|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This dataset contains annotations for Participants, Interventions, and Outcomes (referred to as PICO task). |
|
For 423 sentences, annotations collected by 3 medical experts are available. |
|
To get the final annotations, we perform the majority voting. |
|
The script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb) AND/OR source (default) schema |
|
""" |
|
import json |
|
from typing import Dict, List, Tuple, Union |
|
|
|
import datasets |
|
import numpy as np |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{zlabinger-etal-2020-effective, |
|
title = "Effective Crowd-Annotation of Participants, Interventions, and Outcomes in the Text of Clinical Trial Reports", |
|
author = {Zlabinger, Markus and |
|
Sabou, Marta and |
|
Hofst{\"a}tter, Sebastian and |
|
Hanbury, Allan}, |
|
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", |
|
month = nov, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2020.findings-emnlp.274", |
|
doi = "10.18653/v1/2020.findings-emnlp.274", |
|
pages = "3064--3074", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "pico_extraction" |
|
_DISPLAYNAME = "PICO Annotation" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains annotations for Participants, Interventions, and Outcomes (referred to as PICO task). |
|
For 423 sentences, annotations collected by 3 medical experts are available. |
|
To get the final annotations, we perform the majority voting. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/Markus-Zlabinger/pico-annotation" |
|
|
|
_LICENSE = 'License information unavailable' |
|
|
|
_DATA_PATH = ( |
|
"https://raw.githubusercontent.com/Markus-Zlabinger/pico-annotation/master/data" |
|
) |
|
_URLS = { |
|
_DATASETNAME: { |
|
"sentence_file": f"{_DATA_PATH}/sentences.json", |
|
"annotation_files": { |
|
"intervention": f"{_DATA_PATH}/annotations/interventions_expert.json", |
|
"outcome": f"{_DATA_PATH}/annotations/outcomes_expert.json", |
|
"participant": f"{_DATA_PATH}/annotations/participants_expert.json", |
|
}, |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
def _pico_extraction_data_loader( |
|
sentence_file: str, annotation_files: Dict[str, str] |
|
) -> Tuple[Dict[str, str], Dict[str, Dict[str, Dict[str, List[int]]]]]: |
|
"""Loads four files with PICO extraction dataset: |
|
- one json file with sentences |
|
- three json files with annotations for PIO |
|
""" |
|
|
|
with open(sentence_file) as fp: |
|
sentences = json.load(fp) |
|
|
|
|
|
annotation_dict = {} |
|
for annotation_type, _file in annotation_files.items(): |
|
with open(_file) as fp: |
|
annotations = json.load(fp) |
|
annotation_dict[annotation_type] = annotations |
|
|
|
return sentences, annotation_dict |
|
|
|
|
|
def _get_entities_pico( |
|
annotation_dict: Dict[str, Dict[str, Dict[str, List[int]]]], |
|
sentence: str, |
|
sentence_id: str, |
|
) -> List[Dict[str, Union[int, str]]]: |
|
"""extract entities from sentences using annotation_dict""" |
|
|
|
def _partition(alist, indices): |
|
return [alist[i:j] for i, j in zip([0] + indices, indices + [None])] |
|
|
|
ents = [] |
|
for annotation_type, annotations in annotation_dict.items(): |
|
|
|
indices = np.where( |
|
np.round(np.mean(annotations[sentence_id]["annotations"], axis=0)) == 1 |
|
)[0] |
|
|
|
if len(indices) > 0: |
|
split_indices = [] |
|
|
|
for item_index, item in enumerate(indices): |
|
if item_index + 1 == len(indices): |
|
break |
|
if indices[item_index] + 1 != indices[item_index + 1]: |
|
split_indices.append(item_index + 1) |
|
multiple_indices = _partition(indices, split_indices) |
|
|
|
for _indices in multiple_indices: |
|
|
|
annotation_text = " ".join([sentence.split()[ind] for ind in _indices]) |
|
|
|
char_start = sentence.find(annotation_text) |
|
char_end = char_start + len(annotation_text) |
|
|
|
ent = { |
|
"annotation_text": annotation_text, |
|
"annotation_type": annotation_type, |
|
"char_start": char_start, |
|
"char_end": char_end, |
|
} |
|
|
|
ents.append(ent) |
|
return ents |
|
|
|
|
|
class PicoExtractionDataset(datasets.GeneratorBasedBuilder): |
|
"""PICO Extraction dataset with annotations for |
|
Participants, Interventions, and Outcomes.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="pico_extraction_source", |
|
version=SOURCE_VERSION, |
|
description="pico_extraction source schema", |
|
schema="source", |
|
subset_id="pico_extraction", |
|
), |
|
BigBioConfig( |
|
name="pico_extraction_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="pico_extraction BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="pico_extraction", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "pico_extraction_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"doc_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"start": datasets.Value("int64"), |
|
"end": datasets.Value("int64"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"split": "train", |
|
"sentence_file": data_dir["sentence_file"], |
|
"annotation_files": data_dir["annotation_files"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, split, sentence_file, annotation_files): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
sentences, annotation_dict = _pico_extraction_data_loader( |
|
sentence_file=sentence_file, annotation_files=annotation_files |
|
) |
|
|
|
if self.config.schema == "source": |
|
for uid, sentence_tuple in enumerate(sentences.items()): |
|
sentence_id, sentence = sentence_tuple |
|
ents = _get_entities_pico(annotation_dict, sentence, sentence_id) |
|
|
|
data = { |
|
"doc_id": sentence_id, |
|
"text": sentence, |
|
"entities": [ |
|
{ |
|
"text": ent["annotation_text"], |
|
"type": ent["annotation_type"], |
|
"start": ent["char_start"], |
|
"end": ent["char_end"], |
|
} |
|
for ent in ents |
|
], |
|
} |
|
yield uid, data |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
uid = 0 |
|
for id_, sentence_tuple in enumerate(sentences.items()): |
|
if id_ < 2: |
|
continue |
|
sentence_id, sentence = sentence_tuple |
|
ents = _get_entities_pico(annotation_dict, sentence, sentence_id) |
|
|
|
data = { |
|
"id": str(uid), |
|
"document_id": sentence_id, |
|
"passages": [], |
|
"entities": [], |
|
"relations": [], |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
uid += 1 |
|
|
|
data["passages"] = [ |
|
{ |
|
"id": str(uid), |
|
"type": "sentence", |
|
"text": [sentence], |
|
"offsets": [[0, len(sentence)]], |
|
} |
|
] |
|
uid += 1 |
|
|
|
for ent in ents: |
|
entity = { |
|
"id": uid, |
|
"type": ent["annotation_type"], |
|
"text": [ent["annotation_text"]], |
|
"offsets": [[ent["char_start"], ent["char_end"]]], |
|
"normalized": [], |
|
} |
|
data["entities"].append(entity) |
|
uid += 1 |
|
|
|
yield uid, data |
|
|