DrishtiSharma's picture
Model save
1dadbca
|
raw
history blame
2.86 kB
metadata
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: roberta-large-hate-offensive-normal-speech-lr-2e-05
    results: []

roberta-large-hate-offensive-normal-speech-lr-2e-05

This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0293
  • Accuracy: 0.9837
  • Weighted f1: 0.9837
  • Weighted recall: 0.9837
  • Weighted precision: 0.9839
  • Micro f1: 0.9837
  • Micro recall: 0.9837
  • Micro precision: 0.9837
  • Macro f1: 0.9832
  • Macro recall: 0.9821
  • Macro precision: 0.9845

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted f1 Weighted recall Weighted precision Micro f1 Micro recall Micro precision Macro f1 Macro recall Macro precision
0.5253 1.0 153 0.1270 0.9642 0.9647 0.9642 0.9681 0.9642 0.9642 0.9642 0.9633 0.9662 0.9633
0.0921 2.0 306 0.0878 0.9805 0.9805 0.9805 0.9807 0.9805 0.9805 0.9805 0.9803 0.9791 0.9818
0.0413 3.0 459 0.0590 0.9870 0.9870 0.9870 0.9875 0.9870 0.9870 0.9870 0.9860 0.9869 0.9857
0.0261 4.0 612 0.0523 0.9902 0.9902 0.9902 0.9904 0.9902 0.9902 0.9902 0.9896 0.9896 0.9900
0.012 5.0 765 0.0293 0.9837 0.9837 0.9837 0.9839 0.9837 0.9837 0.9837 0.9832 0.9821 0.9845

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.6.dev0
  • Tokenizers 0.13.3