gte-large-quant / README.md
zeroshot's picture
Update README.md
a8754aa
metadata
tags:
  - sparse sparsity quantized onnx embeddings int8
  - mteb
  - mteb
model-index:
  - name: gte-large-quant
    results:
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 90.27260027646717
          - type: cos_sim_spearman
            value: 87.97790825077952
          - type: euclidean_pearson
            value: 88.42832241523092
          - type: euclidean_spearman
            value: 87.97248644049293
          - type: manhattan_pearson
            value: 88.13802465778512
          - type: manhattan_spearman
            value: 87.43391995202266
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 85.1416039713116
          - type: cos_sim_spearman
            value: 79.13359419669726
          - type: euclidean_pearson
            value: 83.08042050989465
          - type: euclidean_spearman
            value: 79.31565112619433
          - type: manhattan_pearson
            value: 83.10376638254372
          - type: manhattan_spearman
            value: 79.30772376012946
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 84.93030439955828
          - type: cos_sim_spearman
            value: 75.98104622572393
          - type: euclidean_pearson
            value: 81.20791722502764
          - type: euclidean_spearman
            value: 75.74595761987686
          - type: manhattan_pearson
            value: 81.23169425598003
          - type: manhattan_spearman
            value: 75.73065403644094
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 85.6693892097855
          - type: cos_sim_spearman
            value: 87.54973524492165
          - type: euclidean_pearson
            value: 86.55642466103943
          - type: euclidean_spearman
            value: 87.47921340148683
          - type: manhattan_pearson
            value: 86.52043275063926
          - type: manhattan_spearman
            value: 87.43869426658489
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 84.37393784507647
          - type: cos_sim_spearman
            value: 81.98702164762233
          - type: euclidean_pearson
            value: 84.22038158338351
          - type: euclidean_spearman
            value: 81.9872746771322
          - type: manhattan_pearson
            value: 84.21915949674062
          - type: manhattan_spearman
            value: 81.97923386273747
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 87.34477744314285
          - type: cos_sim_spearman
            value: 88.92669309789463
          - type: euclidean_pearson
            value: 88.20128441166663
          - type: euclidean_spearman
            value: 88.91524205114627
          - type: manhattan_pearson
            value: 88.24425729639415
          - type: manhattan_spearman
            value: 88.97457451709523
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 82.11827015492467
          - type: cos_sim_spearman
            value: 83.59397157586835
          - type: euclidean_pearson
            value: 82.97284591328044
          - type: euclidean_spearman
            value: 83.74509747941255
          - type: manhattan_pearson
            value: 82.974440264842
          - type: manhattan_spearman
            value: 83.72260506292083
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.29744487677577
          - type: cos_sim_spearman
            value: 88.50799779856109
          - type: euclidean_pearson
            value: 89.0149154609955
          - type: euclidean_spearman
            value: 88.72798794474068
          - type: manhattan_pearson
            value: 89.14318227078863
          - type: manhattan_spearman
            value: 88.98372697017017
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 70.114540107077
          - type: cos_sim_spearman
            value: 69.72244488054433
          - type: euclidean_pearson
            value: 70.03658853094686
          - type: euclidean_spearman
            value: 68.96035610557085
          - type: manhattan_pearson
            value: 69.83707789686764
          - type: manhattan_spearman
            value: 68.71831797289812
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 84.86664469775837
          - type: cos_sim_spearman
            value: 85.39649452953681
          - type: euclidean_pearson
            value: 85.68509956626748
          - type: euclidean_spearman
            value: 85.50984027606854
          - type: manhattan_pearson
            value: 85.6688745008871
          - type: manhattan_spearman
            value: 85.465201888803
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.8079207920792
          - type: cos_sim_ap
            value: 95.62897445718106
          - type: cos_sim_f1
            value: 90.03083247687564
          - type: cos_sim_precision
            value: 92.60042283298098
          - type: cos_sim_recall
            value: 87.6
          - type: dot_accuracy
            value: 99.67029702970297
          - type: dot_ap
            value: 90.20258347721159
          - type: dot_f1
            value: 83.06172839506172
          - type: dot_precision
            value: 82.04878048780488
          - type: dot_recall
            value: 84.1
          - type: euclidean_accuracy
            value: 99.80594059405941
          - type: euclidean_ap
            value: 95.53963697283662
          - type: euclidean_f1
            value: 89.92405063291139
          - type: euclidean_precision
            value: 91.07692307692308
          - type: euclidean_recall
            value: 88.8
          - type: manhattan_accuracy
            value: 99.80594059405941
          - type: manhattan_ap
            value: 95.55714505339634
          - type: manhattan_f1
            value: 90.06085192697769
          - type: manhattan_precision
            value: 91.35802469135803
          - type: manhattan_recall
            value: 88.8
          - type: max_accuracy
            value: 99.8079207920792
          - type: max_ap
            value: 95.62897445718106
          - type: max_f1
            value: 90.06085192697769
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 85.87351731537224
          - type: cos_sim_ap
            value: 72.87360532701162
          - type: cos_sim_f1
            value: 67.8826895565093
          - type: cos_sim_precision
            value: 61.918225315354505
          - type: cos_sim_recall
            value: 75.11873350923483
          - type: dot_accuracy
            value: 80.15139774691542
          - type: dot_ap
            value: 53.5201503222712
          - type: dot_f1
            value: 53.42203179614388
          - type: dot_precision
            value: 46.64303996849773
          - type: dot_recall
            value: 62.50659630606861
          - type: euclidean_accuracy
            value: 85.87351731537224
          - type: euclidean_ap
            value: 73.10465263888227
          - type: euclidean_f1
            value: 68.38209376101516
          - type: euclidean_precision
            value: 61.63948316034739
          - type: euclidean_recall
            value: 76.78100263852242
          - type: manhattan_accuracy
            value: 85.83775406806939
          - type: manhattan_ap
            value: 73.08358693248583
          - type: manhattan_f1
            value: 68.34053485927829
          - type: manhattan_precision
            value: 61.303163628745025
          - type: manhattan_recall
            value: 77.20316622691293
          - type: max_accuracy
            value: 85.87351731537224
          - type: max_ap
            value: 73.10465263888227
          - type: max_f1
            value: 68.38209376101516
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.85202002561415
          - type: cos_sim_ap
            value: 85.58170945333845
          - type: cos_sim_f1
            value: 77.87783280804442
          - type: cos_sim_precision
            value: 75.95140515222482
          - type: cos_sim_recall
            value: 79.90452725592854
          - type: dot_accuracy
            value: 85.29902588582296
          - type: dot_ap
            value: 76.95795800483633
          - type: dot_f1
            value: 71.30231900452489
          - type: dot_precision
            value: 65.91503267973856
          - type: dot_recall
            value: 77.6485987064983
          - type: euclidean_accuracy
            value: 88.80738929638684
          - type: euclidean_ap
            value: 85.5344499509856
          - type: euclidean_f1
            value: 77.9805854353285
          - type: euclidean_precision
            value: 75.97312495435624
          - type: euclidean_recall
            value: 80.09701262704034
          - type: manhattan_accuracy
            value: 88.7782822990647
          - type: manhattan_ap
            value: 85.52577812395661
          - type: manhattan_f1
            value: 77.97958958110746
          - type: manhattan_precision
            value: 74.76510067114094
          - type: manhattan_recall
            value: 81.48290729904527
          - type: max_accuracy
            value: 88.85202002561415
          - type: max_ap
            value: 85.58170945333845
          - type: max_f1
            value: 77.9805854353285
license: mit
language:
  - en

gte-large-quant

This is the quantized (INT8) ONNX variant of the gte-large embeddings model created with DeepSparse Optimum for ONNX export/inference and Neural Magic's Sparsify for one-shot quantization.

Current list of sparse and quantized gte ONNX models:

Links Sparsification Method
zeroshot/gte-large-sparse Quantization (INT8) & 50% Pruning
zeroshot/gte-large-quant Quantization (INT8)
zeroshot/gte-base-sparse Quantization (INT8) & 50% Pruning
zeroshot/gte-base-quant Quantization (INT8)
zeroshot/gte-small-sparse Quantization (INT8) & 50% Pruning
zeroshot/gte-small-quant Quantization (INT8)
pip install -U deepsparse-nightly[sentence_transformers]
from deepsparse.sentence_transformers import SentenceTransformer
model = SentenceTransformer('zeroshot/gte-large-quant', export=False)

# Our sentences we like to encode
sentences = ['This framework generates embeddings for each input sentence',
    'Sentences are passed as a list of string.',
    'The quick brown fox jumps over the lazy dog.']

# Sentences are encoded by calling model.encode()
embeddings = model.encode(sentences)

# Print the embeddings
for sentence, embedding in zip(sentences, embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding.shape)
    print("")

For further details regarding DeepSparse & Sentence Transformers integration, refer to the DeepSparse README.

For general questions on these models and sparsification methods, reach out to the engineering team on our community Slack.

;)