|
--- |
|
license: mit |
|
base_model: Helsinki-NLP/opus-mt-en-es |
|
tags: |
|
- translation |
|
- UPV |
|
- MIARFID |
|
- EuroParl |
|
model-index: |
|
- name: dap305/Helsinki-finetuned-EuroParl-en-to-es |
|
results: |
|
- task: |
|
type: translation |
|
name: Translation En-to-ES |
|
dataset: |
|
type: translation |
|
name: EuroParl.V7.Subset |
|
metrics: |
|
- type: bleu |
|
value: 37.083 |
|
language: |
|
- en |
|
- es |
|
metrics: |
|
- bleu |
|
library_name: transformers |
|
pipeline_tag: translation |
|
datasets: |
|
- dap305/processed_europarlv7_subset50k |
|
--- |
|
|
|
# dap305/Helsinki-finetuned-EuroParl-en-to-es |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es) on a subset of the EuroParl dataset. |
|
It achieves the following results on the validation set: |
|
- Train Loss: 0.9863 |
|
- Validation Loss: 1.1352 |
|
- BLUE: 37.083 |
|
|
|
## Intended uses & limitations |
|
|
|
This model has been created for learning purposes at the MIARFID Automatic Translation course. |
|
|
|
## Training and evaluation data |
|
|
|
This model was fine-tuned with a subset of the Europarl-v7-es-en, consisting of 50.000 sentences in English and Spanish. |
|
|
|
Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of Machine Translation Summit X: Papers, pages 79–86, Phuket, Thailand. |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4344, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: mixed_float16 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 1.2441 | 1.1487 | 0 | |
|
| 1.0785 | 1.1351 | 1 | |
|
| 0.9863 | 1.1352 | 2 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0 |
|
- TensorFlow 2.13.0 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |