Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
pico_extraction / pico_extraction.py
gabrielaltay's picture
upload hubscripts/pico_extraction_hub.py to hub from bigbio repo
8e78222
raw
history blame
10.2 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This dataset contains annotations for Participants, Interventions, and Outcomes (referred to as PICO task).
For 423 sentences, annotations collected by 3 medical experts are available.
To get the final annotations, we perform the majority voting.
The script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb) AND/OR source (default) schema
"""
import json
from typing import Dict, List, Tuple, Union
import datasets
import numpy as np
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{zlabinger-etal-2020-effective,
title = "Effective Crowd-Annotation of Participants, Interventions, and Outcomes in the Text of Clinical Trial Reports",
author = {Zlabinger, Markus and
Sabou, Marta and
Hofst{\"a}tter, Sebastian and
Hanbury, Allan},
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.274",
doi = "10.18653/v1/2020.findings-emnlp.274",
pages = "3064--3074",
}
"""
_DATASETNAME = "pico_extraction"
_DISPLAYNAME = "PICO Annotation"
_DESCRIPTION = """\
This dataset contains annotations for Participants, Interventions, and Outcomes (referred to as PICO task).
For 423 sentences, annotations collected by 3 medical experts are available.
To get the final annotations, we perform the majority voting.
"""
_HOMEPAGE = "https://github.com/Markus-Zlabinger/pico-annotation"
_LICENSE = 'License information unavailable'
_DATA_PATH = (
"https://raw.githubusercontent.com/Markus-Zlabinger/pico-annotation/master/data"
)
_URLS = {
_DATASETNAME: {
"sentence_file": f"{_DATA_PATH}/sentences.json",
"annotation_files": {
"intervention": f"{_DATA_PATH}/annotations/interventions_expert.json",
"outcome": f"{_DATA_PATH}/annotations/outcomes_expert.json",
"participant": f"{_DATA_PATH}/annotations/participants_expert.json",
},
}
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
def _pico_extraction_data_loader(
sentence_file: str, annotation_files: Dict[str, str]
) -> Tuple[Dict[str, str], Dict[str, Dict[str, Dict[str, List[int]]]]]:
"""Loads four files with PICO extraction dataset:
- one json file with sentences
- three json files with annotations for PIO
"""
# load sentences
with open(sentence_file) as fp:
sentences = json.load(fp)
# load annotations
annotation_dict = {}
for annotation_type, _file in annotation_files.items():
with open(_file) as fp:
annotations = json.load(fp)
annotation_dict[annotation_type] = annotations
return sentences, annotation_dict
def _get_entities_pico(
annotation_dict: Dict[str, Dict[str, Dict[str, List[int]]]],
sentence: str,
sentence_id: str,
) -> List[Dict[str, Union[int, str]]]:
"""extract entities from sentences using annotation_dict"""
def _partition(alist, indices):
return [alist[i:j] for i, j in zip([0] + indices, indices + [None])]
ents = []
for annotation_type, annotations in annotation_dict.items():
# get indices from three annotators by majority voting
indices = np.where(
np.round(np.mean(annotations[sentence_id]["annotations"], axis=0)) == 1
)[0]
if len(indices) > 0: # if annotations exist for this sentence
split_indices = []
# if there are two annotations of one type in one sentence
for item_index, item in enumerate(indices):
if item_index + 1 == len(indices):
break
if indices[item_index] + 1 != indices[item_index + 1]:
split_indices.append(item_index + 1)
multiple_indices = _partition(indices, split_indices)
for _indices in multiple_indices:
annotation_text = " ".join([sentence.split()[ind] for ind in _indices])
char_start = sentence.find(annotation_text)
char_end = char_start + len(annotation_text)
ent = {
"annotation_text": annotation_text,
"annotation_type": annotation_type,
"char_start": char_start,
"char_end": char_end,
}
ents.append(ent)
return ents
class PicoExtractionDataset(datasets.GeneratorBasedBuilder):
"""PICO Extraction dataset with annotations for
Participants, Interventions, and Outcomes."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="pico_extraction_source",
version=SOURCE_VERSION,
description="pico_extraction source schema",
schema="source",
subset_id="pico_extraction",
),
BigBioConfig(
name="pico_extraction_bigbio_kb",
version=BIGBIO_VERSION,
description="pico_extraction BigBio schema",
schema="bigbio_kb",
subset_id="pico_extraction",
),
]
DEFAULT_CONFIG_NAME = "pico_extraction_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"doc_id": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": [
{
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
"sentence_file": data_dir["sentence_file"],
"annotation_files": data_dir["annotation_files"],
},
),
]
def _generate_examples(self, split, sentence_file, annotation_files):
"""Yields examples as (key, example) tuples."""
sentences, annotation_dict = _pico_extraction_data_loader(
sentence_file=sentence_file, annotation_files=annotation_files
)
if self.config.schema == "source":
for uid, sentence_tuple in enumerate(sentences.items()):
sentence_id, sentence = sentence_tuple
ents = _get_entities_pico(annotation_dict, sentence, sentence_id)
data = {
"doc_id": sentence_id,
"text": sentence,
"entities": [
{
"text": ent["annotation_text"],
"type": ent["annotation_type"],
"start": ent["char_start"],
"end": ent["char_end"],
}
for ent in ents
],
}
yield uid, data
elif self.config.schema == "bigbio_kb":
uid = 0
for id_, sentence_tuple in enumerate(sentences.items()):
if id_ < 2:
continue
sentence_id, sentence = sentence_tuple
ents = _get_entities_pico(annotation_dict, sentence, sentence_id)
data = {
"id": str(uid),
"document_id": sentence_id,
"passages": [],
"entities": [],
"relations": [],
"events": [],
"coreferences": [],
}
uid += 1
data["passages"] = [
{
"id": str(uid),
"type": "sentence",
"text": [sentence],
"offsets": [[0, len(sentence)]],
}
]
uid += 1
for ent in ents:
entity = {
"id": uid,
"type": ent["annotation_type"],
"text": [ent["annotation_text"]],
"offsets": [[ent["char_start"], ent["char_end"]]],
"normalized": [],
}
data["entities"].append(entity)
uid += 1
yield uid, data