zuazo's picture
End of training
6563e8c verified
metadata
language:
  - eu
license: apache-2.0
base_model: openai/whisper-large
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Large Basque
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 eu
          type: mozilla-foundation/common_voice_13_0
          config: eu
          split: validation
          args: eu
        metrics:
          - name: Wer
            type: wer
            value: 13.167704366398677

Whisper Large Basque

This model is a fine-tuned version of openai/whisper-large on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4229
  • Wer: 13.1677

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.067 5.85 1000 0.2644 15.8677
0.0123 11.7 2000 0.3077 14.6326
0.0052 17.54 3000 0.3317 14.1853
0.0037 23.39 4000 0.3387 14.0885
0.0026 29.24 5000 0.3559 14.2618
0.0026 35.09 6000 0.3604 14.2155
0.002 40.94 7000 0.3734 14.1228
0.0012 46.78 8000 0.3773 14.0301
0.0012 52.63 9000 0.3802 13.9072
0.0012 58.48 10000 0.3850 14.4734
0.0006 64.33 11000 0.3896 13.6513
0.0011 70.18 12000 0.3981 13.6311
0.001 76.02 13000 0.3947 13.5949
0.0002 81.87 14000 0.4039 13.6170
0.0001 87.72 15000 0.4057 13.4579
0.0008 93.57 16000 0.4119 13.2745
0.0001 99.42 17000 0.4203 13.1717
0.0001 105.26 18000 0.4166 13.0972
0.0001 111.11 19000 0.4243 13.0448
0.0 116.96 20000 0.4229 13.1677

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1