license: apache-2.0
datasets:
- HuggingFaceFW/fineweb-2
language:
- ru
metrics:
- character
base_model:
- meta-llama/Llama-3.3-70B-Instruct
new_version: meta-llama/Llama-3.3-70B-Instruct
pipeline_tag: translation
library_name: adapter-transformers
import sagemaker import boto3 from sagemaker.huggingface import HuggingFace
try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
hyperparameters = { 'model_name_or_path':'issai/LLama-3.1-KazLLM-1.0-8B', 'output_dir':'/opt/ml/model' # add your remaining hyperparameters # more info here https://github.com/huggingface/transformers/tree/v4.37.0/examples/pytorch/seq2seq }
git configuration to download our fine-tuning script
git_config = {'repo': 'https://github.com/huggingface/transformers.git','branch': 'v4.37.0'}
creates Hugging Face estimator
huggingface_estimator = HuggingFace( entry_point='run_translation.py', source_dir='./examples/pytorch/seq2seq', instance_type='ml.p3.2xlarge', instance_count=1, role=role, git_config=git_config, transformers_version='4.37.0', pytorch_version='2.1.0', py_version='py310', hyperparameters = hyperparameters )
starting the train job
huggingface_estimator.fit()