Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(******************************************************************************) | |
(* FILE : support.ml *) | |
(* DESCRIPTION : Miscellaneous supporting definitions for Boyer-Moore *) | |
(* style prover in HOL. *) | |
(* *) | |
(* READS FILES : <none> *) | |
(* WRITES FILES : <none> *) | |
(* *) | |
(* AUTHOR : R.J.Boulton *) | |
(* DATE : 6th June 1991 *) | |
(* *) | |
(* LAST MODIFIED : R.J.Boulton *) | |
(* DATE : 21st June 1991 *) | |
(* *) | |
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) | |
(* DATE : 2008 *) | |
(******************************************************************************) | |
let SUBST thl pat th = | |
let eqs,vs = unzip thl in | |
let gvs = map (genvar o type_of) vs in | |
let gpat = subst (zip gvs vs) pat in | |
let ls,rs = unzip (map (dest_eq o concl) eqs) in | |
let ths = map (ASSUME o mk_eq) (zip gvs rs) in | |
let th1 = ASSUME gpat in | |
let th2 = SUBS ths th1 in | |
let th3 = itlist DISCH (map concl ths) (DISCH gpat th2) in | |
let th4 = INST (zip ls gvs) th3 in | |
MP (rev_itlist (C MP) eqs th4) th;; | |
let SUBST_CONV thvars template tm = | |
let thms,vars = unzip thvars in | |
let gvs = map (genvar o type_of) vars in | |
let gtemplate = subst (zip gvs vars) template in | |
SUBST (zip thms gvs) (mk_eq(template,gtemplate)) (REFL tm);; | |
let CONTRAPOS = | |
let a = `a:bool` and b = `b:bool` in | |
let pth = ITAUT `(a ==> b) ==> (~b ==> ~a)` in | |
fun th -> | |
try let P,Q = dest_imp(concl th) in | |
MP (INST [P,a; Q,b] pth) th | |
with Failure _ -> failwith "CONTRAPOS";; | |
let NOT_EQ_SYM = | |
let pth = GENL [`a:A`; `b:A`] | |
(CONTRAPOS(DISCH_ALL(SYM(ASSUME`a:A = b`)))) | |
and aty = `:A` in | |
fun th -> try let l,r = dest_eq(dest_neg(concl th)) in | |
MP (SPECL [r; l] (INST_TYPE [type_of l,aty] pth)) th | |
with Failure _ -> failwith "NOT_EQ_SYM";; | |
let hash f g (x,y) = (f x,g y);; | |
let hashI f (x,y) = hash f I (x,y);; | |
let fst3 (x,_,_) = x;; | |
let snd3 (_,x,_) = x;; | |
let thd3 (_,_,x) = x;; | |
let lcombinep (x,y) = List.combine x y;; | |
let lcount x l = length ( filter ((=) x) l );; | |
let list_mk_imp (tms,tm) = | |
if (tms = []) then tm | |
else try itlist (fun p q -> mk_imp (p,q)) tms tm with Failure _ -> failwith "list_mk_imp";; | |
let INDUCT_TAC_ thm = MATCH_MP_TAC thm THEN | |
CONJ_TAC THENL [ALL_TAC; GEN_TAC THEN GEN_TAC THEN DISCH_TAC] ;; | |
(*--------------------------------------------------------------------------*) | |
(* distinct : ''a list -> bool *) | |
(* *) | |
(* Checks whether the elements of a list are all distinct. *) | |
(*--------------------------------------------------------------------------*) | |
let rec distinct x = | |
if (x = []) then true | |
else not (mem (hd x) (tl x)) && distinct (tl x);; | |
(*----------------------------------------------------------------------------*) | |
(* Discriminator functions for T (true) and F (false) *) | |
(*----------------------------------------------------------------------------*) | |
let is_T = let T = `T` in fun tm -> tm = T | |
and is_F = let F = `F` in fun tm -> tm = F;; | |
(*--------------------------------------------------------------------------*) | |
(* conj_list : term -> term list *) | |
(* *) | |
(* Splits a conjunction into conjuncts. Only recursively splits the right *) | |
(* conjunct. *) | |
(*--------------------------------------------------------------------------*) | |
let rec conj_list tm = | |
try( | |
let (tm1,tm2) = dest_conj tm | |
in tm1::(conj_list tm2) | |
) with Failure _ -> [tm];; | |
(*--------------------------------------------------------------------------*) | |
(* disj_list : term -> term list *) | |
(* *) | |
(* Splits a disjunction into disjuncts. Only recursively splits the right *) | |
(* disjunct. *) | |
(*--------------------------------------------------------------------------*) | |
let rec disj_list tm = | |
try( | |
let (tm1,tm2) = dest_disj tm | |
in tm1::(disj_list tm2) | |
) with Failure _ -> [tm];; | |
(*----------------------------------------------------------------------------*) | |
(* number_list : * list -> ( * # int) list *) | |
(* *) | |
(* Numbers a list of elements, *) | |
(* e.g. [`a`;`b`;`c`] ---> [(`a`,1);(`b`,2);(`c`,3)]. *) | |
(*----------------------------------------------------------------------------*) | |
let number_list l = | |
let rec number_list' n l = | |
if ( l = [] ) then [] | |
else (hd l,n)::(number_list' (n + 1) (tl l)) | |
in number_list' 1 l;; | |
(*----------------------------------------------------------------------------*) | |
(* insert_on_snd : ( * # int) -> ( * # int) list -> ( * # int) list *) | |
(* *) | |
(* Insert a numbered element into an ordered list, *) | |
(* e.g. insert_on_snd (`c`,3) [(`a`,1);(`b`,2);(`d`,4)] ---> *) | |
(* [(`a`,1); (`b`,2); (`c`,3); (`d`,4)] *) | |
(*----------------------------------------------------------------------------*) | |
let rec insert_on_snd (x,n) l = | |
if (l = []) | |
then [(x,n)] | |
else let h = hd l | |
in if (n < snd h) | |
then (x,n)::l | |
else h::(insert_on_snd (x,n) (tl l));; | |
(*----------------------------------------------------------------------------*) | |
(* sort_on_snd : ( * # int) list -> ( * # int) list *) | |
(* *) | |
(* Sort a list of pairs, of which the second component is an integer, *) | |
(* e.g. sort_on_snd [(`c`,3);(`d`,4);(`a`,1);(`b`,2)] ---> *) | |
(* [(`a`,1); (`b`,2); (`c`,3); (`d`,4)] *) | |
(*----------------------------------------------------------------------------*) | |
let rec sort_on_snd l = | |
if (l = []) | |
then [] | |
else (insert_on_snd (hd l) (sort_on_snd (tl l)));; | |
(*----------------------------------------------------------------------------*) | |
(* conj_list : term -> term list *) | |
(* *) | |
(* Splits a conjunction into conjuncts. Only recursively splits the right *) | |
(* conjunct. *) | |
(*----------------------------------------------------------------------------*) | |
let rec conj_list tm = | |
try | |
(let (tm1,tm2) = dest_conj tm | |
in tm1::(conj_list tm2)) | |
with Failure _ -> [tm];; | |
(*----------------------------------------------------------------------------*) | |
(* disj_list : term -> term list *) | |
(* *) | |
(* Splits a disjunction into disjuncts. Only recursively splits the right *) | |
(* disjunct. *) | |
(*----------------------------------------------------------------------------*) | |
let rec disj_list tm = | |
try | |
(let (tm1,tm2) = dest_disj tm | |
in tm1::(disj_list tm2)) | |
with Failure _ -> [tm];; | |
(*----------------------------------------------------------------------------*) | |
(* find_bm_terms : (term -> bool) -> term -> term list *) | |
(* *) | |
(* Function to find all subterms in a term that satisfy a given predicate p, *) | |
(* breaking down terms as if they were Boyer-Moore logic expressions. *) | |
(* In particular, the operator of a function application is only processed if *) | |
(* it is of zero arity, i.e. there are no arguments. *) | |
(*----------------------------------------------------------------------------*) | |
let find_bm_terms p tm = | |
try | |
(let rec accum tml p tm = | |
let tml' = if (p tm) then (tm::tml) else tml | |
in ( let args = snd (strip_comb tm) | |
in ( try ( rev_itlist (fun tm tml -> accum tml p tm) args tml' ) with Failure _ -> tml' ) ) | |
in accum [] p tm | |
) with Failure _ -> failwith "find_bm_terms";; | |
(*----------------------------------------------------------------------------*) | |
(* remove_el : int -> * list -> ( * # * list) *) | |
(* *) | |
(* Removes a specified (by numerical position) element from a list. *) | |
(*----------------------------------------------------------------------------*) | |
let rec remove_el n l = | |
if ((l = []) || (n < 1)) | |
then failwith "remove_el" | |
else if (n = 1) | |
then (hd l,tl l) | |
else let (x,l') = remove_el (n - 1) (tl l) | |
in (x,(hd l)::l');; | |