Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Kenny Lau. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kenny Lau | |
-/ | |
import data.polynomial.expand | |
import linear_algebra.finite_dimensional | |
import linear_algebra.matrix.determinant | |
import ring_theory.adjoin.fg | |
import ring_theory.polynomial.scale_roots | |
import ring_theory.polynomial.tower | |
/-! | |
# Integral closure of a subring. | |
If A is an R-algebra then `a : A` is integral over R if it is a root of a monic polynomial | |
with coefficients in R. Enough theory is developed to prove that integral elements | |
form a sub-R-algebra of A. | |
## Main definitions | |
Let `R` be a `comm_ring` and let `A` be an R-algebra. | |
* `ring_hom.is_integral_elem (f : R →+* A) (x : A)` : `x` is integral with respect to the map `f`, | |
* `is_integral (x : A)` : `x` is integral over `R`, i.e., is a root of a monic polynomial with | |
coefficients in `R`. | |
* `integral_closure R A` : the integral closure of `R` in `A`, regarded as a sub-`R`-algebra of `A`. | |
-/ | |
open_locale classical | |
open_locale big_operators polynomial | |
open polynomial submodule | |
section ring | |
variables {R S A : Type*} | |
variables [comm_ring R] [ring A] [ring S] (f : R →+* S) | |
/-- An element `x` of `A` is said to be integral over `R` with respect to `f` | |
if it is a root of a monic polynomial `p : R[X]` evaluated under `f` -/ | |
def ring_hom.is_integral_elem (f : R →+* A) (x : A) := | |
∃ p : R[X], monic p ∧ eval₂ f x p = 0 | |
/-- A ring homomorphism `f : R →+* A` is said to be integral | |
if every element `A` is integral with respect to the map `f` -/ | |
def ring_hom.is_integral (f : R →+* A) := | |
∀ x : A, f.is_integral_elem x | |
variables [algebra R A] (R) | |
/-- An element `x` of an algebra `A` over a commutative ring `R` is said to be *integral*, | |
if it is a root of some monic polynomial `p : R[X]`. | |
Equivalently, the element is integral over `R` with respect to the induced `algebra_map` -/ | |
def is_integral (x : A) : Prop := | |
(algebra_map R A).is_integral_elem x | |
variable (A) | |
/-- An algebra is integral if every element of the extension is integral over the base ring -/ | |
def algebra.is_integral : Prop := | |
(algebra_map R A).is_integral | |
variables {R A} | |
lemma ring_hom.is_integral_map {x : R} : f.is_integral_elem (f x) := | |
⟨X - C x, monic_X_sub_C _, by simp⟩ | |
theorem is_integral_algebra_map {x : R} : is_integral R (algebra_map R A x) := | |
(algebra_map R A).is_integral_map | |
theorem is_integral_of_noetherian (H : is_noetherian R A) (x : A) : | |
is_integral R x := | |
begin | |
let leval : (R[X] →ₗ[R] A) := (aeval x).to_linear_map, | |
let D : ℕ → submodule R A := λ n, (degree_le R n).map leval, | |
let M := well_founded.min (is_noetherian_iff_well_founded.1 H) | |
(set.range D) ⟨_, ⟨0, rfl⟩⟩, | |
have HM : M ∈ set.range D := well_founded.min_mem _ _ _, | |
cases HM with N HN, | |
have HM : ¬M < D (N+1) := well_founded.not_lt_min | |
(is_noetherian_iff_well_founded.1 H) (set.range D) _ ⟨N+1, rfl⟩, | |
rw ← HN at HM, | |
have HN2 : D (N+1) ≤ D N := classical.by_contradiction (λ H, HM | |
(lt_of_le_not_le (map_mono (degree_le_mono | |
(with_bot.coe_le_coe.2 (nat.le_succ N)))) H)), | |
have HN3 : leval (X^(N+1)) ∈ D N, | |
{ exact HN2 (mem_map_of_mem (mem_degree_le.2 (degree_X_pow_le _))) }, | |
rcases HN3 with ⟨p, hdp, hpe⟩, | |
refine ⟨X^(N+1) - p, monic_X_pow_sub (mem_degree_le.1 hdp), _⟩, | |
show leval (X ^ (N + 1) - p) = 0, | |
rw [linear_map.map_sub, hpe, sub_self] | |
end | |
theorem is_integral_of_submodule_noetherian (S : subalgebra R A) | |
(H : is_noetherian R S.to_submodule) (x : A) (hx : x ∈ S) : | |
is_integral R x := | |
begin | |
suffices : is_integral R (show S, from ⟨x, hx⟩), | |
{ rcases this with ⟨p, hpm, hpx⟩, | |
replace hpx := congr_arg S.val hpx, | |
refine ⟨p, hpm, eq.trans _ hpx⟩, | |
simp only [aeval_def, eval₂, sum_def], | |
rw S.val.map_sum, | |
refine finset.sum_congr rfl (λ n hn, _), | |
rw [S.val.map_mul, S.val.map_pow, S.val.commutes, S.val_apply, subtype.coe_mk], }, | |
refine is_integral_of_noetherian H ⟨x, hx⟩ | |
end | |
end ring | |
section | |
variables {R A B S : Type*} | |
variables [comm_ring R] [comm_ring A] [comm_ring B] [comm_ring S] | |
variables [algebra R A] [algebra R B] (f : R →+* S) | |
theorem is_integral_alg_hom (f : A →ₐ[R] B) {x : A} (hx : is_integral R x) : is_integral R (f x) := | |
let ⟨p, hp, hpx⟩ := | |
hx in ⟨p, hp, by rw [← aeval_def, aeval_alg_hom_apply, aeval_def, hpx, f.map_zero]⟩ | |
@[simp] | |
theorem is_integral_alg_equiv (f : A ≃ₐ[R] B) {x : A} : is_integral R (f x) ↔ is_integral R x := | |
⟨λ h, by simpa using is_integral_alg_hom f.symm.to_alg_hom h, is_integral_alg_hom f.to_alg_hom⟩ | |
theorem is_integral_of_is_scalar_tower [algebra A B] [is_scalar_tower R A B] | |
(x : B) (hx : is_integral R x) : is_integral A x := | |
let ⟨p, hp, hpx⟩ := hx in | |
⟨p.map $ algebra_map R A, hp.map _, | |
by rw [← aeval_def, ← is_scalar_tower.aeval_apply, aeval_def, hpx]⟩ | |
theorem is_integral_of_subring {x : A} (T : subring R) | |
(hx : is_integral T x) : is_integral R x := | |
is_integral_of_is_scalar_tower x hx | |
lemma is_integral.algebra_map [algebra A B] [is_scalar_tower R A B] | |
{x : A} (h : is_integral R x) : | |
is_integral R (algebra_map A B x) := | |
begin | |
rcases h with ⟨f, hf, hx⟩, | |
use [f, hf], | |
rw [is_scalar_tower.algebra_map_eq R A B, ← hom_eval₂, hx, ring_hom.map_zero] | |
end | |
lemma is_integral_algebra_map_iff [algebra A B] [is_scalar_tower R A B] | |
{x : A} (hAB : function.injective (algebra_map A B)) : | |
is_integral R (algebra_map A B x) ↔ is_integral R x := | |
begin | |
refine ⟨_, λ h, h.algebra_map⟩, | |
rintros ⟨f, hf, hx⟩, | |
use [f, hf], | |
exact is_scalar_tower.aeval_eq_zero_of_aeval_algebra_map_eq_zero R A B hAB hx, | |
end | |
theorem is_integral_iff_is_integral_closure_finite {r : A} : | |
is_integral R r ↔ ∃ s : set R, s.finite ∧ is_integral (subring.closure s) r := | |
begin | |
split; intro hr, | |
{ rcases hr with ⟨p, hmp, hpr⟩, | |
refine ⟨_, finset.finite_to_set _, p.restriction, monic_restriction.2 hmp, _⟩, | |
erw [← aeval_def, is_scalar_tower.aeval_apply _ R, map_restriction, aeval_def, hpr] }, | |
rcases hr with ⟨s, hs, hsr⟩, | |
exact is_integral_of_subring _ hsr | |
end | |
theorem fg_adjoin_singleton_of_integral (x : A) (hx : is_integral R x) : | |
(algebra.adjoin R ({x} : set A)).to_submodule.fg := | |
begin | |
rcases hx with ⟨f, hfm, hfx⟩, | |
existsi finset.image ((^) x) (finset.range (nat_degree f + 1)), | |
apply le_antisymm, | |
{ rw span_le, intros s hs, rw finset.mem_coe at hs, | |
rcases finset.mem_image.1 hs with ⟨k, hk, rfl⟩, clear hk, | |
exact (algebra.adjoin R {x}).pow_mem (algebra.subset_adjoin (set.mem_singleton _)) k }, | |
intros r hr, change r ∈ algebra.adjoin R ({x} : set A) at hr, | |
rw algebra.adjoin_singleton_eq_range_aeval at hr, | |
rcases (aeval x).mem_range.mp hr with ⟨p, rfl⟩, | |
rw ← mod_by_monic_add_div p hfm, | |
rw ← aeval_def at hfx, | |
rw [alg_hom.map_add, alg_hom.map_mul, hfx, zero_mul, add_zero], | |
have : degree (p %ₘ f) ≤ degree f := degree_mod_by_monic_le p hfm, | |
generalize_hyp : p %ₘ f = q at this ⊢, | |
rw [← sum_C_mul_X_eq q, aeval_def, eval₂_sum, sum_def], | |
refine sum_mem (λ k hkq, _), | |
rw [eval₂_mul, eval₂_C, eval₂_pow, eval₂_X, ← algebra.smul_def], | |
refine smul_mem _ _ (subset_span _), | |
rw finset.mem_coe, refine finset.mem_image.2 ⟨_, _, rfl⟩, | |
rw [finset.mem_range, nat.lt_succ_iff], refine le_of_not_lt (λ hk, _), | |
rw [degree_le_iff_coeff_zero] at this, | |
rw [mem_support_iff] at hkq, apply hkq, apply this, | |
exact lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 hk) | |
end | |
theorem fg_adjoin_of_finite {s : set A} (hfs : s.finite) | |
(his : ∀ x ∈ s, is_integral R x) : (algebra.adjoin R s).to_submodule.fg := | |
set.finite.induction_on hfs (λ _, ⟨{1}, submodule.ext $ λ x, | |
by { erw [algebra.adjoin_empty, finset.coe_singleton, ← one_eq_span, one_eq_range, | |
linear_map.mem_range, algebra.mem_bot], refl }⟩) | |
(λ a s has hs ih his, by rw [← set.union_singleton, algebra.adjoin_union_coe_submodule]; exact | |
fg.mul (ih $ λ i hi, his i $ set.mem_insert_of_mem a hi) | |
(fg_adjoin_singleton_of_integral _ $ his a $ set.mem_insert a s)) his | |
lemma is_noetherian_adjoin_finset [is_noetherian_ring R] (s : finset A) | |
(hs : ∀ x ∈ s, is_integral R x) : | |
is_noetherian R (algebra.adjoin R (↑s : set A)) := | |
is_noetherian_of_fg_of_noetherian _ (fg_adjoin_of_finite s.finite_to_set hs) | |
/-- If `S` is a sub-`R`-algebra of `A` and `S` is finitely-generated as an `R`-module, | |
then all elements of `S` are integral over `R`. -/ | |
theorem is_integral_of_mem_of_fg (S : subalgebra R A) | |
(HS : S.to_submodule.fg) (x : A) (hx : x ∈ S) : is_integral R x := | |
begin | |
-- say `x ∈ S`. We want to prove that `x` is integral over `R`. | |
-- Say `S` is generated as an `R`-module by the set `y`. | |
cases HS with y hy, | |
-- We can write `x` as `∑ rᵢ yᵢ` for `yᵢ ∈ Y`. | |
obtain ⟨lx, hlx1, hlx2⟩ : | |
∃ (l : A →₀ R) (H : l ∈ finsupp.supported R R ↑y), (finsupp.total A A R id) l = x, | |
{ rwa [←(@finsupp.mem_span_image_iff_total A A R _ _ _ id ↑y x), set.image_id ↑y, hy] }, | |
-- Note that `y ⊆ S`. | |
have hyS : ∀ {p}, p ∈ y → p ∈ S := λ p hp, show p ∈ S.to_submodule, | |
by { rw ← hy, exact subset_span hp }, | |
-- Now `S` is a subalgebra so the product of two elements of `y` is also in `S`. | |
have : ∀ (jk : (↑(y.product y) : set (A × A))), jk.1.1 * jk.1.2 ∈ S.to_submodule := | |
λ jk, S.mul_mem (hyS (finset.mem_product.1 jk.2).1) (hyS (finset.mem_product.1 jk.2).2), | |
rw [← hy, ← set.image_id ↑y] at this, simp only [finsupp.mem_span_image_iff_total] at this, | |
-- Say `yᵢyⱼ = ∑rᵢⱼₖ yₖ` | |
choose ly hly1 hly2, | |
-- Now let `S₀` be the subring of `R` generated by the `rᵢ` and the `rᵢⱼₖ`. | |
let S₀ : subring R := | |
subring.closure ↑(lx.frange ∪ finset.bUnion finset.univ (finsupp.frange ∘ ly)), | |
-- It suffices to prove that `x` is integral over `S₀`. | |
refine is_integral_of_subring S₀ _, | |
letI : comm_ring S₀ := subring_class.to_comm_ring S₀, | |
letI : algebra S₀ A := algebra.of_subring S₀, | |
-- Claim: the `S₀`-module span (in `A`) of the set `y ∪ {1}` is closed under | |
-- multiplication (indeed, this is the motivation for the definition of `S₀`). | |
have : | |
span S₀ (insert 1 ↑y : set A) * span S₀ (insert 1 ↑y : set A) ≤ span S₀ (insert 1 ↑y : set A), | |
{ rw span_mul_span, refine span_le.2 (λ z hz, _), | |
rcases set.mem_mul.1 hz with ⟨p, q, rfl | hp, hq, rfl⟩, | |
{ rw one_mul, exact subset_span hq }, | |
rcases hq with rfl | hq, | |
{ rw mul_one, exact subset_span (or.inr hp) }, | |
erw ← hly2 ⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩, | |
rw [finsupp.total_apply, finsupp.sum], | |
refine (span S₀ (insert 1 ↑y : set A)).sum_mem (λ t ht, _), | |
have : ly ⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩ t ∈ S₀ := | |
subring.subset_closure (finset.mem_union_right _ $ finset.mem_bUnion.2 | |
⟨⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩, finset.mem_univ _, | |
finsupp.mem_frange.2 ⟨finsupp.mem_support_iff.1 ht, _, rfl⟩⟩), | |
change (⟨_, this⟩ : S₀) • t ∈ _, exact smul_mem _ _ (subset_span $ or.inr $ hly1 _ ht) }, | |
-- Hence this span is a subring. Call this subring `S₁`. | |
let S₁ : subring A := | |
{ carrier := span S₀ (insert 1 ↑y : set A), | |
one_mem' := subset_span $ or.inl rfl, | |
mul_mem' := λ p q hp hq, this $ mul_mem_mul hp hq, | |
zero_mem' := (span S₀ (insert 1 ↑y : set A)).zero_mem, | |
add_mem' := λ _ _, (span S₀ (insert 1 ↑y : set A)).add_mem, | |
neg_mem' := λ _, (span S₀ (insert 1 ↑y : set A)).neg_mem }, | |
have : S₁ = subalgebra.to_subring (algebra.adjoin S₀ (↑y : set A)), | |
{ ext z, | |
suffices : z ∈ span ↥S₀ (insert 1 ↑y : set A) ↔ | |
z ∈ (algebra.adjoin ↥S₀ (y : set A)).to_submodule, | |
{ simpa }, | |
split; intro hz, | |
{ exact (span_le.2 | |
(set.insert_subset.2 ⟨(algebra.adjoin S₀ ↑y).one_mem, algebra.subset_adjoin⟩)) hz }, | |
{ rw [subalgebra.mem_to_submodule, algebra.mem_adjoin_iff] at hz, | |
suffices : subring.closure (set.range ⇑(algebra_map ↥S₀ A) ∪ ↑y) ≤ S₁, | |
{ exact this hz }, | |
refine subring.closure_le.2 (set.union_subset _ (λ t ht, subset_span $ or.inr ht)), | |
rw set.range_subset_iff, | |
intro y, | |
rw algebra.algebra_map_eq_smul_one, | |
exact smul_mem _ y (subset_span (or.inl rfl)) } }, | |
have foo : ∀ z, z ∈ S₁ ↔ z ∈ algebra.adjoin ↥S₀ (y : set A), | |
simp [this], | |
haveI : is_noetherian_ring ↥S₀ := is_noetherian_subring_closure _ (finset.finite_to_set _), | |
refine is_integral_of_submodule_noetherian (algebra.adjoin S₀ ↑y) | |
(is_noetherian_of_fg_of_noetherian _ ⟨insert 1 y, | |
by { rw [finset.coe_insert], ext z, simp [S₁], convert foo z}⟩) _ _, | |
rw [← hlx2, finsupp.total_apply, finsupp.sum], refine subalgebra.sum_mem _ (λ r hr, _), | |
have : lx r ∈ S₀ := | |
subring.subset_closure (finset.mem_union_left _ (finset.mem_image_of_mem _ hr)), | |
change (⟨_, this⟩ : S₀) • r ∈ _, | |
rw finsupp.mem_supported at hlx1, | |
exact subalgebra.smul_mem _ (algebra.subset_adjoin $ hlx1 hr) _ | |
end | |
lemma ring_hom.is_integral_of_mem_closure {x y z : S} | |
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y) | |
(hz : z ∈ subring.closure ({x, y} : set S)) : | |
f.is_integral_elem z := | |
begin | |
letI : algebra R S := f.to_algebra, | |
have := (fg_adjoin_singleton_of_integral x hx).mul (fg_adjoin_singleton_of_integral y hy), | |
rw [← algebra.adjoin_union_coe_submodule, set.singleton_union] at this, | |
exact is_integral_of_mem_of_fg (algebra.adjoin R {x, y}) this z | |
(algebra.mem_adjoin_iff.2 $ subring.closure_mono (set.subset_union_right _ _) hz), | |
end | |
theorem is_integral_of_mem_closure {x y z : A} | |
(hx : is_integral R x) (hy : is_integral R y) | |
(hz : z ∈ subring.closure ({x, y} : set A)) : | |
is_integral R z := | |
(algebra_map R A).is_integral_of_mem_closure hx hy hz | |
lemma ring_hom.is_integral_zero : f.is_integral_elem 0 := | |
f.map_zero ▸ f.is_integral_map | |
theorem is_integral_zero : is_integral R (0:A) := | |
(algebra_map R A).is_integral_zero | |
lemma ring_hom.is_integral_one : f.is_integral_elem 1 := | |
f.map_one ▸ f.is_integral_map | |
theorem is_integral_one : is_integral R (1:A) := | |
(algebra_map R A).is_integral_one | |
lemma ring_hom.is_integral_add {x y : S} | |
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y) : | |
f.is_integral_elem (x + y) := | |
f.is_integral_of_mem_closure hx hy $ subring.add_mem _ | |
(subring.subset_closure (or.inl rfl)) (subring.subset_closure (or.inr rfl)) | |
theorem is_integral_add {x y : A} | |
(hx : is_integral R x) (hy : is_integral R y) : | |
is_integral R (x + y) := | |
(algebra_map R A).is_integral_add hx hy | |
lemma ring_hom.is_integral_neg {x : S} | |
(hx : f.is_integral_elem x) : f.is_integral_elem (-x) := | |
f.is_integral_of_mem_closure hx hx (subring.neg_mem _ (subring.subset_closure (or.inl rfl))) | |
theorem is_integral_neg {x : A} | |
(hx : is_integral R x) : is_integral R (-x) := | |
(algebra_map R A).is_integral_neg hx | |
lemma ring_hom.is_integral_sub {x y : S} | |
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y) : f.is_integral_elem (x - y) := | |
by simpa only [sub_eq_add_neg] using f.is_integral_add hx (f.is_integral_neg hy) | |
theorem is_integral_sub {x y : A} | |
(hx : is_integral R x) (hy : is_integral R y) : is_integral R (x - y) := | |
(algebra_map R A).is_integral_sub hx hy | |
lemma ring_hom.is_integral_mul {x y : S} | |
(hx : f.is_integral_elem x) (hy : f.is_integral_elem y) : f.is_integral_elem (x * y) := | |
f.is_integral_of_mem_closure hx hy (subring.mul_mem _ | |
(subring.subset_closure (or.inl rfl)) (subring.subset_closure (or.inr rfl))) | |
theorem is_integral_mul {x y : A} | |
(hx : is_integral R x) (hy : is_integral R y) : is_integral R (x * y) := | |
(algebra_map R A).is_integral_mul hx hy | |
lemma is_integral_smul [algebra S A] [algebra R S] [is_scalar_tower R S A] {x : A} (r : R) | |
(hx : is_integral S x) : is_integral S (r • x) := | |
begin | |
rw [algebra.smul_def, is_scalar_tower.algebra_map_apply R S A], | |
exact is_integral_mul is_integral_algebra_map hx, | |
end | |
lemma is_integral_of_pow {x : A} {n : ℕ} (hn : 0 < n) (hx : is_integral R $ x ^ n) : | |
is_integral R x := | |
begin | |
rcases hx with ⟨p, ⟨hmonic, heval⟩⟩, | |
exact ⟨expand R n p, monic.expand hn hmonic, | |
by rwa [eval₂_eq_eval_map, map_expand, expand_eval, ← eval₂_eq_eval_map]⟩ | |
end | |
variables (R A) | |
/-- The integral closure of R in an R-algebra A. -/ | |
def integral_closure : subalgebra R A := | |
{ carrier := { r | is_integral R r }, | |
zero_mem' := is_integral_zero, | |
one_mem' := is_integral_one, | |
add_mem' := λ _ _, is_integral_add, | |
mul_mem' := λ _ _, is_integral_mul, | |
algebra_map_mem' := λ x, is_integral_algebra_map } | |
theorem mem_integral_closure_iff_mem_fg {r : A} : | |
r ∈ integral_closure R A ↔ ∃ M : subalgebra R A, M.to_submodule.fg ∧ r ∈ M := | |
⟨λ hr, ⟨algebra.adjoin R {r}, fg_adjoin_singleton_of_integral _ hr, algebra.subset_adjoin rfl⟩, | |
λ ⟨M, Hf, hrM⟩, is_integral_of_mem_of_fg M Hf _ hrM⟩ | |
variables {R} {A} | |
lemma adjoin_le_integral_closure {x : A} (hx : is_integral R x) : | |
algebra.adjoin R {x} ≤ integral_closure R A := | |
begin | |
rw [algebra.adjoin_le_iff], | |
simp only [set_like.mem_coe, set.singleton_subset_iff], | |
exact hx | |
end | |
lemma le_integral_closure_iff_is_integral {S : subalgebra R A} : | |
S ≤ integral_closure R A ↔ algebra.is_integral R S := | |
set_like.forall.symm.trans (forall_congr (λ x, show is_integral R (algebra_map S A x) | |
↔ is_integral R x, from is_integral_algebra_map_iff subtype.coe_injective)) | |
lemma is_integral_sup {S T : subalgebra R A} : | |
algebra.is_integral R ↥(S ⊔ T) ↔ algebra.is_integral R S ∧ algebra.is_integral R T := | |
by simp only [←le_integral_closure_iff_is_integral, sup_le_iff] | |
/-- Mapping an integral closure along an `alg_equiv` gives the integral closure. -/ | |
lemma integral_closure_map_alg_equiv (f : A ≃ₐ[R] B) : | |
(integral_closure R A).map (f : A →ₐ[R] B) = integral_closure R B := | |
begin | |
ext y, | |
rw subalgebra.mem_map, | |
split, | |
{ rintros ⟨x, hx, rfl⟩, | |
exact is_integral_alg_hom f hx }, | |
{ intro hy, | |
use [f.symm y, is_integral_alg_hom (f.symm : B →ₐ[R] A) hy], | |
simp } | |
end | |
lemma integral_closure.is_integral (x : integral_closure R A) : is_integral R x := | |
let ⟨p, hpm, hpx⟩ := x.2 in ⟨p, hpm, subtype.eq $ | |
by rwa [← aeval_def, subtype.val_eq_coe, ← subalgebra.val_apply, aeval_alg_hom_apply] at hpx⟩ | |
lemma ring_hom.is_integral_of_is_integral_mul_unit (x y : S) (r : R) (hr : f r * y = 1) | |
(hx : f.is_integral_elem (x * y)) : f.is_integral_elem x := | |
begin | |
obtain ⟨p, ⟨p_monic, hp⟩⟩ := hx, | |
refine ⟨scale_roots p r, ⟨(monic_scale_roots_iff r).2 p_monic, _⟩⟩, | |
convert scale_roots_eval₂_eq_zero f hp, | |
rw [mul_comm x y, ← mul_assoc, hr, one_mul], | |
end | |
theorem is_integral_of_is_integral_mul_unit {x y : A} {r : R} (hr : algebra_map R A r * y = 1) | |
(hx : is_integral R (x * y)) : is_integral R x := | |
(algebra_map R A).is_integral_of_is_integral_mul_unit x y r hr hx | |
/-- Generalization of `is_integral_of_mem_closure` bootstrapped up from that lemma -/ | |
lemma is_integral_of_mem_closure' (G : set A) (hG : ∀ x ∈ G, is_integral R x) : | |
∀ x ∈ (subring.closure G), is_integral R x := | |
λ x hx, subring.closure_induction hx hG is_integral_zero is_integral_one | |
(λ _ _, is_integral_add) (λ _, is_integral_neg) (λ _ _, is_integral_mul) | |
lemma is_integral_of_mem_closure'' {S : Type*} [comm_ring S] {f : R →+* S} (G : set S) | |
(hG : ∀ x ∈ G, f.is_integral_elem x) : ∀ x ∈ (subring.closure G), f.is_integral_elem x := | |
λ x hx, @is_integral_of_mem_closure' R S _ _ f.to_algebra G hG x hx | |
lemma is_integral.pow {x : A} (h : is_integral R x) (n : ℕ) : is_integral R (x ^ n) := | |
(integral_closure R A).pow_mem h n | |
lemma is_integral.nsmul {x : A} (h : is_integral R x) (n : ℕ) : is_integral R (n • x) := | |
(integral_closure R A).nsmul_mem h n | |
lemma is_integral.zsmul {x : A} (h : is_integral R x) (n : ℤ) : is_integral R (n • x) := | |
(integral_closure R A).zsmul_mem h n | |
lemma is_integral.multiset_prod {s : multiset A} (h : ∀ x ∈ s, is_integral R x) : | |
is_integral R s.prod := | |
(integral_closure R A).multiset_prod_mem h | |
lemma is_integral.multiset_sum {s : multiset A} (h : ∀ x ∈ s, is_integral R x) : | |
is_integral R s.sum := | |
(integral_closure R A).multiset_sum_mem h | |
lemma is_integral.prod {α : Type*} {s : finset α} (f : α → A) (h : ∀ x ∈ s, is_integral R (f x)) : | |
is_integral R (∏ x in s, f x) := | |
(integral_closure R A).prod_mem h | |
lemma is_integral.sum {α : Type*} {s : finset α} (f : α → A) (h : ∀ x ∈ s, is_integral R (f x)) : | |
is_integral R (∑ x in s, f x) := | |
(integral_closure R A).sum_mem h | |
lemma is_integral.det {n : Type*} [fintype n] [decidable_eq n] {M : matrix n n A} | |
(h : ∀ i j, is_integral R (M i j)) : | |
is_integral R M.det := | |
begin | |
rw [matrix.det_apply], | |
exact is_integral.sum _ (λ σ hσ, is_integral.zsmul (is_integral.prod _ (λ i hi, h _ _)) _) | |
end | |
@[simp] lemma is_integral.pow_iff {x : A} {n : ℕ} (hn : 0 < n) : | |
is_integral R (x ^ n) ↔ is_integral R x := | |
⟨is_integral_of_pow hn, λ hx, is_integral.pow hx n⟩ | |
section | |
variables (p : R[X]) (x : S) | |
/-- The monic polynomial whose roots are `p.leading_coeff * x` for roots `x` of `p`. -/ | |
noncomputable | |
def normalize_scale_roots (p : R[X]) : R[X] := | |
∑ i in p.support, monomial i | |
(if i = p.nat_degree then 1 else p.coeff i * p.leading_coeff ^ (p.nat_degree - 1 - i)) | |
lemma normalize_scale_roots_coeff_mul_leading_coeff_pow (i : ℕ) (hp : 1 ≤ nat_degree p) : | |
(normalize_scale_roots p).coeff i * p.leading_coeff ^ i = | |
p.coeff i * p.leading_coeff ^ (p.nat_degree - 1) := | |
begin | |
simp only [normalize_scale_roots, finset_sum_coeff, coeff_monomial, finset.sum_ite_eq', one_mul, | |
zero_mul, mem_support_iff, ite_mul, ne.def, ite_not], | |
split_ifs with h₁ h₂, | |
{ simp [h₁], }, | |
{ rw [h₂, leading_coeff, ← pow_succ, tsub_add_cancel_of_le hp], }, | |
{ rw [mul_assoc, ← pow_add, tsub_add_cancel_of_le], | |
apply nat.le_pred_of_lt, | |
rw lt_iff_le_and_ne, | |
exact ⟨le_nat_degree_of_ne_zero h₁, h₂⟩, }, | |
end | |
lemma leading_coeff_smul_normalize_scale_roots (p : R[X]) : | |
p.leading_coeff • normalize_scale_roots p = scale_roots p p.leading_coeff := | |
begin | |
ext, | |
simp only [coeff_scale_roots, normalize_scale_roots, coeff_monomial, coeff_smul, finset.smul_sum, | |
ne.def, finset.sum_ite_eq', finset_sum_coeff, smul_ite, smul_zero, mem_support_iff], | |
split_ifs with h₁ h₂, | |
{ simp [*] }, | |
{ simp [*] }, | |
{ rw [algebra.id.smul_eq_mul, mul_comm, mul_assoc, ← pow_succ', tsub_right_comm, | |
tsub_add_cancel_of_le], | |
rw nat.succ_le_iff, | |
exact tsub_pos_of_lt (lt_of_le_of_ne (le_nat_degree_of_ne_zero h₁) h₂) }, | |
end | |
lemma normalize_scale_roots_support : | |
(normalize_scale_roots p).support ≤ p.support := | |
begin | |
intro x, | |
contrapose, | |
simp only [not_mem_support_iff, normalize_scale_roots, finset_sum_coeff, coeff_monomial, | |
finset.sum_ite_eq', mem_support_iff, ne.def, not_not, ite_eq_right_iff], | |
intros h₁ h₂, | |
exact (h₂ h₁).rec _, | |
end | |
lemma normalize_scale_roots_degree : | |
(normalize_scale_roots p).degree = p.degree := | |
begin | |
apply le_antisymm, | |
{ exact finset.sup_mono (normalize_scale_roots_support p) }, | |
{ rw [← degree_scale_roots, ← leading_coeff_smul_normalize_scale_roots], | |
exact degree_smul_le _ _ } | |
end | |
lemma normalize_scale_roots_eval₂_leading_coeff_mul (h : 1 ≤ p.nat_degree) (f : R →+* S) (x : S) : | |
(normalize_scale_roots p).eval₂ f (f p.leading_coeff * x) = | |
f p.leading_coeff ^ (p.nat_degree - 1) * (p.eval₂ f x) := | |
begin | |
rw [eval₂_eq_sum_range, eval₂_eq_sum_range, finset.mul_sum], | |
apply finset.sum_congr, | |
{ rw nat_degree_eq_of_degree_eq (normalize_scale_roots_degree p) }, | |
intros n hn, | |
rw [mul_pow, ← mul_assoc, ← f.map_pow, ← f.map_mul, | |
normalize_scale_roots_coeff_mul_leading_coeff_pow _ _ h, f.map_mul, f.map_pow], | |
ring, | |
end | |
lemma normalize_scale_roots_monic (h : p ≠ 0) : (normalize_scale_roots p).monic := | |
begin | |
delta monic leading_coeff, | |
rw nat_degree_eq_of_degree_eq (normalize_scale_roots_degree p), | |
suffices : p = 0 → (0 : R) = 1, | |
{ simpa [normalize_scale_roots, coeff_monomial] }, | |
exact λ h', (h h').rec _, | |
end | |
/-- Given a `p : R[X]` and a `x : S` such that `p.eval₂ f x = 0`, | |
`f p.leading_coeff * x` is integral. -/ | |
lemma ring_hom.is_integral_elem_leading_coeff_mul (h : p.eval₂ f x = 0) : | |
f.is_integral_elem (f p.leading_coeff * x) := | |
begin | |
by_cases h' : 1 ≤ p.nat_degree, | |
{ use normalize_scale_roots p, | |
have : p ≠ 0 := λ h'', by { rw [h'', nat_degree_zero] at h', exact nat.not_succ_le_zero 0 h' }, | |
use normalize_scale_roots_monic p this, | |
rw [normalize_scale_roots_eval₂_leading_coeff_mul p h' f x, h, mul_zero] }, | |
{ by_cases hp : p.map f = 0, | |
{ apply_fun (λ q, coeff q p.nat_degree) at hp, | |
rw [coeff_map, coeff_zero, coeff_nat_degree] at hp, | |
rw [hp, zero_mul], | |
exact f.is_integral_zero }, | |
{ rw [nat.one_le_iff_ne_zero, not_not] at h', | |
rw [eq_C_of_nat_degree_eq_zero h', eval₂_C] at h, | |
suffices : p.map f = 0, | |
{ exact (hp this).rec _ }, | |
rw [eq_C_of_nat_degree_eq_zero h', map_C, h, C_eq_zero] } } | |
end | |
/-- Given a `p : R[X]` and a root `x : S`, | |
then `p.leading_coeff • x : S` is integral over `R`. -/ | |
lemma is_integral_leading_coeff_smul [algebra R S] (h : aeval x p = 0) : | |
is_integral R (p.leading_coeff • x) := | |
begin | |
rw aeval_def at h, | |
rw algebra.smul_def, | |
exact (algebra_map R S).is_integral_elem_leading_coeff_mul p x h, | |
end | |
end | |
end | |
section is_integral_closure | |
/-- `is_integral_closure A R B` is the characteristic predicate stating `A` is | |
the integral closure of `R` in `B`, | |
i.e. that an element of `B` is integral over `R` iff it is an element of (the image of) `A`. | |
-/ | |
class is_integral_closure (A R B : Type*) [comm_ring R] [comm_semiring A] [comm_ring B] | |
[algebra R B] [algebra A B] : Prop := | |
(algebra_map_injective [] : function.injective (algebra_map A B)) | |
(is_integral_iff : ∀ {x : B}, is_integral R x ↔ ∃ y, algebra_map A B y = x) | |
instance integral_closure.is_integral_closure (R A : Type*) [comm_ring R] [comm_ring A] | |
[algebra R A] : is_integral_closure (integral_closure R A) R A := | |
⟨subtype.coe_injective, λ x, ⟨λ h, ⟨⟨x, h⟩, rfl⟩, by { rintro ⟨⟨_, h⟩, rfl⟩, exact h }⟩⟩ | |
namespace is_integral_closure | |
variables {R A B : Type*} [comm_ring R] [comm_ring A] [comm_ring B] | |
variables [algebra R B] [algebra A B] [is_integral_closure A R B] | |
variables (R) {A} (B) | |
protected theorem is_integral [algebra R A] [is_scalar_tower R A B] (x : A) : is_integral R x := | |
(is_integral_algebra_map_iff (algebra_map_injective A R B)).mp $ | |
show is_integral R (algebra_map A B x), from is_integral_iff.mpr ⟨x, rfl⟩ | |
theorem is_integral_algebra [algebra R A] [is_scalar_tower R A B] : | |
algebra.is_integral R A := | |
λ x, is_integral_closure.is_integral R B x | |
variables {R} (A) {B} | |
/-- If `x : B` is integral over `R`, then it is an element of the integral closure of `R` in `B`. -/ | |
noncomputable def mk' (x : B) (hx : is_integral R x) : A := | |
classical.some (is_integral_iff.mp hx) | |
@[simp] lemma algebra_map_mk' (x : B) (hx : is_integral R x) : | |
algebra_map A B (mk' A x hx) = x := | |
classical.some_spec (is_integral_iff.mp hx) | |
@[simp] lemma mk'_one (h : is_integral R (1 : B) := is_integral_one) : | |
mk' A 1 h = 1 := | |
algebra_map_injective A R B $ by rw [algebra_map_mk', ring_hom.map_one] | |
@[simp] lemma mk'_zero (h : is_integral R (0 : B) := is_integral_zero) : | |
mk' A 0 h = 0 := | |
algebra_map_injective A R B $ by rw [algebra_map_mk', ring_hom.map_zero] | |
@[simp] lemma mk'_add (x y : B) (hx : is_integral R x) (hy : is_integral R y) : | |
mk' A (x + y) (is_integral_add hx hy) = mk' A x hx + mk' A y hy := | |
algebra_map_injective A R B $ by simp only [algebra_map_mk', ring_hom.map_add] | |
@[simp] lemma mk'_mul (x y : B) (hx : is_integral R x) (hy : is_integral R y) : | |
mk' A (x * y) (is_integral_mul hx hy) = mk' A x hx * mk' A y hy := | |
algebra_map_injective A R B $ by simp only [algebra_map_mk', ring_hom.map_mul] | |
@[simp] lemma mk'_algebra_map [algebra R A] [is_scalar_tower R A B] (x : R) | |
(h : is_integral R (algebra_map R B x) := is_integral_algebra_map) : | |
is_integral_closure.mk' A (algebra_map R B x) h = algebra_map R A x := | |
algebra_map_injective A R B $ by rw [algebra_map_mk', ← is_scalar_tower.algebra_map_apply] | |
section lift | |
variables {R} (A B) {S : Type*} [comm_ring S] [algebra R S] [algebra S B] [is_scalar_tower R S B] | |
variables [algebra R A] [is_scalar_tower R A B] (h : algebra.is_integral R S) | |
/-- If `B / S / R` is a tower of ring extensions where `S` is integral over `R`, | |
then `S` maps (uniquely) into an integral closure `B / A / R`. -/ | |
noncomputable def lift : S →ₐ[R] A := | |
{ to_fun := λ x, mk' A (algebra_map S B x) (is_integral.algebra_map (h x)), | |
map_one' := by simp only [ring_hom.map_one, mk'_one], | |
map_zero' := by simp only [ring_hom.map_zero, mk'_zero], | |
map_add' := λ x y, by simp_rw [← mk'_add, ring_hom.map_add], | |
map_mul' := λ x y, by simp_rw [← mk'_mul, ring_hom.map_mul], | |
commutes' := λ x, by simp_rw [← is_scalar_tower.algebra_map_apply, mk'_algebra_map] } | |
@[simp] lemma algebra_map_lift (x : S) : algebra_map A B (lift A B h x) = algebra_map S B x := | |
algebra_map_mk' _ _ _ | |
end lift | |
section equiv | |
variables (R A B) (A' : Type*) [comm_ring A'] [algebra A' B] [is_integral_closure A' R B] | |
variables [algebra R A] [algebra R A'] [is_scalar_tower R A B] [is_scalar_tower R A' B] | |
/-- Integral closures are all isomorphic to each other. -/ | |
noncomputable def equiv : A ≃ₐ[R] A' := | |
alg_equiv.of_alg_hom (lift _ B (is_integral_algebra R B)) (lift _ B (is_integral_algebra R B)) | |
(by { ext x, apply algebra_map_injective A' R B, simp }) | |
(by { ext x, apply algebra_map_injective A R B, simp }) | |
@[simp] lemma algebra_map_equiv (x : A) : algebra_map A' B (equiv R A B A' x) = algebra_map A B x := | |
algebra_map_lift _ _ _ _ | |
end equiv | |
end is_integral_closure | |
end is_integral_closure | |
section algebra | |
open algebra | |
variables {R A B S T : Type*} | |
variables [comm_ring R] [comm_ring A] [comm_ring B] [comm_ring S] [comm_ring T] | |
variables [algebra A B] [algebra R B] (f : R →+* S) (g : S →+* T) | |
lemma is_integral_trans_aux (x : B) {p : A[X]} (pmonic : monic p) (hp : aeval x p = 0) : | |
is_integral (adjoin R (↑(p.map $ algebra_map A B).frange : set B)) x := | |
begin | |
generalize hS : (↑(p.map $ algebra_map A B).frange : set B) = S, | |
have coeffs_mem : ∀ i, (p.map $ algebra_map A B).coeff i ∈ adjoin R S, | |
{ intro i, by_cases hi : (p.map $ algebra_map A B).coeff i = 0, | |
{ rw hi, exact subalgebra.zero_mem _ }, | |
rw ← hS, | |
exact subset_adjoin (coeff_mem_frange _ _ hi) }, | |
obtain ⟨q, hq⟩ : ∃ q : (adjoin R S)[X], q.map (algebra_map (adjoin R S) B) = | |
(p.map $ algebra_map A B), | |
{ rw ← set.mem_range, exact (polynomial.mem_map_range _).2 (λ i, ⟨⟨_, coeffs_mem i⟩, rfl⟩) }, | |
use q, | |
split, | |
{ suffices h : (q.map (algebra_map (adjoin R S) B)).monic, | |
{ refine monic_of_injective _ h, | |
exact subtype.val_injective }, | |
{ rw hq, exact pmonic.map _ } }, | |
{ convert hp using 1, | |
replace hq := congr_arg (eval x) hq, | |
convert hq using 1; symmetry; apply eval_map }, | |
end | |
variables [algebra R A] [is_scalar_tower R A B] | |
/-- If A is an R-algebra all of whose elements are integral over R, | |
and x is an element of an A-algebra that is integral over A, then x is integral over R.-/ | |
lemma is_integral_trans (A_int : is_integral R A) (x : B) (hx : is_integral A x) : | |
is_integral R x := | |
begin | |
rcases hx with ⟨p, pmonic, hp⟩, | |
let S : set B := ↑(p.map $ algebra_map A B).frange, | |
refine is_integral_of_mem_of_fg (adjoin R (S ∪ {x})) _ _ (subset_adjoin $ or.inr rfl), | |
refine fg_trans (fg_adjoin_of_finite (finset.finite_to_set _) (λ x hx, _)) _, | |
{ rw [finset.mem_coe, frange, finset.mem_image] at hx, | |
rcases hx with ⟨i, _, rfl⟩, | |
rw coeff_map, | |
exact is_integral_alg_hom (is_scalar_tower.to_alg_hom R A B) (A_int _) }, | |
{ apply fg_adjoin_singleton_of_integral, | |
exact is_integral_trans_aux _ pmonic hp } | |
end | |
/-- If A is an R-algebra all of whose elements are integral over R, | |
and B is an A-algebra all of whose elements are integral over A, | |
then all elements of B are integral over R.-/ | |
lemma algebra.is_integral_trans (hA : is_integral R A) (hB : is_integral A B) : is_integral R B := | |
λ x, is_integral_trans hA x (hB x) | |
lemma ring_hom.is_integral_trans (hf : f.is_integral) (hg : g.is_integral) : | |
(g.comp f).is_integral := | |
@algebra.is_integral_trans R S T _ _ _ g.to_algebra (g.comp f).to_algebra f.to_algebra | |
(@is_scalar_tower.of_algebra_map_eq R S T _ _ _ f.to_algebra g.to_algebra (g.comp f).to_algebra | |
(ring_hom.comp_apply g f)) hf hg | |
lemma ring_hom.is_integral_of_surjective (hf : function.surjective f) : f.is_integral := | |
λ x, (hf x).rec_on (λ y hy, (hy ▸ f.is_integral_map : f.is_integral_elem x)) | |
lemma is_integral_of_surjective (h : function.surjective (algebra_map R A)) : is_integral R A := | |
(algebra_map R A).is_integral_of_surjective h | |
/-- If `R → A → B` is an algebra tower with `A → B` injective, | |
then if the entire tower is an integral extension so is `R → A` -/ | |
lemma is_integral_tower_bot_of_is_integral (H : function.injective (algebra_map A B)) | |
{x : A} (h : is_integral R (algebra_map A B x)) : is_integral R x := | |
begin | |
rcases h with ⟨p, ⟨hp, hp'⟩⟩, | |
refine ⟨p, ⟨hp, _⟩⟩, | |
rw [is_scalar_tower.algebra_map_eq R A B, ← eval₂_map, | |
eval₂_hom, ← ring_hom.map_zero (algebra_map A B)] at hp', | |
rw [eval₂_eq_eval_map], | |
exact H hp', | |
end | |
lemma ring_hom.is_integral_tower_bot_of_is_integral (hg : function.injective g) | |
(hfg : (g.comp f).is_integral) : f.is_integral := | |
λ x, | |
@is_integral_tower_bot_of_is_integral R S T _ _ _ g.to_algebra (g.comp f).to_algebra f.to_algebra | |
(@is_scalar_tower.of_algebra_map_eq R S T _ _ _ f.to_algebra g.to_algebra (g.comp f).to_algebra | |
(ring_hom.comp_apply g f)) hg x (hfg (g x)) | |
lemma is_integral_tower_bot_of_is_integral_field {R A B : Type*} [comm_ring R] [field A] | |
[comm_ring B] [nontrivial B] [algebra R A] [algebra A B] [algebra R B] [is_scalar_tower R A B] | |
{x : A} (h : is_integral R (algebra_map A B x)) : is_integral R x := | |
is_integral_tower_bot_of_is_integral (algebra_map A B).injective h | |
lemma ring_hom.is_integral_elem_of_is_integral_elem_comp {x : T} | |
(h : (g.comp f).is_integral_elem x) : g.is_integral_elem x := | |
let ⟨p, ⟨hp, hp'⟩⟩ := h in ⟨p.map f, hp.map f, by rwa ← eval₂_map at hp'⟩ | |
lemma ring_hom.is_integral_tower_top_of_is_integral (h : (g.comp f).is_integral) : g.is_integral := | |
λ x, ring_hom.is_integral_elem_of_is_integral_elem_comp f g (h x) | |
/-- If `R → A → B` is an algebra tower, | |
then if the entire tower is an integral extension so is `A → B`. -/ | |
lemma is_integral_tower_top_of_is_integral {x : B} (h : is_integral R x) : is_integral A x := | |
begin | |
rcases h with ⟨p, ⟨hp, hp'⟩⟩, | |
refine ⟨p.map (algebra_map R A), ⟨hp.map (algebra_map R A), _⟩⟩, | |
rw [is_scalar_tower.algebra_map_eq R A B, ← eval₂_map] at hp', | |
exact hp', | |
end | |
lemma ring_hom.is_integral_quotient_of_is_integral {I : ideal S} (hf : f.is_integral) : | |
(ideal.quotient_map I f le_rfl).is_integral := | |
begin | |
rintros ⟨x⟩, | |
obtain ⟨p, ⟨p_monic, hpx⟩⟩ := hf x, | |
refine ⟨p.map (ideal.quotient.mk _), ⟨p_monic.map _, _⟩⟩, | |
simpa only [hom_eval₂, eval₂_map] using congr_arg (ideal.quotient.mk I) hpx | |
end | |
lemma is_integral_quotient_of_is_integral {I : ideal A} (hRA : is_integral R A) : | |
is_integral (R ⧸ I.comap (algebra_map R A)) (A ⧸ I) := | |
(algebra_map R A).is_integral_quotient_of_is_integral hRA | |
lemma is_integral_quotient_map_iff {I : ideal S} : | |
(ideal.quotient_map I f le_rfl).is_integral ↔ | |
((ideal.quotient.mk I).comp f : R →+* S ⧸ I).is_integral := | |
begin | |
let g := ideal.quotient.mk (I.comap f), | |
have := ideal.quotient_map_comp_mk le_rfl, | |
refine ⟨λ h, _, λ h, ring_hom.is_integral_tower_top_of_is_integral g _ (this ▸ h)⟩, | |
refine this ▸ ring_hom.is_integral_trans g (ideal.quotient_map I f le_rfl) _ h, | |
exact ring_hom.is_integral_of_surjective g ideal.quotient.mk_surjective, | |
end | |
/-- If the integral extension `R → S` is injective, and `S` is a field, then `R` is also a field. -/ | |
lemma is_field_of_is_integral_of_is_field | |
{R S : Type*} [comm_ring R] [nontrivial R] [comm_ring S] [is_domain S] | |
[algebra R S] (H : is_integral R S) (hRS : function.injective (algebra_map R S)) | |
(hS : is_field S) : is_field R := | |
begin | |
refine ⟨⟨0, 1, zero_ne_one⟩, mul_comm, λ a ha, _⟩, | |
-- Let `a_inv` be the inverse of `algebra_map R S a`, | |
-- then we need to show that `a_inv` is of the form `algebra_map R S b`. | |
obtain ⟨a_inv, ha_inv⟩ := hS.mul_inv_cancel (λ h, ha (hRS (trans h (ring_hom.map_zero _).symm))), | |
-- Let `p : R[X]` be monic with root `a_inv`, | |
-- and `q` be `p` with coefficients reversed (so `q(a) = q'(a) * a + 1`). | |
-- We claim that `q(a) = 0`, so `-q'(a)` is the inverse of `a`. | |
obtain ⟨p, p_monic, hp⟩ := H a_inv, | |
use -∑ (i : ℕ) in finset.range p.nat_degree, (p.coeff i) * a ^ (p.nat_degree - i - 1), | |
-- `q(a) = 0`, because multiplying everything with `a_inv^n` gives `p(a_inv) = 0`. | |
-- TODO: this could be a lemma for `polynomial.reverse`. | |
have hq : ∑ (i : ℕ) in finset.range (p.nat_degree + 1), (p.coeff i) * a ^ (p.nat_degree - i) = 0, | |
{ apply (injective_iff_map_eq_zero (algebra_map R S)).mp hRS, | |
have a_inv_ne_zero : a_inv ≠ 0 := right_ne_zero_of_mul (mt ha_inv.symm.trans one_ne_zero), | |
refine (mul_eq_zero.mp _).resolve_right (pow_ne_zero p.nat_degree a_inv_ne_zero), | |
rw [eval₂_eq_sum_range] at hp, | |
rw [ring_hom.map_sum, finset.sum_mul], | |
refine (finset.sum_congr rfl (λ i hi, _)).trans hp, | |
rw [ring_hom.map_mul, mul_assoc], | |
congr, | |
have : a_inv ^ p.nat_degree = a_inv ^ (p.nat_degree - i) * a_inv ^ i, | |
{ rw [← pow_add a_inv, tsub_add_cancel_of_le (nat.le_of_lt_succ (finset.mem_range.mp hi))] }, | |
rw [ring_hom.map_pow, this, ← mul_assoc, ← mul_pow, ha_inv, one_pow, one_mul] }, | |
-- Since `q(a) = 0` and `q(a) = q'(a) * a + 1`, we have `a * -q'(a) = 1`. | |
-- TODO: we could use a lemma for `polynomial.div_X` here. | |
rw [finset.sum_range_succ_comm, p_monic.coeff_nat_degree, one_mul, tsub_self, pow_zero, | |
add_eq_zero_iff_eq_neg, eq_comm] at hq, | |
rw [mul_comm, neg_mul, finset.sum_mul], | |
convert hq using 2, | |
refine finset.sum_congr rfl (λ i hi, _), | |
have : 1 ≤ p.nat_degree - i := le_tsub_of_add_le_left (finset.mem_range.mp hi), | |
rw [mul_assoc, ← pow_succ', tsub_add_cancel_of_le this] | |
end | |
lemma is_field_of_is_integral_of_is_field' | |
{R S : Type*} [comm_ring R] [comm_ring S] [is_domain S] [algebra R S] | |
(H : algebra.is_integral R S) (hR : is_field R) : | |
is_field S := | |
begin | |
letI := hR.to_field, | |
refine ⟨⟨0, 1, zero_ne_one⟩, mul_comm, λ x hx, _⟩, | |
let A := algebra.adjoin R ({x} : set S), | |
haveI : is_noetherian R A := | |
is_noetherian_of_fg_of_noetherian A.to_submodule (fg_adjoin_singleton_of_integral x (H x)), | |
haveI : module.finite R A := module.is_noetherian.finite R A, | |
obtain ⟨y, hy⟩ := linear_map.surjective_of_injective (@lmul_left_injective R A _ _ _ _ | |
⟨x, subset_adjoin (set.mem_singleton x)⟩ (λ h, hx (subtype.ext_iff.mp h))) 1, | |
exact ⟨y, subtype.ext_iff.mp hy⟩, | |
end | |
lemma algebra.is_integral.is_field_iff_is_field | |
{R S : Type*} [comm_ring R] [nontrivial R] [comm_ring S] [is_domain S] [algebra R S] | |
(H : algebra.is_integral R S) (hRS : function.injective (algebra_map R S)) : | |
is_field R ↔ is_field S := | |
⟨is_field_of_is_integral_of_is_field' H, is_field_of_is_integral_of_is_field H hRS⟩ | |
end algebra | |
theorem integral_closure_idem {R : Type*} {A : Type*} [comm_ring R] [comm_ring A] [algebra R A] : | |
integral_closure (integral_closure R A : set A) A = ⊥ := | |
eq_bot_iff.2 $ λ x hx, algebra.mem_bot.2 | |
⟨⟨x, @is_integral_trans _ _ _ _ _ _ _ _ (integral_closure R A).algebra | |
_ integral_closure.is_integral x hx⟩, rfl⟩ | |
section is_domain | |
variables {R S : Type*} [comm_ring R] [comm_ring S] [is_domain S] [algebra R S] | |
instance : is_domain (integral_closure R S) := | |
infer_instance | |
end is_domain | |