Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
21 kB
(*
File: RBTree.thy
Author: Bohua Zhan
*)
section \<open>Red-black trees\<close>
theory RBTree
imports Lists_Ex
begin
text \<open>
Verification of functional red-black trees. For general technique,
see Lists\_Ex.thy.
\<close>
subsection \<open>Definition of RBT\<close>
datatype color = R | B
datatype ('a, 'b) rbt =
Leaf
| Node (lsub: "('a, 'b) rbt") (cl: color) (key: 'a) (val: 'b) (rsub: "('a, 'b) rbt")
where
"cl Leaf = B"
setup \<open>add_resolve_prfstep @{thm color.distinct(1)}\<close>
setup \<open>add_resolve_prfstep @{thm rbt.distinct(1)}\<close>
setup \<open>fold add_rewrite_rule @{thms rbt.sel}\<close>
setup \<open>add_forward_prfstep @{thm rbt.collapse}\<close>
setup \<open>add_var_induct_rule @{thm rbt.induct}\<close>
lemma not_R [forward]: "c \<noteq> R \<Longrightarrow> c = B" using color.exhaust by blast
lemma not_B [forward]: "c \<noteq> B \<Longrightarrow> c = R" using color.exhaust by blast
lemma red_not_leaf [forward]: "cl t = R \<Longrightarrow> t \<noteq> Leaf" by auto
subsection \<open>RBT invariants\<close>
fun black_depth :: "('a, 'b) rbt \<Rightarrow> nat" where
"black_depth Leaf = 0"
| "black_depth (Node l R k v r) = black_depth l"
| "black_depth (Node l B k v r) = black_depth l + 1"
setup \<open>fold add_rewrite_rule @{thms black_depth.simps}\<close>
fun cl_inv :: "('a, 'b) rbt \<Rightarrow> bool" where
"cl_inv Leaf = True"
| "cl_inv (Node l R k v r) = (cl_inv l \<and> cl_inv r \<and> cl l = B \<and> cl r = B)"
| "cl_inv (Node l B k v r) = (cl_inv l \<and> cl_inv r)"
setup \<open>fold add_rewrite_rule @{thms cl_inv.simps}\<close>
fun bd_inv :: "('a, 'b) rbt \<Rightarrow> bool" where
"bd_inv Leaf = True"
| "bd_inv (Node l c k v r) = (bd_inv l \<and> bd_inv r \<and> black_depth l = black_depth r)"
setup \<open>fold add_rewrite_rule @{thms bd_inv.simps}\<close>
definition is_rbt :: "('a, 'b) rbt \<Rightarrow> bool" where [rewrite]:
"is_rbt t = (cl_inv t \<and> bd_inv t)"
lemma cl_invI: "cl_inv l \<Longrightarrow> cl_inv r \<Longrightarrow> cl_inv (Node l B k v r)" by auto2
setup \<open>add_forward_prfstep_cond @{thm cl_invI} [with_term "Node ?l B ?k ?v ?r"]\<close>
lemma bd_invI: "bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> black_depth l = black_depth r \<Longrightarrow> bd_inv (Node l c k v r)" by auto2
setup \<open>add_forward_prfstep_cond @{thm bd_invI} [with_term "Node ?l ?c ?k ?v ?r"]\<close>
lemma is_rbt_rec [forward]: "is_rbt (Node l c k v r) \<Longrightarrow> is_rbt l \<and> is_rbt r"
@proof @case "c = R" @qed
subsection \<open>Balancedness of RBT\<close>
(* TODO: remove after having general normalization procedure for nats. *)
lemma two_distrib [rewrite]: "(2::nat) * (a + 1) = 2 * a + 2" by simp
fun min_depth :: "('a, 'b) rbt \<Rightarrow> nat" where
"min_depth Leaf = 0"
| "min_depth (Node l c k v r) = min (min_depth l) (min_depth r) + 1"
setup \<open>fold add_rewrite_rule @{thms min_depth.simps}\<close>
fun max_depth :: "('a, 'b) rbt \<Rightarrow> nat" where
"max_depth Leaf = 0"
| "max_depth (Node l c k v r) = max (max_depth l) (max_depth r) + 1"
setup \<open>fold add_rewrite_rule @{thms max_depth.simps}\<close>
text \<open>Balancedness of red-black trees.\<close>
theorem rbt_balanced: "is_rbt t \<Longrightarrow> max_depth t \<le> 2 * min_depth t + 1"
@proof
@induct t for "is_rbt t \<longrightarrow> black_depth t \<le> min_depth t" @with
@subgoal "t = Node l c k v r" @case "c = R" @endgoal
@end
@induct t for "is_rbt t \<longrightarrow> (if cl t = R then max_depth t \<le> 2 * black_depth t + 1
else max_depth t \<le> 2 * black_depth t)" @with
@subgoal "t = Node l c k v r" @case "c = R" @endgoal
@end
@have "max_depth t \<le> 2 * black_depth t + 1"
@qed
subsection \<open>Definition and basic properties of cl\_inv'\<close>
fun cl_inv' :: "('a, 'b) rbt \<Rightarrow> bool" where
"cl_inv' Leaf = True"
| "cl_inv' (Node l c k v r) = (cl_inv l \<and> cl_inv r)"
setup \<open>fold add_rewrite_rule @{thms cl_inv'.simps}\<close>
lemma cl_inv'B [forward, backward1]:
"cl_inv' t \<Longrightarrow> cl t = B \<Longrightarrow> cl_inv t"
@proof @case "t = Leaf" @qed
lemma cl_inv'R [forward]:
"cl_inv' (Node l R k v r) \<Longrightarrow> cl l = B \<Longrightarrow> cl r = B \<Longrightarrow> cl_inv (Node l R k v r)" by auto2
lemma cl_inv_to_cl_inv' [forward]: "cl_inv t \<Longrightarrow> cl_inv' t"
@proof @case "t = Leaf" @case "cl t = R" @qed
lemma cl_inv'I [forward_arg]:
"cl_inv l \<Longrightarrow> cl_inv r \<Longrightarrow> cl_inv' (Node l c k v r)" by auto
subsection \<open>Set of keys, sortedness\<close>
fun rbt_in_traverse :: "('a, 'b) rbt \<Rightarrow> 'a list" where
"rbt_in_traverse Leaf = []"
| "rbt_in_traverse (Node l c k v r) = rbt_in_traverse l @ k # rbt_in_traverse r"
setup \<open>fold add_rewrite_rule @{thms rbt_in_traverse.simps}\<close>
fun rbt_set :: "('a, 'b) rbt \<Rightarrow> 'a set" where
"rbt_set Leaf = {}"
| "rbt_set (Node l c k v r) = {k} \<union> rbt_set l \<union> rbt_set r"
setup \<open>fold add_rewrite_rule @{thms rbt_set.simps}\<close>
fun rbt_in_traverse_pairs :: "('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) list" where
"rbt_in_traverse_pairs Leaf = []"
| "rbt_in_traverse_pairs (Node l c k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r"
setup \<open>fold add_rewrite_rule @{thms rbt_in_traverse_pairs.simps}\<close>
lemma rbt_in_traverse_fst [rewrite]: "map fst (rbt_in_traverse_pairs t) = rbt_in_traverse t"
@proof @induct t @qed
definition rbt_map :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) map" where
"rbt_map t = map_of_alist (rbt_in_traverse_pairs t)"
setup \<open>add_rewrite_rule @{thm rbt_map_def}\<close>
fun rbt_sorted :: "('a::linorder, 'b) rbt \<Rightarrow> bool" where
"rbt_sorted Leaf = True"
| "rbt_sorted (Node l c k v r) = ((\<forall>x\<in>rbt_set l. x < k) \<and> (\<forall>x\<in>rbt_set r. k < x) \<and> rbt_sorted l \<and> rbt_sorted r)"
setup \<open>fold add_rewrite_rule @{thms rbt_sorted.simps}\<close>
lemma rbt_sorted_lr [forward]:
"rbt_sorted (Node l c k v r) \<Longrightarrow> rbt_sorted l \<and> rbt_sorted r" by auto2
lemma rbt_inorder_preserve_set [rewrite]:
"rbt_set t = set (rbt_in_traverse t)"
@proof @induct t @qed
lemma rbt_inorder_sorted [rewrite]:
"rbt_sorted t \<longleftrightarrow> strict_sorted (map fst (rbt_in_traverse_pairs t))"
@proof @induct t @qed
setup \<open>fold del_prfstep_thm (@{thms rbt_set.simps} @ @{thms rbt_sorted.simps})\<close>
subsection \<open>Balance function\<close>
definition balanceR :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"balanceR l k v r =
(if cl r = R then
let lr = lsub r; rr = rsub r in
if cl lr = R then Node (Node l B k v (lsub lr)) R (key lr) (val lr) (Node (rsub lr) B (key r) (val r) rr)
else if cl rr = R then Node (Node l B k v lr) R (key r) (val r) (Node (lsub rr) B (key rr) (val rr) (rsub rr))
else Node l B k v r
else Node l B k v r)"
definition balance :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"balance l k v r =
(if cl l = R then
let ll = lsub l; rl = rsub l in
if cl ll = R then Node (Node (lsub ll) B (key ll) (val ll) (rsub ll)) R (key l) (val l) (Node (rsub l) B k v r)
else if cl rl = R then Node (Node (lsub l) B (key l) (val l) (lsub rl)) R (key rl) (val rl) (Node (rsub rl) B k v r)
else balanceR l k v r
else balanceR l k v r)"
setup \<open>register_wellform_data ("balance l k v r", ["black_depth l = black_depth r"])\<close>
setup \<open>add_prfstep_check_req ("balance l k v r", "black_depth l = black_depth r")\<close>
lemma balance_non_Leaf [resolve]: "balance l k v r \<noteq> Leaf" by auto2
lemma balance_bdinv [forward_arg]:
"bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> black_depth l = black_depth r \<Longrightarrow> bd_inv (balance l k v r)"
@proof @have "bd_inv (balanceR l k v r)" @qed
lemma balance_bd [rewrite]:
"bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> black_depth l = black_depth r \<Longrightarrow>
black_depth (balance l k v r) = black_depth l + 1"
@proof @have "black_depth (balanceR l k v r) = black_depth l + 1" @qed
lemma balance_cl1 [forward]:
"cl_inv' l \<Longrightarrow> cl_inv r \<Longrightarrow> cl_inv (balance l k v r)" by auto2
lemma balance_cl2 [forward]:
"cl_inv l \<Longrightarrow> cl_inv' r \<Longrightarrow> cl_inv (balance l k v r)" by auto2
lemma balanceR_inorder_pairs [rewrite]:
"rbt_in_traverse_pairs (balanceR l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2
lemma balance_inorder_pairs [rewrite]:
"rbt_in_traverse_pairs (balance l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2
setup \<open>fold del_prfstep_thm [@{thm balanceR_def}, @{thm balance_def}]\<close>
subsection \<open>ins function\<close>
fun ins :: "'a::order \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
"ins x v Leaf = Node Leaf R x v Leaf"
| "ins x v (Node l c y w r) =
(if c = B then
(if x = y then Node l B x v r
else if x < y then balance (ins x v l) y w r
else balance l y w (ins x v r))
else
(if x = y then Node l R x v r
else if x < y then Node (ins x v l) R y w r
else Node l R y w (ins x v r)))"
setup \<open>fold add_rewrite_rule @{thms ins.simps}\<close>
lemma ins_non_Leaf [resolve]: "ins x v t \<noteq> Leaf"
@proof @case "t = Leaf" @qed
lemma cl_inv_ins [forward]:
"cl_inv t \<Longrightarrow> cl_inv' (ins x v t)"
@proof
@induct t for "cl_inv t \<longrightarrow> (if cl t = B then cl_inv (ins x v t) else cl_inv' (ins x v t))"
@qed
lemma bd_inv_ins:
"bd_inv t \<Longrightarrow> bd_inv (ins x v t) \<and> black_depth t = black_depth (ins x v t)"
@proof @induct t @qed
setup \<open>add_forward_prfstep_cond (conj_left_th @{thm bd_inv_ins}) [with_term "ins ?x ?v ?t"]\<close>
lemma ins_inorder_pairs [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_in_traverse_pairs (ins x v t) = ordered_insert_pairs x v (rbt_in_traverse_pairs t)"
@proof @induct t @qed
subsection \<open>Paint function\<close>
fun paint :: "color \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
"paint c Leaf = Leaf"
| "paint c (Node l c' x v r) = Node l c x v r"
setup \<open>fold add_rewrite_rule @{thms paint.simps}\<close>
setup \<open>register_wellform_data ("paint c t", ["t \<noteq> Leaf"])\<close>
setup \<open>add_prfstep_check_req ("paint c t", "t \<noteq> Leaf")\<close>
lemma paint_cl_inv' [forward]: "cl_inv' t \<Longrightarrow> cl_inv' (paint c t)" by auto2
lemma paint_bd_inv [forward]: "bd_inv t \<Longrightarrow> bd_inv (paint c t)" by auto2
lemma paint_bd [rewrite]:
"bd_inv t \<Longrightarrow> t \<noteq> Leaf \<Longrightarrow> cl t = B \<Longrightarrow> black_depth (paint R t) = black_depth t - 1" by auto2
lemma paint_in_traverse_pairs [rewrite]:
"rbt_in_traverse_pairs (paint c t) = rbt_in_traverse_pairs t" by auto2
subsection \<open>Insert function\<close>
definition rbt_insert :: "'a::order \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"rbt_insert x v t = paint B (ins x v t)"
text \<open>Correctness results for insertion.\<close>
theorem insert_is_rbt [forward]:
"is_rbt t \<Longrightarrow> is_rbt (rbt_insert x v t)" by auto2
theorem insert_sorted [forward]:
"rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_insert x v t)" by auto2
theorem insert_rbt_map [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_map (rbt_insert x v t) = (rbt_map t) {x \<rightarrow> v}" by auto2
subsection \<open>Search on sorted trees and its correctness\<close>
fun rbt_search :: "('a::ord, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b option" where
"rbt_search Leaf x = None"
| "rbt_search (Node l c y w r) x =
(if x = y then Some w
else if x < y then rbt_search l x
else rbt_search r x)"
setup \<open>fold add_rewrite_rule @{thms rbt_search.simps}\<close>
text \<open>Correctness of search\<close>
theorem rbt_search_correct [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_search t x = (rbt_map t)\<langle>x\<rangle>"
@proof @induct t @qed
subsection \<open>balL and balR\<close>
definition balL :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"balL l k v r = (let lr = lsub r in
if cl l = R then Node (Node (lsub l) B (key l) (val l) (rsub l)) R k v r
else if r = Leaf then Node l R k v r
else if cl r = B then balance l k v (Node (lsub r) R (key r) (val r) (rsub r))
else if lr = Leaf then Node l R k v r
else if cl lr = B then
Node (Node l B k v (lsub lr)) R (key lr) (val lr) (balance (rsub lr) (key r) (val r) (paint R (rsub r)))
else Node l R k v r)"
setup \<open>register_wellform_data ("balL l k v r", ["black_depth l + 1 = black_depth r"])\<close>
setup \<open>add_prfstep_check_req ("balL l k v r", "black_depth l + 1 = black_depth r")\<close>
definition balR :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"balR l k v r = (let rl = rsub l in
if cl r = R then Node l R k v (Node (lsub r) B (key r) (val r) (rsub r))
else if l = Leaf then Node l R k v r
else if cl l = B then balance (Node (lsub l) R (key l) (val l) (rsub l)) k v r
else if rl = Leaf then Node l R k v r
else if cl rl = B then
Node (balance (paint R (lsub l)) (key l) (val l) (lsub rl)) R (key rl) (val rl) (Node (rsub rl) B k v r)
else Node l R k v r)"
setup \<open>register_wellform_data ("balR l k v r", ["black_depth l = black_depth r + 1"])\<close>
setup \<open>add_prfstep_check_req ("balR l k v r", "black_depth l = black_depth r + 1")\<close>
lemma balL_bd [forward_arg]:
"bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> cl r = B \<Longrightarrow> black_depth l + 1 = black_depth r \<Longrightarrow>
bd_inv (balL l k v r) \<and> black_depth (balL l k v r) = black_depth l + 1" by auto2
lemma balL_bd' [forward_arg]:
"bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> cl_inv r \<Longrightarrow> black_depth l + 1 = black_depth r \<Longrightarrow>
bd_inv (balL l k v r) \<and> black_depth (balL l k v r) = black_depth l + 1" by auto2
lemma balL_cl [forward_arg]:
"cl_inv' l \<Longrightarrow> cl_inv r \<Longrightarrow> cl r = B \<Longrightarrow> cl_inv (balL l k v r)" by auto2
lemma balL_cl' [forward]:
"cl_inv' l \<Longrightarrow> cl_inv r \<Longrightarrow> cl_inv' (balL l k v r)" by auto2
lemma balR_bd [forward_arg]:
"bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> cl_inv l \<Longrightarrow> black_depth l = black_depth r + 1 \<Longrightarrow>
bd_inv (balR l k v r) \<and> black_depth (balR l k v r) = black_depth l" by auto2
lemma balR_cl [forward_arg]:
"cl_inv l \<Longrightarrow> cl_inv' r \<Longrightarrow> cl l = B \<Longrightarrow> cl_inv (balR l k v r)" by auto2
lemma balR_cl' [forward]:
"cl_inv l \<Longrightarrow> cl_inv' r \<Longrightarrow> cl_inv' (balR l k v r)" by auto2
lemma balL_in_traverse_pairs [rewrite]:
"rbt_in_traverse_pairs (balL l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2
lemma balR_in_traverse_pairs [rewrite]:
"rbt_in_traverse_pairs (balR l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2
setup \<open>fold del_prfstep_thm [@{thm balL_def}, @{thm balR_def}]\<close>
subsection \<open>Combine\<close>
fun combine :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
"combine Leaf t = t"
| "combine t Leaf = t"
| "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2) = (
if c1 = R then
if c2 = R then
let tm = combine r1 l2 in
if cl tm = R then
Node (Node l1 R k1 v1 (lsub tm)) R (key tm) (val tm) (Node (rsub tm) R k2 v2 r2)
else
Node l1 R k1 v1 (Node tm R k2 v2 r2)
else
Node l1 R k1 v1 (combine r1 (Node l2 c2 k2 v2 r2))
else
if c2 = B then
let tm = combine r1 l2 in
if cl tm = R then
Node (Node l1 B k1 v1 (lsub tm)) R (key tm) (val tm) (Node (rsub tm) B k2 v2 r2)
else
balL l1 k1 v1 (Node tm B k2 v2 r2)
else
Node (combine (Node l1 c1 k1 v1 r1) l2) R k2 v2 r2)"
setup \<open>fold add_rewrite_rule @{thms combine.simps(1,2)}\<close>
lemma combine_bd [forward_arg]:
"bd_inv lt \<Longrightarrow> bd_inv rt \<Longrightarrow> black_depth lt = black_depth rt \<Longrightarrow>
bd_inv (combine lt rt) \<and> black_depth (combine lt rt) = black_depth lt"
@proof @fun_induct "combine lt rt" @with
@subgoal "(lt = Node l1 c1 k1 v1 r1, rt = Node l2 c2 k2 v2 r2)"
@unfold "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)"
@case "c1 = B" @with @case "c2 = B" @with @case "cl (combine r1 l2) = B" @with
@have "cl (Node (combine r1 l2) B k2 v2 r2) = B" @end @end @end
@endgoal @end
@qed
lemma combine_cl:
"cl_inv lt \<Longrightarrow> cl_inv rt \<Longrightarrow>
(cl lt = B \<longrightarrow> cl rt = B \<longrightarrow> cl_inv (combine lt rt)) \<and> cl_inv' (combine lt rt)"
@proof @fun_induct "combine lt rt" @with
@subgoal "(lt = Node l1 c1 k1 v1 r1, rt = Node l2 c2 k2 v2 r2)"
@unfold "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)"
@case "c1 = B" @with @case "c2 = B" @with @case "cl (combine r1 l2) = B" @with
@have "cl (Node (combine r1 l2) B k2 v2 r2) = B" @end @end @end
@endgoal @end
@qed
setup \<open>add_forward_prfstep_cond @{thm combine_cl} [with_term "combine ?lt ?rt"]\<close>
lemma combine_in_traverse_pairs [rewrite]:
"rbt_in_traverse_pairs (combine lt rt) = rbt_in_traverse_pairs lt @ rbt_in_traverse_pairs rt"
@proof @fun_induct "combine lt rt" @with
@subgoal "(lt = Node l1 c1 k1 v1 r1, rt = Node l2 c2 k2 v2 r2)"
@unfold "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)"
@case "c1 = R" @with @case "c2 = R" @with @case "cl (combine r1 l2) = R" @with
@have "rbt_in_traverse_pairs (combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)) =
rbt_in_traverse_pairs l1 @ (k1, v1) # rbt_in_traverse_pairs (combine r1 l2) @ (k2, v2) # rbt_in_traverse_pairs r2"
@end @end @end
@case "c1 = B" @with @case "c2 = B" @with @case "cl (combine r1 l2) = R" @with
@have "rbt_in_traverse_pairs (combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)) =
rbt_in_traverse_pairs l1 @ (k1, v1) # rbt_in_traverse_pairs (combine r1 l2) @ (k2, v2) # rbt_in_traverse_pairs r2"
@end @end @end
@endgoal @end
@qed
subsection \<open>Deletion\<close>
fun del :: "'a::linorder \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
"del x Leaf = Leaf"
| "del x (Node l _ k v r) =
(if x = k then combine l r
else if x < k then
if l = Leaf then Node Leaf R k v r
else if cl l = B then balL (del x l) k v r
else Node (del x l) R k v r
else
if r = Leaf then Node l R k v Leaf
else if cl r = B then balR l k v (del x r)
else Node l R k v (del x r))"
setup \<open>add_rewrite_rule @{thm del.simps(1)}\<close>
lemma del_bd [forward_arg]:
"bd_inv t \<Longrightarrow> cl_inv t \<Longrightarrow> bd_inv (del x t) \<and> (
if cl t = R then black_depth (del x t) = black_depth t
else black_depth (del x t) = black_depth t - 1)"
@proof @induct t @with
@subgoal "t = Node l c k v r"
@unfold "del x (Node l c k v r)"
@case "x = k" @case "x < k" @with
@case "l = Leaf" @case "cl l = B" @end
@case "x > k" @with
@case "r = Leaf" @case "cl r = B" @end
@endgoal @end
@qed
lemma del_cl:
"cl_inv t \<Longrightarrow> if cl t = R then cl_inv (del x t) else cl_inv' (del x t)"
@proof @induct t @with
@subgoal "t = Node l c k v r"
@unfold "del x (Node l c k v r)"
@case "x = k" @case "x < k"
@endgoal @end
@qed
setup \<open>add_forward_prfstep_cond @{thm del_cl} [with_term "del ?x ?t"]\<close>
lemma del_in_traverse_pairs [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_in_traverse_pairs (del x t) = remove_elt_pairs x (rbt_in_traverse_pairs t)"
@proof @induct t @with
@subgoal "t = Node l c k v r"
@unfold "del x (Node l c k v r)"
@endgoal @end
@qed
definition delete :: "'a::linorder \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"delete x t = paint B (del x t)"
text \<open>Correctness results for deletion.\<close>
theorem delete_is_rbt [forward]:
"is_rbt t \<Longrightarrow> is_rbt (delete x t)" by auto2
theorem delete_sorted [forward]:
"rbt_sorted t \<Longrightarrow> rbt_sorted (delete x t)" by auto2
theorem delete_rbt_map [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_map (delete x t) = delete_map x (rbt_map t)" by auto2
setup \<open>del_prfstep "RBTree.balance_case"\<close>
setup \<open>del_prfstep "RBTree.balL_case"\<close>
setup \<open>del_prfstep "RBTree.balR_case"\<close>
setup \<open>del_prfstep "RBTree.paint_case"\<close>
end