dap305's picture
fix typo
398e696 verified
|
raw
history blame
2.19 kB
metadata
license: mit
base_model: Helsinki-NLP/opus-mt-en-es
tags:
  - translation
  - UPV
  - MIARFID
  - EuroParl
model-index:
  - name: dap305/Helsinki-finetuned-EuroParl-en-to-es
    results:
      - task:
          type: translation
          name: Translation En-to-ES
        dataset:
          type: translation
          name: EuroParl.V7.Subset
        metrics:
          - type: bleu
            value: 37.083
language:
  - en
  - es
metrics:
  - bleu
library_name: transformers
pipeline_tag: translation
datasets:
  - dap305/processed_europarlv7_subset50k

dap305/Helsinki-finetuned-EuroParl-en-to-es

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-es on a subset of the EuroParl dataset. It achieves the following results on the validation set:

  • Train Loss: 0.9863
  • Validation Loss: 1.1352
  • BLUE: 37.083

Intended uses & limitations

This model has been created for learning purposes at the MIARFID Automatic Translation course.

Training and evaluation data

This model was fine-tuned with a subset of the Europarl-v7-es-en, consisting of 50.000 sentences in English and Spanish.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of Machine Translation Summit X: Papers, pages 79–86, Phuket, Thailand.

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4344, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
1.2441 1.1487 0
1.0785 1.1351 1
0.9863 1.1352 2

Framework versions

  • Transformers 4.37.0
  • TensorFlow 2.13.0
  • Datasets 2.16.1
  • Tokenizers 0.15.1