Zhangir Azerbayev
squashed?
4365a98
raw
history blame
12 kB
/-
Copyright (c) 2020 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.specific_limits.normed
/-!
# The group of units of a complete normed ring
This file contains the basic theory for the group of units (invertible elements) of a complete
normed ring (Banach algebras being a notable special case).
## Main results
The constructions `one_sub`, `add` and `unit_of_nearby` state, in varying forms, that perturbations
of a unit are units. The latter two are not stated in their optimal form; more precise versions
would use the spectral radius.
The first main result is `is_open`: the group of units of a complete normed ring is an open subset
of the ring.
The function `inverse` (defined in `algebra.ring`), for a ring `R`, sends `a : R` to `a⁻¹` if `a` is
a unit and 0 if not. The other major results of this file (notably `inverse_add`,
`inverse_add_norm` and `inverse_add_norm_diff_nth_order`) cover the asymptotic properties of
`inverse (x + t)` as `t → 0`.
-/
noncomputable theory
open_locale topological_space
variables {R : Type*} [normed_ring R] [complete_space R]
namespace units
/-- In a complete normed ring, a perturbation of `1` by an element `t` of distance less than `1`
from `1` is a unit. Here we construct its `units` structure. -/
@[simps coe]
def one_sub (t : R) (h : ∥t∥ < 1) : Rˣ :=
{ val := 1 - t,
inv := ∑' n : ℕ, t ^ n,
val_inv := mul_neg_geom_series t h,
inv_val := geom_series_mul_neg t h }
/-- In a complete normed ring, a perturbation of a unit `x` by an element `t` of distance less than
`∥x⁻¹∥⁻¹` from `x` is a unit. Here we construct its `units` structure. -/
@[simps coe]
def add (x : Rˣ) (t : R) (h : ∥t∥ < ∥(↑x⁻¹ : R)∥⁻¹) : Rˣ :=
units.copy -- to make `coe_add` true definitionally, for convenience
(x * (units.one_sub (-(↑x⁻¹ * t)) begin
nontriviality R using [zero_lt_one],
have hpos : 0 < ∥(↑x⁻¹ : R)∥ := units.norm_pos x⁻¹,
calc ∥-(↑x⁻¹ * t)∥
= ∥↑x⁻¹ * t∥ : by { rw norm_neg }
... ≤ ∥(↑x⁻¹ : R)∥ * ∥t∥ : norm_mul_le ↑x⁻¹ _
... < ∥(↑x⁻¹ : R)∥ * ∥(↑x⁻¹ : R)∥⁻¹ : by nlinarith only [h, hpos]
... = 1 : mul_inv_cancel (ne_of_gt hpos)
end))
(x + t) (by simp [mul_add]) _ rfl
/-- In a complete normed ring, an element `y` of distance less than `∥x⁻¹∥⁻¹` from `x` is a unit.
Here we construct its `units` structure. -/
@[simps coe]
def unit_of_nearby (x : Rˣ) (y : R) (h : ∥y - x∥ < ∥(↑x⁻¹ : R)∥⁻¹) : Rˣ :=
units.copy (x.add (y - x : R) h) y (by simp) _ rfl
/-- The group of units of a complete normed ring is an open subset of the ring. -/
protected lemma is_open : is_open {x : R | is_unit x} :=
begin
nontriviality R,
apply metric.is_open_iff.mpr,
rintros x' ⟨x, rfl⟩,
refine ⟨∥(↑x⁻¹ : R)∥⁻¹, _root_.inv_pos.mpr (units.norm_pos x⁻¹), _⟩,
intros y hy,
rw [metric.mem_ball, dist_eq_norm] at hy,
exact (x.unit_of_nearby y hy).is_unit
end
protected lemma nhds (x : Rˣ) : {x : R | is_unit x} ∈ 𝓝 (x : R) :=
is_open.mem_nhds units.is_open x.is_unit
end units
namespace normed_ring
open_locale classical big_operators
open asymptotics filter metric finset ring
lemma inverse_one_sub (t : R) (h : ∥t∥ < 1) : inverse (1 - t) = ↑(units.one_sub t h)⁻¹ :=
by rw [← inverse_unit (units.one_sub t h), units.coe_one_sub]
/-- The formula `inverse (x + t) = inverse (1 + x⁻¹ * t) * x⁻¹` holds for `t` sufficiently small. -/
lemma inverse_add (x : Rˣ) :
∀ᶠ t in (𝓝 0), inverse ((x : R) + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹ :=
begin
nontriviality R,
rw [eventually_iff, metric.mem_nhds_iff],
have hinv : 0 < ∥(↑x⁻¹ : R)∥⁻¹, by cancel_denoms,
use [∥(↑x⁻¹ : R)∥⁻¹, hinv],
intros t ht,
simp only [mem_ball, dist_zero_right] at ht,
have ht' : ∥-↑x⁻¹ * t∥ < 1,
{ refine lt_of_le_of_lt (norm_mul_le _ _) _,
rw norm_neg,
refine lt_of_lt_of_le (mul_lt_mul_of_pos_left ht x⁻¹.norm_pos) _,
cancel_denoms },
have hright := inverse_one_sub (-↑x⁻¹ * t) ht',
have hleft := inverse_unit (x.add t ht),
simp only [neg_mul, sub_neg_eq_add] at hright,
simp only [units.coe_add] at hleft,
simp [hleft, hright, units.add]
end
lemma inverse_one_sub_nth_order (n : ℕ) :
∀ᶠ t in (𝓝 0), inverse ((1:R) - t) = (∑ i in range n, t ^ i) + (t ^ n) * inverse (1 - t) :=
begin
simp only [eventually_iff, metric.mem_nhds_iff],
use [1, by norm_num],
intros t ht,
simp only [mem_ball, dist_zero_right] at ht,
simp only [inverse_one_sub t ht, set.mem_set_of_eq],
have h : 1 = ((range n).sum (λ i, t ^ i)) * (units.one_sub t ht) + t ^ n,
{ simp only [units.coe_one_sub],
rw [geom_sum_mul_neg],
simp },
rw [← one_mul ↑(units.one_sub t ht)⁻¹, h, add_mul],
congr,
{ rw [mul_assoc, (units.one_sub t ht).mul_inv],
simp },
{ simp only [units.coe_one_sub],
rw [← add_mul, geom_sum_mul_neg],
simp }
end
/-- The formula
`inverse (x + t) = (∑ i in range n, (- x⁻¹ * t) ^ i) * x⁻¹ + (- x⁻¹ * t) ^ n * inverse (x + t)`
holds for `t` sufficiently small. -/
lemma inverse_add_nth_order (x : Rˣ) (n : ℕ) :
∀ᶠ t in (𝓝 0), inverse ((x : R) + t)
= (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (- ↑x⁻¹ * t) ^ n * inverse (x + t) :=
begin
refine (inverse_add x).mp _,
have hzero : tendsto (λ (t : R), - ↑x⁻¹ * t) (𝓝 0) (𝓝 0),
{ convert ((mul_left_continuous (- (↑x⁻¹ : R))).tendsto 0).comp tendsto_id,
simp },
refine (hzero.eventually (inverse_one_sub_nth_order n)).mp (eventually_of_forall _),
simp only [neg_mul, sub_neg_eq_add],
intros t h1 h2,
have h := congr_arg (λ (a : R), a * ↑x⁻¹) h1,
dsimp at h,
convert h,
rw [add_mul, mul_assoc],
simp [h2.symm]
end
lemma inverse_one_sub_norm : (λ t : R, inverse (1 - t)) =O[𝓝 0] (λ t, 1 : R → ℝ) :=
begin
simp only [is_O, is_O_with, eventually_iff, metric.mem_nhds_iff],
refine ⟨∥(1:R)∥ + 1, (2:ℝ)⁻¹, by norm_num, _⟩,
intros t ht,
simp only [ball, dist_zero_right, set.mem_set_of_eq] at ht,
have ht' : ∥t∥ < 1,
{ have : (2:ℝ)⁻¹ < 1 := by cancel_denoms,
linarith },
simp only [inverse_one_sub t ht', norm_one, mul_one, set.mem_set_of_eq],
change ∥∑' n : ℕ, t ^ n∥ ≤ _,
have := normed_ring.tsum_geometric_of_norm_lt_1 t ht',
have : (1 - ∥t∥)⁻¹ ≤ 2,
{ rw ← inv_inv (2:ℝ),
refine inv_le_inv_of_le (by norm_num) _,
have : (2:ℝ)⁻¹ + (2:ℝ)⁻¹ = 1 := by ring,
linarith },
linarith
end
/-- The function `λ t, inverse (x + t)` is O(1) as `t → 0`. -/
lemma inverse_add_norm (x : Rˣ) : (λ t : R, inverse (↑x + t)) =O[𝓝 0] (λ t, (1:ℝ)) :=
begin
simp only [is_O_iff, norm_one, mul_one],
cases is_O_iff.mp (@inverse_one_sub_norm R _ _) with C hC,
use C * ∥((x⁻¹:Rˣ):R)∥,
have hzero : tendsto (λ t, - (↑x⁻¹ : R) * t) (𝓝 0) (𝓝 0),
{ convert ((mul_left_continuous (-↑x⁻¹ : R)).tendsto 0).comp tendsto_id,
simp },
refine (inverse_add x).mp ((hzero.eventually hC).mp (eventually_of_forall _)),
intros t bound iden,
rw iden,
simp at bound,
have hmul := norm_mul_le (inverse (1 + ↑x⁻¹ * t)) ↑x⁻¹,
nlinarith [norm_nonneg (↑x⁻¹ : R)]
end
/-- The function
`λ t, inverse (x + t) - (∑ i in range n, (- x⁻¹ * t) ^ i) * x⁻¹`
is `O(t ^ n)` as `t → 0`. -/
lemma inverse_add_norm_diff_nth_order (x : Rˣ) (n : ℕ) :
(λ t : R, inverse (↑x + t) - (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹) =O[𝓝 (0:R)]
(λ t, ∥t∥ ^ n) :=
begin
by_cases h : n = 0,
{ simpa [h] using inverse_add_norm x },
have hn : 0 < n := nat.pos_of_ne_zero h,
simp [is_O_iff],
cases (is_O_iff.mp (inverse_add_norm x)) with C hC,
use C * ∥(1:ℝ)∥ * ∥(↑x⁻¹ : R)∥ ^ n,
have h : eventually_eq (𝓝 (0:R))
(λ t, inverse (↑x + t) - (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹)
(λ t, ((- ↑x⁻¹ * t) ^ n) * inverse (x + t)),
{ refine (inverse_add_nth_order x n).mp (eventually_of_forall _),
intros t ht,
convert congr_arg (λ a, a - (range n).sum (pow (-↑x⁻¹ * t)) * ↑x⁻¹) ht,
simp },
refine h.mp (hC.mp (eventually_of_forall _)),
intros t _ hLHS,
simp only [neg_mul] at hLHS,
rw hLHS,
refine le_trans (norm_mul_le _ _ ) _,
have h' : ∥(-(↑x⁻¹ * t)) ^ n∥ ≤ ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n,
{ calc ∥(-(↑x⁻¹ * t)) ^ n∥ ≤ ∥(-(↑x⁻¹ * t))∥ ^ n : norm_pow_le' _ hn
... = ∥↑x⁻¹ * t∥ ^ n : by rw norm_neg
... ≤ (∥(↑x⁻¹ : R)∥ * ∥t∥) ^ n : _
... = ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n : mul_pow _ _ n,
exact pow_le_pow_of_le_left (norm_nonneg _) (norm_mul_le ↑x⁻¹ t) n },
have h'' : 0 ≤ ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n,
{ refine mul_nonneg _ _;
exact pow_nonneg (norm_nonneg _) n },
nlinarith [norm_nonneg (inverse (↑x + t))],
end
/-- The function `λ t, inverse (x + t) - x⁻¹` is `O(t)` as `t → 0`. -/
lemma inverse_add_norm_diff_first_order (x : Rˣ) :
(λ t : R, inverse (↑x + t) - ↑x⁻¹) =O[𝓝 0] (λ t, ∥t∥) :=
by simpa using inverse_add_norm_diff_nth_order x 1
/-- The function
`λ t, inverse (x + t) - x⁻¹ + x⁻¹ * t * x⁻¹`
is `O(t ^ 2)` as `t → 0`. -/
lemma inverse_add_norm_diff_second_order (x : Rˣ) :
(λ t : R, inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) =O[𝓝 0] (λ t, ∥t∥ ^ 2) :=
begin
convert inverse_add_norm_diff_nth_order x 2,
ext t,
simp only [range_succ, range_one, sum_insert, mem_singleton, sum_singleton, not_false_iff,
one_ne_zero, pow_zero, add_mul, pow_one, one_mul, neg_mul,
sub_add_eq_sub_sub_swap, sub_neg_eq_add],
end
/-- The function `inverse` is continuous at each unit of `R`. -/
lemma inverse_continuous_at (x : Rˣ) : continuous_at inverse (x : R) :=
begin
have h_is_o : (λ t : R, inverse (↑x + t) - ↑x⁻¹) =o[𝓝 0] (λ _, 1 : R → ℝ) :=
(inverse_add_norm_diff_first_order x).trans_is_o (is_o.norm_left $ is_o_id_const one_ne_zero),
have h_lim : tendsto (λ (y:R), y - x) (𝓝 x) (𝓝 0),
{ refine tendsto_zero_iff_norm_tendsto_zero.mpr _,
exact tendsto_iff_norm_tendsto_zero.mp tendsto_id },
rw [continuous_at, tendsto_iff_norm_tendsto_zero, inverse_unit],
simpa [(∘)] using h_is_o.norm_left.tendsto_div_nhds_zero.comp h_lim
end
end normed_ring
namespace units
open mul_opposite filter normed_ring
/-- In a normed ring, the coercion from `Rˣ` (equipped with the induced topology from the
embedding in `R × R`) to `R` is an open map. -/
lemma is_open_map_coe : is_open_map (coe : Rˣ → R) :=
begin
rw is_open_map_iff_nhds_le,
intros x s,
rw [mem_map, mem_nhds_induced],
rintros ⟨t, ht, hts⟩,
obtain ⟨u, hu, v, hv, huvt⟩ :
∃ (u : set R), u ∈ 𝓝 ↑x ∧ ∃ (v : set Rᵐᵒᵖ), v ∈ 𝓝 (op ↑x⁻¹) ∧ u ×ˢ v ⊆ t,
{ simpa [embed_product, mem_nhds_prod_iff] using ht },
have : u ∩ (op ∘ ring.inverse) ⁻¹' v ∩ (set.range (coe : Rˣ → R)) ∈ 𝓝 ↑x,
{ refine inter_mem (inter_mem hu _) (units.nhds x),
refine (continuous_op.continuous_at.comp (inverse_continuous_at x)).preimage_mem_nhds _,
simpa using hv },
refine mem_of_superset this _,
rintros _ ⟨⟨huy, hvy⟩, ⟨y, rfl⟩⟩,
have : embed_product R y ∈ u ×ˢ v := ⟨huy, by simpa using hvy⟩,
simpa using hts (huvt this)
end
/-- In a normed ring, the coercion from `Rˣ` (equipped with the induced topology from the
embedding in `R × R`) to `R` is an open embedding. -/
lemma open_embedding_coe : open_embedding (coe : Rˣ → R) :=
open_embedding_of_continuous_injective_open continuous_coe ext is_open_map_coe
end units