|
--- |
|
license: mit |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: microsoft/phi-2 |
|
model-index: |
|
- name: hate-phi |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hate-phi |
|
|
|
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3268 |
|
- Classification Report: precision recall f1-score support |
|
|
|
0 0.57 0.08 0.14 438 |
|
1 0.91 0.97 0.93 5755 |
|
2 0.80 0.79 0.80 1242 |
|
|
|
accuracy 0.89 7435 |
|
macro avg 0.76 0.61 0.62 7435 |
|
weighted avg 0.87 0.89 0.87 7435 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Classification Report | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| 0.8106 | 0.37 | 25 | 0.4551 | precision recall f1-score support |
|
|
|
0 0.18 0.03 0.04 438 |
|
1 0.85 0.97 0.91 5755 |
|
2 0.75 0.46 0.57 1242 |
|
|
|
accuracy 0.83 7435 |
|
macro avg 0.59 0.49 0.51 7435 |
|
weighted avg 0.79 0.83 0.80 7435 |
|
| |
|
| 0.3677 | 0.74 | 50 | 0.3374 | precision recall f1-score support |
|
|
|
0 0.51 0.09 0.16 438 |
|
1 0.91 0.95 0.93 5755 |
|
2 0.77 0.83 0.80 1242 |
|
|
|
accuracy 0.88 7435 |
|
macro avg 0.73 0.63 0.63 7435 |
|
weighted avg 0.87 0.88 0.87 7435 |
|
| |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |