|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: AraBERT_token_classification_AraEval24_basic_single |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# AraBERT_token_classification_AraEval24_basic_single |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8309 |
|
- Precision: 0.0558 |
|
- Recall: 0.0104 |
|
- F1: 0.0175 |
|
- Accuracy: 0.8720 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.5987 | 1.0 | 2830 | 0.7729 | 1.0 | 0.0002 | 0.0004 | 0.8751 | |
|
| 0.5694 | 2.0 | 5660 | 0.7337 | 0.0 | 0.0 | 0.0 | 0.8751 | |
|
| 0.4944 | 3.0 | 8490 | 0.7180 | 0.0 | 0.0 | 0.0 | 0.8751 | |
|
| 0.4569 | 4.0 | 11320 | 0.7157 | 0.0683 | 0.0039 | 0.0073 | 0.8746 | |
|
| 0.4453 | 5.0 | 14150 | 0.7393 | 0.0973 | 0.0063 | 0.0119 | 0.8745 | |
|
| 0.3859 | 6.0 | 16980 | 0.7607 | 0.0694 | 0.0042 | 0.0080 | 0.8745 | |
|
| 0.3847 | 7.0 | 19810 | 0.7712 | 0.0838 | 0.0074 | 0.0136 | 0.8742 | |
|
| 0.3582 | 8.0 | 22640 | 0.7805 | 0.0462 | 0.0081 | 0.0138 | 0.8723 | |
|
| 0.3368 | 9.0 | 25470 | 0.8114 | 0.0542 | 0.0078 | 0.0136 | 0.8727 | |
|
| 0.3185 | 10.0 | 28300 | 0.8309 | 0.0558 | 0.0104 | 0.0175 | 0.8720 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.13.3 |
|
|