code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict =DownBlockaD # noqa F405 __UpperCAmelCase : List[str] ='''down''' def snake_case ( self ): __lowerCAmelCase = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int =ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : int ='''down''' def snake_case ( self ): __lowerCAmelCase = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] =AttnDownBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] ='''down''' def snake_case ( self ): __lowerCAmelCase = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str =CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : List[str] ='''down''' def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() __lowerCAmelCase = 32 return init_dict, inputs_dict def snake_case ( self ): __lowerCAmelCase = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] =SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : str ='''down''' @property def snake_case ( self ): return super().get_dummy_input(include_encoder_hidden_states=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() __lowerCAmelCase = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def snake_case ( self ): __lowerCAmelCase = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] =SkipDownBlockaD # noqa F405 __UpperCAmelCase : int ='''down''' @property def snake_case ( self ): return super().get_dummy_input(include_skip_sample=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : str ='''down''' @property def snake_case ( self ): return super().get_dummy_input(include_skip_sample=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] ='''down''' @property def snake_case ( self ): return super().get_dummy_input(include_temb=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = { "in_channels": 32, "out_channels": 32, } __lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def snake_case ( self ): __lowerCAmelCase = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Dict ='''down''' @property def snake_case ( self ): return super().get_dummy_input(include_temb=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = { "in_channels": 32, "out_channels": 32, } __lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def snake_case ( self ): __lowerCAmelCase = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =UNetMidBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] ='''mid''' def snake_case ( self ): __lowerCAmelCase = { "in_channels": 32, "temb_channels": 1_28, } __lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def snake_case ( self ): __lowerCAmelCase = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : List[Any] ='''mid''' def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() __lowerCAmelCase = 32 return init_dict, inputs_dict def snake_case ( self ): __lowerCAmelCase = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int =UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[str] ='''mid''' @property def snake_case ( self ): return super().get_dummy_input(include_encoder_hidden_states=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() __lowerCAmelCase = 32 return init_dict, inputs_dict def snake_case ( self ): __lowerCAmelCase = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] =UpBlockaD # noqa F405 __UpperCAmelCase : int ='''up''' @property def snake_case ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any =ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] ='''up''' @property def snake_case ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] =CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Tuple ='''up''' @property def snake_case ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() __lowerCAmelCase = 32 return init_dict, inputs_dict def snake_case ( self ): __lowerCAmelCase = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Tuple =SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Dict ='''up''' @property def snake_case ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase__ , include_encoder_hidden_states=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() __lowerCAmelCase = 32 return init_dict, inputs_dict def snake_case ( self ): __lowerCAmelCase = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int =AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[str] ='''up''' @property def snake_case ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase__ ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def snake_case ( self ): __lowerCAmelCase = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Tuple =SkipUpBlockaD # noqa F405 __UpperCAmelCase : str ='''up''' @property def snake_case ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] ='''up''' @property def snake_case ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str =UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] ='''up''' @property def snake_case ( self ): return super().get_dummy_input(include_temb=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = {"in_channels": 32, "out_channels": 32} __lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def snake_case ( self ): __lowerCAmelCase = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(UpperCAmelCase__ ) class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict =AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Tuple ='''up''' @property def snake_case ( self ): return super().get_dummy_input(include_temb=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = {"in_channels": 32, "out_channels": 32} __lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def snake_case ( self ): __lowerCAmelCase = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(UpperCAmelCase__ )
57
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def _a ( UpperCamelCase_ : Accelerator , UpperCamelCase_ : int = 16 ) -> Dict: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(UpperCamelCase_ : Any ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCamelCase_ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( UpperCamelCase_ , padding="longest" , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) lowerCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ) -> str: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , UpperCamelCase_ ) == "1": lowerCAmelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config["lr"] lowerCAmelCase__ = int(config["num_epochs"] ) lowerCAmelCase__ = int(config["seed"] ) lowerCAmelCase__ = int(config["batch_size"] ) set_seed(UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCAmelCase__ = os.path.split(UpperCamelCase_ )[-1].split("." )[0] accelerator.init_trackers(UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCAmelCase__ = 0 for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , UpperCamelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(UpperCamelCase_ ), "epoch": epoch, } , step=UpperCamelCase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=UpperCamelCase_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
340
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ): # Format the message. if name is None: lowerCAmelCase = None else: lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase = fmt.format(lowerCamelCase ) # Print and recurse (if needed). if isinstance(lowerCamelCase , lowerCamelCase ): if msg is not None: print(lowerCamelCase ) for k in val.keys(): recursive_print(lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase , torch.Tensor ): print(lowerCamelCase , ':' , val.size() ) else: print(lowerCamelCase , ':' , lowerCamelCase ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 2 ) lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 1 ).contiguous() lowerCAmelCase = param.view(*lowerCamelCase ) return param def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ): # The converted output model. lowerCAmelCase = {} # old versions did not store training args lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase = ds_args.padded_vocab_size lowerCAmelCase = ds_args.max_position_embeddings lowerCAmelCase = ds_args.hidden_size lowerCAmelCase = ds_args.num_layers lowerCAmelCase = ds_args.num_attention_heads lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase = config.n_head # The hidden_size per head. lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase = input_state_dict['checkpoint_version'] else: lowerCAmelCase = 0.0 # The model. lowerCAmelCase = input_state_dict['model'] # The language model. lowerCAmelCase = model['language_model'] # The embeddings. lowerCAmelCase = lm['embedding'] # The word embeddings. lowerCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase = word_embeddings[: config.vocab_size, :] lowerCAmelCase = word_embeddings # The position embeddings. lowerCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase = pos_embeddings # The transformer. lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase = layer_re.match(lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase = m.group(3 ) # The name of the layer. lowerCAmelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase = masked_bias lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Store. No change of shape. lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase = transformer['final_layernorm.weight'] lowerCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def a_ ( ): # Create the argument parser. lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase = parser.parse_args() # Extract the basename. lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) else: lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase = 'gelu_new' else: lowerCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase , lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase = 'gpt2' lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase ) lowerCAmelCase = type(lowerCamelCase ).__name__ lowerCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase ) # Store the state_dict to file. lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase , lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
4
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): '''simple docstring''' a__ = LEDTokenizer a__ = LEDTokenizerFast a__ = True def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" super().setUp() __magic_name__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __magic_name__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __magic_name__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __magic_name__ = {"""unk_token""": """<unk>"""} __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase__ ) ) def _lowercase ( self : Dict , **UpperCamelCase__ : Optional[Any] ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , **UpperCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def _lowercase ( self : Any , UpperCamelCase__ : Any ) -> int: """simple docstring""" return "lower newer", "lower newer" @cached_property def _lowercase ( self : int ) -> List[Any]: """simple docstring""" return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def _lowercase ( self : List[Any] ) -> Tuple: """simple docstring""" return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def _lowercase ( self : Any ) -> Any: """simple docstring""" __magic_name__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __magic_name__ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = tokenizer(UpperCAmelCase__ , max_length=len(UpperCAmelCase__ ) , padding=UpperCAmelCase__ , return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __magic_name__ = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @require_torch def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="""pt""" ) self.assertIn("""input_ids""" , UpperCAmelCase__ ) self.assertIn("""attention_mask""" , UpperCAmelCase__ ) self.assertNotIn("""labels""" , UpperCAmelCase__ ) self.assertNotIn("""decoder_attention_mask""" , UpperCAmelCase__ ) @require_torch def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __magic_name__ = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = tokenizer(text_target=UpperCAmelCase__ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def _lowercase ( self : Any ) -> Any: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def _lowercase ( self : str ) -> List[Any]: """simple docstring""" __magic_name__ = ["""A long paragraph for summarization."""] __magic_name__ = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = tokenizer(UpperCAmelCase__ , return_tensors="""pt""" ) __magic_name__ = tokenizer(text_target=UpperCAmelCase__ , return_tensors="""pt""" ) __magic_name__ = inputs["""input_ids"""] __magic_name__ = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _lowercase ( self : Dict ) -> Optional[int]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __magic_name__ = ["""Summary of the text.""", """Another summary."""] __magic_name__ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __magic_name__ = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ ) __magic_name__ = [[0] * len(UpperCAmelCase__ ) for x in encoded_output["""input_ids"""]] __magic_name__ = tokenizer.pad(UpperCAmelCase__ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , UpperCAmelCase__ ) def _lowercase ( self : str ) -> Optional[int]: """simple docstring""" pass def _lowercase ( self : str ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __magic_name__ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __magic_name__ = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __magic_name__ = """A, <mask> AllenNLP sentence.""" __magic_name__ = tokenizer_r.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) __magic_name__ = tokenizer_p.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __magic_name__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __magic_name__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
88
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=13, __magic_name__=30, __magic_name__=2, __magic_name__=3, __magic_name__=True, __magic_name__=True, __magic_name__=32, __magic_name__=5, __magic_name__=4, __magic_name__=37, __magic_name__="gelu", __magic_name__=0.1, __magic_name__=0.1, __magic_name__=10, __magic_name__=0.02, __magic_name__=None, __magic_name__=2, ) -> Tuple: """simple docstring""" UpperCamelCase__ : List[Any] = parent UpperCamelCase__ : Tuple = batch_size UpperCamelCase__ : Any = image_size UpperCamelCase__ : List[str] = patch_size UpperCamelCase__ : int = num_channels UpperCamelCase__ : str = is_training UpperCamelCase__ : Optional[int] = use_labels UpperCamelCase__ : int = hidden_size UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : Dict = intermediate_size UpperCamelCase__ : Optional[int] = hidden_act UpperCamelCase__ : List[str] = hidden_dropout_prob UpperCamelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : List[str] = scope UpperCamelCase__ : Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ : Optional[int] = (image_size // patch_size) ** 2 UpperCamelCase__ : Any = num_patches + 1 def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : Optional[int] = None if self.use_labels: UpperCamelCase__ : Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase__ : Dict = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" return ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : int = ViTModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ : Tuple = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[str] = ViTForMaskedImageModeling(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ : Any = model(UpperCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase__ : List[str] = 1 UpperCamelCase__ : int = ViTForMaskedImageModeling(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Dict = model(UpperCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Tuple: """simple docstring""" UpperCamelCase__ : Any = self.type_sequence_label_size UpperCamelCase__ : Union[str, Any] = ViTForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase__, labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : Optional[Any] = ViTForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Tuple = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) , ) : List[str] = config_and_inputs UpperCamelCase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' a : Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a : Union[str, Any] = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) a : int = True a : str = False a : List[str] = False a : Optional[int] = False def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[Any] = ViTModelTester(self ) UpperCamelCase__ : Tuple = ConfigTester(self, config_class=UpperCAmelCase__, has_text_modality=UpperCAmelCase__, hidden_size=37 ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" pass def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Any = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCamelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__, nn.Linear ) ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Any = model_class(UpperCAmelCase__ ) UpperCamelCase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Optional[Any] = [*signature.parameters.keys()] UpperCamelCase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1], UpperCAmelCase__ ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__ ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = ViTModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def lowerCAmelCase_ ( ) -> List[Any]: UpperCamelCase__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : int = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(UpperCAmelCase__ ) UpperCamelCase__ : str = self.default_image_processor UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase__, return_tensors='''pt''' ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase__ : Union[str, Any] = model(**UpperCAmelCase__ ) # verify the logits UpperCamelCase__ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, UpperCAmelCase__ ) UpperCamelCase__ : List[str] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], UpperCAmelCase__, atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. UpperCamelCase__ : Dict = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(UpperCAmelCase__ ) UpperCamelCase__ : Optional[Any] = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''', size=480 ) UpperCamelCase__ : Tuple = prepare_img() UpperCamelCase__ : Union[str, Any] = image_processor(images=UpperCAmelCase__, return_tensors='''pt''' ) UpperCamelCase__ : int = inputs.pixel_values.to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(UpperCAmelCase__, interpolate_pos_encoding=UpperCAmelCase__ ) # verify the logits UpperCamelCase__ : Dict = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape, UpperCAmelCase__ ) UpperCamelCase__ : str = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Any = ViTModel.from_pretrained('''facebook/dino-vits8''', torch_dtype=torch.floataa, device_map='''auto''' ) UpperCamelCase__ : Optional[Any] = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase__, return_tensors='''pt''' ) UpperCamelCase__ : Optional[int] = inputs.pixel_values.to(UpperCAmelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCamelCase__ : Any = model(UpperCAmelCase__ )
201
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None: lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = [0] * len_array if len_array > 0: lowerCAmelCase = array[0] for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool: lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowercase__: Optional[Any] = Vector() def _snake_case ( self ): lowercase__: Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase__ ) , '''(0,0,0,0,0,1)''' ) def _snake_case ( self ): lowercase__: Dict = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase__ ) , 4 ) def _snake_case ( self ): lowercase__: Any = Vector([1, 2] ) lowercase__: List[str] = Vector([1, 2, 3, 4, 5] ) lowercase__: Any = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowercase__: str = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def _snake_case ( self ): lowercase__: str = Vector([1, 2, 3] ) lowercase__: Tuple = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _snake_case ( self ): lowercase__: Union[str, Any] = Vector([1, 2, 3] ) lowercase__: Tuple = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _snake_case ( self ): lowercase__: Any = Vector([1, 2, 3] ) lowercase__: str = Vector([2, -1, 4] ) # for test of dot product lowercase__: List[str] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def _snake_case ( self ): self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def _snake_case ( self ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def _snake_case ( self ): lowercase__: str = Vector([1, 2, 3] ) lowercase__: str = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase__ , UpperCAmelCase__ ) ) , '''(3,4,7)''' ) def _snake_case ( self ): lowercase__: Any = Vector([1, 0, 0, 0, 0, 0] ) lowercase__: Optional[int] = x.copy() self.assertEqual(str(UpperCAmelCase__ ) , str(UpperCAmelCase__ ) ) def _snake_case ( self ): lowercase__: List[str] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase__ ) , '''(0,1,0)''' ) def _snake_case ( self ): lowercase__: Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(UpperCAmelCase__ ) ) def _snake_case ( self ): lowercase__: Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__: str = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase__ , UpperCAmelCase__ ) ) def _snake_case ( self ): lowercase__: Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__: Optional[Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase__ , UpperCAmelCase__ ) ) def _snake_case ( self ): lowercase__: Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _snake_case ( self ): lowercase__: Union[str, Any] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowercase__: List[Any] = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def _snake_case ( self ): lowercase__: Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(UpperCAmelCase__ ) ) def _snake_case ( self ): lowercase__: Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _snake_case ( self ): lowercase__: Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__: Union[str, Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def _snake_case ( self ): lowercase__: Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__: Any = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def _snake_case ( self ): self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
177
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" from __future__ import annotations from typing import Any def a__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: if not postfix_notation: return 0 __lowerCAmelCase: Optional[int] = {"+", "-", "*", "/"} __lowerCAmelCase: Tuple = [] for token in postfix_notation: if token in operations: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__SCREAMING_SNAKE_CASE ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
217
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('block' ) + len('block' )] lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' ) if "bot_conv" in key: lowerCAmelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase = value return new_state_dict def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def a_ ( ): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ): lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass lowerCAmelCase = model(lowerCamelCase ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _UpperCAmelCase ( __lowercase ): @staticmethod @abstractmethod def a ( _lowercase : ArgumentParser ): raise NotImplementedError() @abstractmethod def a ( self : List[Any] ): raise NotImplementedError()
332
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = k_size // 2 _UpperCAmelCase , _UpperCAmelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _UpperCAmelCase = 1 / (2 * pi * sigma) * exp(-(square(_SCREAMING_SNAKE_CASE ) + square(_SCREAMING_SNAKE_CASE )) / (2 * square(_SCREAMING_SNAKE_CASE )) ) return g def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = image.shape[0], image.shape[1] # dst image height and width _UpperCAmelCase = height - k_size + 1 _UpperCAmelCase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _UpperCAmelCase = zeros((dst_height * dst_width, k_size * k_size) ) _UpperCAmelCase = 0 for i, j in product(range(_SCREAMING_SNAKE_CASE ) , range(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = ravel(image[i : i + k_size, j : j + k_size] ) _UpperCAmelCase = window row += 1 # turn the kernel into shape(k*k, 1) _UpperCAmelCase = gen_gaussian_kernel(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ravel(_SCREAMING_SNAKE_CASE ) # reshape and get the dst image _UpperCAmelCase = dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).astype(_SCREAMING_SNAKE_CASE ) return dst if __name__ == "__main__": # read original image __A : Optional[int] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __A : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __A : Dict = gaussian_filter(gray, 3, sigma=1) __A : Tuple = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
260
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = {} lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] ) return output __snake_case =HfArgumentParser(PretokenizationArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') __snake_case =time.time() __snake_case =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') __snake_case =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a ={ """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
73
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
0
from typing import List import numpy as np def __lowerCamelCase ( lowerCamelCase__ : dict ): '''simple docstring''' lowerCamelCase = {key: len(lowerCamelCase__ ) for key, value in gen_kwargs.items() if isinstance(lowerCamelCase__ , lowerCamelCase__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n""" + """\n""".join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + """\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = [] for group_idx in range(lowerCamelCase__ ): lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowerCamelCase = range(lowerCamelCase__ , start + num_shards_to_add ) shards_indices_per_group.append(lowerCamelCase__ ) return shards_indices_per_group def __lowerCamelCase ( lowerCamelCase__ : dict , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = _number_of_shards_in_gen_kwargs(lowerCamelCase__ ) if num_shards == 1: return [dict(lowerCamelCase__ )] else: lowerCamelCase = _distribute_shards(num_shards=lowerCamelCase__ , max_num_jobs=lowerCamelCase__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowerCamelCase__ ) ) ] def __lowerCamelCase ( lowerCamelCase__ : List[dict] ): '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowerCamelCase__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowerCamelCase ( lowerCamelCase__ : np.random.Generator , lowerCamelCase__ : dict ): '''simple docstring''' lowerCamelCase = {len(lowerCamelCase__ ) for value in gen_kwargs.values() if isinstance(lowerCamelCase__ , lowerCamelCase__ )} lowerCamelCase = {} for size in list_sizes: lowerCamelCase = list(range(lowerCamelCase__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowerCamelCase = dict(lowerCamelCase__ ) for key, value in shuffled_kwargs.items(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase = [value[i] for i in indices_per_size[len(lowerCamelCase__ )]] return shuffled_kwargs
252
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
"""simple docstring""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class lowerCamelCase__ ( __lowercase ): a__ : torch.FloatTensor a__ : Optional[torch.FloatTensor] = None def UpperCamelCase__ ( lowercase__ : Any , lowercase__ : List[Any]=0.9_99 , lowercase__ : Union[str, Any]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ : Optional[int] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case : int = [] for i in range(lowercase__ ): snake_case : str = i / num_diffusion_timesteps snake_case : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class lowerCamelCase__ ( __lowercase , __lowercase ): a__ : Union[str, Any] = 1 @register_to_config def __init__( self , SCREAMING_SNAKE_CASE = 1_000 , SCREAMING_SNAKE_CASE = 0.00_01 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = "linear" , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = "epsilon" , SCREAMING_SNAKE_CASE = 1.0 , **SCREAMING_SNAKE_CASE , ): """simple docstring""" if kwargs.get("set_alpha_to_one" , UpperCAmelCase__ ) is not None: snake_case : List[str] = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , UpperCAmelCase__ , standard_warn=UpperCAmelCase__ ) snake_case : Dict = kwargs["set_alpha_to_one"] if trained_betas is not None: snake_case : str = torch.tensor(UpperCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case : Optional[int] = torch.linspace(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case : Dict = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case : Any = betas_for_alpha_bar(UpperCAmelCase__ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case : Union[str, Any] = 1.0 - self.betas snake_case : List[Any] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. snake_case : Dict = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution snake_case : Optional[int] = 1.0 # setable values snake_case : Optional[Any] = None snake_case : Optional[Any] = torch.from_numpy(np.arange(0 , UpperCAmelCase__ ).copy().astype(np.intaa ) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): """simple docstring""" return sample def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) snake_case : str = num_inference_steps snake_case : Any = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case : Dict = (np.arange(0 , UpperCAmelCase__ ) * step_ratio).round().copy().astype(np.intaa ) snake_case : List[str] = torch.from_numpy(UpperCAmelCase__ ).to(UpperCAmelCase__ ) self.timesteps += self.config.steps_offset def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , ): """simple docstring""" snake_case : int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process snake_case : Dict = self.alphas_cumprod[timestep] snake_case : Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) snake_case : Tuple = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": snake_case : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 snake_case : Tuple = model_output elif self.config.prediction_type == "sample": snake_case : str = model_output snake_case : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": snake_case : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output snake_case : Any = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: snake_case : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case : int = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case : Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=UpperCAmelCase__ , pred_original_sample=UpperCAmelCase__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
148
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __lowerCAmelCase = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __lowerCAmelCase = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] __lowerCAmelCase = {"unk_token": "<unk>"} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase__ ) ) __lowerCAmelCase = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , UpperCAmelCase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case ( self , **__a ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **UpperCAmelCase__ ) def snake_case ( self , **__a ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **UpperCAmelCase__ ) def snake_case ( self , **__a ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = OwlViTProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase__ ) __lowerCAmelCase = OwlViTProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowerCAmelCase = self.get_image_processor(do_normalize=UpperCAmelCase__ ) __lowerCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(UpperCAmelCase__ , return_tensors="np" ) __lowerCAmelCase = processor(images=UpperCAmelCase__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = processor(text=UpperCAmelCase__ , return_tensors="np" ) __lowerCAmelCase = tokenizer(UpperCAmelCase__ , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def snake_case ( self ): __lowerCAmelCase = "google/owlvit-base-patch32" __lowerCAmelCase = OwlViTProcessor.from_pretrained(UpperCAmelCase__ ) __lowerCAmelCase = ["cat", "nasa badge"] __lowerCAmelCase = processor(text=UpperCAmelCase__ ) __lowerCAmelCase = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def snake_case ( self ): __lowerCAmelCase = "google/owlvit-base-patch32" __lowerCAmelCase = OwlViTProcessor.from_pretrained(UpperCAmelCase__ ) __lowerCAmelCase = [["cat", "nasa badge"], ["person"]] __lowerCAmelCase = processor(text=UpperCAmelCase__ ) __lowerCAmelCase = 16 __lowerCAmelCase = len(UpperCAmelCase__ ) __lowerCAmelCase = max([len(UpperCAmelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def snake_case ( self ): __lowerCAmelCase = "google/owlvit-base-patch32" __lowerCAmelCase = OwlViTProcessor.from_pretrained(UpperCAmelCase__ ) __lowerCAmelCase = ["cat", "nasa badge"] __lowerCAmelCase = processor(text=UpperCAmelCase__ ) __lowerCAmelCase = 16 __lowerCAmelCase = inputs["input_ids"] __lowerCAmelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(images=UpperCAmelCase__ , query_images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = OwlViTProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(UpperCAmelCase__ ) __lowerCAmelCase = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
57
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
0
def _a ( UpperCamelCase_ : Dict ) -> Any: """simple docstring""" lowerCAmelCase__ = len(UpperCamelCase_ ) while cur > 1: # Find the maximum number in arr lowerCAmelCase__ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase__ = arr[mi::-1] + arr[mi + 1 : len(UpperCamelCase_ )] # Reverse whole list lowerCAmelCase__ = arr[cur - 1 :: -1] + arr[cur : len(UpperCamelCase_ )] cur -= 1 return arr if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
340
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __lowerCAmelCase : Tuple = logging.getLogger(__name__) class UpperCAmelCase_ ( __lowercase ): '''simple docstring''' def _lowercase ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[Any]=None ) -> str: """simple docstring""" __magic_name__ = self.layer[current_layer](UpperCAmelCase__ , UpperCAmelCase__ , head_mask[current_layer] ) __magic_name__ = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" super().__init__(UpperCAmelCase__ ) __magic_name__ = BertEncoderWithPabee(UpperCAmelCase__ ) self.init_weights() __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = 0 def _lowercase ( self : Tuple , UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = threshold def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" __magic_name__ = patience def _lowercase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __magic_name__ = 0 __magic_name__ = 0 def _lowercase ( self : int ) -> str: """simple docstring""" __magic_name__ = self.inference_layers_num / self.inference_instances_num __magic_name__ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(UpperCAmelCase__ ) @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=False , ) -> List[Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: __magic_name__ = input_ids.size() elif inputs_embeds is not None: __magic_name__ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) __magic_name__ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __magic_name__ = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ ) if token_type_ids is None: __magic_name__ = torch.zeros(UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __magic_name__ = self.get_extended_attention_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __magic_name__ , __magic_name__ , __magic_name__ = encoder_hidden_states.size() __magic_name__ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __magic_name__ = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ ) __magic_name__ = self.invert_attention_mask(UpperCAmelCase__ ) else: __magic_name__ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __magic_name__ = self.get_head_mask(UpperCAmelCase__ , self.config.num_hidden_layers ) __magic_name__ = self.embeddings( input_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ ) __magic_name__ = embedding_output if self.training: __magic_name__ = [] for i in range(self.config.num_hidden_layers ): __magic_name__ = self.encoder.adaptive_forward( UpperCAmelCase__ , current_layer=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) __magic_name__ = self.pooler(UpperCAmelCase__ ) __magic_name__ = output_layers[i](output_dropout(UpperCAmelCase__ ) ) res.append(UpperCAmelCase__ ) elif self.patience == 0: # Use all layers for inference __magic_name__ = self.encoder( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) __magic_name__ = self.pooler(encoder_outputs[0] ) __magic_name__ = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase__ )] else: __magic_name__ = 0 __magic_name__ = None __magic_name__ = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __magic_name__ = self.encoder.adaptive_forward( UpperCAmelCase__ , current_layer=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ ) __magic_name__ = self.pooler(UpperCAmelCase__ ) __magic_name__ = output_layers[i](UpperCAmelCase__ ) if regression: __magic_name__ = logits.detach() if patient_result is not None: __magic_name__ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __magic_name__ = 0 else: __magic_name__ = logits.detach().argmax(dim=1 ) if patient_result is not None: __magic_name__ = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase__ ) ): patient_counter += 1 else: __magic_name__ = 0 __magic_name__ = logits if patient_counter == self.patience: break __magic_name__ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" super().__init__(UpperCAmelCase__ ) __magic_name__ = config.num_labels __magic_name__ = BertModelWithPabee(UpperCAmelCase__ ) __magic_name__ = nn.Dropout(config.hidden_dropout_prob ) __magic_name__ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Any=None , ) -> Any: """simple docstring""" __magic_name__ = self.bert( input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __magic_name__ = (logits[-1],) if labels is not None: __magic_name__ = None __magic_name__ = 0 for ix, logits_item in enumerate(UpperCAmelCase__ ): if self.num_labels == 1: # We are doing regression __magic_name__ = MSELoss() __magic_name__ = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __magic_name__ = CrossEntropyLoss() __magic_name__ = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __magic_name__ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __magic_name__ = (total_loss / total_weights,) + outputs return outputs
88
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = inspect.getfile(accelerate.test_utils ) UpperCamelCase__ : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) UpperCamelCase__ : Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) UpperCamelCase__ : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" print(f"Found {torch.cuda.device_count()} devices." ) UpperCamelCase__ : Dict = ['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase__, env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" print(f"Found {torch.cuda.device_count()} devices." ) UpperCamelCase__ : Dict = ['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase__, env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = ['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCAmelCase__, env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCamelCase__ : Any = ['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1, cuda_visible_devices='''0,1''' ): execute_subprocess_async(UpperCAmelCase__, env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase_ = Accelerator() UpperCAmelCase_ = (accelerator.state.process_index + 2, 10) UpperCAmelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCAmelCase_ = '' UpperCAmelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCAmelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCAmelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
201
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class UpperCAmelCase (__lowercase ): """simple docstring""" _UpperCAmelCase :List[str] = '''dpr''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase = 0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase__: List[str] = vocab_size lowercase__: str = hidden_size lowercase__: int = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: Any = hidden_act lowercase__: Optional[int] = intermediate_size lowercase__: Union[str, Any] = hidden_dropout_prob lowercase__: List[str] = attention_probs_dropout_prob lowercase__: str = max_position_embeddings lowercase__: Union[str, Any] = type_vocab_size lowercase__: str = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: Optional[int] = projection_dim lowercase__: Union[str, Any] = position_embedding_type
177
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
217
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : str , _lowercase : Optional[int] , _lowercase : Optional[int]=13 , _lowercase : Optional[Any]=3 , _lowercase : Optional[Any]=2_24 , _lowercase : Optional[Any]=30 , _lowercase : Any=4_00 , _lowercase : int=True , _lowercase : Optional[int]=None , _lowercase : Any=True , _lowercase : Optional[Any]=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): __UpperCAmelCase = size if size is not None else {'''height''': 18, '''width''': 18} __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = image_size __UpperCAmelCase = min_resolution __UpperCAmelCase = max_resolution __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean __UpperCAmelCase = image_std def a ( self : List[Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _UpperCAmelCase ( __lowercase , unittest.TestCase ): a__ : Dict = ViTImageProcessor if is_vision_available() else None def a ( self : List[str] ): __UpperCAmelCase = EfficientFormerImageProcessorTester(self ) @property def a ( self : List[Any] ): return self.image_proc_tester.prepare_image_processor_dict() def a ( self : List[Any] ): __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''' ) ) def a ( self : int ): pass def a ( self : Union[str, Any] ): # Initialize image_processor __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input __UpperCAmelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processor(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a ( self : str ): # Initialize image_processor __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input __UpperCAmelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processor(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a ( self : List[Any] ): # Initialize image_processor __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input __UpperCAmelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase = image_processor(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
332
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
0
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = AlbertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCAmelCase = AlbertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
260
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
0
import warnings from .generation import TFGenerationMixin class A_ ( __lowercase ): # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __lowercase , )
73
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.prepare(UpperCAmelCase__ ) try: pickle.loads(pickle.dumps(UpperCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
4
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCamelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(UpperCAmelCase__ ) lowerCamelCase = -1 lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) lowerCamelCase = model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ ) lowerCamelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase = TextStreamer(UpperCAmelCase__ ) model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase = cs.out[:-1] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCamelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(UpperCAmelCase__ ) lowerCamelCase = -1 lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) lowerCamelCase = model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ ) lowerCamelCase = tokenizer.decode(greedy_ids[0] ) lowerCamelCase = TextIteratorStreamer(UpperCAmelCase__ ) lowerCamelCase = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} lowerCamelCase = Thread(target=model.generate , kwargs=UpperCAmelCase__ ) thread.start() lowerCamelCase = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCamelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(UpperCAmelCase__ ) lowerCamelCase = -1 lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) lowerCamelCase = model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ ) lowerCamelCase = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase = TextStreamer(UpperCAmelCase__ , skip_prompt=UpperCAmelCase__ ) model.generate(UpperCAmelCase__ , max_new_tokens=10 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase = cs.out[:-1] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained("""distilgpt2""" ) lowerCamelCase = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(UpperCAmelCase__ ) lowerCamelCase = -1 lowerCamelCase = torch.ones((1, 5) , device=UpperCAmelCase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase = TextStreamer(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) model.generate(UpperCAmelCase__ , max_new_tokens=1 , do_sample=UpperCAmelCase__ , streamer=UpperCAmelCase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase = cs.out[:-1] # Remove the final "\n" lowerCamelCase = tokenizer(UpperCAmelCase__ , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCamelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(UpperCAmelCase__ ) lowerCamelCase = -1 lowerCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) lowerCamelCase = TextIteratorStreamer(UpperCAmelCase__ , timeout=0.001 ) lowerCamelCase = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} lowerCamelCase = Thread(target=model.generate , kwargs=UpperCAmelCase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCAmelCase__ ): lowerCamelCase = """""" for new_text in streamer: streamer_text += new_text
252
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __snake_case ={"""facebook/blenderbot-3B""": 128} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) ) lowerCAmelCase = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value lowerCAmelCase = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__ ) lowerCAmelCase = ' '.join(UpperCAmelCase__ ) lowerCAmelCase = self.encode(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
0
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__ ( unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : int = GenerationConfig( do_sample=UpperCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase__ , config_name=UpperCAmelCase__ ) snake_case : Any = GenerationConfig.from_pretrained(UpperCAmelCase__ , config_name=UpperCAmelCase__ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase__ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase__ ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = AutoConfig.from_pretrained("gpt2" ) snake_case : List[str] = GenerationConfig.from_model_config(UpperCAmelCase__ ) snake_case : Optional[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = GenerationConfig() snake_case : List[str] = { "max_new_tokens": 1_024, "foo": "bar", } snake_case : int = copy.deepcopy(UpperCAmelCase__ ) snake_case : str = generation_config.update(**UpperCAmelCase__ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase__ , {"foo": "bar"} ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = GenerationConfig() snake_case : Union[str, Any] = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase__ ) snake_case : Optional[Any] = GenerationConfig.from_pretrained(UpperCAmelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) snake_case : Optional[Any] = GenerationConfig.from_model_config(UpperCAmelCase__ ) assert not hasattr(UpperCAmelCase__ , "foo" ) # no new kwargs should be initialized if from config def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase__ ) self.assertEqual(default_config.num_beams , 1 ) snake_case : Optional[Any] = GenerationConfig( do_sample=UpperCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase__ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase__ ) snake_case : Dict = GenerationConfig.from_pretrained(UpperCAmelCase__ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase__ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__ ( unittest.TestCase ): @classmethod def lowerCamelCase_ ( cls ): """simple docstring""" snake_case : List[Any] = TOKEN HfFolder.save_token(UpperCAmelCase__ ) @classmethod def lowerCamelCase_ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = GenerationConfig( do_sample=UpperCAmelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) snake_case : Optional[int] = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase__ , repo_id="test-generation-config" , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token ) snake_case : str = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = GenerationConfig( do_sample=UpperCAmelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) snake_case : Optional[Any] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase__ , repo_id="valid_org/test-generation-config-org" , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token ) snake_case : Dict = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) )
148
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( __lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any =DebertaTokenizer __UpperCAmelCase : Union[str, Any] =True __UpperCAmelCase : List[Any] =DebertaTokenizerFast def snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] __lowerCAmelCase = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __lowerCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __lowerCAmelCase = {"unk_token": "[UNK]"} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase__ ) ) def snake_case ( self , **__a ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def snake_case ( self , __a ): __lowerCAmelCase = "lower newer" __lowerCAmelCase = "lower newer" return input_text, output_text def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = "lower newer" __lowerCAmelCase = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] __lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer("Hello" , "World" ) __lowerCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , UpperCAmelCase__ ) @slow def snake_case ( self ): __lowerCAmelCase = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) __lowerCAmelCase = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase__ ) __lowerCAmelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase__ ) __lowerCAmelCase = tokenizer.encode( "sequence builders" , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) __lowerCAmelCase = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self ): __lowerCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase = tokenizer_class.from_pretrained("microsoft/deberta-base" ) __lowerCAmelCase = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] __lowerCAmelCase = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ ) __lowerCAmelCase = [tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) for seq in encoding["input_ids"]] # fmt: off __lowerCAmelCase = { "input_ids": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , UpperCAmelCase__ ) for expected, decoded in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
57
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
0
import os def _a ( ) -> Dict: """simple docstring""" lowerCAmelCase__ = os.path.join(os.path.dirname(UpperCamelCase_ ) , "num.txt" ) with open(UpperCamelCase_ ) as file_hand: return str(sum(int(UpperCamelCase_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
340
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ): # Format the message. if name is None: lowerCAmelCase = None else: lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase = fmt.format(lowerCamelCase ) # Print and recurse (if needed). if isinstance(lowerCamelCase , lowerCamelCase ): if msg is not None: print(lowerCamelCase ) for k in val.keys(): recursive_print(lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase , torch.Tensor ): print(lowerCamelCase , ':' , val.size() ) else: print(lowerCamelCase , ':' , lowerCamelCase ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 2 ) lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 1 ).contiguous() lowerCAmelCase = param.view(*lowerCamelCase ) return param def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ): # The converted output model. lowerCAmelCase = {} # old versions did not store training args lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase = ds_args.padded_vocab_size lowerCAmelCase = ds_args.max_position_embeddings lowerCAmelCase = ds_args.hidden_size lowerCAmelCase = ds_args.num_layers lowerCAmelCase = ds_args.num_attention_heads lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase = config.n_head # The hidden_size per head. lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase = input_state_dict['checkpoint_version'] else: lowerCAmelCase = 0.0 # The model. lowerCAmelCase = input_state_dict['model'] # The language model. lowerCAmelCase = model['language_model'] # The embeddings. lowerCAmelCase = lm['embedding'] # The word embeddings. lowerCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase = word_embeddings[: config.vocab_size, :] lowerCAmelCase = word_embeddings # The position embeddings. lowerCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase = pos_embeddings # The transformer. lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase = layer_re.match(lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase = m.group(3 ) # The name of the layer. lowerCAmelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase = masked_bias lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Store. No change of shape. lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase = transformer['final_layernorm.weight'] lowerCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def a_ ( ): # Create the argument parser. lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase = parser.parse_args() # Extract the basename. lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) else: lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase = 'gelu_new' else: lowerCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase , lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase = 'gpt2' lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase ) lowerCAmelCase = type(lowerCamelCase ).__name__ lowerCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase ) # Store the state_dict to file. lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase , lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
4
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowerCAmelCase : Dict = datasets.load_iris() __lowerCAmelCase : Union[str, Any] = np.array(data['data']) __lowerCAmelCase : int = np.array(data['target']) __lowerCAmelCase : Union[str, Any] = data['target_names'] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = train_test_split(X, y) def a__ ( A_, A_ ): '''simple docstring''' return np.linalg.norm(np.array(A_ ) - np.array(A_ ) ) def a__ ( A_, A_, A_, A_, A_=5 ): '''simple docstring''' __magic_name__ = zip(A_, A_ ) # List of distances of all points from the point to be classified __magic_name__ = [] for data_point in data: __magic_name__ = euclidean_distance(data_point[0], A_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __magic_name__ = [i[1] for i in sorted(A_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __magic_name__ = Counter(A_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
88
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] ) -> List[Any]: UpperCamelCase__ : Any = SwinConfig(image_size=192 ) if "base" in model_name: UpperCamelCase__ : Optional[int] = 6 UpperCamelCase__ : Optional[Any] = 128 UpperCamelCase__ : List[str] = (2, 2, 18, 2) UpperCamelCase__ : str = (4, 8, 16, 32) elif "large" in model_name: UpperCamelCase__ : Dict = 12 UpperCamelCase__ : int = 192 UpperCamelCase__ : Any = (2, 2, 18, 2) UpperCamelCase__ : Optional[int] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) UpperCamelCase__ : List[Any] = window_size UpperCamelCase__ : Dict = embed_dim UpperCamelCase__ : Tuple = depths UpperCamelCase__ : Any = num_heads return config def lowerCAmelCase_ ( __UpperCAmelCase: Any ) -> Dict: if "encoder.mask_token" in name: UpperCamelCase__ : List[Any] = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: UpperCamelCase__ : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: UpperCamelCase__ : Dict = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: UpperCamelCase__ : Dict = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCamelCase__ : Tuple = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCamelCase__ : Any = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCamelCase__ : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase__ : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase__ : Any = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": UpperCamelCase__ : Union[str, Any] = '''layernorm.weight''' if name == "encoder.norm.bias": UpperCamelCase__ : Dict = '''layernorm.bias''' if "decoder" in name: pass else: UpperCamelCase__ : List[str] = '''swin.''' + name return name def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: Any ) -> str: for key in orig_state_dict.copy().keys(): UpperCamelCase__ : List[str] = orig_state_dict.pop(__UpperCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: UpperCamelCase__ : Optional[Any] = key.split('''.''' ) UpperCamelCase__ : List[str] = int(key_split[2] ) UpperCamelCase__ : Tuple = int(key_split[4] ) UpperCamelCase__ : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ : Optional[int] = val[:dim, :] UpperCamelCase__ : List[str] = val[ dim : dim * 2, : ] UpperCamelCase__ : Tuple = val[-dim:, :] else: UpperCamelCase__ : Union[str, Any] = val[ :dim ] UpperCamelCase__ : int = val[ dim : dim * 2 ] UpperCamelCase__ : str = val[ -dim: ] else: UpperCamelCase__ : Optional[int] = val return orig_state_dict def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: str , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Dict ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = torch.load(__UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCamelCase__ : Optional[Any] = get_swin_config(__UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = SwinForMaskedImageModeling(__UpperCAmelCase ) model.eval() UpperCamelCase__ : Optional[Any] = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) UpperCamelCase__ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Dict = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) UpperCamelCase__ : Optional[Any] = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) UpperCamelCase__ : List[Any] = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**__UpperCAmelCase ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(f"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(f"microsoft/{model_name}" ) image_processor.push_to_hub(f"microsoft/{model_name}" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
201
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None: lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = [0] * len_array if len_array > 0: lowerCAmelCase = array[0] for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool: lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __A = logging.get_logger("transformers.models.encodec") __A = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } __A = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } __A = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } __A = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } __A = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } __A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __A = [] __A = [] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: for attribute in key.split('''.''' ): lowercase__: List[str] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: lowercase__: str = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: lowercase__: Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__: Dict = value elif weight_type == "weight_g": lowercase__: Tuple = value elif weight_type == "weight_v": lowercase__: Dict = value elif weight_type == "bias": lowercase__: Dict = value elif weight_type == "running_mean": lowercase__: List[Any] = value elif weight_type == "running_var": lowercase__: List[Any] = value elif weight_type == "num_batches_tracked": lowercase__: str = value elif weight_type == "weight_ih_l0": lowercase__: Dict = value elif weight_type == "weight_hh_l0": lowercase__: Any = value elif weight_type == "bias_ih_l0": lowercase__: List[str] = value elif weight_type == "bias_hh_l0": lowercase__: Optional[Any] = value elif weight_type == "weight_ih_l1": lowercase__: Optional[int] = value elif weight_type == "weight_hh_l1": lowercase__: List[str] = value elif weight_type == "bias_ih_l1": lowercase__: int = value elif weight_type == "bias_hh_l1": lowercase__: str = value else: lowercase__: int = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase__, lowercase__: Any = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: List[str] = [] if model_name == "encodec_24khz" or "encodec_32khz": lowercase__: int = MAPPING_24K elif model_name == "encodec_48khz": lowercase__: Optional[int] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__UpperCAmelCase , __UpperCAmelCase ): logger.info(F"""{name} was ignored""" ) continue lowercase__: Union[str, Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: lowercase__, lowercase__: Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: lowercase__: Any = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue lowercase__: List[Any] = True if "*" in mapped_key: lowercase__: Dict = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] lowercase__: Dict = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: lowercase__: str = '''weight_g''' elif "weight_v" in name: lowercase__: Union[str, Any] = '''weight_v''' elif "weight_ih_l0" in name: lowercase__: Tuple = '''weight_ih_l0''' elif "weight_hh_l0" in name: lowercase__: List[Any] = '''weight_hh_l0''' elif "bias_ih_l0" in name: lowercase__: Dict = '''bias_ih_l0''' elif "bias_hh_l0" in name: lowercase__: List[Any] = '''bias_hh_l0''' elif "weight_ih_l1" in name: lowercase__: Optional[int] = '''weight_ih_l1''' elif "weight_hh_l1" in name: lowercase__: Any = '''weight_hh_l1''' elif "bias_ih_l1" in name: lowercase__: List[str] = '''bias_ih_l1''' elif "bias_hh_l1" in name: lowercase__: int = '''bias_hh_l1''' elif "bias" in name: lowercase__: Tuple = '''bias''' elif "weight" in name: lowercase__: int = '''weight''' elif "running_mean" in name: lowercase__: Optional[Any] = '''running_mean''' elif "running_var" in name: lowercase__: List[str] = '''running_var''' elif "num_batches_tracked" in name: lowercase__: Tuple = '''num_batches_tracked''' else: lowercase__: Union[str, Any] = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> int: if config_path is not None: lowercase__: Optional[int] = EncodecConfig.from_pretrained(__UpperCAmelCase ) else: lowercase__: List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowercase__: str = [8, 5, 4, 4] lowercase__: Union[str, Any] = [2.2] lowercase__: List[Any] = 6_4 lowercase__: Any = 3_2_0_0_0 lowercase__: Union[str, Any] = 2_0_4_8 lowercase__: Tuple = False lowercase__: List[Any] = False lowercase__: Any = False elif model_name == "encodec_48khz": lowercase__: Optional[Any] = [8, 5, 4, 2] lowercase__: int = [3.0, 6.0, 1_2.0, 2_4.0] lowercase__: Union[str, Any] = 4_8_0_0_0 lowercase__: Optional[int] = 2 lowercase__: Tuple = False lowercase__: Tuple = '''time_group_norm''' lowercase__: List[str] = True lowercase__: int = 1.0 lowercase__: Optional[int] = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowercase__: List[str] = EncodecModel(__UpperCAmelCase ) lowercase__: List[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__UpperCAmelCase ) lowercase__: str = torch.load(__UpperCAmelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowercase__: str = original_checkpoint['''best_state'''] recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__UpperCAmelCase ) model.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
177
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class snake_case ( __lowercase ): SCREAMING_SNAKE_CASE_ : Optional[int] = '''table-transformer''' SCREAMING_SNAKE_CASE_ : List[str] = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[str] , UpperCamelCase__ : str=True , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Tuple=1_0_0 , UpperCamelCase__ : Any=6 , UpperCamelCase__ : int=2_0_4_8 , UpperCamelCase__ : List[str]=8 , UpperCamelCase__ : Union[str, Any]=6 , UpperCamelCase__ : Tuple=2_0_4_8 , UpperCamelCase__ : int=8 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : List[Any]="relu" , UpperCamelCase__ : Dict=2_5_6 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Union[str, Any]=1.0 , UpperCamelCase__ : Any=False , UpperCamelCase__ : List[Any]="sine" , UpperCamelCase__ : Optional[int]="resnet50" , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Any=False , UpperCamelCase__ : int=1 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : List[Any]=0.1 , **UpperCamelCase__ : Union[str, Any] , )-> Optional[int]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`.") if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") __lowerCAmelCase: Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__): __lowerCAmelCase: str = backbone_config.get("model_type") __lowerCAmelCase: Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase: List[Any] = config_class.from_dict(UpperCAmelCase__) # set timm attributes to None __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: int = None, None, None __lowerCAmelCase: Union[str, Any] = use_timm_backbone __lowerCAmelCase: List[Any] = backbone_config __lowerCAmelCase: Union[str, Any] = num_channels __lowerCAmelCase: List[Any] = num_queries __lowerCAmelCase: Tuple = d_model __lowerCAmelCase: Any = encoder_ffn_dim __lowerCAmelCase: Optional[Any] = encoder_layers __lowerCAmelCase: Any = encoder_attention_heads __lowerCAmelCase: Optional[int] = decoder_ffn_dim __lowerCAmelCase: str = decoder_layers __lowerCAmelCase: Union[str, Any] = decoder_attention_heads __lowerCAmelCase: Dict = dropout __lowerCAmelCase: Optional[int] = attention_dropout __lowerCAmelCase: Union[str, Any] = activation_dropout __lowerCAmelCase: str = activation_function __lowerCAmelCase: Optional[Any] = init_std __lowerCAmelCase: List[Any] = init_xavier_std __lowerCAmelCase: List[Any] = encoder_layerdrop __lowerCAmelCase: int = decoder_layerdrop __lowerCAmelCase: Tuple = encoder_layers __lowerCAmelCase: str = auxiliary_loss __lowerCAmelCase: Dict = position_embedding_type __lowerCAmelCase: Optional[int] = backbone __lowerCAmelCase: List[Any] = use_pretrained_backbone __lowerCAmelCase: str = dilation # Hungarian matcher __lowerCAmelCase: List[str] = class_cost __lowerCAmelCase: Union[str, Any] = bbox_cost __lowerCAmelCase: Optional[int] = giou_cost # Loss coefficients __lowerCAmelCase: Dict = mask_loss_coefficient __lowerCAmelCase: List[Any] = dice_loss_coefficient __lowerCAmelCase: str = bbox_loss_coefficient __lowerCAmelCase: Optional[int] = giou_loss_coefficient __lowerCAmelCase: Union[str, Any] = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__) @property def lowercase_ ( self : int)-> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase_ ( self : Optional[Any])-> int: '''simple docstring''' return self.d_model class snake_case ( __lowercase ): SCREAMING_SNAKE_CASE_ : Dict = version.parse("""1.11""" ) @property def lowercase_ ( self : Any)-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ]) @property def lowercase_ ( self : Optional[int])-> float: '''simple docstring''' return 1e-5 @property def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' return 1_2
217
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('block' ) + len('block' )] lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' ) if "bot_conv" in key: lowerCAmelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase = value return new_state_dict def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def a_ ( ): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ): lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass lowerCAmelCase = model(lowerCamelCase ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : str = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A : Optional[Any] = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class _a ( __lowercase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = AlbertTokenizer UpperCamelCase__ = AlbertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def lowercase__ ( self : int )->int: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[str] )->Union[str, Any]: _UpperCAmelCase = '''this is a test''' _UpperCAmelCase = '''this is a test''' return input_text, output_text def lowercase__ ( self : List[str] )->List[Any]: _UpperCAmelCase = '''<pad>''' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(UpperCAmelCase__ ) , 3_0_0_0_0 ) def lowercase__ ( self : str )->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def lowercase__ ( self : Tuple )->Union[str, Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = '''I was born in 92000, and this is falsé.''' _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def lowercase__ ( self : str )->str: _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase__ , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [4_8, 2_5, 2_1, 1_2_8_9] ) _UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase__ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.encode('''sequence builders''' ) _UpperCAmelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowercase__ ( self : Dict )->int: # fmt: off _UpperCAmelCase = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
260
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = {} lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] ) return output __snake_case =HfArgumentParser(PretokenizationArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') __snake_case =time.time() __snake_case =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') __snake_case =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: __lowerCamelCase : List[str] = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCamelCase : Any = MaskFormerConfig(backbone_config=lowerCamelCase__ ) __lowerCamelCase : Tuple = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCamelCase : int = 8_4_7 __lowerCamelCase : str = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCamelCase : Tuple = 1_5_0 __lowerCamelCase : Any = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCamelCase : Union[str, Any] = 1_7_1 __lowerCamelCase : Union[str, Any] = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCamelCase : Dict = 1_3_3 __lowerCamelCase : str = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCamelCase : str = 1_9 __lowerCamelCase : Union[str, Any] = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCamelCase : str = 6_5 __lowerCamelCase : Union[str, Any] = 'mapillary-vistas-id2label.json' __lowerCamelCase : Tuple = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase : List[str] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: __lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight") ) rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: __lowerCamelCase : str = dct.pop(lowerCamelCase__ ) __lowerCamelCase : List[Any] = val def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : Any = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCamelCase : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCamelCase : Optional[int] = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) __lowerCamelCase : List[Any] = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : str = in_proj_weight[:dim, :] __lowerCamelCase : Optional[Any] = in_proj_bias[: dim] __lowerCamelCase : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] __lowerCamelCase : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] __lowerCamelCase : str = in_proj_weight[ -dim :, : ] __lowerCamelCase : int = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: # fmt: off __lowerCamelCase : Tuple = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCamelCase : List[str] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) __lowerCamelCase : int = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : Union[str, Any] = in_proj_weight[: hidden_size, :] __lowerCamelCase : str = in_proj_bias[:config.hidden_size] __lowerCamelCase : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCamelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] __lowerCamelCase : List[str] = in_proj_weight[-hidden_size :, :] __lowerCamelCase : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCamelCase : Optional[Any] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) __lowerCamelCase : List[str] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : List[Any] = in_proj_weight[: hidden_size, :] __lowerCamelCase : Tuple = in_proj_bias[:config.hidden_size] __lowerCamelCase : Any = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCamelCase : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] __lowerCamelCase : str = in_proj_weight[-hidden_size :, :] __lowerCamelCase : List[Any] = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: __lowerCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase : List[Any] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ) -> int: __lowerCamelCase : Union[str, Any] = get_maskformer_config(lowerCamelCase__ ) # load original state_dict with open(lowerCamelCase__ , 'rb' ) as f: __lowerCamelCase : Union[str, Any] = pickle.load(lowerCamelCase__ ) __lowerCamelCase : Any = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCamelCase : Any = create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_swin_q_k_v(lowerCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase__ , lowerCamelCase__ ) # update to torch tensors for key, value in state_dict.items(): __lowerCamelCase : List[str] = torch.from_numpy(lowerCamelCase__ ) # load 🤗 model __lowerCamelCase : int = MaskFormerForInstanceSegmentation(lowerCamelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase__ , param.shape ) __lowerCamelCase , __lowerCamelCase : int = model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase__ ) == 0, F"Unexpected keys: {unexpected_keys}" # verify results __lowerCamelCase : Union[str, Any] = prepare_img() if "vistas" in model_name: __lowerCamelCase : Dict = 6_5 elif "cityscapes" in model_name: __lowerCamelCase : Any = 6_5_5_3_5 else: __lowerCamelCase : Union[str, Any] = 2_5_5 __lowerCamelCase : Any = True if 'ade' in model_name else False __lowerCamelCase : str = MaskFormerImageProcessor(ignore_index=lowerCamelCase__ , reduce_labels=lowerCamelCase__ ) __lowerCamelCase : List[str] = image_processor(lowerCamelCase__ , return_tensors='pt' ) __lowerCamelCase : Union[str, Any] = model(**lowerCamelCase__ ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCamelCase : Optional[Any] = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"nielsr/{model_name}" ) image_processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": a =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a =parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
73
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self ) -> List[str]: '''simple docstring''' super().__init__() lowerCamelCase = nn.Linear(3 , 4 ) lowerCamelCase = nn.BatchNormad(4 ) lowerCamelCase = nn.Linear(4 , 5 ) def __A ( self , A ) -> Any: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase__ ) ) ) class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase__ , model.state_dict() ) lowerCamelCase = os.path.join(UpperCAmelCase__ , """index.json""" ) self.assertTrue(os.path.isfile(UpperCAmelCase__ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: lowerCamelCase = os.path.join(UpperCAmelCase__ , F'{key}.dat' ) self.assertTrue(os.path.isfile(UpperCAmelCase__ ) ) # TODO: add tests on the fact weights are properly loaded def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: lowerCamelCase = torch.randn(2 , 3 , dtype=UpperCAmelCase__ ) with TemporaryDirectory() as tmp_dir: lowerCamelCase = offload_weight(UpperCAmelCase__ , """weight""" , UpperCAmelCase__ , {} ) lowerCamelCase = os.path.join(UpperCAmelCase__ , """weight.dat""" ) self.assertTrue(os.path.isfile(UpperCAmelCase__ ) ) self.assertDictEqual(UpperCAmelCase__ , {"""weight""": {"""shape""": [2, 3], """dtype""": str(UpperCAmelCase__ ).split(""".""" )[1]}} ) lowerCamelCase = load_offloaded_weight(UpperCAmelCase__ , index["""weight"""] ) self.assertTrue(torch.equal(UpperCAmelCase__ , UpperCAmelCase__ ) ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = ModelForTest() lowerCamelCase = model.state_dict() lowerCamelCase = {k: v for k, v in state_dict.items() if """linear2""" not in k} lowerCamelCase = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase = OffloadedWeightsLoader(state_dict=UpperCAmelCase__ , save_folder=UpperCAmelCase__ ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase__ , weight_map[key] ) ) lowerCamelCase = {k: v for k, v in state_dict.items() if """weight""" in k} lowerCamelCase = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase = OffloadedWeightsLoader(state_dict=UpperCAmelCase__ , save_folder=UpperCAmelCase__ ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase__ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase__ , UpperCAmelCase__ ) # Duplicates are removed lowerCamelCase = OffloadedWeightsLoader(state_dict=UpperCAmelCase__ , save_folder=UpperCAmelCase__ ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase__ , weight_map[key] ) ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} lowerCamelCase = extract_submodules_state_dict(UpperCAmelCase__ , ["""a.1""", """a.2"""] ) self.assertDictEqual(UpperCAmelCase__ , {"""a.1""": 0, """a.2""": 2} ) lowerCamelCase = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} lowerCamelCase = extract_submodules_state_dict(UpperCAmelCase__ , ["""a.1""", """a.2"""] ) self.assertDictEqual(UpperCAmelCase__ , {"""a.1.a""": 0, """a.2.a""": 2} )
252
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
"""simple docstring""" import argparse import struct import unittest class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = data # Initialize hash values snake_case : Optional[int] = [ 0x6a09_e667, 0xbb67_ae85, 0x3c6e_f372, 0xa54f_f53a, 0x510e_527f, 0x9b05_688c, 0x1f83_d9ab, 0x5be0_cd19, ] # Initialize round constants snake_case : int = [ 0x428a_2f98, 0x7137_4491, 0xb5c0_fbcf, 0xe9b5_dba5, 0x3956_c25b, 0x59f1_11f1, 0x923f_82a4, 0xab1c_5ed5, 0xd807_aa98, 0x1283_5b01, 0x2431_85be, 0x550c_7dc3, 0x72be_5d74, 0x80de_b1fe, 0x9bdc_06a7, 0xc19b_f174, 0xe49b_69c1, 0xefbe_4786, 0x0fc1_9dc6, 0x240c_a1cc, 0x2de9_2c6f, 0x4a74_84aa, 0x5cb0_a9dc, 0x76f9_88da, 0x983e_5152, 0xa831_c66d, 0xb003_27c8, 0xbf59_7fc7, 0xc6e0_0bf3, 0xd5a7_9147, 0x06ca_6351, 0x1429_2967, 0x27b7_0a85, 0x2e1b_2138, 0x4d2c_6dfc, 0x5338_0d13, 0x650a_7354, 0x766a_0abb, 0x81c2_c92e, 0x9272_2c85, 0xa2bf_e8a1, 0xa81a_664b, 0xc24b_8b70, 0xc76c_51a3, 0xd192_e819, 0xd699_0624, 0xf40e_3585, 0x106a_a070, 0x19a4_c116, 0x1e37_6c08, 0x2748_774c, 0x34b0_bcb5, 0x391c_0cb3, 0x4ed8_aa4a, 0x5b9c_ca4f, 0x682e_6ff3, 0x748f_82ee, 0x78a5_636f, 0x84c8_7814, 0x8cc7_0208, 0x90be_fffa, 0xa450_6ceb, 0xbef9_a3f7, 0xc671_78f2, ] snake_case : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : int = b"\x80" + (b"\x00" * (63 - (len(UpperCAmelCase__ ) + 8) % 64)) snake_case : Optional[Any] = struct.pack(">Q" , (len(UpperCAmelCase__ ) * 8) ) return data + padding + big_endian_integer def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers snake_case : Any = list(struct.unpack(">16L" , UpperCAmelCase__ ) ) # add 48 0-ed integers words += [0] * 48 snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case : Dict = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array snake_case : Optional[int] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) snake_case : Dict = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) snake_case : Any = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression snake_case : Tuple = self.ror(UpperCAmelCase__ , 6 ) ^ self.ror(UpperCAmelCase__ , 11 ) ^ self.ror(UpperCAmelCase__ , 25 ) snake_case : Optional[Any] = (e & f) ^ ((~e & 0xffff_ffff) & g) snake_case : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 snake_case : Any = self.ror(UpperCAmelCase__ , 2 ) ^ self.ror(UpperCAmelCase__ , 13 ) ^ self.ror(UpperCAmelCase__ , 22 ) snake_case : str = (a & b) ^ (a & c) ^ (b & c) snake_case : Union[str, Any] = (sa + maj) % 0x1_0000_0000 snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case : List[Any] = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) snake_case : Union[str, Any] = [a, b, c, d, e, f, g, h] # Modify final values snake_case : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] snake_case : List[str] = "".join([hex(UpperCAmelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return 0xffff_ffff & (value << (32 - rotations)) | (value >> rotations) class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" import hashlib snake_case : List[str] = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(UpperCAmelCase__ ).hash , hashlib.shaaaa(UpperCAmelCase__ ).hexdigest() ) def UpperCamelCase__ ( ): import doctest doctest.testmod() snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) snake_case : Dict = parser.parse_args() snake_case : Dict = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: snake_case : List[Any] = f.read() else: snake_case : Tuple = bytes(lowercase__ , "utf-8" ) print(SHAaaa(lowercase__ ).hash ) if __name__ == "__main__": main()
148
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
"""simple docstring""" import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Dict = 1_6 A : Dict = 3_2 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = 16 ): '''simple docstring''' __lowerCAmelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) __lowerCAmelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( _UpperCamelCase , padding="longest" , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase , drop_last=_UpperCamelCase ) __lowerCAmelCase = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["lr"] __lowerCAmelCase = int(config["num_epochs"] ) __lowerCAmelCase = int(config["seed"] ) __lowerCAmelCase = int(config["batch_size"] ) __lowerCAmelCase = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation __lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE __lowerCAmelCase = MAX_GPU_BATCH_SIZE set_seed(_UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(_UpperCamelCase , _UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters() , lr=_UpperCamelCase ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCAmelCase = model(**_UpperCamelCase ) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(_UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**_UpperCamelCase ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCamelCase , default=_UpperCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
57
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
0
def _a ( UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _a ( UpperCamelCase_ : dict[int, list[int]] ) -> List[str]: """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = len(UpperCamelCase_ ) # No of vertices in graph lowerCAmelCase__ = [0] * n lowerCAmelCase__ = [False] * n def dfs(UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : str ): lowerCAmelCase__ = True lowerCAmelCase__ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , id_ ) lowerCAmelCase__ = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase__ = min(low[at] , low[to] ) lowerCAmelCase__ = [] for i in range(UpperCamelCase_ ): if not visited[i]: dfs(UpperCamelCase_ , -1 , UpperCamelCase_ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
340
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
0
def a__ ( A_ ): '''simple docstring''' if len(A_ ) <= 1: return lst __magic_name__ = 1 while i < len(A_ ): if lst[i - 1] <= lst[i]: i += 1 else: __magic_name__ , __magic_name__ = lst[i], lst[i - 1] i -= 1 if i == 0: __magic_name__ = 1 return lst if __name__ == "__main__": __lowerCAmelCase : Any = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase : Dict = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
88
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } UpperCAmelCase_ = {'mobilebert-uncased': 512} UpperCAmelCase_ = {} class lowercase__ ( __lowercase ): '''simple docstring''' a : Optional[int] = VOCAB_FILES_NAMES a : int = PRETRAINED_VOCAB_FILES_MAP a : Tuple = PRETRAINED_INIT_CONFIGURATION a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Union[str, Any] = MobileBertTokenizer def __init__( self, __magic_name__=None, __magic_name__=None, __magic_name__=True, __magic_name__="[UNK]", __magic_name__="[SEP]", __magic_name__="[PAD]", __magic_name__="[CLS]", __magic_name__="[MASK]", __magic_name__=True, __magic_name__=None, **__magic_name__, ) -> str: """simple docstring""" super().__init__( UpperCAmelCase__, tokenizer_file=UpperCAmelCase__, do_lower_case=UpperCAmelCase__, unk_token=UpperCAmelCase__, sep_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, cls_token=UpperCAmelCase__, mask_token=UpperCAmelCase__, tokenize_chinese_chars=UpperCAmelCase__, strip_accents=UpperCAmelCase__, **UpperCAmelCase__, ) UpperCamelCase__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', UpperCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''', UpperCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', UpperCAmelCase__ ) != tokenize_chinese_chars ): UpperCamelCase__ : int = getattr(UpperCAmelCase__, normalizer_state.pop('''type''' ) ) UpperCamelCase__ : Union[str, Any] = do_lower_case UpperCamelCase__ : Tuple = strip_accents UpperCamelCase__ : Dict = tokenize_chinese_chars UpperCamelCase__ : Tuple = normalizer_class(**UpperCAmelCase__ ) UpperCamelCase__ : List[str] = do_lower_case def UpperCamelCase__ ( self, __magic_name__, __magic_name__=None ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> List[int]: """simple docstring""" UpperCamelCase__ : Dict = [self.sep_token_id] UpperCamelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase__ : List[Any] = self._tokenizer.model.save(UpperCAmelCase__, name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
201
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase (metaclass=__lowercase ): """simple docstring""" _UpperCAmelCase :Any = ['''keras_nlp'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''keras_nlp'''] )
177
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case : def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 0)-> None: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Any = row, column __lowerCAmelCase: List[Any] = [[default_value for c in range(UpperCAmelCase__)] for r in range(UpperCAmelCase__)] def __str__( self : List[str])-> str: '''simple docstring''' __lowerCAmelCase: List[str] = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier __lowerCAmelCase: int = 0 for row_vector in self.array: for obj in row_vector: __lowerCAmelCase: Tuple = max(UpperCAmelCase__ , len(str(UpperCAmelCase__))) __lowerCAmelCase: Optional[int] = f"%{max_element_length}s" # Make string and return def single_line(UpperCamelCase__ : list[float]) -> str: nonlocal string_format_identifier __lowerCAmelCase: Optional[Any] = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__) for row_vector in self.array) return s def __repr__( self : List[str])-> str: '''simple docstring''' return str(self) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : tuple[int, int])-> bool: '''simple docstring''' if not (isinstance(UpperCAmelCase__ , (list, tuple)) and len(UpperCAmelCase__) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCamelCase__ : tuple[int, int])-> Any: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase__) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : float)-> None: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase__) __lowerCAmelCase: str = value def __add__( self : Any , UpperCamelCase__ : Matrix)-> Matrix: '''simple docstring''' assert isinstance(UpperCAmelCase__ , UpperCAmelCase__) assert self.row == another.row and self.column == another.column # Add __lowerCAmelCase: Union[str, Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): __lowerCAmelCase: List[Any] = self[r, c] + another[r, c] return result def __neg__( self : int)-> Matrix: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): __lowerCAmelCase: str = -self[r, c] return result def __sub__( self : str , UpperCamelCase__ : Matrix)-> Matrix: '''simple docstring''' return self + (-another) def __mul__( self : str , UpperCamelCase__ : int | float | Matrix)-> Matrix: '''simple docstring''' if isinstance(UpperCAmelCase__ , (int, float)): # Scalar multiplication __lowerCAmelCase: List[Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): __lowerCAmelCase: List[str] = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__): # Matrix multiplication assert self.column == another.row __lowerCAmelCase: Dict = Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: __lowerCAmelCase: Union[str, Any] = f"Unsupported type given for another ({type(UpperCAmelCase__)})" raise TypeError(UpperCAmelCase__) def lowercase_ ( self : Optional[Any])-> Matrix: '''simple docstring''' __lowerCAmelCase: str = Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): __lowerCAmelCase: Any = self[r, c] return result def lowercase_ ( self : List[str] , UpperCamelCase__ : Matrix , UpperCamelCase__ : Matrix)-> Any: '''simple docstring''' assert isinstance(UpperCAmelCase__ , UpperCAmelCase__) and isinstance(UpperCAmelCase__ , UpperCAmelCase__) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __lowerCAmelCase: Union[str, Any] = v.transpose() __lowerCAmelCase: Any = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a__ ( ) -> Union[str, Any]: # a^(-1) __lowerCAmelCase: List[str] = Matrix(3 , 3 , 0 ) for i in range(3 ): __lowerCAmelCase: Dict = 1 print(F"a^(-1) is {ainv}" ) # u, v __lowerCAmelCase: Any = Matrix(3 , 1 , 0 ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = 1, 2, -3 __lowerCAmelCase: Tuple = Matrix(3 , 1 , 0 ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Tuple = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}" ) def a__ ( ) -> int: import doctest doctest.testmod() testa()
217
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
0
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str ): def get_matched_characters(snake_case_ :str , snake_case_ :str ) -> str: __UpperCAmelCase = [] __UpperCAmelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __UpperCAmelCase = int(max(0 , i - limit ) ) __UpperCAmelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(snake_case_ ) __UpperCAmelCase = F'''{_stra[0:_stra.index(snake_case_ )]} {_stra[_stra.index(snake_case_ ) + 1:]}''' return "".join(snake_case_ ) # matching characters __UpperCAmelCase = get_matched_characters(snake_case_ , snake_case_ ) __UpperCAmelCase = get_matched_characters(snake_case_ , snake_case_ ) __UpperCAmelCase = len(snake_case_ ) # transposition __UpperCAmelCase = ( len([(ca, ca) for ca, ca in zip(snake_case_ , snake_case_ ) if ca != ca] ) // 2 ) if not match_count: __UpperCAmelCase = 0.0 else: __UpperCAmelCase = ( 1 / 3 * ( match_count / len(snake_case_ ) + match_count / len(snake_case_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __UpperCAmelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
332
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __A : Any = logging.get_logger(__name__) __A : List[Any] = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class _a ( __lowercase): """simple docstring""" UpperCamelCase__ = '''dpt''' def __init__( self : int , __UpperCamelCase : List[Any]=7_6_8 , __UpperCamelCase : Optional[Any]=1_2 , __UpperCamelCase : str=1_2 , __UpperCamelCase : List[str]=3_0_7_2 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : List[Any]=1e-12 , __UpperCamelCase : List[str]=3_8_4 , __UpperCamelCase : int=1_6 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : List[str]=False , __UpperCamelCase : str=True , __UpperCamelCase : str=[2, 5, 8, 1_1] , __UpperCamelCase : Union[str, Any]="project" , __UpperCamelCase : List[Any]=[4, 2, 1, 0.5] , __UpperCamelCase : List[Any]=[9_6, 1_9_2, 3_8_4, 7_6_8] , __UpperCamelCase : Any=2_5_6 , __UpperCamelCase : Optional[Any]=-1 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Dict=0.4 , __UpperCamelCase : Any=2_5_5 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Dict=[1, 1_0_2_4, 2_4, 2_4] , __UpperCamelCase : Any=[0, 1] , __UpperCamelCase : Dict=None , **__UpperCamelCase : str , )->int: super().__init__(**UpperCAmelCase__ ) _UpperCAmelCase = hidden_size _UpperCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) _UpperCAmelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } _UpperCAmelCase = BitConfig(**UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): logger.info('''Initializing the config with a `BiT` backbone.''' ) _UpperCAmelCase = BitConfig(**UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _UpperCAmelCase = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) _UpperCAmelCase = backbone_featmap_shape _UpperCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = [] _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias _UpperCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) _UpperCAmelCase = readout_type _UpperCAmelCase = reassemble_factors _UpperCAmelCase = neck_hidden_sizes _UpperCAmelCase = fusion_hidden_size _UpperCAmelCase = head_in_index _UpperCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = semantic_loss_ignore_index _UpperCAmelCase = semantic_classifier_dropout def lowercase__ ( self : str )->Dict: _UpperCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
260
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml a =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: def run_func(lowerCamelCase__ ): @wraps(lowerCamelCase__ ) def run_in_eager_mode(*lowerCamelCase__ , **lowerCamelCase__ ): return func(*lowerCamelCase__ , **lowerCamelCase__ ) @wraps(lowerCamelCase__ ) @tf.function(experimental_compile=lowerCamelCase__ ) def run_in_graph_mode(*lowerCamelCase__ , **lowerCamelCase__ ): return func(*lowerCamelCase__ , **lowerCamelCase__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = random.Random() __lowerCamelCase : List[str] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCamelCase__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class A_ ( __lowercase ): _UpperCAmelCase : TensorFlowBenchmarkArguments _UpperCAmelCase : PretrainedConfig _UpperCAmelCase : str = "TensorFlow" @property def lowerCAmelCase ( self : int): return tf.__version__ def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): # initialize GPU on separate process __lowerCamelCase : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') __lowerCamelCase : Optional[int] = self._prepare_inference_func(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__) return self._measure_speed(_inference) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : List[str] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') __lowerCamelCase : List[Any] = self._prepare_train_func(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__) return self._measure_speed(_train) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,UpperCAmelCase__) __lowerCamelCase : Optional[int] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') __lowerCamelCase : List[Any] = self._prepare_inference_func(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__) return self._measure_memory(_inference) def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,UpperCAmelCase__) __lowerCamelCase : str = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.') __lowerCamelCase : List[Any] = self._prepare_train_func(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__) return self._measure_memory(_train) def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : str = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.') __lowerCamelCase : Tuple = ( hasattr(UpperCAmelCase__ ,'architectures') and isinstance(config.architectures ,UpperCAmelCase__) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __lowerCamelCase : Optional[int] = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model __lowerCamelCase : str = __import__('transformers' ,fromlist=[model_class]) __lowerCamelCase : List[Any] = getattr(UpperCAmelCase__ ,UpperCAmelCase__) __lowerCamelCase : List[Any] = model_cls(UpperCAmelCase__) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.') else: __lowerCamelCase : Dict = TF_MODEL_MAPPING[config.__class__](UpperCAmelCase__) # encoder-decoder has vocab size saved differently __lowerCamelCase : Any = config.vocab_size if hasattr(UpperCAmelCase__ ,'vocab_size') else config.encoder.vocab_size __lowerCamelCase : List[str] = random_input_ids(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla) def encoder_decoder_forward(): return model(UpperCAmelCase__ ,decoder_input_ids=UpperCAmelCase__ ,training=UpperCAmelCase__) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla) def encoder_forward(): return model(UpperCAmelCase__ ,training=UpperCAmelCase__) __lowerCamelCase : List[str] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Optional[int] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.') if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.') __lowerCamelCase : str = ( hasattr(UpperCAmelCase__ ,'architectures') and isinstance(config.architectures ,UpperCAmelCase__) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __lowerCamelCase : Any = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model __lowerCamelCase : List[str] = __import__('transformers' ,fromlist=[model_class]) __lowerCamelCase : str = getattr(UpperCAmelCase__ ,UpperCAmelCase__) __lowerCamelCase : Optional[Any] = model_cls(UpperCAmelCase__) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.') else: __lowerCamelCase : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCAmelCase__) # encoder-decoder has vocab size saved differently __lowerCamelCase : str = config.vocab_size if hasattr(UpperCAmelCase__ ,'vocab_size') else config.encoder.vocab_size __lowerCamelCase : Optional[Any] = random_input_ids(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla) def encoder_decoder_train(): __lowerCamelCase : List[Any] = model(UpperCAmelCase__ ,decoder_input_ids=UpperCAmelCase__ ,labels=UpperCAmelCase__ ,training=UpperCAmelCase__)[0] __lowerCamelCase : List[str] = tf.gradients(UpperCAmelCase__ ,model.trainable_variables) return gradients @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla) def encoder_train(): __lowerCamelCase : Dict = model(UpperCAmelCase__ ,labels=UpperCAmelCase__ ,training=UpperCAmelCase__)[0] __lowerCamelCase : str = tf.gradients(UpperCAmelCase__ ,model.trainable_variables) return gradients __lowerCamelCase : Union[str, Any] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation') timeit.repeat(UpperCAmelCase__ ,repeat=1 ,number=5) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __lowerCamelCase : List[Any] = timeit.repeat( UpperCAmelCase__ ,repeat=self.args.repeat ,number=1_0 ,) return min(UpperCAmelCase__) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn\'t fit on GPU. {e}") def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Callable[[], None]): logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.') with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.') __lowerCamelCase : Tuple = start_memory_tracing('transformers') if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`') elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.') __lowerCamelCase : Union[str, Any] = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.') # init nvml nvml.nvmlInit() func() __lowerCamelCase : Tuple = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) __lowerCamelCase : Tuple = nvml.nvmlDeviceGetMemoryInfo(UpperCAmelCase__) __lowerCamelCase : Optional[int] = meminfo.used __lowerCamelCase : Tuple = Memory(UpperCAmelCase__) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.') __lowerCamelCase : List[Any] = None else: __lowerCamelCase : Optional[Any] = measure_peak_memory_cpu(UpperCAmelCase__) __lowerCamelCase : Optional[Any] = Memory(UpperCAmelCase__) if isinstance(UpperCAmelCase__ ,UpperCAmelCase__) else memory_bytes if self.args.trace_memory_line_by_line: __lowerCamelCase : Tuple = stop_memory_tracing(UpperCAmelCase__) if memory is None: __lowerCamelCase : Any = summary.total else: __lowerCamelCase : Union[str, Any] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn\'t fit on GPU. {e}") return "N/A", None
73
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.prepare(UpperCAmelCase__ ) try: pickle.loads(pickle.dumps(UpperCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
4
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : int = logging.get_logger(__name__) set_seed(7_70) UpperCAmelCase : Tuple = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } UpperCAmelCase : Optional[int] = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } UpperCAmelCase : int = os.path.dirname(os.path.abspath(__file__)) UpperCAmelCase : Union[str, Any] = os.path.join(os.path.expanduser("~"), ".cache") UpperCAmelCase : Dict = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any]=False ): '''simple docstring''' lowerCamelCase = model_type if use_small: key += "_small" return os.path.join(lowerCamelCase__ , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) hf_hub_download(repo_id=lowerCamelCase__ , filename=lowerCamelCase__ , local_dir=lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Optional[int]="text" ): '''simple docstring''' if model_type == "text": lowerCamelCase = BarkSemanticModel lowerCamelCase = BarkSemanticConfig lowerCamelCase = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCamelCase = BarkCoarseModel lowerCamelCase = BarkCoarseConfig lowerCamelCase = BarkCoarseGenerationConfig elif model_type == "fine": lowerCamelCase = BarkFineModel lowerCamelCase = BarkFineConfig lowerCamelCase = BarkFineGenerationConfig else: raise NotImplementedError() lowerCamelCase = f'{model_type}_small' if use_small else model_type lowerCamelCase = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCamelCase__ ): logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) lowerCamelCase = torch.load(lowerCamelCase__ , map_location=lowerCamelCase__ ) # this is a hack lowerCamelCase = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: lowerCamelCase = model_args["""vocab_size"""] lowerCamelCase = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCamelCase = model_args.pop("""n_head""" ) lowerCamelCase = model_args.pop("""n_embd""" ) lowerCamelCase = model_args.pop("""n_layer""" ) lowerCamelCase = ConfigClass(**checkpoint["""model_args"""] ) lowerCamelCase = ModelClass(config=lowerCamelCase__ ) lowerCamelCase = GenerationConfigClass() lowerCamelCase = model_generation_config lowerCamelCase = checkpoint["""model"""] # fixup checkpoint lowerCamelCase = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(lowerCamelCase__ ): # replace part of the key with corresponding layer name in HF implementation lowerCamelCase = k[len(lowerCamelCase__ ) :] for old_layer_name in new_layer_name_dict: lowerCamelCase = new_k.replace(lowerCamelCase__ , new_layer_name_dict[old_layer_name] ) lowerCamelCase = state_dict.pop(lowerCamelCase__ ) lowerCamelCase = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCamelCase = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} lowerCamelCase = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCamelCase = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(lowerCamelCase__ ) != 0: raise ValueError(f'extra keys found: {extra_keys}' ) if len(lowerCamelCase__ ) != 0: raise ValueError(f'missing keys: {missing_keys}' ) model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) lowerCamelCase = model.num_parameters(exclude_embeddings=lowerCamelCase__ ) lowerCamelCase = checkpoint["""best_val_loss"""].item() logger.info(f'model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowerCamelCase__ , 3 )} loss' ) model.eval() model.to(lowerCamelCase__ ) del checkpoint, state_dict return model def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Union[str, Any]="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCamelCase = """cpu""" # do conversion on cpu lowerCamelCase = _get_ckpt_path(lowerCamelCase__ , use_small=lowerCamelCase__ ) lowerCamelCase = _load_model(lowerCamelCase__ , lowerCamelCase__ , model_type=lowerCamelCase__ , use_small=lowerCamelCase__ ) # load bark initial model lowerCamelCase = _bark_load_model(lowerCamelCase__ , """cpu""" , model_type=lowerCamelCase__ , use_small=lowerCamelCase__ ) if model_type == "text": lowerCamelCase = bark_model["""model"""] if model.num_parameters(exclude_embeddings=lowerCamelCase__ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don\'t have the same number of parameters""" ) # check if same output as the bark model lowerCamelCase = 5 lowerCamelCase = 10 if model_type in ["text", "coarse"]: lowerCamelCase = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCamelCase = bark_model(lowerCamelCase__ )[0] lowerCamelCase = model(lowerCamelCase__ ) # take last logits lowerCamelCase = output_new_model_total.logits[:, [-1], :] else: lowerCamelCase = 3 lowerCamelCase = 8 lowerCamelCase = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = bark_model(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don\'t have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : str , ): '''simple docstring''' lowerCamelCase = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = BarkSemanticConfig.from_pretrained(os.path.join(lowerCamelCase__ , """config.json""" ) ) lowerCamelCase = BarkCoarseConfig.from_pretrained(os.path.join(lowerCamelCase__ , """config.json""" ) ) lowerCamelCase = BarkFineConfig.from_pretrained(os.path.join(lowerCamelCase__ , """config.json""" ) ) lowerCamelCase = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) lowerCamelCase = BarkSemanticModel.from_pretrained(lowerCamelCase__ ) lowerCamelCase = BarkCoarseModel.from_pretrained(lowerCamelCase__ ) lowerCamelCase = BarkFineModel.from_pretrained(lowerCamelCase__ ) lowerCamelCase = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) lowerCamelCase = BarkConfig.from_sub_model_configs( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCamelCase = BarkModel(lowerCamelCase__ ) lowerCamelCase = semantic lowerCamelCase = coarseAcoustic lowerCamelCase = fineAcoustic lowerCamelCase = codec lowerCamelCase = bark_generation_config Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) bark.save_pretrained(lowerCamelCase__ , repo_id=lowerCamelCase__ , push_to_hub=lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") UpperCAmelCase : Tuple = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
252
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __snake_case ={"""facebook/blenderbot-3B""": 128} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) ) lowerCAmelCase = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value lowerCAmelCase = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__ ) lowerCAmelCase = ' '.join(UpperCAmelCase__ ) lowerCAmelCase = self.encode(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
0
"""simple docstring""" from collections.abc import Callable import numpy as np def UpperCamelCase__ ( lowercase__ : Callable , lowercase__ : float , lowercase__ : float , lowercase__ : float , lowercase__ : float ): snake_case : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) snake_case : Optional[int] = np.zeros((n + 1,) ) snake_case : Any = ya snake_case : Any = xa for k in range(lowercase__ ): snake_case : List[str] = y[k] + step_size * ode_func(lowercase__ , y[k] ) snake_case : Dict = y[k] + ( (step_size / 2) * (ode_func(lowercase__ , y[k] ) + ode_func(x + step_size , lowercase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
148
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record A : Tuple = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" A : Dict = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" A : List[str] = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return float((preds == labels).mean() ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="binary" ): '''simple docstring''' __lowerCAmelCase = simple_accuracy(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = float(fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase , average=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = {} for id_pred, label in zip(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = f"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" __lowerCAmelCase = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __lowerCAmelCase = [(pred, label)] __lowerCAmelCase , __lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): __lowerCAmelCase , __lowerCAmelCase = zip(*_UpperCamelCase ) __lowerCAmelCase = fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase , average="macro" ) fas.append(_UpperCamelCase ) __lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(_UpperCamelCase ) ) ems.append(_UpperCamelCase ) __lowerCAmelCase = float(sum(_UpperCamelCase ) / len(_UpperCamelCase ) ) __lowerCAmelCase = sum(_UpperCamelCase ) / len(_UpperCamelCase ) __lowerCAmelCase = float(fa_score(y_true=_UpperCamelCase , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def snake_case ( self ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def snake_case ( self ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def snake_case ( self , __a , __a ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg="macro" ) elif self.config_name == "record": __lowerCAmelCase = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] __lowerCAmelCase = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
57
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _a ( UpperCamelCase_ : Dict ) -> Dict: """simple docstring""" lowerCAmelCase__ = {} lowerCAmelCase__ = tokenizer(example["content"] , truncation=UpperCamelCase_ )["input_ids"] lowerCAmelCase__ = len(example["content"] ) / len(output["input_ids"] ) return output a_ = HfArgumentParser(PretokenizationArguments) a_ = parser.parse_args() if args.num_workers is None: a_ = multiprocessing.cpu_count() a_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) a_ = time.time() a_ = load_dataset(args.dataset_name, split='''train''') print(F"Dataset loaded in {time.time()-t_start:.2f}s") a_ = time.time() a_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F"Dataset tokenized in {time.time()-t_start:.2f}s") a_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"Data pushed to the hub in {time.time()-t_start:.2f}s")
340
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ): # Format the message. if name is None: lowerCAmelCase = None else: lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase = fmt.format(lowerCamelCase ) # Print and recurse (if needed). if isinstance(lowerCamelCase , lowerCamelCase ): if msg is not None: print(lowerCamelCase ) for k in val.keys(): recursive_print(lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase , torch.Tensor ): print(lowerCamelCase , ':' , val.size() ) else: print(lowerCamelCase , ':' , lowerCamelCase ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 2 ) lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 1 ).contiguous() lowerCAmelCase = param.view(*lowerCamelCase ) return param def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ): # The converted output model. lowerCAmelCase = {} # old versions did not store training args lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase = ds_args.padded_vocab_size lowerCAmelCase = ds_args.max_position_embeddings lowerCAmelCase = ds_args.hidden_size lowerCAmelCase = ds_args.num_layers lowerCAmelCase = ds_args.num_attention_heads lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase = config.n_head # The hidden_size per head. lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase = input_state_dict['checkpoint_version'] else: lowerCAmelCase = 0.0 # The model. lowerCAmelCase = input_state_dict['model'] # The language model. lowerCAmelCase = model['language_model'] # The embeddings. lowerCAmelCase = lm['embedding'] # The word embeddings. lowerCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase = word_embeddings[: config.vocab_size, :] lowerCAmelCase = word_embeddings # The position embeddings. lowerCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase = pos_embeddings # The transformer. lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase = layer_re.match(lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase = m.group(3 ) # The name of the layer. lowerCAmelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase = masked_bias lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Store. No change of shape. lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase = transformer['final_layernorm.weight'] lowerCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def a_ ( ): # Create the argument parser. lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase = parser.parse_args() # Extract the basename. lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) else: lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase = 'gelu_new' else: lowerCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase , lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase = 'gpt2' lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase ) lowerCAmelCase = type(lowerCamelCase ).__name__ lowerCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase ) # Store the state_dict to file. lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase , lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
4
0
def a__ ( A_ ): '''simple docstring''' __magic_name__ = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
88
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } UpperCAmelCase_ = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } UpperCAmelCase_ = { 'facebook/s2t-small-librispeech-asr': 1024, } UpperCAmelCase_ = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] UpperCAmelCase_ = {'mustc': MUSTC_LANGS} class lowercase__ ( __lowercase ): '''simple docstring''' a : int = VOCAB_FILES_NAMES a : Tuple = PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] = MAX_MODEL_INPUT_SIZES a : List[str] = ['''input_ids''', '''attention_mask'''] a : List[int] = [] def __init__( self, __magic_name__, __magic_name__, __magic_name__="<s>", __magic_name__="</s>", __magic_name__="<pad>", __magic_name__="<unk>", __magic_name__=False, __magic_name__=False, __magic_name__=None, __magic_name__=None, __magic_name__ = None, **__magic_name__, ) -> None: """simple docstring""" UpperCamelCase__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, unk_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, do_upper_case=UpperCAmelCase__, do_lower_case=UpperCAmelCase__, tgt_lang=UpperCAmelCase__, lang_codes=UpperCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, **UpperCAmelCase__, ) UpperCamelCase__ : List[Any] = do_upper_case UpperCamelCase__ : List[str] = do_lower_case UpperCamelCase__ : Optional[Any] = load_json(UpperCAmelCase__ ) UpperCamelCase__ : str = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : str = spm_file UpperCamelCase__ : List[Any] = load_spm(UpperCAmelCase__, self.sp_model_kwargs ) if lang_codes is not None: UpperCamelCase__ : Optional[Any] = lang_codes UpperCamelCase__ : Optional[Any] = LANGUAGES[lang_codes] UpperCamelCase__ : Dict = [f"<lang:{lang}>" for lang in self.langs] UpperCamelCase__ : Union[str, Any] = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs} UpperCamelCase__ : Optional[int] = self.lang_tokens UpperCamelCase__ : Tuple = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCamelCase__ : str = {} @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return len(self.encoder ) @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" return self._tgt_lang @tgt_lang.setter def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Dict = new_tgt_lang self.set_tgt_lang_special_tokens(UpperCAmelCase__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Optional[int] = self.lang_code_to_id[tgt_lang] UpperCamelCase__ : Dict = [lang_code_id] def UpperCamelCase__ ( self, __magic_name__ ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCAmelCase__, out_type=UpperCAmelCase__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[int]: """simple docstring""" return self.encoder.get(UpperCAmelCase__, self.encoder[self.unk_token] ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" return self.decoder.get(UpperCAmelCase__, self.unk_token ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : str = [] UpperCamelCase__ : List[Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCamelCase__ : List[Any] = self.sp_model.decode(UpperCAmelCase__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCamelCase__ : int = [] else: current_sub_tokens.append(UpperCAmelCase__ ) UpperCamelCase__ : int = self.sp_model.decode(UpperCAmelCase__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCamelCase__ ( self, __magic_name__, __magic_name__=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__, token_ids_a=UpperCAmelCase__, already_has_special_tokens=UpperCAmelCase__ ) UpperCamelCase__ : Union[str, Any] = [1] * len(self.prefix_tokens ) UpperCamelCase__ : Union[str, Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase__ )) + ([0] * len(UpperCAmelCase__ )) + suffix_ones def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: """simple docstring""" UpperCamelCase__ : List[str] = self.__dict__.copy() UpperCamelCase__ : Dict = None return state def __setstate__( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : str = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Optional[int] = load_spm(self.spm_file, self.sp_model_kwargs ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase__ : str = Path(UpperCAmelCase__ ) assert save_dir.is_dir(), f"{save_directory} should be a directory" UpperCamelCase__ : List[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCamelCase__ : str = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder, UpperCAmelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file, UpperCAmelCase__ ) elif not os.path.isfile(self.spm_file ): with open(UpperCAmelCase__, '''wb''' ) as fi: UpperCamelCase__ : Dict = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (str(UpperCAmelCase__ ), str(UpperCAmelCase__ )) def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: Dict[str, Any] ) -> List[str]: UpperCamelCase__ : int = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Tuple: with open(__UpperCAmelCase , '''r''' ) as f: return json.load(__UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: str ) -> List[Any]: with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
201
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None: lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = [0] * len_array if len_array > 0: lowerCAmelCase = array[0] for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool: lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" import heapq def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Union[str, Any]: lowercase__: str = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__UpperCAmelCase , [-1 * len(__UpperCAmelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase__: Any = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase__: List[Any] = heapq.heappop(__UpperCAmelCase )[1][0] chosen_vertices.add(__UpperCAmelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase__: Any = elem[1][1].index(__UpperCAmelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__UpperCAmelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __A = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
177
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __A = open # noqa: we just need to have a builtin inside this module to test it properly
217
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('block' ) + len('block' )] lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' ) if "bot_conv" in key: lowerCAmelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase = value return new_state_dict def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def a_ ( ): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ): lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass lowerCAmelCase = model(lowerCamelCase ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
0
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCAmelCase : def __init__( self : Dict , _lowercase : Dict , _lowercase : Union[str, Any]=3 , _lowercase : Tuple=32 , _lowercase : Union[str, Any]=3 , _lowercase : List[str]=10 , _lowercase : Any=[8, 16, 32, 64] , _lowercase : Optional[int]=[1, 1, 2, 1] , _lowercase : Optional[Any]=True , _lowercase : Dict=True , _lowercase : List[str]="relu" , _lowercase : int=3 , _lowercase : Tuple=None , _lowercase : Dict=["stage2", "stage3", "stage4"] , _lowercase : Optional[Any]=[2, 3, 4] , _lowercase : List[str]=1 , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = num_channels __UpperCAmelCase = embeddings_size __UpperCAmelCase = hidden_sizes __UpperCAmelCase = depths __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = hidden_act __UpperCAmelCase = num_labels __UpperCAmelCase = scope __UpperCAmelCase = len(UpperCAmelCase__ ) __UpperCAmelCase = out_features __UpperCAmelCase = out_indices __UpperCAmelCase = num_groups def a ( self : str ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Union[str, Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Tuple ): __UpperCAmelCase = BitModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Dict , _lowercase : List[Any] ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = BitForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCAmelCase = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Any , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : str ): __UpperCAmelCase = BitBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCAmelCase = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase = None __UpperCAmelCase = BitBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __UpperCAmelCase = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( __lowercase , __lowercase , unittest.TestCase ): a__ : List[str] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ : Union[str, Any] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) a__ : str = False a__ : List[Any] = False a__ : Dict = False a__ : List[str] = False a__ : List[Any] = False def a ( self : Optional[Any] ): __UpperCAmelCase = BitModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def a ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : Optional[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def a ( self : Any ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def a ( self : Optional[Any] ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def a ( self : Any ): pass def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(UpperCAmelCase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def a ( self : str ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def a ( self : List[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase__ ) def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(config=UpperCAmelCase__ ) for name, module in model.named_modules(): if isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def a ( self : int ): def check_hidden_states_output(_lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : Tuple ): __UpperCAmelCase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) __UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCAmelCase = layer_type __UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def a ( self : Tuple ): pass def a ( self : str ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def a ( self : Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = BitModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def lowercase__ ( ): __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def a ( self : Optional[int] ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a ( self : Optional[Any] ): __UpperCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='''pt''' ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**UpperCAmelCase__ ) # verify the logits __UpperCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) __UpperCAmelCase = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @require_torch class _UpperCAmelCase ( __lowercase , unittest.TestCase ): a__ : Optional[Any] = (BitBackbone,) if is_torch_available() else () a__ : Optional[int] = BitConfig a__ : Optional[Any] = False def a ( self : Dict ): __UpperCAmelCase = BitModelTester(self )
332
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A : Any = random.Random() if is_torch_available(): import torch def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict=1.0 , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): '''simple docstring''' if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _a ( unittest.TestCase): """simple docstring""" def __init__( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str]=7 , __UpperCamelCase : int=4_0_0 , __UpperCamelCase : int=2_0_0_0 , __UpperCamelCase : List[str]=1 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Tuple=1_6_0_0_0 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Union[str, Any]=True , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = feature_size _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize def lowercase__ ( self : Optional[Any] )->List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self : str , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : Union[str, Any]=False )->Optional[Any]: def _flatten(__UpperCamelCase : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: _UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _a ( __lowercase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ASTFeatureExtractor def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = ASTFeatureExtractionTester(self ) def lowercase__ ( self : Optional[int] )->Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input _UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values _UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='''np''' ).input_values _UpperCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _UpperCAmelCase = np.asarray(UpperCAmelCase__ ) _UpperCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='''np''' ).input_values _UpperCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) @require_torch def lowercase__ ( self : Union[str, Any] )->Optional[int]: import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase__ ( self : int , __UpperCamelCase : str )->Tuple: from datasets import load_dataset _UpperCAmelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort('''id''' ).select(range(UpperCAmelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowercase__ ( self : str )->Optional[Any]: # fmt: off _UpperCAmelCase = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = ASTFeatureExtractor() _UpperCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1e-4 ) )
260
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = {} lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] ) return output __snake_case =HfArgumentParser(PretokenizationArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') __snake_case =time.time() __snake_case =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') __snake_case =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path a =[ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=True ) -> Dict: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__lowercase ) ) class A_ ( __lowercase ): _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Dict = None def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[Any]): with TemporaryDirectory() as tmp_dir: __lowerCamelCase : int = dataset_module_factory(UpperCAmelCase__ ,cache_dir=UpperCAmelCase__) __lowerCamelCase : Union[str, Any] = import_main_class(dataset_module.module_path ,dataset=UpperCAmelCase__) __lowerCamelCase : Any = builder_cls( cache_dir=UpperCAmelCase__ ,config_name=UpperCAmelCase__ ,hash=dataset_module.hash ,) __lowerCamelCase : int = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCAmelCase__).replace(os.sep ,'/'), config.DATASET_INFO_FILENAME, ]) __lowerCamelCase : Union[str, Any] = cached_path(UpperCAmelCase__ ,cache_dir=UpperCAmelCase__) self.assertTrue(os.path.exists(UpperCAmelCase__)) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: __lowerCamelCase : Dict = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' __lowerCamelCase : Any = dataset_module_factory('wikipedia' , cache_dir=lowerCamelCase__ ) __lowerCamelCase : List[Any] = import_main_class(dataset_module.module_path ) __lowerCamelCase : List[str] = builder_cls( cache_dir=lowerCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __lowerCamelCase : str = None builder_instance.download_and_prepare() __lowerCamelCase : Optional[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: __lowerCamelCase : Optional[Any] = dataset_module_factory('wikipedia' , cache_dir=lowerCamelCase__ ) __lowerCamelCase : Optional[int] = import_main_class(dataset_module.module_path , dataset=lowerCamelCase__ ) __lowerCamelCase : str = builder_cls( cache_dir=lowerCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) __lowerCamelCase : Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , lowerCamelCase__ ) assert next(iter(ds['train'] ) )
73
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __lowercase : """simple docstring""" def __init__( self , A , A=3 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Dict: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_input_mask lowerCamelCase = use_token_type_ids lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = type_vocab_size lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = num_labels lowerCamelCase = num_choices lowerCamelCase = scope def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_input_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> str: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase__ , ) def __A ( self , A , A , A , A , A , A , A ) -> Dict: '''simple docstring''' lowerCamelCase = FalconModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) lowerCamelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[int]: '''simple docstring''' lowerCamelCase = True lowerCamelCase = FalconModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) lowerCamelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) lowerCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , A , A , A , A , A , ) -> Tuple: '''simple docstring''' lowerCamelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[int]: '''simple docstring''' lowerCamelCase = True lowerCamelCase = True lowerCamelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass lowerCamelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )["""hidden_states"""][0] lowerCamelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )["""hidden_states"""][0] # select random slice lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = config_and_inputs lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase : List[Any] = (FalconForCausalLM,) if is_torch_available() else () UpperCamelCase : Tuple = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : str = False UpperCamelCase : Tuple = False def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = FalconModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def __A ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase , *lowerCamelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCamelCase = alibi self.model_tester.create_and_check_model(UpperCAmelCase__ , *UpperCAmelCase__ ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = input_dict["""input_ids"""] lowerCamelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = """single_label_classification""" lowerCamelCase = input_dict["""input_ids"""] lowerCamelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = input_dict["""input_ids"""] lowerCamelCase = FalconForCausalLM(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) lowerCamelCase = input_ids.shape[0] lowerCamelCase = model._convert_to_rw_cache(result.past_key_values ) lowerCamelCase = model._convert_cache_to_standard_format(UpperCAmelCase__ , UpperCAmelCase__ ) for layer in range(len(UpperCAmelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = """multi_label_classification""" lowerCamelCase = input_dict["""input_ids"""] lowerCamelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Optional[Any]: '''simple docstring''' for model_class in self.all_generative_model_classes: lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase__ , """use_cache""" ): return lowerCamelCase = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) if "use_cache" not in inputs: lowerCamelCase = True lowerCamelCase = model(**UpperCAmelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCamelCase = ( getattr(UpperCAmelCase__ , """decoder_layers""" , UpperCAmelCase__ ) or getattr(UpperCAmelCase__ , """num_decoder_layers""" , UpperCAmelCase__ ) or config.num_hidden_layers ) lowerCamelCase = getattr(UpperCAmelCase__ , """num_kv_heads""" , config.num_attention_heads ) lowerCamelCase = getattr(UpperCAmelCase__ , """d_model""" , config.hidden_size ) lowerCamelCase = embed_dim // num_attention_heads lowerCamelCase = outputs["""past_key_values"""] self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) lowerCamelCase , lowerCamelCase = inputs["""input_ids"""].shape for i in range(UpperCAmelCase__ ): if config.new_decoder_architecture: lowerCamelCase = config.num_attention_heads elif config.multi_query: lowerCamelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) lowerCamelCase = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(UpperCAmelCase__ ) lowerCamelCase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(UpperCAmelCase__ ) lowerCamelCase = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) lowerCamelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=19 ) lowerCamelCase = tokenizer.batch_decode(UpperCAmelCase__ )[0] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCamelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(UpperCAmelCase__ ) lowerCamelCase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def __A ( self ) -> Any: '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCamelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCamelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(device=UpperCAmelCase__ ) lowerCamelCase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(UpperCAmelCase__ ) # Test results are the same with and without cache lowerCamelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=20 , use_cache=UpperCAmelCase__ ) lowerCamelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=20 , use_cache=UpperCAmelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
252
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase__ ( lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Dict ): # load base model snake_case : str = StableDiffusionPipeline.from_pretrained(lowercase__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors snake_case : List[Any] = load_file(lowercase__ ) snake_case : List[str] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: snake_case : Optional[int] = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) snake_case : Optional[int] = pipeline.text_encoder else: snake_case : Optional[int] = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) snake_case : Tuple = pipeline.unet # find the target layer snake_case : Tuple = layer_infos.pop(0 ) while len(lowercase__ ) > -1: try: snake_case : List[str] = curr_layer.__getattr__(lowercase__ ) if len(lowercase__ ) > 0: snake_case : str = layer_infos.pop(0 ) elif len(lowercase__ ) == 0: break except Exception: if len(lowercase__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: snake_case : Tuple = layer_infos.pop(0 ) snake_case : Optional[int] = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up" ) ) pair_keys.append(lowercase__ ) else: pair_keys.append(lowercase__ ) pair_keys.append(key.replace("lora_up" , "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: snake_case : Dict = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) snake_case : str = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase__ , lowercase__ ).unsqueeze(2 ).unsqueeze(3 ) else: snake_case : Tuple = state_dict[pair_keys[0]].to(torch.floataa ) snake_case : List[Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase__ , lowercase__ ) # update visited list for item in pair_keys: visited.append(lowercase__ ) return pipeline if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") __A = parser.parse_args() __A = args.base_model_path __A = args.checkpoint_path __A = args.dump_path __A = args.lora_prefix_unet __A = args.lora_prefix_text_encoder __A = args.alpha __A = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __A = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
148
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a ): if len(UpperCAmelCase__ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) __lowerCAmelCase = list(UpperCAmelCase__ ) __lowerCAmelCase = degree def __add__( self , __a ): if self.degree > polynomial_a.degree: __lowerCAmelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , UpperCAmelCase__ ) else: __lowerCAmelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , UpperCAmelCase__ ) def __sub__( self , __a ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , __a ): __lowerCAmelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , UpperCAmelCase__ ) def snake_case ( self , __a ): __lowerCAmelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): __lowerCAmelCase = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(UpperCAmelCase__ ) return polynomial def __repr__( self ): return self.__str__() def snake_case ( self ): __lowerCAmelCase = [0] * self.degree for i in range(self.degree ): __lowerCAmelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , UpperCAmelCase__ ) def snake_case ( self , __a = 0 ): __lowerCAmelCase = [0] * (self.degree + 2) __lowerCAmelCase = constant for i in range(self.degree + 1 ): __lowerCAmelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , UpperCAmelCase__ ) def __eq__( self , __a ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , __a ): return not self.__eq__(UpperCAmelCase__ )
57
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
0
import logging import os from .state import PartialState class lowercase__ ( logging.LoggerAdapter ): @staticmethod def UpperCAmelCase ( __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase )-> List[str]: '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) lowerCAmelCase__ = kwargs.pop("main_process_only" , UpperCAmelCase__ ) lowerCAmelCase__ = kwargs.pop("in_order" , UpperCAmelCase__ ) if self.isEnabledFor(UpperCAmelCase__ ): if self._should_log(UpperCAmelCase__ ): lowerCAmelCase__ , lowerCAmelCase__ = self.process(UpperCAmelCase__ , UpperCAmelCase__ ) self.logger.log(UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) elif in_order: lowerCAmelCase__ = PartialState() for i in range(state.num_processes ): if i == state.process_index: lowerCAmelCase__ , lowerCAmelCase__ = self.process(UpperCAmelCase__ , UpperCAmelCase__ ) self.logger.log(UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) state.wait_for_everyone() def _a ( UpperCamelCase_ : str , UpperCamelCase_ : str = None ) -> int: """simple docstring""" if log_level is None: lowerCAmelCase__ = os.environ.get("ACCELERATE_LOG_LEVEL" , UpperCamelCase_ ) lowerCAmelCase__ = logging.getLogger(UpperCamelCase_ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCamelCase_ , {} )
340
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
0
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] __lowerCAmelCase : List[Any] = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __magic_name__ = int(re.match(R""".*layer_(\d*).*""", A_ )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def a__ ( A_ ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 __magic_name__ = re.search(R"""[^\d](\d+)$""", str(A_ ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) __magic_name__ = int(bit_search.groups()[0] ) return bit_size // 8 def a__ ( A_, A_, A_, A_, A_ ): '''simple docstring''' if bloom_config_file == "": __magic_name__ = BloomConfig() else: __magic_name__ = BloomConfig.from_json_file(A_ ) if shard_model: __magic_name__ = os.listdir(A_ ) __magic_name__ = sorted(filter(lambda A_ : s.startswith("""layer""" ) and "model_00" in s, A_ ) ) __magic_name__ = {"""weight_map""": {}, """metadata""": {}} __magic_name__ = 0 __magic_name__ = None __magic_name__ = BloomConfig() for j, file in enumerate(A_ ): print("""Processing file: {}""".format(A_ ) ) __magic_name__ = None for i in range(A_ ): # load all TP files __magic_name__ = file.replace("""model_00""", f'''model_0{i}''' ) __magic_name__ = torch.load(os.path.join(A_, A_ ), map_location="""cpu""" ) # Rename keys in the transformers names __magic_name__ = list(temp.keys() ) for key in keys: __magic_name__ = temp.pop(A_ ) if tensors is None: __magic_name__ = temp else: for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __magic_name__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __magic_name__ = torch.cat([tensors[key], temp[key]], dim=A_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __magic_name__ = tensors[key] / pretraining_tp torch.save( A_, os.path.join( A_, """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ), str(len(A_ ) ).zfill(5 ) ), ), ) for key in tensors.keys(): __magic_name__ = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __magic_name__ = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ), str(len(A_ ) ).zfill(5 ) ) __magic_name__ = BloomConfig() __magic_name__ = pytorch_dump_folder_path + """/""" + CONFIG_NAME __magic_name__ = total_size with open(A_, """w""", encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(A_, WEIGHTS_NAME + """.index.json""" ), """w""", encoding="""utf-8""" ) as f: __magic_name__ = json.dumps(A_, indent=2, sort_keys=A_ ) + """\n""" f.write(A_ ) else: __magic_name__ = BloomModel(A_ ) __magic_name__ = os.listdir(A_ ) __magic_name__ = sorted(filter(lambda A_ : s.startswith("""layer""" ) and "model_00" in s, A_ ) ) __magic_name__ = None for i, file in enumerate(A_ ): __magic_name__ = None for i in range(A_ ): # load all TP files __magic_name__ = file.replace("""model_00""", f'''model_0{i}''' ) __magic_name__ = torch.load(os.path.join(A_, A_ ), map_location="""cpu""" ) # Rename keys in the transformers names __magic_name__ = list(temp.keys() ) for key in keys: __magic_name__ = temp.pop(A_ ) if tensors is None: __magic_name__ = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __magic_name__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __magic_name__ = torch.cat([tensors[key], temp[key]], dim=A_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __magic_name__ = tensors[key] / pretraining_tp __magic_name__ = model.load_state_dict(A_, strict=A_ ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: __magic_name__ = set(other_keys.missing_keys ) else: __magic_name__ = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(A_, exist_ok=A_ ) __magic_name__ = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __magic_name__ = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: __magic_name__ = model.to(config.torch_dtype ) torch.save(model.state_dict(), A_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(A_, """w""", encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
88
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCAmelCase_ = 'scheduler_config.json' class lowercase__ ( __lowercase ): '''simple docstring''' a : Optional[int] = 1 a : List[str] = 2 a : str = 3 a : Any = 4 a : Dict = 5 @dataclass class lowercase__ ( __lowercase ): '''simple docstring''' a : jnp.ndarray class lowercase__ : '''simple docstring''' a : Any = SCHEDULER_CONFIG_NAME a : str = ['''dtype'''] a : int = [] a : Dict = True @classmethod def UpperCamelCase__ ( cls, __magic_name__ = None, __magic_name__ = None, __magic_name__=False, **__magic_name__, ) -> List[Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase__, subfolder=UpperCAmelCase__, return_unused_kwargs=UpperCAmelCase__, **UpperCAmelCase__, ) UpperCamelCase__ ,UpperCamelCase__ : int = cls.from_config(UpperCAmelCase__, return_unused_kwargs=UpperCAmelCase__, **UpperCAmelCase__ ) if hasattr(UpperCAmelCase__, '''create_state''' ) and getattr(UpperCAmelCase__, '''has_state''', UpperCAmelCase__ ): UpperCamelCase__ : Union[str, Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = False, **__magic_name__ ) -> List[Any]: """simple docstring""" self.save_config(save_directory=UpperCAmelCase__, push_to_hub=UpperCAmelCase__, **UpperCAmelCase__ ) @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return self._get_compatibles() @classmethod def UpperCamelCase__ ( cls ) -> List[str]: """simple docstring""" UpperCamelCase__ : int = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase__ : str = importlib.import_module(__name__.split('''.''' )[0] ) UpperCamelCase__ : Any = [ getattr(UpperCAmelCase__, UpperCAmelCase__ ) for c in compatible_classes_str if hasattr(UpperCAmelCase__, UpperCAmelCase__ ) ] return compatible_classes def lowerCAmelCase_ ( __UpperCAmelCase: jnp.ndarray , __UpperCAmelCase: Tuple[int] ) -> str: assert len(__UpperCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__UpperCAmelCase ) - x.ndim) ) , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: Dict=0.999 , __UpperCAmelCase: Optional[Any]=jnp.floataa ) -> Optional[Any]: def alpha_bar(__UpperCAmelCase: Dict ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 UpperCamelCase__ : Dict = [] for i in range(__UpperCAmelCase ): UpperCamelCase__ : Any = i / num_diffusion_timesteps UpperCamelCase__ : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__UpperCAmelCase ) / alpha_bar(__UpperCAmelCase ) , __UpperCAmelCase ) ) return jnp.array(__UpperCAmelCase , dtype=__UpperCAmelCase ) @flax.struct.dataclass class lowercase__ : '''simple docstring''' a : jnp.ndarray a : jnp.ndarray a : jnp.ndarray @classmethod def UpperCamelCase__ ( cls, __magic_name__ ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] = scheduler.config if config.trained_betas is not None: UpperCamelCase__ : Optional[int] = jnp.asarray(config.trained_betas, dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCamelCase__ : Union[str, Any] = jnp.linspace(config.beta_start, config.beta_end, config.num_train_timesteps, dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase__ : Optional[Any] = ( jnp.linspace( config.beta_start**0.5, config.beta_end**0.5, config.num_train_timesteps, dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase__ : Any = betas_for_alpha_bar(config.num_train_timesteps, dtype=scheduler.dtype ) else: raise NotImplementedError( f"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" ) UpperCamelCase__ : Dict = 1.0 - betas UpperCamelCase__ : List[str] = jnp.cumprod(UpperCAmelCase__, axis=0 ) return cls( alphas=UpperCAmelCase__, betas=UpperCAmelCase__, alphas_cumprod=UpperCAmelCase__, ) def lowerCAmelCase_ ( __UpperCAmelCase: CommonSchedulerState , __UpperCAmelCase: jnp.ndarray , __UpperCAmelCase: jnp.ndarray , __UpperCAmelCase: jnp.ndarray ) -> Union[str, Any]: UpperCamelCase__ : Any = state.alphas_cumprod UpperCamelCase__ : List[Any] = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase__ : Any = sqrt_alpha_prod.flatten() UpperCamelCase__ : int = broadcast_to_shape_from_left(__UpperCAmelCase , original_samples.shape ) UpperCamelCase__ : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase__ : Dict = sqrt_one_minus_alpha_prod.flatten() UpperCamelCase__ : Any = broadcast_to_shape_from_left(__UpperCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase_ ( __UpperCAmelCase: CommonSchedulerState , __UpperCAmelCase: jnp.ndarray , __UpperCAmelCase: jnp.ndarray , __UpperCAmelCase: jnp.ndarray ) -> Any: UpperCamelCase__ ,UpperCamelCase__ : int = get_sqrt_alpha_prod(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Tuple = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase_ ( __UpperCAmelCase: CommonSchedulerState , __UpperCAmelCase: jnp.ndarray , __UpperCAmelCase: jnp.ndarray , __UpperCAmelCase: jnp.ndarray ) -> str: UpperCamelCase__ ,UpperCamelCase__ : List[str] = get_sqrt_alpha_prod(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
201
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: lowercase__: List[Any] = 0 lowercase__: Union[str, Any] = len(__UpperCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__: List[Any] = i + 1 else: lowercase__: Any = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
177
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class snake_case ( __lowercase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '''biogpt''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[Any]=4_2_3_8_4 , UpperCamelCase__ : List[str]=1_0_2_4 , UpperCamelCase__ : Optional[Any]=2_4 , UpperCamelCase__ : Optional[int]=1_6 , UpperCamelCase__ : List[Any]=4_0_9_6 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Union[str, Any]=1_0_2_4 , UpperCamelCase__ : Tuple=0.02 , UpperCamelCase__ : Union[str, Any]=1e-12 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : str=0 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , )-> int: '''simple docstring''' __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: Optional[int] = hidden_size __lowerCAmelCase: Optional[Any] = num_hidden_layers __lowerCAmelCase: int = num_attention_heads __lowerCAmelCase: Optional[int] = intermediate_size __lowerCAmelCase: Tuple = hidden_act __lowerCAmelCase: Optional[int] = hidden_dropout_prob __lowerCAmelCase: Union[str, Any] = attention_probs_dropout_prob __lowerCAmelCase: Tuple = initializer_range __lowerCAmelCase: int = layer_norm_eps __lowerCAmelCase: str = scale_embedding __lowerCAmelCase: str = use_cache __lowerCAmelCase: Any = layerdrop __lowerCAmelCase: Dict = activation_dropout super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
217
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
0
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _lowercase : List[Any] = True from torch.cuda.amp import autocast _lowercase : str = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : a__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a__ : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a__ : Optional[bool] = field( default=__lowercase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) a__ : Optional[bool] = field( default=__lowercase , metadata={"help": "Whether to log verbose messages or not."} , ) a__ : Optional[float] = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) a__ : Optional[float] = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) a__ : Optional[float] = field( default=0.99_9995 , metadata={"help": "Decay of gumbel temperature during training."} ) def lowercase__ ( snake_case_ :ModelArguments , snake_case_ :TrainingArguments ): logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) __UpperCAmelCase = logging.WARNING if model_args.verbose_logging: __UpperCAmelCase = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __UpperCAmelCase = logging.INFO logger.setLevel(snake_case_ ) @dataclass class _UpperCAmelCase : a__ : str = field( default=__lowercase , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) a__ : Optional[str] = field( default=__lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) a__ : Optional[str] = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } , ) a__ : Optional[str] = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'" ) } , ) a__ : Optional[str] = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to \'file\'"} , ) a__ : bool = field( default=__lowercase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) a__ : Optional[int] = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there\'s no validation split" } , ) a__ : Optional[int] = field( default=__lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) a__ : Optional[float] = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class _UpperCAmelCase : a__ : WavaVecaForPreTraining a__ : WavaVecaFeatureExtractor a__ : Union[bool, str] = "longest" a__ : Optional[int] = None a__ : Optional[int] = None def __call__( self : Union[str, Any] , _lowercase : List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format __UpperCAmelCase = self.feature_extractor.pad( UpperCAmelCase__ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) __UpperCAmelCase = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) __UpperCAmelCase = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __UpperCAmelCase = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) __UpperCAmelCase = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __UpperCAmelCase = 1 __UpperCAmelCase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __UpperCAmelCase = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCAmelCase__ , min_masks=2 , ) return batch class _UpperCAmelCase ( __lowercase ): def __init__( self : Optional[int] , *_lowercase : Optional[int] , _lowercase : Optional[int]=1 , _lowercase : Dict=0 , _lowercase : List[str]=1.0 , **_lowercase : int ): super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) __UpperCAmelCase = 0 __UpperCAmelCase = max_gumbel_temp __UpperCAmelCase = min_gumbel_temp __UpperCAmelCase = gumbel_temp_decay def a ( self : Any , _lowercase : nn.Module , _lowercase : Dict[str, Union[torch.Tensor, Any]] ): model.train() __UpperCAmelCase = self._prepare_inputs(UpperCAmelCase__ ) if self.use_amp: with autocast(): __UpperCAmelCase = self.compute_loss(UpperCAmelCase__ , UpperCAmelCase__ ) else: __UpperCAmelCase = self.compute_loss(UpperCAmelCase__ , UpperCAmelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __UpperCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __UpperCAmelCase = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: __UpperCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def lowercase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() configure_logger(snake_case_ , snake_case_ ) # Downloading and loading a dataset from the hub. __UpperCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __UpperCAmelCase = DatasetDict() __UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) __UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __UpperCAmelCase = DatasetDict() __UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) __UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=snake_case_ ) def prepare_dataset(snake_case_ :Optional[Any] ): # check that all files have the correct sampling rate __UpperCAmelCase , __UpperCAmelCase = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __UpperCAmelCase = datasets.map( snake_case_ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long __UpperCAmelCase = vectorized_datasets.filter( lambda snake_case_ : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(snake_case_ :Dict ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __UpperCAmelCase = vectorized_datasets.map( snake_case_ , batched=snake_case_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __UpperCAmelCase = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) __UpperCAmelCase = WavaVecaForPreTraining(snake_case_ ) __UpperCAmelCase = DataCollatorForWavaVecaPretraining(model=snake_case_ , feature_extractor=snake_case_ ) __UpperCAmelCase = WavaVecaPreTrainer( model=snake_case_ , data_collator=snake_case_ , args=snake_case_ , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=snake_case_ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
332
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __A : Tuple = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __A : Tuple = logging.get_logger(__name__) class _a ( __lowercase): """simple docstring""" UpperCamelCase__ = '''maskformer''' UpperCamelCase__ = {'''hidden_size''': '''mask_feature_size'''} UpperCamelCase__ = ['''resnet''', '''swin'''] UpperCamelCase__ = ['''detr'''] def __init__( self : Optional[Any] , __UpperCamelCase : int = 2_5_6 , __UpperCamelCase : int = 2_5_6 , __UpperCamelCase : float = 0.1 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[Dict] = None , __UpperCamelCase : Optional[Dict] = None , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : float = 1.0 , __UpperCamelCase : float = 1.0 , __UpperCamelCase : float = 1.0 , __UpperCamelCase : float = 2_0.0 , __UpperCamelCase : Optional[bool] = None , **__UpperCamelCase : Tuple , )->Tuple: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _UpperCAmelCase = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _UpperCAmelCase = backbone_config.pop('''model_type''' ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(UpperCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _UpperCAmelCase = DetrConfig() else: # verify that the decoder is supported _UpperCAmelCase = ( decoder_config.pop('''model_type''' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _UpperCAmelCase = CONFIG_MAPPING[decoder_type] _UpperCAmelCase = config_class.from_dict(UpperCAmelCase__ ) _UpperCAmelCase = backbone_config _UpperCAmelCase = decoder_config # main feature dimension for the model _UpperCAmelCase = fpn_feature_size _UpperCAmelCase = mask_feature_size # initializer _UpperCAmelCase = init_std _UpperCAmelCase = init_xavier_std # Hungarian matcher && loss _UpperCAmelCase = cross_entropy_weight _UpperCAmelCase = dice_weight _UpperCAmelCase = mask_weight _UpperCAmelCase = use_auxiliary_loss _UpperCAmelCase = no_object_weight _UpperCAmelCase = output_auxiliary_logits _UpperCAmelCase = self.decoder_config.encoder_attention_heads _UpperCAmelCase = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase__ ) @classmethod def lowercase__ ( cls : Union[str, Any] , __UpperCamelCase : PretrainedConfig , __UpperCamelCase : PretrainedConfig , **__UpperCamelCase : str )->str: return cls( backbone_config=UpperCAmelCase__ , decoder_config=UpperCAmelCase__ , **UpperCAmelCase__ , ) def lowercase__ ( self : List[str] )->Dict[str, any]: _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.decoder_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
260
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = len(lowerCamelCase__ ), len(grid[0] ) if ( min(lowerCamelCase__ , lowerCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __lowerCamelCase : int = 0 count += depth_first_search(lowerCamelCase__ , row + 1 , lowerCamelCase__ , lowerCamelCase__ ) count += depth_first_search(lowerCamelCase__ , row - 1 , lowerCamelCase__ , lowerCamelCase__ ) count += depth_first_search(lowerCamelCase__ , lowerCamelCase__ , col + 1 , lowerCamelCase__ ) count += depth_first_search(lowerCamelCase__ , lowerCamelCase__ , col - 1 , lowerCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
73
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.prepare(UpperCAmelCase__ ) try: pickle.loads(pickle.dumps(UpperCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
4
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __lowercase ( __lowercase , __lowercase ): """simple docstring""" UpperCamelCase : Any = '''resnet''' UpperCamelCase : Optional[Any] = ['''basic''', '''bottleneck'''] def __init__( self , A=3 , A=64 , A=[2_56, 5_12, 10_24, 20_48] , A=[3, 4, 6, 3] , A="bottleneck" , A="relu" , A=False , A=None , A=None , **A , ) -> List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase__ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) lowerCamelCase = num_channels lowerCamelCase = embedding_size lowerCamelCase = hidden_sizes lowerCamelCase = depths lowerCamelCase = layer_type lowerCamelCase = hidden_act lowerCamelCase = downsample_in_first_stage lowerCamelCase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] lowerCamelCase , lowerCamelCase = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names ) class __lowercase ( __lowercase ): """simple docstring""" UpperCamelCase : Any = version.parse("1.11" ) @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __A ( self ) -> float: '''simple docstring''' return 1e-3
252
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __snake_case ={"""facebook/blenderbot-3B""": 128} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) ) lowerCAmelCase = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value lowerCAmelCase = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__ ) lowerCAmelCase = ' '.join(UpperCAmelCase__ ) lowerCAmelCase = self.encode(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
0
"""simple docstring""" __A = {str(digit): digit**5 for digit in range(10)} def UpperCamelCase__ ( lowercase__ : int ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowercase__ ) ) def UpperCamelCase__ ( ): return sum( number for number in range(1000 , 100_0000 ) if number == digits_fifth_powers_sum(lowercase__ ) ) if __name__ == "__main__": print(solution())
148
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = 9 __lowerCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowerCAmelCase = kruskal(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_UpperCamelCase ) == sorted(_UpperCamelCase )
57
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
0
import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a_ = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _a ( UpperCamelCase_ : int ) -> str: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCAmelCase__ = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(UpperCamelCase_ , id=UpperCamelCase_ )
340
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ): # Format the message. if name is None: lowerCAmelCase = None else: lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase = fmt.format(lowerCamelCase ) # Print and recurse (if needed). if isinstance(lowerCamelCase , lowerCamelCase ): if msg is not None: print(lowerCamelCase ) for k in val.keys(): recursive_print(lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase , torch.Tensor ): print(lowerCamelCase , ':' , val.size() ) else: print(lowerCamelCase , ':' , lowerCamelCase ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 2 ) lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 1 ).contiguous() lowerCAmelCase = param.view(*lowerCamelCase ) return param def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ): # The converted output model. lowerCAmelCase = {} # old versions did not store training args lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase = ds_args.padded_vocab_size lowerCAmelCase = ds_args.max_position_embeddings lowerCAmelCase = ds_args.hidden_size lowerCAmelCase = ds_args.num_layers lowerCAmelCase = ds_args.num_attention_heads lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase = config.n_head # The hidden_size per head. lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase = input_state_dict['checkpoint_version'] else: lowerCAmelCase = 0.0 # The model. lowerCAmelCase = input_state_dict['model'] # The language model. lowerCAmelCase = model['language_model'] # The embeddings. lowerCAmelCase = lm['embedding'] # The word embeddings. lowerCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase = word_embeddings[: config.vocab_size, :] lowerCAmelCase = word_embeddings # The position embeddings. lowerCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase = pos_embeddings # The transformer. lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase = layer_re.match(lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase = m.group(3 ) # The name of the layer. lowerCAmelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase = masked_bias lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Store. No change of shape. lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase = transformer['final_layernorm.weight'] lowerCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def a_ ( ): # Create the argument parser. lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase = parser.parse_args() # Extract the basename. lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) else: lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase = 'gelu_new' else: lowerCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase , lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase = 'gpt2' lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase ) lowerCAmelCase = type(lowerCamelCase ).__name__ lowerCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase ) # Store the state_dict to file. lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase , lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
4
0
from math import factorial def a__ ( A_ = 100 ): '''simple docstring''' return sum(int(A_ ) for x in str(factorial(A_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
88
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n' UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''', id='''token''' ), id='''sequence''' ), id='''references''' ), } ), codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''], reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ], ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=4, __magic_name__=False ) -> int: """simple docstring""" UpperCamelCase__ : List[str] = compute_bleu( reference_corpus=UpperCAmelCase__, translation_corpus=UpperCAmelCase__, max_order=UpperCAmelCase__, smooth=UpperCAmelCase__ ) ((UpperCamelCase__) ,(UpperCamelCase__) ,(UpperCamelCase__) ,(UpperCamelCase__) ,(UpperCamelCase__) ,(UpperCamelCase__)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
201
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None: lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = [0] * len_array if len_array > 0: lowerCAmelCase = array[0] for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool: lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase (__lowercase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = '''speech_to_text_2''' _UpperCAmelCase :Any = ['''past_key_values'''] _UpperCAmelCase :Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _UpperCAmelCase=10000 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=1024 , **_UpperCAmelCase , ): lowercase__: Optional[Any] = vocab_size lowercase__: List[Any] = d_model lowercase__: Optional[int] = decoder_ffn_dim lowercase__: Optional[int] = decoder_layers lowercase__: Any = decoder_attention_heads lowercase__: Tuple = dropout lowercase__: Union[str, Any] = attention_dropout lowercase__: List[Any] = activation_dropout lowercase__: Union[str, Any] = activation_function lowercase__: Dict = init_std lowercase__: Tuple = decoder_layerdrop lowercase__: Optional[Any] = use_cache lowercase__: Tuple = decoder_layers lowercase__: List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__: str = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
177
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" class snake_case : def __init__( self : List[str] , UpperCamelCase__ : Optional[int])-> str: '''simple docstring''' __lowerCAmelCase: Tuple = arr.split(",") def lowercase_ ( self : Union[str, Any])-> int: '''simple docstring''' __lowerCAmelCase: Any = [int(self.array[0])] * len(self.array) __lowerCAmelCase: Any = [int(self.array[0])] * len(self.array) for i in range(1 , len(self.array)): __lowerCAmelCase: List[str] = max( int(self.array[i]) + sum_value[i - 1] , int(self.array[i])) __lowerCAmelCase: Union[str, Any] = max(sum_value[i] , rear[i - 1]) return rear[len(self.array) - 1] if __name__ == "__main__": __A = input("please input some numbers:") __A = SubArray(whole_array) __A = array.solve_sub_array() print(("the results is:", re))
217
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('block' ) + len('block' )] lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' ) if "bot_conv" in key: lowerCAmelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase = value return new_state_dict def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def a_ ( ): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ): lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass lowerCAmelCase = model(lowerCamelCase ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _lowercase : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( __lowercase ): def __init__( self : List[Any] , *_lowercase : List[str] , **_lowercase : Optional[Any] ): warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
332
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class _a ( __lowercase): """simple docstring""" def __lt__( self : Optional[int] , __UpperCamelCase : List[str] )->List[Any]: return self[-1] < other[-1] def __eq__( self : str , __UpperCamelCase : List[str] )->Tuple: return self[-1] == other[-1] def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = [] # sort into stacks for element in collection: _UpperCAmelCase = Stack([element] ) _UpperCAmelCase = bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i != len(_SCREAMING_SNAKE_CASE ): stacks[i].append(_SCREAMING_SNAKE_CASE ) else: stacks.append(_SCREAMING_SNAKE_CASE ) # use a heap-based merge to merge stack efficiently _UpperCAmelCase = merge(*(reversed(_SCREAMING_SNAKE_CASE ) for stack in stacks) ) return collection if __name__ == "__main__": __A : Any = input("Enter numbers separated by a comma:\n").strip() __A : Optional[int] = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
260
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = {} lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] ) return output __snake_case =HfArgumentParser(PretokenizationArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') __snake_case =time.time() __snake_case =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') __snake_case =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=False , **lowerCamelCase__ ) -> int: __lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) __lowerCamelCase : List[Any] = SeqaSeqDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , type_path='train' , **lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = tok.pad_token_id def get_lens(lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = tqdm( DataLoader(lowerCamelCase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowerCamelCase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __lowerCamelCase : Any = [] for batch in dl: __lowerCamelCase : int = batch['input_ids'].ne(lowerCamelCase__ ).sum(1 ).tolist() __lowerCamelCase : Union[str, Any] = batch['labels'].ne(lowerCamelCase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCamelCase__ , lowerCamelCase__ ): max_lens.append(max(lowerCamelCase__ , lowerCamelCase__ ) ) else: max_lens.extend(lowerCamelCase__ ) return max_lens __lowerCamelCase : Any = get_lens(lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = SeqaSeqDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , type_path='val' , **lowerCamelCase__ ) __lowerCamelCase : Tuple = get_lens(lowerCamelCase__ ) pickle_save(lowerCamelCase__ , train_ds.len_file ) pickle_save(lowerCamelCase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
73
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
0
import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase : Any = "\nHuman: <<task>>\n\nAssistant: " UpperCAmelCase : Union[str, Any] = "huggingface-tools/default-prompts" UpperCAmelCase : str = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any]="run" ): '''simple docstring''' if prompt_or_repo_id is None: lowerCamelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , lowerCamelCase__ ) is not None: return prompt_or_repo_id lowerCamelCase = cached_file( lowerCamelCase__ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(lowerCamelCase__ , """r""" , encoding="""utf-8""" ) as f: return f.read()
252
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase__ ( lowercase__ : int ): if not isinstance(lowercase__ , lowercase__ ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) snake_case : str = precision snake_case : List[Any] = ceil(precision / 14 ) snake_case : Dict = 42_6880 * Decimal(1_0005 ).sqrt() snake_case : Tuple = 1 snake_case : Optional[int] = 1359_1409 snake_case : Optional[int] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): snake_case : Any = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __A = 50 print(f'The first {n} digits of pi is: {pi(n)}')
148
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase ( __lowercase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase__ , "embed_dim" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase__ , "num_heads" ) ) class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=13 , __a=64 , __a=3 , __a=[16, 48, 96] , __a=[1, 3, 6] , __a=[1, 2, 10] , __a=[7, 3, 3] , __a=[4, 2, 2] , __a=[2, 1, 1] , __a=[2, 2, 2] , __a=[False, False, True] , __a=[0.0, 0.0, 0.0] , __a=0.0_2 , __a=1e-1_2 , __a=True , __a=True , __a=2 , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_sizes __lowerCAmelCase = patch_stride __lowerCAmelCase = patch_padding __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = num_labels __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = num_heads __lowerCAmelCase = stride_kv __lowerCAmelCase = depth __lowerCAmelCase = cls_token __lowerCAmelCase = attention_drop_rate __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps def snake_case ( self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def snake_case ( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = CvtModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model(UpperCAmelCase__ ) __lowerCAmelCase = (self.image_size, self.image_size) __lowerCAmelCase , __lowerCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowerCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowerCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = CvtForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __lowercase ,__lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any =(CvtModel, CvtForImageClassification) if is_torch_available() else () __UpperCAmelCase : str =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Optional[Any] =False __UpperCAmelCase : Dict =False __UpperCAmelCase : List[str] =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Tuple =False def snake_case ( self ): __lowerCAmelCase = CvtModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): return @unittest.skip(reason="Cvt does not output attentions" ) def snake_case ( self ): pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def snake_case ( self ): pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(UpperCAmelCase__ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def snake_case ( self ): def check_hidden_states_output(__a , __a , __a ): __lowerCAmelCase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case ( self ): pass @slow def snake_case ( self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = CvtModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case ( self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case ( self ): __lowerCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase__ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors="pt" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**UpperCAmelCase__ ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) __lowerCAmelCase = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4 ) )
57
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = '''Hello world! cécé herlolip''' a_ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict ) -> Dict: """simple docstring""" lowerCAmelCase__ = BertAbsConfig( temp_dir="." , finetune_bert=UpperCamelCase_ , large=UpperCamelCase_ , share_emb=UpperCamelCase_ , use_bert_emb=UpperCamelCase_ , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) lowerCAmelCase__ = torch.load(UpperCamelCase_ , lambda UpperCamelCase_ , UpperCamelCase_ : storage ) lowerCAmelCase__ = AbsSummarizer(UpperCamelCase_ , torch.device("cpu" ) , UpperCamelCase_ ) original.eval() lowerCAmelCase__ = BertAbsSummarizer(UpperCamelCase_ , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models\' outputs are identical" ) lowerCAmelCase__ = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs lowerCAmelCase__ = tokenizer.encode("This is sample éàalj\'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase_ )) ) lowerCAmelCase__ = torch.tensor(UpperCamelCase_ ).unsqueeze(0 ) lowerCAmelCase__ = tokenizer.encode("This is sample 3 éàalj\'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase_ )) ) lowerCAmelCase__ = torch.tensor(UpperCamelCase_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCAmelCase__ = encoder_input_ids lowerCAmelCase__ = decoder_input_ids lowerCAmelCase__ = lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = lowerCAmelCase__ = None lowerCAmelCase__ = lowerCAmelCase__ = None lowerCAmelCase__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCAmelCase__ = original(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )[0] lowerCAmelCase__ = original.generator(UpperCamelCase_ ) lowerCAmelCase__ = new_model( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )[0] lowerCAmelCase__ = new_model.generator(UpperCamelCase_ ) lowerCAmelCase__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(UpperCamelCase_ ) ) lowerCAmelCase__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(UpperCamelCase_ ) ) lowerCAmelCase__ = torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model\'s state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
340
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @require_torch def _lowercase ( self : Any ) -> Optional[Any]: """simple docstring""" __magic_name__ = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) __magic_name__ = load_dataset("""ashraq/esc50""" ) __magic_name__ = dataset["""train"""]["""audio"""][-1]["""array"""] __magic_name__ = audio_classifier(UpperCAmelCase__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def _lowercase ( self : Any ) -> Optional[Any]: """simple docstring""" pass @slow @require_torch def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog __magic_name__ = load_dataset("""ashraq/esc50""" ) __magic_name__ = dataset["""train"""]["""audio"""][-1]["""array"""] __magic_name__ = audio_classifier(UpperCAmelCase__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) __magic_name__ = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) __magic_name__ = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" pass
88
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase_ ( __lowercase ): def __lt__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> List[Any]: return self[-1] < other[-1] def __eq__( self : str , UpperCAmelCase__ : List[str] ) -> Tuple: return self[-1] == other[-1] def a_ ( lowerCamelCase : list ): lowerCAmelCase = [] # sort into stacks for element in collection: lowerCAmelCase = Stack([element] ) lowerCAmelCase = bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently lowerCAmelCase = merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
4
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=7, __magic_name__=3, __magic_name__=18, __magic_name__=30, __magic_name__=400, __magic_name__=True, __magic_name__=None, __magic_name__=True, ) -> int: """simple docstring""" UpperCamelCase__ : Tuple = size if size is not None else {'''height''': 18, '''width''': 18} UpperCamelCase__ : Tuple = parent UpperCamelCase__ : Any = batch_size UpperCamelCase__ : Optional[int] = num_channels UpperCamelCase__ : str = image_size UpperCamelCase__ : Union[str, Any] = min_resolution UpperCamelCase__ : Tuple = max_resolution UpperCamelCase__ : Optional[int] = do_resize UpperCamelCase__ : Any = size UpperCamelCase__ : str = apply_ocr def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowercase__ ( __lowercase , unittest.TestCase ): '''simple docstring''' a : Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : int = LayoutLMvaImageProcessingTester(self ) @property def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__, '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__, '''size''' ) ) self.assertTrue(hasattr(UpperCAmelCase__, '''apply_ocr''' ) ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 18, '''width''': 18} ) UpperCamelCase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'''height''': 42, '''width''': 42} ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" pass def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" # Initialize image_processing UpperCamelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, Image.Image ) # Test not batched input UpperCamelCase__ : str = image_processing(image_inputs[0], return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) self.assertIsInstance(encoding.words, UpperCAmelCase__ ) self.assertIsInstance(encoding.boxes, UpperCAmelCase__ ) # Test batched UpperCamelCase__ : List[str] = image_processing(UpperCAmelCase__, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" # Initialize image_processing UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__, numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, np.ndarray ) # Test not batched input UpperCamelCase__ : Optional[int] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched UpperCamelCase__ : Optional[Any] = image_processing(UpperCAmelCase__, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" # Initialize image_processing UpperCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase__, torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__, torch.Tensor ) # Test not batched input UpperCamelCase__ : Optional[int] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched UpperCamelCase__ : Dict = image_processing(UpperCAmelCase__, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" # with apply_OCR = True UpperCamelCase__ : Optional[int] = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase__ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_docvqa''', split='''test''' ) UpperCamelCase__ : Tuple = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) UpperCamelCase__ : str = image_processing(UpperCAmelCase__, return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ), len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase__ : Optional[Any] = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 UpperCamelCase__ : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, UpperCAmelCase__ ) self.assertListEqual(encoding.boxes, UpperCAmelCase__ ) # with apply_OCR = False UpperCamelCase__ : str = LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) UpperCamelCase__ : Optional[int] = image_processing(UpperCAmelCase__, return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224) )
201
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=19 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): lowercase__: Optional[int] = parent lowercase__: List[str] = batch_size lowercase__: Dict = seq_length lowercase__: Union[str, Any] = is_training lowercase__: Dict = use_input_mask lowercase__: Dict = use_token_type_ids lowercase__: Optional[int] = use_labels lowercase__: Tuple = vocab_size lowercase__: Dict = hidden_size lowercase__: Union[str, Any] = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: Tuple = intermediate_size lowercase__: Tuple = hidden_act lowercase__: int = hidden_dropout_prob lowercase__: Tuple = attention_probs_dropout_prob lowercase__: Optional[Any] = max_position_embeddings lowercase__: Tuple = type_vocab_size lowercase__: List[str] = type_sequence_label_size lowercase__: Optional[Any] = initializer_range lowercase__: Any = num_labels lowercase__: Optional[Any] = num_choices lowercase__: List[Any] = scope def _snake_case ( self ): lowercase__: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: Dict = None if self.use_input_mask: lowercase__: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Any = None lowercase__: Tuple = None lowercase__: List[Any] = None if self.use_labels: lowercase__: Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ): lowercase__: Optional[Any] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=UpperCAmelCase__ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = EsmForProteinFolding(config=UpperCAmelCase__ ).float() model.to(UpperCAmelCase__ ) model.eval() lowercase__: Any = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) lowercase__: Optional[Any] = model(UpperCAmelCase__ ) lowercase__: Tuple = model(UpperCAmelCase__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def _snake_case ( self ): lowercase__: Dict = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ): List[str] = config_and_inputs lowercase__: List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase (__lowercase ,__lowercase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :str = False _UpperCAmelCase :Union[str, Any] = (EsmForProteinFolding,) if is_torch_available() else () _UpperCAmelCase :Union[str, Any] = () _UpperCAmelCase :List[Any] = {} if is_torch_available() else {} _UpperCAmelCase :Optional[Any] = False def _snake_case ( self ): lowercase__: int = EsmFoldModelTester(self ) lowercase__: List[str] = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowercase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) @unittest.skip('''Does not support attention outputs''' ) def _snake_case ( self ): pass @unittest.skip def _snake_case ( self ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def _snake_case ( self ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold only has one output format.''' ) def _snake_case ( self ): pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold does not support input chunking.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def _snake_case ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self ): pass @require_torch class UpperCAmelCase (__lowercase ): """simple docstring""" @slow def _snake_case ( self ): lowercase__: Dict = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() lowercase__: int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase__: List[str] = model(UpperCAmelCase__ )['''positions'''] lowercase__: List[Any] = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , UpperCAmelCase__ , atol=1e-4 ) )
177
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case ="""\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __snake_case ="""\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __snake_case =""" Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def a_ ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): return float((preds == labels).mean() ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str="binary" ): lowerCAmelCase = simple_accuracy(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average=lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): lowerCAmelCase = {} for id_pred, label in zip(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' lowerCAmelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase = [(pred, label)] lowerCAmelCase , lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase = zip(*lowerCamelCase ) lowerCAmelCase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase , average='macro' ) fas.append(lowerCamelCase ) lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase ) ) ems.append(lowerCamelCase ) lowerCAmelCase = float(sum(lowerCamelCase ) / len(lowerCamelCase ) ) lowerCAmelCase = sum(lowerCamelCase ) / len(lowerCamelCase ) lowerCAmelCase = float(fa_score(y_true=lowerCamelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : List[str] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] ) -> Any: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase__ , UpperCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
4
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __A = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __A = {"facebook/blenderbot-3B": 128} class snake_case ( __lowercase ): SCREAMING_SNAKE_CASE_ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE_ : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str="replace" , UpperCamelCase__ : Dict="<s>" , UpperCamelCase__ : Tuple="</s>" , UpperCamelCase__ : Optional[Any]="</s>" , UpperCamelCase__ : Any="<s>" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : int="<pad>" , UpperCamelCase__ : Union[str, Any]="<mask>" , UpperCamelCase__ : str=False , UpperCamelCase__ : Union[str, Any]=True , **UpperCamelCase__ : Optional[int] , )-> int: '''simple docstring''' super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) __lowerCAmelCase: List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase__) != add_prefix_space: __lowerCAmelCase: str = getattr(UpperCAmelCase__ , pre_tok_state.pop("type")) __lowerCAmelCase: Any = add_prefix_space __lowerCAmelCase: List[Any] = pre_tok_class(**UpperCAmelCase__) __lowerCAmelCase: Tuple = add_prefix_space __lowerCAmelCase: Any = "post_processor" __lowerCAmelCase: int = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__) if tokenizer_component_instance: __lowerCAmelCase: Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase: Optional[Any] = tuple(state["sep"]) if "cls" in state: __lowerCAmelCase: List[str] = tuple(state["cls"]) __lowerCAmelCase: Dict = False if state.get("add_prefix_space" , UpperCAmelCase__) != add_prefix_space: __lowerCAmelCase: str = add_prefix_space __lowerCAmelCase: Optional[Any] = True if state.get("trim_offsets" , UpperCAmelCase__) != trim_offsets: __lowerCAmelCase: Union[str, Any] = trim_offsets __lowerCAmelCase: List[str] = True if changes_to_apply: __lowerCAmelCase: int = getattr(UpperCAmelCase__ , state.pop("type")) __lowerCAmelCase: Dict = component_class(**UpperCAmelCase__) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase_ ( self : Union[str, Any])-> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def lowercase_ ( self : int , UpperCamelCase__ : Optional[Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: List[str] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__) if isinstance(UpperCAmelCase__ , UpperCAmelCase__) else value __lowerCAmelCase: Any = value def lowercase_ ( self : Optional[Any] , *UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : List[str])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: Tuple = kwargs.get("is_split_into_words" , UpperCAmelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__) def lowercase_ ( self : List[str] , *UpperCamelCase__ : str , **UpperCamelCase__ : List[str])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: Tuple = kwargs.get("is_split_into_words" , UpperCAmelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__) def lowercase_ ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' __lowerCAmelCase: str = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__) return tuple(UpperCAmelCase__) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [self.sep_token_id] __lowerCAmelCase: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def lowercase_ ( self : List[str] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : "Conversation")-> List[int]: '''simple docstring''' __lowerCAmelCase: Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__) __lowerCAmelCase: int = " ".join(UpperCAmelCase__) __lowerCAmelCase: List[Any] = self.encode(UpperCAmelCase__) if len(UpperCAmelCase__) > self.model_max_length: __lowerCAmelCase: Any = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens.") return input_ids
217
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
4
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Union[str, Any] = { 't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json', } class _UpperCAmelCase ( __lowercase ): a__ : Optional[Any] = '''t5''' a__ : Optional[Any] = ['''past_key_values'''] a__ : List[str] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : str , _lowercase : int=3_21_28 , _lowercase : Optional[int]=5_12 , _lowercase : Tuple=64 , _lowercase : Union[str, Any]=20_48 , _lowercase : str=6 , _lowercase : Union[str, Any]=None , _lowercase : int=8 , _lowercase : Tuple=32 , _lowercase : Dict=1_28 , _lowercase : List[Any]=0.1 , _lowercase : Optional[Any]=1E-6 , _lowercase : str=1.0 , _lowercase : str="relu" , _lowercase : int=True , _lowercase : Optional[Any]=True , _lowercase : Dict=0 , _lowercase : Tuple=1 , **_lowercase : str , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = d_model __UpperCAmelCase = d_kv __UpperCAmelCase = d_ff __UpperCAmelCase = num_layers __UpperCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCAmelCase = num_heads __UpperCAmelCase = relative_attention_num_buckets __UpperCAmelCase = relative_attention_max_distance __UpperCAmelCase = dropout_rate __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_factor __UpperCAmelCase = feed_forward_proj __UpperCAmelCase = use_cache __UpperCAmelCase = self.feed_forward_proj.split('''-''' ) __UpperCAmelCase = act_info[-1] __UpperCAmelCase = act_info[0] == '''gated''' if len(UpperCAmelCase__ ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase__ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __UpperCAmelCase = '''gelu_new''' super().__init__( pad_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ , ) class _UpperCAmelCase ( __lowercase ): @property def a ( self : Tuple ): __UpperCAmelCase = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: __UpperCAmelCase = '''past_encoder_sequence + sequence''' __UpperCAmelCase = {0: '''batch'''} __UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} __UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase__ , direction='''inputs''' ) return common_inputs @property def a ( self : Optional[Any] ): return 13
332
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A : List[Any] = random.Random() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict=1.0 , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : str=None ): '''simple docstring''' if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _a ( unittest.TestCase): """simple docstring""" def __init__( self : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : str=4_0_0 , __UpperCamelCase : List[Any]=2_0_0_0 , __UpperCamelCase : Dict=1 , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : List[Any]=1_6_0_0_0 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Tuple=True , )->List[Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = feature_size _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize def lowercase__ ( self : Any )->List[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Optional[int]=False )->Dict: def _flatten(__UpperCamelCase : Tuple ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: _UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs class _a ( __lowercase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = WavaVecaFeatureExtractor def lowercase__ ( self : Optional[int] )->Optional[Any]: _UpperCAmelCase = WavaVecaFeatureExtractionTester(self ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] )->Union[str, Any]: self.assertTrue(np.all(np.mean(UpperCAmelCase__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase__ , axis=0 ) - 1 ) < 1e-3 ) ) def lowercase__ ( self : List[str] )->Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input _UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values _UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='''np''' ).input_values _UpperCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _UpperCAmelCase = np.asarray(UpperCAmelCase__ ) _UpperCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='''np''' ).input_values _UpperCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) def lowercase__ ( self : Optional[int] )->List[str]: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] _UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(UpperCAmelCase__ , UpperCAmelCase__ ): _UpperCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors='''np''' ) _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def lowercase__ ( self : int )->str: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in lengths] _UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] _UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(UpperCAmelCase__ , UpperCAmelCase__ ): _UpperCAmelCase = feat_extract(UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding=UpperCAmelCase__ ) _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def lowercase__ ( self : Optional[Any] )->Tuple: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowercase__ ( self : Any )->Tuple: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = feat_extract( UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) _UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def lowercase__ ( self : Optional[Any] )->List[Any]: import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def lowercase__ ( self : Any )->Optional[int]: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _UpperCAmelCase = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
260
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger a =get_logger(__name__) a =r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class A_ : @add_start_docstrings(UpperCAmelCase__) def __call__( self : Dict ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called.") class A_ : @add_start_docstrings(UpperCAmelCase__) def __call__( self : str ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called.") class A_ ( __lowercase ): @add_start_docstrings(UpperCAmelCase__) def __call__( self : int ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Tuple): for processor in self: __lowerCamelCase : Tuple = inspect.signature(processor.__call__).parameters if len(UpperCAmelCase__) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( F"Make sure that all the required parameters: {list(function_args.keys())} for " F"{processor.__class__} are passed to the logits processor.") __lowerCamelCase : str = processor(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,**UpperCAmelCase__) else: __lowerCamelCase : Optional[Any] = processor(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__) return scores class A_ ( __lowercase ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : float): if not isinstance(UpperCAmelCase__ ,UpperCAmelCase__) or not (temperature > 0): raise ValueError(F"`temperature` has to be a strictly positive float, but is {temperature}") __lowerCamelCase : Any = temperature def __call__( self : Any ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Dict = scores / self.temperature return scores class A_ ( __lowercase ): def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : float ,SCREAMING_SNAKE_CASE__ : float = -float('Inf') ,SCREAMING_SNAKE_CASE__ : int = 1): if not isinstance(UpperCAmelCase__ ,UpperCAmelCase__) or (top_p < 0 or top_p > 1.0): raise ValueError(F"`top_p` has to be a float > 0 and < 1, but is {top_p}") if not isinstance(UpperCAmelCase__ ,UpperCAmelCase__) or (min_tokens_to_keep < 1): raise ValueError(F"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}") __lowerCamelCase : Union[str, Any] = top_p __lowerCamelCase : int = filter_value __lowerCamelCase : Any = min_tokens_to_keep def __call__( self : str ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase , __lowerCamelCase : Dict = lax.top_k(UpperCAmelCase__ ,scores.shape[-1]) __lowerCamelCase : Tuple = jnp.full_like(UpperCAmelCase__ ,self.filter_value) __lowerCamelCase : Dict = jax.nn.softmax(UpperCAmelCase__ ,axis=-1).cumsum(axis=-1) __lowerCamelCase : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well __lowerCamelCase : Union[str, Any] = jnp.roll(UpperCAmelCase__ ,1) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase__) # min tokens to keep __lowerCamelCase : Optional[int] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase__) __lowerCamelCase : Optional[int] = jnp.where(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__) __lowerCamelCase : Optional[int] = jax.lax.sort_key_val(UpperCAmelCase__ ,UpperCAmelCase__)[-1] return next_scores class A_ ( __lowercase ): def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : float = -float('Inf') ,SCREAMING_SNAKE_CASE__ : int = 1): if not isinstance(UpperCAmelCase__ ,UpperCAmelCase__) or top_k <= 0: raise ValueError(F"`top_k` has to be a strictly positive integer, but is {top_k}") __lowerCamelCase : List[Any] = max(UpperCAmelCase__ ,UpperCAmelCase__) __lowerCamelCase : List[str] = filter_value def __call__( self : int ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase , __lowerCamelCase : Optional[int] = scores.shape __lowerCamelCase : int = jnp.full(batch_size * vocab_size ,self.filter_value) __lowerCamelCase : Optional[int] = min(self.top_k ,scores.shape[-1]) # Safety check __lowerCamelCase , __lowerCamelCase : Optional[Any] = lax.top_k(UpperCAmelCase__ ,UpperCAmelCase__) __lowerCamelCase : int = jnp.broadcast_to((jnp.arange(UpperCAmelCase__) * vocab_size)[:, None] ,(batch_size, topk)).flatten() __lowerCamelCase : int = topk_scores.flatten() __lowerCamelCase : Dict = topk_indices.flatten() + shift __lowerCamelCase : Union[str, Any] = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase__) __lowerCamelCase : Dict = next_scores_flat.reshape(UpperCAmelCase__ ,UpperCAmelCase__) return next_scores class A_ ( __lowercase ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Dict = bos_token_id def __call__( self : Dict ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Optional[int] = jnp.full(scores.shape ,-float('inf')) __lowerCamelCase : Union[str, Any] = 1 - jnp.bool_(cur_len - 1) __lowerCamelCase : List[str] = jnp.where(UpperCAmelCase__ ,new_scores.at[:, self.bos_token_id].set(0) ,UpperCAmelCase__) return scores class A_ ( __lowercase ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Optional[Any] = max_length __lowerCamelCase : List[Any] = eos_token_id def __call__( self : str ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Optional[Any] = jnp.full(scores.shape ,-float('inf')) __lowerCamelCase : Any = 1 - jnp.bool_(cur_len - self.max_length + 1) __lowerCamelCase : str = jnp.where(UpperCAmelCase__ ,new_scores.at[:, self.eos_token_id].set(0) ,UpperCAmelCase__) return scores class A_ ( __lowercase ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): if not isinstance(UpperCAmelCase__ ,UpperCAmelCase__) or min_length < 0: raise ValueError(F"`min_length` has to be a positive integer, but is {min_length}") if not isinstance(UpperCAmelCase__ ,UpperCAmelCase__) or eos_token_id < 0: raise ValueError(F"`eos_token_id` has to be a positive integer, but is {eos_token_id}") __lowerCamelCase : str = min_length __lowerCamelCase : Any = eos_token_id def __call__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : int): # create boolean flag to decide if min length penalty should be applied __lowerCamelCase : Union[str, Any] = 1 - jnp.clip(cur_len - self.min_length ,0 ,1) __lowerCamelCase : Union[str, Any] = jnp.where(UpperCAmelCase__ ,scores.at[:, self.eos_token_id].set(-float('inf')) ,UpperCAmelCase__) return scores class A_ ( __lowercase ): def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str]): __lowerCamelCase : Union[str, Any] = list(UpperCAmelCase__) __lowerCamelCase : str = begin_index def __call__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : int = 1 - jnp.bool_(cur_len - self.begin_index) __lowerCamelCase : Tuple = jnp.where(UpperCAmelCase__ ,scores.at[:, self.begin_suppress_tokens].set(-float('inf')) ,UpperCAmelCase__) return scores class A_ ( __lowercase ): def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : list): __lowerCamelCase : List[str] = list(UpperCAmelCase__) def __call__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : str = scores.at[..., self.suppress_tokens].set(-float('inf')) return scores class A_ ( __lowercase ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : str = dict(UpperCAmelCase__) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __lowerCamelCase : str = jnp.ones((max(force_token_map.keys()) + 1) ,dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: __lowerCamelCase : Dict = force_token_array.at[index].set(UpperCAmelCase__) __lowerCamelCase : str = jnp.intaa(UpperCAmelCase__) def __call__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : jnp.ndarray ,SCREAMING_SNAKE_CASE__ : int): def _force_token(SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : Optional[int] = scores.shape[0] __lowerCamelCase : Union[str, Any] = self.force_token_array[generation_idx] __lowerCamelCase : List[str] = jnp.ones_like(UpperCAmelCase__ ,dtype=scores.dtype) * -float('inf') __lowerCamelCase : Tuple = jnp.zeros((batch_size, 1) ,dtype=scores.dtype) __lowerCamelCase : Tuple = lax.dynamic_update_slice(UpperCAmelCase__ ,UpperCAmelCase__ ,(0, current_token)) return new_scores __lowerCamelCase : str = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(UpperCAmelCase__) ,lambda: scores ,) ,) return scores class A_ ( __lowercase ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[str]): __lowerCamelCase : List[Any] = generate_config.eos_token_id __lowerCamelCase : Dict = generate_config.no_timestamps_token_id __lowerCamelCase : Optional[Any] = generate_config.no_timestamps_token_id + 1 __lowerCamelCase : List[str] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase__ ,'max_initial_timestamp_index'): __lowerCamelCase : int = generate_config.max_initial_timestamp_index else: __lowerCamelCase : str = model_config.vocab_size if self.max_initial_timestamp_index is None: __lowerCamelCase : Any = model_config.vocab_size def __call__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int]): # suppress <|notimestamps|> which is handled by without_timestamps __lowerCamelCase : Optional[Any] = scores.at[:, self.no_timestamps_token_id].set(-float('inf')) def handle_pairs(SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : List[str] = jnp.where((cur_len - self.begin_index) >= 1 ,UpperCAmelCase__ ,UpperCAmelCase__) __lowerCamelCase : List[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,UpperCAmelCase__ ,) __lowerCamelCase : Optional[int] = jnp.where((cur_len - self.begin_index) < 2 ,UpperCAmelCase__ ,UpperCAmelCase__) __lowerCamelCase : int = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,UpperCAmelCase__ ,UpperCAmelCase__ ,) return jnp.where( UpperCAmelCase__ ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float('inf')) ,scores_k.at[: self.eos_token_id].set(-float('inf')) ,) ,UpperCAmelCase__ ,) __lowerCamelCase : str = jax.vmap(UpperCAmelCase__)(UpperCAmelCase__ ,UpperCAmelCase__) __lowerCamelCase : Tuple = jnp.where(cur_len == self.begin_index ,UpperCAmelCase__ ,UpperCAmelCase__) __lowerCamelCase : Optional[int] = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,UpperCAmelCase__ ,) __lowerCamelCase : Optional[int] = self.timestamp_begin + self.max_initial_timestamp_index __lowerCamelCase : Optional[int] = jnp.where( UpperCAmelCase__ ,scores.at[:, last_allowed + 1 :].set(-float('inf')) ,UpperCAmelCase__ ,) # if sum of probability over timestamps is above any other token, sample timestamp __lowerCamelCase : Optional[int] = jax.nn.log_softmax(UpperCAmelCase__ ,axis=-1) def handle_cumulative_probs(SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : int = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1) __lowerCamelCase : Optional[Any] = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float('inf')) ,UpperCAmelCase__ ,) __lowerCamelCase : Tuple = jax.vmap(UpperCAmelCase__)(UpperCAmelCase__ ,UpperCAmelCase__) return scores
73
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = torch.nn.Linear(1_0 , 1_0 ) lowerCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.prepare(UpperCAmelCase__ ) try: pickle.loads(pickle.dumps(UpperCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
4
0
import argparse from collections import defaultdict import yaml UpperCAmelCase : Any = "docs/source/en/_toctree.yml" def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase = defaultdict(lowerCamelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 lowerCamelCase = [key for key, value in counts.items() if value > 1] lowerCamelCase = [] for duplicate_key in duplicates: lowerCamelCase = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(lowerCamelCase__ ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : s["title"].lower() ) def __lowerCamelCase ( lowerCamelCase__ : List[Any]=False ): '''simple docstring''' with open(lowerCamelCase__ , encoding="""utf-8""" ) as f: lowerCamelCase = yaml.safe_load(f.read() ) # Get to the API doc lowerCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCamelCase = content[api_idx]["""sections"""] # Then to the model doc lowerCamelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCamelCase = api_doc[model_idx]["""sections"""] lowerCamelCase = [(idx, section) for idx, section in enumerate(lowerCamelCase__ ) if """sections""" in section] lowerCamelCase = False for idx, modality_doc in modalities_docs: lowerCamelCase = modality_doc["""sections"""] lowerCamelCase = clean_model_doc_toc(lowerCamelCase__ ) if old_modality_doc != new_modality_doc: lowerCamelCase = True if overwrite: lowerCamelCase = new_modality_doc if diff: if overwrite: lowerCamelCase = model_doc lowerCamelCase = api_doc with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCamelCase__ , allow_unicode=lowerCamelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase : List[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
252
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __snake_case ={"""facebook/blenderbot-3B""": 128} class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[Any] = BlenderbotTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str="replace" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : int="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Optional[int] , ) -> int: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = getattr(UpperCAmelCase__ , pre_tok_state.pop('type' ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**UpperCAmelCase__ ) lowerCAmelCase = add_prefix_space lowerCAmelCase = 'post_processor' lowerCAmelCase = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase = tuple(state['cls'] ) lowerCAmelCase = False if state.get('add_prefix_space' , UpperCAmelCase__ ) != add_prefix_space: lowerCAmelCase = add_prefix_space lowerCAmelCase = True if state.get('trim_offsets' , UpperCAmelCase__ ) != trim_offsets: lowerCAmelCase = trim_offsets lowerCAmelCase = True if changes_to_apply: lowerCAmelCase = getattr(UpperCAmelCase__ , state.pop('type' ) ) lowerCAmelCase = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value lowerCAmelCase = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[str] ) -> BatchEncoding: lowerCAmelCase = kwargs.get('is_split_into_words' , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase__ ) lowerCAmelCase = ' '.join(UpperCAmelCase__ ) lowerCAmelCase = self.encode(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
0
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : int = 1000 ): snake_case , snake_case : Tuple = 1, 1 snake_case : Optional[int] = 2 while True: snake_case : Optional[int] = 0 snake_case : List[Any] = fa + fa snake_case , snake_case : str = fa, f index += 1 for _ in str(lowercase__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
148
'''simple docstring''' from __future__ import annotations from statistics import mean def a_ ( lowerCamelCase : list[int] , lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase = [] lowerCAmelCase = -1 for i in range(lowerCamelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase = 0 lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : list[int] ): lowerCAmelCase = [0] * no_of_processes for i in range(lowerCamelCase ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case =4 __snake_case =[2, 5, 3, 7] __snake_case =[0, 0, 0, 0] __snake_case =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
4
0
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A : List[Any] = sys.version_info >= (3, 1_0) def _lowerCamelCase ( _UpperCamelCase=None , _UpperCamelCase=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_UpperCamelCase ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : int __UpperCAmelCase : float __UpperCAmelCase : str __UpperCAmelCase : bool @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : int =4_2 __UpperCAmelCase : str =field(default="""toto""" ,metadata={"""help""": """help message"""} ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : bool =False __UpperCAmelCase : bool =True __UpperCAmelCase : Optional[bool] =None class _UpperCamelCase ( __lowercase ): '''simple docstring''' __UpperCAmelCase : List[Any] ='''titi''' __UpperCAmelCase : List[str] ='''toto''' class _UpperCamelCase ( __lowercase ): '''simple docstring''' __UpperCAmelCase : List[str] ='''titi''' __UpperCAmelCase : Any ='''toto''' __UpperCAmelCase : Union[str, Any] =4_2 @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : BasicEnum ="toto" def snake_case ( self ): __lowerCAmelCase = BasicEnum(self.foo ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : MixedTypeEnum ="toto" def snake_case ( self ): __lowerCAmelCase = MixedTypeEnum(self.foo ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : Optional[int] =None __UpperCAmelCase : Optional[float] =field(default=__lowercase ,metadata={"""help""": """help message"""} ) __UpperCAmelCase : Optional[str] =None __UpperCAmelCase : Optional[List[str]] =list_field(default=[] ) __UpperCAmelCase : Optional[List[int]] =list_field(default=[] ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : List[int] =list_field(default=[] ) __UpperCAmelCase : List[int] =list_field(default=[1, 2, 3] ) __UpperCAmelCase : List[str] =list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) __UpperCAmelCase : List[float] =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : List[int] =field() __UpperCAmelCase : str =field() __UpperCAmelCase : BasicEnum =field() def snake_case ( self ): __lowerCAmelCase = BasicEnum(self.required_enum ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : int __UpperCAmelCase : "BasicEnum" =field() __UpperCAmelCase : "Optional[bool]" =None __UpperCAmelCase : "str" =field(default="""toto""" ,metadata={"""help""": """help message"""} ) __UpperCAmelCase : "List[str]" =list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : bool =False __UpperCAmelCase : bool =True __UpperCAmelCase : bool | None =None @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : int | None =None __UpperCAmelCase : float | None =field(default=__lowercase ,metadata={"""help""": """help message"""} ) __UpperCAmelCase : str | None =None __UpperCAmelCase : list[str] | None =list_field(default=[] ) __UpperCAmelCase : list[int] | None =list_field(default=[] ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self , __a , __a ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __lowerCAmelCase = {k: v for k, v in vars(UpperCAmelCase__ ).items() if k != "container"} __lowerCAmelCase = {k: v for k, v in vars(UpperCAmelCase__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , UpperCAmelCase__ ) and yy.get("choices" , UpperCAmelCase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](UpperCAmelCase__ ) , yy["type"](UpperCAmelCase__ ) ) del xx["type"], yy["type"] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument("--foo" , type=UpperCAmelCase__ , required=UpperCAmelCase__ ) expected.add_argument("--bar" , type=UpperCAmelCase__ , required=UpperCAmelCase__ ) expected.add_argument("--baz" , type=UpperCAmelCase__ , required=UpperCAmelCase__ ) expected.add_argument("--flag" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , const=UpperCAmelCase__ , nargs="?" ) self.argparsersEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((__lowerCAmelCase ) , ) = parser.parse_args_into_dataclasses(UpperCAmelCase__ , look_for_args_file=UpperCAmelCase__ ) self.assertFalse(example.flag ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=UpperCAmelCase__ ) expected.add_argument("--baz" , default="toto" , type=UpperCAmelCase__ , help="help message" ) self.argparsersEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument("--foo" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , const=UpperCAmelCase__ , nargs="?" ) expected.add_argument("--baz" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , const=UpperCAmelCase__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=UpperCAmelCase__ , dest="baz" ) expected.add_argument("--opt" , type=UpperCAmelCase__ , default=UpperCAmelCase__ ) __lowerCAmelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase__ ) for dataclass_type in dataclass_types: __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) self.argparsersEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = parser.parse_args([] ) self.assertEqual(UpperCAmelCase__ , Namespace(foo=UpperCAmelCase__ , baz=UpperCAmelCase__ , opt=UpperCAmelCase__ ) ) __lowerCAmelCase = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(UpperCAmelCase__ , Namespace(foo=UpperCAmelCase__ , baz=UpperCAmelCase__ , opt=UpperCAmelCase__ ) ) __lowerCAmelCase = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(UpperCAmelCase__ , Namespace(foo=UpperCAmelCase__ , baz=UpperCAmelCase__ , opt=UpperCAmelCase__ ) ) __lowerCAmelCase = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(UpperCAmelCase__ , Namespace(foo=UpperCAmelCase__ , baz=UpperCAmelCase__ , opt=UpperCAmelCase__ ) ) __lowerCAmelCase = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(UpperCAmelCase__ , Namespace(foo=UpperCAmelCase__ , baz=UpperCAmelCase__ , opt=UpperCAmelCase__ ) ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) __lowerCAmelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __lowerCAmelCase = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) __lowerCAmelCase = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __lowerCAmelCase = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) __lowerCAmelCase = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case ( self ): @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : Literal["titi", "toto", 4_2] ="toto" __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) __lowerCAmelCase = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) __lowerCAmelCase = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=UpperCAmelCase__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=UpperCAmelCase__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=UpperCAmelCase__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=UpperCAmelCase__ ) self.argparsersEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = parser.parse_args([] ) self.assertEqual( UpperCAmelCase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) __lowerCAmelCase = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(UpperCAmelCase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def snake_case ( self ): __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument("--foo" , default=UpperCAmelCase__ , type=UpperCAmelCase__ ) expected.add_argument("--bar" , default=UpperCAmelCase__ , type=UpperCAmelCase__ , help="help message" ) expected.add_argument("--baz" , default=UpperCAmelCase__ , type=UpperCAmelCase__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=UpperCAmelCase__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=UpperCAmelCase__ ) __lowerCAmelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase__ ) for dataclass_type in dataclass_types: __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) self.argparsersEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = parser.parse_args([] ) self.assertEqual(UpperCAmelCase__ , Namespace(foo=UpperCAmelCase__ , bar=UpperCAmelCase__ , baz=UpperCAmelCase__ , ces=[] , des=[] ) ) __lowerCAmelCase = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(UpperCAmelCase__ , Namespace(foo=12 , bar=3.1_4 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=UpperCAmelCase__ , required=UpperCAmelCase__ ) expected.add_argument("--required_str" , type=UpperCAmelCase__ , required=UpperCAmelCase__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=UpperCAmelCase__ , ) self.argparsersEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = argparse.ArgumentParser() expected.add_argument("--foo" , type=UpperCAmelCase__ , required=UpperCAmelCase__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=UpperCAmelCase__ , ) expected.add_argument("--opt" , type=UpperCAmelCase__ , default=UpperCAmelCase__ ) expected.add_argument("--baz" , default="toto" , type=UpperCAmelCase__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=UpperCAmelCase__ ) self.argparsersEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = { "foo": 12, "bar": 3.1_4, "baz": "42", "flag": True, } __lowerCAmelCase = parser.parse_dict(UpperCAmelCase__ )[0] __lowerCAmelCase = BasicExample(**UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = { "foo": 12, "bar": 3.1_4, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(UpperCAmelCase__ , parser.parse_dict , UpperCAmelCase__ , allow_extra_keys=UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = { "foo": 12, "bar": 3.1_4, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = os.path.join(UpperCAmelCase__ , "temp_json" ) os.mkdir(UpperCAmelCase__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] __lowerCAmelCase = BasicExample(**UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) __lowerCAmelCase = { "foo": 12, "bar": 3.1_4, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = os.path.join(UpperCAmelCase__ , "temp_yaml" ) os.mkdir(UpperCAmelCase__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] __lowerCAmelCase = BasicExample(**UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = HfArgumentParser(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ )
57
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_euler' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowerCAmelCase = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) lowerCAmelCase = 'A painting of a squirrel eating a burger' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowerCAmelCase__ = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler("sample_euler" ) lowerCAmelCase__ = "A painting of a squirrel eating a burger" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowerCAmelCase__ = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler("sample_euler" ) lowerCAmelCase__ = "A painting of a squirrel eating a burger" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sd_pipe([prompt] , generator=UpperCAmelCase__ , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowerCAmelCase__ = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) lowerCAmelCase__ = "A painting of a squirrel eating a burger" lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=UpperCAmelCase__ , ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
340
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ): # Format the message. if name is None: lowerCAmelCase = None else: lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase = fmt.format(lowerCamelCase ) # Print and recurse (if needed). if isinstance(lowerCamelCase , lowerCamelCase ): if msg is not None: print(lowerCamelCase ) for k in val.keys(): recursive_print(lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase , torch.Tensor ): print(lowerCamelCase , ':' , val.size() ) else: print(lowerCamelCase , ':' , lowerCamelCase ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 2 ) lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 1 ).contiguous() lowerCAmelCase = param.view(*lowerCamelCase ) return param def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ): # The converted output model. lowerCAmelCase = {} # old versions did not store training args lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase = ds_args.padded_vocab_size lowerCAmelCase = ds_args.max_position_embeddings lowerCAmelCase = ds_args.hidden_size lowerCAmelCase = ds_args.num_layers lowerCAmelCase = ds_args.num_attention_heads lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase = config.n_head # The hidden_size per head. lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase = input_state_dict['checkpoint_version'] else: lowerCAmelCase = 0.0 # The model. lowerCAmelCase = input_state_dict['model'] # The language model. lowerCAmelCase = model['language_model'] # The embeddings. lowerCAmelCase = lm['embedding'] # The word embeddings. lowerCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase = word_embeddings[: config.vocab_size, :] lowerCAmelCase = word_embeddings # The position embeddings. lowerCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase = pos_embeddings # The transformer. lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase = layer_re.match(lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase = m.group(3 ) # The name of the layer. lowerCAmelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase = masked_bias lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Store. No change of shape. lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase = transformer['final_layernorm.weight'] lowerCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def a_ ( ): # Create the argument parser. lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase = parser.parse_args() # Extract the basename. lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) else: lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase = 'gelu_new' else: lowerCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase , lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase = 'gpt2' lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase ) lowerCAmelCase = type(lowerCamelCase ).__name__ lowerCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase ) # Store the state_dict to file. lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase , lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
4
0
def a__ ( A_, A_, A_, A_ ): '''simple docstring''' if height >= 1: move_tower(height - 1, A_, A_, A_ ) move_disk(A_, A_ ) move_tower(height - 1, A_, A_, A_ ) def a__ ( A_, A_ ): '''simple docstring''' print("""moving disk from""", A_, """to""", A_ ) def a__ ( ): '''simple docstring''' __magic_name__ = int(input("""Height of hanoi: """ ).strip() ) move_tower(A_, """A""", """B""", """C""" ) if __name__ == "__main__": main()
88
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : List[str] ) -> str: lowerCAmelCase = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) lowerCAmelCase = F'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier lowerCAmelCase = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ) -> str: return str(self ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) lowerCAmelCase = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self : str , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : str , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = F'''Unsupported type given for another ({type(UpperCAmelCase__ )})''' raise TypeError(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ): # a^(-1) lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase , lowerCamelCase )}''' ) def a_ ( ): import doctest doctest.testmod() testa()
4
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: str , __UpperCAmelCase: Tuple , __UpperCAmelCase: int ) -> List[Any]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase__ : str = np.full((len(__UpperCAmelCase ), sequence_length, 2) , __UpperCAmelCase ) else: UpperCamelCase__ : Optional[Any] = np.full((len(__UpperCAmelCase ), sequence_length) , __UpperCAmelCase ) for i, tensor in enumerate(__UpperCAmelCase ): if padding_side == "right": if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase__ : Optional[Any] = tensor[:sequence_length] else: UpperCamelCase__ : Optional[int] = tensor[:sequence_length] else: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase__ : int = tensor[:sequence_length] else: UpperCamelCase__ : Union[str, Any] = tensor[:sequence_length] return out_tensor.tolist() def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] ) -> List[str]: UpperCamelCase__ : List[Any] = ord(__UpperCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True UpperCamelCase__ : Any = unicodedata.category(__UpperCAmelCase ) if cat.startswith('''P''' ): return True return False @dataclass class lowercase__ ( __lowercase ): '''simple docstring''' a : PreTrainedTokenizerBase a : Union[bool, str, PaddingStrategy] = True a : Optional[int] = None a : Optional[int] = None a : int = -100 a : str = "pt" def UpperCamelCase__ ( self, __magic_name__ ) -> List[Any]: """simple docstring""" import torch UpperCamelCase__ : int = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCamelCase__ : List[str] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCamelCase__ : Union[str, Any] = self.tokenizer.pad( UpperCAmelCase__, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='''pt''' if labels is None else None, ) if labels is None: return batch UpperCamelCase__ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCamelCase__ : Optional[Any] = self.tokenizer.padding_side if padding_side == "right": UpperCamelCase__ : Optional[Any] = [ list(UpperCAmelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase__ )) for label in labels ] else: UpperCamelCase__ : Union[str, Any] = [ [self.label_pad_token_id] * (sequence_length - len(UpperCAmelCase__ )) + list(UpperCAmelCase__ ) for label in labels ] UpperCamelCase__ : List[str] = [feature['''ner_tags'''] for feature in features] UpperCamelCase__ : str = padding_tensor(UpperCAmelCase__, -1, UpperCAmelCase__, UpperCAmelCase__ ) UpperCamelCase__ : Dict = [feature['''original_entity_spans'''] for feature in features] UpperCamelCase__ : List[str] = padding_tensor(UpperCAmelCase__, (-1, -1), UpperCAmelCase__, UpperCAmelCase__ ) UpperCamelCase__ : List[Any] = {k: torch.tensor(UpperCAmelCase__, dtype=torch.intaa ) for k, v in batch.items()} return batch
201
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None: lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = [0] * len_array if len_array > 0: lowerCAmelCase = array[0] for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool: lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[Any]: # Format the message. if name is None: lowercase__: Any = None else: lowercase__: Optional[Any] = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(5_0 - spaces ) + '''s}''' lowercase__: List[str] = fmt.format(__UpperCAmelCase ) # Print and recurse (if needed). if isinstance(__UpperCAmelCase , __UpperCAmelCase ): if msg is not None: print(__UpperCAmelCase ) for k in val.keys(): recursive_print(__UpperCAmelCase , val[k] , spaces + 2 ) elif isinstance(__UpperCAmelCase , torch.Tensor ): print(__UpperCAmelCase , ''':''' , val.size() ) else: print(__UpperCAmelCase , ''':''' , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowercase__: str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowercase__: List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] lowercase__: Optional[Any] = param.view(*__UpperCAmelCase ) lowercase__: str = param.transpose(0 , 2 ) lowercase__: Union[str, Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowercase__: int = (num_heads, num_splits, hidden_size) + input_shape[1:] lowercase__: Optional[int] = param.view(*__UpperCAmelCase ) lowercase__: Dict = param.transpose(0 , 1 ).contiguous() lowercase__: Union[str, Any] = param.view(*__UpperCAmelCase ) return param def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: # The converted output model. lowercase__: int = {} # old versions did not store training args lowercase__: int = input_state_dict.get('''args''' , __UpperCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowercase__: List[str] = ds_args.padded_vocab_size lowercase__: int = ds_args.max_position_embeddings lowercase__: int = ds_args.hidden_size lowercase__: Optional[Any] = ds_args.num_layers lowercase__: int = ds_args.num_attention_heads lowercase__: Optional[Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowercase__: List[Any] = config.n_head # The hidden_size per head. lowercase__: List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowercase__: int = input_state_dict['''checkpoint_version'''] else: lowercase__: List[Any] = 0.0 # The model. lowercase__: Any = input_state_dict['''model'''] # The language model. lowercase__: Dict = model['''language_model'''] # The embeddings. lowercase__: str = lm['''embedding'''] # The word embeddings. lowercase__: Any = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. lowercase__: List[Any] = word_embeddings[: config.vocab_size, :] lowercase__: List[str] = word_embeddings # The position embeddings. lowercase__: Dict = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowercase__: int = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match""" ) # Store the position embeddings. lowercase__: Optional[Any] = pos_embeddings # The transformer. lowercase__: Any = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. lowercase__: Optional[int] = re.compile(R'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. lowercase__: Tuple = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowercase__: List[Any] = layer_re.match(__UpperCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowercase__: List[Any] = int(m.group(1 ) ) # The name of the operation. lowercase__: Optional[int] = m.group(2 ) # Is it a weight or a bias? lowercase__: Optional[int] = m.group(3 ) # The name of the layer. lowercase__: List[Any] = F"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): lowercase__: Optional[int] = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' lowercase__: int = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowercase__: int = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __UpperCAmelCase , __UpperCAmelCase ) lowercase__: List[str] = causal_mask # Insert a "dummy" tensor for masked_bias. lowercase__: List[str] = torch.tensor(-1e4 , dtype=torch.floataa ) lowercase__: int = masked_bias lowercase__: Optional[int] = fix_query_key_value_ordering(__UpperCAmelCase , __UpperCAmelCase , 3 , __UpperCAmelCase , __UpperCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowercase__: str = out_val.transpose(0 , 1 ).contiguous() # Store. lowercase__: Union[str, Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowercase__: List[str] = fix_query_key_value_ordering(__UpperCAmelCase , __UpperCAmelCase , 3 , __UpperCAmelCase , __UpperCAmelCase ) # Store. No change of shape. lowercase__: Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": lowercase__: Any = megatron_to_transformers[op_name] lowercase__: Union[str, Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowercase__: Optional[int] = megatron_to_transformers[op_name] lowercase__: Any = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowercase__: str = transformer['''final_layernorm.weight'''] lowercase__: str = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. lowercase__: List[str] = word_embeddings # It should be done! return output_state_dict def SCREAMING_SNAKE_CASE__ ( ) -> Dict: # Create the argument parser. lowercase__: Dict = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=__UpperCAmelCase , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=__UpperCAmelCase , help='''An optional config json file describing the pre-trained model.''' , ) lowercase__: str = parser.parse_args() # Extract the basename. lowercase__: int = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: lowercase__: Any = torch.load(__UpperCAmelCase , map_location='''cpu''' ) else: lowercase__: List[str] = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) lowercase__: Optional[int] = input_state_dict.get('''args''' , __UpperCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowercase__: Optional[Any] = '''gelu_fast''' elif ds_args.openai_gelu: lowercase__: Optional[Any] = '''gelu_new''' else: lowercase__: Dict = '''gelu''' else: # in the very early days this used to be "gelu_new" lowercase__: Optional[Any] = '''gelu_new''' # Spell out all parameters in case the defaults change. lowercase__: Dict = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=__UpperCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.0_2 , summary_type='''cls_index''' , summary_use_proj=__UpperCAmelCase , summary_activation=__UpperCAmelCase , summary_proj_to_labels=__UpperCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCAmelCase , use_cache=__UpperCAmelCase , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: lowercase__: Any = GPTaConfig.from_json_file(args.config_file ) lowercase__: List[str] = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) lowercase__: Tuple = convert_megatron_checkpoint(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCAmelCase , __UpperCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowercase__: Dict = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowercase__: List[Any] = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": lowercase__: Optional[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(F"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: lowercase__: Dict = '''gpt2''' lowercase__: Optional[int] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) lowercase__: str = type(__UpperCAmelCase ).__name__ lowercase__: Dict = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(__UpperCAmelCase ) # Save tokenizer based on args print(F"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(__UpperCAmelCase ) # Store the state_dict to file. lowercase__: str = os.path.join(__UpperCAmelCase , '''pytorch_model.bin''' ) print(F"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
177
'''simple docstring''' def a_ ( lowerCamelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a_ ( lowerCamelCase : dict[int, list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(lowerCamelCase ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(lowerCamelCase ): if not visited[i]: dfs(lowerCamelCase , -1 , lowerCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case ( __lowercase, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = RoCBertTokenizer SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : int = filter_non_english def lowercase_ ( self : Dict)-> Dict: '''simple docstring''' super().setUp() __lowerCAmelCase: str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] __lowerCAmelCase: Tuple = {} __lowerCAmelCase: Optional[Any] = {} for i, value in enumerate(UpperCAmelCase__): __lowerCAmelCase: int = i __lowerCAmelCase: Dict = i __lowerCAmelCase: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) __lowerCAmelCase: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"]) __lowerCAmelCase: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) with open(self.word_shape_file , "w" , encoding="utf-8") as word_shape_writer: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__) with open(self.word_pronunciation_file , "w" , encoding="utf-8") as word_pronunciation_writer: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__) def lowercase_ ( self : Dict)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __lowerCAmelCase: Optional[Any] = tokenizer.tokenize("你好[SEP]你是谁") self.assertListEqual(UpperCAmelCase__ , ["你", "好", "[SEP]", "你", "是", "谁"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase__) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase__) , [5, 6, 2, 5, 7, 8]) def lowercase_ ( self : Any)-> str: '''simple docstring''' __lowerCAmelCase: Tuple = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz") , ["ah", "\u535A", "\u63A8", "zz"]) def lowercase_ ( self : Optional[Any])-> str: '''simple docstring''' __lowerCAmelCase: Optional[int] = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["hello", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def lowercase_ ( self : List[Any])-> Any: '''simple docstring''' __lowerCAmelCase: Optional[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hällo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["h\u00E9llo"]) def lowercase_ ( self : List[str])-> List[str]: '''simple docstring''' __lowerCAmelCase: Any = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def lowercase_ ( self : str)-> List[Any]: '''simple docstring''' __lowerCAmelCase: Tuple = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def lowercase_ ( self : List[str])-> List[str]: '''simple docstring''' __lowerCAmelCase: List[str] = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"]) def lowercase_ ( self : Any)-> str: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HäLLo", "!", "how", "Are", "yoU", "?"]) def lowercase_ ( self : List[Any])-> Any: '''simple docstring''' __lowerCAmelCase: Dict = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HaLLo", "!", "how", "Are", "yoU", "?"]) def lowercase_ ( self : List[str])-> List[str]: '''simple docstring''' __lowerCAmelCase: int = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]") , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]) def lowercase_ ( self : str)-> List[str]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __lowerCAmelCase: Optional[int] = {} for i, token in enumerate(UpperCAmelCase__): __lowerCAmelCase: Union[str, Any] = i __lowerCAmelCase: Dict = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase__ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("unwanted running") , ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running") , ["[UNK]", "runn", "##ing"]) def lowercase_ ( self : Any)-> Tuple: '''simple docstring''' self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def lowercase_ ( self : List[Any])-> List[str]: '''simple docstring''' self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def lowercase_ ( self : Optional[int])-> List[Any]: '''simple docstring''' self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def lowercase_ ( self : Union[str, Any])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Tuple = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase__) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) if self.test_rust_tokenizer: __lowerCAmelCase: List[str] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase__) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) def lowercase_ ( self : Dict)-> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __lowerCAmelCase: str = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__) __lowerCAmelCase: Optional[int] = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." __lowerCAmelCase: Union[str, Any] = tokenizer_r.encode_plus( UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , ) __lowerCAmelCase: int = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase__ , "do_lower_case") else False __lowerCAmelCase: Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "Allen"), ((2_1, 2_3), "##NL"), ((2_3, 2_4), "##P"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "allen"), ((2_1, 2_3), "##nl"), ((2_3, 2_4), "##p"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"]) def lowercase_ ( self : str)-> Tuple: '''simple docstring''' __lowerCAmelCase: Any = ["的", "人", "有"] __lowerCAmelCase: Optional[Any] = "".join(UpperCAmelCase__) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __lowerCAmelCase: Optional[Any] = True __lowerCAmelCase: Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__) __lowerCAmelCase: Tuple = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__) __lowerCAmelCase: int = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) __lowerCAmelCase: Tuple = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) __lowerCAmelCase: Any = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__) __lowerCAmelCase: List[Any] = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) __lowerCAmelCase: Dict = False __lowerCAmelCase: List[Any] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__) __lowerCAmelCase: Any = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__) __lowerCAmelCase: Dict = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) __lowerCAmelCase: Optional[int] = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) __lowerCAmelCase: List[str] = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__) __lowerCAmelCase: Tuple = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__) # it is expected that only the first Chinese character is not preceded by "##". __lowerCAmelCase: int = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase__) ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) @slow def lowercase_ ( self : List[str])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: List[str] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) __lowerCAmelCase: Tuple = tokenizer.encode("你好" , add_special_tokens=UpperCAmelCase__) __lowerCAmelCase: Any = tokenizer.encode("你是谁" , add_special_tokens=UpperCAmelCase__) __lowerCAmelCase: Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__) __lowerCAmelCase: Tuple = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase_ ( self : str)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: int = self.get_tokenizers(do_lower_case=UpperCAmelCase__) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): __lowerCAmelCase: Dict = "你好,你是谁" __lowerCAmelCase: List[str] = tokenizer.tokenize(UpperCAmelCase__) __lowerCAmelCase: Any = tokenizer.convert_tokens_to_ids(UpperCAmelCase__) __lowerCAmelCase: str = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase__) __lowerCAmelCase: Tuple = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase__) __lowerCAmelCase: Dict = tokenizer.prepare_for_model( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) __lowerCAmelCase: Optional[int] = tokenizer.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__)
217
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCAmelCase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCAmelCase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCAmelCase = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(lowerCamelCase )-1}''' ) if "norm" in key: lowerCAmelCase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCAmelCase = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(lowerCamelCase )-1}''' ) if "layer_norm1" in key: lowerCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find('block' ) + len('block' )] lowerCAmelCase = key.replace(f'''block{idx}''' , f'''block.{int(lowerCamelCase )-1}''' ) if "attn.q" in key: lowerCAmelCase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCAmelCase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCAmelCase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCAmelCase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCAmelCase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCAmelCase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find('linear_c' ) + len('linear_c' )] lowerCAmelCase = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(lowerCamelCase )-1}''' ) if "bot_conv" in key: lowerCAmelCase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCAmelCase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCAmelCase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCAmelCase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCAmelCase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCAmelCase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCAmelCase = key.replace('module.last_layer_depth' , 'head.head' ) lowerCAmelCase = value return new_state_dict def a_ ( lowerCamelCase : List[str] , lowerCamelCase : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def a_ ( ): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return image @torch.no_grad() def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=None ): lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCAmelCase = torch.load(lowerCamelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCAmelCase = rename_keys(lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(lowerCamelCase , lowerCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # forward pass lowerCAmelCase = model(lowerCamelCase ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase , lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase , ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
4
0
"""simple docstring""" import numpy as np def lowercase__ ( snake_case_ :np.ndarray , snake_case_ :float ): return np.where(vector > 0 , snake_case_ , (alpha * (np.exp(snake_case_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
332
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Tuple: lowerCAmelCase = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCAmelCase = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house lowerCAmelCase = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim lowerCAmelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCAmelCase = model(UpperCAmelCase__ )['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase__ , atol=1E-3 ) )
4
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _a ( unittest.TestCase): """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : str=1_0_0 , __UpperCamelCase : str=1_3 , __UpperCamelCase : Dict=3_0 , __UpperCamelCase : Dict=2 , __UpperCamelCase : int=3 , __UpperCamelCase : Any=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=5 , __UpperCamelCase : Any=4 , __UpperCamelCase : List[str]=3_7 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Optional[int]=1_0 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Tuple=3 , )->Dict: _UpperCAmelCase = parent _UpperCAmelCase = vocab_size _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def lowercase__ ( self : List[Any] )->List[str]: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int )->str: _UpperCAmelCase = FlaxBeitModel(config=UpperCAmelCase__ ) _UpperCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] )->Any: _UpperCAmelCase = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase__ ) _UpperCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : str )->Optional[int]: _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FlaxBeitForImageClassification(config=UpperCAmelCase__ ) _UpperCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FlaxBeitForImageClassification(UpperCAmelCase__ ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(UpperCAmelCase__ ) def lowercase__ ( self : Any )->str: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class _a ( __lowercase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowercase__ ( self : Any )->None: _UpperCAmelCase = FlaxBeitModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[Any]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] )->Tuple: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase__ ) _UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _UpperCAmelCase = model_class(UpperCAmelCase__ ) @jax.jit def model_jitted(__UpperCamelCase : Dict , **__UpperCamelCase : Optional[int] ): return model(pixel_values=UpperCAmelCase__ , **UpperCAmelCase__ ) with self.subTest('''JIT Enabled''' ): _UpperCAmelCase = model_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCAmelCase = model_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self : Dict )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def lowercase__ ( self : Optional[int] )->str: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def lowercase__ ( self : List[str] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def lowercase__ ( self : str )->Optional[Any]: for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) _UpperCAmelCase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(UpperCAmelCase__ ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class _a ( unittest.TestCase): """simple docstring""" @cached_property def lowercase__ ( self : str )->str: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def lowercase__ ( self : Dict )->int: _UpperCAmelCase = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos _UpperCAmelCase = np.ones((1, 1_9_6) , dtype=UpperCAmelCase__ ) # forward pass _UpperCAmelCase = model(pixel_values=UpperCAmelCase__ , bool_masked_pos=UpperCAmelCase__ ) _UpperCAmelCase = outputs.logits # verify the logits _UpperCAmelCase = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape , UpperCAmelCase__ ) _UpperCAmelCase = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , UpperCAmelCase__ , atol=1e-2 ) ) @slow def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='''np''' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase__ ) _UpperCAmelCase = outputs.logits # verify the logits _UpperCAmelCase = (1, 1_0_0_0) self.assertEqual(logits.shape , UpperCAmelCase__ ) _UpperCAmelCase = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCAmelCase__ , atol=1e-4 ) ) _UpperCAmelCase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase__ ) @slow def lowercase__ ( self : int )->str: _UpperCAmelCase = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='''np''' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase__ ) _UpperCAmelCase = outputs.logits # verify the logits _UpperCAmelCase = (1, 2_1_8_4_1) self.assertEqual(logits.shape , UpperCAmelCase__ ) _UpperCAmelCase = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCAmelCase__ , atol=1e-4 ) ) _UpperCAmelCase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase__ )
260
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a_ ( lowerCamelCase : Dict ): lowerCAmelCase = {} lowerCAmelCase = tokenizer(example['content'] , truncation=lowerCamelCase )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(output['input_ids'] ) return output __snake_case =HfArgumentParser(PretokenizationArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') __snake_case =time.time() __snake_case =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') __snake_case =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
4
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor a =logging.get_logger(__name__) class A_ ( __lowercase ): def __init__( self : Dict ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : List[str]): warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' ,UpperCAmelCase__ ,) super().__init__(*UpperCAmelCase__ ,**UpperCAmelCase__)
73
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : bool = field(default=__lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = v.to_dict() return d
4
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : List[str] = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case =logging.get_logger("""transformers.models.encodec""") __snake_case ={ """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case ={ """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case ={ """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case ={ """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case ={ """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case =[] __snake_case =[] def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: lowerCAmelCase = getattr(lowerCamelCase , lowerCamelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(f'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase , lowerCamelCase ): logger.info(f'''{name} was ignored''' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase , lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(lowerCamelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , lowerCamelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(lowerCamelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 32000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 48000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase = EncodecModel(lowerCamelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase ) lowerCAmelCase = torch.load(lowerCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.save_pretrained(lowerCamelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowerCamelCase ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def UpperCamelCase__ ( lowercase__ : Union[str, Any] , lowercase__ : List[str]=False ): snake_case : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def UpperCamelCase__ ( lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any]=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case : Optional[int] = "" else: snake_case : Tuple = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) snake_case : Union[str, Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case : Optional[int] = in_proj_weight[ : config.hidden_size, : ] snake_case : List[str] = in_proj_bias[: config.hidden_size] snake_case : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case : List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case : List[str] = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : str ): snake_case : List[str] = dct.pop(lowercase__ ) snake_case : List[Any] = val def UpperCamelCase__ ( ): snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case : int = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( lowercase__ : List[str] , lowercase__ : Dict ): snake_case : List[str] = DeiTConfig() # all deit models have fine-tuned heads snake_case : List[str] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case : Any = 1000 snake_case : Optional[int] = "huggingface/label-files" snake_case : List[str] = "imagenet-1k-id2label.json" snake_case : Any = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) snake_case : List[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} snake_case : str = idalabel snake_case : List[str] = {v: k for k, v in idalabel.items()} snake_case : List[Any] = int(deit_name[-6:-4] ) snake_case : Union[str, Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): snake_case : Optional[Any] = 192 snake_case : Union[str, Any] = 768 snake_case : List[str] = 12 snake_case : str = 3 elif deit_name[9:].startswith("small" ): snake_case : Optional[Any] = 384 snake_case : int = 1536 snake_case : int = 12 snake_case : str = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): snake_case : Any = 1024 snake_case : Tuple = 4096 snake_case : int = 24 snake_case : int = 16 # load original model from timm snake_case : Union[str, Any] = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case : Tuple = timm_model.state_dict() snake_case : Dict = create_rename_keys(lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model snake_case : int = DeiTForImageClassificationWithTeacher(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case : Optional[Any] = DeiTImageProcessor(size=lowercase__ , crop_size=config.image_size ) snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="pt" ) snake_case : List[str] = encoding["pixel_values"] snake_case : Tuple = model(lowercase__ ) snake_case : List[str] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __A = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
148
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin A : List[Any] = False @skip_mps class _UpperCamelCase ( __lowercase ,__lowercase ,__lowercase ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =StableDiffusionAttendAndExcitePipeline __UpperCAmelCase : Any =False __UpperCAmelCase : List[str] =TEXT_TO_IMAGE_PARAMS __UpperCAmelCase : Tuple =TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) __UpperCAmelCase : Dict =TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase : Optional[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def snake_case ( cls ): super().setUpClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) @classmethod def snake_case ( cls ): super().tearDownClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , ) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) __lowerCAmelCase = CLIPTextModel(UpperCAmelCase__ ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowerCAmelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case ( self , __a , __a=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(UpperCAmelCase__ ) else: __lowerCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __lowerCAmelCase = __lowerCAmelCase = { "prompt": "a cat and a frog", "token_indices": [2, 5], "generator": generator, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", "max_iter_to_alter": 2, "thresholds": {0: 0.7}, } return inputs def snake_case ( self ): __lowerCAmelCase = "cpu" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __lowerCAmelCase = self.get_dummy_inputs(UpperCAmelCase__ ) __lowerCAmelCase = pipe(**UpperCAmelCase__ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __lowerCAmelCase = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) __lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase__ , 1e-3 ) def snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def snake_case ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case ( self ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def snake_case ( self ): super().test_save_load_local(expected_max_difference=5e-4 ) def snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case ( cls ): super().setUpClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) @classmethod def snake_case ( cls ): super().tearDownClass() torch.use_deterministic_algorithms(UpperCAmelCase__ ) def snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): __lowerCAmelCase = torch.manual_seed(51 ) __lowerCAmelCase = StableDiffusionAttendAndExcitePipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , safety_checker=UpperCAmelCase__ , torch_dtype=torch.floataa ) pipe.to("cuda" ) __lowerCAmelCase = "a painting of an elephant with glasses" __lowerCAmelCase = [5, 7] __lowerCAmelCase = pipe( prompt=UpperCAmelCase__ , token_indices=UpperCAmelCase__ , guidance_scale=7.5 , generator=UpperCAmelCase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="numpy" , ).images[0] __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy" ) assert np.abs((expected_image - image).max() ) < 5e-1
57
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
0