Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Isomorphic mappings from Montgomery to Weierstrass form and back again. *) | |
(* ========================================================================= *) | |
needs "EC/montgomery.ml";; | |
needs "EC/weierstrass.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Map from Montgomery to Weierstrass by (x,y) |-> ((x + A / 3) / B, y / B) *) | |
(* and from Weierstrass to Montgomery by (x,y) |-> (B * x - A / 3, B * y) *) | |
(* and thus Montgomery(A,B) curve gives Weierstrass(a,b) where *) | |
(* *) | |
(* a = (1 - A^2 / 3) / B^2 *) | |
(* b = A * (2 * A^2 - 9) / (27 * B^3) *) | |
(* ------------------------------------------------------------------------- *) | |
let wcurve_of_mcurve = define | |
`wcurve_of_mcurve(f,(a:A),b) = | |
(f, | |
ring_div f (ring_sub f (ring_of_num f 1) | |
(ring_div f (ring_pow f a 2) (ring_of_num f 3))) | |
(ring_pow f b 2), | |
ring_div f (ring_mul f a (ring_sub f (ring_mul f (ring_of_num f 2) | |
(ring_pow f a 2)) | |
(ring_of_num f 9))) | |
(ring_mul f (ring_of_num f 27) (ring_pow f b 3)))`;; | |
let WCURVE_OF_MCURVE_NONSINGULAR_EQ = prove | |
(`!f a b:A. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) | |
==> (weierstrass_nonsingular(wcurve_of_mcurve(f,a,b)) <=> | |
~(ring_pow f a 2 = ring_of_num f 4))`, | |
REWRITE_TAC[FIELD_CHAR_NOT23] THEN | |
REWRITE_TAC[montgomery_nonsingular; | |
weierstrass_nonsingular; wcurve_of_mcurve] THEN | |
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; | |
let WCURVE_OF_MCURVE_NONSINGULAR = prove | |
(`!f a b:A. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
montgomery_nonsingular(f,a,b) | |
==> weierstrass_nonsingular(wcurve_of_mcurve(f,a,b))`, | |
SIMP_TAC[montgomery_nonsingular; DE_MORGAN_THM; | |
WCURVE_OF_MCURVE_NONSINGULAR_EQ]);; | |
let weierstrass_of_montgomery = define | |
`weierstrass_of_montgomery(f,a:A,b) NONE = NONE /\ | |
weierstrass_of_montgomery(f,a:A,b) (SOME(x,y)) = | |
SOME(ring_div f (ring_add f x (ring_div f a (ring_of_num f 3))) b, | |
ring_div f y b)`;; | |
let montgomery_of_weierstrass = define | |
`montgomery_of_weierstrass(f,a:A,b) NONE = NONE /\ | |
montgomery_of_weierstrass(f,a:A,b) (SOME(x,y)) = | |
SOME(ring_sub f (ring_mul f b x) (ring_div f a (ring_of_num f 3)), | |
ring_mul f b y)`;; | |
let MONTGOMERY_OF_WEIERSTRASS_OF_MONTGOMERY = prove | |
(`!f a (b:A) p. | |
field f /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\ | |
montgomery_point f p | |
==> montgomery_of_weierstrass(f,a,b) | |
(weierstrass_of_montgomery(f,a,b) p) = p`, | |
REWRITE_TAC[FIELD_CHAR_NOT3] THEN | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN | |
REWRITE_TAC[montgomery_point; option_INJ; PAIR_EQ] THEN | |
REPEAT STRIP_TAC THEN FIELD_TAC);; | |
let WEIERSTRASS_OF_MONTGOMERY_OF_WEIERSTRASS = prove | |
(`!f a (b:A) p. | |
field f /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\ | |
weierstrass_point f p | |
==> weierstrass_of_montgomery(f,a,b) | |
(montgomery_of_weierstrass(f,a,b) p) = p`, | |
REWRITE_TAC[FIELD_CHAR_NOT3] THEN | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN | |
REWRITE_TAC[weierstrass_point; option_INJ; PAIR_EQ] THEN | |
REPEAT STRIP_TAC THEN FIELD_TAC);; | |
let WEIERSTRASS_OF_MONTGOMERY = prove | |
(`!f (a:A) b p. | |
field f /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
montgomery_curve(f,a,b) p | |
==> weierstrass_curve (wcurve_of_mcurve(f,a,b)) | |
(weierstrass_of_montgomery(f,a,b) p)`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[montgomery_curve; weierstrass_curve; | |
weierstrass_of_montgomery; wcurve_of_mcurve] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT3] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; | |
let MONTGOMERY_OF_WEIERSTRASS = prove | |
(`!f (a:A) b p. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\ | |
weierstrass_curve (wcurve_of_mcurve(f,a,b)) p | |
==> montgomery_curve(f,a,b) (montgomery_of_weierstrass(f,a,b) p)`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[montgomery_curve; weierstrass_curve; | |
montgomery_of_weierstrass; wcurve_of_mcurve] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT23] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; | |
let WEIERSTRASS_OF_MONTGOMERY_NEG = prove | |
(`!f (a:A) b p. | |
field f /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
~(b = ring_0 f) /\ | |
montgomery_curve(f,a,b) p | |
==> weierstrass_of_montgomery(f,a,b) (montgomery_neg(f,a,b) p) = | |
weierstrass_neg (wcurve_of_mcurve(f,a,b)) | |
(weierstrass_of_montgomery(f,a,b) p)`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[montgomery_curve; weierstrass_of_montgomery; | |
montgomery_of_weierstrass; wcurve_of_mcurve; | |
montgomery_neg; weierstrass_neg] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[option_INJ; PAIR_EQ; FIELD_CHAR_NOT3] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; | |
let WEIERSTRASS_OF_MONTGOMERY_ADD = prove | |
(`!f (a:A) b p q. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
~(b = ring_0 f) /\ | |
montgomery_curve(f,a,b) p /\ montgomery_curve(f,a,b) q | |
==> weierstrass_of_montgomery(f,a,b) (montgomery_add(f,a,b) p q) = | |
weierstrass_add (wcurve_of_mcurve(f,a,b)) | |
(weierstrass_of_montgomery(f,a,b) p) | |
(weierstrass_of_montgomery(f,a,b) q)`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[montgomery_curve; weierstrass_of_montgomery; | |
montgomery_of_weierstrass; wcurve_of_mcurve; | |
montgomery_add; weierstrass_add] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[option_INJ; PAIR_EQ] THEN | |
REWRITE_TAC[FIELD_CHAR_NOT23] THEN REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[weierstrass_of_montgomery]) THEN | |
REPEAT LET_TAC THEN | |
ASM_REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN | |
REWRITE_TAC[option_INJ; option_DISTINCT; PAIR_EQ] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; | |
let GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP = prove | |
(`!f a (b:A). | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
montgomery_nonsingular(f,a,b) | |
==> group_isomorphisms | |
(montgomery_group(f,a,b),weierstrass_group(wcurve_of_mcurve(f,a,b))) | |
(weierstrass_of_montgomery(f,a,b), | |
montgomery_of_weierstrass(f,a,b))`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL (striplist dest_pair (rand(concl wcurve_of_mcurve))) | |
WEIERSTRASS_GROUP) THEN | |
REWRITE_TAC[GSYM wcurve_of_mcurve] THEN ANTS_TAC THENL | |
[ASM_SIMP_TAC[WCURVE_OF_MCURVE_NONSINGULAR] THEN | |
REPEAT CONJ_TAC THEN RING_CARRIER_TAC; | |
STRIP_TAC] THEN | |
MP_TAC(ISPECL [`f:A ring`; `a:A`; `b:A`] MONTGOMERY_GROUP) THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[GROUP_ISOMORPHISMS; GROUP_HOMOMORPHISM] THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[IN] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[montgomery_nonsingular]) THEN | |
SUBGOAL_THEN | |
`(!x. weierstrass_curve (wcurve_of_mcurve (f,(a:A),b)) x | |
==> weierstrass_point f x) /\ | |
(!y. montgomery_curve (f,a,b) y ==> montgomery_point f y)` | |
STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[FORALL_PAIR_THM; FORALL_OPTION_THM] THEN | |
SIMP_TAC[weierstrass_curve; weierstrass_point; wcurve_of_mcurve; | |
montgomery_curve; montgomery_point]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[WEIERSTRASS_OF_MONTGOMERY; WEIERSTRASS_OF_MONTGOMERY_ADD; | |
MONTGOMERY_OF_WEIERSTRASS; | |
MONTGOMERY_OF_WEIERSTRASS_OF_MONTGOMERY; | |
WEIERSTRASS_OF_MONTGOMERY_OF_WEIERSTRASS]);; | |
let GROUP_ISOMORPHISMS_WEIERSTRASS_MONTGOMERY_GROUP = prove | |
(`!f a (b:A). | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
montgomery_nonsingular(f,a,b) | |
==> group_isomorphisms | |
(weierstrass_group(wcurve_of_mcurve(f,a,b)),montgomery_group(f,a,b)) | |
(montgomery_of_weierstrass(f,a,b), | |
weierstrass_of_montgomery(f,a,b))`, | |
ONCE_REWRITE_TAC[GROUP_ISOMORPHISMS_SYM] THEN | |
ACCEPT_TAC GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP);; | |
let ISOMORPHIC_MONTGOMERY_WEIERSTRASS_GROUP = prove | |
(`!f a (b:A). | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
montgomery_nonsingular(f,a,b) | |
==> (montgomery_group(f,a,b)) isomorphic_group | |
(weierstrass_group(wcurve_of_mcurve(f,a,b)))`, | |
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o | |
MATCH_MP GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP) THEN | |
MESON_TAC[GROUP_ISOMORPHISMS_IMP_ISOMORPHISM; isomorphic_group]);; | |
let ISOMORPHIC_WEIERSTRASS_MONTGOMERY_GROUP = prove | |
(`!f a (b:A). | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
montgomery_nonsingular(f,a,b) | |
==> (weierstrass_group(wcurve_of_mcurve(f,a,b))) isomorphic_group | |
(montgomery_group(f,a,b))`, | |
ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN | |
ACCEPT_TAC ISOMORPHIC_MONTGOMERY_WEIERSTRASS_GROUP);; | |