|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- LunarLander-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
- gymnasium |
|
model-index: |
|
- name: PPO |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: LunarLander-v2 |
|
type: LunarLander-v2 |
|
metrics: |
|
- type: mean_reward |
|
value: 240.31 +/- 69.19 |
|
name: mean_reward |
|
verified: false |
|
language: |
|
- en |
|
pipeline_tag: reinforcement-learning |
|
--- |
|
|
|
# **PPO** Agent playing **LunarLander-v2** |
|
This is a trained model of a **PPO** agent playing **LunarLander-v2** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) |
|
|
|
This model is trained with the help of [Deep RL Course by HuggingFace](https://huggingface.co/learn/deep-rl-course/unit0/introduction) |
|
|
|
## Usage (with Stable-baselines3) |
|
```python |
|
# necessary libraries |
|
import gymnasium as gym |
|
|
|
from huggingface_sb3 import load_from_hub, package_to_hub |
|
from huggingface_hub import ( |
|
notebook_login, |
|
) |
|
|
|
from stable_baselines3 import PPO |
|
from stable_baselines3.common.env_util import make_vec_env |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
from stable_baselines3.common.monitor import Monitor |
|
|
|
# Step 1 : Create an environment |
|
env = gym.make("LunarLander-v2") |
|
observation,info = env.reset() # initialize the environment |
|
|
|
# Step 2 : Create the model |
|
model = PPO( |
|
policy = "MlpPolicy", # Multiple Layer Perceptron Policy |
|
env = env, |
|
n_steps = 1024, |
|
batch_size = 64, |
|
n_epochs = 5, |
|
gamma = 0.995, # discount factor |
|
gae_lambda = 0.98, # close to 1 - more bias and less variance |
|
ent_coef = 0.01, # exploration exploitation tradeoff |
|
verbose = 1 |
|
) |
|
|
|
# Step 3 : Train the model |
|
model.learn(total_timesteps=2000000,progress_bar = True) |
|
|
|
# Step 4 : Evaluation |
|
eval_env = Monitor(gym.make("LunarLander-v2")) |
|
mean_reward,std_reward = evaluate_policy(model,eval_env,n_eval_episodes = 10 ,deterministic=True) |
|
print(f"Mean reward : {mean_reward} +/- {std_reward}") |
|
``` |