|
--- |
|
license_name: tongyi-qianwen-research |
|
license_link: https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat/raw/main/LICENSE |
|
library_name: transformers |
|
license: other |
|
tags: |
|
- finetune |
|
- synthetic data |
|
- custom_code |
|
- qwen2 |
|
- COT |
|
datasets: |
|
- kaist-ai/CoT-Collection |
|
--- |
|
|
|
![Reyna aloobun qwen4B](https://i.imgur.com/QfbOY6c.jpeg) |
|
- Finetuned [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B), on variety of CoT tasks including Reasoning, Closed Book Question Answering, Ethics, and more. |
|
- Datasets : Curated from - [kaist-ai/CoT-Collection](https://huggingface.co/datasets/kaist-ai/CoT-Collection), [euclaise/TinyCoT](https://huggingface.co/datasets/euclaise/TinyCoT) and a very small subset from [teknium/OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5). |
|
- This marks the fourth model in this series. This experiment aims to improve Chain of Thought (CoT) capabilities on smaller language models. |
|
- I may rerun the finetuning experiment(with a more balanced dataset), using an iterative rationale-bootstrapping procedure inspired by euclaise/Memphis-CoT-3B. |
|
- Hyperparameter: adamw with eps of 1e-8, cosine decay with 20% warmup, lr=2e-5 |
|
|
|
## Benchamrks: |
|
|
|
WIP |
|
|
|
## Example: |
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, StoppingCriteria |
|
import torch |
|
|
|
class MyStoppingCriteria(StoppingCriteria): |
|
def __init__(self, target_sequence, prompt): |
|
self.target_sequence = target_sequence |
|
self.prompt=prompt |
|
|
|
def __call__(self, input_ids, scores, **kwargs): |
|
generated_text = tokenizer.decode(input_ids[0]) |
|
generated_text = generated_text.replace(self.prompt,'') |
|
if self.target_sequence in generated_text: |
|
return True |
|
return False |
|
|
|
def __len__(self): |
|
return 1 |
|
|
|
def __iter__(self): |
|
yield self |
|
|
|
modelpath="aloobun/Reyna-CoT-4B-v0.1" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
modelpath, |
|
torch_dtype=torch.bfloat16, |
|
device_map="cuda", |
|
trust_remote_code=True, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
modelpath, |
|
trust_remote_code=True, |
|
use_fast=False, |
|
) |
|
|
|
prompt = "Avery opens a flower shop. She ties 8 bunches of flowers with 9 flowers in each bunch. How many bunches would she have if she put 12 flowers in each bunch instead?\n" |
|
|
|
encoded_input = tokenizer(prompt, return_tensors='pt') |
|
input_ids=encoded_input['input_ids'].cuda() |
|
streamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True) |
|
op = model.generate( |
|
input_ids, |
|
streamer=streamer, |
|
pad_token_id=tokenizer.eos_token_id, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.8, |
|
max_new_tokens=512, |
|
stopping_criteria=MyStoppingCriteria("<|endoftext|>", prompt) |
|
) |
|
|
|
``` |
|
|
|
## Output: |
|
>She would have 8 x 9 = 72 flowers in total. |
|
>She would have 72 / 12 = 6 bunches of flowers with 12 flowers in each bunch. |
|
>Therefore, the answer is 6.<|endoftext|> |