Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2015 Microsoft Corporation. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Leonardo de Moura, Mario Carneiro | |
-/ | |
import data.set.function | |
import logic.equiv.basic | |
/-! | |
# Equivalences and sets | |
In this file we provide lemmas linking equivalences to sets. | |
Some notable definitions are: | |
* `equiv.of_injective`: an injective function is (noncomputably) equivalent to its range. | |
* `equiv.set_congr`: two equal sets are equivalent as types. | |
* `equiv.set.union`: a disjoint union of sets is equivalent to their `sum`. | |
This file is separate from `equiv/basic` such that we do not require the full lattice structure | |
on sets before defining what an equivalence is. | |
-/ | |
open function set | |
universes u v w z | |
variables {α : Sort u} {β : Sort v} {γ : Sort w} | |
namespace equiv | |
@[simp] lemma range_eq_univ {α : Type*} {β : Type*} (e : α ≃ β) : range e = univ := | |
eq_univ_of_forall e.surjective | |
protected lemma image_eq_preimage {α β} (e : α ≃ β) (s : set α) : e '' s = e.symm ⁻¹' s := | |
set.ext $ λ x, mem_image_iff_of_inverse e.left_inv e.right_inv | |
lemma _root_.set.mem_image_equiv {α β} {S : set α} {f : α ≃ β} {x : β} : | |
x ∈ f '' S ↔ f.symm x ∈ S := | |
set.ext_iff.mp (f.image_eq_preimage S) x | |
/-- Alias for `equiv.image_eq_preimage` -/ | |
lemma _root_.set.image_equiv_eq_preimage_symm {α β} (S : set α) (f : α ≃ β) : | |
f '' S = f.symm ⁻¹' S := | |
f.image_eq_preimage S | |
/-- Alias for `equiv.image_eq_preimage` -/ | |
lemma _root_.set.preimage_equiv_eq_image_symm {α β} (S : set α) (f : β ≃ α) : | |
f ⁻¹' S = f.symm '' S := | |
(f.symm.image_eq_preimage S).symm | |
@[simp] protected lemma subset_image {α β} (e : α ≃ β) (s : set α) (t : set β) : | |
e.symm '' t ⊆ s ↔ t ⊆ e '' s := | |
by rw [image_subset_iff, e.image_eq_preimage] | |
@[simp] protected lemma subset_image' {α β} (e : α ≃ β) (s : set α) (t : set β) : | |
s ⊆ e.symm '' t ↔ e '' s ⊆ t := | |
calc s ⊆ e.symm '' t ↔ e.symm.symm '' s ⊆ t : by rw e.symm.subset_image | |
... ↔ e '' s ⊆ t : by rw e.symm_symm | |
@[simp] lemma symm_image_image {α β} (e : α ≃ β) (s : set α) : e.symm '' (e '' s) = s := | |
e.left_inverse_symm.image_image s | |
lemma eq_image_iff_symm_image_eq {α β} (e : α ≃ β) (s : set α) (t : set β) : | |
t = e '' s ↔ e.symm '' t = s := | |
(e.symm.injective.image_injective.eq_iff' (e.symm_image_image s)).symm | |
@[simp] lemma image_symm_image {α β} (e : α ≃ β) (s : set β) : e '' (e.symm '' s) = s := | |
e.symm.symm_image_image s | |
@[simp] lemma image_preimage {α β} (e : α ≃ β) (s : set β) : e '' (e ⁻¹' s) = s := | |
e.surjective.image_preimage s | |
@[simp] lemma preimage_image {α β} (e : α ≃ β) (s : set α) : e ⁻¹' (e '' s) = s := | |
e.injective.preimage_image s | |
protected lemma image_compl {α β} (f : equiv α β) (s : set α) : | |
f '' sᶜ = (f '' s)ᶜ := | |
image_compl_eq f.bijective | |
@[simp] lemma symm_preimage_preimage {α β} (e : α ≃ β) (s : set β) : | |
e.symm ⁻¹' (e ⁻¹' s) = s := | |
e.right_inverse_symm.preimage_preimage s | |
@[simp] lemma preimage_symm_preimage {α β} (e : α ≃ β) (s : set α) : | |
e ⁻¹' (e.symm ⁻¹' s) = s := | |
e.left_inverse_symm.preimage_preimage s | |
@[simp] lemma preimage_subset {α β} (e : α ≃ β) (s t : set β) : e ⁻¹' s ⊆ e ⁻¹' t ↔ s ⊆ t := | |
e.surjective.preimage_subset_preimage_iff | |
@[simp] lemma image_subset {α β} (e : α ≃ β) (s t : set α) : e '' s ⊆ e '' t ↔ s ⊆ t := | |
image_subset_image_iff e.injective | |
@[simp] lemma image_eq_iff_eq {α β} (e : α ≃ β) (s t : set α) : e '' s = e '' t ↔ s = t := | |
image_eq_image e.injective | |
lemma preimage_eq_iff_eq_image {α β} (e : α ≃ β) (s t) : e ⁻¹' s = t ↔ s = e '' t := | |
preimage_eq_iff_eq_image e.bijective | |
lemma eq_preimage_iff_image_eq {α β} (e : α ≃ β) (s t) : s = e ⁻¹' t ↔ e '' s = t := | |
eq_preimage_iff_image_eq e.bijective | |
@[simp] lemma prod_comm_preimage {α β} {s : set α} {t : set β} : | |
equiv.prod_comm α β ⁻¹' t ×ˢ s = s ×ˢ t := | |
preimage_swap_prod | |
lemma prod_comm_image {α β} {s : set α} {t : set β} : equiv.prod_comm α β '' s ×ˢ t = t ×ˢ s := | |
image_swap_prod | |
@[simp] | |
lemma prod_assoc_preimage {α β γ} {s : set α} {t : set β} {u : set γ} : | |
equiv.prod_assoc α β γ ⁻¹' s ×ˢ (t ×ˢ u) = (s ×ˢ t) ×ˢ u := | |
by { ext, simp [and_assoc] } | |
@[simp] | |
lemma prod_assoc_symm_preimage {α β γ} {s : set α} {t : set β} {u : set γ} : | |
(equiv.prod_assoc α β γ).symm ⁻¹' (s ×ˢ t) ×ˢ u = s ×ˢ (t ×ˢ u) := | |
by { ext, simp [and_assoc] } | |
-- `@[simp]` doesn't like these lemmas, as it uses `set.image_congr'` to turn `equiv.prod_assoc` | |
-- into a lambda expression and then unfold it. | |
lemma prod_assoc_image {α β γ} {s : set α} {t : set β} {u : set γ} : | |
equiv.prod_assoc α β γ '' (s ×ˢ t) ×ˢ u = s ×ˢ (t ×ˢ u) := | |
by simpa only [equiv.image_eq_preimage] using prod_assoc_symm_preimage | |
lemma prod_assoc_symm_image {α β γ} {s : set α} {t : set β} {u : set γ} : | |
(equiv.prod_assoc α β γ).symm '' s ×ˢ (t ×ˢ u) = (s ×ˢ t) ×ˢ u := | |
by simpa only [equiv.image_eq_preimage] using prod_assoc_preimage | |
/-- A set `s` in `α × β` is equivalent to the sigma-type `Σ x, {y | (x, y) ∈ s}`. -/ | |
def set_prod_equiv_sigma {α β : Type*} (s : set (α × β)) : | |
s ≃ Σ x : α, {y | (x, y) ∈ s} := | |
{ to_fun := λ x, ⟨x.1.1, x.1.2, by simp⟩, | |
inv_fun := λ x, ⟨(x.1, x.2.1), x.2.2⟩, | |
left_inv := λ ⟨⟨x, y⟩, h⟩, rfl, | |
right_inv := λ ⟨x, y, h⟩, rfl } | |
/-- The subtypes corresponding to equal sets are equivalent. -/ | |
@[simps apply] | |
def set_congr {α : Type*} {s t : set α} (h : s = t) : s ≃ t := | |
subtype_equiv_prop h | |
/-- | |
A set is equivalent to its image under an equivalence. | |
-/ | |
-- We could construct this using `equiv.set.image e s e.injective`, | |
-- but this definition provides an explicit inverse. | |
@[simps] | |
def image {α β : Type*} (e : α ≃ β) (s : set α) : s ≃ e '' s := | |
{ to_fun := λ x, ⟨e x.1, by simp⟩, | |
inv_fun := λ y, ⟨e.symm y.1, by { rcases y with ⟨-, ⟨a, ⟨m, rfl⟩⟩⟩, simpa using m, }⟩, | |
left_inv := λ x, by simp, | |
right_inv := λ y, by simp, }. | |
namespace set | |
/-- `univ α` is equivalent to `α`. -/ | |
@[simps apply symm_apply] | |
protected def univ (α) : @univ α ≃ α := | |
⟨coe, λ a, ⟨a, trivial⟩, λ ⟨a, _⟩, rfl, λ a, rfl⟩ | |
/-- An empty set is equivalent to the `empty` type. -/ | |
protected def empty (α) : (∅ : set α) ≃ empty := | |
equiv_empty _ | |
/-- An empty set is equivalent to a `pempty` type. -/ | |
protected def pempty (α) : (∅ : set α) ≃ pempty := | |
equiv_pempty _ | |
/-- If sets `s` and `t` are separated by a decidable predicate, then `s ∪ t` is equivalent to | |
`s ⊕ t`. -/ | |
protected def union' {α} {s t : set α} | |
(p : α → Prop) [decidable_pred p] | |
(hs : ∀ x ∈ s, p x) | |
(ht : ∀ x ∈ t, ¬ p x) : (s ∪ t : set α) ≃ s ⊕ t := | |
{ to_fun := λ x, if hp : p x | |
then sum.inl ⟨_, x.2.resolve_right (λ xt, ht _ xt hp)⟩ | |
else sum.inr ⟨_, x.2.resolve_left (λ xs, hp (hs _ xs))⟩, | |
inv_fun := λ o, match o with | |
| (sum.inl x) := ⟨x, or.inl x.2⟩ | |
| (sum.inr x) := ⟨x, or.inr x.2⟩ | |
end, | |
left_inv := λ ⟨x, h'⟩, by by_cases p x; simp [union'._match_1, h]; congr, | |
right_inv := λ o, begin | |
rcases o with ⟨x, h⟩ | ⟨x, h⟩; | |
dsimp [union'._match_1]; | |
[simp [hs _ h], simp [ht _ h]] | |
end } | |
/-- If sets `s` and `t` are disjoint, then `s ∪ t` is equivalent to `s ⊕ t`. -/ | |
protected def union {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) : | |
(s ∪ t : set α) ≃ s ⊕ t := | |
set.union' (λ x, x ∈ s) (λ _, id) (λ x xt xs, H ⟨xs, xt⟩) | |
lemma union_apply_left {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) | |
{a : (s ∪ t : set α)} (ha : ↑a ∈ s) : equiv.set.union H a = sum.inl ⟨a, ha⟩ := | |
dif_pos ha | |
lemma union_apply_right {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) | |
{a : (s ∪ t : set α)} (ha : ↑a ∈ t) : equiv.set.union H a = sum.inr ⟨a, ha⟩ := | |
dif_neg $ λ h, H ⟨h, ha⟩ | |
@[simp] lemma union_symm_apply_left {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) | |
(a : s) : (equiv.set.union H).symm (sum.inl a) = ⟨a, subset_union_left _ _ a.2⟩ := | |
rfl | |
@[simp] lemma union_symm_apply_right {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) | |
(a : t) : (equiv.set.union H).symm (sum.inr a) = ⟨a, subset_union_right _ _ a.2⟩ := | |
rfl | |
/-- A singleton set is equivalent to a `punit` type. -/ | |
protected def singleton {α} (a : α) : ({a} : set α) ≃ punit.{u} := | |
⟨λ _, punit.star, λ _, ⟨a, mem_singleton _⟩, | |
λ ⟨x, h⟩, by { simp at h, subst x }, | |
λ ⟨⟩, rfl⟩ | |
/-- Equal sets are equivalent. | |
TODO: this is the same as `equiv.set_congr`! -/ | |
@[simps apply symm_apply] | |
protected def of_eq {α : Type u} {s t : set α} (h : s = t) : s ≃ t := | |
equiv.set_congr h | |
/-- If `a ∉ s`, then `insert a s` is equivalent to `s ⊕ punit`. -/ | |
protected def insert {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) : | |
(insert a s : set α) ≃ s ⊕ punit.{u+1} := | |
calc (insert a s : set α) ≃ ↥(s ∪ {a}) : equiv.set.of_eq (by simp) | |
... ≃ s ⊕ ({a} : set α) : equiv.set.union (λ x ⟨hx, hx'⟩, by simp [*] at *) | |
... ≃ s ⊕ punit.{u+1} : sum_congr (equiv.refl _) (equiv.set.singleton _) | |
@[simp] lemma insert_symm_apply_inl {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) | |
(b : s) : (equiv.set.insert H).symm (sum.inl b) = ⟨b, or.inr b.2⟩ := | |
rfl | |
@[simp] lemma insert_symm_apply_inr {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) | |
(b : punit.{u+1}) : (equiv.set.insert H).symm (sum.inr b) = ⟨a, or.inl rfl⟩ := | |
rfl | |
@[simp] lemma insert_apply_left {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) : | |
equiv.set.insert H ⟨a, or.inl rfl⟩ = sum.inr punit.star := | |
(equiv.set.insert H).apply_eq_iff_eq_symm_apply.2 rfl | |
@[simp] lemma insert_apply_right {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) | |
(b : s) : equiv.set.insert H ⟨b, or.inr b.2⟩ = sum.inl b := | |
(equiv.set.insert H).apply_eq_iff_eq_symm_apply.2 rfl | |
/-- If `s : set α` is a set with decidable membership, then `s ⊕ sᶜ` is equivalent to `α`. -/ | |
protected def sum_compl {α} (s : set α) [decidable_pred (∈ s)] : s ⊕ (sᶜ : set α) ≃ α := | |
calc s ⊕ (sᶜ : set α) ≃ ↥(s ∪ sᶜ) : (equiv.set.union (by simp [set.ext_iff])).symm | |
... ≃ @univ α : equiv.set.of_eq (by simp) | |
... ≃ α : equiv.set.univ _ | |
@[simp] lemma sum_compl_apply_inl {α : Type u} (s : set α) [decidable_pred (∈ s)] (x : s) : | |
equiv.set.sum_compl s (sum.inl x) = x := rfl | |
@[simp] lemma sum_compl_apply_inr {α : Type u} (s : set α) [decidable_pred (∈ s)] (x : sᶜ) : | |
equiv.set.sum_compl s (sum.inr x) = x := rfl | |
lemma sum_compl_symm_apply_of_mem {α : Type u} {s : set α} [decidable_pred (∈ s)] {x : α} | |
(hx : x ∈ s) : (equiv.set.sum_compl s).symm x = sum.inl ⟨x, hx⟩ := | |
have ↑(⟨x, or.inl hx⟩ : (s ∪ sᶜ : set α)) ∈ s, from hx, | |
by { rw [equiv.set.sum_compl], simpa using set.union_apply_left _ this } | |
lemma sum_compl_symm_apply_of_not_mem {α : Type u} {s : set α} [decidable_pred (∈ s)] {x : α} | |
(hx : x ∉ s) : (equiv.set.sum_compl s).symm x = sum.inr ⟨x, hx⟩ := | |
have ↑(⟨x, or.inr hx⟩ : (s ∪ sᶜ : set α)) ∈ sᶜ, from hx, | |
by { rw [equiv.set.sum_compl], simpa using set.union_apply_right _ this } | |
@[simp] lemma sum_compl_symm_apply {α : Type*} {s : set α} [decidable_pred (∈ s)] {x : s} : | |
(equiv.set.sum_compl s).symm x = sum.inl x := | |
by cases x with x hx; exact set.sum_compl_symm_apply_of_mem hx | |
@[simp] lemma sum_compl_symm_apply_compl {α : Type*} {s : set α} | |
[decidable_pred (∈ s)] {x : sᶜ} : (equiv.set.sum_compl s).symm x = sum.inr x := | |
by cases x with x hx; exact set.sum_compl_symm_apply_of_not_mem hx | |
/-- `sum_diff_subset s t` is the natural equivalence between | |
`s ⊕ (t \ s)` and `t`, where `s` and `t` are two sets. -/ | |
protected def sum_diff_subset {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] : | |
s ⊕ (t \ s : set α) ≃ t := | |
calc s ⊕ (t \ s : set α) ≃ (s ∪ (t \ s) : set α) : | |
(equiv.set.union (by simp [inter_diff_self])).symm | |
... ≃ t : equiv.set.of_eq (by { simp [union_diff_self, union_eq_self_of_subset_left h] }) | |
@[simp] lemma sum_diff_subset_apply_inl | |
{α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] (x : s) : | |
equiv.set.sum_diff_subset h (sum.inl x) = inclusion h x := rfl | |
@[simp] lemma sum_diff_subset_apply_inr | |
{α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] (x : t \ s) : | |
equiv.set.sum_diff_subset h (sum.inr x) = inclusion (diff_subset t s) x := rfl | |
lemma sum_diff_subset_symm_apply_of_mem | |
{α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] {x : t} (hx : x.1 ∈ s) : | |
(equiv.set.sum_diff_subset h).symm x = sum.inl ⟨x, hx⟩ := | |
begin | |
apply (equiv.set.sum_diff_subset h).injective, | |
simp only [apply_symm_apply, sum_diff_subset_apply_inl], | |
exact subtype.eq rfl, | |
end | |
lemma sum_diff_subset_symm_apply_of_not_mem | |
{α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] {x : t} (hx : x.1 ∉ s) : | |
(equiv.set.sum_diff_subset h).symm x = sum.inr ⟨x, ⟨x.2, hx⟩⟩ := | |
begin | |
apply (equiv.set.sum_diff_subset h).injective, | |
simp only [apply_symm_apply, sum_diff_subset_apply_inr], | |
exact subtype.eq rfl, | |
end | |
/-- If `s` is a set with decidable membership, then the sum of `s ∪ t` and `s ∩ t` is equivalent | |
to `s ⊕ t`. -/ | |
protected def union_sum_inter {α : Type u} (s t : set α) [decidable_pred (∈ s)] : | |
(s ∪ t : set α) ⊕ (s ∩ t : set α) ≃ s ⊕ t := | |
calc (s ∪ t : set α) ⊕ (s ∩ t : set α) | |
≃ (s ∪ t \ s : set α) ⊕ (s ∩ t : set α) : by rw [union_diff_self] | |
... ≃ (s ⊕ (t \ s : set α)) ⊕ (s ∩ t : set α) : | |
sum_congr (set.union $ subset_empty_iff.2 (inter_diff_self _ _)) (equiv.refl _) | |
... ≃ s ⊕ (t \ s : set α) ⊕ (s ∩ t : set α) : sum_assoc _ _ _ | |
... ≃ s ⊕ (t \ s ∪ s ∩ t : set α) : sum_congr (equiv.refl _) begin | |
refine (set.union' (∉ s) _ _).symm, | |
exacts [λ x hx, hx.2, λ x hx, not_not_intro hx.1] | |
end | |
... ≃ s ⊕ t : by { rw (_ : t \ s ∪ s ∩ t = t), rw [union_comm, inter_comm, inter_union_diff] } | |
/-- Given an equivalence `e₀` between sets `s : set α` and `t : set β`, the set of equivalences | |
`e : α ≃ β` such that `e ↑x = ↑(e₀ x)` for each `x : s` is equivalent to the set of equivalences | |
between `sᶜ` and `tᶜ`. -/ | |
protected def compl {α : Type u} {β : Type v} {s : set α} {t : set β} [decidable_pred (∈ s)] | |
[decidable_pred (∈ t)] (e₀ : s ≃ t) : | |
{e : α ≃ β // ∀ x : s, e x = e₀ x} ≃ ((sᶜ : set α) ≃ (tᶜ : set β)) := | |
{ to_fun := λ e, subtype_equiv e | |
(λ a, not_congr $ iff.symm $ maps_to.mem_iff | |
(maps_to_iff_exists_map_subtype.2 ⟨e₀, e.2⟩) | |
(surj_on.maps_to_compl (surj_on_iff_exists_map_subtype.2 | |
⟨t, e₀, subset.refl t, e₀.surjective, e.2⟩) e.1.injective)), | |
inv_fun := λ e₁, | |
subtype.mk | |
(calc α ≃ s ⊕ (sᶜ : set α) : (set.sum_compl s).symm | |
... ≃ t ⊕ (tᶜ : set β) : e₀.sum_congr e₁ | |
... ≃ β : set.sum_compl t) | |
(λ x, by simp only [sum.map_inl, trans_apply, sum_congr_apply, | |
set.sum_compl_apply_inl, set.sum_compl_symm_apply]), | |
left_inv := λ e, | |
begin | |
ext x, | |
by_cases hx : x ∈ s, | |
{ simp only [set.sum_compl_symm_apply_of_mem hx, ←e.prop ⟨x, hx⟩, | |
sum.map_inl, sum_congr_apply, trans_apply, | |
subtype.coe_mk, set.sum_compl_apply_inl] }, | |
{ simp only [set.sum_compl_symm_apply_of_not_mem hx, sum.map_inr, | |
subtype_equiv_apply, set.sum_compl_apply_inr, trans_apply, | |
sum_congr_apply, subtype.coe_mk] }, | |
end, | |
right_inv := λ e, equiv.ext $ λ x, by simp only [sum.map_inr, subtype_equiv_apply, | |
set.sum_compl_apply_inr, function.comp_app, sum_congr_apply, equiv.coe_trans, | |
subtype.coe_eta, subtype.coe_mk, set.sum_compl_symm_apply_compl] } | |
/-- The set product of two sets is equivalent to the type product of their coercions to types. -/ | |
protected def prod {α β} (s : set α) (t : set β) : | |
↥(s ×ˢ t) ≃ s × t := | |
@subtype_prod_equiv_prod α β s t | |
/-- The set `set.pi set.univ s` is equivalent to `Π a, s a`. -/ | |
@[simps] protected def univ_pi {α : Type*} {β : α → Type*} (s : Π a, set (β a)) : | |
pi univ s ≃ Π a, s a := | |
{ to_fun := λ f a, ⟨(f : Π a, β a) a, f.2 a (mem_univ a)⟩, | |
inv_fun := λ f, ⟨λ a, f a, λ a ha, (f a).2⟩, | |
left_inv := λ ⟨f, hf⟩, by { ext a, refl }, | |
right_inv := λ f, by { ext a, refl } } | |
/-- If a function `f` is injective on a set `s`, then `s` is equivalent to `f '' s`. -/ | |
protected noncomputable def image_of_inj_on {α β} (f : α → β) (s : set α) (H : inj_on f s) : | |
s ≃ (f '' s) := | |
⟨λ p, ⟨f p, mem_image_of_mem f p.2⟩, | |
λ p, ⟨classical.some p.2, (classical.some_spec p.2).1⟩, | |
λ ⟨x, h⟩, subtype.eq (H (classical.some_spec (mem_image_of_mem f h)).1 h | |
(classical.some_spec (mem_image_of_mem f h)).2), | |
λ ⟨y, h⟩, subtype.eq (classical.some_spec h).2⟩ | |
/-- If `f` is an injective function, then `s` is equivalent to `f '' s`. -/ | |
@[simps apply] | |
protected noncomputable def image {α β} (f : α → β) (s : set α) (H : injective f) : s ≃ (f '' s) := | |
equiv.set.image_of_inj_on f s (H.inj_on s) | |
@[simp] protected lemma image_symm_apply {α β} (f : α → β) (s : set α) (H : injective f) | |
(x : α) (h : x ∈ s) : | |
(set.image f s H).symm ⟨f x, ⟨x, ⟨h, rfl⟩⟩⟩ = ⟨x, h⟩ := | |
begin | |
apply (set.image f s H).injective, | |
simp [(set.image f s H).apply_symm_apply], | |
end | |
lemma image_symm_preimage {α β} {f : α → β} (hf : injective f) (u s : set α) : | |
(λ x, (set.image f s hf).symm x : f '' s → α) ⁻¹' u = coe ⁻¹' (f '' u) := | |
begin | |
ext ⟨b, a, has, rfl⟩, | |
have : ∀(h : ∃a', a' ∈ s ∧ a' = a), classical.some h = a := λ h, (classical.some_spec h).2, | |
simp [equiv.set.image, equiv.set.image_of_inj_on, hf.eq_iff, this], | |
end | |
/-- If `α` is equivalent to `β`, then `set α` is equivalent to `set β`. -/ | |
@[simps] | |
protected def congr {α β : Type*} (e : α ≃ β) : set α ≃ set β := | |
⟨λ s, e '' s, λ t, e.symm '' t, symm_image_image e, symm_image_image e.symm⟩ | |
/-- The set `{x ∈ s | t x}` is equivalent to the set of `x : s` such that `t x`. -/ | |
protected def sep {α : Type u} (s : set α) (t : α → Prop) : | |
({ x ∈ s | t x } : set α) ≃ { x : s | t x } := | |
(equiv.subtype_subtype_equiv_subtype_inter s t).symm | |
/-- The set `𝒫 S := {x | x ⊆ S}` is equivalent to the type `set S`. -/ | |
protected def powerset {α} (S : set α) : 𝒫 S ≃ set S := | |
{ to_fun := λ x : 𝒫 S, coe ⁻¹' (x : set α), | |
inv_fun := λ x : set S, ⟨coe '' x, by rintro _ ⟨a : S, _, rfl⟩; exact a.2⟩, | |
left_inv := λ x, by ext y; exact ⟨λ ⟨⟨_, _⟩, h, rfl⟩, h, λ h, ⟨⟨_, x.2 h⟩, h, rfl⟩⟩, | |
right_inv := λ x, by ext; simp } | |
/-- | |
If `s` is a set in `range f`, | |
then its image under `range_splitting f` is in bijection (via `f`) with `s`. | |
-/ | |
@[simps] | |
noncomputable def range_splitting_image_equiv {α β : Type*} (f : α → β) (s : set (range f)) : | |
range_splitting f '' s ≃ s := | |
{ to_fun := λ x, ⟨⟨f x, by simp⟩, | |
(by { rcases x with ⟨x, ⟨y, ⟨m, rfl⟩⟩⟩, simpa [apply_range_splitting f] using m, })⟩, | |
inv_fun := λ x, ⟨range_splitting f x, ⟨x, ⟨x.2, rfl⟩⟩⟩, | |
left_inv := λ x, by { rcases x with ⟨x, ⟨y, ⟨m, rfl⟩⟩⟩, simp [apply_range_splitting f] }, | |
right_inv := λ x, by simp [apply_range_splitting f], } | |
end set | |
/-- If `f : α → β` has a left-inverse when `α` is nonempty, then `α` is computably equivalent to the | |
range of `f`. | |
While awkward, the `nonempty α` hypothesis on `f_inv` and `hf` allows this to be used when `α` is | |
empty too. This hypothesis is absent on analogous definitions on stronger `equiv`s like | |
`linear_equiv.of_left_inverse` and `ring_equiv.of_left_inverse` as their typeclass assumptions | |
are already sufficient to ensure non-emptiness. -/ | |
@[simps] | |
def of_left_inverse {α β : Sort*} | |
(f : α → β) (f_inv : nonempty α → β → α) (hf : Π h : nonempty α, left_inverse (f_inv h) f) : | |
α ≃ range f := | |
{ to_fun := λ a, ⟨f a, a, rfl⟩, | |
inv_fun := λ b, f_inv (nonempty_of_exists b.2) b, | |
left_inv := λ a, hf ⟨a⟩ a, | |
right_inv := λ ⟨b, a, ha⟩, subtype.eq $ show f (f_inv ⟨a⟩ b) = b, | |
from eq.trans (congr_arg f $ by exact ha ▸ (hf _ a)) ha } | |
/-- If `f : α → β` has a left-inverse, then `α` is computably equivalent to the range of `f`. | |
Note that if `α` is empty, no such `f_inv` exists and so this definition can't be used, unlike | |
the stronger but less convenient `of_left_inverse`. -/ | |
abbreviation of_left_inverse' {α β : Sort*} | |
(f : α → β) (f_inv : β → α) (hf : left_inverse f_inv f) : | |
α ≃ range f := | |
of_left_inverse f (λ _, f_inv) (λ _, hf) | |
/-- If `f : α → β` is an injective function, then domain `α` is equivalent to the range of `f`. -/ | |
@[simps apply] | |
noncomputable def of_injective {α β} (f : α → β) (hf : injective f) : α ≃ range f := | |
equiv.of_left_inverse f | |
(λ h, by exactI function.inv_fun f) (λ h, by exactI function.left_inverse_inv_fun hf) | |
theorem apply_of_injective_symm {α β} {f : α → β} (hf : injective f) (b : range f) : | |
f ((of_injective f hf).symm b) = b := | |
subtype.ext_iff.1 $ (of_injective f hf).apply_symm_apply b | |
@[simp] theorem of_injective_symm_apply {α β} {f : α → β} (hf : injective f) (a : α) : | |
(of_injective f hf).symm ⟨f a, ⟨a, rfl⟩⟩ = a := | |
begin | |
apply (of_injective f hf).injective, | |
simp [apply_of_injective_symm hf], | |
end | |
lemma coe_of_injective_symm {α β} {f : α → β} (hf : injective f) : | |
((of_injective f hf).symm : range f → α) = range_splitting f := | |
by { ext ⟨y, x, rfl⟩, apply hf, simp [apply_range_splitting f] } | |
@[simp] lemma self_comp_of_injective_symm {α β} {f : α → β} (hf : injective f) : | |
f ∘ ((of_injective f hf).symm) = coe := | |
funext (λ x, apply_of_injective_symm hf x) | |
lemma of_left_inverse_eq_of_injective {α β : Type*} | |
(f : α → β) (f_inv : nonempty α → β → α) (hf : Π h : nonempty α, left_inverse (f_inv h) f) : | |
of_left_inverse f f_inv hf = of_injective f | |
((em (nonempty α)).elim (λ h, (hf h).injective) (λ h _ _ _, by | |
{ haveI : subsingleton α := subsingleton_of_not_nonempty h, simp })) := | |
by { ext, simp } | |
lemma of_left_inverse'_eq_of_injective {α β : Type*} | |
(f : α → β) (f_inv : β → α) (hf : left_inverse f_inv f) : | |
of_left_inverse' f f_inv hf = of_injective f hf.injective := | |
by { ext, simp } | |
protected lemma set_forall_iff {α β} (e : α ≃ β) {p : set α → Prop} : | |
(∀ a, p a) ↔ (∀ a, p (e ⁻¹' a)) := | |
e.injective.preimage_surjective.forall | |
lemma preimage_pi_equiv_pi_subtype_prod_symm_pi {α : Type*} {β : α → Type*} | |
(p : α → Prop) [decidable_pred p] (s : Π i, set (β i)) : | |
(pi_equiv_pi_subtype_prod p β).symm ⁻¹' pi univ s = | |
(pi univ (λ i : {i // p i}, s i)) ×ˢ (pi univ (λ i : {i // ¬p i}, s i)) := | |
begin | |
ext ⟨f, g⟩, | |
simp only [mem_preimage, mem_univ_pi, prod_mk_mem_set_prod_eq, subtype.forall, | |
← forall_and_distrib], | |
refine forall_congr (λ i, _), | |
dsimp only [subtype.coe_mk], | |
by_cases hi : p i; simp [hi] | |
end | |
/-- `sigma_fiber_equiv f` for `f : α → β` is the natural equivalence between | |
the type of all preimages of points under `f` and the total space `α`. -/ | |
-- See also `equiv.sigma_fiber_equiv`. | |
@[simps] def sigma_preimage_equiv {α β} (f : α → β) : (Σ b, f ⁻¹' {b}) ≃ α := | |
sigma_fiber_equiv f | |
/-- A family of equivalences between preimages of points gives an equivalence between domains. -/ | |
-- See also `equiv.of_fiber_equiv`. | |
@[simps] | |
def of_preimage_equiv {α β γ} {f : α → γ} {g : β → γ} (e : Π c, (f ⁻¹' {c}) ≃ (g ⁻¹' {c})) : | |
α ≃ β := | |
equiv.of_fiber_equiv e | |
lemma of_preimage_equiv_map {α β γ} {f : α → γ} {g : β → γ} | |
(e : Π c, (f ⁻¹' {c}) ≃ (g ⁻¹' {c})) (a : α) : g (of_preimage_equiv e a) = f a := | |
equiv.of_fiber_equiv_map e a | |
end equiv | |
/-- If a function is a bijection between two sets `s` and `t`, then it induces an | |
equivalence between the types `↥s` and `↥t`. -/ | |
noncomputable def set.bij_on.equiv {α : Type*} {β : Type*} {s : set α} {t : set β} (f : α → β) | |
(h : bij_on f s t) : s ≃ t := | |
equiv.of_bijective _ h.bijective | |
/-- The composition of an updated function with an equiv on a subset can be expressed as an | |
updated function. -/ | |
lemma dite_comp_equiv_update {α : Type*} {β : Sort*} {γ : Sort*} {s : set α} (e : β ≃ s) | |
(v : β → γ) (w : α → γ) (j : β) (x : γ) [decidable_eq β] [decidable_eq α] | |
[∀ j, decidable (j ∈ s)] : | |
(λ (i : α), if h : i ∈ s then (function.update v j x) (e.symm ⟨i, h⟩) else w i) = | |
function.update (λ (i : α), if h : i ∈ s then v (e.symm ⟨i, h⟩) else w i) (e j) x := | |
begin | |
ext i, | |
by_cases h : i ∈ s, | |
{ rw [dif_pos h, | |
function.update_apply_equiv_apply, equiv.symm_symm, function.comp, | |
function.update_apply, function.update_apply, | |
dif_pos h], | |
have h_coe : (⟨i, h⟩ : s) = e j ↔ i = e j := subtype.ext_iff.trans (by rw subtype.coe_mk), | |
simp_rw h_coe }, | |
{ have : i ≠ e j, | |
by { contrapose! h, have : (e j : α) ∈ s := (e j).2, rwa ← h at this }, | |
simp [h, this] } | |
end | |