Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Andreas Lochbihler, Digital Asset | |
Author: Ognjen Maric, Digital Asset *) | |
theory Merkle_Interface | |
imports | |
Main | |
"HOL-Library.Conditional_Parametricity" | |
"HOL-Library.Monad_Syntax" | |
begin | |
alias vimage2p = BNF_Def.vimage2p | |
alias Grp = BNF_Def.Grp | |
alias setl = Basic_BNFs.setl | |
alias setr = Basic_BNFs.setr | |
alias fsts = Basic_BNFs.fsts | |
alias snds = Basic_BNFs.snds | |
attribute_setup locale_witness = \<open>Scan.succeed Locale.witness_add\<close> | |
lemma vimage2p_mono': "R \<le> S \<Longrightarrow> vimage2p f g R \<le> vimage2p f g S" | |
by(auto simp add: vimage2p_def le_fun_def) | |
lemma vimage2p_map_rel_prod: | |
"vimage2p (map_prod f g) (map_prod f' g') (rel_prod A B) = rel_prod (vimage2p f f' A) (vimage2p g g' B)" | |
by(simp add: vimage2p_def prod.rel_map) | |
lemma vimage2p_map_list_all2: | |
"vimage2p (map f) (map g) (list_all2 A) = list_all2 (vimage2p f g A)" | |
by(simp add: vimage2p_def list.rel_map) | |
lemma equivclp_least: | |
assumes le: "r \<le> s" and s: "equivp s" | |
shows "equivclp r \<le> s" | |
apply(rule predicate2I) | |
subgoal by(induction rule: equivclp_induct)(auto 4 3 intro: equivp_reflp[OF s] equivp_transp[OF s] equivp_symp[OF s] le[THEN predicate2D]) | |
done | |
lemma reflp_eq_onp: "reflp R \<longleftrightarrow> eq_onp (\<lambda>x. True) \<le> R" | |
by(auto simp add: reflp_def eq_onp_def) | |
lemma eq_onpE: | |
assumes "eq_onp P x y" | |
obtains "x = y" "P y" | |
using assms by(auto simp add: eq_onp_def) | |
lemma case_unit_parametric [transfer_rule]: "rel_fun A (rel_fun (=) A) case_unit case_unit" | |
by(simp add: rel_fun_def split: unit.split) | |
(************************************************************) | |
section \<open>Authenticated Data Structures\<close> | |
(************************************************************) | |
(************************************************************) | |
subsection \<open>Interface\<close> | |
(************************************************************) | |
(************************************************************) | |
subsubsection \<open> Types \<close> | |
(************************************************************) | |
type_synonym ('a\<^sub>m, 'a\<^sub>h) hash = "'a\<^sub>m \<Rightarrow> 'a\<^sub>h" \<comment> \<open>Type of hash operation\<close> | |
type_synonym 'a\<^sub>m blinding_of = "'a\<^sub>m \<Rightarrow> 'a\<^sub>m \<Rightarrow> bool" | |
type_synonym 'a\<^sub>m merge = "'a\<^sub>m \<Rightarrow> 'a\<^sub>m \<Rightarrow> 'a\<^sub>m option" \<comment> \<open> merging that can fail for values with different hashes\<close> | |
(************************************************************) | |
subsubsection \<open> Properties \<close> | |
(************************************************************) | |
locale merkle_interface = | |
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash" | |
and bo :: "'a\<^sub>m blinding_of" | |
and m :: "'a\<^sub>m merge" | |
assumes merge_respects_hashes: "h a = h b \<longleftrightarrow> (\<exists>ab. m a b = Some ab)" | |
and idem: "m a a = Some a" | |
and commute: "m a b = m b a" | |
and assoc: "m a b \<bind> m c = m b c \<bind> m a" | |
and bo_def: "bo a b \<longleftrightarrow> m a b = Some b" | |
begin | |
lemma reflp: "reflp bo" | |
unfolding bo_def by(rule reflpI)(simp add: idem) | |
lemma antisymp: "antisymp bo" | |
unfolding bo_def by(rule antisympI)(simp add: commute) | |
lemma transp: "transp bo" | |
apply(rule transpI) | |
subgoal for x y z using assoc[of x y z] by(simp add: commute bo_def) | |
done | |
lemma hash: "bo \<le> vimage2p h h (=)" | |
unfolding bo_def by(auto simp add: vimage2p_def merge_respects_hashes) | |
lemma join: "m a b = Some ab \<longleftrightarrow> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)" | |
unfolding bo_def | |
by (smt Option.bind_cong bind.bind_lunit commute idem merkle_interface.assoc merkle_interface_axioms) | |
text \<open>The equivalence closure of the blinding relation are the equivalence classes of the hash function (the kernel).\<close> | |
lemma equivclp_blinding_of: "equivclp bo = vimage2p h h (=)" (is "?lhs = ?rhs") | |
proof(rule antisym) | |
show "?lhs \<le> ?rhs" by(rule equivclp_least[OF hash])(rule equivp_vimage2p[OF identity_equivp]) | |
show "?rhs \<le> ?lhs" unfolding vimage2p_def | |
proof(rule predicate2I) | |
fix x y | |
assume "h x = h y" | |
then obtain xy where "m x y = Some xy" unfolding merge_respects_hashes .. | |
hence "bo x xy" "bo y xy" unfolding join by blast+ | |
hence "equivclp bo x xy" "equivclp bo xy y" by(blast)+ | |
thus "equivclp bo x y" by(rule equivclp_trans) | |
qed | |
qed | |
end | |
(************************************************************) | |
subsection \<open> Auxiliary definitions \<close> | |
(************************************************************) | |
text \<open> Directly proving that an interface satisfies the specification of a Merkle interface as given | |
above is difficult. Instead, we provide several layers of auxiliary definitions that can easily be | |
proved layer-by-layer. | |
In particular, proving that an interface on recursive datatypes is a Merkle interface requires | |
induction. As the induction hypothesis only applies to a subset of values of a type, we add | |
auxiliary definitions equipped with an explicit set @{term A} of values to which the definition | |
applies. Once the induction proof is complete, we can typically instantiate @{term A} with @{term | |
UNIV}. In particular, in the induction proof for a layer, we can assume that properties for the | |
earlier layers hold for \<^emph>\<open>all\<close> values, not just those in the induction hypothesis. | |
\<close> | |
(************************************************************) | |
subsubsection \<open> Blinding \<close> | |
(************************************************************) | |
locale blinding_respects_hashes = | |
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash" | |
and bo :: "'a\<^sub>m blinding_of" | |
assumes hash: "bo \<le> vimage2p h h (=)" | |
begin | |
lemma blinding_hash_eq: "bo x y \<Longrightarrow> h x = h y" | |
by(drule hash[THEN predicate2D])(simp add: vimage2p_def) | |
end | |
locale blinding_of_on = | |
blinding_respects_hashes h bo | |
for A :: "'a\<^sub>m set" | |
and h :: "('a\<^sub>m, 'a\<^sub>h) hash" | |
and bo :: "'a\<^sub>m blinding_of" | |
+ assumes refl: "x \<in> A \<Longrightarrow> bo x x" | |
and trans: "\<lbrakk> bo x y; bo y z; x \<in> A \<rbrakk> \<Longrightarrow> bo x z" | |
and antisym: "\<lbrakk> bo x y; bo y x; x \<in> A \<rbrakk> \<Longrightarrow> x = y" | |
begin | |
lemma refl_pointfree: "eq_onp (\<lambda>x. x \<in> A) \<le> bo" | |
by(auto elim!: eq_onpE intro: refl) | |
lemma blinding_respects_hashes: "blinding_respects_hashes h bo" .. | |
lemmas hash = hash | |
lemma trans_pointfree: "eq_onp (\<lambda>x. x \<in> A) OO bo OO bo \<le> bo" | |
by(auto elim!: eq_onpE intro: trans) | |
lemma antisym_pointfree: "inf (eq_onp (\<lambda>x. x \<in> A) OO bo) bo\<inverse>\<inverse> \<le> (=)" | |
by(auto elim!: eq_onpE dest: antisym) | |
end | |
(************************************************************) | |
subsubsection \<open> Merging \<close> | |
(************************************************************) | |
text \<open> In general, we prove the properties of blinding before the properties of merging. Thus, | |
in the following definitions we assume that the blinding properties already hold on @{term UNIV}. | |
The @{term Ball} restricts the argument of the merge operation on which induction will be done. \<close> | |
locale merge_on = | |
blinding_of_on UNIV h bo | |
for A :: "'a\<^sub>m set" | |
and h :: "('a\<^sub>m, 'a\<^sub>h) hash" | |
and bo :: "'a\<^sub>m blinding_of" | |
and m :: "'a\<^sub>m merge" + | |
assumes join: "\<lbrakk> h a = h b; a \<in> A \<rbrakk> | |
\<Longrightarrow> \<exists>ab. m a b = Some ab \<and> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)" | |
and undefined: "\<lbrakk> h a \<noteq> h b; a \<in> A \<rbrakk> \<Longrightarrow> m a b = None" | |
begin | |
lemma same: "a \<in> A \<Longrightarrow> m a a = Some a" | |
using join[of a a] refl[of a] by(auto 4 3 intro: antisym) | |
lemma blinding_of_antisym_on: "blinding_of_on UNIV h bo" .. | |
lemma transp: "transp bo" | |
by(auto intro: transpI trans) | |
lemmas hash = hash | |
and refl = refl | |
and antisym = antisym[OF _ _ UNIV_I] | |
lemma respects_hashes: | |
"a \<in> A \<Longrightarrow> h a = h b \<longleftrightarrow> (\<exists>ab. m a b = Some ab)" | |
using join undefined | |
by fastforce | |
lemma join': | |
"a \<in> A \<Longrightarrow> \<forall>ab. m a b = Some ab \<longleftrightarrow> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)" | |
using join undefined | |
by (metis (full_types) hash local.antisym option.distinct(1) option.sel predicate2D vimage2p_def) | |
lemma merge_on_subset: | |
"B \<subseteq> A \<Longrightarrow> merge_on B h bo m" | |
by unfold_locales (auto dest: same join undefined) | |
end | |
subsection \<open> Interface equality \<close> | |
text \<open> Here, we prove that the auxiliary definitions specify the same interface as the original ones.\<close> | |
lemma merkle_interface_aux: "merkle_interface h bo m = merge_on UNIV h bo m" | |
(is "?lhs = ?rhs") | |
proof | |
show ?rhs if ?lhs | |
proof | |
interpret merkle_interface h bo m by(fact that) | |
show "bo \<le> vimage2p h h (=)" by(fact hash) | |
show "bo x x" for x using reflp by(simp add: reflp_def) | |
show "bo x z" if "bo x y" "bo y z" for x y z using transp that by(rule transpD) | |
show "x = y" if "bo x y" "bo y x" for x y using antisymp that by(rule antisympD) | |
show "\<exists>ab. m a b = Some ab \<and> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)" if "h a = h b" for a b | |
using that by(simp add: merge_respects_hashes join) | |
show "m a b = None" if "h a \<noteq> h b" for a b using that by(simp add: merge_respects_hashes) | |
qed | |
show ?lhs if ?rhs | |
proof | |
interpret merge_on UNIV h bo m by(fact that) | |
show eq: "h a = h b \<longleftrightarrow> (\<exists>ab. m a b = Some ab)" for a b by(simp add: respects_hashes) | |
show idem: "m a a = Some a" for a by(simp add: same) | |
show commute: "m a b = m b a" for a b | |
using join[of a b] join[of b a] undefined antisym by(cases "m a b") force+ | |
have undefined_partitioned: "m a c = None" if "m a b = None" "m b c = Some bc" for a b c bc | |
using that eq by (metis option.distinct(1) option.exhaust) | |
have merge_twice: "m a b = Some c \<Longrightarrow> m a c = Some c" for a b c by (simp add: join') | |
show "m a b \<bind> m c = m b c \<bind> m a" for a b c | |
proof(simp split: Option.bind_split; safe) | |
show "None = m a d" if "m a b = None" "m b c = Some d" for d using that | |
by(metis undefined_partitioned merge_twice) | |
show "m c d = None" if "m a b = Some d" "m b c = None" for d using that | |
by(metis commute merge_twice undefined_partitioned) | |
next | |
fix ab bc | |
assume assms: "m a b = Some ab" "m b c = Some bc" | |
then obtain cab and abc where cab: "m c ab = Some cab" and abc: "m a bc = Some abc" | |
using eq[THEN iffD2, OF exI] eq[THEN iffD1] by (metis merge_twice) | |
thus "m c ab = m a bc" using assms | |
by(clarsimp simp add: join')(metis UNIV_I abc cab local.antisym local.trans) | |
qed | |
show "bo a b \<longleftrightarrow> m a b = Some b" for a b using idem join' by auto | |
qed | |
qed | |
lemma merkle_interfaceI [locale_witness]: | |
assumes "merge_on UNIV h bo m" | |
shows "merkle_interface h bo m" | |
using assms unfolding merkle_interface_aux by auto | |
lemma (in merkle_interface) merkle_interfaceD: "merge_on UNIV h bo m" | |
using merkle_interface_aux[of h bo m, symmetric] | |
by simp unfold_locales | |
subsection \<open> Parametricity rules \<close> | |
context includes lifting_syntax begin | |
parametric_constant le_fun_parametric[transfer_rule]: le_fun_def | |
parametric_constant vimage2p_parametric[transfer_rule]: vimage2p_def | |
parametric_constant blinding_respects_hashes_parametric_aux: blinding_respects_hashes_def | |
lemma blinding_respects_hashes_parametric [transfer_rule]: | |
"((A1 ===> A2) ===> (A1 ===> A1 ===> (\<longleftrightarrow>)) ===> (\<longleftrightarrow>)) | |
blinding_respects_hashes blinding_respects_hashes" | |
if [transfer_rule]: "bi_unique A2" "bi_total A1" | |
by(rule blinding_respects_hashes_parametric_aux that le_fun_parametric | simp add: rel_fun_eq)+ | |
parametric_constant blinding_of_on_axioms_parametric [transfer_rule]: | |
blinding_of_on_axioms_def[folded Ball_def, unfolded le_fun_def le_bool_def eq_onp_def relcompp.simps, simplified] | |
parametric_constant blinding_of_on_parametric [transfer_rule]: blinding_of_on_def | |
parametric_constant antisymp_parametric[transfer_rule]: antisymp_def | |
parametric_constant transp_parametric[transfer_rule]: transp_def | |
parametric_constant merge_on_axioms_parametric [transfer_rule]: merge_on_axioms_def | |
parametric_constant merge_on_parametric[transfer_rule]: merge_on_def | |
parametric_constant merkle_interface_parametric[transfer_rule]: merkle_interface_def | |
end | |
end |