proof-pile / formal /lean /mathlib /analysis /calculus /lagrange_multipliers.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.95 kB
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.calculus.inverse
import linear_algebra.dual
/-!
# Lagrange multipliers
In this file we formalize the
[Lagrange multipliers](https://en.wikipedia.org/wiki/Lagrange_multiplier) method of solving
conditional extremum problems: if a function `Ο†` has a local extremum at `xβ‚€` on the set
`f ⁻¹' {f xβ‚€}`, `f x = (fβ‚€ x, ..., fₙ₋₁ x)`, then the differentials of `fβ‚–` and `Ο†` are linearly
dependent. First we formulate a geometric version of this theorem which does not rely on the
target space being `ℝⁿ`, then restate it in terms of coordinates.
## TODO
Formalize Karush-Kuhn-Tucker theorem
## Tags
lagrange multiplier, local extremum
-/
open filter set
open_locale topological_space filter big_operators
variables {E F : Type*} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E]
[normed_add_comm_group F] [normed_space ℝ F] [complete_space F]
{f : E β†’ F} {Ο† : E β†’ ℝ} {xβ‚€ : E} {f' : E β†’L[ℝ] F} {Ο†' : E β†’L[ℝ] ℝ}
/-- Lagrange multipliers theorem: if `Ο† : E β†’ ℝ` has a local extremum on the set `{x | f x = f xβ‚€}`
at `xβ‚€`, both `f : E β†’ F` and `Ο†` are strictly differentiable at `xβ‚€`, and the codomain of `f` is
a complete space, then the linear map `x ↦ (f' x, Ο†' x)` is not surjective. -/
lemma is_local_extr_on.range_ne_top_of_has_strict_fderiv_at
(hextr : is_local_extr_on Ο† {x | f x = f xβ‚€} xβ‚€) (hf' : has_strict_fderiv_at f f' xβ‚€)
(hφ' : has_strict_fderiv_at φ φ' x₀) :
(f'.prod Ο†').range β‰  ⊀ :=
begin
intro htop,
set fφ := λ x, (f x, φ x),
have A : map Ο† (𝓝[f ⁻¹' {f xβ‚€}] xβ‚€) = 𝓝 (Ο† xβ‚€),
{ change map (prod.snd ∘ fΟ†) (𝓝[fΟ† ⁻¹' {p | p.1 = f xβ‚€}] xβ‚€) = 𝓝 (Ο† xβ‚€),
rw [← map_map, nhds_within, map_inf_principal_preimage,
(hf'.prod hφ').map_nhds_eq_of_surj htop],
exact map_snd_nhds_within _ },
exact hextr.not_nhds_le_map A.ge
end
/-- Lagrange multipliers theorem: if `Ο† : E β†’ ℝ` has a local extremum on the set `{x | f x = f xβ‚€}`
at `xβ‚€`, both `f : E β†’ F` and `Ο†` are strictly differentiable at `xβ‚€`, and the codomain of `f` is
a complete space, then there exist `Ξ› : dual ℝ F` and `Ξ›β‚€ : ℝ` such that `(Ξ›, Ξ›β‚€) β‰  0` and
`Ξ› (f' x) + Ξ›β‚€ β€’ Ο†' x = 0` for all `x`. -/
lemma is_local_extr_on.exists_linear_map_of_has_strict_fderiv_at
(hextr : is_local_extr_on Ο† {x | f x = f xβ‚€} xβ‚€) (hf' : has_strict_fderiv_at f f' xβ‚€)
(hφ' : has_strict_fderiv_at φ φ' x₀) :
βˆƒ (Ξ› : module.dual ℝ F) (Ξ›β‚€ : ℝ), (Ξ›, Ξ›β‚€) β‰  0 ∧ βˆ€ x, Ξ› (f' x) + Ξ›β‚€ β€’ Ο†' x = 0 :=
begin
rcases submodule.exists_le_ker_of_lt_top _
(lt_top_iff_ne_top.2 $ hextr.range_ne_top_of_has_strict_fderiv_at hf' hΟ†') with βŸ¨Ξ›', h0, hΞ›'⟩,
set e : ((F β†’β‚—[ℝ] ℝ) Γ— ℝ) ≃ₗ[ℝ] (F Γ— ℝ β†’β‚—[ℝ] ℝ) :=
((linear_equiv.refl ℝ (F β†’β‚—[ℝ] ℝ)).prod (linear_map.ring_lmap_equiv_self ℝ ℝ ℝ).symm).trans
(linear_map.coprod_equiv ℝ),
rcases e.surjective Ξ›' with βŸ¨βŸ¨Ξ›, Ξ›β‚€βŸ©, rfl⟩,
refine βŸ¨Ξ›, Ξ›β‚€, e.map_ne_zero_iff.1 h0, Ξ» x, _⟩,
convert linear_map.congr_fun (linear_map.range_le_ker_iff.1 hΞ›') x using 1,
-- squeezed `simp [mul_comm]` to speed up elaboration
simp only [linear_map.coprod_equiv_apply, linear_equiv.refl_apply,
linear_map.ring_lmap_equiv_self_symm_apply, linear_map.comp_apply,
continuous_linear_map.coe_coe, continuous_linear_map.prod_apply,
linear_equiv.trans_apply, linear_equiv.prod_apply, linear_map.coprod_apply,
linear_map.smul_right_apply, linear_map.one_apply, smul_eq_mul, mul_comm]
end
/-- Lagrange multipliers theorem: if `Ο† : E β†’ ℝ` has a local extremum on the set `{x | f x = f xβ‚€}`
at `xβ‚€`, and both `f : E β†’ ℝ` and `Ο†` are strictly differentiable at `xβ‚€`, then there exist
`a b : ℝ` such that `(a, b) β‰  0` and `a β€’ f' + b β€’ Ο†' = 0`. -/
lemma is_local_extr_on.exists_multipliers_of_has_strict_fderiv_at_1d
{f : E β†’ ℝ} {f' : E β†’L[ℝ] ℝ}
(hextr : is_local_extr_on Ο† {x | f x = f xβ‚€} xβ‚€) (hf' : has_strict_fderiv_at f f' xβ‚€)
(hφ' : has_strict_fderiv_at φ φ' x₀) :
βˆƒ (a b : ℝ), (a, b) β‰  0 ∧ a β€’ f' + b β€’ Ο†' = 0 :=
begin
obtain βŸ¨Ξ›, Ξ›β‚€, hΞ›, hfΞ›βŸ© := hextr.exists_linear_map_of_has_strict_fderiv_at hf' hΟ†',
refine βŸ¨Ξ› 1, Ξ›β‚€, _, _⟩,
{ contrapose! hΞ›,
simp only [prod.mk_eq_zero] at ⊒ hΞ›,
refine ⟨linear_map.ext (Ξ» x, _), hΞ›.2⟩,
simpa [hΞ›.1] using Ξ›.map_smul x 1 },
{ ext x,
have H₁ : Ξ› (f' x) = f' x * Ξ› 1,
{ simpa only [mul_one, algebra.id.smul_eq_mul] using Ξ›.map_smul (f' x) 1 },
have Hβ‚‚ : f' x * Ξ› 1 + Ξ›β‚€ * Ο†' x = 0,
{ simpa only [algebra.id.smul_eq_mul, H₁] using hfΞ› x },
simpa [mul_comm] using Hβ‚‚ }
end
/-- Lagrange multipliers theorem, 1d version. Let `f : ΞΉ β†’ E β†’ ℝ` be a finite family of functions.
Suppose that `Ο† : E β†’ ℝ` has a local extremum on the set `{x | βˆ€ i, f i x = f i xβ‚€}` at `xβ‚€`.
Suppose that all functions `f i` as well as `Ο†` are strictly differentiable at `xβ‚€`.
Then the derivatives `f' i : E β†’ L[ℝ] ℝ` and `Ο†' : E β†’L[ℝ] ℝ` are linearly dependent:
there exist `Ξ› : ΞΉ β†’ ℝ` and `Ξ›β‚€ : ℝ`, `(Ξ›, Ξ›β‚€) β‰  0`, such that `βˆ‘ i, Ξ› i β€’ f' i + Ξ›β‚€ β€’ Ο†' = 0`.
See also `is_local_extr_on.linear_dependent_of_has_strict_fderiv_at` for a version that
states `Β¬linear_independent ℝ _` instead of existence of `Ξ›` and `Ξ›β‚€`. -/
lemma is_local_extr_on.exists_multipliers_of_has_strict_fderiv_at {ΞΉ : Type*} [fintype ΞΉ]
{f : ΞΉ β†’ E β†’ ℝ} {f' : ΞΉ β†’ E β†’L[ℝ] ℝ}
(hextr : is_local_extr_on Ο† {x | βˆ€ i, f i x = f i xβ‚€} xβ‚€)
(hf' : βˆ€ i, has_strict_fderiv_at (f i) (f' i) xβ‚€)
(hφ' : has_strict_fderiv_at φ φ' x₀) :
βˆƒ (Ξ› : ΞΉ β†’ ℝ) (Ξ›β‚€ : ℝ), (Ξ›, Ξ›β‚€) β‰  0 ∧ βˆ‘ i, Ξ› i β€’ f' i + Ξ›β‚€ β€’ Ο†' = 0 :=
begin
letI := classical.dec_eq ΞΉ,
replace hextr : is_local_extr_on Ο† {x | (Ξ» i, f i x) = (Ξ» i, f i xβ‚€)} xβ‚€,
by simpa only [function.funext_iff] using hextr,
rcases hextr.exists_linear_map_of_has_strict_fderiv_at
(has_strict_fderiv_at_pi.2 (λ i, hf' i)) hφ'
with βŸ¨Ξ›, Ξ›β‚€, h0, hsum⟩,
rcases (linear_equiv.pi_ring ℝ ℝ ΞΉ ℝ).symm.surjective Ξ› with βŸ¨Ξ›, rfl⟩,
refine βŸ¨Ξ›, Ξ›β‚€, _, _⟩,
{ simpa only [ne.def, prod.ext_iff, linear_equiv.map_eq_zero_iff, prod.fst_zero] using h0 },
{ ext x, simpa [mul_comm] using hsum x }
end
/-- Lagrange multipliers theorem. Let `f : ΞΉ β†’ E β†’ ℝ` be a finite family of functions.
Suppose that `Ο† : E β†’ ℝ` has a local extremum on the set `{x | βˆ€ i, f i x = f i xβ‚€}` at `xβ‚€`.
Suppose that all functions `f i` as well as `Ο†` are strictly differentiable at `xβ‚€`.
Then the derivatives `f' i : E β†’ L[ℝ] ℝ` and `Ο†' : E β†’L[ℝ] ℝ` are linearly dependent.
See also `is_local_extr_on.exists_multipliers_of_has_strict_fderiv_at` for a version that
that states existence of Lagrange multipliers `Ξ›` and `Ξ›β‚€` instead of using
`Β¬linear_independent ℝ _` -/
lemma is_local_extr_on.linear_dependent_of_has_strict_fderiv_at {ΞΉ : Type*} [fintype ΞΉ]
{f : ΞΉ β†’ E β†’ ℝ} {f' : ΞΉ β†’ E β†’L[ℝ] ℝ}
(hextr : is_local_extr_on Ο† {x | βˆ€ i, f i x = f i xβ‚€} xβ‚€)
(hf' : βˆ€ i, has_strict_fderiv_at (f i) (f' i) xβ‚€)
(hφ' : has_strict_fderiv_at φ φ' x₀) :
Β¬linear_independent ℝ (option.elim Ο†' f' : option ΞΉ β†’ E β†’L[ℝ] ℝ) :=
begin
rw [fintype.linear_independent_iff], push_neg,
rcases hextr.exists_multipliers_of_has_strict_fderiv_at hf' hΟ†' with βŸ¨Ξ›, Ξ›β‚€, hΞ›, hΞ›f⟩,
refine ⟨option.elim Ξ›β‚€ Ξ›, _, _⟩,
{ simpa [add_comm] using hΞ›f },
{ simpa [function.funext_iff, not_and_distrib, or_comm, option.exists] using hΞ› }
end