Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Author: René Thiemann | |
Akihisa Yamada | |
License: BSD | |
*) | |
section \<open>Algebraic Number Tests\<close> | |
text \<open>We provide a sequence of examples which demonstrate what can be done with | |
the implementation of algebraic numbers.\<close> | |
theory Algebraic_Number_Tests | |
imports | |
Jordan_Normal_Form.Char_Poly | |
Jordan_Normal_Form.Determinant_Impl | |
Show.Show_Complex | |
"HOL-Library.Code_Target_Nat" | |
"HOL-Library.Code_Target_Int" | |
Berlekamp_Zassenhaus.Factorize_Rat_Poly | |
Complex_Algebraic_Numbers | |
Show_Real_Precise | |
begin | |
subsection \<open>Stand-Alone Examples\<close> | |
abbreviation (input) "show_lines x \<equiv> shows_lines x Nil" | |
fun show_factorization :: "'a :: {semiring_1,show} \<times> (('a poly \<times> nat)list) \<Rightarrow> string" where | |
"show_factorization (c,[]) = show c" | |
| "show_factorization (c,((p,i) # ps)) = show_factorization (c,ps) @ '' * ('' @ show p @ '')'' @ | |
(if i = 1 then [] else ''^'' @ show i)" | |
definition show_sf_factorization :: "'a :: {semiring_1,show} \<times> (('a poly \<times> nat)list) \<Rightarrow> string" where | |
"show_sf_factorization x = show_factorization (map_prod id (map (map_prod id Suc)) x) | |
" | |
text \<open>Determine the roots over the rational, real, and complex numbers.\<close> | |
definition "testpoly = [:5/2, -7/2, 1/2, -5, 7, -1, 5/2, -7/2, 1/2:]" | |
definition "test = show_lines ( real_roots_of_rat_poly testpoly)" | |
value [code] "show_lines ( roots_of_rat_poly testpoly)" | |
value [code] "show_lines ( real_roots_of_rat_poly testpoly)" | |
value [code] "show_lines (complex_roots_of_rat_poly testpoly)" | |
text \<open>Compute real and complex roots of a polynomial with rational coefficients.\<close> | |
value [code] "show (complex_roots_of_rat_poly testpoly)" | |
value [code] "show (real_roots_of_rat_poly testpoly)" | |
text \<open>A sequence of calculations.\<close> | |
value [code] "show (- sqrt 2 - sqrt 3)" | |
lemma "root 3 4 > sqrt (root 4 3) + \<lfloor>1/10 * root 3 7\<rfloor>" by eval | |
lemma "csqrt (4 + 3 * \<i>) \<notin> \<real>" by eval | |
value [code] "show (csqrt (4 + 3 * \<i>))" | |
value [code] "show (csqrt (1 + \<i>))" | |
subsection \<open>Example Application: Compute Norms of Eigenvalues\<close> | |
text \<open>For complexity analysis of some matrix $A$ it is important to compute the spectral | |
radius of a matrix, i.e., the maximal norm of all complex eigenvalues, | |
since the spectral radius determines | |
the growth rates of matrix-powers $A^n$, cf.~\cite{JNF-AFP} for a formalized statement | |
of this fact.\<close> | |
definition eigenvalues :: "rat mat \<Rightarrow> complex list" where | |
"eigenvalues A = complex_roots_of_rat_poly (char_poly A)" | |
definition "testmat = mat_of_rows_list 3 [ | |
[1,-4,2], | |
[1/5,7,9], | |
[7,1,5 :: rat] | |
]" | |
definition "spectral_radius_test = show (Max (set [ norm ev. ev \<leftarrow> eigenvalues testmat]))" | |
value [code] "char_poly testmat" | |
value [code] spectral_radius_test | |
end | |