PPO-LunarLander-v2 / README.md
JaiSurya's picture
Update README.md
8aae42a
|
raw
history blame
2.04 kB
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
- gymnasium
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 240.31 +/- 69.19
name: mean_reward
verified: false
language:
- en
pipeline_tag: reinforcement-learning
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
This model is trained with the help of [Deep RL Course by HuggingFace](https://huggingface.co/learn/deep-rl-course/unit0/introduction)
## Usage (with Stable-baselines3)
```python
# necessary libraries
import gymnasium as gym
from huggingface_sb3 import load_from_hub, package_to_hub
from huggingface_hub import (
notebook_login,
)
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor
# Step 1 : Create an environment
env = gym.make("LunarLander-v2")
observation,info = env.reset() # initialize the environment
# Step 2 : Create the model
model = PPO(
policy = "MlpPolicy", # Multiple Layer Perceptron Policy
env = env,
n_steps = 1024,
batch_size = 64,
n_epochs = 5,
gamma = 0.995, # discount factor
gae_lambda = 0.98, # close to 1 - more bias and less variance
ent_coef = 0.01, # exploration exploitation tradeoff
verbose = 1
)
# Step 3 : Train the model
model.learn(total_timesteps=2000000,progress_bar = True)
# Step 4 : Evaluation
eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward,std_reward = evaluate_policy(model,eval_env,n_eval_episodes = 10 ,deterministic=True)
print(f"Mean reward : {mean_reward} +/- {std_reward}")
```