prompt
stringlengths
51
10k
completion
stringlengths
8
362
api
stringlengths
18
90
get_ipython().run_line_magic('pip', 'install --upgrade --quiet sentence-transformers > /dev/null') from langchain.chains import LLMChain, StuffDocumentsChain from langchain.prompts import PromptTemplate from langchain_community.document_transformers import ( LongContextReorder, ) from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import Chroma from langchain_openai import OpenAI embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") texts = [ "Basquetball is a great sport.", "Fly me to the moon is one of my favourite songs.", "The Celtics are my favourite team.", "This is a document about the Boston Celtics", "I simply love going to the movies", "The Boston Celtics won the game by 20 points", "This is just a random text.", "Elden Ring is one of the best games in the last 15 years.", "L. Kornet is one of the best Celtics players.", "Larry Bird was an iconic NBA player.", ] retriever =
Chroma.from_texts(texts, embedding=embeddings)
langchain_community.vectorstores.Chroma.from_texts
get_ipython().run_line_magic('pip', 'install -qU chromadb langchain langchain-community langchain-openai') from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter loader = TextLoader("../../state_of_the_union.txt") documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) for i, doc in enumerate(texts): doc.metadata["page_chunk"] = i embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_documents(texts, embeddings, collection_name="state-of-union") retriever = vectorstore.as_retriever() from langchain.tools.retriever import create_retriever_tool retriever_tool = create_retriever_tool( retriever, "state-of-union-retriever", "Query a retriever to get information about state of the union address", ) from typing import List from langchain_core.pydantic_v1 import BaseModel, Field class Response(BaseModel): """Final response to the question being asked""" answer: str = Field(description="The final answer to respond to the user") sources: List[int] = Field( description="List of page chunks that contain answer to the question. Only include a page chunk if it contains relevant information" ) import json from langchain_core.agents import AgentActionMessageLog, AgentFinish def parse(output): if "function_call" not in output.additional_kwargs: return
AgentFinish(return_values={"output": output.content}, log=output.content)
langchain_core.agents.AgentFinish
get_ipython().run_line_magic('pip', 'install -qU langchain-text-splitters') from langchain_text_splitters import MarkdownHeaderTextSplitter markdown_document = "# Foo\n\n ## Bar\n\nHi this is Jim\n\nHi this is Joe\n\n ### Boo \n\n Hi this is Lance \n\n ## Baz\n\n Hi this is Molly" headers_to_split_on = [ ("#", "Header 1"), ("##", "Header 2"), ("###", "Header 3"), ] markdown_splitter =
MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
langchain_text_splitters.MarkdownHeaderTextSplitter
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pyspark') from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() df = spark.read.csv("example_data/mlb_teams_2012.csv", header=True) from langchain_community.document_loaders import PySparkDataFrameLoader loader =
PySparkDataFrameLoader(spark, df, page_content_column="Team")
langchain_community.document_loaders.PySparkDataFrameLoader
import pprint from typing import Any, Dict import pandas as pd from langchain.output_parsers import PandasDataFrameOutputParser from langchain.prompts import PromptTemplate from langchain_openai import ChatOpenAI model = ChatOpenAI(temperature=0) def format_parser_output(parser_output: Dict[str, Any]) -> None: for key in parser_output.keys(): parser_output[key] = parser_output[key].to_dict() return pprint.PrettyPrinter(width=4, compact=True).pprint(parser_output) df = pd.DataFrame( { "num_legs": [2, 4, 8, 0], "num_wings": [2, 0, 0, 0], "num_specimen_seen": [10, 2, 1, 8], } ) parser =
PandasDataFrameOutputParser(dataframe=df)
langchain.output_parsers.PandasDataFrameOutputParser
get_ipython().run_line_magic('pip', 'install --upgrade --quiet lm-format-enforcer > /dev/null') import logging from langchain_experimental.pydantic_v1 import BaseModel logging.basicConfig(level=logging.ERROR) class PlayerInformation(BaseModel): first_name: str last_name: str num_seasons_in_nba: int year_of_birth: int import torch from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer model_id = "meta-llama/Llama-2-7b-chat-hf" device = "cuda" if torch.cuda.is_available(): config = AutoConfig.from_pretrained(model_id) config.pretraining_tp = 1 model = AutoModelForCausalLM.from_pretrained( model_id, config=config, torch_dtype=torch.float16, load_in_8bit=True, device_map="auto", ) else: raise Exception("GPU not available") tokenizer = AutoTokenizer.from_pretrained(model_id) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id DEFAULT_SYSTEM_PROMPT = """\ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\ """ prompt = """Please give me information about {player_name}. You must respond using JSON format, according to the following schema: {arg_schema} """ def make_instruction_prompt(message): return f"[INST] <<SYS>>\n{DEFAULT_SYSTEM_PROMPT}\n<</SYS>> {message} [/INST]" def get_prompt(player_name): return make_instruction_prompt( prompt.format( player_name=player_name, arg_schema=PlayerInformation.schema_json() ) ) from langchain_community.llms import HuggingFacePipeline from transformers import pipeline hf_model = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=200 ) original_model = HuggingFacePipeline(pipeline=hf_model) generated = original_model.predict(get_prompt("Michael Jordan")) print(generated) from langchain_experimental.llms import LMFormatEnforcer lm_format_enforcer = LMFormatEnforcer( json_schema=PlayerInformation.schema(), pipeline=hf_model ) results = lm_format_enforcer.predict(get_prompt("Michael Jordan")) print(results) prompts = [ get_prompt(name) for name in ["Michael Jordan", "Kareem Abdul Jabbar", "Tim Duncan"] ] results = lm_format_enforcer.generate(prompts) for generation in results.generations: print(generation[0].text) question_prompt = "When was Michael Jordan Born? Please answer in mm/dd/yyyy format." date_regex = r"(0?[1-9]|1[0-2])\/(0?[1-9]|1\d|2\d|3[01])\/(19|20)\d{2}" answer_regex = " In mm/dd/yyyy format, Michael Jordan was born in " + date_regex lm_format_enforcer =
LMFormatEnforcer(regex=answer_regex, pipeline=hf_model)
langchain_experimental.llms.LMFormatEnforcer
get_ipython().system('pip install --quiet langchain_experimental langchain_openai') with open("../../state_of_the_union.txt") as f: state_of_the_union = f.read() from langchain_experimental.text_splitter import SemanticChunker from langchain_openai.embeddings import OpenAIEmbeddings text_splitter = SemanticChunker(OpenAIEmbeddings()) docs = text_splitter.create_documents([state_of_the_union]) print(docs[0].page_content) text_splitter = SemanticChunker( OpenAIEmbeddings(), breakpoint_threshold_type="percentile" ) docs = text_splitter.create_documents([state_of_the_union]) print(docs[0].page_content) print(len(docs)) text_splitter = SemanticChunker(
OpenAIEmbeddings()
langchain_openai.embeddings.OpenAIEmbeddings
from langchain_community.chat_models import ChatDatabricks from langchain_core.messages import HumanMessage from mlflow.deployments import get_deploy_client client = get_deploy_client("databricks") secret = "secrets/<scope>/openai-api-key" # replace `<scope>` with your scope name = "my-chat" # rename this if my-chat already exists client.create_endpoint( name=name, config={ "served_entities": [ { "name": "my-chat", "external_model": { "name": "gpt-4", "provider": "openai", "task": "llm/v1/chat", "openai_config": { "openai_api_key": "{{" + secret + "}}", }, }, } ], }, ) chat = ChatDatabricks( target_uri="databricks", endpoint=name, temperature=0.1, ) chat([
HumanMessage(content="hello")
langchain_core.messages.HumanMessage
get_ipython().system('pip install -U oci') from langchain_community.llms import OCIGenAI llm = OCIGenAI( model_id="MY_MODEL", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID", ) response = llm.invoke("Tell me one fact about earth", temperature=0.7) print(response) from langchain.chains import LLMChain from langchain_core.prompts import PromptTemplate llm = OCIGenAI( model_id="MY_MODEL", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID", auth_type="SECURITY_TOKEN", auth_profile="MY_PROFILE", # replace with your profile name model_kwargs={"temperature": 0.7, "top_p": 0.75, "max_tokens": 200}, ) prompt =
PromptTemplate(input_variables=["query"], template="{query}")
langchain_core.prompts.PromptTemplate
get_ipython().run_line_magic('pip', 'install --upgrade --quiet clearml') get_ipython().run_line_magic('pip', 'install --upgrade --quiet pandas') get_ipython().run_line_magic('pip', 'install --upgrade --quiet textstat') get_ipython().run_line_magic('pip', 'install --upgrade --quiet spacy') get_ipython().system('python -m spacy download en_core_web_sm') import os os.environ["CLEARML_API_ACCESS_KEY"] = "" os.environ["CLEARML_API_SECRET_KEY"] = "" os.environ["OPENAI_API_KEY"] = "" os.environ["SERPAPI_API_KEY"] = "" from langchain.callbacks import ClearMLCallbackHandler from langchain.callbacks import StdOutCallbackHandler from langchain_openai import OpenAI clearml_callback = ClearMLCallbackHandler( task_type="inference", project_name="langchain_callback_demo", task_name="llm", tags=["test"], visualize=True, complexity_metrics=True, stream_logs=True, ) callbacks = [StdOutCallbackHandler(), clearml_callback] llm = OpenAI(temperature=0, callbacks=callbacks) llm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3) clearml_callback.flush_tracker(langchain_asset=llm, name="simple_sequential") from langchain.agents import AgentType, initialize_agent, load_tools tools =
load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)
langchain.agents.load_tools
import asyncio from langchain.callbacks import get_openai_callback from langchain_openai import OpenAI llm = OpenAI(temperature=0) with get_openai_callback() as cb: llm("What is the square root of 4?") total_tokens = cb.total_tokens assert total_tokens > 0 with get_openai_callback() as cb: llm("What is the square root of 4?") llm("What is the square root of 4?") assert cb.total_tokens == total_tokens * 2 with
get_openai_callback()
langchain.callbacks.get_openai_callback
import asyncio import os import nest_asyncio import pandas as pd from langchain.docstore.document import Document from langchain_community.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain_experimental.autonomous_agents import AutoGPT from langchain_openai import ChatOpenAI nest_asyncio.apply() llm = ChatOpenAI(model_name="gpt-4", temperature=1.0) import os from contextlib import contextmanager from typing import Optional from langchain.agents import tool from langchain_community.tools.file_management.read import ReadFileTool from langchain_community.tools.file_management.write import WriteFileTool ROOT_DIR = "./data/" @contextmanager def pushd(new_dir): """Context manager for changing the current working directory.""" prev_dir = os.getcwd() os.chdir(new_dir) try: yield finally: os.chdir(prev_dir) @tool def process_csv( csv_file_path: str, instructions: str, output_path: Optional[str] = None ) -> str: """Process a CSV by with pandas in a limited REPL.\ Only use this after writing data to disk as a csv file.\ Any figures must be saved to disk to be viewed by the human.\ Instructions should be written in natural language, not code. Assume the dataframe is already loaded.""" with pushd(ROOT_DIR): try: df = pd.read_csv(csv_file_path) except Exception as e: return f"Error: {e}" agent = create_pandas_dataframe_agent(llm, df, max_iterations=30, verbose=True) if output_path is not None: instructions += f" Save output to disk at {output_path}" try: result = agent.run(instructions) return result except Exception as e: return f"Error: {e}" async def async_load_playwright(url: str) -> str: """Load the specified URLs using Playwright and parse using BeautifulSoup.""" from bs4 import BeautifulSoup from playwright.async_api import async_playwright results = "" async with async_playwright() as p: browser = await p.chromium.launch(headless=True) try: page = await browser.new_page() await page.goto(url) page_source = await page.content() soup = BeautifulSoup(page_source, "html.parser") for script in soup(["script", "style"]): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) results = "\n".join(chunk for chunk in chunks if chunk) except Exception as e: results = f"Error: {e}" await browser.close() return results def run_async(coro): event_loop = asyncio.get_event_loop() return event_loop.run_until_complete(coro) @tool def browse_web_page(url: str) -> str: """Verbose way to scrape a whole webpage. Likely to cause issues parsing.""" return run_async(async_load_playwright(url)) from langchain.chains.qa_with_sources.loading import ( BaseCombineDocumentsChain, load_qa_with_sources_chain, ) from langchain.tools import BaseTool, DuckDuckGoSearchRun from langchain_text_splitters import RecursiveCharacterTextSplitter from pydantic import Field def _get_text_splitter(): return RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=20, length_function=len, ) class WebpageQATool(BaseTool): name = "query_webpage" description = ( "Browse a webpage and retrieve the information relevant to the question." ) text_splitter: RecursiveCharacterTextSplitter = Field( default_factory=_get_text_splitter ) qa_chain: BaseCombineDocumentsChain def _run(self, url: str, question: str) -> str: """Useful for browsing websites and scraping the text information.""" result = browse_web_page.run(url) docs = [Document(page_content=result, metadata={"source": url})] web_docs = self.text_splitter.split_documents(docs) results = [] for i in range(0, len(web_docs), 4): input_docs = web_docs[i : i + 4] window_result = self.qa_chain( {"input_documents": input_docs, "question": question}, return_only_outputs=True, ) results.append(f"Response from window {i} - {window_result}") results_docs = [ Document(page_content="\n".join(results), metadata={"source": url}) ] return self.qa_chain( {"input_documents": results_docs, "question": question}, return_only_outputs=True, ) async def _arun(self, url: str, question: str) -> str: raise NotImplementedError query_website_tool = WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)) import faiss from langchain.docstore import InMemoryDocstore from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings embeddings_model = OpenAIEmbeddings() embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) web_search =
DuckDuckGoSearchRun()
langchain.tools.DuckDuckGoSearchRun
get_ipython().run_line_magic('pip', 'install --upgrade --quiet atlassian-python-api') import os from langchain.agents import AgentType, initialize_agent from langchain_community.agent_toolkits.jira.toolkit import JiraToolkit from langchain_community.utilities.jira import JiraAPIWrapper from langchain_openai import OpenAI os.environ["JIRA_API_TOKEN"] = "abc" os.environ["JIRA_USERNAME"] = "123" os.environ["JIRA_INSTANCE_URL"] = "https://jira.atlassian.com" os.environ["OPENAI_API_KEY"] = "xyz" llm = OpenAI(temperature=0) jira = JiraAPIWrapper() toolkit =
JiraToolkit.from_jira_api_wrapper(jira)
langchain_community.agent_toolkits.jira.toolkit.JiraToolkit.from_jira_api_wrapper
get_ipython().system('pip3 install clickhouse-sqlalchemy InstructorEmbedding sentence_transformers openai langchain-experimental') import getpass from os import environ from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.utilities import SQLDatabase from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain from langchain_openai import OpenAI from sqlalchemy import MetaData, create_engine MYSCALE_HOST = "msc-4a9e710a.us-east-1.aws.staging.myscale.cloud" MYSCALE_PORT = 443 MYSCALE_USER = "chatdata" MYSCALE_PASSWORD = "myscale_rocks" OPENAI_API_KEY = getpass.getpass("OpenAI API Key:") engine = create_engine( f"clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/default?protocol=https" ) metadata = MetaData(bind=engine) environ["OPENAI_API_KEY"] = OPENAI_API_KEY from langchain_community.embeddings import HuggingFaceInstructEmbeddings from langchain_experimental.sql.vector_sql import VectorSQLOutputParser output_parser = VectorSQLOutputParser.from_embeddings( model=HuggingFaceInstructEmbeddings( model_name="hkunlp/instructor-xl", model_kwargs={"device": "cpu"} ) ) from langchain.callbacks import StdOutCallbackHandler from langchain_community.utilities.sql_database import SQLDatabase from langchain_experimental.sql.prompt import MYSCALE_PROMPT from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain from langchain_openai import OpenAI chain = VectorSQLDatabaseChain( llm_chain=LLMChain( llm=OpenAI(openai_api_key=OPENAI_API_KEY, temperature=0), prompt=MYSCALE_PROMPT, ), top_k=10, return_direct=True, sql_cmd_parser=output_parser, database=SQLDatabase(engine, None, metadata), ) import pandas as pd pd.DataFrame( chain.run( "Please give me 10 papers to ask what is PageRank?", callbacks=[StdOutCallbackHandler()], ) ) from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain from langchain_experimental.retrievers.vector_sql_database import ( VectorSQLDatabaseChainRetriever, ) from langchain_experimental.sql.prompt import MYSCALE_PROMPT from langchain_experimental.sql.vector_sql import ( VectorSQLDatabaseChain, VectorSQLRetrieveAllOutputParser, ) from langchain_openai import ChatOpenAI output_parser_retrieve_all = VectorSQLRetrieveAllOutputParser.from_embeddings( output_parser.model ) chain = VectorSQLDatabaseChain.from_llm( llm=OpenAI(openai_api_key=OPENAI_API_KEY, temperature=0), prompt=MYSCALE_PROMPT, top_k=10, return_direct=True, db=SQLDatabase(engine, None, metadata), sql_cmd_parser=output_parser_retrieve_all, native_format=True, ) retriever = VectorSQLDatabaseChainRetriever( sql_db_chain=chain, page_content_key="abstract" ) document_with_metadata_prompt = PromptTemplate( input_variables=["page_content", "id", "title", "authors", "pubdate", "categories"], template="Content:\n\tTitle: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}", ) chain = RetrievalQAWithSourcesChain.from_chain_type( ChatOpenAI( model_name="gpt-3.5-turbo-16k", openai_api_key=OPENAI_API_KEY, temperature=0.6 ), retriever=retriever, chain_type="stuff", chain_type_kwargs={ "document_prompt": document_with_metadata_prompt, }, return_source_documents=True, ) ans = chain( "Please give me 10 papers to ask what is PageRank?", callbacks=[
StdOutCallbackHandler()
langchain.callbacks.StdOutCallbackHandler
from langchain_community.llms import Baseten mistral = Baseten(model="MODEL_ID", deployment="production") mistral("What is the Mistral wind?") from langchain.chains import LLMChain from langchain.memory import ConversationBufferWindowMemory from langchain.prompts import PromptTemplate template = """Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. {history} Human: {human_input} Assistant:""" prompt = PromptTemplate(input_variables=["history", "human_input"], template=template) chatgpt_chain = LLMChain( llm=mistral, llm_kwargs={"max_length": 4096}, prompt=prompt, verbose=True, memory=
ConversationBufferWindowMemory(k=2)
langchain.memory.ConversationBufferWindowMemory
get_ipython().run_line_magic('pip', 'install --upgrade --quiet arxiv') from langchain import hub from langchain.agents import AgentExecutor, create_react_agent, load_tools from langchain_openai import ChatOpenAI llm = ChatOpenAI(temperature=0.0) tools = load_tools( ["arxiv"], ) prompt =
hub.pull("hwchase17/react")
langchain.hub.pull
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langsmith langchainhub --quiet') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai tiktoken pandas duckduckgo-search --quiet') import os from uuid import uuid4 unique_id = uuid4().hex[0:8] os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_PROJECT"] = f"Tracing Walkthrough - {unique_id}" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" os.environ["LANGCHAIN_API_KEY"] = "<YOUR-API-KEY>" # Update to your API key os.environ["OPENAI_API_KEY"] = "<YOUR-OPENAI-API-KEY>" from langsmith import Client client = Client() from langchain import hub from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad.openai_tools import ( format_to_openai_tool_messages, ) from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser from langchain_community.tools import DuckDuckGoSearchResults from langchain_openai import ChatOpenAI prompt = hub.pull("wfh/langsmith-agent-prompt:5d466cbc") llm = ChatOpenAI( model="gpt-3.5-turbo-16k", temperature=0, ) tools = [ DuckDuckGoSearchResults( name="duck_duck_go" ), # General internet search using DuckDuckGo ] llm_with_tools = llm.bind_tools(tools) runnable_agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() ) agent_executor = AgentExecutor( agent=runnable_agent, tools=tools, handle_parsing_errors=True ) inputs = [ "What is LangChain?", "What's LangSmith?", "When was Llama-v2 released?", "What is the langsmith cookbook?", "When did langchain first announce the hub?", ] results = agent_executor.batch([{"input": x} for x in inputs], return_exceptions=True) results[:2] outputs = [ "LangChain is an open-source framework for building applications using large language models. It is also the name of the company building LangSmith.", "LangSmith is a unified platform for debugging, testing, and monitoring language model applications and agents powered by LangChain", "July 18, 2023", "The langsmith cookbook is a github repository containing detailed examples of how to use LangSmith to debug, evaluate, and monitor large language model-powered applications.", "September 5, 2023", ] dataset_name = f"agent-qa-{unique_id}" dataset = client.create_dataset( dataset_name, description="An example dataset of questions over the LangSmith documentation.", ) client.create_examples( inputs=[{"input": query} for query in inputs], outputs=[{"output": answer} for answer in outputs], dataset_id=dataset.id, ) from langchain import hub from langchain.agents import AgentExecutor, AgentType, initialize_agent, load_tools from langchain_openai import ChatOpenAI def create_agent(prompt, llm_with_tools): runnable_agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() ) return AgentExecutor(agent=runnable_agent, tools=tools, handle_parsing_errors=True) from langsmith.evaluation import EvaluationResult from langsmith.schemas import Example, Run def check_not_idk(run: Run, example: Example): """Illustration of a custom evaluator.""" agent_response = run.outputs["output"] if "don't know" in agent_response or "not sure" in agent_response: score = 0 else: score = 1 return EvaluationResult( key="not_uncertain", score=score, ) from typing import List def max_pred_length(runs: List[Run], examples: List[Example]): predictions = [len(run.outputs["output"]) for run in runs] return EvaluationResult(key="max_pred_length", score=max(predictions)) from langchain.evaluation import EvaluatorType from langchain.smith import RunEvalConfig evaluation_config = RunEvalConfig( evaluators=[ check_not_idk, EvaluatorType.QA, EvaluatorType.EMBEDDING_DISTANCE,
RunEvalConfig.LabeledCriteria("helpfulness")
langchain.smith.RunEvalConfig.LabeledCriteria
from langchain_community.chat_message_histories import StreamlitChatMessageHistory history =
StreamlitChatMessageHistory(key="chat_messages")
langchain_community.chat_message_histories.StreamlitChatMessageHistory
import getpass import os os.environ["POLYGON_API_KEY"] = getpass.getpass() from langchain_community.tools.polygon.financials import PolygonFinancials from langchain_community.tools.polygon.last_quote import PolygonLastQuote from langchain_community.tools.polygon.ticker_news import PolygonTickerNews from langchain_community.utilities.polygon import PolygonAPIWrapper api_wrapper =
PolygonAPIWrapper()
langchain_community.utilities.polygon.PolygonAPIWrapper
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI template = """Answer the users question based only on the following context: <context> {context} </context> Question: {question} """ prompt =
ChatPromptTemplate.from_template(template)
langchain_core.prompts.ChatPromptTemplate.from_template
import os os.environ["EXA_API_KEY"] = "..." get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-exa') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_exa import ExaSearchRetriever, TextContentsOptions from langchain_openai import ChatOpenAI retriever = ExaSearchRetriever( k=5, text_contents_options=TextContentsOptions(max_length=200) ) prompt = PromptTemplate.from_template( """Answer the following query based on the following context: query: {query} <context> {context} </context""" ) llm = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "query": RunnablePassthrough()}) | prompt | llm ) chain.invoke("When is the best time to visit japan?") get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-exa') from exa_py import Exa from langchain.agents import tool exa = Exa(api_key=os.environ["EXA_API_KEY"]) @tool def search(query: str): """Search for a webpage based on the query.""" return exa.search(f"{query}", use_autoprompt=True, num_results=5) @tool def find_similar(url: str): """Search for webpages similar to a given URL. The url passed in should be a URL returned from `search`. """ return exa.find_similar(url, num_results=5) @tool def get_contents(ids: list[str]): """Get the contents of a webpage. The ids passed in should be a list of ids returned from `search`. """ return exa.get_contents(ids) tools = [search, get_contents, find_similar] from langchain.agents import AgentExecutor, OpenAIFunctionsAgent from langchain_core.messages import SystemMessage from langchain_openai import ChatOpenAI llm = ChatOpenAI(temperature=0) system_message = SystemMessage( content="You are a web researcher who answers user questions by looking up information on the internet and retrieving contents of helpful documents. Cite your sources." ) agent_prompt =
OpenAIFunctionsAgent.create_prompt(system_message)
langchain.agents.OpenAIFunctionsAgent.create_prompt
from langchain.output_parsers import ResponseSchema, StructuredOutputParser from langchain.prompts import PromptTemplate from langchain_openai import ChatOpenAI response_schemas = [ ResponseSchema(name="answer", description="answer to the user's question"), ResponseSchema( name="source", description="source used to answer the user's question, should be a website.", ), ] output_parser =
StructuredOutputParser.from_response_schemas(response_schemas)
langchain.output_parsers.StructuredOutputParser.from_response_schemas
get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().system('poetry run pip install replicate') from getpass import getpass REPLICATE_API_TOKEN = getpass() import os os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import Replicate llm = Replicate( model="a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5", model_kwargs={"temperature": 0.75, "max_length": 500, "top_p": 1}, ) prompt = """ User: Answer the following yes/no question by reasoning step by step. Can a dog drive a car? Assistant: """ llm(prompt) llm =
Replicate( model="replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5" )
langchain_community.llms.Replicate
get_ipython().run_line_magic('pip', 'install --upgrade --quiet cohere') get_ipython().run_line_magic('pip', 'install --upgrade --quiet faiss') get_ipython().run_line_magic('pip', 'install --upgrade --quiet faiss-cpu') import getpass import os os.environ["COHERE_API_KEY"] = getpass.getpass("Cohere API Key:") def pretty_print_docs(docs): print( f"\n{'-' * 100}\n".join( [f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)] ) ) from langchain_community.document_loaders import TextLoader from langchain_community.embeddings import CohereEmbeddings from langchain_community.vectorstores import FAISS from langchain_text_splitters import RecursiveCharacterTextSplitter documents =
TextLoader("../../modules/state_of_the_union.txt")
langchain_community.document_loaders.TextLoader
from typing import List from langchain.output_parsers import PydanticOutputParser from langchain.prompts import PromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field, validator from langchain_openai import ChatOpenAI model = ChatOpenAI(temperature=0) class Joke(BaseModel): setup: str = Field(description="question to set up a joke") punchline: str = Field(description="answer to resolve the joke") @validator("setup") def question_ends_with_question_mark(cls, field): if field[-1] != "?": raise ValueError("Badly formed question!") return field joke_query = "Tell me a joke." parser =
PydanticOutputParser(pydantic_object=Joke)
langchain.output_parsers.PydanticOutputParser
get_ipython().system(' pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub chromadb hnswlib --upgrade --quiet') from pprint import pprint from docugami import Docugami from docugami.lib.upload import upload_to_named_docset, wait_for_dgml DOCSET_NAME = "NTSB Aviation Incident Reports" FILE_PATHS = [ "/Users/tjaffri/ntsb/Report_CEN23LA277_192541.pdf", "/Users/tjaffri/ntsb/Report_CEN23LA338_192753.pdf", "/Users/tjaffri/ntsb/Report_CEN23LA363_192876.pdf", "/Users/tjaffri/ntsb/Report_CEN23LA394_192995.pdf", "/Users/tjaffri/ntsb/Report_ERA23LA114_106615.pdf", "/Users/tjaffri/ntsb/Report_WPR23LA254_192532.pdf", ] assert len(FILE_PATHS) > 5, "Please provide at least 6 files" dg_client = Docugami() dg_docs = upload_to_named_docset(dg_client, FILE_PATHS, DOCSET_NAME) dgml_paths = wait_for_dgml(dg_client, dg_docs) pprint(dgml_paths) from pathlib import Path from dgml_utils.segmentation import get_chunks_str dgml_path = dgml_paths[Path(FILE_PATHS[0]).name] with open(dgml_path, "r") as file: contents = file.read().encode("utf-8") chunks = get_chunks_str( contents, include_xml_tags=True, # Ensures Docugami XML semantic tags are included in the chunked output (set to False for text-only chunks and tables as Markdown) max_text_length=1024 * 8, # 8k chars are ~2k tokens for OpenAI. ) print(f"found {len(chunks)} chunks, here are the first few") for chunk in chunks[:10]: print(chunk.text) with open(dgml_path, "r") as file: contents = file.read().encode("utf-8") chunks = get_chunks_str( contents, include_xml_tags=False, # text-only chunks and tables as Markdown max_text_length=1024 * 8, # 8k chars are ~2k tokens for OpenAI. Ref: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them ) print(f"found {len(chunks)} chunks, here are the first few") for chunk in chunks[:10]: print(chunk.text) import requests dgml = requests.get( "https://raw.githubusercontent.com/docugami/dgml-utils/main/python/tests/test_data/article/Jane%20Doe.xml" ).text chunks = get_chunks_str(dgml, include_xml_tags=True) len(chunks) category_counts = {} for element in chunks: category = element.structure if category in category_counts: category_counts[category] += 1 else: category_counts[category] = 1 category_counts table_elements = [c for c in chunks if "table" in c.structure.split()] print(f"There are {len(table_elements)} tables") text_elements = [c for c in chunks if "table" not in c.structure.split()] print(f"There are {len(text_elements)} text elements") for element in text_elements[:20]: print(element.text) print(table_elements[0].text) chunks_as_text = get_chunks_str(dgml, include_xml_tags=False) table_elements_as_text = [c for c in chunks_as_text if "table" in c.structure.split()] print(table_elements_as_text[0].text) from langchain.prompts import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain_core.output_parsers import StrOutputParser from langchain_openai import ChatOpenAI prompt_text = """You are an assistant tasked with summarizing tables and text. \ Give a concise summary of the table or text. Table or text chunk: {element} """ prompt = ChatPromptTemplate.from_template(prompt_text) model = ChatOpenAI(temperature=0, model="gpt-4") summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser() tables = [i.text for i in table_elements] table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5}) import uuid from langchain.retrievers.multi_vector import MultiVectorRetriever from langchain.storage import InMemoryStore from langchain_community.vectorstores.chroma import Chroma from langchain_core.documents import Document from langchain_openai import OpenAIEmbeddings def build_retriever(text_elements, tables, table_summaries): vectorstore = Chroma( collection_name="summaries", embedding_function=OpenAIEmbeddings() ) store = InMemoryStore() id_key = "doc_id" retriever = MultiVectorRetriever( vectorstore=vectorstore, docstore=store, id_key=id_key, ) texts = [i.text for i in text_elements] doc_ids = [str(uuid.uuid4()) for _ in texts] retriever.docstore.mset(list(zip(doc_ids, texts))) table_ids = [str(uuid.uuid4()) for _ in tables] summary_tables = [ Document(page_content=s, metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries) ] retriever.vectorstore.add_documents(summary_tables) retriever.docstore.mset(list(zip(table_ids, tables))) return retriever retriever = build_retriever(text_elements, tables, table_summaries) from langchain_core.runnables import RunnablePassthrough system_prompt = SystemMessagePromptTemplate.from_template( "You are a helpful assistant that answers questions based on provided context. Your provided context can include text or tables, " "and may also contain semantic XML markup. Pay attention the semantic XML markup to understand more about the context semantics as " "well as structure (e.g. lists and tabular layouts expressed with HTML-like tags)" ) human_prompt = HumanMessagePromptTemplate.from_template( """Context: {context} Question: {question}""" ) def build_chain(retriever, model): prompt =
ChatPromptTemplate.from_messages([system_prompt, human_prompt])
langchain.prompts.ChatPromptTemplate.from_messages
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain nuclia') from langchain_community.vectorstores.nucliadb import NucliaDB API_KEY = "YOUR_API_KEY" ndb = NucliaDB(knowledge_box="YOUR_KB_ID", local=False, api_key=API_KEY) from langchain_community.vectorstores.nucliadb import NucliaDB ndb =
NucliaDB(knowledge_box="YOUR_KB_ID", local=True, backend="http://my-local-server")
langchain_community.vectorstores.nucliadb.NucliaDB
get_ipython().run_line_magic('pip', 'install --upgrade --quiet jsonformer > /dev/null') import logging logging.basicConfig(level=logging.ERROR) import json import os import requests from langchain.tools import tool HF_TOKEN = os.environ.get("HUGGINGFACE_API_KEY") @tool def ask_star_coder(query: str, temperature: float = 1.0, max_new_tokens: float = 250): """Query the BigCode StarCoder model about coding questions.""" url = "https://api-inference.huggingface.co/models/bigcode/starcoder" headers = { "Authorization": f"Bearer {HF_TOKEN}", "content-type": "application/json", } payload = { "inputs": f"{query}\n\nAnswer:", "temperature": temperature, "max_new_tokens": int(max_new_tokens), } response = requests.post(url, headers=headers, data=json.dumps(payload)) response.raise_for_status() return json.loads(response.content.decode("utf-8")) prompt = """You must respond using JSON format, with a single action and single action input. You may 'ask_star_coder' for help on coding problems. {arg_schema} EXAMPLES ---- Human: "So what's all this about a GIL?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "What is a GIL?", "temperature": 0.0, "max_new_tokens": 100}}" }} Observation: "The GIL is python's Global Interpreter Lock" Human: "Could you please write a calculator program in LISP?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "Write a calculator program in LISP", "temperature": 0.0, "max_new_tokens": 250}} }} Observation: "(defun add (x y) (+ x y))\n(defun sub (x y) (- x y ))" Human: "What's the difference between an SVM and an LLM?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "What's the difference between SGD and an SVM?", "temperature": 1.0, "max_new_tokens": 250}} }} Observation: "SGD stands for stochastic gradient descent, while an SVM is a Support Vector Machine." BEGIN! Answer the Human's question as best as you are able. ------ Human: 'What's the difference between an iterator and an iterable?' AI Assistant:""".format(arg_schema=ask_star_coder.args) from langchain_community.llms import HuggingFacePipeline from transformers import pipeline hf_model = pipeline( "text-generation", model="cerebras/Cerebras-GPT-590M", max_new_tokens=200 ) original_model = HuggingFacePipeline(pipeline=hf_model) generated = original_model.predict(prompt, stop=["Observation:", "Human:"]) print(generated) decoder_schema = { "title": "Decoding Schema", "type": "object", "properties": { "action": {"type": "string", "default": ask_star_coder.name}, "action_input": { "type": "object", "properties": ask_star_coder.args, }, }, } from langchain_experimental.llms import JsonFormer json_former =
JsonFormer(json_schema=decoder_schema, pipeline=hf_model)
langchain_experimental.llms.JsonFormer
SOURCE = "test" # @param {type:"Query"|"CollectionGroup"|"DocumentReference"|"string"} get_ipython().run_line_magic('pip', 'install -upgrade --quiet langchain-google-datastore') PROJECT_ID = "my-project-id" # @param {type:"string"} get_ipython().system('gcloud config set project {PROJECT_ID}') from google.colab import auth auth.authenticate_user() get_ipython().system('gcloud services enable datastore.googleapis.com') from langchain_core.documents import Document from langchain_google_datastore import DatastoreSaver data = [Document(page_content="Hello, World!")] saver = DatastoreSaver() saver.upsert_documents(data) saver = DatastoreSaver("Collection") saver.upsert_documents(data) doc_ids = ["AnotherCollection/doc_id", "foo/bar"] saver = DatastoreSaver() saver.upsert_documents(documents=data, document_ids=doc_ids) from langchain_google_datastore import DatastoreLoader loader_collection = DatastoreLoader("Collection") loader_subcollection = DatastoreLoader("Collection/doc/SubCollection") data_collection = loader_collection.load() data_subcollection = loader_subcollection.load() from google.cloud import datastore client = datastore.Client() doc_ref = client.collection("foo").document("bar") loader_document = DatastoreLoader(doc_ref) data = loader_document.load() from google.cloud.datastore import CollectionGroup, FieldFilter, Query col_ref = client.collection("col_group") collection_group = CollectionGroup(col_ref) loader_group = DatastoreLoader(collection_group) col_ref = client.collection("collection") query = col_ref.where(filter=FieldFilter("region", "==", "west_coast")) loader_query = DatastoreLoader(query) saver =
DatastoreSaver()
langchain_google_datastore.DatastoreSaver
import os import yaml get_ipython().system('wget https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml -O openai_openapi.yaml') get_ipython().system('wget https://www.klarna.com/us/shopping/public/openai/v0/api-docs -O klarna_openapi.yaml') get_ipython().system('wget https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml -O spotify_openapi.yaml') from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec with open("openai_openapi.yaml") as f: raw_openai_api_spec = yaml.load(f, Loader=yaml.Loader) openai_api_spec =
reduce_openapi_spec(raw_openai_api_spec)
langchain_community.agent_toolkits.openapi.spec.reduce_openapi_spec
get_ipython().system('pip3 install oracle-ads') import ads from langchain_community.llms import OCIModelDeploymentVLLM ads.set_auth("resource_principal") llm =
OCIModelDeploymentVLLM(endpoint="https://<MD_OCID>/predict", model="model_name")
langchain_community.llms.OCIModelDeploymentVLLM
import re from typing import Union from langchain.agents import ( AgentExecutor, AgentOutputParser, LLMSingleActionAgent, ) from langchain.chains import LLMChain from langchain.prompts import StringPromptTemplate from langchain_community.agent_toolkits import NLAToolkit from langchain_community.tools.plugin import AIPlugin from langchain_core.agents import AgentAction, AgentFinish from langchain_openai import OpenAI llm = OpenAI(temperature=0) urls = [ "https://datasette.io/.well-known/ai-plugin.json", "https://api.speak.com/.well-known/ai-plugin.json", "https://www.wolframalpha.com/.well-known/ai-plugin.json", "https://www.zapier.com/.well-known/ai-plugin.json", "https://www.klarna.com/.well-known/ai-plugin.json", "https://www.joinmilo.com/.well-known/ai-plugin.json", "https://slack.com/.well-known/ai-plugin.json", "https://schooldigger.com/.well-known/ai-plugin.json", ] AI_PLUGINS = [AIPlugin.from_url(url) for url in urls] from langchain_community.vectorstores import FAISS from langchain_core.documents import Document from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() docs = [ Document( page_content=plugin.description_for_model, metadata={"plugin_name": plugin.name_for_model}, ) for plugin in AI_PLUGINS ] vector_store = FAISS.from_documents(docs, embeddings) toolkits_dict = { plugin.name_for_model:
NLAToolkit.from_llm_and_ai_plugin(llm, plugin)
langchain_community.agent_toolkits.NLAToolkit.from_llm_and_ai_plugin
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') import os import uuid uid = uuid.uuid4().hex[:6] os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_API_KEY"] = "YOUR API KEY" from langsmith.client import Client client = Client() import requests url = "https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/docs/integrations/chat_loaders/example_data/langsmith_chat_dataset.json" response = requests.get(url) response.raise_for_status() data = response.json() dataset_name = f"Extraction Fine-tuning Dataset {uid}" ds = client.create_dataset(dataset_name=dataset_name, data_type="chat") _ = client.create_examples( inputs=[e["inputs"] for e in data], outputs=[e["outputs"] for e in data], dataset_id=ds.id, ) from langchain_community.chat_loaders.langsmith import LangSmithDatasetChatLoader loader = LangSmithDatasetChatLoader(dataset_name=dataset_name) chat_sessions = loader.lazy_load() from langchain.adapters.openai import convert_messages_for_finetuning training_data =
convert_messages_for_finetuning(chat_sessions)
langchain.adapters.openai.convert_messages_for_finetuning
get_ipython().run_line_magic('pip', 'install --upgrade --quiet playwright beautifulsoup4') get_ipython().system(' playwright install') from langchain_community.document_loaders import AsyncChromiumLoader urls = ["https://www.wsj.com"] loader = AsyncChromiumLoader(urls) docs = loader.load() docs[0].page_content[0:100] from langchain_community.document_transformers import Html2TextTransformer html2text =
Html2TextTransformer()
langchain_community.document_transformers.Html2TextTransformer
get_ipython().run_line_magic('pip', 'install --upgrade --quiet wikipedia') from langchain import hub from langchain.agents import AgentExecutor, create_react_agent from langchain_community.tools import WikipediaQueryRun from langchain_community.utilities import WikipediaAPIWrapper from langchain_openai import OpenAI api_wrapper =
WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=100)
langchain_community.utilities.WikipediaAPIWrapper
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai argilla') import os os.environ["ARGILLA_API_URL"] = "..." os.environ["ARGILLA_API_KEY"] = "..." os.environ["OPENAI_API_KEY"] = "..." import argilla as rg from packaging.version import parse as parse_version if parse_version(rg.__version__) < parse_version("1.8.0"): raise RuntimeError( "`FeedbackDataset` is only available in Argilla v1.8.0 or higher, please " "upgrade `argilla` as `pip install argilla --upgrade`." ) dataset = rg.FeedbackDataset( fields=[ rg.TextField(name="prompt"), rg.TextField(name="response"), ], questions=[ rg.RatingQuestion( name="response-rating", description="How would you rate the quality of the response?", values=[1, 2, 3, 4, 5], required=True, ), rg.TextQuestion( name="response-feedback", description="What feedback do you have for the response?", required=False, ), ], guidelines="You're asked to rate the quality of the response and provide feedback.", ) rg.init( api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) dataset.push_to_argilla("langchain-dataset") from langchain.callbacks import ArgillaCallbackHandler argilla_callback = ArgillaCallbackHandler( dataset_name="langchain-dataset", api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) from langchain.callbacks import ArgillaCallbackHandler, StdOutCallbackHandler from langchain_openai import OpenAI argilla_callback = ArgillaCallbackHandler( dataset_name="langchain-dataset", api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) callbacks = [StdOutCallbackHandler(), argilla_callback] llm = OpenAI(temperature=0.9, callbacks=callbacks) llm.generate(["Tell me a joke", "Tell me a poem"] * 3) from langchain.callbacks import ArgillaCallbackHandler, StdOutCallbackHandler from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_openai import OpenAI argilla_callback = ArgillaCallbackHandler( dataset_name="langchain-dataset", api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) callbacks = [StdOutCallbackHandler(), argilla_callback] llm = OpenAI(temperature=0.9, callbacks=callbacks) template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. Title: {title} Playwright: This is a synopsis for the above play:""" prompt_template = PromptTemplate(input_variables=["title"], template=template) synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks) test_prompts = [{"title": "Documentary about Bigfoot in Paris"}] synopsis_chain.apply(test_prompts) from langchain.agents import AgentType, initialize_agent, load_tools from langchain.callbacks import ArgillaCallbackHandler, StdOutCallbackHandler from langchain_openai import OpenAI argilla_callback = ArgillaCallbackHandler( dataset_name="langchain-dataset", api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) callbacks = [
StdOutCallbackHandler()
langchain.callbacks.StdOutCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass() from langchain_core.tools import tool @tool def complex_tool(int_arg: int, float_arg: float, dict_arg: dict) -> int: """Do something complex with a complex tool.""" return int_arg * float_arg from langchain_openai import ChatOpenAI model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) model_with_tools = model.bind_tools( [complex_tool], tool_choice="complex_tool", ) from operator import itemgetter from langchain.output_parsers import JsonOutputKeyToolsParser from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough chain = ( model_with_tools | JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True) | complex_tool ) chain.invoke( "use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg" ) from typing import Any from langchain_core.runnables import RunnableConfig def try_except_tool(tool_args: dict, config: RunnableConfig) -> Runnable: try: complex_tool.invoke(tool_args, config=config) except Exception as e: return f"Calling tool with arguments:\n\n{tool_args}\n\nraised the following error:\n\n{type(e)}: {e}" chain = ( model_with_tools |
JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True)
langchain.output_parsers.JsonOutputKeyToolsParser
from langchain.prompts import PromptTemplate prompt = ( PromptTemplate.from_template("Tell me a joke about {topic}") + ", make it funny" + "\n\nand in {language}" ) prompt prompt.format(topic="sports", language="spanish") from langchain.chains import LLMChain from langchain_openai import ChatOpenAI model = ChatOpenAI() chain = LLMChain(llm=model, prompt=prompt) chain.run(topic="sports", language="spanish") from langchain_core.messages import AIMessage, HumanMessage, SystemMessage prompt = SystemMessage(content="You are a nice pirate") new_prompt = ( prompt +
HumanMessage(content="hi")
langchain_core.messages.HumanMessage
from langchain.indexes import SQLRecordManager, index from langchain_core.documents import Document from langchain_elasticsearch import ElasticsearchStore from langchain_openai import OpenAIEmbeddings collection_name = "test_index" embedding = OpenAIEmbeddings() vectorstore = ElasticsearchStore( es_url="http://localhost:9200", index_name="test_index", embedding=embedding ) namespace = f"elasticsearch/{collection_name}" record_manager = SQLRecordManager( namespace, db_url="sqlite:///record_manager_cache.sql" ) record_manager.create_schema() doc1 = Document(page_content="kitty", metadata={"source": "kitty.txt"}) doc2 = Document(page_content="doggy", metadata={"source": "doggy.txt"}) def _clear(): """Hacky helper method to clear content. See the `full` mode section to to understand why it works.""" index([], record_manager, vectorstore, cleanup="full", source_id_key="source") _clear() index( [doc1, doc1, doc1, doc1, doc1], record_manager, vectorstore, cleanup=None, source_id_key="source", ) _clear() index([doc1, doc2], record_manager, vectorstore, cleanup=None, source_id_key="source") index([doc1, doc2], record_manager, vectorstore, cleanup=None, source_id_key="source") _clear() index( [doc1, doc2], record_manager, vectorstore, cleanup="incremental", source_id_key="source", ) index( [doc1, doc2], record_manager, vectorstore, cleanup="incremental", source_id_key="source", )
index([], record_manager, vectorstore, cleanup="incremental", source_id_key="source")
langchain.indexes.index
from langchain_community.document_loaders.generic import GenericLoader from langchain_community.document_loaders.parsers import GrobidParser loader = GenericLoader.from_filesystem( "../Papers/", glob="*", suffixes=[".pdf"], parser=
GrobidParser(segment_sentences=False)
langchain_community.document_loaders.parsers.GrobidParser
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3 nltk') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain_experimental') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain pydantic') import os import boto3 comprehend_client = boto3.client("comprehend", region_name="us-east-1") from langchain_experimental.comprehend_moderation import AmazonComprehendModerationChain comprehend_moderation = AmazonComprehendModerationChain( client=comprehend_client, verbose=True, # optional ) from langchain.prompts import PromptTemplate from langchain_community.llms.fake import FakeListLLM from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ( ModerationPiiError, ) template = """Question: {question} Answer:""" prompt = PromptTemplate.from_template(template) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.", ] llm = FakeListLLM(responses=responses) chain = ( prompt | comprehend_moderation | {"input": (lambda x: x["output"]) | llm} | comprehend_moderation ) try: response = chain.invoke( { "question": "A sample SSN number looks like this 123-22-3345. Can you give me some more samples?" } ) except ModerationPiiError as e: print(str(e)) else: print(response["output"]) from langchain_experimental.comprehend_moderation import ( BaseModerationConfig, ModerationPiiConfig, ModerationPromptSafetyConfig, ModerationToxicityConfig, ) pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X") toxicity_config = ModerationToxicityConfig(threshold=0.5) prompt_safety_config =
ModerationPromptSafetyConfig(threshold=0.5)
langchain_experimental.comprehend_moderation.ModerationPromptSafetyConfig
from getpass import getpass MOSAICML_API_TOKEN = getpass() import os os.environ["MOSAICML_API_TOKEN"] = MOSAICML_API_TOKEN from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import MosaicML template = """Question: {question}""" prompt = PromptTemplate.from_template(template) llm =
MosaicML(inject_instruction_format=True, model_kwargs={"max_new_tokens": 128})
langchain_community.llms.MosaicML
meals = [ "Beef Enchiladas with Feta cheese. Mexican-Greek fusion", "Chicken Flatbreads with red sauce. Italian-Mexican fusion", "Veggie sweet potato quesadillas with vegan cheese", "One-Pan Tortelonni bake with peppers and onions", ] from langchain_openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo-instruct") from langchain.prompts import PromptTemplate PROMPT_TEMPLATE = """Here is the description of a meal: "{meal}". Embed the meal into the given text: "{text_to_personalize}". Prepend a personalized message including the user's name "{user}" and their preference "{preference}". Make it sound good. """ PROMPT = PromptTemplate( input_variables=["meal", "text_to_personalize", "user", "preference"], template=PROMPT_TEMPLATE, ) import langchain_experimental.rl_chain as rl_chain chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT) response = chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs \ believe you will love it!", ) print(response["response"]) for _ in range(5): try: response = chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!", ) except Exception as e: print(e) print(response["response"]) print() scoring_criteria_template = ( "Given {preference} rank how good or bad this selection is {meal}" ) chain = rl_chain.PickBest.from_llm( llm=llm, prompt=PROMPT, selection_scorer=rl_chain.AutoSelectionScorer( llm=llm, scoring_criteria_template_str=scoring_criteria_template ), ) response = chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!", ) print(response["response"]) selection_metadata = response["selection_metadata"] print( f"selected index: {selection_metadata.selected.index}, score: {selection_metadata.selected.score}" ) class CustomSelectionScorer(rl_chain.SelectionScorer): def score_response( self, inputs, llm_response: str, event: rl_chain.PickBestEvent ) -> float: print(event.based_on) print(event.to_select_from) selected_meal = event.to_select_from["meal"][event.selected.index] print(f"selected meal: {selected_meal}") if "Tom" in event.based_on["user"]: if "Vegetarian" in event.based_on["preference"]: if "Chicken" in selected_meal or "Beef" in selected_meal: return 0.0 else: return 1.0 else: if "Chicken" in selected_meal or "Beef" in selected_meal: return 1.0 else: return 0.0 else: raise NotImplementedError("I don't know how to score this user") chain = rl_chain.PickBest.from_llm( llm=llm, prompt=PROMPT, selection_scorer=CustomSelectionScorer(), ) response = chain.run( meal=
rl_chain.ToSelectFrom(meals)
langchain_experimental.rl_chain.ToSelectFrom
get_ipython().system('poetry run pip install dgml-utils==0.3.0 --upgrade --quiet') import os from langchain_community.document_loaders import DocugamiLoader DOCUGAMI_API_KEY = os.environ.get("DOCUGAMI_API_KEY") docset_id = "26xpy3aes7xp" document_ids = ["d7jqdzcj50sj", "cgd1eacfkchw"] loader = DocugamiLoader(docset_id=docset_id, document_ids=document_ids) chunks = loader.load() len(chunks) loader.min_text_length = 64 loader.include_xml_tags = True chunks = loader.load() for chunk in chunks[:5]: print(chunk) get_ipython().system('poetry run pip install --upgrade langchain-openai tiktoken chromadb hnswlib') loader = DocugamiLoader(docset_id="zo954yqy53wp") chunks = loader.load() for chunk in chunks: stripped_metadata = chunk.metadata.copy() for key in chunk.metadata: if key not in ["name", "xpath", "id", "structure"]: del stripped_metadata[key] chunk.metadata = stripped_metadata print(len(chunks)) from langchain.chains import RetrievalQA from langchain_community.vectorstores.chroma import Chroma from langchain_openai import OpenAI, OpenAIEmbeddings embedding = OpenAIEmbeddings() vectordb = Chroma.from_documents(documents=chunks, embedding=embedding) retriever = vectordb.as_retriever() qa_chain = RetrievalQA.from_chain_type( llm=OpenAI(), chain_type="stuff", retriever=retriever, return_source_documents=True ) qa_chain("What can tenants do with signage on their properties?") chain_response = qa_chain("What is rentable area for the property owned by DHA Group?") chain_response["result"] # correct answer should be 13,500 sq ft chain_response["source_documents"] loader = DocugamiLoader(docset_id="zo954yqy53wp") loader.include_xml_tags = ( True # for additional semantics from the Docugami knowledge graph ) chunks = loader.load() print(chunks[0].metadata) get_ipython().system('poetry run pip install --upgrade lark --quiet') from langchain.chains.query_constructor.schema import AttributeInfo from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain_community.vectorstores.chroma import Chroma EXCLUDE_KEYS = ["id", "xpath", "structure"] metadata_field_info = [ AttributeInfo( name=key, description=f"The {key} for this chunk", type="string", ) for key in chunks[0].metadata if key.lower() not in EXCLUDE_KEYS ] document_content_description = "Contents of this chunk" llm = OpenAI(temperature=0) vectordb = Chroma.from_documents(documents=chunks, embedding=embedding) retriever = SelfQueryRetriever.from_llm( llm, vectordb, document_content_description, metadata_field_info, verbose=True ) qa_chain = RetrievalQA.from_chain_type( llm=OpenAI(), chain_type="stuff", retriever=retriever, return_source_documents=True, verbose=True, ) qa_chain( "What is rentable area for the property owned by DHA Group?" ) # correct answer should be 13,500 sq ft from typing import Dict, List from langchain_community.document_loaders import DocugamiLoader from langchain_core.documents import Document loader = DocugamiLoader(docset_id="zo954yqy53wp") loader.include_xml_tags = ( True # for additional semantics from the Docugami knowledge graph ) loader.parent_hierarchy_levels = 3 # for expanded context loader.max_text_length = ( 1024 * 8 ) # 8K chars are roughly 2K tokens (ref: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them) loader.include_project_metadata_in_doc_metadata = ( False # Not filtering on vector metadata, so remove to lighten the vectors ) chunks: List[Document] = loader.load() parents_by_id: Dict[str, Document] = {} children_by_id: Dict[str, Document] = {} for chunk in chunks: chunk_id = chunk.metadata.get("id") parent_chunk_id = chunk.metadata.get(loader.parent_id_key) if not parent_chunk_id: parents_by_id[chunk_id] = chunk else: children_by_id[chunk_id] = chunk for id, chunk in list(children_by_id.items())[:5]: parent_chunk_id = chunk.metadata.get(loader.parent_id_key) if parent_chunk_id: print(f"PARENT CHUNK {parent_chunk_id}: {parents_by_id[parent_chunk_id]}") print(f"CHUNK {id}: {chunk}") from langchain.retrievers.multi_vector import MultiVectorRetriever, SearchType from langchain.storage import InMemoryStore from langchain_community.vectorstores.chroma import Chroma from langchain_openai import OpenAIEmbeddings vectorstore = Chroma(collection_name="big2small", embedding_function=OpenAIEmbeddings()) store =
InMemoryStore()
langchain.storage.InMemoryStore
import os import yaml get_ipython().system('wget https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml -O openai_openapi.yaml') get_ipython().system('wget https://www.klarna.com/us/shopping/public/openai/v0/api-docs -O klarna_openapi.yaml') get_ipython().system('wget https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml -O spotify_openapi.yaml') from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec with open("openai_openapi.yaml") as f: raw_openai_api_spec = yaml.load(f, Loader=yaml.Loader) openai_api_spec = reduce_openapi_spec(raw_openai_api_spec) with open("klarna_openapi.yaml") as f: raw_klarna_api_spec = yaml.load(f, Loader=yaml.Loader) klarna_api_spec =
reduce_openapi_spec(raw_klarna_api_spec)
langchain_community.agent_toolkits.openapi.spec.reduce_openapi_spec
from langchain.evaluation import load_evaluator evaluator =
load_evaluator("criteria", criteria="conciseness")
langchain.evaluation.load_evaluator
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken langchain-openai python-dotenv datasets langchain deeplake beautifulsoup4 html2text ragas') ORG_ID = "..." import getpass import os from langchain.chains import RetrievalQA from langchain.vectorstores.deeplake import DeepLake from langchain_openai import OpenAIChat, OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API token: ") os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass( "Enter your ActiveLoop API token: " ) # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select "API Tokens" token = os.getenv("ACTIVELOOP_TOKEN") openai_embeddings = OpenAIEmbeddings() db = DeepLake( dataset_path=f"hub://{ORG_ID}/deeplake-docs-deepmemory", # org_id stands for your username or organization from activeloop embedding=openai_embeddings, runtime={"tensor_db": True}, token=token, read_only=False, ) from urllib.parse import urljoin import requests from bs4 import BeautifulSoup def get_all_links(url): response = requests.get(url) if response.status_code != 200: print(f"Failed to retrieve the page: {url}") return [] soup = BeautifulSoup(response.content, "html.parser") links = [ urljoin(url, a["href"]) for a in soup.find_all("a", href=True) if a["href"] ] return links base_url = "https://docs.deeplake.ai/en/latest/" all_links = get_all_links(base_url) from langchain.document_loaders import AsyncHtmlLoader loader =
AsyncHtmlLoader(all_links)
langchain.document_loaders.AsyncHtmlLoader
from langchain_community.chat_models.llama_edge import LlamaEdgeChatService from langchain_core.messages import HumanMessage, SystemMessage service_url = "https://b008-54-186-154-209.ngrok-free.app" chat =
LlamaEdgeChatService(service_url=service_url)
langchain_community.chat_models.llama_edge.LlamaEdgeChatService
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-experimental langchain-openai neo4j wikipedia') from langchain_experimental.graph_transformers.diffbot import DiffbotGraphTransformer diffbot_api_key = "DIFFBOT_API_KEY" diffbot_nlp = DiffbotGraphTransformer(diffbot_api_key=diffbot_api_key) from langchain_community.document_loaders import WikipediaLoader query = "Warren Buffett" raw_documents = WikipediaLoader(query=query).load() graph_documents = diffbot_nlp.convert_to_graph_documents(raw_documents) from langchain_community.graphs import Neo4jGraph url = "bolt://localhost:7687" username = "neo4j" password = "pleaseletmein" graph =
Neo4jGraph(url=url, username=username, password=password)
langchain_community.graphs.Neo4jGraph
get_ipython().run_line_magic('pip', 'install --upgrade --quiet semanticscholar') from langchain import hub from langchain.agents import AgentExecutor, create_openai_functions_agent from langchain_openai import ChatOpenAI instructions = """You are an expert researcher.""" base_prompt = hub.pull("langchain-ai/openai-functions-template") prompt = base_prompt.partial(instructions=instructions) llm = ChatOpenAI(temperature=0) from langchain_community.tools.semanticscholar.tool import SemanticScholarQueryRun tools = [SemanticScholarQueryRun()] agent =
create_openai_functions_agent(llm, tools, prompt)
langchain.agents.create_openai_functions_agent
get_ipython().system(' pip install langchain unstructured[all-docs] pydantic lxml') from typing import Any from pydantic import BaseModel from unstructured.partition.pdf import partition_pdf path = "/Users/rlm/Desktop/Papers/LLaVA/" raw_pdf_elements = partition_pdf( filename=path + "LLaVA.pdf", extract_images_in_pdf=True, infer_table_structure=True, chunking_strategy="by_title", max_characters=4000, new_after_n_chars=3800, combine_text_under_n_chars=2000, image_output_dir_path=path, ) category_counts = {} for element in raw_pdf_elements: category = str(type(element)) if category in category_counts: category_counts[category] += 1 else: category_counts[category] = 1 unique_categories = set(category_counts.keys()) category_counts class Element(BaseModel): type: str text: Any categorized_elements = [] for element in raw_pdf_elements: if "unstructured.documents.elements.Table" in str(type(element)): categorized_elements.append(Element(type="table", text=str(element))) elif "unstructured.documents.elements.CompositeElement" in str(type(element)): categorized_elements.append(Element(type="text", text=str(element))) table_elements = [e for e in categorized_elements if e.type == "table"] print(len(table_elements)) text_elements = [e for e in categorized_elements if e.type == "text"] print(len(text_elements)) from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate prompt_text = """You are an assistant tasked with summarizing tables and text. \ Give a concise summary of the table or text. Table or text chunk: {element} """ prompt = ChatPromptTemplate.from_template(prompt_text) model = ChatOllama(model="llama2:13b-chat") summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser() texts = [i.text for i in text_elements if i.text != ""] text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5}) tables = [i.text for i in table_elements] table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5}) get_ipython().run_cell_magic('bash', '', '\n# Define the directory containing the images\nIMG_DIR=~/Desktop/Papers/LLaVA/\n\n# Loop through each image in the directory\nfor img in "${IMG_DIR}"*.jpg; do\n # Extract the base name of the image without extension\n base_name=$(basename "$img" .jpg)\n\n # Define the output file name based on the image name\n output_file="${IMG_DIR}${base_name}.txt"\n\n # Execute the command and save the output to the defined output file\n /Users/rlm/Desktop/Code/llama.cpp/bin/llava -m ../models/llava-7b/ggml-model-q5_k.gguf --mmproj ../models/llava-7b/mmproj-model-f16.gguf --temp 0.1 -p "Describe the image in detail. Be specific about graphs, such as bar plots." --image "$img" > "$output_file"\n\ndone\n') import glob import os file_paths = glob.glob(os.path.expanduser(os.path.join(path, "*.txt"))) img_summaries = [] for file_path in file_paths: with open(file_path, "r") as file: img_summaries.append(file.read()) cleaned_img_summary = [ s.split("clip_model_load: total allocated memory: 201.27 MB\n\n", 1)[1].strip() for s in img_summaries ] import uuid from langchain.retrievers.multi_vector import MultiVectorRetriever from langchain.storage import InMemoryStore from langchain_community.embeddings import GPT4AllEmbeddings from langchain_community.vectorstores import Chroma from langchain_core.documents import Document vectorstore = Chroma( collection_name="summaries", embedding_function=
GPT4AllEmbeddings()
langchain_community.embeddings.GPT4AllEmbeddings
model_url = "http://localhost:5000" from langchain.chains import LLMChain from langchain.globals import set_debug from langchain.prompts import PromptTemplate from langchain_community.llms import TextGen set_debug(True) template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) llm = TextGen(model_url=model_url) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Bieber was born?" llm_chain.run(question) model_url = "ws://localhost:5005" from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.chains import LLMChain from langchain.globals import set_debug from langchain.prompts import PromptTemplate from langchain_community.llms import TextGen set_debug(True) template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) llm = TextGen( model_url=model_url, streaming=True, callbacks=[
StreamingStdOutCallbackHandler()
langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler
from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain_openai import OpenAI llm = OpenAI(temperature=0) conversation = ConversationChain( llm=llm, verbose=True, memory=ConversationBufferMemory() ) conversation.predict(input="Hi there!") conversation.predict(input="What's the weather?") from langchain.prompts.prompt import PromptTemplate template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: {history} Human: {input} AI Assistant:""" PROMPT = PromptTemplate(input_variables=["history", "input"], template=template) conversation = ConversationChain( prompt=PROMPT, llm=llm, verbose=True, memory=
ConversationBufferMemory(ai_prefix="AI Assistant")
langchain.memory.ConversationBufferMemory
arthur_url = "https://app.arthur.ai" arthur_login = "your-arthur-login-username-here" arthur_model_id = "your-arthur-model-id-here" from langchain.callbacks import ArthurCallbackHandler from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain_core.messages import HumanMessage from langchain_openai import ChatOpenAI def make_langchain_chat_llm(): return ChatOpenAI( streaming=True, temperature=0.1, callbacks=[
StreamingStdOutCallbackHandler()
langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler
meals = [ "Beef Enchiladas with Feta cheese. Mexican-Greek fusion", "Chicken Flatbreads with red sauce. Italian-Mexican fusion", "Veggie sweet potato quesadillas with vegan cheese", "One-Pan Tortelonni bake with peppers and onions", ] from langchain_openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo-instruct") from langchain.prompts import PromptTemplate PROMPT_TEMPLATE = """Here is the description of a meal: "{meal}". Embed the meal into the given text: "{text_to_personalize}". Prepend a personalized message including the user's name "{user}" and their preference "{preference}". Make it sound good. """ PROMPT = PromptTemplate( input_variables=["meal", "text_to_personalize", "user", "preference"], template=PROMPT_TEMPLATE, ) import langchain_experimental.rl_chain as rl_chain chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT) response = chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs \ believe you will love it!", ) print(response["response"]) for _ in range(5): try: response = chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!", ) except Exception as e: print(e) print(response["response"]) print() scoring_criteria_template = ( "Given {preference} rank how good or bad this selection is {meal}" ) chain = rl_chain.PickBest.from_llm( llm=llm, prompt=PROMPT, selection_scorer=rl_chain.AutoSelectionScorer( llm=llm, scoring_criteria_template_str=scoring_criteria_template ), ) response = chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!", ) print(response["response"]) selection_metadata = response["selection_metadata"] print( f"selected index: {selection_metadata.selected.index}, score: {selection_metadata.selected.score}" ) class CustomSelectionScorer(rl_chain.SelectionScorer): def score_response( self, inputs, llm_response: str, event: rl_chain.PickBestEvent ) -> float: print(event.based_on) print(event.to_select_from) selected_meal = event.to_select_from["meal"][event.selected.index] print(f"selected meal: {selected_meal}") if "Tom" in event.based_on["user"]: if "Vegetarian" in event.based_on["preference"]: if "Chicken" in selected_meal or "Beef" in selected_meal: return 0.0 else: return 1.0 else: if "Chicken" in selected_meal or "Beef" in selected_meal: return 1.0 else: return 0.0 else: raise NotImplementedError("I don't know how to score this user") chain = rl_chain.PickBest.from_llm( llm=llm, prompt=PROMPT, selection_scorer=CustomSelectionScorer(), ) response = chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!", ) class CustomSelectionScorer(rl_chain.SelectionScorer): def score_preference(self, preference, selected_meal): if "Vegetarian" in preference: if "Chicken" in selected_meal or "Beef" in selected_meal: return 0.0 else: return 1.0 else: if "Chicken" in selected_meal or "Beef" in selected_meal: return 1.0 else: return 0.0 def score_response( self, inputs, llm_response: str, event: rl_chain.PickBestEvent ) -> float: selected_meal = event.to_select_from["meal"][event.selected.index] if "Tom" in event.based_on["user"]: return self.score_preference(event.based_on["preference"], selected_meal) elif "Anna" in event.based_on["user"]: return self.score_preference(event.based_on["preference"], selected_meal) else: raise NotImplementedError("I don't know how to score this user") chain = rl_chain.PickBest.from_llm( llm=llm, prompt=PROMPT, selection_scorer=CustomSelectionScorer(), metrics_step=5, metrics_window_size=5, # rolling window average ) random_chain = rl_chain.PickBest.from_llm( llm=llm, prompt=PROMPT, selection_scorer=CustomSelectionScorer(), metrics_step=5, metrics_window_size=5, # rolling window average policy=rl_chain.PickBestRandomPolicy, # set the random policy instead of default ) for _ in range(20): try: chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!", ) random_chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!", ) chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Anna"), preference=rl_chain.BasedOn(["Loves meat", "especially beef"]), text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!", ) random_chain.run( meal=
rl_chain.ToSelectFrom(meals)
langchain_experimental.rl_chain.ToSelectFrom
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain.evaluation import load_evaluator evaluator = load_evaluator("trajectory") import subprocess from urllib.parse import urlparse from langchain.agents import AgentType, initialize_agent from langchain.tools import tool from langchain_openai import ChatOpenAI from pydantic import HttpUrl @tool def ping(url: HttpUrl, return_error: bool) -> str: """Ping the fully specified url. Must include https:// in the url.""" hostname = urlparse(str(url)).netloc completed_process = subprocess.run( ["ping", "-c", "1", hostname], capture_output=True, text=True ) output = completed_process.stdout if return_error and completed_process.returncode != 0: return completed_process.stderr return output @tool def trace_route(url: HttpUrl, return_error: bool) -> str: """Trace the route to the specified url. Must include https:// in the url.""" hostname = urlparse(str(url)).netloc completed_process = subprocess.run( ["traceroute", hostname], capture_output=True, text=True ) output = completed_process.stdout if return_error and completed_process.returncode != 0: return completed_process.stderr return output llm = ChatOpenAI(model="gpt-3.5-turbo-0613", temperature=0) agent = initialize_agent( llm=llm, tools=[ping, trace_route], agent=AgentType.OPENAI_MULTI_FUNCTIONS, return_intermediate_steps=True, # IMPORTANT! ) result = agent("What's the latency like for https://langchain.com?") evaluation_result = evaluator.evaluate_agent_trajectory( prediction=result["output"], input=result["input"], agent_trajectory=result["intermediate_steps"], ) evaluation_result get_ipython().run_line_magic('pip', 'install --upgrade --quiet anthropic') from langchain_community.chat_models import ChatAnthropic eval_llm =
ChatAnthropic(temperature=0)
langchain_community.chat_models.ChatAnthropic
import os os.environ["SERPER_API_KEY"] = "" os.environ["OPENAI_API_KEY"] = "" from typing import Any, List from langchain.callbacks.manager import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_community.utilities import GoogleSerperAPIWrapper from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_openai import ChatOpenAI, OpenAI class SerperSearchRetriever(BaseRetriever): search: GoogleSerperAPIWrapper = None def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any ) -> List[Document]: return [Document(page_content=self.search.run(query))] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: raise NotImplementedError() retriever = SerperSearchRetriever(search=
GoogleSerperAPIWrapper()
langchain_community.utilities.GoogleSerperAPIWrapper
from langchain_community.document_loaders import UnstructuredRSTLoader loader =
UnstructuredRSTLoader(file_path="example_data/README.rst", mode="elements")
langchain_community.document_loaders.UnstructuredRSTLoader
from langchain_community.document_loaders import FacebookChatLoader loader =
FacebookChatLoader("example_data/facebook_chat.json")
langchain_community.document_loaders.FacebookChatLoader
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent from langchain.chains import LLMChain from langchain.memory import ConversationBufferMemory from langchain_community.chat_message_histories import RedisChatMessageHistory from langchain_community.utilities import GoogleSearchAPIWrapper from langchain_openai import OpenAI search = GoogleSearchAPIWrapper() tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", ) ] prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" suffix = """Begin!" {chat_history} Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "chat_history", "agent_scratchpad"], ) message_history = RedisChatMessageHistory( url="redis://localhost:6379/0", ttl=600, session_id="my-session" ) memory = ConversationBufferMemory( memory_key="chat_history", chat_memory=message_history ) llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt) agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) agent_chain = AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, verbose=True, memory=memory ) agent_chain.run(input="How many people live in canada?") agent_chain.run(input="what is their national anthem called?") prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" suffix = """Begin!" Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "agent_scratchpad"] ) llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt) agent =
ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
langchain.agents.ZeroShotAgent
get_ipython().run_line_magic('pip', 'install --upgrade --quiet meilisearch') import getpass import os os.environ["MEILI_HTTP_ADDR"] = getpass.getpass("Meilisearch HTTP address and port:") os.environ["MEILI_MASTER_KEY"] = getpass.getpass("Meilisearch API Key:") os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_community.vectorstores import Meilisearch from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter embeddings = OpenAIEmbeddings() with open("../../modules/state_of_the_union.txt") as f: state_of_the_union = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) vector_store = Meilisearch.from_texts(texts=texts, embedding=embeddings) from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) vector_store =
Meilisearch.from_documents(documents=documents, embedding=embeddings)
langchain_community.vectorstores.Meilisearch.from_documents
import os os.environ["GOLDEN_API_KEY"] = "" from langchain_community.utilities.golden_query import GoldenQueryAPIWrapper golden_query =
GoldenQueryAPIWrapper()
langchain_community.utilities.golden_query.GoldenQueryAPIWrapper
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') import os import uuid uid = uuid.uuid4().hex[:6] project_name = f"Run Fine-tuning Walkthrough {uid}" os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_API_KEY"] = "YOUR API KEY" os.environ["LANGCHAIN_PROJECT"] = project_name from enum import Enum from langchain_core.pydantic_v1 import BaseModel, Field class Operation(Enum): add = "+" subtract = "-" multiply = "*" divide = "/" class Calculator(BaseModel): """A calculator function""" num1: float num2: float operation: Operation = Field(..., description="+,-,*,/") def calculate(self): if self.operation == Operation.add: return self.num1 + self.num2 elif self.operation == Operation.subtract: return self.num1 - self.num2 elif self.operation == Operation.multiply: return self.num1 * self.num2 elif self.operation == Operation.divide: if self.num2 != 0: return self.num1 / self.num2 else: return "Cannot divide by zero" from pprint import pprint from langchain.utils.openai_functions import convert_pydantic_to_openai_function from langchain_core.pydantic_v1 import BaseModel openai_function_def =
convert_pydantic_to_openai_function(Calculator)
langchain.utils.openai_functions.convert_pydantic_to_openai_function
get_ipython().run_line_magic('pip', 'install -qU chromadb langchain langchain-community langchain-openai') from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter loader = TextLoader("../../state_of_the_union.txt") documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) for i, doc in enumerate(texts): doc.metadata["page_chunk"] = i embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_documents(texts, embeddings, collection_name="state-of-union") retriever = vectorstore.as_retriever() from langchain.tools.retriever import create_retriever_tool retriever_tool = create_retriever_tool( retriever, "state-of-union-retriever", "Query a retriever to get information about state of the union address", ) from typing import List from langchain_core.pydantic_v1 import BaseModel, Field class Response(BaseModel): """Final response to the question being asked""" answer: str = Field(description="The final answer to respond to the user") sources: List[int] = Field( description="List of page chunks that contain answer to the question. Only include a page chunk if it contains relevant information" ) import json from langchain_core.agents import AgentActionMessageLog, AgentFinish def parse(output): if "function_call" not in output.additional_kwargs: return AgentFinish(return_values={"output": output.content}, log=output.content) function_call = output.additional_kwargs["function_call"] name = function_call["name"] inputs = json.loads(function_call["arguments"]) if name == "Response": return AgentFinish(return_values=inputs, log=str(function_call)) else: return AgentActionMessageLog( tool=name, tool_input=inputs, log="", message_log=[output] ) from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad import format_to_openai_function_messages from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_openai import ChatOpenAI prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), ("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad")
langchain_core.prompts.MessagesPlaceholder
from langchain.agents import AgentType, initialize_agent from langchain.requests import Requests from langchain_community.agent_toolkits import NLAToolkit from langchain_openai import OpenAI llm = OpenAI( temperature=0, max_tokens=700, model_name="gpt-3.5-turbo-instruct" ) # You can swap between different core LLM's here. speak_toolkit =
NLAToolkit.from_llm_and_url(llm, "https://api.speak.com/openapi.yaml")
langchain_community.agent_toolkits.NLAToolkit.from_llm_and_url
get_ipython().run_line_magic('pip', 'install --upgrade --quiet sqlite-vss') from langchain_community.document_loaders import TextLoader from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings, ) from langchain_community.vectorstores import SQLiteVSS from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) texts = [doc.page_content for doc in docs] embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") db = SQLiteVSS.from_texts( texts=texts, embedding=embedding_function, table="state_union", db_file="/tmp/vss.db", ) query = "What did the president say about Ketanji Brown Jackson" data = db.similarity_search(query) data[0].page_content from langchain_community.document_loaders import TextLoader from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings, ) from langchain_community.vectorstores import SQLiteVSS from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) texts = [doc.page_content for doc in docs] embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") connection =
SQLiteVSS.create_connection(db_file="/tmp/vss.db")
langchain_community.vectorstores.SQLiteVSS.create_connection
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken langchain-openai python-dotenv datasets langchain deeplake beautifulsoup4 html2text ragas') ORG_ID = "..." import getpass import os from langchain.chains import RetrievalQA from langchain.vectorstores.deeplake import DeepLake from langchain_openai import OpenAIChat, OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API token: ") os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass( "Enter your ActiveLoop API token: " ) # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select "API Tokens" token = os.getenv("ACTIVELOOP_TOKEN") openai_embeddings = OpenAIEmbeddings() db = DeepLake( dataset_path=f"hub://{ORG_ID}/deeplake-docs-deepmemory", # org_id stands for your username or organization from activeloop embedding=openai_embeddings, runtime={"tensor_db": True}, token=token, read_only=False, ) from urllib.parse import urljoin import requests from bs4 import BeautifulSoup def get_all_links(url): response = requests.get(url) if response.status_code != 200: print(f"Failed to retrieve the page: {url}") return [] soup = BeautifulSoup(response.content, "html.parser") links = [ urljoin(url, a["href"]) for a in soup.find_all("a", href=True) if a["href"] ] return links base_url = "https://docs.deeplake.ai/en/latest/" all_links = get_all_links(base_url) from langchain.document_loaders import AsyncHtmlLoader loader = AsyncHtmlLoader(all_links) docs = loader.load() from langchain.document_transformers import Html2TextTransformer html2text = Html2TextTransformer() docs_transformed = html2text.transform_documents(docs) from langchain_text_splitters import RecursiveCharacterTextSplitter chunk_size = 4096 docs_new = [] text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, ) for doc in docs_transformed: if len(doc.page_content) < chunk_size: docs_new.append(doc) else: docs = text_splitter.create_documents([doc.page_content]) docs_new.extend(docs) docs = db.add_documents(docs_new) from typing import List from langchain.chains.openai_functions import ( create_structured_output_chain, ) from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_openai import ChatOpenAI from pydantic import BaseModel, Field docs = db.vectorstore.dataset.text.data(fetch_chunks=True, aslist=True)["value"] ids = db.vectorstore.dataset.id.data(fetch_chunks=True, aslist=True)["value"] llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) class Questions(BaseModel): """Identifying information about a person.""" question: str = Field(..., description="Questions about text") prompt_msgs = [ SystemMessage( content="You are a world class expert for generating questions based on provided context. \ You make sure the question can be answered by the text." ), HumanMessagePromptTemplate.from_template( "Use the given text to generate a question from the following input: {input}" ), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = ChatPromptTemplate(messages=prompt_msgs) chain = create_structured_output_chain(Questions, llm, prompt, verbose=True) text = "# Understanding Hallucinations and Bias ## **Introduction** In this lesson, we'll cover the concept of **hallucinations** in LLMs, highlighting their influence on AI applications and demonstrating how to mitigate them using techniques like the retriever's architectures. We'll also explore **bias** within LLMs with examples." questions = chain.run(input=text) print(questions) import random from langchain_openai import OpenAIEmbeddings from tqdm import tqdm def generate_queries(docs: List[str], ids: List[str], n: int = 100): questions = [] relevances = [] pbar = tqdm(total=n) while len(questions) < n: r = random.randint(0, len(docs) - 1) text, label = docs[r], ids[r] generated_qs = [chain.run(input=text).question] questions.extend(generated_qs) relevances.extend([[(label, 1)] for _ in generated_qs]) pbar.update(len(generated_qs)) if len(questions) % 10 == 0: print(f"q: {len(questions)}") return questions[:n], relevances[:n] chain =
create_structured_output_chain(Questions, llm, prompt, verbose=False)
langchain.chains.openai_functions.create_structured_output_chain
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai argilla') import os os.environ["ARGILLA_API_URL"] = "..." os.environ["ARGILLA_API_KEY"] = "..." os.environ["OPENAI_API_KEY"] = "..." import argilla as rg from packaging.version import parse as parse_version if parse_version(rg.__version__) < parse_version("1.8.0"): raise RuntimeError( "`FeedbackDataset` is only available in Argilla v1.8.0 or higher, please " "upgrade `argilla` as `pip install argilla --upgrade`." ) dataset = rg.FeedbackDataset( fields=[ rg.TextField(name="prompt"), rg.TextField(name="response"), ], questions=[ rg.RatingQuestion( name="response-rating", description="How would you rate the quality of the response?", values=[1, 2, 3, 4, 5], required=True, ), rg.TextQuestion( name="response-feedback", description="What feedback do you have for the response?", required=False, ), ], guidelines="You're asked to rate the quality of the response and provide feedback.", ) rg.init( api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) dataset.push_to_argilla("langchain-dataset") from langchain.callbacks import ArgillaCallbackHandler argilla_callback = ArgillaCallbackHandler( dataset_name="langchain-dataset", api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) from langchain.callbacks import ArgillaCallbackHandler, StdOutCallbackHandler from langchain_openai import OpenAI argilla_callback = ArgillaCallbackHandler( dataset_name="langchain-dataset", api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) callbacks = [
StdOutCallbackHandler()
langchain.callbacks.StdOutCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet sagemaker') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai') get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-search-results') import os os.environ["OPENAI_API_KEY"] = "<ADD-KEY-HERE>" os.environ["SERPAPI_API_KEY"] = "<ADD-KEY-HERE>" from langchain.agents import initialize_agent, load_tools from langchain.callbacks import SageMakerCallbackHandler from langchain.chains import LLMChain, SimpleSequentialChain from langchain.prompts import PromptTemplate from langchain_openai import OpenAI from sagemaker.analytics import ExperimentAnalytics from sagemaker.experiments.run import Run from sagemaker.session import Session HPARAMS = { "temperature": 0.1, "model_name": "gpt-3.5-turbo-instruct", } BUCKET_NAME = None EXPERIMENT_NAME = "langchain-sagemaker-tracker" session = Session(default_bucket=BUCKET_NAME) RUN_NAME = "run-scenario-1" PROMPT_TEMPLATE = "tell me a joke about {topic}" INPUT_VARIABLES = {"topic": "fish"} with Run( experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session ) as run: sagemaker_callback =
SageMakerCallbackHandler(run)
langchain.callbacks.SageMakerCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet html2text') from langchain_community.document_loaders import AsyncHtmlLoader urls = ["https://www.espn.com", "https://lilianweng.github.io/posts/2023-06-23-agent/"] loader =
AsyncHtmlLoader(urls)
langchain_community.document_loaders.AsyncHtmlLoader
from langchain.chains import RetrievalQA from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../state_of_the_union.txt", encoding="utf-8") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) for i, text in enumerate(texts): text.metadata["source"] = f"{i}-pl" embeddings = OpenAIEmbeddings() docsearch = Chroma.from_documents(texts, embeddings) from langchain.chains import create_qa_with_sources_chain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.prompts import PromptTemplate from langchain_openai import ChatOpenAI llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") qa_chain = create_qa_with_sources_chain(llm) doc_prompt = PromptTemplate( template="Content: {page_content}\nSource: {source}", input_variables=["page_content", "source"], ) final_qa_chain = StuffDocumentsChain( llm_chain=qa_chain, document_variable_name="context", document_prompt=doc_prompt, ) retrieval_qa = RetrievalQA( retriever=docsearch.as_retriever(), combine_documents_chain=final_qa_chain ) query = "What did the president say about russia" retrieval_qa.run(query) qa_chain_pydantic =
create_qa_with_sources_chain(llm, output_parser="pydantic")
langchain.chains.create_qa_with_sources_chain
from langchain_community.document_loaders import HuggingFaceDatasetLoader dataset_name = "imdb" page_content_column = "text" loader = HuggingFaceDatasetLoader(dataset_name, page_content_column) data = loader.load() data[:15] from langchain.indexes import VectorstoreIndexCreator from langchain_community.document_loaders.hugging_face_dataset import ( HuggingFaceDatasetLoader, ) dataset_name = "tweet_eval" page_content_column = "text" name = "stance_climate" loader = HuggingFaceDatasetLoader(dataset_name, page_content_column, name) index =
VectorstoreIndexCreator()
langchain.indexes.VectorstoreIndexCreator
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain.chains import OpenAIModerationChain from langchain_core.prompts import ChatPromptTemplate from langchain_openai import OpenAI moderate = OpenAIModerationChain() model = OpenAI() prompt =
ChatPromptTemplate.from_messages([("system", "repeat after me: {input}")])
langchain_core.prompts.ChatPromptTemplate.from_messages
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain fleet-context langchain-openai pandas faiss-cpu # faiss-gpu for CUDA supported GPU') from operator import itemgetter from typing import Any, Optional, Type import pandas as pd from langchain.retrievers import MultiVectorRetriever from langchain_community.vectorstores import FAISS from langchain_core.documents import Document from langchain_core.stores import BaseStore from langchain_core.vectorstores import VectorStore from langchain_openai import OpenAIEmbeddings def load_fleet_retriever( df: pd.DataFrame, *, vectorstore_cls: Type[VectorStore] = FAISS, docstore: Optional[BaseStore] = None, **kwargs: Any, ): vectorstore = _populate_vectorstore(df, vectorstore_cls) if docstore is None: return vectorstore.as_retriever(**kwargs) else: _populate_docstore(df, docstore) return MultiVectorRetriever( vectorstore=vectorstore, docstore=docstore, id_key="parent", **kwargs ) def _populate_vectorstore( df: pd.DataFrame, vectorstore_cls: Type[VectorStore], ) -> VectorStore: if not hasattr(vectorstore_cls, "from_embeddings"): raise ValueError( f"Incompatible vector store class {vectorstore_cls}." "Must implement `from_embeddings` class method." ) texts_embeddings = [] metadatas = [] for _, row in df.iterrows(): texts_embeddings.append((row.metadata["text"], row["dense_embeddings"])) metadatas.append(row.metadata) return vectorstore_cls.from_embeddings( texts_embeddings, OpenAIEmbeddings(model="text-embedding-ada-002"), metadatas=metadatas, ) def _populate_docstore(df: pd.DataFrame, docstore: BaseStore) -> None: parent_docs = [] df = df.copy() df["parent"] = df.metadata.apply(itemgetter("parent")) for parent_id, group in df.groupby("parent"): sorted_group = group.iloc[ group.metadata.apply(itemgetter("section_index")).argsort() ] text = "".join(sorted_group.metadata.apply(itemgetter("text"))) metadata = { k: sorted_group.iloc[0].metadata[k] for k in ("title", "type", "url") } text = metadata["title"] + "\n" + text metadata["id"] = parent_id parent_docs.append(Document(page_content=text, metadata=metadata)) docstore.mset(((d.metadata["id"], d) for d in parent_docs)) from context import download_embeddings df = download_embeddings("langchain") vecstore_retriever = load_fleet_retriever(df) vecstore_retriever.get_relevant_documents("How does the multi vector retriever work") from langchain.storage import InMemoryStore parent_retriever = load_fleet_retriever( "https://www.dropbox.com/scl/fi/4rescpkrg9970s3huz47l/libraries_langchain_release.parquet?rlkey=283knw4wamezfwiidgpgptkep&dl=1", docstore=
InMemoryStore()
langchain.storage.InMemoryStore
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent from langchain.chains import LLMChain from langchain.memory import ConversationBufferMemory from langchain_community.utilities import GoogleSearchAPIWrapper from langchain_openai import OpenAI search =
GoogleSearchAPIWrapper()
langchain_community.utilities.GoogleSearchAPIWrapper
meals = [ "Beef Enchiladas with Feta cheese. Mexican-Greek fusion", "Chicken Flatbreads with red sauce. Italian-Mexican fusion", "Veggie sweet potato quesadillas with vegan cheese", "One-Pan Tortelonni bake with peppers and onions", ] from langchain_openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo-instruct") from langchain.prompts import PromptTemplate PROMPT_TEMPLATE = """Here is the description of a meal: "{meal}". Embed the meal into the given text: "{text_to_personalize}". Prepend a personalized message including the user's name "{user}" and their preference "{preference}". Make it sound good. """ PROMPT = PromptTemplate( input_variables=["meal", "text_to_personalize", "user", "preference"], template=PROMPT_TEMPLATE, ) import langchain_experimental.rl_chain as rl_chain chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT) response = chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs \ believe you will love it!", ) print(response["response"]) for _ in range(5): try: response = chain.run( meal=rl_chain.ToSelectFrom(meals), user=rl_chain.BasedOn("Tom"), preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]), text_to_personalize="This is the weeks specialty dish, our master chefs believe you will love it!", ) except Exception as e: print(e) print(response["response"]) print() scoring_criteria_template = ( "Given {preference} rank how good or bad this selection is {meal}" ) chain = rl_chain.PickBest.from_llm( llm=llm, prompt=PROMPT, selection_scorer=rl_chain.AutoSelectionScorer( llm=llm, scoring_criteria_template_str=scoring_criteria_template ), ) response = chain.run( meal=
rl_chain.ToSelectFrom(meals)
langchain_experimental.rl_chain.ToSelectFrom
from langchain.chains import HypotheticalDocumentEmbedder, LLMChain from langchain.prompts import PromptTemplate from langchain_openai import OpenAI, OpenAIEmbeddings base_embeddings = OpenAIEmbeddings() llm = OpenAI() embeddings = HypotheticalDocumentEmbedder.from_llm(llm, base_embeddings, "web_search") result = embeddings.embed_query("Where is the Taj Mahal?") multi_llm = OpenAI(n=4, best_of=4) embeddings = HypotheticalDocumentEmbedder.from_llm( multi_llm, base_embeddings, "web_search" ) result = embeddings.embed_query("Where is the Taj Mahal?") prompt_template = """Please answer the user's question about the most recent state of the union address Question: {question} Answer:""" prompt = PromptTemplate(input_variables=["question"], template=prompt_template) llm_chain =
LLMChain(llm=llm, prompt=prompt)
langchain.chains.LLMChain
import requests def download_drive_file(url: str, output_path: str = "chat.db") -> None: file_id = url.split("/")[-2] download_url = f"https://drive.google.com/uc?export=download&id={file_id}" response = requests.get(download_url) if response.status_code != 200: print("Failed to download the file.") return with open(output_path, "wb") as file: file.write(response.content) print(f"File {output_path} downloaded.") url = ( "https://drive.google.com/file/d/1NebNKqTA2NXApCmeH6mu0unJD2tANZzo/view?usp=sharing" ) download_drive_file(url) from langchain_community.chat_loaders.imessage import IMessageChatLoader loader = IMessageChatLoader( path="./chat.db", ) from typing import List from langchain_community.chat_loaders.base import ChatSession from langchain_community.chat_loaders.utils import ( map_ai_messages, merge_chat_runs, ) raw_messages = loader.lazy_load() merged_messages = merge_chat_runs(raw_messages) chat_sessions: List[ChatSession] = list( map_ai_messages(merged_messages, sender="Tortoise") ) chat_sessions[0]["messages"][:3] from langchain.adapters.openai import convert_messages_for_finetuning training_data =
convert_messages_for_finetuning(chat_sessions)
langchain.adapters.openai.convert_messages_for_finetuning
import asyncio from langchain.callbacks import get_openai_callback from langchain_openai import OpenAI llm = OpenAI(temperature=0) with get_openai_callback() as cb: llm("What is the square root of 4?") total_tokens = cb.total_tokens assert total_tokens > 0 with get_openai_callback() as cb: llm("What is the square root of 4?") llm("What is the square root of 4?") assert cb.total_tokens == total_tokens * 2 with get_openai_callback() as cb: await asyncio.gather( *[llm.agenerate(["What is the square root of 4?"]) for _ in range(3)] ) assert cb.total_tokens == total_tokens * 3 task = asyncio.create_task(llm.agenerate(["What is the square root of 4?"])) with
get_openai_callback()
langchain.callbacks.get_openai_callback
from langchain.output_parsers import XMLOutputParser from langchain.prompts import PromptTemplate from langchain_community.chat_models import ChatAnthropic model = ChatAnthropic(model="claude-2", max_tokens_to_sample=512, temperature=0.1) actor_query = "Generate the shortened filmography for Tom Hanks." output = model.invoke( f"""{actor_query} Please enclose the movies in <movie></movie> tags""" ) print(output.content) parser =
XMLOutputParser()
langchain.output_parsers.XMLOutputParser
from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate from langchain_core.runnables import RunnableLambda from langchain_openai import ChatOpenAI examples = [ { "input": "Could the members of The Police perform lawful arrests?", "output": "what can the members of The Police do?", }, { "input": "Jan Sindel’s was born in what country?", "output": "what is Jan Sindel’s personal history?", }, ] example_prompt = ChatPromptTemplate.from_messages( [ ("human", "{input}"), ("ai", "{output}"), ] ) few_shot_prompt = FewShotChatMessagePromptTemplate( example_prompt=example_prompt, examples=examples, ) prompt = ChatPromptTemplate.from_messages( [ ( "system", """You are an expert at world knowledge. Your task is to step back and paraphrase a question to a more generic step-back question, which is easier to answer. Here are a few examples:""", ), few_shot_prompt, ("user", "{question}"), ] ) question_gen = prompt | ChatOpenAI(temperature=0) | StrOutputParser() question = "was chatgpt around while trump was president?" question_gen.invoke({"question": question}) from langchain_community.utilities import DuckDuckGoSearchAPIWrapper search = DuckDuckGoSearchAPIWrapper(max_results=4) def retriever(query): return search.run(query) retriever(question) retriever(question_gen.invoke({"question": question})) from langchain import hub response_prompt =
hub.pull("langchain-ai/stepback-answer")
langchain.hub.pull
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-nvidia-ai-endpoints') import getpass import os if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"): nvapi_key = getpass.getpass("Enter your NVIDIA API key: ") assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key" os.environ["NVIDIA_API_KEY"] = nvapi_key from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="mixtral_8x7b") result = llm.invoke("Write a ballad about LangChain.") print(result.content) print(llm.batch(["What's 2*3?", "What's 2*6?"])) for chunk in llm.stream("How far can a seagull fly in one day?"): print(chunk.content, end="|") async for chunk in llm.astream( "How long does it take for monarch butterflies to migrate?" ): print(chunk.content, end="|") ChatNVIDIA.get_available_models() from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_nvidia_ai_endpoints import ChatNVIDIA prompt = ChatPromptTemplate.from_messages( [("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")] ) chain = prompt | ChatNVIDIA(model="llama2_13b") | StrOutputParser() for txt in chain.stream({"input": "What's your name?"}): print(txt, end="") prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are an expert coding AI. Respond only in valid python; no narration whatsoever.", ), ("user", "{input}"), ] ) chain = prompt | ChatNVIDIA(model="llama2_code_70b") | StrOutputParser() for txt in chain.stream({"input": "How do I solve this fizz buzz problem?"}): print(txt, end="") from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="nemotron_steerlm_8b") complex_result = llm.invoke( "What's a PB&J?", labels={"creativity": 0, "complexity": 3, "verbosity": 0} ) print("Un-creative\n") print(complex_result.content) print("\n\nCreative\n") creative_result = llm.invoke( "What's a PB&J?", labels={"creativity": 9, "complexity": 3, "verbosity": 9} ) print(creative_result.content) from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_nvidia_ai_endpoints import ChatNVIDIA prompt =
ChatPromptTemplate.from_messages( [("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")
langchain_core.prompts.ChatPromptTemplate.from_messages
from getpass import getpass DEEPINFRA_API_TOKEN = getpass() import os os.environ["DEEPINFRA_API_TOKEN"] = DEEPINFRA_API_TOKEN from langchain_community.chat_models import ChatDeepInfra from langchain_core.messages import HumanMessage chat =
ChatDeepInfra(model="meta-llama/Llama-2-7b-chat-hf")
langchain_community.chat_models.ChatDeepInfra
get_ipython().run_line_magic('pip', 'install --upgrade --quiet vald-client-python') from langchain_community.document_loaders import TextLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import Vald from langchain_text_splitters import CharacterTextSplitter raw_documents = TextLoader("state_of_the_union.txt").load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) documents = text_splitter.split_documents(raw_documents) embeddings = HuggingFaceEmbeddings() db = Vald.from_documents(documents, embeddings, host="localhost", port=8080) query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) docs[0].page_content embedding_vector = embeddings.embed_query(query) docs = db.similarity_search_by_vector(embedding_vector) docs[0].page_content docs_and_scores = db.similarity_search_with_score(query) docs_and_scores[0] retriever = db.as_retriever(search_type="mmr") retriever.get_relevant_documents(query) db.max_marginal_relevance_search(query, k=2, fetch_k=10) import grpc with open("test_root_cacert.crt", "rb") as root: credentials = grpc.ssl_channel_credentials(root_certificates=root.read()) with open(".ztoken", "rb") as ztoken: token = ztoken.read().strip() metadata = [(b"athenz-role-auth", token)] from langchain_community.document_loaders import TextLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import Vald from langchain_text_splitters import CharacterTextSplitter raw_documents =
TextLoader("state_of_the_union.txt")
langchain_community.document_loaders.TextLoader
from langchain_community.chat_message_histories import StreamlitChatMessageHistory history = StreamlitChatMessageHistory(key="chat_messages") history.add_user_message("hi!") history.add_ai_message("whats up?") history.messages from langchain_community.chat_message_histories import StreamlitChatMessageHistory msgs = StreamlitChatMessageHistory(key="special_app_key") if len(msgs.messages) == 0: msgs.add_ai_message("How can I help you?") from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_openai import ChatOpenAI prompt = ChatPromptTemplate.from_messages( [ ("system", "You are an AI chatbot having a conversation with a human."),
MessagesPlaceholder(variable_name="history")
langchain_core.prompts.MessagesPlaceholder
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-nvidia-ai-endpoints') import getpass import os if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"): nvapi_key = getpass.getpass("Enter your NVIDIA API key: ") assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key" os.environ["NVIDIA_API_KEY"] = nvapi_key from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="mixtral_8x7b") result = llm.invoke("Write a ballad about LangChain.") print(result.content) print(llm.batch(["What's 2*3?", "What's 2*6?"])) for chunk in llm.stream("How far can a seagull fly in one day?"): print(chunk.content, end="|") async for chunk in llm.astream( "How long does it take for monarch butterflies to migrate?" ): print(chunk.content, end="|") ChatNVIDIA.get_available_models() from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_nvidia_ai_endpoints import ChatNVIDIA prompt = ChatPromptTemplate.from_messages( [("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")] ) chain = prompt | ChatNVIDIA(model="llama2_13b") | StrOutputParser() for txt in chain.stream({"input": "What's your name?"}): print(txt, end="") prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are an expert coding AI. Respond only in valid python; no narration whatsoever.", ), ("user", "{input}"), ] ) chain = prompt | ChatNVIDIA(model="llama2_code_70b") | StrOutputParser() for txt in chain.stream({"input": "How do I solve this fizz buzz problem?"}): print(txt, end="") from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="nemotron_steerlm_8b") complex_result = llm.invoke( "What's a PB&J?", labels={"creativity": 0, "complexity": 3, "verbosity": 0} ) print("Un-creative\n") print(complex_result.content) print("\n\nCreative\n") creative_result = llm.invoke( "What's a PB&J?", labels={"creativity": 9, "complexity": 3, "verbosity": 9} ) print(creative_result.content) from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_nvidia_ai_endpoints import ChatNVIDIA prompt = ChatPromptTemplate.from_messages( [("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")] ) chain = ( prompt | ChatNVIDIA(model="nemotron_steerlm_8b").bind( labels={"creativity": 9, "complexity": 0, "verbosity": 9} ) | StrOutputParser() ) for txt in chain.stream({"input": "Why is a PB&J?"}): print(txt, end="") import IPython import requests image_url = "https://www.nvidia.com/content/dam/en-zz/Solutions/research/ai-playground/nvidia-picasso-3c33-p@2x.jpg" ## Large Image image_content = requests.get(image_url).content IPython.display.Image(image_content) from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="playground_neva_22b") from langchain_core.messages import HumanMessage llm.invoke( [ HumanMessage( content=[ {"type": "text", "text": "Describe this image:"}, {"type": "image_url", "image_url": {"url": image_url}}, ] ) ] ) from langchain_core.messages import HumanMessage llm.invoke( [ HumanMessage( content=[ {"type": "text", "text": "Describe this image:"}, {"type": "image_url", "image_url": {"url": image_url}}, ] ) ], labels={"creativity": 0, "quality": 9, "complexity": 0, "verbosity": 0}, ) import IPython import requests image_url = "https://picsum.photos/seed/kitten/300/200" image_content = requests.get(image_url).content IPython.display.Image(image_content) import base64 from langchain_core.messages import HumanMessage b64_string = base64.b64encode(image_content).decode("utf-8") llm.invoke( [ HumanMessage( content=[ {"type": "text", "text": "Describe this image:"}, { "type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64_string}"}, }, ] ) ] ) base64_with_mime_type = f"data:image/png;base64,{b64_string}" llm.invoke(f'What\'s in this image?\n<img src="{base64_with_mime_type}" />') from langchain_nvidia_ai_endpoints import ChatNVIDIA kosmos = ChatNVIDIA(model="kosmos_2") from langchain_core.messages import HumanMessage def drop_streaming_key(d): """Takes in payload dictionary, outputs new payload dictionary""" if "stream" in d: d.pop("stream") return d kosmos = ChatNVIDIA(model="kosmos_2") kosmos.client.payload_fn = drop_streaming_key kosmos.invoke( [ HumanMessage( content=[ {"type": "text", "text": "Describe this image:"}, {"type": "image_url", "image_url": {"url": image_url}}, ] ) ] ) import base64 from io import BytesIO from PIL import Image img_gen =
ChatNVIDIA(model="sdxl_turbo")
langchain_nvidia_ai_endpoints.ChatNVIDIA
get_ipython().run_line_magic('pip', 'install --upgrade --quiet modal') get_ipython().system('modal token new') from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import Modal template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) endpoint_url = "https://ecorp--custom-llm-endpoint.modal.run" # REPLACE ME with your deployed Modal web endpoint's URL llm =
Modal(endpoint_url=endpoint_url)
langchain_community.llms.Modal
from langchain_experimental.llm_bash.base import LLMBashChain from langchain_openai import OpenAI llm = OpenAI(temperature=0) text = "Please write a bash script that prints 'Hello World' to the console." bash_chain = LLMBashChain.from_llm(llm, verbose=True) bash_chain.run(text) from langchain.prompts.prompt import PromptTemplate from langchain_experimental.llm_bash.prompt import BashOutputParser _PROMPT_TEMPLATE = """If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format: Question: "copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'" I need to take the following actions: - List all files in the directory - Create a new directory - Copy the files from the first directory into the second directory ```bash ls mkdir myNewDirectory cp -r target/* myNewDirectory ``` Do not use 'echo' when writing the script. That is the format. Begin! Question: {question}""" PROMPT = PromptTemplate( input_variables=["question"], template=_PROMPT_TEMPLATE, output_parser=BashOutputParser(), ) bash_chain = LLMBashChain.from_llm(llm, prompt=PROMPT, verbose=True) text = "Please write a bash script that prints 'Hello World' to the console." bash_chain.run(text) from langchain_experimental.llm_bash.bash import BashProcess persistent_process =
BashProcess(persistent=True)
langchain_experimental.llm_bash.bash.BashProcess
SOURCE = "test" # @param {type:"Query"|"CollectionGroup"|"DocumentReference"|"string"} get_ipython().run_line_magic('pip', 'install -upgrade --quiet langchain-google-firestore') PROJECT_ID = "my-project-id" # @param {type:"string"} get_ipython().system('gcloud config set project {PROJECT_ID}') from google.colab import auth auth.authenticate_user() get_ipython().system('gcloud services enable firestore.googleapis.com') from langchain_core.documents.base import Document from langchain_google_firestore import FirestoreSaver saver = FirestoreSaver() data = [Document(page_content="Hello, World!")] saver.upsert_documents(data) saver = FirestoreSaver("Collection") saver.upsert_documents(data) doc_ids = ["AnotherCollection/doc_id", "foo/bar"] saver = FirestoreSaver() saver.upsert_documents(documents=data, document_ids=doc_ids) from langchain_google_firestore import FirestoreLoader loader_collection = FirestoreLoader("Collection") loader_subcollection = FirestoreLoader("Collection/doc/SubCollection") data_collection = loader_collection.load() data_subcollection = loader_subcollection.load() from google.cloud import firestore client = firestore.Client() doc_ref = client.collection("foo").document("bar") loader_document = FirestoreLoader(doc_ref) data = loader_document.load() from google.cloud.firestore import CollectionGroup, FieldFilter, Query col_ref = client.collection("col_group") collection_group = CollectionGroup(col_ref) loader_group = FirestoreLoader(collection_group) col_ref = client.collection("collection") query = col_ref.where(filter=FieldFilter("region", "==", "west_coast")) loader_query = FirestoreLoader(query) saver =
FirestoreSaver()
langchain_google_firestore.FirestoreSaver
from langchain_community.chat_models.llama_edge import LlamaEdgeChatService from langchain_core.messages import HumanMessage, SystemMessage service_url = "https://b008-54-186-154-209.ngrok-free.app" chat = LlamaEdgeChatService(service_url=service_url) system_message = SystemMessage(content="You are an AI assistant") user_message = HumanMessage(content="What is the capital of France?") messages = [system_message, user_message] response = chat(messages) print(f"[Bot] {response.content}") service_url = "https://b008-54-186-154-209.ngrok-free.app" chat =
LlamaEdgeChatService(service_url=service_url, streaming=True)
langchain_community.chat_models.llama_edge.LlamaEdgeChatService
import getpass import os os.environ["TAVILY_API_KEY"] = getpass.getpass() from langchain_community.tools.tavily_search import TavilySearchResults tool =
TavilySearchResults()
langchain_community.tools.tavily_search.TavilySearchResults
from langchain_openai import OpenAIEmbeddings from langchain_pinecone import PineconeVectorStore all_documents = { "doc1": "Climate change and economic impact.", "doc2": "Public health concerns due to climate change.", "doc3": "Climate change: A social perspective.", "doc4": "Technological solutions to climate change.", "doc5": "Policy changes needed to combat climate change.", "doc6": "Climate change and its impact on biodiversity.", "doc7": "Climate change: The science and models.", "doc8": "Global warming: A subset of climate change.", "doc9": "How climate change affects daily weather.", "doc10": "The history of climate change activism.", } vectorstore = PineconeVectorStore.from_texts( list(all_documents.values()), OpenAIEmbeddings(), index_name="rag-fusion" ) from langchain_core.output_parsers import StrOutputParser from langchain_openai import ChatOpenAI from langchain import hub prompt = hub.pull("langchain-ai/rag-fusion-query-generation") generate_queries = ( prompt | ChatOpenAI(temperature=0) | StrOutputParser() | (lambda x: x.split("\n")) ) original_query = "impact of climate change" vectorstore = PineconeVectorStore.from_existing_index("rag-fusion", OpenAIEmbeddings()) retriever = vectorstore.as_retriever() from langchain.load import dumps, loads def reciprocal_rank_fusion(results: list[list], k=60): fused_scores = {} for docs in results: for rank, doc in enumerate(docs): doc_str = dumps(doc) if doc_str not in fused_scores: fused_scores[doc_str] = 0 previous_score = fused_scores[doc_str] fused_scores[doc_str] += 1 / (rank + k) reranked_results = [ (
loads(doc)
langchain.load.loads
from langchain.chains import ConversationChain from langchain.memory import ( CombinedMemory, ConversationBufferMemory, ConversationSummaryMemory, ) from langchain.prompts import PromptTemplate from langchain_openai import OpenAI conv_memory = ConversationBufferMemory( memory_key="chat_history_lines", input_key="input" ) summary_memory = ConversationSummaryMemory(llm=OpenAI(), input_key="input") memory =
CombinedMemory(memories=[conv_memory, summary_memory])
langchain.memory.CombinedMemory
import nest_asyncio from langchain.chains.graph_qa import GremlinQAChain from langchain.schema import Document from langchain_community.graphs import GremlinGraph from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship from langchain_openai import AzureChatOpenAI cosmosdb_name = "mycosmosdb" cosmosdb_db_id = "graphtesting" cosmosdb_db_graph_id = "mygraph" cosmosdb_access_Key = "longstring==" graph = GremlinGraph( url=f"=wss://{cosmosdb_name}.gremlin.cosmos.azure.com:443/", username=f"/dbs/{cosmosdb_db_id}/colls/{cosmosdb_db_graph_id}", password=cosmosdb_access_Key, ) source_doc = Document( page_content="Matrix is a movie where Keanu Reeves, Laurence Fishburne and Carrie-Anne Moss acted." ) movie = Node(id="The Matrix", properties={"label": "movie", "title": "The Matrix"}) actor1 =
Node(id="Keanu Reeves", properties={"label": "actor", "name": "Keanu Reeves"})
langchain_community.graphs.graph_document.Node
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pymysql') get_ipython().system('pip install sqlalchemy') get_ipython().system('pip install langchain') from langchain.chains import RetrievalQA from langchain_community.document_loaders import ( DirectoryLoader, UnstructuredMarkdownLoader, ) from langchain_community.vectorstores.apache_doris import ( ApacheDoris, ApacheDorisSettings, ) from langchain_openai import OpenAI, OpenAIEmbeddings from langchain_text_splitters import TokenTextSplitter update_vectordb = False loader = DirectoryLoader( "./docs", glob="**/*.md", loader_cls=UnstructuredMarkdownLoader ) documents = loader.load() text_splitter = TokenTextSplitter(chunk_size=400, chunk_overlap=50) split_docs = text_splitter.split_documents(documents) update_vectordb = True def gen_apache_doris(update_vectordb, embeddings, settings): if update_vectordb: docsearch =
ApacheDoris.from_documents(split_docs, embeddings, config=settings)
langchain_community.vectorstores.apache_doris.ApacheDoris.from_documents
from langchain_community.document_loaders.csv_loader import CSVLoader loader = CSVLoader( file_path="../../document_loaders/examples/example_data/mlb_teams_2012.csv" ) data = loader.load() import json from typing import List from langchain.docstore.document import Document def write_json(path: str, documents: List[Document]) -> None: results = [{"text": doc.page_content} for doc in documents] with open(path, "w") as f: json.dump(results, f, indent=2) write_json("foo.json", data) import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain.retrievers import ChatGPTPluginRetriever retriever =
ChatGPTPluginRetriever(url="http://0.0.0.0:8000", bearer_token="foo")
langchain.retrievers.ChatGPTPluginRetriever
SOURCE = "test" # @param {type:"Query"|"CollectionGroup"|"DocumentReference"|"string"} get_ipython().run_line_magic('pip', 'install -upgrade --quiet langchain-google-datastore') PROJECT_ID = "my-project-id" # @param {type:"string"} get_ipython().system('gcloud config set project {PROJECT_ID}') from google.colab import auth auth.authenticate_user() get_ipython().system('gcloud services enable datastore.googleapis.com') from langchain_core.documents import Document from langchain_google_datastore import DatastoreSaver data = [Document(page_content="Hello, World!")] saver =
DatastoreSaver()
langchain_google_datastore.DatastoreSaver
get_ipython().run_line_magic('pip', 'install --upgrade --quiet xata langchain-openai tiktoken langchain') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") api_key = getpass.getpass("Xata API key: ") db_url = input("Xata database URL (copy it from your DB settings):") from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores.xata import XataVectorStore from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader =
TextLoader("../../modules/state_of_the_union.txt")
langchain_community.document_loaders.TextLoader
from langchain.chains import LLMMathChain from langchain_community.utilities import DuckDuckGoSearchAPIWrapper from langchain_core.tools import Tool from langchain_experimental.plan_and_execute import ( PlanAndExecute, load_agent_executor, load_chat_planner, ) from langchain_openai import ChatOpenAI, OpenAI search = DuckDuckGoSearchAPIWrapper() llm = OpenAI(temperature=0) llm_math_chain =
LLMMathChain.from_llm(llm=llm, verbose=True)
langchain.chains.LLMMathChain.from_llm
get_ipython().run_line_magic('pip', "install --upgrade --quiet langchain-openai 'deeplake[enterprise]' tiktoken") from langchain_community.vectorstores import DeepLake from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") activeloop_token = getpass.getpass("activeloop token:") embeddings = OpenAIEmbeddings() from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = DeepLake(dataset_path="./my_deeplake/", embedding=embeddings, overwrite=True) db.add_documents(docs) query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) print(docs[0].page_content) db = DeepLake(dataset_path="./my_deeplake/", embedding=embeddings, read_only=True) docs = db.similarity_search(query) from langchain.chains import RetrievalQA from langchain_openai import OpenAIChat qa = RetrievalQA.from_chain_type( llm=
OpenAIChat(model="gpt-3.5-turbo")
langchain_openai.OpenAIChat