metadata
license_name: tongyi-qianwen-research
license_link: https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat/raw/main/LICENSE
library_name: transformers
license: other
tags:
- finetune
- synthetic data
- custom_code
- qwen2
- COT
datasets:
- kaist-ai/CoT-Collection
- Finetuned Qwen/Qwen1.5-4B, on variety of CoT tasks including Reasoning, Closed Book Question Answering, Ethics, and more.
- Datasets : Curated from - kaist-ai/CoT-Collection, euclaise/TinyCoT and a very small subset from teknium/OpenHermes-2.5.
- This marks the fourth model in this series. This experiment aims to improve Chain of Thought (CoT) capabilities on smaller language models.
- I may rerun the finetuning experiment(with a more balanced dataset), using an iterative rationale-bootstrapping procedure inspired by euclaise/Memphis-CoT-3B.
- Hyperparameter: adamw with eps of 1e-8, cosine decay with 20% warmup, lr=2e-5
Benchamrks:
WIP
Example:
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, StoppingCriteria
import torch
class MyStoppingCriteria(StoppingCriteria):
def __init__(self, target_sequence, prompt):
self.target_sequence = target_sequence
self.prompt=prompt
def __call__(self, input_ids, scores, **kwargs):
generated_text = tokenizer.decode(input_ids[0])
generated_text = generated_text.replace(self.prompt,'')
if self.target_sequence in generated_text:
return True
return False
def __len__(self):
return 1
def __iter__(self):
yield self
modelpath="aloobun/Reyna-CoT-4B-v0.1"
model = AutoModelForCausalLM.from_pretrained(
modelpath,
torch_dtype=torch.bfloat16,
device_map="cuda",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(
modelpath,
trust_remote_code=True,
use_fast=False,
)
prompt = "Avery opens a flower shop. She ties 8 bunches of flowers with 9 flowers in each bunch. How many bunches would she have if she put 12 flowers in each bunch instead?\n"
encoded_input = tokenizer(prompt, return_tensors='pt')
input_ids=encoded_input['input_ids'].cuda()
streamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True)
op = model.generate(
input_ids,
streamer=streamer,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.6,
top_p=0.8,
max_new_tokens=512,
stopping_criteria=MyStoppingCriteria("<|endoftext|>", prompt)
)
Output:
She would have 8 x 9 = 72 flowers in total. She would have 72 / 12 = 6 bunches of flowers with 12 flowers in each bunch. Therefore, the answer is 6.<|endoftext|>