Zhangir Azerbayev
squashed?
4365a98
raw
history blame
2.14 kB
/-
Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
import analysis.normed.group.completion
import analysis.normed_space.operator_norm
import topology.algebra.uniform_mul_action
/-!
# Normed space structure on the completion of a normed space
If `E` is a normed space over `π•œ`, then so is `uniform_space.completion E`. In this file we provide
necessary instances and define `uniform_space.completion.to_complβ‚—α΅’` - coercion
`E β†’ uniform_space.completion E` as a bundled linear isometry.
-/
noncomputable theory
namespace uniform_space
namespace completion
variables (π•œ E : Type*) [normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E]
@[priority 100]
instance normed_space.to_has_uniform_continuous_const_smul :
has_uniform_continuous_const_smul π•œ E :=
⟨λ c, (lipschitz_with_smul c).uniform_continuous⟩
instance : normed_space π•œ (completion E) :=
{ smul := (β€’),
norm_smul_le := Ξ» c x, induction_on x
(is_closed_le (continuous_const_smul _).norm (continuous_const.mul continuous_norm)) $
Ξ» y, by simp only [← coe_smul, norm_coe, norm_smul],
.. completion.module }
variables {π•œ E}
/-- Embedding of a normed space to its completion as a linear isometry. -/
def to_complβ‚—α΅’ : E β†’β‚—α΅’[π•œ] completion E :=
{ to_fun := coe,
map_smul' := coe_smul,
norm_map' := norm_coe,
.. to_compl }
@[simp] lemma coe_to_complβ‚—α΅’ : ⇑(to_complβ‚—α΅’ : E β†’β‚—α΅’[π•œ] completion E) = coe := rfl
/-- Embedding of a normed space to its completion as a continuous linear map. -/
def to_complL : E β†’L[π•œ] completion E :=
to_complβ‚—α΅’.to_continuous_linear_map
@[simp] lemma coe_to_complL : ⇑(to_complL : E β†’L[π•œ] completion E) = coe := rfl
@[simp] lemma norm_to_complL {π•œ E : Type*} [nontrivially_normed_field π•œ] [normed_add_comm_group E]
[normed_space π•œ E] [nontrivial E] : βˆ₯(to_complL : E β†’L[π•œ] completion E)βˆ₯ = 1 :=
(to_complβ‚—α΅’ : E β†’β‚—α΅’[π•œ] completion E).norm_to_continuous_linear_map
end completion
end uniform_space