metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results: []
distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4181
- Precision: 0.6106
- Recall: 0.6615
- F1: 0.635
- Accuracy: 0.9189
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 23 | 0.3610 | 0.4795 | 0.6094 | 0.5367 | 0.9045 |
No log | 2.0 | 46 | 0.3516 | 0.5330 | 0.5885 | 0.5594 | 0.9141 |
No log | 3.0 | 69 | 0.3591 | 0.5346 | 0.6042 | 0.5672 | 0.9147 |
No log | 4.0 | 92 | 0.3602 | 0.5226 | 0.6615 | 0.5839 | 0.9129 |
No log | 5.0 | 115 | 0.3706 | 0.5315 | 0.6146 | 0.5700 | 0.9123 |
No log | 6.0 | 138 | 0.3652 | 0.5631 | 0.6042 | 0.5829 | 0.9165 |
No log | 7.0 | 161 | 0.3618 | 0.5640 | 0.6198 | 0.5906 | 0.9153 |
No log | 8.0 | 184 | 0.3680 | 0.5755 | 0.6354 | 0.6040 | 0.9165 |
No log | 9.0 | 207 | 0.3782 | 0.5789 | 0.6302 | 0.6035 | 0.9183 |
No log | 10.0 | 230 | 0.3926 | 0.6020 | 0.6302 | 0.6158 | 0.9189 |
No log | 11.0 | 253 | 0.3816 | 0.5845 | 0.6667 | 0.6229 | 0.9171 |
No log | 12.0 | 276 | 0.3811 | 0.5942 | 0.6406 | 0.6165 | 0.9195 |
No log | 13.0 | 299 | 0.3857 | 0.5885 | 0.6406 | 0.6135 | 0.9189 |
No log | 14.0 | 322 | 0.3966 | 0.5714 | 0.6458 | 0.6064 | 0.9141 |
No log | 15.0 | 345 | 0.3927 | 0.6019 | 0.6615 | 0.6303 | 0.9183 |
No log | 16.0 | 368 | 0.3955 | 0.5907 | 0.6615 | 0.6241 | 0.9165 |
No log | 17.0 | 391 | 0.4124 | 0.5931 | 0.6302 | 0.6111 | 0.9171 |
No log | 18.0 | 414 | 0.4112 | 0.5733 | 0.6719 | 0.6187 | 0.9135 |
No log | 19.0 | 437 | 0.4177 | 0.5829 | 0.6406 | 0.6104 | 0.9159 |
No log | 20.0 | 460 | 0.4100 | 0.6028 | 0.6719 | 0.6355 | 0.9159 |
No log | 21.0 | 483 | 0.4159 | 0.5869 | 0.6510 | 0.6173 | 0.9165 |
0.0279 | 22.0 | 506 | 0.4100 | 0.5853 | 0.6615 | 0.6210 | 0.9153 |
0.0279 | 23.0 | 529 | 0.4127 | 0.6172 | 0.6719 | 0.6434 | 0.9189 |
0.0279 | 24.0 | 552 | 0.4074 | 0.5945 | 0.6719 | 0.6308 | 0.9153 |
0.0279 | 25.0 | 575 | 0.4056 | 0.5909 | 0.6771 | 0.6311 | 0.9165 |
0.0279 | 26.0 | 598 | 0.4079 | 0.5740 | 0.6667 | 0.6169 | 0.9153 |
0.0279 | 27.0 | 621 | 0.4184 | 0.6117 | 0.6562 | 0.6332 | 0.9189 |
0.0279 | 28.0 | 644 | 0.4177 | 0.6165 | 0.6615 | 0.6382 | 0.9195 |
0.0279 | 29.0 | 667 | 0.4178 | 0.6106 | 0.6615 | 0.635 | 0.9189 |
0.0279 | 30.0 | 690 | 0.4181 | 0.6106 | 0.6615 | 0.635 | 0.9189 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.0
- Tokenizers 0.15.0