Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: Indexed_PQueue.thy | |
Author: Bohua Zhan | |
*) | |
section \<open>Indexed priority queues\<close> | |
theory Indexed_PQueue | |
imports Arrays_Ex Mapping_Str | |
begin | |
text \<open> | |
Verification of indexed priority queue: functional part. The data | |
structure is also verified by Lammich in | |
\cite{Refine_Imperative_HOL-AFP}. | |
\<close> | |
subsection \<open>Successor functions, eq-pred predicate\<close> | |
fun s1 :: "nat \<Rightarrow> nat" where "s1 m = 2 * m + 1" | |
fun s2 :: "nat \<Rightarrow> nat" where "s2 m = 2 * m + 2" | |
lemma s_inj [forward]: | |
"s1 m = s1 m' \<Longrightarrow> m = m'" "s2 m = s2 m' \<Longrightarrow> m = m'" by auto | |
lemma s_neq [resolve]: | |
"s1 m \<noteq> s2 m'" "s1 m > m" "s2 m > m" "s2 m > s1 m" using s1.simps s2.simps by presburger+ | |
setup \<open>add_forward_prfstep_cond @{thm s_neq(2)} [with_term "s1 ?m"]\<close> | |
setup \<open>add_forward_prfstep_cond @{thm s_neq(3)} [with_term "s2 ?m"]\<close> | |
setup \<open>add_forward_prfstep_cond @{thm s_neq(4)} [with_term "s2 ?m", with_term "s1 ?m"]\<close> | |
inductive eq_pred :: "nat \<Rightarrow> nat \<Rightarrow> bool" where | |
"eq_pred n n" | |
| "eq_pred n m \<Longrightarrow> eq_pred n (s1 m)" | |
| "eq_pred n m \<Longrightarrow> eq_pred n (s2 m)" | |
setup \<open>add_case_induct_rule @{thm eq_pred.cases}\<close> | |
setup \<open>add_prop_induct_rule @{thm eq_pred.induct}\<close> | |
setup \<open>add_resolve_prfstep @{thm eq_pred.intros(1)}\<close> | |
setup \<open>fold add_backward_prfstep @{thms eq_pred.intros(2,3)}\<close> | |
lemma eq_pred_parent1 [forward]: | |
"eq_pred i (s1 k) \<Longrightarrow> i \<noteq> s1 k \<Longrightarrow> eq_pred i k" | |
@proof @let "v = s1 k" @prop_induct "eq_pred i v" @qed | |
lemma eq_pred_parent2 [forward]: | |
"eq_pred i (s2 k) \<Longrightarrow> i \<noteq> s2 k \<Longrightarrow> eq_pred i k" | |
@proof @let "v = s2 k" @prop_induct "eq_pred i v" @qed | |
lemma eq_pred_cases: | |
"eq_pred i j \<Longrightarrow> eq_pred (s1 i) j \<or> eq_pred (s2 i) j \<or> j = i \<or> j = s1 i \<or> j = s2 i" | |
@proof @prop_induct "eq_pred i j" @qed | |
setup \<open>add_forward_prfstep_cond @{thm eq_pred_cases} [with_cond "?i \<noteq> s1 ?k", with_cond "?i \<noteq> s2 ?k"]\<close> | |
lemma eq_pred_le [forward]: "eq_pred i j \<Longrightarrow> i \<le> j" | |
@proof @prop_induct "eq_pred i j" @qed | |
subsection \<open>Heap property\<close> | |
text \<open>The corresponding tree is a heap\<close> | |
definition is_heap :: "('a \<times> 'b::linorder) list \<Rightarrow> bool" where [rewrite]: | |
"is_heap xs = (\<forall>i j. eq_pred i j \<longrightarrow> j < length xs \<longrightarrow> snd (xs ! i) \<le> snd (xs ! j))" | |
lemma is_heapD: | |
"is_heap xs \<Longrightarrow> j < length xs \<Longrightarrow> eq_pred i j \<Longrightarrow> snd (xs ! i) \<le> snd (xs ! j)" by auto2 | |
setup \<open>add_forward_prfstep_cond @{thm is_heapD} [with_term "?xs ! ?j"]\<close> | |
setup \<open>del_prfstep_thm_eqforward @{thm is_heap_def}\<close> | |
subsection \<open>Bubble-down\<close> | |
text \<open>The corresponding tree is a heap, except k is not necessarily smaller than its descendents.\<close> | |
definition is_heap_partial1 :: "('a \<times> 'b::linorder) list \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]: | |
"is_heap_partial1 xs k = (\<forall>i j. eq_pred i j \<longrightarrow> i \<noteq> k \<longrightarrow> j < length xs \<longrightarrow> snd (xs ! i) \<le> snd (xs ! j))" | |
text \<open>Two cases of switching with s1 k.\<close> | |
lemma bubble_down1: | |
"s1 k < length xs \<Longrightarrow> is_heap_partial1 xs k \<Longrightarrow> snd (xs ! k) > snd (xs ! s1 k) \<Longrightarrow> | |
snd (xs ! s1 k) \<le> snd (xs ! s2 k) \<Longrightarrow> is_heap_partial1 (list_swap xs k (s1 k)) (s1 k)" by auto2 | |
setup \<open>add_forward_prfstep_cond @{thm bubble_down1} [with_term "list_swap ?xs ?k (s1 ?k)"]\<close> | |
lemma bubble_down2: | |
"s1 k < length xs \<Longrightarrow> is_heap_partial1 xs k \<Longrightarrow> snd (xs ! k) > snd (xs ! s1 k) \<Longrightarrow> | |
s2 k \<ge> length xs \<Longrightarrow> is_heap_partial1 (list_swap xs k (s1 k)) (s1 k)" by auto2 | |
setup \<open>add_forward_prfstep_cond @{thm bubble_down2} [with_term "list_swap ?xs ?k (s1 ?k)"]\<close> | |
text \<open>One case of switching with s2 k.\<close> | |
lemma bubble_down3: | |
"s2 k < length xs \<Longrightarrow> is_heap_partial1 xs k \<Longrightarrow> snd (xs ! s1 k) > snd (xs ! s2 k) \<Longrightarrow> | |
snd (xs ! k) > snd (xs ! s2 k) \<Longrightarrow> xs' = list_swap xs k (s2 k) \<Longrightarrow> is_heap_partial1 xs' (s2 k)" by auto2 | |
setup \<open>add_forward_prfstep_cond @{thm bubble_down3} [with_term "?xs'"]\<close> | |
subsection \<open>Bubble-up\<close> | |
fun par :: "nat \<Rightarrow> nat" where | |
"par m = (m - 1) div 2" | |
setup \<open>register_wellform_data ("par m", ["m \<noteq> 0"])\<close> | |
lemma ps_inverse [rewrite]: "par (s1 k) = k" "par (s2 k) = k" by simp+ | |
lemma p_basic: "m \<noteq> 0 \<Longrightarrow> par m < m" by auto | |
setup \<open>add_forward_prfstep_cond @{thm p_basic} [with_term "par ?m"]\<close> | |
lemma p_cases: "m \<noteq> 0 \<Longrightarrow> m = s1 (par m) \<or> m = s2 (par m)" by auto | |
setup \<open>add_forward_prfstep_cond @{thm p_cases} [with_term "par ?m"]\<close> | |
lemma eq_pred_p_next: | |
"i \<noteq> 0 \<Longrightarrow> eq_pred i j \<Longrightarrow> eq_pred (par i) j" | |
@proof @prop_induct "eq_pred i j" @qed | |
setup \<open>add_forward_prfstep_cond @{thm eq_pred_p_next} [with_term "par ?i"]\<close> | |
lemma heap_implies_hd_min [resolve]: | |
"is_heap xs \<Longrightarrow> i < length xs \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> snd (hd xs) \<le> snd (xs ! i)" | |
@proof | |
@strong_induct i | |
@case "i = 0" @apply_induct_hyp "par i" | |
@have "eq_pred (par i) i" | |
@qed | |
text \<open>The corresponding tree is a heap, except k is not necessarily greater than its ancestors.\<close> | |
definition is_heap_partial2 :: "('a \<times> 'b::linorder) list \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]: | |
"is_heap_partial2 xs k = (\<forall>i j. eq_pred i j \<longrightarrow> j < length xs \<longrightarrow> j \<noteq> k \<longrightarrow> snd (xs ! i) \<le> snd (xs ! j))" | |
lemma bubble_up1 [forward]: | |
"k < length xs \<Longrightarrow> is_heap_partial2 xs k \<Longrightarrow> snd (xs ! k) < snd (xs ! par k) \<Longrightarrow> k \<noteq> 0 \<Longrightarrow> | |
is_heap_partial2 (list_swap xs k (par k)) (par k)" by auto2 | |
lemma bubble_up2 [forward]: | |
"k < length xs \<Longrightarrow> is_heap_partial2 xs k \<Longrightarrow> snd (xs ! k) \<ge> snd (xs ! par k) \<Longrightarrow> k \<noteq> 0 \<Longrightarrow> | |
is_heap xs" by auto2 | |
setup \<open>del_prfstep_thm @{thm p_cases}\<close> | |
subsection \<open>Indexed priority queue\<close> | |
type_synonym 'a idx_pqueue = "(nat \<times> 'a) list \<times> nat option list" | |
fun index_of_pqueue :: "'a idx_pqueue \<Rightarrow> bool" where | |
"index_of_pqueue (xs, m) = ( | |
(\<forall>i<length xs. fst (xs ! i) < length m \<and> m ! (fst (xs ! i)) = Some i) \<and> | |
(\<forall>i. \<forall>k<length m. m ! k = Some i \<longrightarrow> i < length xs \<and> fst (xs ! i) = k))" | |
setup \<open>add_rewrite_rule @{thm index_of_pqueue.simps}\<close> | |
lemma index_of_pqueueD1: | |
"i < length xs \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow> | |
fst (xs ! i) < length m \<and> m ! (fst (xs ! i)) = Some i" by auto2 | |
setup \<open>add_forward_prfstep_cond @{thm index_of_pqueueD1} [with_term "?xs ! ?i"]\<close> | |
lemma index_of_pqueueD2 [forward]: | |
"k < length m \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow> | |
m ! k = Some i \<Longrightarrow> i < length xs \<and> fst (xs ! i) = k" by auto2 | |
lemma index_of_pqueueD3 [forward]: | |
"index_of_pqueue (xs, m) \<Longrightarrow> p \<in> set xs \<Longrightarrow> fst p < length m" | |
@proof @obtain i where "i < length xs" "xs ! i = p" @qed | |
setup \<open>del_prfstep_thm_eqforward @{thm index_of_pqueue.simps}\<close> | |
lemma has_index_unique_key [forward]: | |
"index_of_pqueue (xs, m) \<Longrightarrow> unique_keys_set (set xs)" | |
@proof | |
@have "\<forall>a x y. (a, x) \<in> set xs \<longrightarrow> (a, y) \<in> set xs \<longrightarrow> x = y" @with | |
@obtain i where "i < length xs" "xs ! i = (a, x)" | |
@obtain j where "j < length xs" "xs ! j = (a, y)" | |
@end | |
@qed | |
lemma has_index_keys_of [rewrite]: | |
"index_of_pqueue (xs, m) \<Longrightarrow> has_key_alist xs k \<longleftrightarrow> (k < length m \<and> m ! k \<noteq> None)" | |
@proof | |
@case "has_key_alist xs k" @with | |
@obtain v' where "(k, v') \<in> set xs" | |
@obtain i where "i < length xs \<and> xs ! i = (k, v')" | |
@end | |
@qed | |
lemma has_index_distinct [forward]: | |
"index_of_pqueue (xs, m) \<Longrightarrow> distinct xs" | |
@proof | |
@have "\<forall>i<length xs. \<forall>j<length xs. i \<noteq> j \<longrightarrow> xs ! i \<noteq> xs ! j" | |
@qed | |
subsection \<open>Basic operations on indexed\_queue\<close> | |
fun idx_pqueue_swap_fun :: "(nat \<times> 'a) list \<times> nat option list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (nat \<times> 'a) list \<times> nat option list" where | |
"idx_pqueue_swap_fun (xs, m) i j = ( | |
list_swap xs i j, ((m [fst (xs ! i) := Some j]) [fst (xs ! j) := Some i]))" | |
lemma index_of_pqueue_swap [forward_arg]: | |
"i < length xs \<Longrightarrow> j < length xs \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow> | |
index_of_pqueue (idx_pqueue_swap_fun (xs, m) i j)" | |
@proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed | |
lemma fst_idx_pqueue_swap [rewrite]: | |
"fst (idx_pqueue_swap_fun (xs, m) i j) = list_swap xs i j" | |
@proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed | |
lemma snd_idx_pqueue_swap [rewrite]: | |
"length (snd (idx_pqueue_swap_fun (xs, m) i j)) = length m" | |
@proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed | |
fun idx_pqueue_push_fun :: "nat \<Rightarrow> 'a \<Rightarrow> 'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where | |
"idx_pqueue_push_fun k v (xs, m) = (xs @ [(k, v)], list_update m k (Some (length xs)))" | |
lemma idx_pqueue_push_correct [forward_arg]: | |
"index_of_pqueue (xs, m) \<Longrightarrow> k < length m \<Longrightarrow> \<not>has_key_alist xs k \<Longrightarrow> | |
r = idx_pqueue_push_fun k v (xs, m) \<Longrightarrow> | |
index_of_pqueue r \<and> fst r = xs @ [(k, v)] \<and> length (snd r) = length m" | |
@proof @unfold "idx_pqueue_push_fun k v (xs, m)" @qed | |
fun idx_pqueue_pop_fun :: "'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where | |
"idx_pqueue_pop_fun (xs, m) = (butlast xs, list_update m (fst (last xs)) None)" | |
lemma idx_pqueue_pop_correct [forward_arg]: | |
"index_of_pqueue (xs, m) \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> r = idx_pqueue_pop_fun (xs, m) \<Longrightarrow> | |
index_of_pqueue r \<and> fst r = butlast xs \<and> length (snd r) = length m" | |
@proof | |
@unfold "idx_pqueue_pop_fun (xs, m)" | |
@have "length xs = length (butlast xs) + 1" | |
@have "fst (xs ! length (butlast xs)) < length m" (* TODO: remove? *) | |
@qed | |
subsection \<open>Bubble up and down\<close> | |
function idx_bubble_down_fun :: "'a::linorder idx_pqueue \<Rightarrow> nat \<Rightarrow> 'a idx_pqueue" where | |
"idx_bubble_down_fun (xs, m) k = ( | |
if s2 k < length xs then | |
if snd (xs ! s1 k) \<le> snd (xs ! s2 k) then | |
if snd (xs ! k) > snd (xs ! s1 k) then | |
idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s1 k)) (s1 k) | |
else (xs, m) | |
else | |
if snd (xs ! k) > snd (xs ! s2 k) then | |
idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s2 k)) (s2 k) | |
else (xs, m) | |
else if s1 k < length xs then | |
if snd (xs ! k) > snd (xs ! s1 k) then | |
idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s1 k)) (s1 k) | |
else (xs, m) | |
else (xs, m))" | |
by pat_completeness auto | |
termination by (relation "measure (\<lambda>((xs,_),k). (length xs - k))") (simp_all, auto2+) | |
lemma idx_bubble_down_fun_correct: | |
"r = idx_bubble_down_fun x k \<Longrightarrow> is_heap_partial1 (fst x) k \<Longrightarrow> | |
is_heap (fst r) \<and> mset (fst r) = mset (fst x) \<and> length (snd r) = length (snd x)" | |
@proof @fun_induct "idx_bubble_down_fun x k" @with | |
@subgoal "(x = (xs, m), k = k)" | |
@unfold "idx_bubble_down_fun (xs, m) k" | |
@case "s2 k < length xs" @with | |
@case "snd (xs ! s1 k) \<le> snd (xs ! s2 k)" | |
@end | |
@case "s1 k < length xs" @end | |
@qed | |
setup \<open>add_forward_prfstep_cond @{thm idx_bubble_down_fun_correct} [with_term "?r"]\<close> | |
lemma idx_bubble_down_fun_correct2 [forward]: | |
"index_of_pqueue x \<Longrightarrow> index_of_pqueue (idx_bubble_down_fun x k)" | |
@proof @fun_induct "idx_bubble_down_fun x k" @with | |
@subgoal "(x = (xs, m), k = k)" | |
@unfold "idx_bubble_down_fun (xs, m) k" | |
@case "s2 k < length xs" @with | |
@case "snd (xs ! s1 k) \<le> snd (xs ! s2 k)" | |
@end | |
@case "s1 k < length xs" @end | |
@qed | |
fun idx_bubble_up_fun :: "'a::linorder idx_pqueue \<Rightarrow> nat \<Rightarrow> 'a idx_pqueue" where | |
"idx_bubble_up_fun (xs, m) k = ( | |
if k = 0 then (xs, m) | |
else if k < length xs then | |
if snd (xs ! k) < snd (xs ! par k) then | |
idx_bubble_up_fun (idx_pqueue_swap_fun (xs, m) k (par k)) (par k) | |
else (xs, m) | |
else (xs, m))" | |
lemma idx_bubble_up_fun_correct: | |
"r = idx_bubble_up_fun x k \<Longrightarrow> is_heap_partial2 (fst x) k \<Longrightarrow> | |
is_heap (fst r) \<and> mset (fst r) = mset (fst x) \<and> length (snd r) = length (snd x)" | |
@proof @fun_induct "idx_bubble_up_fun x k" @with | |
@subgoal "(x = (xs, m), k = k)" | |
@unfold "idx_bubble_up_fun (xs, m) k" @end | |
@qed | |
setup \<open>add_forward_prfstep_cond @{thm idx_bubble_up_fun_correct} [with_term "?r"]\<close> | |
lemma idx_bubble_up_fun_correct2 [forward]: | |
"index_of_pqueue x \<Longrightarrow> index_of_pqueue (idx_bubble_up_fun x k)" | |
@proof @fun_induct "idx_bubble_up_fun x k" @with | |
@subgoal "(x = (xs, m), k = k)" | |
@unfold "idx_bubble_up_fun (xs, m) k" @end | |
@qed | |
subsection \<open>Main operations\<close> | |
fun delete_min_idx_pqueue_fun :: "'a::linorder idx_pqueue \<Rightarrow> (nat \<times> 'a) \<times> 'a idx_pqueue" where | |
"delete_min_idx_pqueue_fun (xs, m) = ( | |
let (xs', m') = idx_pqueue_swap_fun (xs, m) 0 (length xs - 1); | |
a'' = idx_pqueue_pop_fun (xs', m') | |
in (last xs', idx_bubble_down_fun a'' 0))" | |
lemma delete_min_idx_pqueue_correct: | |
"index_of_pqueue (xs, m) \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> res = delete_min_idx_pqueue_fun (xs, m) \<Longrightarrow> | |
index_of_pqueue (snd res)" | |
@proof @unfold "delete_min_idx_pqueue_fun (xs, m)" @qed | |
setup \<open>add_forward_prfstep_cond @{thm delete_min_idx_pqueue_correct} [with_term "?res"]\<close> | |
lemma hd_last_swap_eval_last [rewrite]: | |
"xs \<noteq> [] \<Longrightarrow> last (list_swap xs 0 (length xs - 1)) = hd xs" | |
@proof | |
@let "xs' = list_swap xs 0 (length xs - 1)" | |
@have "last xs' = xs' ! (length xs - 1)" | |
@qed | |
text \<open>Correctness of delete-min.\<close> | |
theorem delete_min_idx_pqueue_correct2: | |
"is_heap xs \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> res = delete_min_idx_pqueue_fun (xs, m) \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow> | |
is_heap (fst (snd res)) \<and> fst res = hd xs \<and> length (snd (snd res)) = length m \<and> | |
map_of_alist (fst (snd res)) = delete_map (fst (fst res)) (map_of_alist xs)" | |
@proof @unfold "delete_min_idx_pqueue_fun (xs, m)" | |
@let "xs' = list_swap xs 0 (length xs - 1)" | |
@have "is_heap_partial1 (butlast xs') 0" | |
@qed | |
setup \<open>add_forward_prfstep_cond @{thm delete_min_idx_pqueue_correct2} [with_term "?res"]\<close> | |
fun insert_idx_pqueue_fun :: "nat \<Rightarrow> 'a::linorder \<Rightarrow> 'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where | |
"insert_idx_pqueue_fun k v x = ( | |
let x' = idx_pqueue_push_fun k v x in | |
idx_bubble_up_fun x' (length (fst x') - 1))" | |
lemma insert_idx_pqueue_correct [forward_arg]: | |
"index_of_pqueue (xs, m) \<Longrightarrow> k < length m \<Longrightarrow> \<not>has_key_alist xs k \<Longrightarrow> | |
index_of_pqueue (insert_idx_pqueue_fun k v (xs, m))" | |
@proof @unfold "insert_idx_pqueue_fun k v (xs, m)" @qed | |
text \<open>Correctness of insertion.\<close> | |
theorem insert_idx_pqueue_correct2: | |
"index_of_pqueue (xs, m) \<Longrightarrow> is_heap xs \<Longrightarrow> k < length m \<Longrightarrow> \<not>has_key_alist xs k \<Longrightarrow> | |
r = insert_idx_pqueue_fun k v (xs, m) \<Longrightarrow> | |
is_heap (fst r) \<and> length (snd r) = length m \<and> | |
map_of_alist (fst r) = map_of_alist xs { k \<rightarrow> v }" | |
@proof @unfold "insert_idx_pqueue_fun k v (xs, m)" | |
@have "is_heap_partial2 (xs @ [(k, v)]) (length xs)" | |
@qed | |
setup \<open>add_forward_prfstep_cond @{thm insert_idx_pqueue_correct2} [with_term "?r"]\<close> | |
fun update_idx_pqueue_fun :: "nat \<Rightarrow> 'a::linorder \<Rightarrow> 'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where | |
"update_idx_pqueue_fun k v (xs, m) = ( | |
if m ! k = None then | |
insert_idx_pqueue_fun k v (xs, m) | |
else let | |
i = the (m ! k); | |
xs' = list_update xs i (k, v) | |
in | |
if snd (xs ! i) \<le> v then idx_bubble_down_fun (xs', m) i | |
else idx_bubble_up_fun (xs', m) i)" | |
lemma update_idx_pqueue_correct [forward_arg]: | |
"index_of_pqueue (xs, m) \<Longrightarrow> k < length m \<Longrightarrow> | |
index_of_pqueue (update_idx_pqueue_fun k v (xs, m))" | |
@proof @unfold "update_idx_pqueue_fun k v (xs, m)" | |
@let "i' = the (m ! k)" | |
@let "xs' = list_update xs i' (k, v)" | |
@case "m ! k = None" | |
@have "index_of_pqueue (xs', m)" | |
@qed | |
text \<open>Correctness of update.\<close> | |
theorem update_idx_pqueue_correct2: | |
"index_of_pqueue (xs, m) \<Longrightarrow> is_heap xs \<Longrightarrow> k < length m \<Longrightarrow> | |
r = update_idx_pqueue_fun k v (xs, m) \<Longrightarrow> | |
is_heap (fst r) \<and> length (snd r) = length m \<and> | |
map_of_alist (fst r) = map_of_alist xs { k \<rightarrow> v }" | |
@proof @unfold "update_idx_pqueue_fun k v (xs, m)" | |
@let "i = the (m ! k)" | |
@let "xs' = list_update xs i (k, v)" | |
@have "xs' = fst (xs', m)" (* TODO: remove *) | |
@case "m ! k = None" | |
@case "snd (xs ! the (m ! k)) \<le> v" @with | |
@have "is_heap_partial1 xs' i" | |
@end | |
@have "is_heap_partial2 xs' i" | |
@qed | |
setup \<open>add_forward_prfstep_cond @{thm update_idx_pqueue_correct2} [with_term "?r"]\<close> | |
end | |