You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

pythia_160m_alpaca_farm_instructions_sft_constant_pa_seed_1

This model is a fine-tuned version of EleutherAI/pythia-160m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 1
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
2.3096 0.02 50 2.2544
2.2692 0.04 100 2.2374
2.2021 0.06 150 2.2228
2.2268 0.08 200 2.2338
2.1433 0.1 250 2.2146
2.0708 0.12 300 2.2004
2.163 0.14 350 2.1996
2.2518 0.16 400 2.1898
2.0717 0.18 450 2.1899
2.2137 0.2 500 2.1847
2.2232 0.22 550 2.1760
2.2455 0.24 600 2.1757
2.1936 0.26 650 2.1732
2.1352 0.28 700 2.1619
2.1215 0.3 750 2.1608
2.1568 0.32 800 2.1506
2.1319 0.34 850 2.1514
2.0831 0.36 900 2.1494
2.0788 0.38 950 2.1430
2.0901 0.4 1000 2.1376
2.1374 0.42 1050 2.1343
1.9484 0.44 1100 2.1298
2.204 0.46 1150 2.1284
2.108 0.48 1200 2.1249
1.9353 0.5 1250 2.1210
2.1352 0.52 1300 2.1178
1.9498 0.54 1350 2.1162
2.1571 0.56 1400 2.1153
2.1804 0.58 1450 2.1114
1.988 0.6 1500 2.1107
2.0485 0.62 1550 2.1055
2.0596 0.64 1600 2.1020
1.98 0.66 1650 2.1027
2.0626 0.68 1700 2.0980
2.097 0.7 1750 2.0949
2.2013 0.72 1800 2.0893
2.1234 0.74 1850 2.0913
1.9662 0.76 1900 2.0971
2.138 0.78 1950 2.0929
2.0816 0.8 2000 2.0898
2.1506 0.82 2050 2.0848
2.0585 0.84 2100 2.0860
2.099 0.86 2150 2.0862
2.084 0.88 2200 2.0816
2.1046 0.9 2250 2.0790
2.02 0.92 2300 2.0865
2.0548 0.94 2350 2.0776
2.0819 0.96 2400 2.0766
1.9181 0.98 2450 2.0755
2.0345 1.0 2500 2.0793
1.7741 1.02 2550 2.0922
1.6556 1.04 2600 2.0921
1.6168 1.06 2650 2.0921
1.8017 1.08 2700 2.0927
1.8055 1.1 2750 2.0893
1.7298 1.12 2800 2.0910
1.6924 1.14 2850 2.0969
1.853 1.16 2900 2.0951
1.7641 1.18 2950 2.1020
1.7529 1.2 3000 2.0991
1.7556 1.22 3050 2.1005
1.7273 1.24 3100 2.0984
1.8478 1.26 3150 2.1000
1.8965 1.28 3200 2.0932
1.761 1.3 3250 2.0917
1.7579 1.32 3300 2.0943
1.7347 1.34 3350 2.0914
1.7725 1.36 3400 2.0928
1.8931 1.38 3450 2.0913
1.7301 1.4 3500 2.1030
1.741 1.42 3550 2.0953
1.8009 1.44 3600 2.0971
1.8397 1.46 3650 2.0932
1.7941 1.48 3700 2.0932
1.7136 1.5 3750 2.0936
1.723 1.52 3800 2.0913
1.7837 1.54 3850 2.0878
1.7988 1.56 3900 2.0859
1.7759 1.58 3950 2.0883
1.8608 1.6 4000 2.0926
1.5859 1.62 4050 2.0918
1.8474 1.64 4100 2.0888
1.7921 1.66 4150 2.0932
1.755 1.68 4200 2.0950
1.8437 1.7 4250 2.0880
1.826 1.72 4300 2.0861
1.8548 1.74 4350 2.0886
1.7668 1.76 4400 2.0832
1.7818 1.78 4450 2.0877
1.8981 1.8 4500 2.0900
1.9266 1.82 4550 2.0855
1.8589 1.84 4600 2.0795
1.7587 1.86 4650 2.0833
1.6735 1.88 4700 2.0886
1.7961 1.9 4750 2.0874
1.8099 1.92 4800 2.0801
1.8481 1.94 4850 2.0802
1.8418 1.96 4900 2.0774
1.8471 1.98 4950 2.0876
1.829 2.0 5000 2.0820
1.4073 2.02 5050 2.1485
1.4951 2.04 5100 2.1651
1.4291 2.06 5150 2.1522
1.3912 2.08 5200 2.1545
1.5581 2.1 5250 2.1462
1.5533 2.12 5300 2.1613
1.5436 2.14 5350 2.1562
1.4632 2.16 5400 2.1437
1.5859 2.18 5450 2.1563
1.4974 2.2 5500 2.1749
1.464 2.22 5550 2.1648
1.4689 2.24 5600 2.1623
1.565 2.26 5650 2.1656
1.5491 2.28 5700 2.1696
1.5382 2.3 5750 2.1659
1.4154 2.32 5800 2.1614
1.4636 2.34 5850 2.1570
1.4858 2.36 5900 2.1634
1.4295 2.38 5950 2.1897
1.6108 2.4 6000 2.1653
1.4283 2.42 6050 2.1633
1.4685 2.44 6100 2.1720
1.4443 2.46 6150 2.1618
1.4918 2.48 6200 2.1577
1.5742 2.5 6250 2.1665
1.49 2.52 6300 2.1697
1.552 2.54 6350 2.1489
1.5577 2.56 6400 2.1660
1.4348 2.58 6450 2.1766
1.5508 2.6 6500 2.1564
1.4666 2.62 6550 2.1644
1.4784 2.64 6600 2.1611
1.6065 2.66 6650 2.1770
1.559 2.68 6700 2.1635
1.5579 2.7 6750 2.1605
1.5103 2.72 6800 2.1735
1.5369 2.74 6850 2.1711
1.6012 2.76 6900 2.1650
1.5058 2.78 6950 2.1683
1.6553 2.8 7000 2.1613
1.5858 2.82 7050 2.1664
1.6428 2.84 7100 2.1566
1.4619 2.86 7150 2.1620
1.5989 2.88 7200 2.1571
1.6181 2.9 7250 2.1598
1.5831 2.92 7300 2.1560
1.555 2.94 7350 2.1529
1.5387 2.96 7400 2.1593
1.5477 2.98 7450 2.1608
1.4989 3.0 7500 2.1686

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
0
Safetensors
Model size
162M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Mitsuki-Sakamoto/pythia_160m_alpaca_farm_instructions_sft_constant_pa_seed_1

Finetuned
(77)
this model