Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
9.99 kB
(******************************************************************************)
(* FILE : support.ml *)
(* DESCRIPTION : Miscellaneous supporting definitions for Boyer-Moore *)
(* style prover in HOL. *)
(* *)
(* READS FILES : <none> *)
(* WRITES FILES : <none> *)
(* *)
(* AUTHOR : R.J.Boulton *)
(* DATE : 6th June 1991 *)
(* *)
(* LAST MODIFIED : R.J.Boulton *)
(* DATE : 21st June 1991 *)
(* *)
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *)
(* DATE : 2008 *)
(******************************************************************************)
let SUBST thl pat th =
let eqs,vs = unzip thl in
let gvs = map (genvar o type_of) vs in
let gpat = subst (zip gvs vs) pat in
let ls,rs = unzip (map (dest_eq o concl) eqs) in
let ths = map (ASSUME o mk_eq) (zip gvs rs) in
let th1 = ASSUME gpat in
let th2 = SUBS ths th1 in
let th3 = itlist DISCH (map concl ths) (DISCH gpat th2) in
let th4 = INST (zip ls gvs) th3 in
MP (rev_itlist (C MP) eqs th4) th;;
let SUBST_CONV thvars template tm =
let thms,vars = unzip thvars in
let gvs = map (genvar o type_of) vars in
let gtemplate = subst (zip gvs vars) template in
SUBST (zip thms gvs) (mk_eq(template,gtemplate)) (REFL tm);;
let CONTRAPOS =
let a = `a:bool` and b = `b:bool` in
let pth = ITAUT `(a ==> b) ==> (~b ==> ~a)` in
fun th ->
try let P,Q = dest_imp(concl th) in
MP (INST [P,a; Q,b] pth) th
with Failure _ -> failwith "CONTRAPOS";;
let NOT_EQ_SYM =
let pth = GENL [`a:A`; `b:A`]
(CONTRAPOS(DISCH_ALL(SYM(ASSUME`a:A = b`))))
and aty = `:A` in
fun th -> try let l,r = dest_eq(dest_neg(concl th)) in
MP (SPECL [r; l] (INST_TYPE [type_of l,aty] pth)) th
with Failure _ -> failwith "NOT_EQ_SYM";;
let hash f g (x,y) = (f x,g y);;
let hashI f (x,y) = hash f I (x,y);;
let fst3 (x,_,_) = x;;
let snd3 (_,x,_) = x;;
let thd3 (_,_,x) = x;;
let lcombinep (x,y) = List.combine x y;;
let lcount x l = length ( filter ((=) x) l );;
let list_mk_imp (tms,tm) =
if (tms = []) then tm
else try itlist (fun p q -> mk_imp (p,q)) tms tm with Failure _ -> failwith "list_mk_imp";;
let INDUCT_TAC_ thm = MATCH_MP_TAC thm THEN
CONJ_TAC THENL [ALL_TAC; GEN_TAC THEN GEN_TAC THEN DISCH_TAC] ;;
(*--------------------------------------------------------------------------*)
(* distinct : ''a list -> bool *)
(* *)
(* Checks whether the elements of a list are all distinct. *)
(*--------------------------------------------------------------------------*)
let rec distinct x =
if (x = []) then true
else not (mem (hd x) (tl x)) && distinct (tl x);;
(*----------------------------------------------------------------------------*)
(* Discriminator functions for T (true) and F (false) *)
(*----------------------------------------------------------------------------*)
let is_T = let T = `T` in fun tm -> tm = T
and is_F = let F = `F` in fun tm -> tm = F;;
(*--------------------------------------------------------------------------*)
(* conj_list : term -> term list *)
(* *)
(* Splits a conjunction into conjuncts. Only recursively splits the right *)
(* conjunct. *)
(*--------------------------------------------------------------------------*)
let rec conj_list tm =
try(
let (tm1,tm2) = dest_conj tm
in tm1::(conj_list tm2)
) with Failure _ -> [tm];;
(*--------------------------------------------------------------------------*)
(* disj_list : term -> term list *)
(* *)
(* Splits a disjunction into disjuncts. Only recursively splits the right *)
(* disjunct. *)
(*--------------------------------------------------------------------------*)
let rec disj_list tm =
try(
let (tm1,tm2) = dest_disj tm
in tm1::(disj_list tm2)
) with Failure _ -> [tm];;
(*----------------------------------------------------------------------------*)
(* number_list : * list -> ( * # int) list *)
(* *)
(* Numbers a list of elements, *)
(* e.g. [`a`;`b`;`c`] ---> [(`a`,1);(`b`,2);(`c`,3)]. *)
(*----------------------------------------------------------------------------*)
let number_list l =
let rec number_list' n l =
if ( l = [] ) then []
else (hd l,n)::(number_list' (n + 1) (tl l))
in number_list' 1 l;;
(*----------------------------------------------------------------------------*)
(* insert_on_snd : ( * # int) -> ( * # int) list -> ( * # int) list *)
(* *)
(* Insert a numbered element into an ordered list, *)
(* e.g. insert_on_snd (`c`,3) [(`a`,1);(`b`,2);(`d`,4)] ---> *)
(* [(`a`,1); (`b`,2); (`c`,3); (`d`,4)] *)
(*----------------------------------------------------------------------------*)
let rec insert_on_snd (x,n) l =
if (l = [])
then [(x,n)]
else let h = hd l
in if (n < snd h)
then (x,n)::l
else h::(insert_on_snd (x,n) (tl l));;
(*----------------------------------------------------------------------------*)
(* sort_on_snd : ( * # int) list -> ( * # int) list *)
(* *)
(* Sort a list of pairs, of which the second component is an integer, *)
(* e.g. sort_on_snd [(`c`,3);(`d`,4);(`a`,1);(`b`,2)] ---> *)
(* [(`a`,1); (`b`,2); (`c`,3); (`d`,4)] *)
(*----------------------------------------------------------------------------*)
let rec sort_on_snd l =
if (l = [])
then []
else (insert_on_snd (hd l) (sort_on_snd (tl l)));;
(*----------------------------------------------------------------------------*)
(* conj_list : term -> term list *)
(* *)
(* Splits a conjunction into conjuncts. Only recursively splits the right *)
(* conjunct. *)
(*----------------------------------------------------------------------------*)
let rec conj_list tm =
try
(let (tm1,tm2) = dest_conj tm
in tm1::(conj_list tm2))
with Failure _ -> [tm];;
(*----------------------------------------------------------------------------*)
(* disj_list : term -> term list *)
(* *)
(* Splits a disjunction into disjuncts. Only recursively splits the right *)
(* disjunct. *)
(*----------------------------------------------------------------------------*)
let rec disj_list tm =
try
(let (tm1,tm2) = dest_disj tm
in tm1::(disj_list tm2))
with Failure _ -> [tm];;
(*----------------------------------------------------------------------------*)
(* find_bm_terms : (term -> bool) -> term -> term list *)
(* *)
(* Function to find all subterms in a term that satisfy a given predicate p, *)
(* breaking down terms as if they were Boyer-Moore logic expressions. *)
(* In particular, the operator of a function application is only processed if *)
(* it is of zero arity, i.e. there are no arguments. *)
(*----------------------------------------------------------------------------*)
let find_bm_terms p tm =
try
(let rec accum tml p tm =
let tml' = if (p tm) then (tm::tml) else tml
in ( let args = snd (strip_comb tm)
in ( try ( rev_itlist (fun tm tml -> accum tml p tm) args tml' ) with Failure _ -> tml' ) )
in accum [] p tm
) with Failure _ -> failwith "find_bm_terms";;
(*----------------------------------------------------------------------------*)
(* remove_el : int -> * list -> ( * # * list) *)
(* *)
(* Removes a specified (by numerical position) element from a list. *)
(*----------------------------------------------------------------------------*)
let rec remove_el n l =
if ((l = []) || (n < 1))
then failwith "remove_el"
else if (n = 1)
then (hd l,tl l)
else let (x,l') = remove_el (n - 1) (tl l)
in (x,(hd l)::l');;