PPO-LunarLander-v2 / README.md
JaiSurya's picture
Update README.md
8aae42a
|
raw
history blame
2.04 kB
metadata
library_name: stable-baselines3
tags:
  - LunarLander-v2
  - deep-reinforcement-learning
  - reinforcement-learning
  - stable-baselines3
  - gymnasium
model-index:
  - name: PPO
    results:
      - task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: LunarLander-v2
          type: LunarLander-v2
        metrics:
          - type: mean_reward
            value: 240.31 +/- 69.19
            name: mean_reward
            verified: false
language:
  - en
pipeline_tag: reinforcement-learning

PPO Agent playing LunarLander-v2

This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library

This model is trained with the help of Deep RL Course by HuggingFace

Usage (with Stable-baselines3)

# necessary libraries
import gymnasium as gym

from huggingface_sb3 import load_from_hub, package_to_hub
from huggingface_hub import (
    notebook_login,
)

from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor

# Step 1 : Create an environment
env = gym.make("LunarLander-v2")
observation,info = env.reset() # initialize the environment

# Step 2 : Create the model
model = PPO(
    policy = "MlpPolicy", # Multiple Layer Perceptron Policy
    env = env,
    n_steps = 1024,
    batch_size = 64,
    n_epochs = 5,
    gamma = 0.995, # discount factor
    gae_lambda = 0.98, # close to 1 - more bias and less variance
    ent_coef = 0.01, # exploration exploitation tradeoff
    verbose = 1
)

# Step 3 : Train the model
model.learn(total_timesteps=2000000,progress_bar = True)

# Step 4 : Evaluation
eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward,std_reward = evaluate_policy(model,eval_env,n_eval_episodes = 10 ,deterministic=True)
print(f"Mean reward : {mean_reward} +/- {std_reward}")