Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: Rect_Intersect.thy | |
Author: Bohua Zhan | |
*) | |
section \<open>Rectangle intersection\<close> | |
theory Rect_Intersect | |
imports Interval_Tree | |
begin | |
text \<open> | |
Functional version of algorithm for detecting rectangle intersection. | |
See \cite[Exercise 14.3-7]{cormen2009introduction} for a reference. | |
\<close> | |
subsection \<open>Definition of rectangles\<close> | |
datatype 'a rectangle = Rectangle (xint: "'a interval") (yint: "'a interval") | |
setup \<open>add_simple_datatype "rectangle"\<close> | |
definition is_rect :: "('a::linorder) rectangle \<Rightarrow> bool" where [rewrite]: | |
"is_rect rect \<longleftrightarrow> is_interval (xint rect) \<and> is_interval (yint rect)" | |
definition is_rect_list :: "('a::linorder) rectangle list \<Rightarrow> bool" where [rewrite]: | |
"is_rect_list rects \<longleftrightarrow> (\<forall>i<length rects. is_rect (rects ! i))" | |
lemma is_rect_listD: "is_rect_list rects \<Longrightarrow> i < length rects \<Longrightarrow> is_rect (rects ! i)" by auto2 | |
setup \<open>add_forward_prfstep_cond @{thm is_rect_listD} [with_term "?rects ! ?i"]\<close> | |
setup \<open>del_prfstep_thm_eqforward @{thm is_rect_list_def}\<close> | |
definition is_rect_overlap :: "('a::linorder) rectangle \<Rightarrow> ('a::linorder) rectangle \<Rightarrow> bool" where [rewrite]: | |
"is_rect_overlap A B \<longleftrightarrow> (is_overlap (xint A) (xint B) \<and> is_overlap (yint A) (yint B))" | |
definition has_rect_overlap :: "('a::linorder) rectangle list \<Rightarrow> bool" where [rewrite]: | |
"has_rect_overlap As \<longleftrightarrow> (\<exists>i<length As. \<exists>j<length As. i \<noteq> j \<and> is_rect_overlap (As ! i) (As ! j))" | |
subsection \<open>INS / DEL operations\<close> | |
datatype 'a operation = | |
INS (pos: 'a) (op_idx: nat) (op_int: "'a interval") | |
| DEL (pos: 'a) (op_idx: nat) (op_int: "'a interval") | |
setup \<open>fold add_rewrite_rule_back @{thms operation.collapse}\<close> | |
setup \<open>fold add_rewrite_rule @{thms operation.sel}\<close> | |
setup \<open>fold add_rewrite_rule @{thms operation.case}\<close> | |
setup \<open>add_resolve_prfstep @{thm operation.distinct(1)}\<close> | |
setup \<open>add_forward_prfstep_cond @{thm operation.disc(1)} [with_term "INS ?x11.0 ?x12.0 ?x13.0"]\<close> | |
setup \<open>add_forward_prfstep_cond @{thm operation.disc(2)} [with_term "DEL ?x21.0 ?x22.0 ?x23.0"]\<close> | |
instantiation operation :: (linorder) linorder begin | |
definition less: "(a < b) = (if pos a \<noteq> pos b then pos a < pos b else | |
if is_INS a \<noteq> is_INS b then is_INS a \<and> \<not>is_INS b | |
else if op_idx a \<noteq> op_idx b then op_idx a < op_idx b else op_int a < op_int b)" | |
definition less_eq: "(a \<le> b) = (if pos a \<noteq> pos b then pos a < pos b else | |
if is_INS a \<noteq> is_INS b then is_INS a \<and> \<not>is_INS b | |
else if op_idx a \<noteq> op_idx b then op_idx a < op_idx b else op_int a \<le> op_int b)" | |
instance proof | |
fix x y z :: "'a operation" | |
show a: "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" | |
by (smt Rect_Intersect.less Rect_Intersect.less_eq leD le_cases3 not_less_iff_gr_or_eq) | |
show b: "x \<le> x" | |
by (simp add: local.less_eq) | |
show c: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
by (smt Rect_Intersect.less Rect_Intersect.less_eq a dual_order.trans less_trans) | |
show d: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
by (metis Rect_Intersect.less Rect_Intersect.less_eq a le_imp_less_or_eq operation.expand) | |
show e: "x \<le> y \<or> y \<le> x" | |
using local.less_eq by fastforce | |
qed end | |
setup \<open>fold add_rewrite_rule [@{thm less_eq}, @{thm less}]\<close> | |
lemma operation_leD [forward]: | |
"(a::('a::linorder operation)) \<le> b \<Longrightarrow> pos a \<le> pos b" by auto2 | |
lemma operation_lessI [backward]: | |
"p1 \<le> p2 \<Longrightarrow> INS p1 n1 i1 < DEL p2 n2 i2" | |
@proof | |
@have "is_INS (INS p1 n1 i1) = True" | |
@have "is_INS (DEL p2 n2 i2) = False" | |
@qed | |
setup \<open>fold del_prfstep_thm [@{thm less_eq}, @{thm less}]\<close> | |
subsection \<open>Set of operations corresponding to a list of rectangles\<close> | |
fun ins_op :: "'a rectangle list \<Rightarrow> nat \<Rightarrow> ('a::linorder) operation" where | |
"ins_op rects i = INS (low (yint (rects ! i))) i (xint (rects ! i))" | |
setup \<open>add_rewrite_rule @{thm ins_op.simps}\<close> | |
fun del_op :: "'a rectangle list \<Rightarrow> nat \<Rightarrow> ('a::linorder) operation" where | |
"del_op rects i = DEL (high (yint (rects ! i))) i (xint (rects ! i))" | |
setup \<open>add_rewrite_rule @{thm del_op.simps}\<close> | |
definition ins_ops :: "'a rectangle list \<Rightarrow> ('a::linorder) operation list" where [rewrite]: | |
"ins_ops rects = list (\<lambda>i. ins_op rects i) (length rects)" | |
definition del_ops :: "'a rectangle list \<Rightarrow> ('a::linorder) operation list" where [rewrite]: | |
"del_ops rects = list (\<lambda>i. del_op rects i) (length rects)" | |
lemma ins_ops_distinct [forward]: "distinct (ins_ops rects)" | |
@proof | |
@let "xs = ins_ops rects" | |
@have "\<forall>i<length xs. \<forall>j<length xs. i \<noteq> j \<longrightarrow> xs ! i \<noteq> xs ! j" | |
@qed | |
lemma del_ops_distinct [forward]: "distinct (del_ops rects)" | |
@proof | |
@let "xs = del_ops rects" | |
@have "\<forall>i<length xs. \<forall>j<length xs. i \<noteq> j \<longrightarrow> xs ! i \<noteq> xs ! j" | |
@qed | |
lemma set_ins_ops [rewrite]: | |
"oper \<in> set (ins_ops rects) \<longleftrightarrow> op_idx oper < length rects \<and> oper = ins_op rects (op_idx oper)" | |
@proof | |
@case "oper \<in> set (ins_ops rects)" @with | |
@obtain i where "i < length rects" "ins_ops rects ! i = oper" @end | |
@case "op_idx oper < length rects \<and> oper = ins_op rects (op_idx oper)" @with | |
@have "oper = (ins_ops rects) ! (op_idx oper)" @end | |
@qed | |
lemma set_del_ops [rewrite]: | |
"oper \<in> set (del_ops rects) \<longleftrightarrow> op_idx oper < length rects \<and> oper = del_op rects (op_idx oper)" | |
@proof | |
@case "oper \<in> set (del_ops rects)" @with | |
@obtain i where "i < length rects" "del_ops rects ! i = oper" @end | |
@case "op_idx oper < length rects \<and> oper = del_op rects (op_idx oper)" @with | |
@have "oper = (del_ops rects) ! (op_idx oper)" @end | |
@qed | |
definition all_ops :: "'a rectangle list \<Rightarrow> ('a::linorder) operation list" where [rewrite]: | |
"all_ops rects = sort (ins_ops rects @ del_ops rects)" | |
lemma all_ops_distinct [forward]: "distinct (all_ops rects)" | |
@proof @have "distinct (ins_ops rects @ del_ops rects)" @qed | |
lemma set_all_ops_idx [forward]: | |
"oper \<in> set (all_ops rects) \<Longrightarrow> op_idx oper < length rects" by auto2 | |
lemma set_all_ops_ins [forward]: | |
"INS p n i \<in> set (all_ops rects) \<Longrightarrow> INS p n i = ins_op rects n" by auto2 | |
lemma set_all_ops_del [forward]: | |
"DEL p n i \<in> set (all_ops rects) \<Longrightarrow> DEL p n i = del_op rects n" by auto2 | |
lemma ins_in_set_all_ops: | |
"i < length rects \<Longrightarrow> ins_op rects i \<in> set (all_ops rects)" by auto2 | |
setup \<open>add_forward_prfstep_cond @{thm ins_in_set_all_ops} [with_term "ins_op ?rects ?i"]\<close> | |
lemma del_in_set_all_ops: | |
"i < length rects \<Longrightarrow> del_op rects i \<in> set (all_ops rects)" by auto2 | |
setup \<open>add_forward_prfstep_cond @{thm del_in_set_all_ops} [with_term "del_op ?rects ?i"]\<close> | |
lemma all_ops_sorted [forward]: "sorted (all_ops rects)" by auto2 | |
lemma all_ops_nonempty [backward]: "rects \<noteq> [] \<Longrightarrow> all_ops rects \<noteq> []" | |
@proof @have "length (all_ops rects) > 0" @qed | |
setup \<open>del_prfstep_thm @{thm all_ops_def}\<close> | |
subsection \<open>Applying a set of operations\<close> | |
definition apply_ops_k :: "('a::linorder) rectangle list \<Rightarrow> nat \<Rightarrow> nat set" where [rewrite]: | |
"apply_ops_k rects k = (let ops = all_ops rects in | |
{i. i < length rects \<and> (\<exists>j<k. ins_op rects i = ops ! j) \<and> \<not>(\<exists>j<k. del_op rects i = ops ! j)})" | |
setup \<open>register_wellform_data ("apply_ops_k rects k", ["k < length (all_ops rects)"])\<close> | |
lemma apply_ops_set_mem [rewrite]: | |
"ops = all_ops rects \<Longrightarrow> | |
i \<in> apply_ops_k rects k \<longleftrightarrow> (i < length rects \<and> (\<exists>j<k. ins_op rects i = ops ! j) \<and> \<not>(\<exists>j<k. del_op rects i = ops ! j))" | |
by auto2 | |
setup \<open>del_prfstep_thm @{thm apply_ops_k_def}\<close> | |
definition xints_of :: "'a rectangle list \<Rightarrow> nat set \<Rightarrow> (('a::linorder) idx_interval) set" where [rewrite]: | |
"xints_of rect is = (\<lambda>i. IdxInterval (xint (rect ! i)) i) ` is" | |
lemma xints_of_mem [rewrite]: | |
"IdxInterval it i \<in> xints_of rect is \<longleftrightarrow> (i \<in> is \<and> xint (rect ! i) = it)" using xints_of_def by auto | |
lemma xints_diff [rewrite]: | |
"xints_of rects (A - B) = xints_of rects A - xints_of rects B" | |
@proof @have "inj (\<lambda>i. IdxInterval (xint (rects ! i)) i)" @qed | |
definition has_overlap_at_k :: "('a::linorder) rectangle list \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]: | |
"has_overlap_at_k rects k \<longleftrightarrow> ( | |
let S = apply_ops_k rects k; ops = all_ops rects in | |
is_INS (ops ! k) \<and> has_overlap (xints_of rects S) (op_int (ops ! k)))" | |
setup \<open>register_wellform_data ("has_overlap_at_k rects k", ["k < length (all_ops rects)"])\<close> | |
lemma has_overlap_at_k_equiv [forward]: | |
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> k < length ops \<Longrightarrow> | |
has_overlap_at_k rects k \<Longrightarrow> has_rect_overlap rects" | |
@proof | |
@let "S = apply_ops_k rects k" | |
@have "has_overlap (xints_of rects S) (op_int (ops ! k))" | |
@obtain "xs' \<in> xints_of rects S" where "is_overlap (int xs') (op_int (ops ! k))" | |
@let "xs = int xs'" "i = idx xs'" | |
@let "j = op_idx (ops ! k)" | |
@have "ops ! k = ins_op rects j" | |
@have "i \<noteq> j" @with @contradiction | |
@obtain k' where "k' < k" "ops ! k' = ins_op rects i" | |
@have "ops ! k = ops ! k'" | |
@end | |
@have "low (yint (rects ! i)) \<le> pos (ops ! k)" @with | |
@obtain k' where "k' < k" "ops ! k' = ins_op rects i" | |
@have "ops ! k' \<le> ops ! k" | |
@end | |
@have "high (yint (rects ! i)) \<ge> pos (ops ! k)" @with | |
@obtain k' where "k' < length ops" "ops ! k' = del_op rects i" | |
@have "ops ! k' \<ge> ops ! k" | |
@end | |
@have "is_rect_overlap (rects ! i) (rects ! j)" | |
@qed | |
lemma has_overlap_at_k_equiv2 [resolve]: | |
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> has_rect_overlap rects \<Longrightarrow> | |
\<exists>k<length ops. has_overlap_at_k rects k" | |
@proof | |
@obtain i j where "i < length rects" "j < length rects" "i \<noteq> j" | |
"is_rect_overlap (rects ! i) (rects ! j)" | |
@have "is_rect_overlap (rects ! j) (rects ! i)" | |
@obtain i1 where "i1 < length ops" "ops ! i1 = ins_op rects i" | |
@obtain j1 where "j1 < length ops" "ops ! j1 = ins_op rects j" | |
@obtain i2 where "i2 < length ops" "ops ! i2 = del_op rects i" | |
@obtain j2 where "j2 < length ops" "ops ! j2 = del_op rects j" | |
@case "ins_op rects i < ins_op rects j" @with | |
@have "i1 < j1" | |
@have "j1 < i2" @with @have "ops ! j1 < ops ! i2" @end | |
@have "is_overlap (int (IdxInterval (xint (rects ! i)) i)) (xint (rects ! j))" | |
@have "has_overlap_at_k rects j1" | |
@end | |
@case "ins_op rects j < ins_op rects i" @with | |
@have "j1 < i1" | |
@have "i1 < j2" @with @have "ops ! i1 < ops ! j2" @end | |
@have "is_overlap (int (IdxInterval (xint (rects ! j)) j)) (xint (rects ! i))" | |
@have "has_overlap_at_k rects i1" | |
@end | |
@qed | |
definition has_overlap_lst :: "('a::linorder) rectangle list \<Rightarrow> bool" where [rewrite]: | |
"has_overlap_lst rects = (let ops = all_ops rects in (\<exists>k<length ops. has_overlap_at_k rects k))" | |
lemma has_overlap_equiv [rewrite]: | |
"is_rect_list rects \<Longrightarrow> has_overlap_lst rects \<longleftrightarrow> has_rect_overlap rects" by auto2 | |
subsection \<open>Implementation of apply\_ops\_k\<close> | |
lemma apply_ops_k_next1 [rewrite]: | |
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow> is_INS (ops ! n) \<Longrightarrow> | |
apply_ops_k rects (n + 1) = apply_ops_k rects n \<union> {op_idx (ops ! n)}" | |
@proof | |
@have "\<forall>i. i\<in>apply_ops_k rects (n + 1) \<longleftrightarrow> i\<in>apply_ops_k rects n \<union> {op_idx (ops ! n)}" @with | |
@case "i \<in> apply_ops_k rects n \<union> {op_idx (ops ! n)}" @with | |
@case "i = op_idx (ops ! n)" @with | |
@have "ins_op rects i < del_op rects i" | |
@end | |
@end | |
@end | |
@qed | |
lemma apply_ops_k_next2 [rewrite]: | |
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow> \<not>is_INS (ops ! n) \<Longrightarrow> | |
apply_ops_k rects (n + 1) = apply_ops_k rects n - {op_idx (ops ! n)}" by auto2 | |
definition apply_ops_k_next :: "('a::linorder) rectangle list \<Rightarrow> 'a idx_interval set \<Rightarrow> nat \<Rightarrow> 'a idx_interval set" where | |
"apply_ops_k_next rects S k = (let ops = all_ops rects in | |
(case ops ! k of | |
INS p n i \<Rightarrow> S \<union> {IdxInterval i n} | |
| DEL p n i \<Rightarrow> S - {IdxInterval i n}))" | |
setup \<open>add_rewrite_rule @{thm apply_ops_k_next_def}\<close> | |
lemma apply_ops_k_next_is_correct [rewrite]: | |
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow> | |
S = xints_of rects (apply_ops_k rects n) \<Longrightarrow> | |
xints_of rects (apply_ops_k rects (n + 1)) = apply_ops_k_next rects S n" | |
@proof @case "is_INS (ops ! n)" @qed | |
function rect_inter :: "nat rectangle list \<Rightarrow> nat idx_interval set \<Rightarrow> nat \<Rightarrow> bool" where | |
"rect_inter rects S k = (let ops = all_ops rects in | |
if k \<ge> length ops then False | |
else if is_INS (ops ! k) then | |
if has_overlap S (op_int (ops ! k)) then True | |
else if k = length ops - 1 then False | |
else rect_inter rects (apply_ops_k_next rects S k) (k + 1) | |
else if k = length ops - 1 then False | |
else rect_inter rects (apply_ops_k_next rects S k) (k + 1))" | |
by auto | |
termination by (relation "measure (\<lambda>(rects,S,k). length (all_ops rects) - k)") auto | |
lemma rect_inter_correct_ind [rewrite]: | |
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow> | |
rect_inter rects (xints_of rects (apply_ops_k rects n)) n \<longleftrightarrow> | |
(\<exists>k<length ops. k \<ge> n \<and> has_overlap_at_k rects k)" | |
@proof | |
@let "ints = xints_of rects (apply_ops_k rects n)" | |
@fun_induct "rect_inter rects ints n" | |
@unfold "rect_inter rects ints n" | |
@case "n \<ge> length ops" | |
@case "is_INS (ops ! n) \<and> has_overlap ints (op_int (ops ! n))" | |
@case "n = length ops - 1" | |
@qed | |
text \<open>Correctness of functional algorithm.\<close> | |
theorem rect_inter_correct [rewrite]: | |
"is_rect_list rects \<Longrightarrow> rect_inter rects {} 0 \<longleftrightarrow> has_rect_overlap rects" | |
@proof | |
@have "{} = xints_of rects (apply_ops_k rects 0)" | |
@have "rect_inter rects {} 0 = has_overlap_lst rects" @with | |
@unfold "rect_inter rects {} 0" | |
@end | |
@qed | |
end | |