Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
subsection "Splay Tree Analysis" | |
theory Splay_Tree_Analysis | |
imports | |
Splay_Tree_Analysis_Base | |
Amortized_Framework | |
begin | |
subsubsection "Analysis of splay" | |
definition A_splay :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> real" where | |
"A_splay a t = T_splay a t + \<Phi>(splay a t) - \<Phi> t" | |
text\<open>The following lemma is an attempt to prove a generic lemma that covers | |
both zig-zig cases. However, the lemma is not as nice as one would like. | |
Hence it is used only once, as a demo. Ideally the lemma would involve | |
function @{const A_splay}, but that is impossible because this involves @{const splay} | |
and thus depends on the ordering. We would need a truly symmetric version of @{const splay} | |
that takes the ordering as an explicit argument. Then we could define | |
all the symmetric cases by one final equation | |
\<^prop>\<open>splay2 less t = splay2 (\<lambda>x y. Not (less x y)) (mirror t)\<close>. | |
This would simplify the code and the proofs.\<close> | |
lemma zig_zig: fixes lx x rx lb b rb a ra u lb1 lb2 | |
defines [simp]: "X == Node lx (x) rx" defines[simp]: "B == Node lb b rb" | |
defines [simp]: "t == Node B a ra" defines [simp]: "A' == Node rb a ra" | |
defines [simp]: "t' == Node lb1 u (Node lb2 b A')" | |
assumes hyps: "lb \<noteq> \<langle>\<rangle>" and IH: "T_splay x lb + \<Phi> lb1 + \<Phi> lb2 - \<Phi> lb \<le> 2 * \<phi> lb - 3 * \<phi> X + 1" and | |
prems: "size lb = size lb1 + size lb2 + 1" "X \<in> subtrees lb" | |
shows "T_splay x lb + \<Phi> t' - \<Phi> t \<le> 3 * (\<phi> t - \<phi> X)" | |
proof - | |
define B' where [simp]: "B' = Node lb2 b A'" | |
have "T_splay x lb + \<Phi> t' - \<Phi> t = T_splay x lb + \<Phi> lb1 + \<Phi> lb2 - \<Phi> lb + \<phi> B' + \<phi> A' - \<phi> B" | |
using prems | |
by(auto simp: A_splay_def size_if_splay algebra_simps in_set_tree_if split: tree.split) | |
also have "\<dots> \<le> 2 * \<phi> lb + \<phi> B' + \<phi> A' - \<phi> B - 3 * \<phi> X + 1" | |
using IH prems(2) by(auto simp: algebra_simps) | |
also have "\<dots> \<le> \<phi> lb + \<phi> B' + \<phi> A' - 3 * \<phi> X + 1" by(simp) | |
also have "\<dots> \<le> \<phi> B' + 2 * \<phi> t - 3 * \<phi> X " | |
using prems ld_ld_1_less[of "size1 lb" "size1 A'"] | |
by(simp add: size_if_splay) | |
also have "\<dots> \<le> 3 * \<phi> t - 3 * \<phi> X" | |
using prems by(simp add: size_if_splay) | |
finally show ?thesis by simp | |
qed | |
lemma A_splay_ub: "\<lbrakk> bst t; Node l x r : subtrees t \<rbrakk> | |
\<Longrightarrow> A_splay x t \<le> 3 * (\<phi> t - \<phi>(Node l x r)) + 1" | |
proof(induction x t rule: splay.induct) | |
case 1 thus ?case by simp | |
next | |
case 2 thus ?case by (auto simp: A_splay_def) | |
next | |
case 4 hence False by(fastforce dest: in_set_tree_if) thus ?case .. | |
next | |
case 5 hence False by(fastforce dest: in_set_tree_if) thus ?case .. | |
next | |
case 7 hence False by(fastforce dest: in_set_tree_if) thus ?case .. | |
next | |
case 10 hence False by(fastforce dest: in_set_tree_if) thus ?case .. | |
next | |
case 12 hence False by(fastforce dest: in_set_tree_if) thus ?case .. | |
next | |
case 13 hence False by(fastforce dest: in_set_tree_if) thus ?case .. | |
next | |
case (3 x b A B CD) | |
(* A readable proof *) | |
let ?t = "\<langle>\<langle>A, x, B\<rangle>, b, CD\<rangle>" | |
let ?t' = "\<langle>A, x, \<langle>B, b, CD\<rangle>\<rangle>" | |
have *: "l = A \<and> r = B" using "3.prems" by(fastforce dest: in_set_tree_if) | |
have "A_splay x ?t = 1 + \<Phi> ?t' - \<Phi> ?t" using "3.hyps" by (simp add: A_splay_def) | |
also have "\<dots> = 1 + \<phi> ?t' + \<phi> \<langle>B, b, CD\<rangle> - \<phi> ?t - \<phi> \<langle>A, x, B\<rangle>" by(simp) | |
also have "\<dots> = 1 + \<phi> \<langle>B, b, CD\<rangle> - \<phi> \<langle>A, x, B\<rangle>" by(simp) | |
also have "\<dots> \<le> 1 + \<phi> ?t - \<phi>(Node A x B)" | |
using log_le_cancel_iff[of 2 "size1(Node B b CD)" "size1 ?t"] by (simp) | |
also have "\<dots> \<le> 1 + 3 * (\<phi> ?t - \<phi>(Node A x B))" | |
using log_le_cancel_iff[of 2 "size1(Node A x B)" "size1 ?t"] by (simp) | |
finally show ?case using * by simp | |
next | |
case (9 b x AB C D) | |
(* An automatic proof *) | |
let ?A = "\<langle>AB, b, \<langle>C, x, D\<rangle>\<rangle>" | |
have "x \<notin> set_tree AB" using "9.prems"(1) by auto | |
with 9 show ?case using | |
log_le_cancel_iff[of 2 "size1(Node AB b C)" "size1 ?A"] | |
log_le_cancel_iff[of 2 "size1(Node C x D)" "size1 ?A"] | |
by (auto simp: A_splay_def algebra_simps simp del:log_le_cancel_iff) | |
next | |
case (6 x a b A B C) | |
hence *: "\<langle>l, x, r\<rangle> \<in> subtrees A" by(fastforce dest: in_set_tree_if) | |
obtain A1 a' A2 where sp: "splay x A = Node A1 a' A2" | |
using splay_not_Leaf[OF \<open>A \<noteq> Leaf\<close>] by blast | |
let ?X = "Node l x r" let ?AB = "Node A a B" let ?ABC = "Node ?AB b C" | |
let ?A' = "Node A1 a' A2" | |
let ?BC = "Node B b C" let ?A2BC = "Node A2 a ?BC" let ?A1A2BC = "Node A1 a' ?A2BC" | |
have 0: "\<phi> ?A1A2BC = \<phi> ?ABC" using sp by(simp add: size_if_splay) | |
have 1: "\<Phi> ?A1A2BC - \<Phi> ?ABC = \<Phi> A1 + \<Phi> A2 + \<phi> ?A2BC + \<phi> ?BC - \<Phi> A - \<phi> ?AB" | |
using 0 by (simp) | |
have "A_splay x ?ABC = T_splay x A + 1 + \<Phi> ?A1A2BC - \<Phi> ?ABC" | |
using "6.hyps" sp by(simp add: A_splay_def) | |
also have "\<dots> = T_splay x A + 1 + \<Phi> A1 + \<Phi> A2 + \<phi> ?A2BC + \<phi> ?BC - \<Phi> A - \<phi> ?AB" | |
using 1 by simp | |
also have "\<dots> = T_splay x A + \<Phi> ?A' - \<phi> ?A' - \<Phi> A + \<phi> ?A2BC + \<phi> ?BC - \<phi> ?AB + 1" | |
by(simp) | |
also have "\<dots> = A_splay x A + \<phi> ?A2BC + \<phi> ?BC - \<phi> ?AB - \<phi> ?A' + 1" | |
using sp by(simp add: A_splay_def) | |
also have "\<dots> \<le> 3 * \<phi> A + \<phi> ?A2BC + \<phi> ?BC - \<phi> ?AB - \<phi> ?A' - 3 * \<phi> ?X + 2" | |
using "6.IH" "6.prems"(1) * by(simp) | |
also have "\<dots> = 2 * \<phi> A + \<phi> ?A2BC + \<phi> ?BC - \<phi> ?AB - 3 * \<phi> ?X + 2" | |
using sp by(simp add: size_if_splay) | |
also have "\<dots> < \<phi> A + \<phi> ?A2BC + \<phi> ?BC - 3 * \<phi> ?X + 2" by(simp) | |
also have "\<dots> < \<phi> ?A2BC + 2 * \<phi> ?ABC - 3 * \<phi> ?X + 1" | |
using sp ld_ld_1_less[of "size1 A" "size1 ?BC"] | |
by(simp add: size_if_splay) | |
also have "\<dots> < 3 * \<phi> ?ABC - 3 * \<phi> ?X + 1" | |
using sp by(simp add: size_if_splay) | |
finally show ?case by simp | |
next | |
case (8 a x b B A C) | |
hence *: "\<langle>l, x, r\<rangle> \<in> subtrees B" by(fastforce dest: in_set_tree_if) | |
obtain B1 b' B2 where sp: "splay x B = Node B1 b' B2" | |
using splay_not_Leaf[OF \<open>B \<noteq> Leaf\<close>] by blast | |
let ?X = "Node l x r" let ?AB = "Node A a B" let ?ABC = "Node ?AB b C" | |
let ?B' = "Node B1 b' B2" | |
let ?AB1 = "Node A a B1" let ?B2C = "Node B2 b C" let ?AB1B2C = "Node ?AB1 b' ?B2C" | |
have 0: "\<phi> ?AB1B2C = \<phi> ?ABC" using sp by(simp add: size_if_splay) | |
have 1: "\<Phi> ?AB1B2C - \<Phi> ?ABC = \<Phi> B1 + \<Phi> B2 + \<phi> ?AB1 + \<phi> ?B2C - \<Phi> B - \<phi> ?AB" | |
using 0 by (simp) | |
have "A_splay x ?ABC = T_splay x B + 1 + \<Phi> ?AB1B2C - \<Phi> ?ABC" | |
using "8.hyps" sp by(simp add: A_splay_def) | |
also have "\<dots> = T_splay x B + 1 + \<Phi> B1 + \<Phi> B2 + \<phi> ?AB1 + \<phi> ?B2C - \<Phi> B - \<phi> ?AB" | |
using 1 by simp | |
also have "\<dots> = T_splay x B + \<Phi> ?B' - \<phi> ?B' - \<Phi> B + \<phi> ?AB1 + \<phi> ?B2C - \<phi> ?AB + 1" | |
by simp | |
also have "\<dots> = A_splay x B + \<phi> ?AB1 + \<phi> ?B2C - \<phi> ?AB - \<phi> ?B' + 1" | |
using sp by (simp add: A_splay_def) | |
also have "\<dots> \<le> 3 * \<phi> B + \<phi> ?AB1 + \<phi> ?B2C - \<phi> ?AB - \<phi> ?B' - 3 * \<phi> ?X + 2" | |
using "8.IH" "8.prems"(1) * by(simp) | |
also have "\<dots> = 2 * \<phi> B + \<phi> ?AB1 + \<phi> ?B2C - \<phi> ?AB - 3 * \<phi> ?X + 2" | |
using sp by(simp add: size_if_splay) | |
also have "\<dots> < \<phi> B + \<phi> ?AB1 + \<phi> ?B2C - 3 * \<phi> ?X + 2" by(simp) | |
also have "\<dots> < \<phi> B + 2 * \<phi> ?ABC - 3 * \<phi> ?X + 1" | |
using sp ld_ld_1_less[of "size1 ?AB1" "size1 ?B2C"] | |
by(simp add: size_if_splay) | |
also have "\<dots> < 3 * \<phi> ?ABC - 3 * \<phi> ?X + 1" by(simp) | |
finally show ?case by simp | |
next | |
case (11 b x c C A D) | |
hence *: "\<langle>l, x, r\<rangle> \<in> subtrees C" by(fastforce dest: in_set_tree_if) | |
obtain C1 c' C2 where sp: "splay x C = Node C1 c' C2" | |
using splay_not_Leaf[OF \<open>C \<noteq> Leaf\<close>] by blast | |
let ?X = "Node l x r" let ?CD = "Node C c D" let ?ACD = "Node A b ?CD" | |
let ?C' = "Node C1 c' C2" | |
let ?C2D = "Node C2 c D" let ?AC1 = "Node A b C1" | |
have "A_splay x ?ACD = A_splay x C + \<phi> ?C2D + \<phi> ?AC1 - \<phi> ?CD - \<phi> ?C' + 1" | |
using "11.hyps" sp | |
by(auto simp: A_splay_def size_if_splay algebra_simps split: tree.split) | |
also have "\<dots> \<le> 3 * \<phi> C + \<phi> ?C2D + \<phi> ?AC1 - \<phi> ?CD - \<phi> ?C' - 3 * \<phi> ?X + 2" | |
using "11.IH" "11.prems"(1) * by(auto simp: algebra_simps) | |
also have "\<dots> = 2 * \<phi> C + \<phi> ?C2D + \<phi> ?AC1 - \<phi> ?CD - 3 * \<phi> ?X + 2" | |
using sp by(simp add: size_if_splay) | |
also have "\<dots> \<le> \<phi> C + \<phi> ?C2D + \<phi> ?AC1 - 3 * \<phi> ?X + 2" by(simp) | |
also have "\<dots> \<le> \<phi> C + 2 * \<phi> ?ACD - 3 * \<phi> ?X + 1" | |
using sp ld_ld_1_less[of "size1 ?C2D" "size1 ?AC1"] | |
by(simp add: size_if_splay algebra_simps) | |
also have "\<dots> \<le> 3 * \<phi> ?ACD - 3 * \<phi> ?X + 1" by(simp) | |
finally show ?case by simp | |
next | |
case (14 a x b CD A B) | |
hence 0: "x \<notin> set_tree B \<and> x \<notin> set_tree A" | |
using "14.prems"(1) \<open>b<x\<close> by(auto) | |
hence 1: "x \<in> set_tree CD" using "14.prems" \<open>b<x\<close> \<open>a<x\<close> by (auto) | |
obtain C c D where sp: "splay x CD = Node C c D" | |
using splay_not_Leaf[OF \<open>CD \<noteq> Leaf\<close>] by blast | |
from zig_zig[of CD x D C l r _ b B a A] 14 sp 0 | |
show ?case by(auto simp: A_splay_def size_if_splay algebra_simps) | |
(* The explicit version: | |
have "A_splay x ?A = A_splay x ?R + \<phi> ?B' + \<phi> ?A' - \<phi> ?B - \<phi> ?R' + 1" | |
using "14.prems" 1 sp | |
by(auto simp: A_splay_def size_if_splay algebra_simps split: tree.split) | |
also have "\<dots> \<le> 3 * \<phi> ?R + \<phi> ?B' + \<phi> ?A' - \<phi> ?B - \<phi> ?R' - 3 * \<phi> ?X + 2" | |
using 14 0 by(auto simp: algebra_simps) | |
also have "\<dots> = 2 * \<phi> rb + \<phi> ?B' + \<phi> ?A' - \<phi> ?B - 3 * \<phi> ?X + 2" | |
using sp by(simp add: size_if_splay) | |
also have "\<dots> \<le> \<phi> ?R + \<phi> ?B' + \<phi> ?A' - 3 * \<phi> ?X + 2" by(simp) | |
also have "\<dots> \<le> \<phi> ?B' + 2 * \<phi> ?A - 3 * \<phi> ?X + 1" | |
using sp ld_ld_1_less[of "size1 ?R" "size1 ?A'"] | |
by(simp add: size_if_splay algebra_simps) | |
also have "\<dots> \<le> 3 * \<phi> ?A - 3 * \<phi> ?X + 1" | |
using sp by(simp add: size_if_splay) | |
finally show ?case by simp | |
*) | |
qed | |
lemma A_splay_ub2: assumes "bst t" "x : set_tree t" | |
shows "A_splay x t \<le> 3 * (\<phi> t - 1) + 1" | |
proof - | |
from assms(2) obtain l r where N: "Node l x r : subtrees t" | |
by (metis set_treeE) | |
have "A_splay x t \<le> 3 * (\<phi> t - \<phi>(Node l x r)) + 1" by(rule A_splay_ub[OF assms(1) N]) | |
also have "\<dots> \<le> 3 * (\<phi> t - 1) + 1" by(simp add: field_simps) | |
finally show ?thesis . | |
qed | |
lemma A_splay_ub3: assumes "bst t" shows "A_splay x t \<le> 3 * \<phi> t + 1" | |
proof cases | |
assume "t = Leaf" thus ?thesis by(simp add: A_splay_def) | |
next | |
assume "t \<noteq> Leaf" | |
from ex_in_set_tree[OF this assms] obtain x' where | |
a': "x' \<in> set_tree t" "splay x' t = splay x t" "T_splay x' t = T_splay x t" | |
by blast | |
show ?thesis using A_splay_ub2[OF assms a'(1)] by(simp add: A_splay_def a') | |
qed | |
subsubsection "Analysis of insert" | |
lemma amor_insert: assumes "bst t" | |
shows "T_insert x t + \<Phi>(Splay_Tree.insert x t) - \<Phi> t \<le> 4 * log 2 (size1 t) + 3" (is "?l \<le> ?r") | |
proof cases | |
assume "t = Leaf" thus ?thesis by(simp add: T_insert_def) | |
next | |
assume "t \<noteq> Leaf" | |
then obtain l e r where [simp]: "splay x t = Node l e r" | |
by (metis tree.exhaust splay_Leaf_iff) | |
let ?t = "real(T_splay x t)" | |
let ?Plr = "\<Phi> l + \<Phi> r" let ?Ps = "\<Phi> t" | |
let ?slr = "real(size1 l) + real(size1 r)" let ?LR = "log 2 (1 + ?slr)" | |
have opt: "?t + \<Phi> (splay x t) - ?Ps \<le> 3 * log 2 (real (size1 t)) + 1" | |
using A_splay_ub3[OF \<open>bst t\<close>, simplified A_splay_def, of x] by (simp) | |
from less_linear[of e x] | |
show ?thesis | |
proof (elim disjE) | |
assume "e=x" | |
have nneg: "log 2 (1 + real (size t)) \<ge> 0" by simp | |
thus ?thesis using \<open>t \<noteq> Leaf\<close> opt \<open>e=x\<close> | |
apply(simp add: T_insert_def algebra_simps) using nneg by arith | |
next | |
let ?L = "log 2 (real(size1 l) + 1)" | |
assume "e < x" hence "e \<noteq> x" by simp | |
hence "?l = (?t + ?Plr - ?Ps) + ?L + ?LR + 1" | |
using \<open>t \<noteq> Leaf\<close> \<open>e<x\<close> by(simp add: T_insert_def) | |
also have "?t + ?Plr - ?Ps \<le> 2 * log 2 ?slr + 1" | |
using opt size_splay[of x t,symmetric] by(simp) | |
also have "?L \<le> log 2 ?slr" by(simp) | |
also have "?LR \<le> log 2 ?slr + 1" | |
proof - | |
have "?LR \<le> log 2 (2 * ?slr)" by (simp add:) | |
also have "\<dots> \<le> log 2 ?slr + 1" | |
by (simp add: log_mult del:distrib_left_numeral) | |
finally show ?thesis . | |
qed | |
finally show ?thesis using size_splay[of x t,symmetric] by (simp) | |
next | |
let ?R = "log 2 (2 + real(size r))" | |
assume "x < e" hence "e \<noteq> x" by simp | |
hence "?l = (?t + ?Plr - ?Ps) + ?R + ?LR + 1" | |
using \<open>t \<noteq> Leaf\<close> \<open>x < e\<close> by(simp add: T_insert_def) | |
also have "?t + ?Plr - ?Ps \<le> 2 * log 2 ?slr + 1" | |
using opt size_splay[of x t,symmetric] by(simp) | |
also have "?R \<le> log 2 ?slr" by(simp) | |
also have "?LR \<le> log 2 ?slr + 1" | |
proof - | |
have "?LR \<le> log 2 (2 * ?slr)" by (simp add:) | |
also have "\<dots> \<le> log 2 ?slr + 1" | |
by (simp add: log_mult del:distrib_left_numeral) | |
finally show ?thesis . | |
qed | |
finally show ?thesis using size_splay[of x t, symmetric] by simp | |
qed | |
qed | |
subsubsection "Analysis of delete" | |
definition A_splay_max :: "'a::linorder tree \<Rightarrow> real" where | |
"A_splay_max t = T_splay_max t + \<Phi>(splay_max t) - \<Phi> t" | |
lemma A_splay_max_ub: "t \<noteq> Leaf \<Longrightarrow> A_splay_max t \<le> 3 * (\<phi> t - 1) + 1" | |
proof(induction t rule: splay_max.induct) | |
case 1 thus ?case by (simp) | |
next | |
case (2 A) | |
thus ?case using one_le_log_cancel_iff[of 2 "size1 A + 1"] | |
by (simp add: A_splay_max_def del: one_le_log_cancel_iff) | |
next | |
case (3 l b rl c rr) | |
show ?case | |
proof cases | |
assume "rr = Leaf" | |
thus ?thesis | |
using one_le_log_cancel_iff[of 2 "1 + size1 rl"] | |
one_le_log_cancel_iff[of 2 "1 + size1 l + size1 rl"] | |
log_le_cancel_iff[of 2 "size1 l + size1 rl" "1 + size1 l + size1 rl"] | |
by (auto simp: A_splay_max_def field_simps | |
simp del: log_le_cancel_iff one_le_log_cancel_iff) | |
next | |
assume "rr \<noteq> Leaf" | |
then obtain l' u r' where sp: "splay_max rr = Node l' u r'" | |
using splay_max_Leaf_iff tree.exhaust by blast | |
hence 1: "size rr = size l' + size r' + 1" | |
using size_splay_max[of rr,symmetric] by(simp) | |
let ?C = "Node rl c rr" let ?B = "Node l b ?C" | |
let ?B' = "Node l b rl" let ?C' = "Node ?B' c l'" | |
have "A_splay_max ?B = A_splay_max rr + \<phi> ?B' + \<phi> ?C' - \<phi> rr - \<phi> ?C + 1" using "3.prems" sp 1 | |
by(auto simp add: A_splay_max_def) | |
also have "\<dots> \<le> 3 * (\<phi> rr - 1) + \<phi> ?B' + \<phi> ?C' - \<phi> rr - \<phi> ?C + 2" | |
using 3 \<open>rr \<noteq> Leaf\<close> by auto | |
also have "\<dots> = 2 * \<phi> rr + \<phi> ?B' + \<phi> ?C' - \<phi> ?C - 1" by simp | |
also have "\<dots> \<le> \<phi> rr + \<phi> ?B' + \<phi> ?C' - 1" by simp | |
also have "\<dots> \<le> 2 * \<phi> ?B + \<phi> ?C' - 2" | |
using ld_ld_1_less[of "size1 ?B'" "size1 rr"] by(simp add:) | |
also have "\<dots> \<le> 3 * \<phi> ?B - 2" using 1 by simp | |
finally show ?case by simp | |
qed | |
qed | |
lemma A_splay_max_ub3: "A_splay_max t \<le> 3 * \<phi> t + 1" | |
proof cases | |
assume "t = Leaf" thus ?thesis by(simp add: A_splay_max_def) | |
next | |
assume "t \<noteq> Leaf" | |
show ?thesis using A_splay_max_ub[OF \<open>t \<noteq> Leaf\<close>] by(simp) | |
qed | |
lemma amor_delete: assumes "bst t" | |
shows "T_delete a t + \<Phi>(Splay_Tree.delete a t) - \<Phi> t \<le> 6 * log 2 (size1 t) + 3" | |
proof (cases t) | |
case Leaf thus ?thesis by(simp add: Splay_Tree.delete_def T_delete_def) | |
next | |
case [simp]: (Node ls x rs) | |
then obtain l e r where sp[simp]: "splay a (Node ls x rs) = Node l e r" | |
by (metis tree.exhaust splay_Leaf_iff) | |
let ?t = "real(T_splay a t)" | |
let ?Plr = "\<Phi> l + \<Phi> r" let ?Ps = "\<Phi> t" | |
let ?slr = "real(size1 l) + real(size1 r)" let ?LR = "log 2 (1 + ?slr)" | |
let ?lslr = "log 2 (real (size ls) + (real (size rs) + 2))" | |
have "?lslr \<ge> 0" by simp | |
have opt: "?t + \<Phi> (splay a t) - ?Ps \<le> 3 * log 2 (real (size1 t)) + 1" | |
using A_splay_ub3[OF \<open>bst t\<close>, simplified A_splay_def, of a] | |
by (simp add: field_simps) | |
show ?thesis | |
proof (cases "e=a") | |
case False thus ?thesis | |
using opt apply(simp add: Splay_Tree.delete_def T_delete_def field_simps) | |
using \<open>?lslr \<ge> 0\<close> by arith | |
next | |
case [simp]: True | |
show ?thesis | |
proof (cases l) | |
case Leaf | |
have 1: "log 2 (real (size r) + 2) \<ge> 0" by(simp) | |
show ?thesis | |
using Leaf opt apply(simp add: Splay_Tree.delete_def T_delete_def field_simps) | |
using 1 \<open>?lslr \<ge> 0\<close> by arith | |
next | |
case (Node ll y lr) | |
then obtain l' y' r' where [simp]: "splay_max (Node ll y lr) = Node l' y' r'" | |
using splay_max_Leaf_iff tree.exhaust by blast | |
have "bst l" using bst_splay[OF \<open>bst t\<close>, of a] by simp | |
have "\<Phi> r' \<ge> 0" apply (induction r') by (auto) | |
have optm: "real(T_splay_max l) + \<Phi> (splay_max l) - \<Phi> l \<le> 3 * \<phi> l + 1" | |
using A_splay_max_ub3[of l, simplified A_splay_max_def] by (simp add: field_simps Node) | |
have 1: "log 2 (2+(real(size l')+real(size r))) \<le> log 2 (2+(real(size l)+real(size r)))" | |
using size_splay_max[of l] Node by simp | |
have 2: "log 2 (2 + (real (size l') + real (size r'))) \<ge> 0" by simp | |
have 3: "log 2 (size1 l' + size1 r) \<le> log 2 (size1 l' + size1 r') + log 2 ?slr" | |
apply simp using 1 2 by arith | |
have 4: "log 2 (real(size ll) + (real(size lr) + 2)) \<le> ?lslr" | |
using size_if_splay[OF sp] Node by simp | |
show ?thesis using add_mono[OF opt optm] Node 3 | |
apply(simp add: Splay_Tree.delete_def T_delete_def field_simps) | |
using 4 \<open>\<Phi> r' \<ge> 0\<close> by arith | |
qed | |
qed | |
qed | |
subsubsection "Overall analysis" | |
fun U where | |
"U Empty [] = 1" | | |
"U (Splay _) [t] = 3 * log 2 (size1 t) + 1" | | |
"U (Insert _) [t] = 4 * log 2 (size1 t) + 3" | | |
"U (Delete _) [t] = 6 * log 2 (size1 t) + 3" | |
interpretation Amortized | |
where arity = arity and exec = exec and inv = bst | |
and cost = cost and \<Phi> = \<Phi> and U = U | |
proof (standard, goal_cases) | |
case (1 ss f) show ?case | |
proof (cases f) | |
case Empty thus ?thesis using 1 by auto | |
next | |
case (Splay a) | |
then obtain t where "ss = [t]" "bst t" using 1 by auto | |
with Splay bst_splay[OF \<open>bst t\<close>, of a] show ?thesis | |
by (auto split: tree.split) | |
next | |
case (Insert a) | |
then obtain t where "ss = [t]" "bst t" using 1 by auto | |
with bst_splay[OF \<open>bst t\<close>, of a] Insert show ?thesis | |
by (auto simp: splay_bstL[OF \<open>bst t\<close>] splay_bstR[OF \<open>bst t\<close>] split: tree.split) | |
next | |
case (Delete a) | |
then obtain t where "ss = [t]" "bst t" using 1 by auto | |
with 1 Delete show ?thesis by(simp add: bst_delete) | |
qed | |
next | |
case (2 t) thus ?case by (induction t) auto | |
next | |
case (3 ss f) | |
show ?case (is "?l \<le> ?r") | |
proof(cases f) | |
case Empty thus ?thesis using 3(2) by(simp add: A_splay_def) | |
next | |
case (Splay a) | |
then obtain t where "ss = [t]" "bst t" using 3 by auto | |
thus ?thesis using Splay A_splay_ub3[OF \<open>bst t\<close>] by(simp add: A_splay_def) | |
next | |
case [simp]: (Insert a) | |
then obtain t where [simp]: "ss = [t]" and "bst t" using 3 by auto | |
thus ?thesis using amor_insert[of t a] by auto | |
next | |
case [simp]: (Delete a) | |
then obtain t where [simp]: "ss = [t]" and "bst t" using 3 by auto | |
thus ?thesis using amor_delete[of t a] by auto | |
qed | |
qed | |
end | |