|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- HuggingFaceFW/fineweb-2 |
|
language: |
|
- ru |
|
metrics: |
|
- character |
|
base_model: |
|
- meta-llama/Llama-3.3-70B-Instruct |
|
new_version: meta-llama/Llama-3.3-70B-Instruct |
|
pipeline_tag: translation |
|
library_name: adapter-transformers |
|
--- |
|
import sagemaker |
|
import boto3 |
|
from sagemaker.huggingface import HuggingFace |
|
|
|
try: |
|
role = sagemaker.get_execution_role() |
|
except ValueError: |
|
iam = boto3.client('iam') |
|
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] |
|
|
|
hyperparameters = { |
|
'model_name_or_path':'issai/LLama-3.1-KazLLM-1.0-8B', |
|
'output_dir':'/opt/ml/model' |
|
# add your remaining hyperparameters |
|
# more info here https://github.com/huggingface/transformers/tree/v4.37.0/examples/pytorch/seq2seq |
|
} |
|
|
|
# git configuration to download our fine-tuning script |
|
git_config = {'repo': 'https://github.com/huggingface/transformers.git','branch': 'v4.37.0'} |
|
|
|
# creates Hugging Face estimator |
|
huggingface_estimator = HuggingFace( |
|
entry_point='run_translation.py', |
|
source_dir='./examples/pytorch/seq2seq', |
|
instance_type='ml.p3.2xlarge', |
|
instance_count=1, |
|
role=role, |
|
git_config=git_config, |
|
transformers_version='4.37.0', |
|
pytorch_version='2.1.0', |
|
py_version='py310', |
|
hyperparameters = hyperparameters |
|
) |
|
|
|
# starting the train job |
|
huggingface_estimator.fit() |