youssefkhalil320's picture
Upload folder using huggingface_hub
7df7581 verified
metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy
  - dot_accuracy
  - manhattan_accuracy
  - euclidean_accuracy
  - max_accuracy
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1087179
  - loss:TripletLoss
widget:
  - source_sentence: hyperactive impulsive adhd
    sentences:
      - Claw Clip
      - egyptian postage
      - mug
  - source_sentence: Work of Madness Hoodie
    sentences:
      - t-shirt
      - towel
      - men hoodie
  - source_sentence: E7Lam Hoodie
    sentences:
      - Al Mady Hoodie
      - waterfall cup
      - hoodie
  - source_sentence: Tote bag
    sentences:
      - Waterfall Mug
      - hoodie
      - linen tote bag
  - source_sentence: Kimono
    sentences:
      - mug
      - fringe kaftan
      - shoes
model-index:
  - name: all-MiniLM-L6-v2-triplet-loss
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: all nli dev
          type: all-nli-dev
        metrics:
          - type: cosine_accuracy
            value: 0.9168454165823506
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.08315458341764934
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0.9135451351202193
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.9168454165823506
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0.9168454165823506
            name: Max Accuracy

all-MiniLM-L6-v2-triplet-loss

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Kimono',
    'fringe kaftan',
    'mug',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9168
dot_accuracy 0.0832
manhattan_accuracy 0.9135
euclidean_accuracy 0.9168
max_accuracy 0.9168

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss all-nli-dev_max_accuracy
0 0 - - 0.9168
0.0029 100 4.7115 - -
0.0059 200 4.6948 - -
0.0088 300 4.6548 - -
0.0118 400 4.6055 - -
0.0147 500 4.5234 4.3878 -
0.0177 600 4.4338 - -
0.0206 700 4.2938 - -
0.0235 800 4.1176 - -
0.0265 900 3.9373 - -
0.0294 1000 3.7241 3.4721 -
0.0324 1100 3.5965 - -
0.0353 1200 3.4949 - -
0.0383 1300 3.4542 - -
0.0412 1400 3.4345 - -
0.0442 1500 3.3955 3.2453 -
0.0471 1600 3.3818 - -
0.0500 1700 3.3608 - -
0.0530 1800 3.3377 - -
0.0559 1900 3.326 - -
0.0589 2000 3.3061 3.1692 -
0.0618 2100 3.308 - -
0.0648 2200 3.2887 - -
0.0677 2300 3.2963 - -
0.0706 2400 3.2744 - -
0.0736 2500 3.2601 3.1416 -
0.0765 2600 3.271 - -
0.0795 2700 3.2501 - -
0.0824 2800 3.2536 - -
0.0854 2900 3.2689 - -
0.0883 3000 3.2362 3.1196 -
0.0912 3100 3.2281 - -
0.0942 3200 3.2351 - -
0.0971 3300 3.2173 - -
0.1001 3400 3.2055 - -
0.1030 3500 3.2198 3.1081 -
0.1060 3600 3.2116 - -
0.1089 3700 3.2088 - -
0.1118 3800 3.2043 - -
0.1148 3900 3.1943 - -
0.1177 4000 3.1897 3.1027 -
0.1207 4100 3.2131 - -
0.1236 4200 3.198 - -
0.1266 4300 3.1892 - -
0.1295 4400 3.1753 - -
0.1325 4500 3.1722 3.0840 -
0.1354 4600 3.1599 - -
0.1383 4700 3.166 - -
0.1413 4800 3.1585 - -
0.1442 4900 3.1698 - -
0.1472 5000 3.1766 3.0782 -
0.1501 5100 3.1515 - -
0.1531 5200 3.1487 - -
0.1560 5300 3.1579 - -
0.1589 5400 3.1533 - -
0.1619 5500 3.1433 3.0735 -
0.1648 5600 3.1454 - -
0.1678 5700 3.1397 - -
0.1707 5800 3.1422 - -
0.1737 5900 3.1372 - -
0.1766 6000 3.137 3.0710 -
0.1795 6100 3.1297 - -
0.1825 6200 3.1202 - -
0.1854 6300 3.1256 - -
0.1884 6400 3.1185 - -
0.1913 6500 3.1266 3.0667 -
0.1943 6600 3.1197 - -
0.1972 6700 3.1286 - -
0.2001 6800 3.1239 - -
0.2031 6900 3.1166 - -
0.2060 7000 3.1054 3.0664 -
0.2090 7100 3.1103 - -
0.2119 7200 3.0929 - -
0.2149 7300 3.1051 - -
0.2178 7400 3.1023 - -
0.2208 7500 3.0946 3.0636 -
0.2237 7600 3.0958 - -
0.2266 7700 3.0907 - -
0.2296 7800 3.1051 - -
0.2325 7900 3.0965 - -
0.2355 8000 3.0954 3.0617 -
0.2384 8100 3.0693 - -
0.2414 8200 3.0906 - -
0.2443 8300 3.0881 - -
0.2472 8400 3.0867 - -
0.2502 8500 3.0867 3.0610 -
0.2531 8600 3.0909 - -
0.2561 8700 3.0877 - -
0.2590 8800 3.0837 - -
0.2620 8900 3.0865 - -
0.2649 9000 3.0846 3.0607 -
0.2678 9100 3.0798 - -
0.2708 9200 3.0928 - -
0.2737 9300 3.0794 - -
0.2767 9400 3.0797 - -
0.2796 9500 3.0685 3.0623 -
0.2826 9600 3.0768 - -
0.2855 9700 3.0657 - -
0.2884 9800 3.0838 - -
0.2914 9900 3.0775 - -
0.2943 10000 3.0667 3.0587 -
0.2973 10100 3.088 - -
0.3002 10200 3.0824 - -
0.3032 10300 3.0754 - -
0.3061 10400 3.064 - -
0.3091 10500 3.0637 3.0578 -
0.3120 10600 3.0754 - -
0.3149 10700 3.0703 - -
0.3179 10800 3.0697 - -
0.3208 10900 3.0635 - -
0.3238 11000 3.0872 3.0573 -
0.3267 11100 3.0722 - -
0.3297 11200 3.0633 - -
0.3326 11300 3.058 - -
0.3355 11400 3.0601 - -
0.3385 11500 3.0732 3.0583 -
0.3414 11600 3.0565 - -
0.3444 11700 3.0735 - -
0.3473 11800 3.0656 - -
0.3503 11900 3.0583 - -
0.3532 12000 3.0714 3.0574 -
0.3561 12100 3.0647 - -
0.3591 12200 3.0522 - -
0.3620 12300 3.0668 - -
0.3650 12400 3.071 - -
0.3679 12500 3.0667 3.0556 -
0.3709 12600 3.0568 - -
0.3738 12700 3.0642 - -
0.3767 12800 3.0607 - -
0.3797 12900 3.0679 - -
0.3826 13000 3.0547 3.0547 -
0.3856 13100 3.0714 - -
0.3885 13200 3.0692 - -
0.3915 13300 3.0597 - -
0.3944 13400 3.067 - -
0.3974 13500 3.0626 3.0551 -
0.4003 13600 3.0708 - -
0.4032 13700 3.065 - -
0.4062 13800 3.0619 - -
0.4091 13900 3.0556 - -
0.4121 14000 3.0708 3.0524 -
0.4150 14100 3.0634 - -
0.4180 14200 3.0605 - -
0.4209 14300 3.0555 - -
0.4238 14400 3.0624 - -
0.4268 14500 3.0468 3.0510 -
0.4297 14600 3.0534 - -
0.4327 14700 3.0671 - -
0.4356 14800 3.0714 - -
0.4386 14900 3.0493 - -
0.4415 15000 3.0457 3.0467 -
0.4444 15100 3.0599 - -
0.4474 15200 3.0554 - -
0.4503 15300 3.0466 - -
0.4533 15400 3.0471 - -
0.4562 15500 3.0465 3.0500 -
0.4592 15600 3.0556 - -
0.4621 15700 3.0444 - -
0.4650 15800 3.0468 - -
0.4680 15900 3.0554 - -
0.4709 16000 3.0573 3.0469 -
0.4739 16100 3.049 - -
0.4768 16200 3.0539 - -
0.4798 16300 3.052 - -
0.4827 16400 3.0538 - -
0.4857 16500 3.045 3.0444 -
0.4886 16600 3.0381 - -
0.4915 16700 3.0517 - -
0.4945 16800 3.0598 - -
0.4974 16900 3.046 - -
0.5004 17000 3.0478 3.0447 -
0.5033 17100 3.054 - -
0.5063 17200 3.0471 - -
0.5092 17300 3.0383 - -
0.5121 17400 3.0539 - -
0.5151 17500 3.0457 3.0432 -
0.5180 17600 3.05 - -
0.5210 17700 3.05 - -
0.5239 17800 3.0512 - -
0.5269 17900 3.0399 - -
0.5298 18000 3.048 3.0431 -
0.5327 18100 3.0367 - -
0.5357 18200 3.0442 - -
0.5386 18300 3.0472 - -
0.5416 18400 3.0335 - -
0.5445 18500 3.0465 3.0459 -
0.5475 18600 3.054 - -
0.5504 18700 3.0489 - -
0.5533 18800 3.037 - -
0.5563 18900 3.0432 - -
0.5592 19000 3.0401 3.0426 -
0.5622 19100 3.0369 - -
0.5651 19200 3.0561 - -
0.5681 19300 3.0469 - -
0.5710 19400 3.0468 - -
0.5740 19500 3.0455 3.0433 -
0.5769 19600 3.0512 - -
0.5798 19700 3.0474 - -
0.5828 19800 3.043 - -
0.5857 19900 3.0473 - -
0.5887 20000 3.0448 3.0415 -
0.5916 20100 3.0441 - -
0.5946 20200 3.0403 - -
0.5975 20300 3.0516 - -
0.6004 20400 3.0459 - -
0.6034 20500 3.0415 3.0415 -
0.6063 20600 3.034 - -
0.6093 20700 3.0483 - -
0.6122 20800 3.0538 - -
0.6152 20900 3.0458 - -
0.6181 21000 3.0445 3.0372 -
0.6210 21100 3.0414 - -
0.6240 21200 3.0476 - -
0.6269 21300 3.0638 - -
0.6299 21400 3.0375 - -
0.6328 21500 3.0425 3.0397 -
0.6358 21600 3.0394 - -
0.6387 21700 3.0443 - -
0.6416 21800 3.0381 - -
0.6446 21900 3.0387 - -
0.6475 22000 3.0255 3.0381 -
0.6505 22100 3.0355 - -
0.6534 22200 3.0411 - -
0.6564 22300 3.0436 - -
0.6593 22400 3.038 - -
0.6623 22500 3.0336 3.0325 -
0.6652 22600 3.0404 - -
0.6681 22700 3.0374 - -
0.6711 22800 3.0342 - -
0.6740 22900 3.0385 - -
0.6770 23000 3.0329 3.0342 -
0.6799 23100 3.0391 - -
0.6829 23200 3.0366 - -
0.6858 23300 3.0284 - -
0.6887 23400 3.0328 - -
0.6917 23500 3.0322 3.0333 -
0.6946 23600 3.0353 - -
0.6976 23700 3.0371 - -
0.7005 23800 3.0321 - -
0.7035 23900 3.0365 - -
0.7064 24000 3.0302 3.0342 -
0.7093 24100 3.0352 - -
0.7123 24200 3.0277 - -
0.7152 24300 3.0402 - -
0.7182 24400 3.0364 - -
0.7211 24500 3.0439 3.0336 -
0.7241 24600 3.0396 - -
0.7270 24700 3.0475 - -
0.7299 24800 3.0258 - -
0.7329 24900 3.0345 - -
0.7358 25000 3.0326 3.0350 -
0.7388 25100 3.0357 - -
0.7417 25200 3.0413 - -
0.7447 25300 3.0326 - -
0.7476 25400 3.0401 - -
0.7506 25500 3.0313 3.0365 -
0.7535 25600 3.04 - -
0.7564 25700 3.0382 - -
0.7594 25800 3.0344 - -
0.7623 25900 3.0325 - -
0.7653 26000 3.0475 3.0340 -
0.7682 26100 3.0256 - -
0.7712 26200 3.0331 - -
0.7741 26300 3.0325 - -
0.7770 26400 3.0431 - -
0.7800 26500 3.04 3.0372 -
0.7829 26600 3.0393 - -
0.7859 26700 3.0374 - -
0.7888 26800 3.0406 - -
0.7918 26900 3.0343 - -
0.7947 27000 3.0374 3.0325 -
0.7976 27100 3.0262 - -
0.8006 27200 3.0393 - -
0.8035 27300 3.0255 - -
0.8065 27400 3.0305 - -
0.8094 27500 3.0324 3.0323 -
0.8124 27600 3.0317 - -
0.8153 27700 3.0267 - -
0.8182 27800 3.0299 - -
0.8212 27900 3.0305 - -
0.8241 28000 3.0336 3.0319 -
0.8271 28100 3.0373 - -
0.8300 28200 3.0342 - -
0.8330 28300 3.0436 - -
0.8359 28400 3.0354 - -
0.8389 28500 3.0373 3.0291 -
0.8418 28600 3.0292 - -
0.8447 28700 3.0229 - -
0.8477 28800 3.0348 - -
0.8506 28900 3.041 - -
0.8536 29000 3.031 3.0324 -
0.8565 29100 3.0354 - -
0.8595 29200 3.0242 - -
0.8624 29300 3.026 - -
0.8653 29400 3.0373 - -
0.8683 29500 3.0298 3.0276 -
0.8712 29600 3.0341 - -
0.8742 29700 3.0304 - -
0.8771 29800 3.0241 - -
0.8801 29900 3.0304 - -
0.8830 30000 3.0279 3.0278 -
0.8859 30100 3.026 - -
0.8889 30200 3.0272 - -
0.8918 30300 3.0372 - -
0.8948 30400 3.0241 - -
0.8977 30500 3.0347 3.0276 -
0.9007 30600 3.0335 - -
0.9036 30700 3.0316 - -
0.9065 30800 3.0372 - -
0.9095 30900 3.0234 - -
0.9124 31000 3.0303 3.0278 -
0.9154 31100 3.0466 - -
0.9183 31200 3.0391 - -
0.9213 31300 3.0334 - -
0.9242 31400 3.029 - -
0.9272 31500 3.0322 3.0280 -
0.9301 31600 3.0272 - -
0.9330 31700 3.0315 - -
0.9360 31800 3.0297 - -
0.9389 31900 3.0228 - -
0.9419 32000 3.0246 3.0272 -
0.9448 32100 3.0215 - -
0.9478 32200 3.0246 - -
0.9507 32300 3.0333 - -
0.9536 32400 3.0334 - -
0.9566 32500 3.029 3.0271 -
0.9595 32600 3.0328 - -
0.9625 32700 3.0284 - -
0.9654 32800 3.0327 - -
0.9684 32900 3.0228 - -
0.9713 33000 3.0321 3.0267 -
0.9742 33100 3.0277 - -
0.9772 33200 3.0309 - -
0.9801 33300 3.0265 - -
0.9831 33400 3.029 - -
0.9860 33500 3.0315 3.0257 -
0.9890 33600 3.0233 - -
0.9919 33700 3.0208 - -
0.9948 33800 3.0296 - -
0.9978 33900 3.0271 - -
1.0007 34000 3.0258 3.0261 -
1.0037 34100 3.0233 - -
1.0066 34200 3.0283 - -
1.0096 34300 3.0277 - -
1.0125 34400 3.0233 - -
1.0155 34500 3.0296 3.0270 -
1.0184 34600 3.0321 - -
1.0213 34700 3.0314 - -
1.0243 34800 3.0458 - -
1.0272 34900 3.0415 - -
1.0302 35000 3.0271 3.0261 -
1.0331 35100 3.0252 - -
1.0361 35200 3.0327 - -
1.0390 35300 3.0302 - -
1.0419 35400 3.0264 - -
1.0449 35500 3.0314 3.0269 -
1.0478 35600 3.0252 - -
1.0508 35700 3.0302 - -
1.0537 35800 3.0339 - -
1.0567 35900 3.0277 - -
1.0596 36000 3.0314 3.0232 -
1.0625 36100 3.0339 - -
1.0655 36200 3.0233 - -
1.0684 36300 3.0264 - -
1.0714 36400 3.0246 - -
1.0743 36500 3.0252 3.0242 -
1.0773 36600 3.027 - -
1.0802 36700 3.0202 - -
1.0831 36800 3.0245 - -
1.0861 36900 3.0239 - -
1.0890 37000 3.022 3.0229 -
1.0920 37100 3.0164 - -
1.0949 37200 3.0289 - -
1.0979 37300 3.012 - -
1.1008 37400 3.027 - -
1.1038 37500 3.0283 3.0229 -
1.1067 37600 3.0289 - -
1.1096 37700 3.0264 - -
1.1126 37800 3.0295 - -
1.1155 37900 3.0245 - -
1.1185 38000 3.0301 3.0226 -
1.1214 38100 3.0276 - -
1.1244 38200 3.0264 - -
1.1273 38300 3.0264 - -
1.1302 38400 3.022 - -
1.1332 38500 3.0308 3.0243 -
1.1361 38600 3.022 - -
1.1391 38700 3.027 - -
1.1420 38800 3.0189 - -
1.1450 38900 3.0282 - -
1.1479 39000 3.0226 3.0228 -
1.1508 39100 3.0257 - -
1.1538 39200 3.0201 - -
1.1567 39300 3.0282 - -
1.1597 39400 3.0395 - -
1.1626 39500 3.042 3.0340 -
1.1656 39600 3.0432 - -
1.1685 39700 3.0214 - -
1.1714 39800 3.022 - -
1.1744 39900 3.0245 - -
1.1773 40000 3.032 3.0276 -
1.1803 40100 3.0389 - -
1.1832 40200 3.0332 - -
1.1862 40300 3.0689 - -
1.1891 40400 3.0476 - -
1.1921 40500 3.0626 3.0399 -
1.1950 40600 3.0357 - -
1.1979 40700 3.0282 - -
1.2009 40800 3.0276 - -
1.2038 40900 3.032 - -
1.2068 41000 3.0189 3.0256 -
1.2097 41100 3.0276 - -
1.2127 41200 3.0276 - -
1.2156 41300 3.0276 - -
1.2185 41400 3.0301 - -
1.2215 41500 3.0238 3.0262 -
1.2244 41600 3.0326 - -
1.2274 41700 3.0295 - -
1.2303 41800 3.0307 - -
1.2333 41900 3.0351 - -
1.2362 42000 3.0301 3.0242 -
1.2391 42100 3.0238 - -
1.2421 42200 3.0232 - -
1.2450 42300 3.0301 - -
1.2480 42400 3.0201 - -
1.2509 42500 3.0295 3.0242 -
1.2539 42600 3.0326 - -
1.2568 42700 3.0232 - -
1.2597 42800 3.0213 - -
1.2627 42900 3.0263 - -
1.2656 43000 3.0351 3.0236 -
1.2686 43100 3.0295 - -
1.2715 43200 3.0232 - -
1.2745 43300 3.0207 - -
1.2774 43400 3.027 - -
1.2804 43500 3.0276 3.0234 -
1.2833 43600 3.0257 - -
1.2862 43700 3.0263 - -
1.2892 43800 3.0163 - -
1.2921 43900 3.0282 - -
1.2951 44000 3.0276 3.0270 -
1.2980 44100 3.032 - -
1.3010 44200 3.0326 - -
1.3039 44300 3.0288 - -
1.3068 44400 3.0263 - -
1.3098 44500 3.0251 3.0231 -
1.3127 44600 3.0188 - -
1.3157 44700 3.0213 - -
1.3186 44800 3.0157 - -
1.3216 44900 3.0238 - -
1.3245 45000 3.0263 3.0214 -
1.3274 45100 3.0194 - -
1.3304 45200 3.0301 - -
1.3333 45300 3.0232 - -
1.3363 45400 3.0163 - -
1.3392 45500 3.0157 3.0214 -
1.3422 45600 3.0219 - -
1.3451 45700 3.0169 - -
1.3481 45800 3.0232 - -
1.3510 45900 3.0344 - -
1.3539 46000 3.0219 3.0209 -
1.3569 46100 3.0183 - -
1.3598 46200 3.0207 - -
1.3628 46300 3.0351 - -
1.3657 46400 3.0244 - -
1.3687 46500 3.0194 3.0208 -
1.3716 46600 3.0176 - -
1.3745 46700 3.0244 - -
1.3775 46800 3.0263 - -
1.3804 46900 3.0151 - -
1.3834 47000 3.0226 3.0208 -
1.3863 47100 3.0213 - -
1.3893 47200 3.0307 - -
1.3922 47300 3.0244 - -
1.3951 47400 3.0238 - -
1.3981 47500 3.0276 3.0207 -
1.4010 47600 3.0282 - -
1.4040 47700 3.0201 - -
1.4069 47800 3.0226 - -
1.4099 47900 3.0263 - -
1.4128 48000 3.0213 3.0208 -
1.4157 48100 3.0201 - -
1.4187 48200 3.0207 - -
1.4216 48300 3.0288 - -
1.4246 48400 3.0182 - -
1.4275 48500 3.0263 3.0200 -
1.4305 48600 3.0207 - -
1.4334 48700 3.0332 - -
1.4364 48800 3.0201 - -
1.4393 48900 3.0182 - -
1.4422 49000 3.0188 3.0200 -
1.4452 49100 3.0213 - -
1.4481 49200 3.0144 - -
1.4511 49300 3.0257 - -
1.4540 49400 3.0201 - -
1.4570 49500 3.0238 3.0191 -
1.4599 49600 3.0294 - -
1.4628 49700 3.0226 - -
1.4658 49800 3.0194 - -
1.4687 49900 3.0169 - -
1.4717 50000 3.0207 3.0189 -
1.4746 50100 3.0219 - -
1.4776 50200 3.0194 - -
1.4805 50300 3.0126 - -
1.4834 50400 3.0194 - -
1.4864 50500 3.0163 3.0208 -
1.4893 50600 3.0182 - -
1.4923 50700 3.0169 - -
1.4952 50800 3.0188 - -
1.4982 50900 3.0219 - -
1.5011 51000 3.0169 3.0200 -
1.5040 51100 3.0294 - -
1.5070 51200 3.0207 - -
1.5099 51300 3.02 - -
1.5129 51400 3.0207 - -
1.5158 51500 3.0175 3.0196 -
1.5188 51600 3.0225 - -
1.5217 51700 3.0213 - -
1.5247 51800 3.02 - -
1.5276 51900 3.0232 - -
1.5305 52000 3.0275 3.0188 -
1.5335 52100 3.0169 - -
1.5364 52200 3.02 - -
1.5394 52300 3.0232 - -
1.5423 52400 3.0125 - -
1.5453 52500 3.0163 3.0188 -
1.5482 52600 3.0163 - -
1.5511 52700 3.0269 - -
1.5541 52800 3.0194 - -
1.5570 52900 3.0238 - -
1.5600 53000 3.02 3.0183 -
1.5629 53100 3.0175 - -
1.5659 53200 3.0157 - -
1.5688 53300 3.0157 - -
1.5717 53400 3.0232 - -
1.5747 53500 3.0238 3.0182 -
1.5776 53600 3.0207 - -
1.5806 53700 3.0182 - -
1.5835 53800 3.0213 - -
1.5865 53900 3.0213 - -
1.5894 54000 3.0125 3.0181 -
1.5923 54100 3.0119 - -
1.5953 54200 3.0194 - -
1.5982 54300 3.0125 - -
1.6012 54400 3.0257 - -
1.6041 54500 3.02 3.0181 -
1.6071 54600 3.0232 - -
1.6100 54700 3.025 - -
1.6130 54800 3.0263 - -
1.6159 54900 3.0144 - -
1.6188 55000 3.0138 3.0177 -
1.6218 55100 3.0207 - -
1.6247 55200 3.015 - -
1.6277 55300 3.0175 - -
1.6306 55400 3.0163 - -
1.6336 55500 3.0157 3.0172 -
1.6365 55600 3.01 - -
1.6394 55700 3.0132 - -
1.6424 55800 3.0232 - -
1.6453 55900 3.02 - -
1.6483 56000 3.0163 3.0145 -
1.6512 56100 3.0132 - -
1.6542 56200 3.0219 - -
1.6571 56300 3.0188 - -
1.6600 56400 3.015 - -
1.6630 56500 3.0157 3.0146 -
1.6659 56600 3.0188 - -
1.6689 56700 3.0225 - -
1.6718 56800 3.0094 - -
1.6748 56900 3.0163 - -
1.6777 57000 3.0244 3.0158 -
1.6806 57100 3.0157 - -
1.6836 57200 3.0157 - -
1.6865 57300 3.015 - -
1.6895 57400 3.0125 - -
1.6924 57500 3.0169 3.0151 -
1.6954 57600 3.02 - -
1.6983 57700 3.0138 - -
1.7013 57800 3.0163 - -
1.7042 57900 3.0169 - -
1.7071 58000 3.0169 3.0153 -
1.7101 58100 3.0119 - -
1.7130 58200 3.0132 - -
1.7160 58300 3.0138 - -
1.7189 58400 3.0225 - -
1.7219 58500 3.02 3.0148 -
1.7248 58600 3.015 - -
1.7277 58700 3.0188 - -
1.7307 58800 3.015 - -
1.7336 58900 3.015 - -
1.7366 59000 3.0082 3.0148 -
1.7395 59100 3.0213 - -
1.7425 59200 3.0094 - -
1.7454 59300 3.0188 - -
1.7483 59400 3.0138 - -
1.7513 59500 3.0138 3.0148 -
1.7542 59600 3.0188 - -
1.7572 59700 3.0107 - -
1.7601 59800 3.0119 - -
1.7631 59900 3.015 - -
1.7660 60000 3.0194 3.0147 -
1.7689 60100 3.0144 - -
1.7719 60200 3.0182 - -
1.7748 60300 3.0213 - -
1.7778 60400 3.0144 - -
1.7807 60500 3.0157 3.0147 -
1.7837 60600 3.0132 - -
1.7866 60700 3.0163 - -
1.7896 60800 3.0182 - -
1.7925 60900 3.015 - -
1.7954 61000 3.0088 3.0148 -
1.7984 61100 3.015 - -
1.8013 61200 3.0144 - -
1.8043 61300 3.0113 - -
1.8072 61400 3.0182 - -
1.8102 61500 3.0194 3.0147 -
1.8131 61600 3.02 - -
1.8160 61700 3.0125 - -
1.8190 61800 3.015 - -
1.8219 61900 3.0175 - -
1.8249 62000 3.0119 3.0146 -
1.8278 62100 3.0169 - -
1.8308 62200 3.0225 - -
1.8337 62300 3.0207 - -
1.8366 62400 3.0169 - -
1.8396 62500 3.0125 3.0170 -
1.8425 62600 3.0188 - -
1.8455 62700 3.0157 - -
1.8484 62800 3.0182 - -
1.8514 62900 3.01 - -
1.8543 63000 3.0138 3.0148 -
1.8572 63100 3.0094 - -
1.8602 63200 3.0157 - -
1.8631 63300 3.02 - -
1.8661 63400 3.0094 - -
1.8690 63500 3.0182 3.0145 -
1.8720 63600 3.0157 - -
1.8749 63700 3.0138 - -
1.8779 63800 3.0125 - -
1.8808 63900 3.015 - -
1.8837 64000 3.0075 3.0144 -
1.8867 64100 3.0157 - -
1.8896 64200 3.0088 - -
1.8926 64300 3.0225 - -
1.8955 64400 3.0175 - -
1.8985 64500 3.0232 3.0179 -
1.9014 64600 3.0257 - -
1.9043 64700 3.0175 - -
1.9073 64800 3.0188 - -
1.9102 64900 3.0125 - -
1.9132 65000 3.0225 3.0170 -
1.9161 65100 3.02 - -
1.9191 65200 3.0213 - -
1.9220 65300 3.0113 - -
1.9249 65400 3.0182 - -
1.9279 65500 3.0232 3.0169 -
1.9308 65600 3.0225 - -
1.9338 65700 3.0181 - -
1.9367 65800 3.0181 - -
1.9397 65900 3.0194 - -
1.9426 66000 3.0175 3.0168 -
1.9455 66100 3.0181 - -
1.9485 66200 3.0157 - -
1.9514 66300 3.0169 - -
1.9544 66400 3.0181 - -
1.9573 66500 3.0138 3.0152 -
1.9603 66600 3.0175 - -
1.9632 66700 3.0156 - -
1.9662 66800 3.0106 - -
1.9691 66900 3.01 - -
1.9720 67000 3.0175 3.0141 -
1.9750 67100 3.0144 - -
1.9779 67200 3.0131 - -
1.9809 67300 3.0113 - -
1.9838 67400 3.0113 - -
1.9868 67500 3.0125 3.0140 -
1.9897 67600 3.0119 - -
1.9926 67700 3.02 - -
1.9956 67800 3.0125 - -
1.9985 67900 3.01 - -
2.0015 68000 3.0156 3.0139 -
2.0044 68100 3.0131 - -
2.0074 68200 3.015 - -
2.0103 68300 3.0169 - -
2.0132 68400 3.0169 - -
2.0162 68500 3.0119 3.0139 -
2.0191 68600 3.0138 - -
2.0221 68700 3.0138 - -
2.0250 68800 3.0163 - -
2.0280 68900 3.0188 - -
2.0309 69000 3.0188 3.0139 -
2.0338 69100 3.01 - -
2.0368 69200 3.015 - -
2.0397 69300 3.0175 - -
2.0427 69400 3.0144 - -
2.0456 69500 3.0188 3.0139 -
2.0486 69600 3.0119 - -
2.0515 69700 3.0131 - -
2.0545 69800 3.0131 - -
2.0574 69900 3.0144 - -
2.0603 70000 3.0144 3.0139 -
2.0633 70100 3.0163 - -
2.0662 70200 3.0069 - -
2.0692 70300 3.0213 - -
2.0721 70400 3.0188 - -
2.0751 70500 3.0131 3.0108 -
2.0780 70600 3.0131 - -
2.0809 70700 3.0094 - -
2.0839 70800 3.0131 - -
2.0868 70900 3.0119 - -
2.0898 71000 3.0106 3.0117 -
2.0927 71100 3.015 - -
2.0957 71200 3.0106 - -
2.0986 71300 3.0106 - -
2.1015 71400 3.0113 - -
2.1045 71500 3.01 3.0117 -
2.1074 71600 3.01 - -
2.1104 71700 3.0138 - -
2.1133 71800 3.0088 - -
2.1163 71900 3.0106 - -
2.1192 72000 3.0069 3.0111 -
2.1221 72100 3.0056 - -
2.1251 72200 3.0156 - -
2.1280 72300 3.0094 - -
2.1310 72400 3.0081 - -
2.1339 72500 3.0125 3.0112 -
2.1369 72600 3.0125 - -
2.1398 72700 3.0144 - -
2.1428 72800 3.0156 - -
2.1457 72900 3.0094 - -
2.1486 73000 3.0075 3.0112 -
2.1516 73100 3.0119 - -
2.1545 73200 3.0088 - -
2.1575 73300 3.0119 - -
2.1604 73400 3.0131 - -
2.1634 73500 3.0094 3.0110 -
2.1663 73600 3.0063 - -
2.1692 73700 3.0138 - -
2.1722 73800 3.0094 - -
2.1751 73900 3.0144 - -
2.1781 74000 3.0081 3.0109 -
2.1810 74100 3.0138 - -
2.1840 74200 3.0144 - -
2.1869 74300 3.0094 - -
2.1898 74400 3.0106 - -
2.1928 74500 3.01 3.0110 -
2.1957 74600 3.0088 - -
2.1987 74700 3.0081 - -
2.2016 74800 3.0094 - -
2.2046 74900 3.01 - -
2.2075 75000 3.0181 3.0108 -
2.2104 75100 3.0088 - -
2.2134 75200 3.0144 - -
2.2163 75300 3.0131 - -
2.2193 75400 3.01 - -
2.2222 75500 3.0125 3.0112 -
2.2252 75600 3.0131 - -
2.2281 75700 3.0125 - -
2.2311 75800 3.01 - -
2.2340 75900 3.01 - -
2.2369 76000 3.0175 3.0112 -
2.2399 76100 3.0094 - -
2.2428 76200 3.015 - -
2.2458 76300 3.0075 - -
2.2487 76400 3.0125 - -
2.2517 76500 3.0131 3.0109 -
2.2546 76600 3.0175 - -
2.2575 76700 3.0063 - -
2.2605 76800 3.0113 - -
2.2634 76900 3.0106 - -
2.2664 77000 3.0106 3.0109 -
2.2693 77100 3.0125 - -
2.2723 77200 3.0163 - -
2.2752 77300 3.0081 - -
2.2781 77400 3.0131 - -
2.2811 77500 3.0119 3.0107 -
2.2840 77600 3.015 - -
2.2870 77700 3.0125 - -
2.2899 77800 3.0094 - -
2.2929 77900 3.01 - -
2.2958 78000 3.0125 3.0107 -
2.2987 78100 3.0113 - -
2.3017 78200 3.01 - -
2.3046 78300 3.0119 - -
2.3076 78400 3.0131 - -
2.3105 78500 3.0106 3.0109 -
2.3135 78600 3.0063 - -
2.3164 78700 3.0113 - -
2.3194 78800 3.01 - -
2.3223 78900 3.0131 - -
2.3252 79000 3.0088 3.0118 -
2.3282 79100 3.0088 - -
2.3311 79200 3.0106 - -
2.3341 79300 3.0081 - -
2.3370 79400 3.0144 - -
2.3400 79500 3.0138 3.0107 -
2.3429 79600 3.01 - -
2.3458 79700 3.01 - -
2.3488 79800 3.0144 - -
2.3517 79900 3.01 - -
2.3547 80000 3.0125 3.0104 -
2.3576 80100 3.005 - -
2.3606 80200 3.0106 - -
2.3635 80300 3.0094 - -
2.3664 80400 3.0131 - -
2.3694 80500 3.0125 3.0104 -
2.3723 80600 3.0106 - -
2.3753 80700 3.01 - -
2.3782 80800 3.0119 - -
2.3812 80900 3.0088 - -
2.3841 81000 3.0113 3.0103 -
2.3870 81100 3.0094 - -
2.3900 81200 3.0094 - -
2.3929 81300 3.0119 - -
2.3959 81400 3.0094 - -
2.3988 81500 3.0088 3.0103 -
2.4018 81600 3.0106 - -
2.4047 81700 3.0088 - -
2.4077 81800 3.005 - -
2.4106 81900 3.0113 - -
2.4135 82000 3.0138 3.0103 -
2.4165 82100 3.0106 - -
2.4194 82200 3.0094 - -
2.4224 82300 3.0069 - -
2.4253 82400 3.0106 - -
2.4283 82500 3.0106 3.0104 -
2.4312 82600 3.0156 - -
2.4341 82700 3.0138 - -
2.4371 82800 3.0113 - -
2.4400 82900 3.01 - -
2.4430 83000 3.0138 3.0104 -
2.4459 83100 3.0194 - -
2.4489 83200 3.0075 - -
2.4518 83300 3.0088 - -
2.4547 83400 3.0081 - -
2.4577 83500 3.0138 3.0104 -
2.4606 83600 3.0081 - -
2.4636 83700 3.0163 - -
2.4665 83800 3.0113 - -
2.4695 83900 3.0063 - -
2.4724 84000 3.0144 3.0103 -
2.4753 84100 3.0088 - -
2.4783 84200 3.0144 - -
2.4812 84300 3.0131 - -
2.4842 84400 3.0094 - -
2.4871 84500 3.015 3.0103 -
2.4901 84600 3.0106 - -
2.4930 84700 3.0119 - -
2.4960 84800 3.0125 - -
2.4989 84900 3.0125 - -
2.5018 85000 3.015 3.0113 -
2.5048 85100 3.0156 - -
2.5077 85200 3.0194 - -
2.5107 85300 3.0119 - -
2.5136 85400 3.0075 - -
2.5166 85500 3.0156 3.0103 -
2.5195 85600 3.0131 - -
2.5224 85700 3.0044 - -
2.5254 85800 3.0075 - -
2.5283 85900 3.0113 - -
2.5313 86000 3.0144 3.0103 -
2.5342 86100 3.0144 - -
2.5372 86200 3.0113 - -
2.5401 86300 3.0163 - -
2.5430 86400 3.0169 - -
2.5460 86500 3.01 3.0101 -
2.5489 86600 3.01 - -
2.5519 86700 3.0113 - -
2.5548 86800 3.0138 - -
2.5578 86900 3.0113 - -
2.5607 87000 3.0113 3.0101 -
2.5636 87100 3.0081 - -
2.5666 87200 3.0069 - -
2.5695 87300 3.0069 - -
2.5725 87400 3.0088 - -
2.5754 87500 3.0094 3.0101 -
2.5784 87600 3.0088 - -
2.5813 87700 3.0119 - -
2.5843 87800 3.01 - -
2.5872 87900 3.0119 - -
2.5901 88000 3.0125 3.0101 -
2.5931 88100 3.0088 - -
2.5960 88200 3.0138 - -
2.5990 88300 3.01 - -
2.6019 88400 3.0119 - -
2.6049 88500 3.0119 3.0102 -
2.6078 88600 3.0063 - -
2.6107 88700 3.01 - -
2.6137 88800 3.0125 - -
2.6166 88900 3.0175 - -
2.6196 89000 3.0113 3.0118 -
2.6225 89100 3.02 - -
2.6255 89200 3.0194 - -
2.6284 89300 3.0088 - -
2.6313 89400 3.0144 - -
2.6343 89500 3.0125 3.0105 -
2.6372 89600 3.0144 - -
2.6402 89700 3.0163 - -
2.6431 89800 3.0106 - -
2.6461 89900 3.0131 - -
2.6490 90000 3.0119 3.0101 -
2.6519 90100 3.0175 - -
2.6549 90200 3.0106 - -
2.6578 90300 3.0138 - -
2.6608 90400 3.0069 - -
2.6637 90500 3.0138 3.0100 -
2.6667 90600 3.0044 - -
2.6696 90700 3.0131 - -
2.6726 90800 3.01 - -
2.6755 90900 3.0094 - -
2.6784 91000 3.0094 3.0100 -
2.6814 91100 3.0156 - -
2.6843 91200 3.01 - -
2.6873 91300 3.01 - -
2.6902 91400 3.01 - -
2.6932 91500 3.0075 3.0098 -
2.6961 91600 3.0125 - -
2.6990 91700 3.01 - -
2.7020 91800 3.0081 - -
2.7049 91900 3.01 - -
2.7079 92000 3.0169 3.0097 -
2.7108 92100 3.01 - -
2.7138 92200 3.0125 - -
2.7167 92300 3.0131 - -
2.7196 92400 3.0138 - -
2.7226 92500 3.0156 3.0099 -
2.7255 92600 3.0113 - -
2.7285 92700 3.0106 - -
2.7314 92800 3.0125 - -
2.7344 92900 3.0038 - -
2.7373 93000 3.0088 3.0100 -
2.7403 93100 3.0081 - -
2.7432 93200 3.0119 - -
2.7461 93300 3.0138 - -
2.7491 93400 3.0131 - -
2.7520 93500 3.0106 3.0100 -
2.7550 93600 3.0081 - -
2.7579 93700 3.0056 - -
2.7609 93800 3.0106 - -
2.7638 93900 3.0119 - -
2.7667 94000 3.0075 3.0099 -
2.7697 94100 3.0119 - -
2.7726 94200 3.0075 - -
2.7756 94300 3.0094 - -
2.7785 94400 3.0119 - -
2.7815 94500 3.01 3.0099 -
2.7844 94600 3.0106 - -
2.7873 94700 3.0131 - -
2.7903 94800 3.0094 - -
2.7932 94900 3.0075 - -
2.7962 95000 3.0119 3.0098 -
2.7991 95100 3.0094 - -
2.8021 95200 3.0138 - -
2.8050 95300 3.0094 - -
2.8079 95400 3.0125 - -
2.8109 95500 3.0081 3.0100 -
2.8138 95600 3.0081 - -
2.8168 95700 3.0088 - -
2.8197 95800 3.0113 - -
2.8227 95900 3.0075 - -
2.8256 96000 3.0138 3.0097 -
2.8286 96100 3.0106 - -
2.8315 96200 3.01 - -
2.8344 96300 3.0119 - -
2.8374 96400 3.0144 - -
2.8403 96500 3.0106 3.0099 -
2.8433 96600 3.0094 - -
2.8462 96700 3.0131 - -
2.8492 96800 3.0088 - -
2.8521 96900 3.005 - -
2.8550 97000 3.0156 3.0099 -
2.8580 97100 3.0094 - -
2.8609 97200 3.0081 - -
2.8639 97300 3.0113 - -
2.8668 97400 3.0138 - -
2.8698 97500 3.0119 3.0096 -
2.8727 97600 3.0125 - -
2.8756 97700 3.0094 - -
2.8786 97800 3.0119 - -
2.8815 97900 3.0081 - -
2.8845 98000 3.0106 3.0096 -
2.8874 98100 3.0081 - -
2.8904 98200 3.0125 - -
2.8933 98300 3.0075 - -
2.8962 98400 3.0119 - -
2.8992 98500 3.0106 3.0096 -
2.9021 98600 3.0081 - -
2.9051 98700 3.0094 - -
2.9080 98800 3.0081 - -
2.9110 98900 3.0144 - -
2.9139 99000 3.0094 3.0091 -
2.9169 99100 3.0094 - -
2.9198 99200 3.0094 - -
2.9227 99300 3.0106 - -
2.9257 99400 3.01 - -
2.9286 99500 3.0113 3.0091 -
2.9316 99600 3.0106 - -
2.9345 99700 3.0106 - -
2.9375 99800 3.0094 - -
2.9404 99900 3.0081 - -
2.9433 100000 3.01 3.0091 -
2.9463 100100 3.0119 - -
2.9492 100200 3.0106 - -
2.9522 100300 3.0113 - -
2.9551 100400 3.0075 - -
2.9581 100500 3.0094 3.0098 -
2.9610 100600 3.0119 - -
2.9639 100700 3.0106 - -
2.9669 100800 3.0088 - -
2.9698 100900 3.015 - -
2.9728 101000 3.0106 3.0096 -
2.9757 101100 3.0075 - -
2.9787 101200 3.0188 - -
2.9816 101300 3.0088 - -
2.9845 101400 3.0081 - -
2.9875 101500 3.0075 3.0097 -
2.9904 101600 3.0119 - -
2.9934 101700 3.01 - -
2.9963 101800 3.0075 - -
2.9993 101900 3.0094 - -
3.0022 102000 3.0119 3.0097 -
3.0052 102100 3.0113 - -
3.0081 102200 3.0088 - -
3.0110 102300 3.0106 - -
3.0140 102400 3.0113 - -
3.0169 102500 3.015 3.0097 -
3.0199 102600 3.0088 - -
3.0228 102700 3.0088 - -
3.0258 102800 3.0106 - -
3.0287 102900 3.0113 - -
3.0316 103000 3.01 3.0094 -
3.0346 103100 3.0113 - -
3.0375 103200 3.0125 - -
3.0405 103300 3.0056 - -
3.0434 103400 3.01 - -
3.0464 103500 3.01 3.0094 -
3.0493 103600 3.01 - -
3.0522 103700 3.01 - -
3.0552 103800 3.0075 - -
3.0581 103900 3.0063 - -
3.0611 104000 3.015 3.0096 -
3.0640 104100 3.0063 - -
3.0670 104200 3.0119 - -
3.0699 104300 3.0088 - -
3.0728 104400 3.0113 - -
3.0758 104500 3.01 3.0095 -
3.0787 104600 3.0081 - -
3.0817 104700 3.0094 - -
3.0846 104800 3.0075 - -
3.0876 104900 3.0113 - -
3.0905 105000 3.0131 3.0095 -
3.0935 105100 3.0131 - -
3.0964 105200 3.0131 - -
3.0993 105300 3.0075 - -
3.1023 105400 3.0119 - -
3.1052 105500 3.0094 3.0092 -
3.1082 105600 3.0069 - -
3.1111 105700 3.0063 - -
3.1141 105800 3.0094 - -
3.1170 105900 3.01 - -
3.1199 106000 3.0113 3.0097 -
3.1229 106100 3.0056 - -
3.1258 106200 3.01 - -
3.1288 106300 3.0081 - -
3.1317 106400 3.0106 - -
3.1347 106500 3.01 3.0096 -
3.1376 106600 3.0069 - -
3.1405 106700 3.0119 - -
3.1435 106800 3.0081 - -
3.1464 106900 3.0075 - -
3.1494 107000 3.0081 3.0097 -
3.1523 107100 3.0075 - -
3.1553 107200 3.0081 - -
3.1582 107300 3.0125 - -
3.1611 107400 3.0094 - -
3.1641 107500 3.0094 3.0092 -
3.1670 107600 3.0175 - -
3.1700 107700 3.01 - -
3.1729 107800 3.0113 - -
3.1759 107900 3.0094 - -
3.1788 108000 3.0125 3.0091 -
3.1818 108100 3.0069 - -
3.1847 108200 3.0119 - -
3.1876 108300 3.0144 - -
3.1906 108400 3.0075 - -
3.1935 108500 3.0094 3.0097 -
3.1965 108600 3.0106 - -
3.1994 108700 3.0144 - -
3.2024 108800 3.0075 - -
3.2053 108900 3.0156 - -
3.2082 109000 3.0044 3.0095 -
3.2112 109100 3.01 - -
3.2141 109200 3.0106 - -
3.2171 109300 3.0081 - -
3.2200 109400 3.0069 - -
3.2230 109500 3.01 3.0096 -
3.2259 109600 3.01 - -
3.2288 109700 3.0125 - -
3.2318 109800 3.0069 - -
3.2347 109900 3.0081 - -
3.2377 110000 3.0088 3.0097 -
3.2406 110100 3.0119 - -
3.2436 110200 3.0131 - -
3.2465 110300 3.0119 - -
3.2494 110400 3.0094 - -
3.2524 110500 3.0094 3.0096 -
3.2553 110600 3.0144 - -
3.2583 110700 3.0069 - -
3.2612 110800 3.0131 - -
3.2642 110900 3.0081 - -
3.2671 111000 3.01 3.0096 -
3.2701 111100 3.01 - -
3.2730 111200 3.01 - -
3.2759 111300 3.0125 - -
3.2789 111400 3.0113 - -
3.2818 111500 3.0088 3.0095 -
3.2848 111600 3.0131 - -
3.2877 111700 3.0125 - -
3.2907 111800 3.01 - -
3.2936 111900 3.0113 - -
3.2965 112000 3.0044 3.0095 -
3.2995 112100 3.0144 - -
3.3024 112200 3.0081 - -
3.3054 112300 3.0106 - -
3.3083 112400 3.0094 - -
3.3113 112500 3.005 3.0095 -
3.3142 112600 3.0131 - -
3.3171 112700 3.0081 - -
3.3201 112800 3.0094 - -
3.3230 112900 3.0075 - -
3.3260 113000 3.0113 3.0095 -
3.3289 113100 3.0081 - -
3.3319 113200 3.0094 - -
3.3348 113300 3.0081 - -
3.3377 113400 3.0106 - -
3.3407 113500 3.0169 3.0095 -
3.3436 113600 3.0056 - -
3.3466 113700 3.0081 - -
3.3495 113800 3.0069 - -
3.3525 113900 3.0094 - -
3.3554 114000 3.0031 3.0095 -
3.3584 114100 3.0069 - -
3.3613 114200 3.0075 - -
3.3642 114300 3.015 - -
3.3672 114400 3.0081 - -
3.3701 114500 3.0094 3.0095 -
3.3731 114600 3.0056 - -
3.3760 114700 3.0081 - -
3.3790 114800 3.0119 - -
3.3819 114900 3.0075 - -
3.3848 115000 3.0063 3.0098 -
3.3878 115100 3.0144 - -
3.3907 115200 3.0138 - -
3.3937 115300 3.0081 - -
3.3966 115400 3.0113 - -
3.3996 115500 3.0138 3.0098 -
3.4025 115600 3.0081 - -
3.4054 115700 3.0106 - -
3.4084 115800 3.0088 - -
3.4113 115900 3.0106 - -
3.4143 116000 3.0156 3.0095 -
3.4172 116100 3.0119 - -
3.4202 116200 3.01 - -
3.4231 116300 3.0144 - -
3.4260 116400 3.0131 - -
3.4290 116500 3.0131 3.0097 -
3.4319 116600 3.0088 - -
3.4349 116700 3.0113 - -
3.4378 116800 3.0044 - -
3.4408 116900 3.01 - -
3.4437 117000 3.0069 3.0094 -
3.4467 117100 3.0081 - -
3.4496 117200 3.0125 - -
3.4525 117300 3.0069 - -
3.4555 117400 3.0063 - -
3.4584 117500 3.0044 3.0095 -
3.4614 117600 3.0119 - -
3.4643 117700 3.0081 - -
3.4673 117800 3.0081 - -
3.4702 117900 3.0106 - -
3.4731 118000 3.0125 3.0095 -
3.4761 118100 3.0138 - -
3.4790 118200 3.0106 - -
3.4820 118300 3.0144 - -
3.4849 118400 3.0081 - -
3.4879 118500 3.01 3.0095 -
3.4908 118600 3.0075 - -
3.4937 118700 3.0056 - -
3.4967 118800 3.0069 - -
3.4996 118900 3.0094 - -
3.5026 119000 3.0119 3.0095 -
3.5055 119100 3.0038 - -
3.5085 119200 3.025 - -
3.5114 119300 3.0081 - -
3.5143 119400 3.0119 - -
3.5173 119500 3.005 3.0095 -
3.5202 119600 3.01 - -
3.5232 119700 3.0025 - -
3.5261 119800 3.0088 - -
3.5291 119900 3.0106 - -
3.5320 120000 3.0138 3.0095 -
3.5350 120100 3.0056 - -
3.5379 120200 3.0088 - -
3.5408 120300 3.0125 - -
3.5438 120400 3.0125 - -
3.5467 120500 3.0056 3.0095 -
3.5497 120600 3.0131 - -
3.5526 120700 3.0119 - -
3.5556 120800 3.0094 - -
3.5585 120900 3.0106 - -
3.5614 121000 3.0113 3.0095 -
3.5644 121100 3.0106 - -
3.5673 121200 3.0156 - -
3.5703 121300 3.0069 - -
3.5732 121400 3.0125 - -
3.5762 121500 3.0069 3.0095 -
3.5791 121600 3.01 - -
3.5820 121700 3.0119 - -
3.5850 121800 3.0088 - -
3.5879 121900 3.0119 - -
3.5909 122000 3.0069 3.0095 -
3.5938 122100 3.0069 - -
3.5968 122200 3.0138 - -
3.5997 122300 3.01 - -
3.6026 122400 3.0106 - -
3.6056 122500 3.0113 3.0095 -
3.6085 122600 3.01 - -
3.6115 122700 3.005 - -
3.6144 122800 3.0069 - -
3.6174 122900 3.0094 - -
3.6203 123000 3.0119 3.0095 -
3.6233 123100 3.0056 - -
3.6262 123200 3.0075 - -
3.6291 123300 3.0106 - -
3.6321 123400 3.005 - -
3.6350 123500 3.0081 3.0095 -
3.6380 123600 3.02 - -
3.6409 123700 3.0094 - -
3.6439 123800 3.0119 - -
3.6468 123900 3.0106 - -
3.6497 124000 3.0125 3.0095 -
3.6527 124100 3.0125 - -
3.6556 124200 3.0188 - -
3.6586 124300 3.01 - -
3.6615 124400 3.0088 - -
3.6645 124500 3.0169 3.0095 -
3.6674 124600 3.0113 - -
3.6703 124700 3.0063 - -
3.6733 124800 3.0094 - -
3.6762 124900 3.0038 - -
3.6792 125000 3.0106 3.0091 -
3.6821 125100 3.005 - -
3.6851 125200 3.0081 - -
3.6880 125300 3.0075 - -
3.6909 125400 3.0131 - -
3.6939 125500 3.0075 3.0091 -
3.6968 125600 3.0131 - -
3.6998 125700 3.01 - -
3.7027 125800 3.0075 - -
3.7057 125900 3.0113 - -
3.7086 126000 3.0094 3.0091 -
3.7116 126100 3.0081 - -
3.7145 126200 3.0119 - -
3.7174 126300 3.0088 - -
3.7204 126400 3.0063 - -
3.7233 126500 3.0081 3.0091 -
3.7263 126600 3.0125 - -
3.7292 126700 3.0125 - -
3.7322 126800 3.0131 - -
3.7351 126900 3.0106 - -
3.7380 127000 3.0088 3.0091 -
3.7410 127100 3.0113 - -
3.7439 127200 3.0125 - -
3.7469 127300 3.0094 - -
3.7498 127400 3.0069 - -
3.7528 127500 3.0088 3.0091 -
3.7557 127600 3.0163 - -
3.7586 127700 3.0094 - -
3.7616 127800 3.0069 - -
3.7645 127900 3.0063 - -
3.7675 128000 3.0094 3.0091 -
3.7704 128100 3.01 - -
3.7734 128200 3.015 - -
3.7763 128300 3.0163 - -
3.7792 128400 3.0106 - -
3.7822 128500 3.0113 3.0091 -
3.7851 128600 3.0069 - -
3.7881 128700 3.0113 - -
3.7910 128800 3.0063 - -
3.7940 128900 3.0088 - -
3.7969 129000 3.0019 3.0091 -
3.7999 129100 3.0094 - -
3.8028 129200 3.0038 - -
3.8057 129300 3.0044 - -
3.8087 129400 3.0088 - -
3.8116 129500 3.0113 3.0091 -
3.8146 129600 3.0094 - -
3.8175 129700 3.0088 - -
3.8205 129800 3.0113 - -
3.8234 129900 3.0094 - -
3.8263 130000 3.0069 3.0091 -
3.8293 130100 3.0113 - -
3.8322 130200 3.0081 - -
3.8352 130300 3.0125 - -
3.8381 130400 3.0156 - -
3.8411 130500 3.0069 3.0091 -
3.8440 130600 3.0131 - -
3.8469 130700 3.0131 - -
3.8499 130800 3.005 - -
3.8528 130900 3.0106 - -
3.8558 131000 3.0119 3.0089 -
3.8587 131100 3.0081 - -
3.8617 131200 3.0088 - -
3.8646 131300 3.0075 - -
3.8675 131400 3.0056 - -

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.1
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}