Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Joseph Myers. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Joseph Myers, Yury Kudryashov | |
-/ | |
import data.set.pointwise | |
/-! | |
# Torsors of additive group actions | |
This file defines torsors of additive group actions. | |
## Notations | |
The group elements are referred to as acting on points. This file | |
defines the notation `+ᵥ` for adding a group element to a point and | |
`-ᵥ` for subtracting two points to produce a group element. | |
## Implementation notes | |
Affine spaces are the motivating example of torsors of additive group actions. It may be appropriate | |
to refactor in terms of the general definition of group actions, via `to_additive`, when there is a | |
use for multiplicative torsors (currently mathlib only develops the theory of group actions for | |
multiplicative group actions). | |
## Notations | |
* `v +ᵥ p` is a notation for `has_vadd.vadd`, the left action of an additive monoid; | |
* `p₁ -ᵥ p₂` is a notation for `has_vsub.vsub`, difference between two points in an additive torsor | |
as an element of the corresponding additive group; | |
## References | |
* https://en.wikipedia.org/wiki/Principal_homogeneous_space | |
* https://en.wikipedia.org/wiki/Affine_space | |
-/ | |
/-- An `add_torsor G P` gives a structure to the nonempty type `P`, | |
acted on by an `add_group G` with a transitive and free action given | |
by the `+ᵥ` operation and a corresponding subtraction given by the | |
`-ᵥ` operation. In the case of a vector space, it is an affine | |
space. -/ | |
class add_torsor (G : out_param Type*) (P : Type*) [out_param $ add_group G] | |
extends add_action G P, has_vsub G P := | |
[nonempty : nonempty P] | |
(vsub_vadd' : ∀ (p1 p2 : P), (p1 -ᵥ p2 : G) +ᵥ p2 = p1) | |
(vadd_vsub' : ∀ (g : G) (p : P), g +ᵥ p -ᵥ p = g) | |
attribute [instance, priority 100, nolint dangerous_instance] add_torsor.nonempty | |
attribute [nolint dangerous_instance] add_torsor.to_has_vsub | |
/-- An `add_group G` is a torsor for itself. -/ | |
@[nolint instance_priority] | |
instance add_group_is_add_torsor (G : Type*) [add_group G] : | |
add_torsor G G := | |
{ vsub := has_sub.sub, | |
vsub_vadd' := sub_add_cancel, | |
vadd_vsub' := add_sub_cancel } | |
/-- Simplify subtraction for a torsor for an `add_group G` over | |
itself. -/ | |
@[simp] lemma vsub_eq_sub {G : Type*} [add_group G] (g1 g2 : G) : g1 -ᵥ g2 = g1 - g2 := | |
rfl | |
section general | |
variables {G : Type*} {P : Type*} [add_group G] [T : add_torsor G P] | |
include T | |
/-- Adding the result of subtracting from another point produces that | |
point. -/ | |
@[simp] lemma vsub_vadd (p1 p2 : P) : p1 -ᵥ p2 +ᵥ p2 = p1 := | |
add_torsor.vsub_vadd' p1 p2 | |
/-- Adding a group element then subtracting the original point | |
produces that group element. -/ | |
@[simp] lemma vadd_vsub (g : G) (p : P) : g +ᵥ p -ᵥ p = g := | |
add_torsor.vadd_vsub' g p | |
/-- If the same point added to two group elements produces equal | |
results, those group elements are equal. -/ | |
lemma vadd_right_cancel {g1 g2 : G} (p : P) (h : g1 +ᵥ p = g2 +ᵥ p) : g1 = g2 := | |
by rw [←vadd_vsub g1, h, vadd_vsub] | |
@[simp] lemma vadd_right_cancel_iff {g1 g2 : G} (p : P) : g1 +ᵥ p = g2 +ᵥ p ↔ g1 = g2 := | |
⟨vadd_right_cancel p, λ h, h ▸ rfl⟩ | |
/-- Adding a group element to the point `p` is an injective | |
function. -/ | |
lemma vadd_right_injective (p : P) : function.injective ((+ᵥ p) : G → P) := | |
λ g1 g2, vadd_right_cancel p | |
/-- Adding a group element to a point, then subtracting another point, | |
produces the same result as subtracting the points then adding the | |
group element. -/ | |
lemma vadd_vsub_assoc (g : G) (p1 p2 : P) : g +ᵥ p1 -ᵥ p2 = g + (p1 -ᵥ p2) := | |
begin | |
apply vadd_right_cancel p2, | |
rw [vsub_vadd, add_vadd, vsub_vadd] | |
end | |
/-- Subtracting a point from itself produces 0. -/ | |
@[simp] lemma vsub_self (p : P) : p -ᵥ p = (0 : G) := | |
by rw [←zero_add (p -ᵥ p), ←vadd_vsub_assoc, vadd_vsub] | |
/-- If subtracting two points produces 0, they are equal. -/ | |
lemma eq_of_vsub_eq_zero {p1 p2 : P} (h : p1 -ᵥ p2 = (0 : G)) : p1 = p2 := | |
by rw [←vsub_vadd p1 p2, h, zero_vadd] | |
/-- Subtracting two points produces 0 if and only if they are | |
equal. -/ | |
@[simp] lemma vsub_eq_zero_iff_eq {p1 p2 : P} : p1 -ᵥ p2 = (0 : G) ↔ p1 = p2 := | |
iff.intro eq_of_vsub_eq_zero (λ h, h ▸ vsub_self _) | |
lemma vsub_ne_zero {p q : P} : p -ᵥ q ≠ (0 : G) ↔ p ≠ q := | |
not_congr vsub_eq_zero_iff_eq | |
/-- Cancellation adding the results of two subtractions. -/ | |
@[simp] lemma vsub_add_vsub_cancel (p1 p2 p3 : P) : p1 -ᵥ p2 + (p2 -ᵥ p3) = (p1 -ᵥ p3) := | |
begin | |
apply vadd_right_cancel p3, | |
rw [add_vadd, vsub_vadd, vsub_vadd, vsub_vadd] | |
end | |
/-- Subtracting two points in the reverse order produces the negation | |
of subtracting them. -/ | |
@[simp] lemma neg_vsub_eq_vsub_rev (p1 p2 : P) : -(p1 -ᵥ p2) = (p2 -ᵥ p1) := | |
begin | |
refine neg_eq_of_add_eq_zero_right (vadd_right_cancel p1 _), | |
rw [vsub_add_vsub_cancel, vsub_self], | |
end | |
lemma vadd_vsub_eq_sub_vsub (g : G) (p q : P) : g +ᵥ p -ᵥ q = g - (q -ᵥ p) := | |
by rw [vadd_vsub_assoc, sub_eq_add_neg, neg_vsub_eq_vsub_rev] | |
/-- Subtracting the result of adding a group element produces the same result | |
as subtracting the points and subtracting that group element. -/ | |
lemma vsub_vadd_eq_vsub_sub (p1 p2 : P) (g : G) : p1 -ᵥ (g +ᵥ p2) = (p1 -ᵥ p2) - g := | |
by rw [←add_right_inj (p2 -ᵥ p1 : G), vsub_add_vsub_cancel, ←neg_vsub_eq_vsub_rev, vadd_vsub, | |
←add_sub_assoc, ←neg_vsub_eq_vsub_rev, neg_add_self, zero_sub] | |
/-- Cancellation subtracting the results of two subtractions. -/ | |
@[simp] lemma vsub_sub_vsub_cancel_right (p1 p2 p3 : P) : | |
(p1 -ᵥ p3) - (p2 -ᵥ p3) = (p1 -ᵥ p2) := | |
by rw [←vsub_vadd_eq_vsub_sub, vsub_vadd] | |
/-- Convert between an equality with adding a group element to a point | |
and an equality of a subtraction of two points with a group | |
element. -/ | |
lemma eq_vadd_iff_vsub_eq (p1 : P) (g : G) (p2 : P) : p1 = g +ᵥ p2 ↔ p1 -ᵥ p2 = g := | |
⟨λ h, h.symm ▸ vadd_vsub _ _, λ h, h ▸ (vsub_vadd _ _).symm⟩ | |
lemma vadd_eq_vadd_iff_neg_add_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} : | |
v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ - v₁ + v₂ = p₁ -ᵥ p₂ := | |
by rw [eq_vadd_iff_vsub_eq, vadd_vsub_assoc, ← add_right_inj (-v₁), neg_add_cancel_left, eq_comm] | |
namespace set | |
open_locale pointwise | |
@[simp] lemma singleton_vsub_self (p : P) : ({p} : set P) -ᵥ {p} = {(0:G)} := | |
by rw [set.singleton_vsub_singleton, vsub_self] | |
end set | |
@[simp] lemma vadd_vsub_vadd_cancel_right (v₁ v₂ : G) (p : P) : | |
(v₁ +ᵥ p) -ᵥ (v₂ +ᵥ p) = v₁ - v₂ := | |
by rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, vsub_self, add_zero] | |
/-- If the same point subtracted from two points produces equal | |
results, those points are equal. -/ | |
lemma vsub_left_cancel {p1 p2 p : P} (h : p1 -ᵥ p = p2 -ᵥ p) : p1 = p2 := | |
by rwa [←sub_eq_zero, vsub_sub_vsub_cancel_right, vsub_eq_zero_iff_eq] at h | |
/-- The same point subtracted from two points produces equal results | |
if and only if those points are equal. -/ | |
@[simp] lemma vsub_left_cancel_iff {p1 p2 p : P} : (p1 -ᵥ p) = p2 -ᵥ p ↔ p1 = p2 := | |
⟨vsub_left_cancel, λ h, h ▸ rfl⟩ | |
/-- Subtracting the point `p` is an injective function. -/ | |
lemma vsub_left_injective (p : P) : function.injective ((-ᵥ p) : P → G) := | |
λ p2 p3, vsub_left_cancel | |
/-- If subtracting two points from the same point produces equal | |
results, those points are equal. -/ | |
lemma vsub_right_cancel {p1 p2 p : P} (h : p -ᵥ p1 = p -ᵥ p2) : p1 = p2 := | |
begin | |
refine vadd_left_cancel (p -ᵥ p2) _, | |
rw [vsub_vadd, ← h, vsub_vadd] | |
end | |
/-- Subtracting two points from the same point produces equal results | |
if and only if those points are equal. -/ | |
@[simp] lemma vsub_right_cancel_iff {p1 p2 p : P} : p -ᵥ p1 = p -ᵥ p2 ↔ p1 = p2 := | |
⟨vsub_right_cancel, λ h, h ▸ rfl⟩ | |
/-- Subtracting a point from the point `p` is an injective | |
function. -/ | |
lemma vsub_right_injective (p : P) : function.injective ((-ᵥ) p : P → G) := | |
λ p2 p3, vsub_right_cancel | |
end general | |
section comm | |
variables {G : Type*} {P : Type*} [add_comm_group G] [add_torsor G P] | |
include G | |
/-- Cancellation subtracting the results of two subtractions. -/ | |
@[simp] lemma vsub_sub_vsub_cancel_left (p1 p2 p3 : P) : | |
(p3 -ᵥ p2) - (p3 -ᵥ p1) = (p1 -ᵥ p2) := | |
by rw [sub_eq_add_neg, neg_vsub_eq_vsub_rev, add_comm, vsub_add_vsub_cancel] | |
@[simp] lemma vadd_vsub_vadd_cancel_left (v : G) (p1 p2 : P) : | |
(v +ᵥ p1) -ᵥ (v +ᵥ p2) = p1 -ᵥ p2 := | |
by rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, add_sub_cancel'] | |
lemma vsub_vadd_comm (p1 p2 p3 : P) : (p1 -ᵥ p2 : G) +ᵥ p3 = p3 -ᵥ p2 +ᵥ p1 := | |
begin | |
rw [←@vsub_eq_zero_iff_eq G, vadd_vsub_assoc, vsub_vadd_eq_vsub_sub], | |
simp | |
end | |
lemma vadd_eq_vadd_iff_sub_eq_vsub {v₁ v₂ : G} {p₁ p₂ : P} : | |
v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ v₂ - v₁ = p₁ -ᵥ p₂ := | |
by rw [vadd_eq_vadd_iff_neg_add_eq_vsub, neg_add_eq_sub] | |
lemma vsub_sub_vsub_comm (p₁ p₂ p₃ p₄ : P) : | |
(p₁ -ᵥ p₂) - (p₃ -ᵥ p₄) = (p₁ -ᵥ p₃) - (p₂ -ᵥ p₄) := | |
by rw [← vsub_vadd_eq_vsub_sub, vsub_vadd_comm, vsub_vadd_eq_vsub_sub] | |
end comm | |
namespace prod | |
variables {G : Type*} {P : Type*} {G' : Type*} {P' : Type*} [add_group G] [add_group G'] | |
[add_torsor G P] [add_torsor G' P'] | |
instance : add_torsor (G × G') (P × P') := | |
{ vadd := λ v p, (v.1 +ᵥ p.1, v.2 +ᵥ p.2), | |
zero_vadd := λ p, by simp, | |
add_vadd := by simp [add_vadd], | |
vsub := λ p₁ p₂, (p₁.1 -ᵥ p₂.1, p₁.2 -ᵥ p₂.2), | |
nonempty := prod.nonempty, | |
vsub_vadd' := λ p₁ p₂, show (p₁.1 -ᵥ p₂.1 +ᵥ p₂.1, _) = p₁, by simp, | |
vadd_vsub' := λ v p, show (v.1 +ᵥ p.1 -ᵥ p.1, v.2 +ᵥ p.2 -ᵥ p.2) =v, by simp } | |
@[simp] lemma fst_vadd (v : G × G') (p : P × P') : (v +ᵥ p).1 = v.1 +ᵥ p.1 := rfl | |
@[simp] lemma snd_vadd (v : G × G') (p : P × P') : (v +ᵥ p).2 = v.2 +ᵥ p.2 := rfl | |
@[simp] lemma mk_vadd_mk (v : G) (v' : G') (p : P) (p' : P') : | |
(v, v') +ᵥ (p, p') = (v +ᵥ p, v' +ᵥ p') := rfl | |
@[simp] lemma fst_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').1 = p₁.1 -ᵥ p₂.1 := rfl | |
@[simp] lemma snd_vsub (p₁ p₂ : P × P') : (p₁ -ᵥ p₂ : G × G').2 = p₁.2 -ᵥ p₂.2 := rfl | |
@[simp] lemma mk_vsub_mk (p₁ p₂ : P) (p₁' p₂' : P') : | |
((p₁, p₁') -ᵥ (p₂, p₂') : G × G') = (p₁ -ᵥ p₂, p₁' -ᵥ p₂') := rfl | |
end prod | |
namespace pi | |
universes u v w | |
variables {I : Type u} {fg : I → Type v} [∀ i, add_group (fg i)] {fp : I → Type w} | |
open add_action add_torsor | |
/-- A product of `add_torsor`s is an `add_torsor`. -/ | |
instance [T : ∀ i, add_torsor (fg i) (fp i)] : add_torsor (Π i, fg i) (Π i, fp i) := | |
{ vadd := λ g p, λ i, g i +ᵥ p i, | |
zero_vadd := λ p, funext $ λ i, zero_vadd (fg i) (p i), | |
add_vadd := λ g₁ g₂ p, funext $ λ i, add_vadd (g₁ i) (g₂ i) (p i), | |
vsub := λ p₁ p₂, λ i, p₁ i -ᵥ p₂ i, | |
nonempty := ⟨λ i, classical.choice (T i).nonempty⟩, | |
vsub_vadd' := λ p₁ p₂, funext $ λ i, vsub_vadd (p₁ i) (p₂ i), | |
vadd_vsub' := λ g p, funext $ λ i, vadd_vsub (g i) (p i) } | |
end pi | |
namespace equiv | |
variables {G : Type*} {P : Type*} [add_group G] [add_torsor G P] | |
include G | |
/-- `v ↦ v +ᵥ p` as an equivalence. -/ | |
def vadd_const (p : P) : G ≃ P := | |
{ to_fun := λ v, v +ᵥ p, | |
inv_fun := λ p', p' -ᵥ p, | |
left_inv := λ v, vadd_vsub _ _, | |
right_inv := λ p', vsub_vadd _ _ } | |
@[simp] lemma coe_vadd_const (p : P) : ⇑(vadd_const p) = λ v, v+ᵥ p := rfl | |
@[simp] lemma coe_vadd_const_symm (p : P) : ⇑(vadd_const p).symm = λ p', p' -ᵥ p := rfl | |
/-- `p' ↦ p -ᵥ p'` as an equivalence. -/ | |
def const_vsub (p : P) : P ≃ G := | |
{ to_fun := (-ᵥ) p, | |
inv_fun := λ v, -v +ᵥ p, | |
left_inv := λ p', by simp, | |
right_inv := λ v, by simp [vsub_vadd_eq_vsub_sub] } | |
@[simp] lemma coe_const_vsub (p : P) : ⇑(const_vsub p) = (-ᵥ) p := rfl | |
@[simp] lemma coe_const_vsub_symm (p : P) : ⇑(const_vsub p).symm = λ v, -v +ᵥ p := rfl | |
variables (P) | |
/-- The permutation given by `p ↦ v +ᵥ p`. -/ | |
def const_vadd (v : G) : equiv.perm P := | |
{ to_fun := (+ᵥ) v, | |
inv_fun := (+ᵥ) (-v), | |
left_inv := λ p, by simp [vadd_vadd], | |
right_inv := λ p, by simp [vadd_vadd] } | |
@[simp] lemma coe_const_vadd (v : G) : ⇑(const_vadd P v) = (+ᵥ) v := rfl | |
variable (G) | |
@[simp] lemma const_vadd_zero : const_vadd P (0:G) = 1 := ext $ zero_vadd G | |
variable {G} | |
@[simp] lemma const_vadd_add (v₁ v₂ : G) : | |
const_vadd P (v₁ + v₂) = const_vadd P v₁ * const_vadd P v₂ := | |
ext $ add_vadd v₁ v₂ | |
/-- `equiv.const_vadd` as a homomorphism from `multiplicative G` to `equiv.perm P` -/ | |
def const_vadd_hom : multiplicative G →* equiv.perm P := | |
{ to_fun := λ v, const_vadd P v.to_add, | |
map_one' := const_vadd_zero G P, | |
map_mul' := const_vadd_add P } | |
variable {P} | |
open function | |
/-- Point reflection in `x` as a permutation. -/ | |
def point_reflection (x : P) : perm P := (const_vsub x).trans (vadd_const x) | |
lemma point_reflection_apply (x y : P) : point_reflection x y = x -ᵥ y +ᵥ x := rfl | |
@[simp] lemma point_reflection_symm (x : P) : (point_reflection x).symm = point_reflection x := | |
ext $ by simp [point_reflection] | |
@[simp] lemma point_reflection_self (x : P) : point_reflection x x = x := vsub_vadd _ _ | |
lemma point_reflection_involutive (x : P) : involutive (point_reflection x : P → P) := | |
λ y, (equiv.apply_eq_iff_eq_symm_apply _).2 $ by rw point_reflection_symm | |
/-- `x` is the only fixed point of `point_reflection x`. This lemma requires | |
`x + x = y + y ↔ x = y`. There is no typeclass to use here, so we add it as an explicit argument. -/ | |
lemma point_reflection_fixed_iff_of_injective_bit0 {x y : P} (h : injective (bit0 : G → G)) : | |
point_reflection x y = y ↔ y = x := | |
by rw [point_reflection_apply, eq_comm, eq_vadd_iff_vsub_eq, ← neg_vsub_eq_vsub_rev, | |
neg_eq_iff_add_eq_zero, ← bit0, ← bit0_zero, h.eq_iff, vsub_eq_zero_iff_eq, eq_comm] | |
omit G | |
lemma injective_point_reflection_left_of_injective_bit0 {G P : Type*} [add_comm_group G] | |
[add_torsor G P] (h : injective (bit0 : G → G)) (y : P) : | |
injective (λ x : P, point_reflection x y) := | |
λ x₁ x₂ (hy : point_reflection x₁ y = point_reflection x₂ y), | |
by rwa [point_reflection_apply, point_reflection_apply, vadd_eq_vadd_iff_sub_eq_vsub, | |
vsub_sub_vsub_cancel_right, ← neg_vsub_eq_vsub_rev, neg_eq_iff_add_eq_zero, ← bit0, ← bit0_zero, | |
h.eq_iff, vsub_eq_zero_iff_eq] at hy | |
end equiv | |
lemma add_torsor.subsingleton_iff (G P : Type*) [add_group G] [add_torsor G P] : | |
subsingleton G ↔ subsingleton P := | |
begin | |
inhabit P, | |
exact (equiv.vadd_const default).subsingleton_congr, | |
end | |