3.0263 - -
1.3804 46900 3.0151 - -
1.3834 47000 3.0226 3.0208 -
1.3863 47100 3.0213 - -
1.3893 47200 3.0307 - -
1.3922 47300 3.0244 - -
1.3951 47400 3.0238 - -
1.3981 47500 3.0276 3.0207 -
1.4010 47600 3.0282 - -
1.4040 47700 3.0201 - -
1.4069 47800 3.0226 - -
1.4099 47900 3.0263 - -
1.4128 48000 3.0213 3.0208 -
1.4157 48100 3.0201 - -
1.4187 48200 3.0207 - -
1.4216 48300 3.0288 - -
1.4246 48400 3.0182 - -
1.4275 48500 3.0263 3.0200 -
1.4305 48600 3.0207 - -
1.4334 48700 3.0332 - -
1.4364 48800 3.0201 - -
1.4393 48900 3.0182 - -
1.4422 49000 3.0188 3.0200 -
1.4452 49100 3.0213 - -
1.4481 49200 3.0144 - -
1.4511 49300 3.0257 - -
1.4540 49400 3.0201 - -
1.4570 49500 3.0238 3.0191 -
1.4599 49600 3.0294 - -
1.4628 49700 3.0226 - -
1.4658 49800 3.0194 - -
1.4687 49900 3.0169 - -
1.4717 50000 3.0207 3.0189 -
1.4746 50100 3.0219 - -
1.4776 50200 3.0194 - -
1.4805 50300 3.0126 - -
1.4834 50400 3.0194 - -
1.4864 50500 3.0163 3.0208 -
1.4893 50600 3.0182 - -
1.4923 50700 3.0169 - -
1.4952 50800 3.0188 - -
1.4982 50900 3.0219 - -
1.5011 51000 3.0169 3.0200 -
1.5040 51100 3.0294 - -
1.5070 51200 3.0207 - -
1.5099 51300 3.02 - -
1.5129 51400 3.0207 - -
1.5158 51500 3.0175 3.0196 -
1.5188 51600 3.0225 - -
1.5217 51700 3.0213 - -
1.5247 51800 3.02 - -
1.5276 51900 3.0232 - -
1.5305 52000 3.0275 3.0188 -
1.5335 52100 3.0169 - -
1.5364 52200 3.02 - -
1.5394 52300 3.0232 - -
1.5423 52400 3.0125 - -
1.5453 52500 3.0163 3.0188 -
1.5482 52600 3.0163 - -
1.5511 52700 3.0269 - -
1.5541 52800 3.0194 - -
1.5570 52900 3.0238 - -
1.5600 53000 3.02 3.0183 -
1.5629 53100 3.0175 - -
1.5659 53200 3.0157 - -
1.5688 53300 3.0157 - -
1.5717 53400 3.0232 - -
1.5747 53500 3.0238 3.0182 -
1.5776 53600 3.0207 - -
1.5806 53700 3.0182 - -
1.5835 53800 3.0213 - -
1.5865 53900 3.0213 - -
1.5894 54000 3.0125 3.0181 -
1.5923 54100 3.0119 - -
1.5953 54200 3.0194 - -
1.5982 54300 3.0125 - -
1.6012 54400 3.0257 - -
1.6041 54500 3.02 3.0181 -
1.6071 54600 3.0232 - -
1.6100 54700 3.025 - -
1.6130 54800 3.0263 - -
1.6159 54900 3.0144 - -
1.6188 55000 3.0138 3.0177 -
1.6218 55100 3.0207 - -
1.6247 55200 3.015 - -
1.6277 55300 3.0175 - -
1.6306 55400 3.0163 - -
1.6336 55500 3.0157 3.0172 -
1.6365 55600 3.01 - -
1.6394 55700 3.0132 - -
1.6424 55800 3.0232 - -
1.6453 55900 3.02 - -
1.6483 56000 3.0163 3.0145 -
1.6512 56100 3.0132 - -
1.6542 56200 3.0219 - -
1.6571 56300 3.0188 - -
1.6600 56400 3.015 - -
1.6630 56500 3.0157 3.0146 -
1.6659 56600 3.0188 - -
1.6689 56700 3.0225 - -
1.6718 56800 3.0094 - -
1.6748 56900 3.0163 - -
1.6777 57000 3.0244 3.0158 -
1.6806 57100 3.0157 - -
1.6836 57200 3.0157 - -
1.6865 57300 3.015 - -
1.6895 57400 3.0125 - -
1.6924 57500 3.0169 3.0151 -
1.6954 57600 3.02 - -
1.6983 57700 3.0138 - -
1.7013 57800 3.0163 - -
1.7042 57900 3.0169 - -
1.7071 58000 3.0169 3.0153 -
1.7101 58100 3.0119 - -
1.7130 58200 3.0132 - -
1.7160 58300 3.0138 - -
1.7189 58400 3.0225 - -
1.7219 58500 3.02 3.0148 -
1.7248 58600 3.015 - -
1.7277 58700 3.0188 - -
1.7307 58800 3.015 - -
1.7336 58900 3.015 - -
1.7366 59000 3.0082 3.0148 -
1.7395 59100 3.0213 - -
1.7425 59200 3.0094 - -
1.7454 59300 3.0188 - -
1.7483 59400 3.0138 - -
1.7513 59500 3.0138 3.0148 -
1.7542 59600 3.0188 - -
1.7572 59700 3.0107 - -
1.7601 59800 3.0119 - -
1.7631 59900 3.015 - -
1.7660 60000 3.0194 3.0147 -
1.7689 60100 3.0144 - -
1.7719 60200 3.0182 - -
1.7748 60300 3.0213 - -
1.7778 60400 3.0144 - -
1.7807 60500 3.0157 3.0147 -
1.7837 60600 3.0132 - -
1.7866 60700 3.0163 - -
1.7896 60800 3.0182 - -
1.7925 60900 3.015 - -
1.7954 61000 3.0088 3.0148 -
1.7984 61100 3.015 - -
1.8013 61200 3.0144 - -
1.8043 61300 3.0113 - -
1.8072 61400 3.0182 - -
1.8102 61500 3.0194 3.0147 -
1.8131 61600 3.02 - -
1.8160 61700 3.0125 - -
1.8190 61800 3.015 - -
1.8219 61900 3.0175 - -
1.8249 62000 3.0119 3.0146 -
1.8278 62100 3.0169 - -
1.8308 62200 3.0225 - -
1.8337 62300 3.0207 - -
1.8366 62400 3.0169 - -
1.8396 62500 3.0125 3.0170 -
1.8425 62600 3.0188 - -
1.8455 62700 3.0157 - -
1.8484 62800 3.0182 - -
1.8514 62900 3.01 - -
1.8543 63000 3.0138 3.0148 -
1.8572 63100 3.0094 - -
1.8602 63200 3.0157 - -
1.8631 63300 3.02 - -
1.8661 63400 3.0094 - -
1.8690 63500 3.0182 3.0145 -
1.8720 63600 3.0157 - -
1.8749 63700 3.0138 - -
1.8779 63800 3.0125 - -
1.8808 63900 3.015 - -
1.8837 64000 3.0075 3.0144 -
1.8867 64100 3.0157 - -
1.8896 64200 3.0088 - -
1.8926 64300 3.0225 - -
1.8955 64400 3.0175 - -
1.8985 64500 3.0232 3.0179 -
1.9014 64600 3.0257 - -
1.9043 64700 3.0175 - -
1.9073 64800 3.0188 - -
1.9102 64900 3.0125 - -
1.9132 65000 3.0225 3.0170 -
1.9161 65100 3.02 - -
1.9191 65200 3.0213 - -
1.9220 65300 3.0113 - -
1.9249 65400 3.0182 - -
1.9279 65500 3.0232 3.0169 -
1.9308 65600 3.0225 - -
1.9338 65700 3.0181 - -
1.9367 65800 3.0181 - -
1.9397 65900 3.0194 - -
1.9426 66000 3.0175 3.0168 -
1.9455 66100 3.0181 - -
1.9485 66200 3.0157 - -
1.9514 66300 3.0169 - -
1.9544 66400 3.0181 - -
1.9573 66500 3.0138 3.0152 -
1.9603 66600 3.0175 - -
1.9632 66700 3.0156 - -
1.9662 66800 3.0106 - -
1.9691 66900 3.01 - -
1.9720 67000 3.0175 3.0141 -
1.9750 67100 3.0144 - -
1.9779 67200 3.0131 - -
1.9809 67300 3.0113 - -
1.9838 67400 3.0113 - -
1.9868 67500 3.0125 3.0140 -
1.9897 67600 3.0119 - -
1.9926 67700 3.02 - -
1.9956 67800 3.0125 - -
1.9985 67900 3.01 - -
2.0015 68000 3.0156 3.0139 -
2.0044 68100 3.0131 - -
2.0074 68200 3.015 - -
2.0103 68300 3.0169 - -
2.0132 68400 3.0169 - -
2.0162 68500 3.0119 3.0139 -
2.0191 68600 3.0138 - -
2.0221 68700 3.0138 - -
2.0250 68800 3.0163 - -
2.0280 68900 3.0188 - -
2.0309 69000 3.0188 3.0139 -
2.0338 69100 3.01 - -
2.0368 69200 3.015 - -
2.0397 69300 3.0175 - -
2.0427 69400 3.0144 - -
2.0456 69500 3.0188 3.0139 -
2.0486 69600 3.0119 - -
2.0515 69700 3.0131 - -
2.0545 69800 3.0131 - -
2.0574 69900 3.0144 - -
2.0603 70000 3.0144 3.0139 -
2.0633 70100 3.0163 - -
2.0662 70200 3.0069 - -
2.0692 70300 3.0213 - -
2.0721 70400 3.0188 - -
2.0751 70500 3.0131 3.0108 -
2.0780 70600 3.0131 - -
2.0809 70700 3.0094 - -
2.0839 70800 3.0131 - -
2.0868 70900 3.0119 - -
2.0898 71000 3.0106 3.0117 -
2.0927 71100 3.015 - -
2.0957 71200 3.0106 - -
2.0986 71300 3.0106 - -
2.1015 71400 3.0113 - -
2.1045 71500 3.01 3.0117 -
2.1074 71600 3.01 - -
2.1104 71700 3.0138 - -
2.1133 71800 3.0088 - -
2.1163 71900 3.0106 - -
2.1192 72000 3.0069 3.0111 -
2.1221 72100 3.0056 - -
2.1251 72200 3.0156 - -
2.1280 72300 3.0094 - -
2.1310 72400 3.0081 - -
2.1339 72500 3.0125 3.0112 -
2.1369 72600 3.0125 - -
2.1398 72700 3.0144 - -
2.1428 72800 3.0156 - -
2.1457 72900 3.0094 - -
2.1486 73000 3.0075 3.0112 -
2.1516 73100 3.0119 - -
2.1545 73200 3.0088 - -
2.1575 73300 3.0119 - -
2.1604 73400 3.0131 - -
2.1634 73500 3.0094 3.0110 -
2.1663 73600 3.0063 - -
2.1692 73700 3.0138 - -
2.1722 73800 3.0094 - -
2.1751 73900 3.0144 - -
2.1781 74000 3.0081 3.0109 -
2.1810 74100 3.0138 - -
2.1840 74200 3.0144 - -
2.1869 74300 3.0094 - -
2.1898 74400 3.0106 - -
2.1928 74500 3.01 3.0110 -
2.1957 74600 3.0088 - -
2.1987 74700 3.0081 - -
2.2016 74800 3.0094 - -
2.2046 74900 3.01 - -
2.2075 75000 3.0181 3.0108 -
2.2104 75100 3.0088 - -
2.2134 75200 3.0144 - -
2.2163 75300 3.0131 - -
2.2193 75400 3.01 - -
2.2222 75500 3.0125 3.0112 -
2.2252 75600 3.0131 - -
2.2281 75700 3.0125 - -
2.2311 75800 3.01 - -
2.2340 75900 3.01 - -
2.2369 76000 3.0175 3.0112 -
2.2399 76100 3.0094 - -
2.2428 76200 3.015 - -
2.2458 76300 3.0075 - -
2.2487 76400 3.0125 - -
2.2517 76500 3.0131 3.0109 -
2.2546 76600 3.0175 - -
2.2575 76700 3.0063 - -
2.2605 76800 3.0113 - -
2.2634 76900 3.0106 - -
2.2664 77000 3.0106 3.0109 -
2.2693 77100 3.0125 - -
2.2723 77200 3.0163 - -
2.2752 77300 3.0081 - -
2.2781 77400 3.0131 - -
2.2811 77500 3.0119 3.0107 -
2.2840 77600 3.015 - -
2.2870 77700 3.0125 - -
2.2899 77800 3.0094 - -
2.2929 77900 3.01 - -
2.2958 78000 3.0125 3.0107 -
2.2987 78100 3.0113 - -
2.3017 78200 3.01 - -
2.3046 78300 3.0119 - -
2.3076 78400 3.0131 - -
2.3105 78500 3.0106 3.0109 -
2.3135 78600 3.0063 - -
2.3164 78700 3.0113 - -
2.3194 78800 3.01 - -
2.3223 78900 3.0131 - -
2.3252 79000 3.0088 3.0118 -
2.3282 79100 3.0088 - -
2.3311 79200 3.0106 - -
2.3341 79300 3.0081 - -
2.3370 79400 3.0144 - -
2.3400 79500 3.0138 3.0107 -
2.3429 79600 3.01 - -
2.3458 79700 3.01 - -
2.3488 79800 3.0144 - -
2.3517 79900 3.01 - -
2.3547 80000 3.0125 3.0104 -
2.3576 80100 3.005 - -
2.3606 80200 3.0106 - -
2.3635 80300 3.0094 - -
2.3664 80400 3.0131 - -
2.3694 80500 3.0125 3.0104 -
2.3723 80600 3.0106 - -
2.3753 80700 3.01 - -
2.3782 80800 3.0119 - -
2.3812 80900 3.0088 - -
2.3841 81000 3.0113 3.0103 -
2.3870 81100 3.0094 - -
2.3900 81200 3.0094 - -
2.3929 81300 3.0119 - -
2.3959 81400 3.0094 - -
2.3988 81500 3.0088 3.0103 -
2.4018 81600 3.0106 - -
2.4047 81700 3.0088 - -
2.4077 81800 3.005 - -
2.4106 81900 3.0113 - -
2.4135 82000 3.0138 3.0103 -
2.4165 82100 3.0106 - -
2.4194 82200 3.0094 - -
2.4224 82300 3.0069 - -
2.4253 82400 3.0106 - -
2.4283 82500 3.0106 3.0104 -
2.4312 82600 3.0156 - -
2.4341 82700 3.0138 - -
2.4371 82800 3.0113 - -
2.4400 82900 3.01 - -
2.4430 83000 3.0138 3.0104 -
2.4459 83100 3.0194 - -
2.4489 83200 3.0075 - -
2.4518 83300 3.0088 - -
2.4547 83400 3.0081 - -
2.4577 83500 3.0138 3.0104 -
2.4606 83600 3.0081 - -
2.4636 83700 3.0163 - -
2.4665 83800 3.0113 - -
2.4695 83900 3.0063 - -
2.4724 84000 3.0144 3.0103 -
2.4753 84100 3.0088 - -
2.4783 84200 3.0144 - -
2.4812 84300 3.0131 - -
2.4842 84400 3.0094 - -
2.4871 84500 3.015 3.0103 -
2.4901 84600 3.0106 - -
2.4930 84700 3.0119 - -
2.4960 84800 3.0125 - -
2.4989 84900 3.0125 - -
2.5018 85000 3.015 3.0113 -
2.5048 85100 3.0156 - -
2.5077 85200 3.0194 - -
2.5107 85300 3.0119 - -
2.5136 85400 3.0075 - -
2.5166 85500 3.0156 3.0103 -
2.5195 85600 3.0131 - -
2.5224 85700 3.0044 - -
2.5254 85800 3.0075 - -
2.5283 85900 3.0113 - -
2.5313 86000 3.0144 3.0103 -
2.5342 86100 3.0144 - -
2.5372 86200 3.0113 - -
2.5401 86300 3.0163 - -
2.5430 86400 3.0169 - -
2.5460 86500 3.01 3.0101 -
2.5489 86600 3.01 - -
2.5519 86700 3.0113 - -
2.5548 86800 3.0138 - -
2.5578 86900 3.0113 - -
2.5607 87000 3.0113 3.0101 -
2.5636 87100 3.0081 - -
2.5666 87200 3.0069 - -
2.5695 87300 3.0069 - -
2.5725 87400 3.0088 - -
2.5754 87500 3.0094 3.0101 -
2.5784 87600 3.0088 - -
2.5813 87700 3.0119 - -
2.5843 87800 3.01 - -
2.5872 87900 3.0119 - -
2.5901 88000 3.0125 3.0101 -
2.5931 88100 3.0088 - -
2.5960 88200 3.0138 - -
2.5990 88300 3.01 - -
2.6019 88400 3.0119 - -
2.6049 88500 3.0119 3.0102 -
2.6078 88600 3.0063 - -
2.6107 88700 3.01 - -
2.6137 88800 3.0125 - -
2.6166 88900 3.0175 - -
2.6196 89000 3.0113 3.0118 -
2.6225 89100 3.02 - -
2.6255 89200 3.0194 - -
2.6284 89300 3.0088 - -
2.6313 89400 3.0144 - -
2.6343 89500 3.0125 3.0105 -
2.6372 89600 3.0144 - -
2.6402 89700 3.0163 - -
2.6431 89800 3.0106 - -
2.6461 89900 3.0131 - -
2.6490 90000 3.0119 3.0101 -
2.6519 90100 3.0175 - -
2.6549 90200 3.0106 - -
2.6578 90300 3.0138 - -
2.6608 90400 3.0069 - -
2.6637 90500 3.0138 3.0100 -
2.6667 90600 3.0044 - -
2.6696 90700 3.0131 - -
2.6726 90800 3.01 - -
2.6755 90900 3.0094 - -
2.6784 91000 3.0094 3.0100 -
2.6814 91100 3.0156 - -
2.6843 91200 3.01 - -
2.6873 91300 3.01 - -
2.6902 91400 3.01 - -
2.6932 91500 3.0075 3.0098 -
2.6961 91600 3.0125 - -
2.6990 91700 3.01 - -
2.7020 91800 3.0081 - -
2.7049 91900 3.01 - -
2.7079 92000 3.0169 3.0097 -
2.7108 92100 3.01 - -
2.7138 92200 3.0125 - -
2.7167 92300 3.0131 - -
2.7196 92400 3.0138 - -
2.7226 92500 3.0156 3.0099 -
2.7255 92600 3.0113 - -
2.7285 92700 3.0106 - -
2.7314 92800 3.0125 - -
2.7344 92900 3.0038 - -
2.7373 93000 3.0088 3.0100 -
2.7403 93100 3.0081 - -
2.7432 93200 3.0119 - -
2.7461 93300 3.0138 - -
2.7491 93400 3.0131 - -
2.7520 93500 3.0106 3.0100 -
2.7550 93600 3.0081 - -
2.7579 93700 3.0056 - -
2.7609 93800 3.0106 - -
2.7638 93900 3.0119 - -
2.7667 94000 3.0075 3.0099 -
2.7697 94100 3.0119 - -
2.7726 94200 3.0075 - -
2.7756 94300 3.0094 - -
2.7785 94400 3.0119 - -
2.7815 94500 3.01 3.0099 -
2.7844 94600 3.0106 - -
2.7873 94700 3.0131 - -
2.7903 94800 3.0094 - -
2.7932 94900 3.0075 - -
2.7962 95000 3.0119 3.0098 -
2.7991 95100 3.0094 - -
2.8021 95200 3.0138 - -
2.8050 95300 3.0094 - -
2.8079 95400 3.0125 - -
2.8109 95500 3.0081 3.0100 -
2.8138 95600 3.0081 - -
2.8168 95700 3.0088 - -
2.8197 95800 3.0113 - -
2.8227 95900 3.0075 - -
2.8256 96000 3.0138 3.0097 -
2.8286 96100 3.0106 - -
2.8315 96200 3.01 - -
2.8344 96300 3.0119 - -
2.8374 96400 3.0144 - -
2.8403 96500 3.0106 3.0099 -
2.8433 96600 3.0094 - -
2.8462 96700 3.0131 - -
2.8492 96800 3.0088 - -
2.8521 96900 3.005 - -
2.8550 97000 3.0156 3.0099 -
2.8580 97100 3.0094 - -
2.8609 97200 3.0081 - -
2.8639 97300 3.0113 - -
2.8668 97400 3.0138 - -
2.8698 97500 3.0119 3.0096 -
2.8727 97600 3.0125 - -
2.8756 97700 3.0094 - -
2.8786 97800 3.0119 - -
2.8815 97900 3.0081 - -
2.8845 98000 3.0106 3.0096 -
2.8874 98100 3.0081 - -
2.8904 98200 3.0125 - -
2.8933 98300 3.0075 - -
2.8962 98400 3.0119 - -
2.8992 98500 3.0106 3.0096 -
2.9021 98600 3.0081 - -
2.9051 98700 3.0094 - -
2.9080 98800 3.0081 - -
2.9110 98900 3.0144 - -
2.9139 99000 3.0094 3.0091 -
2.9169 99100 3.0094 - -
2.9198 99200 3.0094 - -
2.9227 99300 3.0106 - -
2.9257 99400 3.01 - -
2.9286 99500 3.0113 3.0091 -
2.9316 99600 3.0106 - -
2.9345 99700 3.0106 - -
2.9375 99800 3.0094 - -
2.9404 99900 3.0081 - -
2.9433 100000 3.01 3.0091 -
2.9463 100100 3.0119 - -
2.9492 100200 3.0106 - -
2.9522 100300 3.0113 - -
2.9551 100400 3.0075 - -
2.9581 100500 3.0094 3.0098 -
2.9610 100600 3.0119 - -
2.9639 100700 3.0106 - -
2.9669 100800 3.0088 - -
2.9698 100900 3.015 - -
2.9728 101000 3.0106 3.0096 -
2.9757 101100 3.0075 - -
2.9787 101200 3.0188 - -
2.9816 101300 3.0088 - -
2.9845 101400 3.0081 - -
2.9875 101500 3.0075 3.0097 -
2.9904 101600 3.0119 - -
2.9934 101700 3.01 - -
2.9963 101800 3.0075 - -
2.9993 101900 3.0094 - -
3.0022 102000 3.0119 3.0097 -
3.0052 102100 3.0113 - -
3.0081 102200 3.0088 - -
3.0110 102300 3.0106 - -
3.0140 102400 3.0113 - -
3.0169 102500 3.015 3.0097 -
3.0199 102600 3.0088 - -
3.0228 102700 3.0088 - -
3.0258 102800 3.0106 - -
3.0287 102900 3.0113 - -
3.0316 103000 3.01 3.0094 -
3.0346 103100 3.0113 - -
3.0375 103200 3.0125 - -
3.0405 103300 3.0056 - -
3.0434 103400 3.01 - -
3.0464 103500 3.01 3.0094 -
3.0493 103600 3.01 - -
3.0522 103700 3.01 - -
3.0552 103800 3.0075 - -
3.0581 103900 3.0063 - -
3.0611 104000 3.015 3.0096 -
3.0640 104100 3.0063 - -
3.0670 104200 3.0119 - -
3.0699 104300 3.0088 - -
3.0728 104400 3.0113 - -
3.0758 104500 3.01 3.0095 -
3.0787 104600 3.0081 - -
3.0817 104700 3.0094 - -
3.0846 104800 3.0075 - -
3.0876 104900 3.0113 - -
3.0905 105000 3.0131 3.0095 -
3.0935 105100 3.0131 - -
3.0964 105200 3.0131 - -
3.0993 105300 3.0075 - -
3.1023 105400 3.0119 - -
3.1052 105500 3.0094 3.0092 -
3.1082 105600 3.0069 - -
3.1111 105700 3.0063 - -
3.1141 105800 3.0094 - -
3.1170 105900 3.01 - -
3.1199 106000 3.0113 3.0097 -
3.1229 106100 3.0056 - -
3.1258 106200 3.01 - -
3.1288 106300 3.0081 - -
3.1317 106400 3.0106 - -
3.1347 106500 3.01 3.0096 -
3.1376 106600 3.0069 - -
3.1405 106700 3.0119 - -
3.1435 106800 3.0081 - -
3.1464 106900 3.0075 - -
3.1494 107000 3.0081 3.0097 -
3.1523 107100 3.0075 - -
3.1553 107200 3.0081 - -
3.1582 107300 3.0125 - -
3.1611 107400 3.0094 - -
3.1641 107500 3.0094 3.0092 -
3.1670 107600 3.0175 - -
3.1700 107700 3.01 - -
3.1729 107800 3.0113 - -
3.1759 107900 3.0094 - -
3.1788 108000 3.0125 3.0091 -
3.1818 108100 3.0069 - -
3.1847 108200 3.0119 - -
3.1876 108300 3.0144 - -
3.1906 108400 3.0075 - -
3.1935 108500 3.0094 3.0097 -
3.1965 108600 3.0106 - -
3.1994 108700 3.0144 - -
3.2024 108800 3.0075 - -
3.2053 108900 3.0156 - -
3.2082 109000 3.0044 3.0095 -
3.2112 109100 3.01 - -
3.2141 109200 3.0106 - -
3.2171 109300 3.0081 - -
3.2200 109400 3.0069 - -
3.2230 109500 3.01 3.0096 -
3.2259 109600 3.01 - -
3.2288 109700 3.0125 - -
3.2318 109800 3.0069 - -
3.2347 109900 3.0081 - -
3.2377 110000 3.0088 3.0097 -
3.2406 110100 3.0119 - -
3.2436 110200 3.0131 - -
3.2465 110300 3.0119 - -
3.2494 110400 3.0094 - -
3.2524 110500 3.0094 3.0096 -
3.2553 110600 3.0144 - -
3.2583 110700 3.0069 - -
3.2612 110800 3.0131 - -
3.2642 110900 3.0081 - -
3.2671 111000 3.01 3.0096 -
3.2701 111100 3.01 - -
3.2730 111200 3.01 - -
3.2759 111300 3.0125 - -
3.2789 111400 3.0113 - -
3.2818 111500 3.0088 3.0095 -
3.2848 111600 3.0131 - -
3.2877 111700 3.0125 - -
3.2907 111800 3.01 - -
3.2936 111900 3.0113 - -
3.2965 112000 3.0044 3.0095 -
3.2995 112100 3.0144 - -
3.3024 112200 3.0081 - -
3.3054 112300 3.0106 - -
3.3083 112400 3.0094 - -
3.3113 112500 3.005 3.0095 -
3.3142 112600 3.0131 - -
3.3171 112700 3.0081 - -
3.3201 112800 3.0094 - -
3.3230 112900 3.0075 - -
3.3260 113000 3.0113 3.0095 -
3.3289 113100 3.0081 - -
3.3319 113200 3.0094 - -
3.3348 113300 3.0081 - -
3.3377 113400 3.0106 - -
3.3407 113500 3.0169 3.0095 -
3.3436 113600 3.0056 - -
3.3466 113700 3.0081 - -
3.3495 113800 3.0069 - -
3.3525 113900 3.0094 - -
3.3554 114000 3.0031 3.0095 -
3.3584 114100 3.0069 - -
3.3613 114200 3.0075 - -
3.3642 114300 3.015 - -
3.3672 114400 3.0081 - -
3.3701 114500 3.0094 3.0095 -
3.3731 114600 3.0056 - -
3.3760 114700 3.0081 - -
3.3790 114800 3.0119 - -
3.3819 114900 3.0075 - -
3.3848 115000 3.0063 3.0098 -
3.3878 115100 3.0144 - -
3.3907 115200 3.0138 - -
3.3937 115300 3.0081 - -
3.3966 115400 3.0113 - -
3.3996 115500 3.0138 3.0098 -
3.4025 115600 3.0081 - -
3.4054 115700 3.0106 - -
3.4084 115800 3.0088 - -
3.4113 115900 3.0106 - -
3.4143 116000 3.0156 3.0095 -
3.4172 116100 3.0119 - -
3.4202 116200 3.01 - -
3.4231 116300 3.0144 - -
3.4260 116400 3.0131 - -
3.4290 116500 3.0131 3.0097 -
3.4319 116600 3.0088 - -
3.4349 116700 3.0113 - -
3.4378 116800 3.0044 - -
3.4408 116900 3.01 - -
3.4437 117000 3.0069 3.0094 -
3.4467 117100 3.0081 - -
3.4496 117200 3.0125 - -
3.4525 117300 3.0069 - -
3.4555 117400 3.0063 - -
3.4584 117500 3.0044 3.0095 -
3.4614 117600 3.0119 - -
3.4643 117700 3.0081 - -
3.4673 117800 3.0081 - -
3.4702 117900 3.0106 - -
3.4731 118000 3.0125 3.0095 -
3.4761 118100 3.0138 - -
3.4790 118200 3.0106 - -
3.4820 118300 3.0144 - -
3.4849 118400 3.0081 - -
3.4879 118500 3.01 3.0095 -
3.4908 118600 3.0075 - -
3.4937 118700 3.0056 - -
3.4967 118800 3.0069 - -
3.4996 118900 3.0094 - -
3.5026 119000 3.0119 3.0095 -
3.5055 119100 3.0038 - -
3.5085 119200 3.025 - -
3.5114 119300 3.0081 - -
3.5143 119400 3.0119 - -
3.5173 119500 3.005 3.0095 -
3.5202 119600 3.01 - -
3.5232 119700 3.0025 - -
3.5261 119800 3.0088 - -
3.5291 119900 3.0106 - -
3.5320 120000 3.0138 3.0095 -
3.5350 120100 3.0056 - -
3.5379 120200 3.0088 - -
3.5408 120300 3.0125 - -
3.5438 120400 3.0125 - -
3.5467 120500 3.0056 3.0095 -
3.5497 120600 3.0131 - -
3.5526 120700 3.0119 - -
3.5556 120800 3.0094 - -
3.5585 120900 3.0106 - -
3.5614 121000 3.0113 3.0095 -
3.5644 121100 3.0106 - -
3.5673 121200 3.0156 - -
3.5703 121300 3.0069 - -
3.5732 121400 3.0125 - -
3.5762 121500 3.0069 3.0095 -
3.5791 121600 3.01 - -
3.5820 121700 3.0119 - -
3.5850 121800 3.0088 - -
3.5879 121900 3.0119 - -
3.5909 122000 3.0069 3.0095 -
3.5938 122100 3.0069 - -
3.5968 122200 3.0138 - -
3.5997 122300 3.01 - -
3.6026 122400 3.0106 - -
3.6056 122500 3.0113 3.0095 -
3.6085 122600 3.01 - -
3.6115 122700 3.005 - -
3.6144 122800 3.0069 - -
3.6174 122900 3.0094 - -
3.6203 123000 3.0119 3.0095 -
3.6233 123100 3.0056 - -
3.6262 123200 3.0075 - -
3.6291 123300 3.0106 - -
3.6321 123400 3.005 - -
3.6350 123500 3.0081 3.0095 -
3.6380 123600 3.02 - -
3.6409 123700 3.0094 - -
3.6439 123800 3.0119 - -
3.6468 123900 3.0106 - -
3.6497 124000 3.0125 3.0095 -
3.6527 124100 3.0125 - -
3.6556 124200 3.0188 - -
3.6586 124300 3.01 - -
3.6615 124400 3.0088 - -
3.6645 124500 3.0169 3.0095 -
3.6674 124600 3.0113 - -
3.6703 124700 3.0063 - -
3.6733 124800 3.0094 - -
3.6762 124900 3.0038 - -
3.6792 125000 3.0106 3.0091 -
3.6821 125100 3.005 - -
3.6851 125200 3.0081 - -
3.6880 125300 3.0075 - -
3.6909 125400 3.0131 - -
3.6939 125500 3.0075 3.0091 -
3.6968 125600 3.0131 - -
3.6998 125700 3.01 - -
3.7027 125800 3.0075 - -
3.7057 125900 3.0113 - -
3.7086 126000 3.0094 3.0091 -
3.7116 126100 3.0081 - -
3.7145 126200 3.0119 - -
3.7174 126300 3.0088 - -
3.7204 126400 3.0063 - -
3.7233 126500 3.0081 3.0091 -
3.7263 126600 3.0125 - -
3.7292 126700 3.0125 - -
3.7322 126800 3.0131 - -
3.7351 126900 3.0106 - -
3.7380 127000 3.0088 3.0091 -
3.7410 127100 3.0113 - -
3.7439 127200 3.0125 - -
3.7469 127300 3.0094 - -
3.7498 127400 3.0069 - -
3.7528 127500 3.0088 3.0091 -
3.7557 127600 3.0163 - -
3.7586 127700 3.0094 - -
3.7616 127800 3.0069 - -
3.7645 127900 3.0063 - -
3.7675 128000 3.0094 3.0091 -
3.7704 128100 3.01 - -
3.7734 128200 3.015 - -
3.7763 128300 3.0163 - -
3.7792 128400 3.0106 - -
3.7822 128500 3.0113 3.0091 -
3.7851 128600 3.0069 - -
3.7881 128700 3.0113 - -
3.7910 128800 3.0063 - -
3.7940 128900 3.0088 - -
3.7969 129000 3.0019 3.0091 -
3.7999 129100 3.0094 - -
3.8028 129200 3.0038 - -
3.8057 129300 3.0044 - -
3.8087 129400 3.0088 - -
3.8116 129500 3.0113 3.0091 -
3.8146 129600 3.0094 - -
3.8175 129700 3.0088 - -
3.8205 129800 3.0113 - -
3.8234 129900 3.0094 - -
3.8263 130000 3.0069 3.0091 -
3.8293 130100 3.0113 - -
3.8322 130200 3.0081 - -
3.8352 130300 3.0125 - -
3.8381 130400 3.0156 - -
3.8411 130500 3.0069 3.0091 -
3.8440 130600 3.0131 - -
3.8469 130700 3.0131 - -
3.8499 130800 3.005 - -
3.8528 130900 3.0106 - -
3.8558 131000 3.0119 3.0089 -
3.8587 131100 3.0081 - -
3.8617 131200 3.0088 - -
3.8646 131300 3.0075 - -
3.8675 131400 3.0056 - -

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.1
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
12
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for youssefkhalil320/all-MiniLM-L6-v2-triplet-loss

Finetuned
(162)
this model

Evaluation results