MM2157's picture
update model card README.md
b167e90
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: AraBERT_token_classification_AraEval24_basic_single
    results: []

AraBERT_token_classification_AraEval24_basic_single

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8309
  • Precision: 0.0558
  • Recall: 0.0104
  • F1: 0.0175
  • Accuracy: 0.8720

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.5987 1.0 2830 0.7729 1.0 0.0002 0.0004 0.8751
0.5694 2.0 5660 0.7337 0.0 0.0 0.0 0.8751
0.4944 3.0 8490 0.7180 0.0 0.0 0.0 0.8751
0.4569 4.0 11320 0.7157 0.0683 0.0039 0.0073 0.8746
0.4453 5.0 14150 0.7393 0.0973 0.0063 0.0119 0.8745
0.3859 6.0 16980 0.7607 0.0694 0.0042 0.0080 0.8745
0.3847 7.0 19810 0.7712 0.0838 0.0074 0.0136 0.8742
0.3582 8.0 22640 0.7805 0.0462 0.0081 0.0138 0.8723
0.3368 9.0 25470 0.8114 0.0542 0.0078 0.0136 0.8727
0.3185 10.0 28300 0.8309 0.0558 0.0104 0.0175 0.8720

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.13.3