Zhangir Azerbayev
squashed?
4365a98
raw
history blame
20.2 kB
/-
Copyright (c) 2019 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Patrick Massot, Sébastien Gouëzel, Zhouhang Zhou, Reid Barton
-/
import logic.equiv.fin
import topology.dense_embedding
import topology.support
/-!
# Homeomorphisms
This file defines homeomorphisms between two topological spaces. They are bijections with both
directions continuous. We denote homeomorphisms with the notation `≃ₜ`.
# Main definitions
* `homeomorph α β`: The type of homeomorphisms from `α` to `β`.
This type can be denoted using the following notation: `α ≃ₜ β`.
# Main results
* Pretty much every topological property is preserved under homeomorphisms.
* `homeomorph.homeomorph_of_continuous_open`: A continuous bijection that is
an open map is a homeomorphism.
-/
open set filter
open_locale topological_space
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
/-- Homeomorphism between `α` and `β`, also called topological isomorphism -/
@[nolint has_inhabited_instance] -- not all spaces are homeomorphic to each other
structure homeomorph (α : Type*) (β : Type*) [topological_space α] [topological_space β]
extends α ≃ β :=
(continuous_to_fun : continuous to_fun . tactic.interactive.continuity')
(continuous_inv_fun : continuous inv_fun . tactic.interactive.continuity')
infix ` ≃ₜ `:25 := homeomorph
namespace homeomorph
variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ]
instance : has_coe_to_fun (α ≃ₜ β) (λ _, α → β) := ⟨λe, e.to_equiv⟩
@[simp] lemma homeomorph_mk_coe (a : equiv α β) (b c) :
((homeomorph.mk a b c) : α → β) = a :=
rfl
/-- Inverse of a homeomorphism. -/
protected def symm (h : α ≃ₜ β) : β ≃ₜ α :=
{ continuous_to_fun := h.continuous_inv_fun,
continuous_inv_fun := h.continuous_to_fun,
to_equiv := h.to_equiv.symm }
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def simps.apply (h : α ≃ₜ β) : α → β := h
/-- See Note [custom simps projection] -/
def simps.symm_apply (h : α ≃ₜ β) : β → α := h.symm
initialize_simps_projections homeomorph
(to_equiv_to_fun → apply, to_equiv_inv_fun → symm_apply, -to_equiv)
@[simp] lemma coe_to_equiv (h : α ≃ₜ β) : ⇑h.to_equiv = h := rfl
@[simp] lemma coe_symm_to_equiv (h : α ≃ₜ β) : ⇑h.to_equiv.symm = h.symm := rfl
lemma to_equiv_injective : function.injective (to_equiv : α ≃ₜ β → α ≃ β)
| ⟨e, h₁, h₂⟩ ⟨e', h₁', h₂'⟩ rfl := rfl
@[ext] lemma ext {h h' : α ≃ₜ β} (H : ∀ x, h x = h' x) : h = h' :=
to_equiv_injective $ equiv.ext H
/-- Identity map as a homeomorphism. -/
@[simps apply {fully_applied := ff}]
protected def refl (α : Type*) [topological_space α] : α ≃ₜ α :=
{ continuous_to_fun := continuous_id,
continuous_inv_fun := continuous_id,
to_equiv := equiv.refl α }
/-- Composition of two homeomorphisms. -/
protected def trans (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) : α ≃ₜ γ :=
{ continuous_to_fun := h₂.continuous_to_fun.comp h₁.continuous_to_fun,
continuous_inv_fun := h₁.continuous_inv_fun.comp h₂.continuous_inv_fun,
to_equiv := equiv.trans h₁.to_equiv h₂.to_equiv }
@[simp] lemma trans_apply (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) (a : α) : h₁.trans h₂ a = h₂ (h₁ a) := rfl
@[simp] lemma homeomorph_mk_coe_symm (a : equiv α β) (b c) :
((homeomorph.mk a b c).symm : β → α) = a.symm :=
rfl
@[simp] lemma refl_symm : (homeomorph.refl α).symm = homeomorph.refl α := rfl
@[continuity]
protected lemma continuous (h : α ≃ₜ β) : continuous h := h.continuous_to_fun
@[continuity] -- otherwise `by continuity` can't prove continuity of `h.to_equiv.symm`
protected lemma continuous_symm (h : α ≃ₜ β) : continuous (h.symm) := h.continuous_inv_fun
@[simp] lemma apply_symm_apply (h : α ≃ₜ β) (x : β) : h (h.symm x) = x :=
h.to_equiv.apply_symm_apply x
@[simp] lemma symm_apply_apply (h : α ≃ₜ β) (x : α) : h.symm (h x) = x :=
h.to_equiv.symm_apply_apply x
protected lemma bijective (h : α ≃ₜ β) : function.bijective h := h.to_equiv.bijective
protected lemma injective (h : α ≃ₜ β) : function.injective h := h.to_equiv.injective
protected lemma surjective (h : α ≃ₜ β) : function.surjective h := h.to_equiv.surjective
/-- Change the homeomorphism `f` to make the inverse function definitionally equal to `g`. -/
def change_inv (f : α ≃ₜ β) (g : β → α) (hg : function.right_inverse g f) : α ≃ₜ β :=
have g = f.symm, from funext (λ x, calc g x = f.symm (f (g x)) : (f.left_inv (g x)).symm
... = f.symm x : by rw hg x),
{ to_fun := f,
inv_fun := g,
left_inv := by convert f.left_inv,
right_inv := by convert f.right_inv,
continuous_to_fun := f.continuous,
continuous_inv_fun := by convert f.symm.continuous }
@[simp] lemma symm_comp_self (h : α ≃ₜ β) : ⇑h.symm ∘ ⇑h = id :=
funext h.symm_apply_apply
@[simp] lemma self_comp_symm (h : α ≃ₜ β) : ⇑h ∘ ⇑h.symm = id :=
funext h.apply_symm_apply
@[simp] lemma range_coe (h : α ≃ₜ β) : range h = univ :=
h.surjective.range_eq
lemma image_symm (h : α ≃ₜ β) : image h.symm = preimage h :=
funext h.symm.to_equiv.image_eq_preimage
lemma preimage_symm (h : α ≃ₜ β) : preimage h.symm = image h :=
(funext h.to_equiv.image_eq_preimage).symm
@[simp] lemma image_preimage (h : α ≃ₜ β) (s : set β) : h '' (h ⁻¹' s) = s :=
h.to_equiv.image_preimage s
@[simp] lemma preimage_image (h : α ≃ₜ β) (s : set α) : h ⁻¹' (h '' s) = s :=
h.to_equiv.preimage_image s
protected lemma inducing (h : α ≃ₜ β) : inducing h :=
inducing_of_inducing_compose h.continuous h.symm.continuous $
by simp only [symm_comp_self, inducing_id]
lemma induced_eq (h : α ≃ₜ β) : topological_space.induced h ‹_› = ‹_› := h.inducing.1.symm
protected lemma quotient_map (h : α ≃ₜ β) : quotient_map h :=
quotient_map.of_quotient_map_compose h.symm.continuous h.continuous $
by simp only [self_comp_symm, quotient_map.id]
lemma coinduced_eq (h : α ≃ₜ β) : topological_space.coinduced h ‹_› = ‹_› :=
h.quotient_map.2.symm
protected lemma embedding (h : α ≃ₜ β) : embedding h :=
⟨h.inducing, h.injective⟩
/-- Homeomorphism given an embedding. -/
noncomputable def of_embedding (f : α → β) (hf : embedding f) : α ≃ₜ (set.range f) :=
{ continuous_to_fun := continuous_subtype_mk _ hf.continuous,
continuous_inv_fun := by simp [hf.continuous_iff, continuous_subtype_coe],
.. equiv.of_injective f hf.inj }
protected lemma second_countable_topology [topological_space.second_countable_topology β]
(h : α ≃ₜ β) :
topological_space.second_countable_topology α :=
h.inducing.second_countable_topology
lemma compact_image {s : set α} (h : α ≃ₜ β) : is_compact (h '' s) ↔ is_compact s :=
h.embedding.is_compact_iff_is_compact_image.symm
lemma compact_preimage {s : set β} (h : α ≃ₜ β) : is_compact (h ⁻¹' s) ↔ is_compact s :=
by rw ← image_symm; exact h.symm.compact_image
@[simp] lemma comap_cocompact (h : α ≃ₜ β) : comap h (cocompact β) = cocompact α :=
(comap_cocompact_le h.continuous).antisymm $
(has_basis_cocompact.le_basis_iff (has_basis_cocompact.comap h)).2 $ λ K hK,
⟨h ⁻¹' K, h.compact_preimage.2 hK, subset.rfl⟩
@[simp] lemma map_cocompact (h : α ≃ₜ β) : map h (cocompact α) = cocompact β :=
by rw [← h.comap_cocompact, map_comap_of_surjective h.surjective]
protected lemma compact_space [compact_space α] (h : α ≃ₜ β) : compact_space β :=
{ compact_univ := by { rw [← image_univ_of_surjective h.surjective, h.compact_image],
apply compact_space.compact_univ } }
protected lemma t0_space [t0_space α] (h : α ≃ₜ β) : t0_space β :=
h.symm.embedding.t0_space
protected lemma t1_space [t1_space α] (h : α ≃ₜ β) : t1_space β :=
h.symm.embedding.t1_space
protected lemma t2_space [t2_space α] (h : α ≃ₜ β) : t2_space β :=
h.symm.embedding.t2_space
protected lemma t3_space [t3_space α] (h : α ≃ₜ β) : t3_space β :=
h.symm.embedding.t3_space
protected lemma dense_embedding (h : α ≃ₜ β) : dense_embedding h :=
{ dense := h.surjective.dense_range,
.. h.embedding }
@[simp] lemma is_open_preimage (h : α ≃ₜ β) {s : set β} : is_open (h ⁻¹' s) ↔ is_open s :=
h.quotient_map.is_open_preimage
@[simp] lemma is_open_image (h : α ≃ₜ β) {s : set α} : is_open (h '' s) ↔ is_open s :=
by rw [← preimage_symm, is_open_preimage]
protected lemma is_open_map (h : α ≃ₜ β) : is_open_map h := λ s, h.is_open_image.2
@[simp] lemma is_closed_preimage (h : α ≃ₜ β) {s : set β} : is_closed (h ⁻¹' s) ↔ is_closed s :=
by simp only [← is_open_compl_iff, ← preimage_compl, is_open_preimage]
@[simp] lemma is_closed_image (h : α ≃ₜ β) {s : set α} : is_closed (h '' s) ↔ is_closed s :=
by rw [← preimage_symm, is_closed_preimage]
protected lemma is_closed_map (h : α ≃ₜ β) : is_closed_map h := λ s, h.is_closed_image.2
protected lemma open_embedding (h : α ≃ₜ β) : open_embedding h :=
open_embedding_of_embedding_open h.embedding h.is_open_map
protected lemma closed_embedding (h : α ≃ₜ β) : closed_embedding h :=
closed_embedding_of_embedding_closed h.embedding h.is_closed_map
protected lemma normal_space [normal_space α] (h : α ≃ₜ β) : normal_space β :=
h.symm.closed_embedding.normal_space
lemma preimage_closure (h : α ≃ₜ β) (s : set β) : h ⁻¹' (closure s) = closure (h ⁻¹' s) :=
h.is_open_map.preimage_closure_eq_closure_preimage h.continuous _
lemma image_closure (h : α ≃ₜ β) (s : set α) : h '' (closure s) = closure (h '' s) :=
by rw [← preimage_symm, preimage_closure]
lemma preimage_interior (h : α ≃ₜ β) (s : set β) : h⁻¹' (interior s) = interior (h ⁻¹' s) :=
h.is_open_map.preimage_interior_eq_interior_preimage h.continuous _
lemma image_interior (h : α ≃ₜ β) (s : set α) : h '' (interior s) = interior (h '' s) :=
by rw [← preimage_symm, preimage_interior]
lemma preimage_frontier (h : α ≃ₜ β) (s : set β) : h ⁻¹' (frontier s) = frontier (h ⁻¹' s) :=
h.is_open_map.preimage_frontier_eq_frontier_preimage h.continuous _
@[to_additive]
lemma _root_.has_compact_mul_support.comp_homeomorph {M} [has_one M] {f : β → M}
(hf : has_compact_mul_support f) (φ : α ≃ₜ β) : has_compact_mul_support (f ∘ φ) :=
hf.comp_closed_embedding φ.closed_embedding
@[simp] lemma map_nhds_eq (h : α ≃ₜ β) (x : α) : map h (𝓝 x) = 𝓝 (h x) :=
h.embedding.map_nhds_of_mem _ (by simp)
lemma symm_map_nhds_eq (h : α ≃ₜ β) (x : α) : map h.symm (𝓝 (h x)) = 𝓝 x :=
by rw [h.symm.map_nhds_eq, h.symm_apply_apply]
lemma nhds_eq_comap (h : α ≃ₜ β) (x : α) : 𝓝 x = comap h (𝓝 (h x)) :=
h.embedding.to_inducing.nhds_eq_comap x
@[simp] lemma comap_nhds_eq (h : α ≃ₜ β) (y : β) : comap h (𝓝 y) = 𝓝 (h.symm y) :=
by rw [h.nhds_eq_comap, h.apply_symm_apply]
/-- If an bijective map `e : α ≃ β` is continuous and open, then it is a homeomorphism. -/
def homeomorph_of_continuous_open (e : α ≃ β) (h₁ : continuous e) (h₂ : is_open_map e) :
α ≃ₜ β :=
{ continuous_to_fun := h₁,
continuous_inv_fun := begin
rw continuous_def,
intros s hs,
convert ← h₂ s hs using 1,
apply e.image_eq_preimage
end,
to_equiv := e }
@[simp] lemma comp_continuous_on_iff (h : α ≃ₜ β) (f : γ → α) (s : set γ) :
continuous_on (h ∘ f) s ↔ continuous_on f s :=
h.inducing.continuous_on_iff.symm
@[simp] lemma comp_continuous_iff (h : α ≃ₜ β) {f : γ → α} :
continuous (h ∘ f) ↔ continuous f :=
h.inducing.continuous_iff.symm
@[simp] lemma comp_continuous_iff' (h : α ≃ₜ β) {f : β → γ} :
continuous (f ∘ h) ↔ continuous f :=
h.quotient_map.continuous_iff.symm
lemma comp_continuous_at_iff (h : α ≃ₜ β) (f : γ → α) (x : γ) :
continuous_at (h ∘ f) x ↔ continuous_at f x :=
h.inducing.continuous_at_iff.symm
lemma comp_continuous_at_iff' (h : α ≃ₜ β) (f : β → γ) (x : α) :
continuous_at (f ∘ h) x ↔ continuous_at f (h x) :=
h.inducing.continuous_at_iff' (by simp)
lemma comp_continuous_within_at_iff (h : α ≃ₜ β) (f : γ → α) (s : set γ) (x : γ) :
continuous_within_at f s x ↔ continuous_within_at (h ∘ f) s x :=
h.inducing.continuous_within_at_iff
@[simp] lemma comp_is_open_map_iff (h : α ≃ₜ β) {f : γ → α} :
is_open_map (h ∘ f) ↔ is_open_map f :=
begin
refine ⟨_, λ hf, h.is_open_map.comp hf⟩,
intros hf,
rw [← function.comp.left_id f, ← h.symm_comp_self, function.comp.assoc],
exact h.symm.is_open_map.comp hf,
end
@[simp] lemma comp_is_open_map_iff' (h : α ≃ₜ β) {f : β → γ} :
is_open_map (f ∘ h) ↔ is_open_map f :=
begin
refine ⟨_, λ hf, hf.comp h.is_open_map⟩,
intros hf,
rw [← function.comp.right_id f, ← h.self_comp_symm, ← function.comp.assoc],
exact hf.comp h.symm.is_open_map,
end
/-- If two sets are equal, then they are homeomorphic. -/
def set_congr {s t : set α} (h : s = t) : s ≃ₜ t :=
{ continuous_to_fun := continuous_subtype_mk _ continuous_subtype_val,
continuous_inv_fun := continuous_subtype_mk _ continuous_subtype_val,
to_equiv := equiv.set_congr h }
/-- Sum of two homeomorphisms. -/
def sum_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) : α ⊕ γ ≃ₜ β ⊕ δ :=
{ continuous_to_fun := h₁.continuous.sum_map h₂.continuous,
continuous_inv_fun := h₁.symm.continuous.sum_map h₂.symm.continuous,
to_equiv := h₁.to_equiv.sum_congr h₂.to_equiv }
/-- Product of two homeomorphisms. -/
def prod_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) : α × γ ≃ₜ β × δ :=
{ continuous_to_fun := (h₁.continuous.comp continuous_fst).prod_mk
(h₂.continuous.comp continuous_snd),
continuous_inv_fun := (h₁.symm.continuous.comp continuous_fst).prod_mk
(h₂.symm.continuous.comp continuous_snd),
to_equiv := h₁.to_equiv.prod_congr h₂.to_equiv }
@[simp] lemma prod_congr_symm (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) :
(h₁.prod_congr h₂).symm = h₁.symm.prod_congr h₂.symm := rfl
@[simp] lemma coe_prod_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) :
⇑(h₁.prod_congr h₂) = prod.map h₁ h₂ := rfl
section
variables (α β γ)
/-- `α × β` is homeomorphic to `β × α`. -/
def prod_comm : α × β ≃ₜ β × α :=
{ continuous_to_fun := continuous_snd.prod_mk continuous_fst,
continuous_inv_fun := continuous_snd.prod_mk continuous_fst,
to_equiv := equiv.prod_comm α β }
@[simp] lemma prod_comm_symm : (prod_comm α β).symm = prod_comm β α := rfl
@[simp] lemma coe_prod_comm : ⇑(prod_comm α β) = prod.swap := rfl
/-- `(α × β) × γ` is homeomorphic to `α × (β × γ)`. -/
def prod_assoc : (α × β) × γ ≃ₜ α × (β × γ) :=
{ continuous_to_fun := (continuous_fst.comp continuous_fst).prod_mk
((continuous_snd.comp continuous_fst).prod_mk continuous_snd),
continuous_inv_fun := (continuous_fst.prod_mk (continuous_fst.comp continuous_snd)).prod_mk
(continuous_snd.comp continuous_snd),
to_equiv := equiv.prod_assoc α β γ }
/-- `α × {*}` is homeomorphic to `α`. -/
@[simps apply {fully_applied := ff}]
def prod_punit : α × punit ≃ₜ α :=
{ to_equiv := equiv.prod_punit α,
continuous_to_fun := continuous_fst,
continuous_inv_fun := continuous_id.prod_mk continuous_const }
/-- `{*} × α` is homeomorphic to `α`. -/
def punit_prod : punit × α ≃ₜ α :=
(prod_comm _ _).trans (prod_punit _)
@[simp] lemma coe_punit_prod : ⇑(punit_prod α) = prod.snd := rfl
end
/-- `ulift α` is homeomorphic to `α`. -/
def {u v} ulift {α : Type u} [topological_space α] : ulift.{v u} α ≃ₜ α :=
{ continuous_to_fun := continuous_ulift_down,
continuous_inv_fun := continuous_ulift_up,
to_equiv := equiv.ulift }
section distrib
/-- `(α ⊕ β) × γ` is homeomorphic to `α × γ ⊕ β × γ`. -/
def sum_prod_distrib : (α ⊕ β) × γ ≃ₜ α × γ ⊕ β × γ :=
homeomorph.symm $ homeomorph_of_continuous_open (equiv.sum_prod_distrib α β γ).symm
((continuous_inl.prod_map continuous_id).sum_elim (continuous_inr.prod_map continuous_id)) $
is_open_map_sum (open_embedding_inl.is_open_map.prod is_open_map.id)
(open_embedding_inr.is_open_map.prod is_open_map.id)
/-- `α × (β ⊕ γ)` is homeomorphic to `α × β ⊕ α × γ`. -/
def prod_sum_distrib : α × (β ⊕ γ) ≃ₜ α × β ⊕ α × γ :=
(prod_comm _ _).trans $
sum_prod_distrib.trans $
sum_congr (prod_comm _ _) (prod_comm _ _)
variables {ι : Type*} {σ : ι → Type*} [Π i, topological_space (σ i)]
/-- `(Σ i, σ i) × β` is homeomorphic to `Σ i, (σ i × β)`. -/
def sigma_prod_distrib : ((Σ i, σ i) × β) ≃ₜ (Σ i, (σ i × β)) :=
homeomorph.symm $
homeomorph_of_continuous_open (equiv.sigma_prod_distrib σ β).symm
(continuous_sigma $ λ i,
(continuous_sigma_mk.comp continuous_fst).prod_mk continuous_snd)
(is_open_map_sigma $ λ i,
(open_embedding_sigma_mk.prod open_embedding_id).is_open_map)
end distrib
/-- If `ι` has a unique element, then `ι → α` is homeomorphic to `α`. -/
@[simps { fully_applied := ff }]
def fun_unique (ι α : Type*) [unique ι] [topological_space α] : (ι → α) ≃ₜ α :=
{ to_equiv := equiv.fun_unique ι α,
continuous_to_fun := continuous_apply _,
continuous_inv_fun := continuous_pi (λ _, continuous_id) }
/-- Homeomorphism between dependent functions `Π i : fin 2, α i` and `α 0 × α 1`. -/
@[simps { fully_applied := ff }]
def {u} pi_fin_two (α : fin 2Type u) [Π i, topological_space (α i)] : (Π i, α i) ≃ₜ α 0 × α 1 :=
{ to_equiv := pi_fin_two_equiv α,
continuous_to_fun := (continuous_apply 0).prod_mk (continuous_apply 1),
continuous_inv_fun := continuous_pi $ fin.forall_fin_two.2 ⟨continuous_fst, continuous_snd⟩ }
/-- Homeomorphism between `α² = fin 2 → α` and `α × α`. -/
@[simps { fully_applied := ff }] def fin_two_arrow : (fin 2 → α) ≃ₜ α × α :=
{ to_equiv := fin_two_arrow_equiv α, .. pi_fin_two (λ _, α) }
/--
A subset of a topological space is homeomorphic to its image under a homeomorphism.
-/
@[simps] def image (e : α ≃ₜ β) (s : set α) : s ≃ₜ e '' s :=
{ continuous_to_fun := by continuity!,
continuous_inv_fun := by continuity!,
to_equiv := e.to_equiv.image s, }
/-- `set.univ α` is homeomorphic to `α`. -/
@[simps { fully_applied := ff }]
def set.univ (α : Type*) [topological_space α] : (univ : set α) ≃ₜ α :=
{ to_equiv := equiv.set.univ α,
continuous_to_fun := continuous_subtype_coe,
continuous_inv_fun := continuous_subtype_mk _ continuous_id }
end homeomorph
/-- An inducing equiv between topological spaces is a homeomorphism. -/
@[simps] def equiv.to_homeomorph_of_inducing [topological_space α] [topological_space β] (f : α ≃ β)
(hf : inducing f) :
α ≃ₜ β :=
{ continuous_to_fun := hf.continuous,
continuous_inv_fun := hf.continuous_iff.2 $ by simpa using continuous_id,
.. f }
namespace continuous
variables [topological_space α] [topological_space β]
lemma continuous_symm_of_equiv_compact_to_t2 [compact_space α] [t2_space β]
{f : α ≃ β} (hf : continuous f) : continuous f.symm :=
begin
rw continuous_iff_is_closed,
intros C hC,
have hC' : is_closed (f '' C) := (hC.is_compact.image hf).is_closed,
rwa equiv.image_eq_preimage at hC',
end
/-- Continuous equivalences from a compact space to a T2 space are homeomorphisms.
This is not true when T2 is weakened to T1
(see `continuous.homeo_of_equiv_compact_to_t2.t1_counterexample`). -/
@[simps]
def homeo_of_equiv_compact_to_t2 [compact_space α] [t2_space β]
{f : α ≃ β} (hf : continuous f) : α ≃ₜ β :=
{ continuous_to_fun := hf,
continuous_inv_fun := hf.continuous_symm_of_equiv_compact_to_t2,
..f }
end continuous