|
--- |
|
license: mit |
|
base_model: |
|
- Ultralytics/YOLOv8 |
|
pipeline_tag: object-detection |
|
--- |
|
# Overview |
|
This repository hosts a YOLOv8l model trained on the ArxivFormula (https://github.com/microsoft/ArxivFormula) dataset, which focuses on the detection of mathematical expressions in scientific papers. |
|
|
|
# Training Data: |
|
- Source: ArxivFormula (https://github.com/microsoft/ArxivFormula) |
|
- Classes: 6 classes (InlineFormula, DisplayedFormulaLine, FormulaNumber, DisplayedFormulaBlock, Table, Figure) |
|
Pages: ~600,000 images of document pages |
|
|
|
# Model: |
|
- YOLOv8l (https://github.com/ultralytics/ultralytics) |
|
- epochs = 100 |
|
- imgsz = 640 |
|
- optimizer = 'AdamW' |
|
- lr0 = 0.0001 |
|
- augment = True |
|
|
|
# Usage |
|
## Example Code |
|
|
|
``` |
|
from ultralytics import YOLO |
|
import pathlib |
|
|
|
# Sample images |
|
img_list = ['sample1.png', 'sample2.png', 'sample3.png'] |
|
|
|
# Load the document segmentation model |
|
model = YOLO('arxivFormula_YOLOv8l.pt') |
|
|
|
# Process the images |
|
results = model(source=img_list, save=True, show_labels=True, show_conf=True, show_boxes=True) |
|
``` |