Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /EC /montwe.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.4 kB
(* ========================================================================= *)
(* Isomorphic mappings from Montgomery to Weierstrass form and back again. *)
(* ========================================================================= *)
needs "EC/montgomery.ml";;
needs "EC/weierstrass.ml";;
(* ------------------------------------------------------------------------- *)
(* Map from Montgomery to Weierstrass by (x,y) |-> ((x + A / 3) / B, y / B) *)
(* and from Weierstrass to Montgomery by (x,y) |-> (B * x - A / 3, B * y) *)
(* and thus Montgomery(A,B) curve gives Weierstrass(a,b) where *)
(* *)
(* a = (1 - A^2 / 3) / B^2 *)
(* b = A * (2 * A^2 - 9) / (27 * B^3) *)
(* ------------------------------------------------------------------------- *)
let wcurve_of_mcurve = define
`wcurve_of_mcurve(f,(a:A),b) =
(f,
ring_div f (ring_sub f (ring_of_num f 1)
(ring_div f (ring_pow f a 2) (ring_of_num f 3)))
(ring_pow f b 2),
ring_div f (ring_mul f a (ring_sub f (ring_mul f (ring_of_num f 2)
(ring_pow f a 2))
(ring_of_num f 9)))
(ring_mul f (ring_of_num f 27) (ring_pow f b 3)))`;;
let WCURVE_OF_MCURVE_NONSINGULAR_EQ = prove
(`!f a b:A.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f)
==> (weierstrass_nonsingular(wcurve_of_mcurve(f,a,b)) <=>
~(ring_pow f a 2 = ring_of_num f 4))`,
REWRITE_TAC[FIELD_CHAR_NOT23] THEN
REWRITE_TAC[montgomery_nonsingular;
weierstrass_nonsingular; wcurve_of_mcurve] THEN
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;
let WCURVE_OF_MCURVE_NONSINGULAR = prove
(`!f a b:A.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
montgomery_nonsingular(f,a,b)
==> weierstrass_nonsingular(wcurve_of_mcurve(f,a,b))`,
SIMP_TAC[montgomery_nonsingular; DE_MORGAN_THM;
WCURVE_OF_MCURVE_NONSINGULAR_EQ]);;
let weierstrass_of_montgomery = define
`weierstrass_of_montgomery(f,a:A,b) NONE = NONE /\
weierstrass_of_montgomery(f,a:A,b) (SOME(x,y)) =
SOME(ring_div f (ring_add f x (ring_div f a (ring_of_num f 3))) b,
ring_div f y b)`;;
let montgomery_of_weierstrass = define
`montgomery_of_weierstrass(f,a:A,b) NONE = NONE /\
montgomery_of_weierstrass(f,a:A,b) (SOME(x,y)) =
SOME(ring_sub f (ring_mul f b x) (ring_div f a (ring_of_num f 3)),
ring_mul f b y)`;;
let MONTGOMERY_OF_WEIERSTRASS_OF_MONTGOMERY = prove
(`!f a (b:A) p.
field f /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\
montgomery_point f p
==> montgomery_of_weierstrass(f,a,b)
(weierstrass_of_montgomery(f,a,b) p) = p`,
REWRITE_TAC[FIELD_CHAR_NOT3] THEN
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN
REWRITE_TAC[montgomery_point; option_INJ; PAIR_EQ] THEN
REPEAT STRIP_TAC THEN FIELD_TAC);;
let WEIERSTRASS_OF_MONTGOMERY_OF_WEIERSTRASS = prove
(`!f a (b:A) p.
field f /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\
weierstrass_point f p
==> weierstrass_of_montgomery(f,a,b)
(montgomery_of_weierstrass(f,a,b) p) = p`,
REWRITE_TAC[FIELD_CHAR_NOT3] THEN
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN
REWRITE_TAC[weierstrass_point; option_INJ; PAIR_EQ] THEN
REPEAT STRIP_TAC THEN FIELD_TAC);;
let WEIERSTRASS_OF_MONTGOMERY = prove
(`!f (a:A) b p.
field f /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
montgomery_curve(f,a,b) p
==> weierstrass_curve (wcurve_of_mcurve(f,a,b))
(weierstrass_of_montgomery(f,a,b) p)`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[montgomery_curve; weierstrass_curve;
weierstrass_of_montgomery; wcurve_of_mcurve] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT3] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;
let MONTGOMERY_OF_WEIERSTRASS = prove
(`!f (a:A) b p.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\
weierstrass_curve (wcurve_of_mcurve(f,a,b)) p
==> montgomery_curve(f,a,b) (montgomery_of_weierstrass(f,a,b) p)`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[montgomery_curve; weierstrass_curve;
montgomery_of_weierstrass; wcurve_of_mcurve] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT23] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;
let WEIERSTRASS_OF_MONTGOMERY_NEG = prove
(`!f (a:A) b p.
field f /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
~(b = ring_0 f) /\
montgomery_curve(f,a,b) p
==> weierstrass_of_montgomery(f,a,b) (montgomery_neg(f,a,b) p) =
weierstrass_neg (wcurve_of_mcurve(f,a,b))
(weierstrass_of_montgomery(f,a,b) p)`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[montgomery_curve; weierstrass_of_montgomery;
montgomery_of_weierstrass; wcurve_of_mcurve;
montgomery_neg; weierstrass_neg] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[option_INJ; PAIR_EQ; FIELD_CHAR_NOT3] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;
let WEIERSTRASS_OF_MONTGOMERY_ADD = prove
(`!f (a:A) b p q.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
~(b = ring_0 f) /\
montgomery_curve(f,a,b) p /\ montgomery_curve(f,a,b) q
==> weierstrass_of_montgomery(f,a,b) (montgomery_add(f,a,b) p q) =
weierstrass_add (wcurve_of_mcurve(f,a,b))
(weierstrass_of_montgomery(f,a,b) p)
(weierstrass_of_montgomery(f,a,b) q)`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[montgomery_curve; weierstrass_of_montgomery;
montgomery_of_weierstrass; wcurve_of_mcurve;
montgomery_add; weierstrass_add] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[option_INJ; PAIR_EQ] THEN
REWRITE_TAC[FIELD_CHAR_NOT23] THEN REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[weierstrass_of_montgomery]) THEN
REPEAT LET_TAC THEN
ASM_REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN
REWRITE_TAC[option_INJ; option_DISTINCT; PAIR_EQ] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;
let GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP = prove
(`!f a (b:A).
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
montgomery_nonsingular(f,a,b)
==> group_isomorphisms
(montgomery_group(f,a,b),weierstrass_group(wcurve_of_mcurve(f,a,b)))
(weierstrass_of_montgomery(f,a,b),
montgomery_of_weierstrass(f,a,b))`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL (striplist dest_pair (rand(concl wcurve_of_mcurve)))
WEIERSTRASS_GROUP) THEN
REWRITE_TAC[GSYM wcurve_of_mcurve] THEN ANTS_TAC THENL
[ASM_SIMP_TAC[WCURVE_OF_MCURVE_NONSINGULAR] THEN
REPEAT CONJ_TAC THEN RING_CARRIER_TAC;
STRIP_TAC] THEN
MP_TAC(ISPECL [`f:A ring`; `a:A`; `b:A`] MONTGOMERY_GROUP) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[GROUP_ISOMORPHISMS; GROUP_HOMOMORPHISM] THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[IN] THEN
RULE_ASSUM_TAC(REWRITE_RULE[montgomery_nonsingular]) THEN
SUBGOAL_THEN
`(!x. weierstrass_curve (wcurve_of_mcurve (f,(a:A),b)) x
==> weierstrass_point f x) /\
(!y. montgomery_curve (f,a,b) y ==> montgomery_point f y)`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[FORALL_PAIR_THM; FORALL_OPTION_THM] THEN
SIMP_TAC[weierstrass_curve; weierstrass_point; wcurve_of_mcurve;
montgomery_curve; montgomery_point];
ALL_TAC] THEN
ASM_SIMP_TAC[WEIERSTRASS_OF_MONTGOMERY; WEIERSTRASS_OF_MONTGOMERY_ADD;
MONTGOMERY_OF_WEIERSTRASS;
MONTGOMERY_OF_WEIERSTRASS_OF_MONTGOMERY;
WEIERSTRASS_OF_MONTGOMERY_OF_WEIERSTRASS]);;
let GROUP_ISOMORPHISMS_WEIERSTRASS_MONTGOMERY_GROUP = prove
(`!f a (b:A).
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
montgomery_nonsingular(f,a,b)
==> group_isomorphisms
(weierstrass_group(wcurve_of_mcurve(f,a,b)),montgomery_group(f,a,b))
(montgomery_of_weierstrass(f,a,b),
weierstrass_of_montgomery(f,a,b))`,
ONCE_REWRITE_TAC[GROUP_ISOMORPHISMS_SYM] THEN
ACCEPT_TAC GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP);;
let ISOMORPHIC_MONTGOMERY_WEIERSTRASS_GROUP = prove
(`!f a (b:A).
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
montgomery_nonsingular(f,a,b)
==> (montgomery_group(f,a,b)) isomorphic_group
(weierstrass_group(wcurve_of_mcurve(f,a,b)))`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o
MATCH_MP GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP) THEN
MESON_TAC[GROUP_ISOMORPHISMS_IMP_ISOMORPHISM; isomorphic_group]);;
let ISOMORPHIC_WEIERSTRASS_MONTGOMERY_GROUP = prove
(`!f a (b:A).
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
montgomery_nonsingular(f,a,b)
==> (weierstrass_group(wcurve_of_mcurve(f,a,b))) isomorphic_group
(montgomery_group(f,a,b))`,
ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN
ACCEPT_TAC ISOMORPHIC_MONTGOMERY_WEIERSTRASS_GROUP);;