code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCAmelCase__ = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') UpperCAmelCase__ = f'''https://www.google.com/search?q={query}&num=100''' UpperCAmelCase__ = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: UpperCAmelCase__ = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: UpperCAmelCase__ = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
5
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=2_4 , UpperCAmelCase=2 , UpperCAmelCase=6 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=1_0_0_0 , ) -> List[str]: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =scope _lowercase =range_bbox def __A (self ) -> List[Any]: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase =bbox[i, j, 3] _lowercase =bbox[i, j, 1] _lowercase =t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase =bbox[i, j, 2] _lowercase =bbox[i, j, 0] _lowercase =t _lowercase =None if self.use_input_mask: _lowercase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowercase =None if self.use_token_type_ids: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __A (self ) -> str: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> str: _lowercase =LiltModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) _lowercase =model(UpperCAmelCase , bbox=UpperCAmelCase , token_type_ids=UpperCAmelCase ) _lowercase =model(UpperCAmelCase , bbox=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Tuple: _lowercase =self.num_labels _lowercase =LiltForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Tuple: _lowercase =LiltForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A (self ) -> int: _lowercase =self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =config_and_inputs _lowercase ={ '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: return True def __A (self ) -> int: _lowercase =LiltModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> Union[str, Any]: self.config_tester.run_common_tests() def __A (self ) -> str: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> Any: _lowercase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase =type self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) def __A (self ) -> Dict: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) @slow def __A (self ) -> List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =LiltModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch @slow class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> str: _lowercase =LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(UpperCAmelCase ) _lowercase =torch.tensor([[1, 2]] , device=UpperCAmelCase ) _lowercase =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase ) # forward pass with torch.no_grad(): _lowercase =model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase ) _lowercase =torch.Size([1, 2, 7_6_8] ) _lowercase =torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase , atol=1e-3 ) )
5
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> str: _lowercase =parent _lowercase =1_3 _lowercase =7 _lowercase =True _lowercase =True _lowercase =True _lowercase =True _lowercase =9_9 _lowercase =3_2 _lowercase =2 _lowercase =4 _lowercase =3_7 _lowercase ='''gelu''' _lowercase =0.1 _lowercase =0.1 _lowercase =5_1_2 _lowercase =1_6 _lowercase =2 _lowercase =0.02 _lowercase =3 _lowercase =4 _lowercase =None def __A (self ) -> Any: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None if self.use_token_type_ids: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _lowercase =TFRoFormerModel(config=UpperCAmelCase ) _lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowercase =[input_ids, input_mask] _lowercase =model(UpperCAmelCase ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =True _lowercase =TFRoFormerForCausalLM(config=UpperCAmelCase ) _lowercase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _lowercase =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _lowercase =TFRoFormerForMaskedLM(config=UpperCAmelCase ) _lowercase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _lowercase =self.num_labels _lowercase =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) _lowercase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: _lowercase =self.num_choices _lowercase =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) _lowercase =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: _lowercase =self.num_labels _lowercase =TFRoFormerForTokenClassification(config=UpperCAmelCase ) _lowercase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) _lowercase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A (self ) -> int: _lowercase =self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =config_and_inputs _lowercase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def __A (self ) -> Tuple: _lowercase =TFRoFormerModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> str: self.config_tester.run_common_tests() def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> Dict: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A (self ) -> Any: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A (self ) -> Any: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A (self ) -> List[str]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A (self ) -> Optional[int]: _lowercase =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class lowerCamelCase__ ( unittest.TestCase): @slow def __A (self ) -> Dict: _lowercase =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) _lowercase =tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase =model(UpperCAmelCase )[0] # TODO Replace vocab size _lowercase =5_0_0_0_0 _lowercase =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _lowercase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class lowerCamelCase__ ( unittest.TestCase): SCREAMING_SNAKE_CASE__ = 1E-4 def __A (self ) -> List[Any]: _lowercase =tf.constant([[4, 1_0]] ) _lowercase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _lowercase =emba(input_ids.shape ) _lowercase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def __A (self ) -> Optional[Any]: _lowercase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _lowercase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) _lowercase =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class lowerCamelCase__ ( unittest.TestCase): SCREAMING_SNAKE_CASE__ = 1E-4 def __A (self ) -> List[Any]: # 2,12,16,64 _lowercase =tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 _lowercase =-tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 _lowercase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) _lowercase =embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] _lowercase , _lowercase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _lowercase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _lowercase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
5
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger('''transformers.models.encodec''') UpperCAmelCase__ = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } UpperCAmelCase__ = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } UpperCAmelCase__ = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } UpperCAmelCase__ = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } UpperCAmelCase__ = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } UpperCAmelCase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCAmelCase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCAmelCase__ = [] UpperCAmelCase__ = [] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" for attribute in key.split('''.''' ): _lowercase =getattr(__snake_case , __snake_case ) if weight_type is not None: _lowercase =getattr(__snake_case , __snake_case ).shape else: _lowercase =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowercase =value elif weight_type == "weight_g": _lowercase =value elif weight_type == "weight_v": _lowercase =value elif weight_type == "bias": _lowercase =value elif weight_type == "running_mean": _lowercase =value elif weight_type == "running_var": _lowercase =value elif weight_type == "num_batches_tracked": _lowercase =value elif weight_type == "weight_ih_l0": _lowercase =value elif weight_type == "weight_hh_l0": _lowercase =value elif weight_type == "bias_ih_l0": _lowercase =value elif weight_type == "bias_hh_l0": _lowercase =value elif weight_type == "weight_ih_l1": _lowercase =value elif weight_type == "weight_hh_l1": _lowercase =value elif weight_type == "bias_ih_l1": _lowercase =value elif weight_type == "bias_hh_l1": _lowercase =value else: _lowercase =value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> int: """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowercase , _lowercase =key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" _lowercase =[] if model_name == "encodec_24khz" or "encodec_32khz": _lowercase =MAPPING_24K elif model_name == "encodec_48khz": _lowercase =MAPPING_48K else: raise ValueError(F"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(__snake_case , __snake_case ): logger.info(F"{name} was ignored" ) continue _lowercase =False for key, mapped_key in MAPPING.items(): if "*" in key: _lowercase , _lowercase =key.split('''.*.''' ) if prefix in name and suffix in name: _lowercase =suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue _lowercase =True if "*" in mapped_key: _lowercase =name.split(__snake_case )[0].split('''.''' )[-2] _lowercase =mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: _lowercase ='''weight_g''' elif "weight_v" in name: _lowercase ='''weight_v''' elif "weight_ih_l0" in name: _lowercase ='''weight_ih_l0''' elif "weight_hh_l0" in name: _lowercase ='''weight_hh_l0''' elif "bias_ih_l0" in name: _lowercase ='''bias_ih_l0''' elif "bias_hh_l0" in name: _lowercase ='''bias_hh_l0''' elif "weight_ih_l1" in name: _lowercase ='''weight_ih_l1''' elif "weight_hh_l1" in name: _lowercase ='''weight_hh_l1''' elif "bias_ih_l1" in name: _lowercase ='''bias_ih_l1''' elif "bias_hh_l1" in name: _lowercase ='''bias_hh_l1''' elif "bias" in name: _lowercase ='''bias''' elif "weight" in name: _lowercase ='''weight''' elif "running_mean" in name: _lowercase ='''running_mean''' elif "running_var" in name: _lowercase ='''running_var''' elif "num_batches_tracked" in name: _lowercase ='''num_batches_tracked''' else: _lowercase =None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F"Unused weights: {unused_weights}" ) @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , ) -> Union[str, Any]: """simple docstring""" if config_path is not None: _lowercase =EncodecConfig.from_pretrained(__snake_case ) else: _lowercase =EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _lowercase =[8, 5, 4, 4] _lowercase =[2.2] _lowercase =64 _lowercase =32000 _lowercase =2048 _lowercase =False _lowercase =False _lowercase =False elif model_name == "encodec_48khz": _lowercase =[8, 5, 4, 2] _lowercase =[3.0, 6.0, 12.0, 24.0] _lowercase =48000 _lowercase =2 _lowercase =False _lowercase ='''time_group_norm''' _lowercase =True _lowercase =1.0 _lowercase =0.01 else: raise ValueError(F"Unknown model name: {model_name}" ) _lowercase =EncodecModel(__snake_case ) _lowercase =EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__snake_case ) _lowercase =torch.load(__snake_case ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _lowercase =original_checkpoint['''best_state'''] recursively_load_weights(__snake_case , __snake_case , __snake_case ) model.save_pretrained(__snake_case ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
5
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
1
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
5
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
1
from typing import Any import numpy as np def UpperCAmelCase_ ( __snake_case ) -> bool: """simple docstring""" return np.array_equal(__snake_case , matrix.conjugate().T ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Any: """simple docstring""" _lowercase =v.conjugate().T _lowercase =v_star.dot(__snake_case ) assert isinstance(__snake_case , np.ndarray ) return (v_star_dot.dot(__snake_case )) / (v_star.dot(__snake_case )) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase =np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _lowercase =np.array([[1], [2], [3]] ) assert is_hermitian(__snake_case ), F"{a} is not hermitian." print(rayleigh_quotient(__snake_case , __snake_case ) ) _lowercase =np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__snake_case ), F"{a} is not hermitian." assert rayleigh_quotient(__snake_case , __snake_case ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
5
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
1
from collections import defaultdict from math import ceil, sqrt def UpperCAmelCase_ ( __snake_case = 1000000 , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =defaultdict(__snake_case ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _lowercase =max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _lowercase =1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__snake_case , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'''{solution() = }''')
5
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" _lowercase =argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=__snake_case , default=__snake_case , required=__snake_case , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=__snake_case , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=__snake_case , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=__snake_case , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=__snake_case , default=0 , help='''cuda_id.''' , ) _lowercase =parser.parse_args() return args def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" if not len(__snake_case ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) _lowercase , _lowercase =imgs[0].size _lowercase =Image.new('''RGB''' , size=(cols * w, rows * h) ) _lowercase , _lowercase =grid.size for i, img in enumerate(__snake_case ): grid.paste(__snake_case , box=(i % cols * w, i // cols * h) ) return grid def UpperCAmelCase_ ( __snake_case , __snake_case="robotic cat with wings" , __snake_case=7.5 , __snake_case=50 , __snake_case=1 , __snake_case=42 , ) -> Optional[int]: """simple docstring""" _lowercase =torch.Generator(pipeline.device ).manual_seed(__snake_case ) _lowercase =pipeline( __snake_case , guidance_scale=__snake_case , num_inference_steps=__snake_case , generator=__snake_case , num_images_per_prompt=__snake_case , ).images _lowercase =int(math.sqrt(__snake_case ) ) _lowercase =image_grid(__snake_case , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images UpperCAmelCase__ = parse_args() # Load models and create wrapper for stable diffusion UpperCAmelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') UpperCAmelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') UpperCAmelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') UpperCAmelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) UpperCAmelCase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): UpperCAmelCase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: UpperCAmelCase__ = unet.to(torch.device('''cuda''', args.cuda_id)) UpperCAmelCase__ = pipeline.to(unet.device) UpperCAmelCase__ ,UpperCAmelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) UpperCAmelCase__ = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
5
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
1
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''perceiver''' def __init__(self , UpperCAmelCase=2_5_6 , UpperCAmelCase=1_2_8_0 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1 , UpperCAmelCase=2_6 , UpperCAmelCase=8 , UpperCAmelCase=8 , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="kv" , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=True , UpperCAmelCase=2_6_2 , UpperCAmelCase=2_0_4_8 , UpperCAmelCase=5_6 , UpperCAmelCase=[3_6_8, 4_9_6] , UpperCAmelCase=1_6 , UpperCAmelCase=1_9_2_0 , UpperCAmelCase=1_6 , UpperCAmelCase=[1, 1_6, 2_2_4, 2_2_4] , **UpperCAmelCase , ) -> str: super().__init__(**UpperCAmelCase ) _lowercase =num_latents _lowercase =d_latents _lowercase =d_model _lowercase =num_blocks _lowercase =num_self_attends_per_block _lowercase =num_self_attention_heads _lowercase =num_cross_attention_heads _lowercase =qk_channels _lowercase =v_channels _lowercase =cross_attention_shape_for_attention _lowercase =self_attention_widening_factor _lowercase =cross_attention_widening_factor _lowercase =hidden_act _lowercase =attention_probs_dropout_prob _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =use_query_residual # masked language modeling attributes _lowercase =vocab_size _lowercase =max_position_embeddings # image classification attributes _lowercase =image_size # flow attributes _lowercase =train_size # multimodal autoencoding attributes _lowercase =num_frames _lowercase =audio_samples_per_frame _lowercase =samples_per_patch _lowercase =output_shape class lowerCamelCase__ ( lowerCAmelCase): @property def __A (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowercase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _lowercase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def __A (self ) -> float: return 1e-4 def __A (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 4_0 , UpperCAmelCase = 4_0 , ) -> Mapping[str, Any]: # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(UpperCAmelCase , UpperCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowercase =compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowercase =preprocessor.num_special_tokens_to_add(UpperCAmelCase ) _lowercase =compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowercase =[''' '''.join(['''a'''] ) * seq_length] * batch_size _lowercase =dict(preprocessor(UpperCAmelCase , return_tensors=UpperCAmelCase ) ) _lowercase =inputs.pop('''input_ids''' ) return inputs elif isinstance(UpperCAmelCase , UpperCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowercase =compute_effective_axis_dimension(UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) _lowercase =self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _lowercase =dict(preprocessor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) ) _lowercase =inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
5
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" _lowercase =('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') _lowercase =( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__snake_case ): os.makedirs(__snake_case ) _lowercase =model.state_dict() def to_tf_var_name(__snake_case ): for patt, repl in iter(__snake_case ): _lowercase =name.replace(__snake_case , __snake_case ) return F"bert/{name}" def create_tf_var(__snake_case , __snake_case , __snake_case ): _lowercase =tf.dtypes.as_dtype(tensor.dtype ) _lowercase =tf.get_variable(dtype=__snake_case , shape=tensor.shape , name=__snake_case , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__snake_case ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowercase =to_tf_var_name(__snake_case ) _lowercase =state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowercase =torch_tensor.T _lowercase =create_tf_var(tensor=__snake_case , name=__snake_case , session=__snake_case ) tf.keras.backend.set_value(__snake_case , __snake_case ) _lowercase =session.run(__snake_case ) print(F"Successfully created {tf_name}: {np.allclose(__snake_case , __snake_case )}" ) _lowercase =tf.train.Saver(tf.trainable_variables() ) saver.save(__snake_case , os.path.join(__snake_case , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def UpperCAmelCase_ ( __snake_case=None ) -> int: """simple docstring""" _lowercase =argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__snake_case , required=__snake_case , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__snake_case , default=__snake_case , required=__snake_case , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__snake_case , required=__snake_case , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__snake_case , required=__snake_case , help='''Directory in which to save tensorflow model''' ) _lowercase =parser.parse_args(__snake_case ) _lowercase =BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__snake_case , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
import logging from transformers import PretrainedConfig UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''bertabs''' def __init__(self , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=5_1_2 , UpperCAmelCase=6 , UpperCAmelCase=5_1_2 , UpperCAmelCase=8 , UpperCAmelCase=5_1_2 , UpperCAmelCase=0.2 , UpperCAmelCase=6 , UpperCAmelCase=7_6_8 , UpperCAmelCase=8 , UpperCAmelCase=2_0_4_8 , UpperCAmelCase=0.2 , **UpperCAmelCase , ) -> str: super().__init__(**UpperCAmelCase ) _lowercase =vocab_size _lowercase =max_pos _lowercase =enc_layers _lowercase =enc_hidden_size _lowercase =enc_heads _lowercase =enc_ff_size _lowercase =enc_dropout _lowercase =dec_layers _lowercase =dec_hidden_size _lowercase =dec_heads _lowercase =dec_ff_size _lowercase =dec_dropout
5
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase="None" , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Any: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =num_choices _lowercase =relative_attention _lowercase =position_biased_input _lowercase =pos_att_type _lowercase =scope def __A (self ) -> Any: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowercase =None if self.use_token_type_ids: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A (self ) -> Optional[int]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __A (self ) -> List[Any]: _lowercase =self.get_config() _lowercase =3_0_0 return config def __A (self , UpperCAmelCase ) -> Union[str, Any]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _lowercase =DebertaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase )[0] _lowercase =model(UpperCAmelCase , token_type_ids=UpperCAmelCase )[0] _lowercase =model(UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =DebertaForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _lowercase =self.num_labels _lowercase =DebertaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =self.num_labels _lowercase =DebertaForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: _lowercase =DebertaForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A (self ) -> Any: _lowercase =self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =config_and_inputs _lowercase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> List[str]: _lowercase =DebertaModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> Dict: self.config_tester.run_common_tests() def __A (self ) -> Optional[int]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCAmelCase ) def __A (self ) -> List[str]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCAmelCase ) def __A (self ) -> int: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCAmelCase ) def __A (self ) -> str: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCAmelCase ) @slow def __A (self ) -> Optional[int]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =DebertaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase): @unittest.skip(reason='''Model not available yet''' ) def __A (self ) -> Optional[Any]: pass @slow def __A (self ) -> Any: _lowercase =DebertaModel.from_pretrained('''microsoft/deberta-base''' ) _lowercase =torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) _lowercase =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] # compare the actual values for a slice. _lowercase =torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1e-4 ) , f"{output[:, 1:4, 1:4]}" )
5
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
1
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase__ = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[Any]: """simple docstring""" inspect_dataset(__snake_case , __snake_case ) _lowercase =path + '''.py''' assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Any: """simple docstring""" inspect_metric(__snake_case , __snake_case ) _lowercase =path + '''.py''' assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Tuple: """simple docstring""" _lowercase =get_dataset_config_info(__snake_case , config_name=__snake_case ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> int: """simple docstring""" with pytest.raises(__snake_case ): get_dataset_config_info(__snake_case , config_name=__snake_case ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" _lowercase =get_dataset_config_names(__snake_case ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" _lowercase =get_dataset_infos(__snake_case ) assert list(infos.keys() ) == expected_configs _lowercase =expected_configs[0] assert expected_config in infos _lowercase =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Tuple: """simple docstring""" _lowercase =get_dataset_infos(__snake_case ) assert expected_config in infos _lowercase =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" with pytest.raises(__snake_case ): get_dataset_split_names(__snake_case , config_name=__snake_case )
5
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
5
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCAmelCase__ = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } UpperCAmelCase__ = { '''169M''': 768, '''430M''': 1024, '''1B5''': 2048, '''3B''': 2560, '''7B''': 4096, '''14B''': 5120, } def UpperCAmelCase_ ( __snake_case ) -> List[Any]: """simple docstring""" _lowercase =list(state_dict.keys() ) for name in state_dict_keys: _lowercase =state_dict.pop(__snake_case ) # emb -> embedding if name.startswith('''emb.''' ): _lowercase =name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): _lowercase =name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention _lowercase =re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , __snake_case ) # ffn -> feed_forward _lowercase =re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , __snake_case ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): _lowercase =name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): _lowercase =name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): _lowercase =name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": _lowercase ='''rwkv.''' + name _lowercase =weight return state_dict def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=False , __snake_case=None ) -> int: """simple docstring""" if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) _lowercase =50277 _lowercase =AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: _lowercase =PreTrainedTokenizerFast(tokenizer_file=__snake_case ) _lowercase =len(__snake_case ) tokenizer.save_pretrained(__snake_case ) # 2. Build the config _lowercase =list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _lowercase =candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) _lowercase =RwkvConfig( vocab_size=__snake_case , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__snake_case ) # 3. Download model file then convert state_dict _lowercase =hf_hub_download(__snake_case , __snake_case ) _lowercase =torch.load(__snake_case , map_location='''cpu''' ) _lowercase =convert_state_dict(__snake_case ) # 4. Split in shards and save _lowercase , _lowercase =shard_checkpoint(__snake_case ) for shard_file, shard in shards.items(): torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) ) if index is not None: _lowercase =os.path.join(__snake_case , __snake_case ) # Save the index as well with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: _lowercase =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) _lowercase =list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _lowercase =torch.load(os.path.join(__snake_case , __snake_case ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__snake_case , __snake_case ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) _lowercase =AutoModelForCausalLM.from_pretrained(__snake_case ) model.push_to_hub(__snake_case , max_shard_size='''2GB''' ) tokenizer.push_to_hub(__snake_case ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) UpperCAmelCase__ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
5
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
1
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase ) -> int: _lowercase =data def __iter__(self ) -> Optional[Any]: for element in self.data: yield element def UpperCAmelCase_ ( __snake_case=True ) -> Tuple: """simple docstring""" _lowercase =Accelerator(even_batches=__snake_case ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> List[Any]: """simple docstring""" if iterable: _lowercase =DummyIterableDataset(torch.as_tensor(range(__snake_case ) ) ) else: _lowercase =TensorDataset(torch.as_tensor(range(__snake_case ) ) ) _lowercase =DataLoader(__snake_case , batch_size=__snake_case ) _lowercase =accelerator.prepare(__snake_case ) return dl def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> str: """simple docstring""" _lowercase =create_dataloader(accelerator=__snake_case , dataset_size=__snake_case , batch_size=__snake_case ) _lowercase =[len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" _lowercase =create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __snake_case , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __snake_case , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCAmelCase_ ( ) -> Optional[int]: """simple docstring""" _lowercase =create_accelerator(even_batches=__snake_case ) verify_dataloader_batch_sizes( __snake_case , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __snake_case , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCAmelCase_ ( ) -> Dict: """simple docstring""" _lowercase =create_accelerator(even_batches=__snake_case ) _lowercase =torch.nn.Linear(1 , 1 ) _lowercase =accelerator.prepare(__snake_case ) _lowercase =create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) _lowercase =[] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__snake_case ): _lowercase =ddp_model(batch[0].float() ) _lowercase =output.sum() loss.backward() batch_idxs.append(__snake_case ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCAmelCase_ ( __snake_case ) -> Union[str, Any]: """simple docstring""" with warnings.catch_warnings(record=__snake_case ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __snake_case ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCAmelCase_ ( ) -> Any: """simple docstring""" _lowercase =True _lowercase =False _lowercase =create_accelerator(even_batches=__snake_case ) _lowercase =torch.nn.Linear(1 , 1 ) _lowercase =accelerator.prepare(__snake_case ) _lowercase =create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) _lowercase =create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__snake_case ): _lowercase =train_dl.batch_sampler.even_batches _lowercase =valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase_ ( ) -> int: """simple docstring""" _lowercase =True _lowercase =False _lowercase =create_accelerator(even_batches=__snake_case ) _lowercase =torch.nn.Linear(1 , 1 ) _lowercase =accelerator.prepare(__snake_case ) create_dataloader(__snake_case , dataset_size=3 , batch_size=1 , iterable=__snake_case ) _lowercase =create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__snake_case ): _lowercase =batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase_ ( ) -> int: """simple docstring""" _lowercase =create_accelerator() _lowercase =torch.nn.Linear(1 , 1 ) _lowercase =accelerator.prepare(__snake_case ) create_dataloader(__snake_case , dataset_size=3 , batch_size=1 , iterable=__snake_case ) with warnings.catch_warnings(record=__snake_case ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__snake_case ): pass assert issubclass(w[-1].category , __snake_case ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCAmelCase_ ( ) -> List[Any]: """simple docstring""" _lowercase =create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) _lowercase =accelerator.state.distributed_type _lowercase =DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__snake_case ) _lowercase =original_state if __name__ == "__main__": main()
5
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = ['''model.decoder.embed_positions.weights'''] def UpperCAmelCase_ ( __snake_case ) -> List[str]: """simple docstring""" if "emb" in name: _lowercase =name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: _lowercase =name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: _lowercase =name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: _lowercase =name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: _lowercase =name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: _lowercase =name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: _lowercase =name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: _lowercase =name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: _lowercase =name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: _lowercase =name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: _lowercase =name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Tuple[Dict, Dict]: """simple docstring""" _lowercase =list(state_dict.keys() ) _lowercase ={} for key in keys: _lowercase =state_dict.pop(__snake_case ) _lowercase =rename_keys(__snake_case ) if "in_proj_weight" in key: # split fused qkv proj _lowercase =val[:hidden_size, :] _lowercase =val[hidden_size : 2 * hidden_size, :] _lowercase =val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _lowercase =val else: _lowercase =val return state_dict, enc_dec_proj_state_dict def UpperCAmelCase_ ( __snake_case ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _lowercase =1024 _lowercase =24 _lowercase =16 elif checkpoint == "medium": _lowercase =1536 _lowercase =48 _lowercase =24 elif checkpoint == "large": _lowercase =2048 _lowercase =48 _lowercase =32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) _lowercase =MusicgenDecoderConfig( hidden_size=__snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=__snake_case , num_attention_heads=__snake_case , ) return config @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case=None , __snake_case=None , __snake_case="cpu" ) -> Optional[Any]: """simple docstring""" _lowercase =MusicGen.get_pretrained(__snake_case , device=__snake_case ) _lowercase =decoder_config_from_checkpoint(__snake_case ) _lowercase =fairseq_model.lm.state_dict() _lowercase , _lowercase =rename_state_dict( __snake_case , hidden_size=decoder_config.hidden_size ) _lowercase =TaEncoderModel.from_pretrained('''t5-base''' ) _lowercase =EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) _lowercase =MusicgenForCausalLM(__snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _lowercase , _lowercase =decoder.load_state_dict(__snake_case , strict=__snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__snake_case ) if len(__snake_case ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(__snake_case ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model _lowercase =MusicgenForConditionalGeneration(text_encoder=__snake_case , audio_encoder=__snake_case , decoder=__snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__snake_case ) # check we can do a forward pass _lowercase =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _lowercase =input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _lowercase =model(input_ids=__snake_case , decoder_input_ids=__snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor _lowercase =AutoTokenizer.from_pretrained('''t5-base''' ) _lowercase =AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) _lowercase =MusicgenProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) # set the appropriate bos/pad token ids _lowercase =2048 _lowercase =2048 # set other default generation config params _lowercase =int(30 * audio_encoder.config.frame_rate ) _lowercase =True _lowercase =3.0 if pytorch_dump_folder is not None: Path(__snake_case ).mkdir(exist_ok=__snake_case ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(__snake_case ) processor.push_to_hub(__snake_case ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) UpperCAmelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
5
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: _lowercase =feature_size _lowercase =sampling_rate _lowercase =padding_value _lowercase =kwargs.pop('''padding_side''' , '''right''' ) _lowercase =kwargs.pop('''return_attention_mask''' , UpperCAmelCase ) super().__init__(**UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(UpperCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _lowercase ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCAmelCase ) == 0: if return_attention_mask: _lowercase =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowercase =required_input[0] if isinstance(UpperCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowercase =0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCAmelCase ): _lowercase =required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCAmelCase ): _lowercase ='''tf''' elif is_torch_tensor(UpperCAmelCase ): _lowercase ='''pt''' elif isinstance(UpperCAmelCase , (int, float, list, tuple, np.ndarray) ): _lowercase ='''np''' else: raise ValueError( f"type of {first_element} unknown: {type(UpperCAmelCase )}. " '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _lowercase =to_numpy(UpperCAmelCase ) else: _lowercase =[to_numpy(UpperCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy _lowercase =self._get_padding_strategies(padding=UpperCAmelCase , max_length=UpperCAmelCase ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =len(UpperCAmelCase ) if not all(len(UpperCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) _lowercase =[] for i in range(UpperCAmelCase ): _lowercase ={k: v[i] for k, v in processed_features.items()} # truncation _lowercase =self._truncate( UpperCAmelCase , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , truncation=UpperCAmelCase , ) truncated_inputs.append(UpperCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowercase =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _lowercase =PaddingStrategy.MAX_LENGTH _lowercase ={} for i in range(UpperCAmelCase ): # padding _lowercase =self._pad( truncated_inputs[i] , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: _lowercase =[] if value.dtype is np.dtype(np.floataa ): _lowercase =value.astype(np.floataa ) batch_outputs[key].append(UpperCAmelCase ) return BatchFeature(UpperCAmelCase , tensor_type=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase = None , UpperCAmelCase = None , ) -> dict: _lowercase =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowercase =len(UpperCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowercase =np.ones(len(UpperCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: _lowercase =max_length - len(UpperCAmelCase ) if self.padding_side == "right": if return_attention_mask: _lowercase =np.pad( processed_features['''attention_mask'''] , (0, difference) ) _lowercase =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowercase =np.pad( UpperCAmelCase , UpperCAmelCase , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _lowercase =np.pad( processed_features['''attention_mask'''] , (difference, 0) ) _lowercase =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowercase =np.pad( UpperCAmelCase , UpperCAmelCase , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> List[str]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) _lowercase =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =len(UpperCAmelCase ) > max_length if needs_to_be_truncated: _lowercase =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowercase =processed_features['''attention_mask'''][:max_length] return processed_features def __A (self , UpperCAmelCase=False , UpperCAmelCase=None ) -> Dict: # Get padding strategy if padding is not False: if padding is True: _lowercase =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =PaddingStrategy(UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =padding else: _lowercase =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
5
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCAmelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" for attribute in key.split('''.''' ): _lowercase =getattr(__snake_case , __snake_case ) if weight_type is not None: _lowercase =getattr(__snake_case , __snake_case ).shape else: _lowercase =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowercase =value elif weight_type == "weight_g": _lowercase =value elif weight_type == "weight_v": _lowercase =value elif weight_type == "bias": _lowercase =value else: _lowercase =value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" _lowercase =[] _lowercase =fairseq_model.state_dict() _lowercase =hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _lowercase =False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _lowercase =True else: for key, mapped_key in MAPPING.items(): _lowercase ='''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue _lowercase =True if "*" in mapped_key: _lowercase =name.split(__snake_case )[0].split('''.''' )[-2] _lowercase =mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: _lowercase ='''weight_g''' elif "weight_v" in name: _lowercase ='''weight_v''' elif "bias" in name: _lowercase ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowercase ='''weight''' else: _lowercase =None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: """simple docstring""" _lowercase =full_name.split('''conv_layers.''' )[-1] _lowercase =name.split('''.''' ) _lowercase =int(items[0] ) _lowercase =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowercase =value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__snake_case ) @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=True ) -> Any: """simple docstring""" if config_path is not None: _lowercase =UniSpeechSatConfig.from_pretrained(__snake_case ) else: _lowercase =UniSpeechSatConfig() _lowercase ='''''' if is_finetuned: _lowercase =UniSpeechSatForCTC(__snake_case ) else: _lowercase =UniSpeechSatForPreTraining(__snake_case ) _lowercase , _lowercase , _lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) _lowercase =model[0].eval() recursively_load_weights(__snake_case , __snake_case ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCAmelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
5
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
1
import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase__ = TypeVar('''T''') UpperCAmelCase__ = Union[List[T], Tuple[T, ...]] UpperCAmelCase__ = Union[T, List[T], Dict[str, T]] UpperCAmelCase__ = Union[str, bytes, os.PathLike]
5
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings( lowerCAmelCase , r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class lowerCamelCase__ ( lowerCAmelCase): def __A (self , UpperCAmelCase ) -> np.ndarray: if self.framework == "tf": _lowercase =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _lowercase =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCAmelCase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __A (self , UpperCAmelCase ) -> np.ndarray: _lowercase =self.get_masked_index(UpperCAmelCase ) _lowercase =np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def __A (self , UpperCAmelCase ) -> List[Any]: if isinstance(UpperCAmelCase , UpperCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict[str, GenericTensor]: if return_tensors is None: _lowercase =self.framework _lowercase =self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase ) self.ensure_exactly_one_mask_token(UpperCAmelCase ) return model_inputs def __A (self , UpperCAmelCase ) -> Union[str, Any]: _lowercase =self.model(**UpperCAmelCase ) _lowercase =model_inputs['''input_ids'''] return model_outputs def __A (self , UpperCAmelCase , UpperCAmelCase=5 , UpperCAmelCase=None ) -> Tuple: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _lowercase =target_ids.shape[0] _lowercase =model_outputs['''input_ids'''][0] _lowercase =model_outputs['''logits'''] if self.framework == "tf": _lowercase =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _lowercase =outputs.numpy() _lowercase =outputs[0, masked_index, :] _lowercase =stable_softmax(UpperCAmelCase , axis=-1 ) if target_ids is not None: _lowercase =tf.gather_nd(tf.squeeze(UpperCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) _lowercase =tf.expand_dims(UpperCAmelCase , 0 ) _lowercase =tf.math.top_k(UpperCAmelCase , k=UpperCAmelCase ) _lowercase , _lowercase =topk.values.numpy(), topk.indices.numpy() else: _lowercase =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _lowercase =outputs[0, masked_index, :] _lowercase =logits.softmax(dim=-1 ) if target_ids is not None: _lowercase =probs[..., target_ids] _lowercase , _lowercase =probs.topk(UpperCAmelCase ) _lowercase =[] _lowercase =values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _lowercase =[] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _lowercase =input_ids.numpy().copy() if target_ids is not None: _lowercase =target_ids[p].tolist() _lowercase =p # Filter padding out: _lowercase =tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _lowercase =self.tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) _lowercase ={'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(UpperCAmelCase ) result.append(UpperCAmelCase ) if single_mask: return result[0] return result def __A (self , UpperCAmelCase , UpperCAmelCase=None ) -> List[str]: if isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =[targets] try: _lowercase =self.tokenizer.get_vocab() except Exception: _lowercase ={} _lowercase =[] for target in targets: _lowercase =vocab.get(UpperCAmelCase , UpperCAmelCase ) if id_ is None: _lowercase =self.tokenizer( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , max_length=1 , truncation=UpperCAmelCase , )['''input_ids'''] if len(UpperCAmelCase ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " '''We cannot replace it with anything meaningful, ignoring it''' ) continue _lowercase =input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) _lowercase =list(set(UpperCAmelCase ) ) if len(UpperCAmelCase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _lowercase =np.array(UpperCAmelCase ) return target_ids def __A (self , UpperCAmelCase=None , UpperCAmelCase=None ) -> List[str]: _lowercase ={} if targets is not None: _lowercase =self.get_target_ids(UpperCAmelCase , UpperCAmelCase ) _lowercase =target_ids if top_k is not None: _lowercase =top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__(self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> Any: _lowercase =super().__call__(UpperCAmelCase , **UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1: return outputs[0] return outputs
5
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''AutoTokenizer''' SCREAMING_SNAKE_CASE__ = ['''tokenizer'''] SCREAMING_SNAKE_CASE__ = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__(self , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[Any]: super().__init__(UpperCAmelCase ) _lowercase =speaker_embeddings @classmethod def __A (cls , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , **UpperCAmelCase ) -> Union[str, Any]: if speaker_embeddings_dict_path is not None: _lowercase =get_file_from_repo( UpperCAmelCase , UpperCAmelCase , subfolder=kwargs.pop('''subfolder''' , UpperCAmelCase ) , cache_dir=kwargs.pop('''cache_dir''' , UpperCAmelCase ) , force_download=kwargs.pop('''force_download''' , UpperCAmelCase ) , proxies=kwargs.pop('''proxies''' , UpperCAmelCase ) , resume_download=kwargs.pop('''resume_download''' , UpperCAmelCase ) , local_files_only=kwargs.pop('''local_files_only''' , UpperCAmelCase ) , use_auth_token=kwargs.pop('''use_auth_token''' , UpperCAmelCase ) , revision=kwargs.pop('''revision''' , UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( f"`{os.path.join(UpperCAmelCase , UpperCAmelCase )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) _lowercase =None else: with open(UpperCAmelCase ) as speaker_embeddings_json: _lowercase =json.load(UpperCAmelCase ) else: _lowercase =None _lowercase =AutoTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(tokenizer=UpperCAmelCase , speaker_embeddings=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , UpperCAmelCase="speaker_embeddings" , UpperCAmelCase = False , **UpperCAmelCase , ) -> int: if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase , UpperCAmelCase , '''v2''' ) , exist_ok=UpperCAmelCase ) _lowercase ={} _lowercase =save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowercase =self._load_voice_preset(UpperCAmelCase ) _lowercase ={} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , UpperCAmelCase , f"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=UpperCAmelCase , ) _lowercase =os.path.join(UpperCAmelCase , f"{prompt_key}_{key}.npy" ) _lowercase =tmp_dict with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , '''w''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) super().save_pretrained(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def __A (self , UpperCAmelCase = None , **UpperCAmelCase ) -> int: _lowercase =self.speaker_embeddings[voice_preset] _lowercase ={} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) _lowercase =get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , UpperCAmelCase ) , cache_dir=kwargs.pop('''cache_dir''' , UpperCAmelCase ) , force_download=kwargs.pop('''force_download''' , UpperCAmelCase ) , proxies=kwargs.pop('''proxies''' , UpperCAmelCase ) , resume_download=kwargs.pop('''resume_download''' , UpperCAmelCase ) , local_files_only=kwargs.pop('''local_files_only''' , UpperCAmelCase ) , use_auth_token=kwargs.pop('''use_auth_token''' , UpperCAmelCase ) , revision=kwargs.pop('''revision''' , UpperCAmelCase ) , ) if path is None: raise ValueError( f"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) _lowercase =np.load(UpperCAmelCase ) return voice_preset_dict def __A (self , UpperCAmelCase = None ) -> List[Any]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , UpperCAmelCase=2_5_6 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ) -> List[Any]: if voice_preset is not None and not isinstance(UpperCAmelCase , UpperCAmelCase ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowercase =self._load_voice_preset(UpperCAmelCase ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ) and not voice_preset.endswith('''.npz''' ): _lowercase =voice_preset + '''.npz''' _lowercase =np.load(UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase , **UpperCAmelCase ) _lowercase =BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) _lowercase =self.tokenizer( UpperCAmelCase , return_tensors=UpperCAmelCase , padding='''max_length''' , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) if voice_preset is not None: _lowercase =voice_preset return encoded_text
5
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
1
def UpperCAmelCase_ ( ) -> Any: """simple docstring""" _lowercase =0 for i in range(1 , 1001 ): total += i**i return str(__snake_case )[-10:] if __name__ == "__main__": print(solution())
5
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
1
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''data2vec-audio''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_6 , UpperCAmelCase=1_9 , UpperCAmelCase=5 , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=0 , UpperCAmelCase="sum" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> List[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =conv_pos_kernel_size _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =vocab_size _lowercase =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length _lowercase =mask_feature_min_masks # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return math.prod(self.conv_stride )
5
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
1
from collections import deque def UpperCAmelCase_ ( __snake_case ) -> List[Any]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =deque() _lowercase =[False for _ in range(__snake_case )] _lowercase =[-1 for _ in range(__snake_case )] _lowercase =index_of[:] def strong_connect(__snake_case , __snake_case , __snake_case ): _lowercase =index # the number when this node is seen _lowercase =index # lowest rank node reachable from here index += 1 stack.append(__snake_case ) _lowercase =True for w in g[v]: if index_of[w] == -1: _lowercase =strong_connect(__snake_case , __snake_case , __snake_case ) _lowercase =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _lowercase =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _lowercase =[] _lowercase =stack.pop() _lowercase =False component.append(__snake_case ) while w != v: _lowercase =stack.pop() _lowercase =False component.append(__snake_case ) components.append(__snake_case ) return index _lowercase =[] for v in range(__snake_case ): if index_of[v] == -1: strong_connect(__snake_case , 0 , __snake_case ) return components def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" _lowercase =[[] for _ in range(__snake_case )] for u, v in edges: g[u].append(__snake_case ) return g if __name__ == "__main__": # Test UpperCAmelCase__ = 7 UpperCAmelCase__ = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase__ = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase__ = [(u, v) for u, v in zip(source, target)] UpperCAmelCase__ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase__ = 25_0004 UpperCAmelCase__ = 25_0020 @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = MBartaaTokenizer SCREAMING_SNAKE_CASE__ = MBartaaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def __A (self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _lowercase =MBartaaTokenizer(UpperCAmelCase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __A (self ) -> str: _lowercase ='''<s>''' _lowercase =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def __A (self ) -> int: _lowercase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(UpperCAmelCase ) , 1_0_5_4 ) def __A (self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def __A (self ) -> Any: _lowercase =MBartaaTokenizer(UpperCAmelCase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=UpperCAmelCase ) _lowercase =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _lowercase =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) _lowercase =tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _lowercase =tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __A (self ) -> int: # fmt: off _lowercase ={'''input_ids''': [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __A (self ) -> Dict: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowercase =(self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowercase =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) _lowercase =self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) _lowercase =tempfile.mkdtemp() _lowercase =tokenizer_r.save_pretrained(UpperCAmelCase ) _lowercase =tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _lowercase =tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way _lowercase =tokenizer_r.from_pretrained(UpperCAmelCase ) _lowercase =tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=True _lowercase =tempfile.mkdtemp() _lowercase =tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) _lowercase =tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way _lowercase =tokenizer_r.from_pretrained(UpperCAmelCase ) _lowercase =tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=False _lowercase =tempfile.mkdtemp() _lowercase =tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) _lowercase =tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowercase =tokenizer_r.from_pretrained(UpperCAmelCase ) _lowercase =tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase): SCREAMING_SNAKE_CASE__ = '''facebook/mbart-large-50-one-to-many-mmt''' SCREAMING_SNAKE_CASE__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] SCREAMING_SNAKE_CASE__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] SCREAMING_SNAKE_CASE__ = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def __A (cls ) -> List[Any]: _lowercase =MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _lowercase =1 return cls def __A (self ) -> Union[str, Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 2_5_0_0_3_8 ) def __A (self ) -> Tuple: _lowercase =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) def __A (self ) -> Optional[int]: self.assertIn(UpperCAmelCase , self.tokenizer.all_special_ids ) _lowercase =[RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] _lowercase =self.tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) _lowercase =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase ) def __A (self ) -> Any: _lowercase =['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , UpperCAmelCase ) _lowercase =1_0 _lowercase =self.tokenizer(UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase ).input_ids[0] self.assertEqual(ids[0] , UpperCAmelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) def __A (self ) -> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def __A (self ) -> Dict: _lowercase =tempfile.mkdtemp() _lowercase =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase ) _lowercase =MBartaaTokenizer.from_pretrained(UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase ) @require_torch def __A (self ) -> int: _lowercase =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , return_tensors='''pt''' ) _lowercase =shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __A (self ) -> List[Any]: _lowercase =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _lowercase =shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) _lowercase =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __A (self ) -> List[Any]: _lowercase =self.tokenizer(self.src_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=3 , return_tensors='''pt''' ) _lowercase =self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=1_0 , return_tensors='''pt''' ) _lowercase =targets['''input_ids'''] _lowercase =shift_tokens_right(UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __A (self ) -> Optional[Any]: _lowercase =self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { # en_XX, A, test, EOS '''input_ids''': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
5
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''mgp-str''' def __init__(self , UpperCAmelCase=[3_2, 1_2_8] , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=2_7 , UpperCAmelCase=3_8 , UpperCAmelCase=5_0_2_5_7 , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=4.0 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=False , UpperCAmelCase=0.02 , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase ) _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =max_token_length _lowercase =num_character_labels _lowercase =num_bpe_labels _lowercase =num_wordpiece_labels _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =mlp_ratio _lowercase =distilled _lowercase =layer_norm_eps _lowercase =drop_rate _lowercase =qkv_bias _lowercase =attn_drop_rate _lowercase =drop_path_rate _lowercase =output_aa_attentions _lowercase =initializer_range
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = DanceDiffusionPipeline SCREAMING_SNAKE_CASE__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } SCREAMING_SNAKE_CASE__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Dict: torch.manual_seed(0 ) _lowercase =UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=UpperCAmelCase , use_timestep_embedding=UpperCAmelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _lowercase =IPNDMScheduler() _lowercase ={ '''unet''': unet, '''scheduler''': scheduler, } return components def __A (self , UpperCAmelCase , UpperCAmelCase=0 ) -> Tuple: if str(UpperCAmelCase ).startswith('''mps''' ): _lowercase =torch.manual_seed(UpperCAmelCase ) else: _lowercase =torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _lowercase ={ '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def __A (self ) -> Tuple: _lowercase ='''cpu''' # ensure determinism for the device-dependent torch.Generator _lowercase =self.get_dummy_components() _lowercase =DanceDiffusionPipeline(**UpperCAmelCase ) _lowercase =pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _lowercase =self.get_dummy_inputs(UpperCAmelCase ) _lowercase =pipe(**UpperCAmelCase ) _lowercase =output.audios _lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowercase =np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __A (self ) -> Any: return super().test_save_load_local() @skip_mps def __A (self ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __A (self ) -> Any: return super().test_save_load_optional_components() @skip_mps def __A (self ) -> Optional[Any]: return super().test_attention_slicing_forward_pass() def __A (self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A (self ) -> List[str]: _lowercase =torch_device _lowercase =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _lowercase =pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _lowercase =torch.manual_seed(0 ) _lowercase =pipe(generator=UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) _lowercase =output.audios _lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowercase =np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __A (self ) -> Optional[Any]: _lowercase =torch_device _lowercase =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _lowercase =pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _lowercase =torch.manual_seed(0 ) _lowercase =pipe(generator=UpperCAmelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) _lowercase =output.audios _lowercase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowercase =np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
5
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCamelCase__ : def __A (self , UpperCAmelCase ) -> Dict: raise NotImplementedError() def __A (self ) -> Optional[int]: raise NotImplementedError() class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase = False , **UpperCAmelCase ) -> Any: _lowercase =tokenizer _lowercase =skip_prompt _lowercase =decode_kwargs # variables used in the streaming process _lowercase =[] _lowercase =0 _lowercase =True def __A (self , UpperCAmelCase ) -> int: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: _lowercase =value[0] if self.skip_prompt and self.next_tokens_are_prompt: _lowercase =False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _lowercase =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): _lowercase =text[self.print_len :] _lowercase =[] _lowercase =0 # If the last token is a CJK character, we print the characters. elif len(UpperCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _lowercase =text[self.print_len :] self.print_len += len(UpperCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _lowercase =text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(UpperCAmelCase ) self.on_finalized_text(UpperCAmelCase ) def __A (self ) -> Any: # Flush the cache, if it exists if len(self.token_cache ) > 0: _lowercase =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _lowercase =text[self.print_len :] _lowercase =[] _lowercase =0 else: _lowercase ='''''' _lowercase =True self.on_finalized_text(UpperCAmelCase , stream_end=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = False ) -> Union[str, Any]: print(UpperCAmelCase , flush=UpperCAmelCase , end='''''' if not stream_end else None ) def __A (self , UpperCAmelCase ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , **UpperCAmelCase ) -> List[str]: super().__init__(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) _lowercase =Queue() _lowercase =None _lowercase =timeout def __A (self , UpperCAmelCase , UpperCAmelCase = False ) -> Any: self.text_queue.put(UpperCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__(self ) -> List[str]: return self def __A (self ) -> Dict: _lowercase =self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
5
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''focalnet''' def __init__(self , UpperCAmelCase=2_2_4 , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=9_6 , UpperCAmelCase=False , UpperCAmelCase=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , UpperCAmelCase=[2, 2, 6, 2] , UpperCAmelCase=[2, 2, 2, 2] , UpperCAmelCase=[3, 3, 3, 3] , UpperCAmelCase="gelu" , UpperCAmelCase=4.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=False , UpperCAmelCase=1e-4 , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=3_2 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Dict: super().__init__(**UpperCAmelCase ) _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =embed_dim _lowercase =use_conv_embed _lowercase =hidden_sizes _lowercase =depths _lowercase =focal_levels _lowercase =focal_windows _lowercase =hidden_act _lowercase =mlp_ratio _lowercase =hidden_dropout_prob _lowercase =drop_path_rate _lowercase =use_layerscale _lowercase =layerscale_value _lowercase =use_post_layernorm _lowercase =use_post_layernorm_in_modulation _lowercase =normalize_modulator _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =encoder_stride _lowercase =['''stem'''] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] _lowercase , _lowercase =get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
5
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
1
UpperCAmelCase__ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" _lowercase =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase__ = [None] * 1000_0000 UpperCAmelCase__ = True UpperCAmelCase__ = False def UpperCAmelCase_ ( __snake_case ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _lowercase =chain(next_number(__snake_case ) ) _lowercase =number_chain while number < 10000000: _lowercase =number_chain number *= 10 return number_chain def UpperCAmelCase_ ( __snake_case = 10000000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
5
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants UpperCAmelCase__ = Mapping[str, np.ndarray] UpperCAmelCase__ = Mapping[str, Any] # Is a nested dict. UpperCAmelCase__ = 0.01 @dataclasses.dataclass(frozen=lowerCAmelCase) class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. SCREAMING_SNAKE_CASE__ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. SCREAMING_SNAKE_CASE__ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. SCREAMING_SNAKE_CASE__ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. SCREAMING_SNAKE_CASE__ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions SCREAMING_SNAKE_CASE__ = None # Optional remark about the protein. Included as a comment in output PDB # files SCREAMING_SNAKE_CASE__ = None # Templates used to generate this protein (prediction-only) SCREAMING_SNAKE_CASE__ = None # Chain corresponding to each parent SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase_ ( __snake_case ) -> Protein: """simple docstring""" _lowercase =r'''(\[[A-Z]+\]\n)''' _lowercase =[tag.strip() for tag in re.split(__snake_case , __snake_case ) if len(__snake_case ) > 0] _lowercase =zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) _lowercase =["N", "CA", "C"] _lowercase =None _lowercase =None _lowercase =None for g in groups: if "[PRIMARY]" == g[0]: _lowercase =g[1][0].strip() for i in range(len(__snake_case ) ): if seq[i] not in residue_constants.restypes: _lowercase ='''X''' # FIXME: strings are immutable _lowercase =np.array( [residue_constants.restype_order.get(__snake_case , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _lowercase =[] for axis in range(3 ): tertiary.append(list(map(__snake_case , g[1][axis].split() ) ) ) _lowercase =np.array(__snake_case ) _lowercase =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): _lowercase =np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _lowercase =np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) _lowercase =np.zeros( ( len(__snake_case ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): _lowercase =1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__snake_case , atom_mask=__snake_case , aatype=__snake_case , residue_index=np.arange(len(__snake_case ) ) , b_factors=__snake_case , ) def UpperCAmelCase_ ( __snake_case , __snake_case = 0 ) -> List[str]: """simple docstring""" _lowercase =[] _lowercase =prot.remark if remark is not None: pdb_headers.append(F"REMARK {remark}" ) _lowercase =prot.parents _lowercase =prot.parents_chain_index if parents is not None and parents_chain_index is not None: _lowercase =[p for i, p in zip(__snake_case , __snake_case ) if i == chain_id] if parents is None or len(__snake_case ) == 0: _lowercase =['''N/A'''] pdb_headers.append(F"PARENT {' '.join(__snake_case )}" ) return pdb_headers def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =[] _lowercase =pdb_str.split('''\n''' ) _lowercase =prot.remark if remark is not None: out_pdb_lines.append(F"REMARK {remark}" ) _lowercase =42 if prot.parents is not None and len(prot.parents ) > 0: _lowercase =[] if prot.parents_chain_index is not None: _lowercase ={} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__snake_case ) , [] ) parent_dict[str(__snake_case )].append(__snake_case ) _lowercase =max([int(__snake_case ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _lowercase =parent_dict.get(str(__snake_case ) , ['''N/A'''] ) parents_per_chain.append(__snake_case ) else: parents_per_chain.append(list(prot.parents ) ) else: _lowercase =[['''N/A''']] def make_parent_line(__snake_case ) -> str: return F"PARENT {' '.join(__snake_case )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _lowercase =0 for i, l in enumerate(__snake_case ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__snake_case ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__snake_case ): _lowercase =parents_per_chain[chain_counter] else: _lowercase =['''N/A'''] out_pdb_lines.append(make_parent_line(__snake_case ) ) return "\n".join(__snake_case ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =residue_constants.restypes + ['''X'''] def res_atoa(__snake_case ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) _lowercase =residue_constants.atom_types _lowercase =[] _lowercase =prot.atom_mask _lowercase =prot.aatype _lowercase =prot.atom_positions _lowercase =prot.residue_index.astype(np.intaa ) _lowercase =prot.b_factors _lowercase =prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) _lowercase =get_pdb_headers(__snake_case ) if len(__snake_case ) > 0: pdb_lines.extend(__snake_case ) _lowercase =aatype.shape[0] _lowercase =1 _lowercase =0 _lowercase =string.ascii_uppercase _lowercase =None # Add all atom sites. for i in range(__snake_case ): _lowercase =res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__snake_case , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _lowercase ='''ATOM''' _lowercase =atom_name if len(__snake_case ) == 4 else F" {atom_name}" _lowercase ='''''' _lowercase ='''''' _lowercase =1.00 _lowercase =atom_name[0] # Protein supports only C, N, O, S, this works. _lowercase ='''''' _lowercase ='''A''' if chain_index is not None: _lowercase =chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _lowercase =( F"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" F"{res_name_a:>3} {chain_tag:>1}" F"{residue_index[i]:>4}{insertion_code:>1} " F"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" F"{occupancy:>6.2f}{b_factor:>6.2f} " F"{element:>2}{charge:>2}" ) pdb_lines.append(__snake_case ) atom_index += 1 _lowercase =i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _lowercase =True _lowercase =chain_index[i + 1] if should_terminate: # Close the chain. _lowercase ='''TER''' _lowercase =( F"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(__snake_case ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__snake_case , __snake_case ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(__snake_case ) def UpperCAmelCase_ ( __snake_case ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__snake_case , remark=__snake_case , parents=__snake_case , parents_chain_index=__snake_case , )
5
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
1
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> None: warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
5
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
1
from collections.abc import Generator from math import sin def UpperCAmelCase_ ( __snake_case ) -> bytes: """simple docstring""" if len(__snake_case ) != 32: raise ValueError('''Input must be of length 32''' ) _lowercase =b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ ( __snake_case ) -> bytes: """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) _lowercase =format(__snake_case , '''08x''' )[-8:] _lowercase =b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def UpperCAmelCase_ ( __snake_case ) -> bytes: """simple docstring""" _lowercase =b'''''' for char in message: bit_string += format(__snake_case , '''08b''' ).encode('''utf-8''' ) _lowercase =format(len(__snake_case ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__snake_case ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase_ ( __snake_case ) -> Generator[list[int], None, None]: """simple docstring""" if len(__snake_case ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(__snake_case ) , 512 ): _lowercase =bit_string[pos : pos + 512] _lowercase =[] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) _lowercase =format(__snake_case , '''032b''' ) _lowercase ='''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(__snake_case , 2 ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> int: """simple docstring""" return (a + b) % 2**32 def UpperCAmelCase_ ( __snake_case , __snake_case ) -> int: """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase_ ( __snake_case ) -> bytes: """simple docstring""" _lowercase =preprocess(__snake_case ) _lowercase =[int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _lowercase =0X6_7_4_5_2_3_0_1 _lowercase =0XE_F_C_D_A_B_8_9 _lowercase =0X9_8_B_A_D_C_F_E _lowercase =0X1_0_3_2_5_4_7_6 _lowercase =[ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__snake_case ): _lowercase =aa _lowercase =ba _lowercase =ca _lowercase =da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _lowercase =d ^ (b & (c ^ d)) _lowercase =i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _lowercase =c ^ (d & (b ^ c)) _lowercase =(5 * i + 1) % 16 elif i <= 47: _lowercase =b ^ c ^ d _lowercase =(3 * i + 5) % 16 else: _lowercase =c ^ (b | not_aa(__snake_case )) _lowercase =(7 * i) % 16 _lowercase =(f + a + added_consts[i] + block_words[g]) % 2**32 _lowercase =d _lowercase =c _lowercase =b _lowercase =sum_aa(__snake_case , left_rotate_aa(__snake_case , shift_amounts[i] ) ) # Add hashed chunk to running total _lowercase =sum_aa(__snake_case , __snake_case ) _lowercase =sum_aa(__snake_case , __snake_case ) _lowercase =sum_aa(__snake_case , __snake_case ) _lowercase =sum_aa(__snake_case , __snake_case ) _lowercase =reformat_hex(__snake_case ) + reformat_hex(__snake_case ) + reformat_hex(__snake_case ) + reformat_hex(__snake_case ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
1
from __future__ import annotations def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _lowercase =len(__snake_case ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__snake_case ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __snake_case , __snake_case , ) def UpperCAmelCase_ ( __snake_case ) -> None: """simple docstring""" _lowercase =[] depth_first_search([] , [] , [] , __snake_case , __snake_case ) # Print all the boards for board in boards: for column in board: print(__snake_case ) print('''''' ) print(len(__snake_case ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
5
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
1
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" _lowercase =LxmertConfig.from_json_file(__snake_case ) print(F"Building PyTorch model from configuration: {config}" ) _lowercase =LxmertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
5
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , **UpperCAmelCase , ) -> str: super().__init__(features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , **UpperCAmelCase ) _lowercase =Sql( cache_dir=UpperCAmelCase , features=UpperCAmelCase , sql=UpperCAmelCase , con=UpperCAmelCase , **UpperCAmelCase , ) def __A (self ) -> Dict: _lowercase =None _lowercase =None _lowercase =None _lowercase =None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , ) # Build dataset for splits _lowercase =self.builder.as_dataset( split='''train''' , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> Optional[int]: if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) _lowercase =dataset _lowercase =name _lowercase =con _lowercase =batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowercase =num_proc _lowercase =to_sql_kwargs def __A (self ) -> int: _lowercase =self.to_sql_kwargs.pop('''sql''' , UpperCAmelCase ) _lowercase =self.to_sql_kwargs.pop('''con''' , UpperCAmelCase ) _lowercase =self.to_sql_kwargs.pop('''index''' , UpperCAmelCase ) _lowercase =self._write(index=UpperCAmelCase , **self.to_sql_kwargs ) return written def __A (self , UpperCAmelCase ) -> Optional[Any]: _lowercase , _lowercase , _lowercase =args _lowercase ={**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs _lowercase =query_table( table=self.dataset.data , key=slice(UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowercase =batch.to_pandas() _lowercase =df.to_sql(self.name , self.con , index=UpperCAmelCase , **UpperCAmelCase ) return num_rows or len(UpperCAmelCase ) def __A (self , UpperCAmelCase , **UpperCAmelCase ) -> int: _lowercase =0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _lowercase , _lowercase =len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCAmelCase , UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
5
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=9_9 , UpperCAmelCase=0 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase="last" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , ) -> List[Any]: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_lengths _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =gelu_activation _lowercase =sinusoidal_embeddings _lowercase =causal _lowercase =asm _lowercase =n_langs _lowercase =vocab_size _lowercase =n_special _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =num_choices _lowercase =summary_type _lowercase =use_proj _lowercase =scope _lowercase =bos_token_id def __A (self ) -> Dict: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None if self.use_input_lengths: _lowercase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _lowercase =None if self.use_token_type_ids: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , 2 ).float() _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __A (self ) -> str: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Dict: _lowercase =XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) _lowercase =model(UpperCAmelCase , langs=UpperCAmelCase ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Dict: _lowercase =XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[Any]: _lowercase =XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase ) _lowercase =model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) _lowercase =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: _lowercase =XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase ) _lowercase =model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) _lowercase =model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((_lowercase) , ) =result_with_labels.to_tuple() _lowercase =model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((_lowercase) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> int: _lowercase =XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase ) _lowercase =model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Dict: _lowercase =self.num_labels _lowercase =XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[str]: _lowercase =self.num_choices _lowercase =XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A (self ) -> Optional[int]: _lowercase =self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =config_and_inputs _lowercase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> List[Any]: _lowercase =super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _lowercase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) _lowercase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def __A (self ) -> List[Any]: _lowercase =XLMModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def __A (self ) -> List[Any]: self.config_tester.run_common_tests() def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def __A (self ) -> str: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def __A (self ) -> Any: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def __A (self ) -> int: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=1 ) -> str: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token _lowercase =min_length + idx + 1 _lowercase =min_length + idx + 1 _lowercase =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=1 ) -> int: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token _lowercase =min_length + idx + 1 _lowercase =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def __A (self ) -> Union[str, Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class lowerCamelCase__ ( unittest.TestCase): @slow def __A (self ) -> Union[str, Any]: _lowercase =XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(UpperCAmelCase ) _lowercase =torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president _lowercase =[ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _lowercase =model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
5
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = ProphetNetTokenizer SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Optional[int]: super().setUp() _lowercase =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __A (self , UpperCAmelCase ) -> int: _lowercase ='''UNwant\u00E9d,running''' _lowercase ='''unwanted, running''' return input_text, output_text def __A (self ) -> Optional[int]: _lowercase =self.tokenizer_class(self.vocab_file ) _lowercase =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __A (self ) -> Union[str, Any]: _lowercase =BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __A (self ) -> List[str]: _lowercase =BasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __A (self ) -> Dict: _lowercase =BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __A (self ) -> List[str]: _lowercase =BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __A (self ) -> Optional[int]: _lowercase =BasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __A (self ) -> str: _lowercase =BasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __A (self ) -> Union[str, Any]: _lowercase =BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __A (self ) -> int: _lowercase =BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __A (self ) -> List[Any]: _lowercase =BasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __A (self ) -> List[str]: _lowercase =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] _lowercase ={} for i, token in enumerate(UpperCAmelCase ): _lowercase =i _lowercase =WordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def __A (self ) -> Union[str, Any]: _lowercase =self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) _lowercase =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _lowercase =[1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _lowercase =tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) _lowercase =list(batch.input_ids.numpy()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __A (self ) -> int: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __A (self ) -> Optional[int]: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __A (self ) -> Any: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def __A (self ) -> int: _lowercase =self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) _lowercase =tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase ) _lowercase =tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase ) _lowercase =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _lowercase =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
5
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = GPTaTokenizer SCREAMING_SNAKE_CASE__ = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = {'''add_prefix_space''': True} SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _lowercase =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) _lowercase =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowercase ={'''unk_token''': '''<unk>'''} _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def __A (self , **UpperCAmelCase ) -> str: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A (self , **UpperCAmelCase ) -> Dict: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A (self , UpperCAmelCase ) -> Tuple: _lowercase ='''lower newer''' _lowercase ='''lower newer''' return input_text, output_text def __A (self ) -> List[Any]: _lowercase =GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowercase ='''lower newer''' _lowercase =['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _lowercase =tokenizer.tokenize(UpperCAmelCase , add_prefix_space=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _lowercase =tokens + [tokenizer.unk_token] _lowercase =[1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def __A (self ) -> List[str]: if not self.test_rust_tokenizer: return _lowercase =self.get_tokenizer() _lowercase =self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase ) _lowercase ='''lower newer''' # Testing tokenization _lowercase =tokenizer.tokenize(UpperCAmelCase , add_prefix_space=UpperCAmelCase ) _lowercase =rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing conversion to ids without special tokens _lowercase =tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) _lowercase =rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing conversion to ids with special tokens _lowercase =self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase ) _lowercase =tokenizer.encode(UpperCAmelCase , add_prefix_space=UpperCAmelCase ) _lowercase =rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Testing the unknown token _lowercase =tokens + [rust_tokenizer.unk_token] _lowercase =[1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def __A (self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __A (self , UpperCAmelCase=1_5 ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowercase =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) # Simple input _lowercase ='''This is a simple input''' _lowercase =['''This is a simple input 1''', '''This is a simple input 2'''] _lowercase =('''This is a simple input''', '''This is a pair''') _lowercase =[ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , ) def __A (self ) -> Dict: _lowercase =GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _lowercase ='''This is a simple input''' _lowercase =['''This is a simple input looooooooong''', '''This is a simple input'''] _lowercase =('''This is a simple input''', '''This is a pair''') _lowercase =[ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _lowercase =tokenizer.pad_token_id _lowercase =tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) _lowercase =tokenizer(UpperCAmelCase , padding=UpperCAmelCase , truncate=UpperCAmelCase , return_tensors='''np''' ) _lowercase =tokenizer(*UpperCAmelCase , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) _lowercase =tokenizer(UpperCAmelCase , padding=UpperCAmelCase , truncate=UpperCAmelCase , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def __A (self ) -> int: _lowercase ='''$$$''' _lowercase =GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCAmelCase , add_bos_token=UpperCAmelCase ) _lowercase ='''This is a simple input''' _lowercase =['''This is a simple input 1''', '''This is a simple input 2'''] _lowercase =tokenizer.bos_token_id _lowercase =tokenizer(UpperCAmelCase ) _lowercase =tokenizer(UpperCAmelCase ) self.assertEqual(out_s.input_ids[0] , UpperCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowercase =tokenizer.decode(out_s.input_ids ) _lowercase =tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , UpperCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __A (self ) -> Union[str, Any]: pass def __A (self ) -> Optional[Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _lowercase =[self.get_tokenizer(do_lower_case=UpperCAmelCase , add_bos_token=UpperCAmelCase )] for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _lowercase ='''Encode this.''' _lowercase ='''This one too please.''' _lowercase =tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) encoded_sequence += tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _lowercase =tokenizer.encode_plus( UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , ) _lowercase =encoded_sequence_dict['''input_ids'''] _lowercase =encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) _lowercase =[ (x if not special_tokens_mask[i] else None) for i, x in enumerate(UpperCAmelCase ) ] _lowercase =[x for x in filtered_sequence if x is not None] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @require_tokenizers class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _lowercase =AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=UpperCAmelCase ) _lowercase ='''A photo of a cat''' _lowercase =tokenizer.encode( UpperCAmelCase , ) self.assertEqual(UpperCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''test_opt''' ) _lowercase =AutoTokenizer.from_pretrained('''./test_opt''' ) _lowercase =tokenizer.encode( UpperCAmelCase , ) self.assertEqual(UpperCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def __A (self ) -> List[str]: _lowercase =AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=UpperCAmelCase ) _lowercase ='''A photo of a cat''' _lowercase =tokenizer.encode( UpperCAmelCase , ) # Same as above self.assertEqual(UpperCAmelCase , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def __A (self ) -> Any: _lowercase =AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=UpperCAmelCase ) _lowercase ='''bos''' _lowercase =tokenizer.get_vocab()['''bos'''] _lowercase ='''A photo of a cat''' _lowercase =tokenizer.encode( UpperCAmelCase , ) # We changed the bos token self.assertEqual(UpperCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''./tok''' ) _lowercase =AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) _lowercase =tokenizer.encode( UpperCAmelCase , ) self.assertEqual(UpperCAmelCase , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
5
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
1
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__snake_case ) , __snake_case ) return number - int(__snake_case ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
5
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_0 , UpperCAmelCase=0.02 , UpperCAmelCase=True , UpperCAmelCase=None , ) -> str: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =use_labels _lowercase =scope def __A (self ) -> int: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =self.get_config() return config, input_ids, input_mask, token_labels def __A (self ) -> Any: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) def __A (self ) -> Dict: ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =self.prepare_config_and_inputs() _lowercase =True _lowercase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ) -> Tuple: _lowercase =BertGenerationEncoder(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ) -> List[str]: _lowercase =True _lowercase =BertGenerationEncoder(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ) -> Dict: _lowercase =True _lowercase =True _lowercase =BertGenerationDecoder(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() # first forward pass _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase , ) _lowercase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowercase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowercase =torch.cat([input_mask, next_mask] , dim=-1 ) _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['''hidden_states'''][0] _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['''hidden_states'''][0] # select random slice _lowercase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowercase =output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase , ) -> Optional[int]: _lowercase =BertGenerationDecoder(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A (self ) -> Tuple: _lowercase , _lowercase , _lowercase , _lowercase =self.prepare_config_and_inputs() _lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = (BertGenerationDecoder,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def __A (self ) -> Dict: _lowercase =BertGenerationEncoderTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> List[str]: self.config_tester.run_common_tests() def __A (self ) -> Optional[int]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> List[Any]: _lowercase , _lowercase , _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs() _lowercase ='''bert''' self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase ) def __A (self ) -> List[str]: _lowercase =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCAmelCase ) def __A (self ) -> int: # This regression test was failing with PyTorch < 1.3 ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =self.model_tester.prepare_config_and_inputs_for_decoder() _lowercase =None self.model_tester.create_and_check_model_as_decoder( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) def __A (self ) -> str: _lowercase =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase ) @slow def __A (self ) -> Union[str, Any]: _lowercase =BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class lowerCamelCase__ ( unittest.TestCase): @slow def __A (self ) -> List[str]: _lowercase =BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) _lowercase =torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): _lowercase =model(UpperCAmelCase )[0] _lowercase =torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , UpperCAmelCase ) _lowercase =torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase): @slow def __A (self ) -> Dict: _lowercase =BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) _lowercase =torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): _lowercase =model(UpperCAmelCase )[0] _lowercase =torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , UpperCAmelCase ) _lowercase =torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
5
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ = '''src/diffusers''' UpperCAmelCase__ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. UpperCAmelCase__ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCAmelCase__ = spec.loader.load_module() def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Tuple: """simple docstring""" return line.startswith(__snake_case ) or len(__snake_case ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , __snake_case ) is not None def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =object_name.split('''.''' ) _lowercase =0 # First let's find the module where our object lives. _lowercase =parts[i] while i < len(__snake_case ) and not os.path.isfile(os.path.join(__snake_case , F"{module}.py" ) ): i += 1 if i < len(__snake_case ): _lowercase =os.path.join(__snake_case , parts[i] ) if i >= len(__snake_case ): raise ValueError(F"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(__snake_case , F"{module}.py" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowercase =f.readlines() # Now let's find the class / func in the code! _lowercase ='''''' _lowercase =0 for name in parts[i + 1 :]: while ( line_index < len(__snake_case ) and re.search(rF"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__snake_case ): raise ValueError(F" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowercase =line_index while line_index < len(__snake_case ) and _should_continue(lines[line_index] , __snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowercase =lines[start_index:line_index] return "".join(__snake_case ) UpperCAmelCase__ = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') UpperCAmelCase__ = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') UpperCAmelCase__ = re.compile(R'''<FILL\s+[^>]*>''') def UpperCAmelCase_ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _lowercase =code.split('''\n''' ) _lowercase =0 while idx < len(__snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__snake_case ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =len(get_indent(__snake_case ) ) > 0 if has_indent: _lowercase =F"class Bla:\n{code}" _lowercase =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__snake_case ) _lowercase =black.format_str(__snake_case , mode=__snake_case ) _lowercase , _lowercase =style_docstrings_in_code(__snake_case ) return result[len('''class Bla:\n''' ) :] if has_indent else result def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Optional[int]: """simple docstring""" with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowercase =f.readlines() _lowercase =[] _lowercase =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__snake_case ): _lowercase =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowercase , _lowercase , _lowercase =search.groups() _lowercase =find_code_in_diffusers(__snake_case ) _lowercase =get_indent(__snake_case ) _lowercase =line_index + 1 if indent == theoretical_indent else line_index + 2 _lowercase =theoretical_indent _lowercase =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowercase =True while line_index < len(__snake_case ) and should_continue: line_index += 1 if line_index >= len(__snake_case ): break _lowercase =lines[line_index] _lowercase =_should_continue(__snake_case , __snake_case ) and re.search(F"^{indent}# End copy" , __snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowercase =lines[start_index:line_index] _lowercase =''''''.join(__snake_case ) # Remove any nested `Copied from` comments to avoid circular copies _lowercase =[line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__snake_case ) is None] _lowercase ='''\n'''.join(__snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(__snake_case ) > 0: _lowercase =replace_pattern.replace('''with''' , '''''' ).split(''',''' ) _lowercase =[_re_replace_pattern.search(__snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowercase , _lowercase , _lowercase =pattern.groups() _lowercase =re.sub(__snake_case , __snake_case , __snake_case ) if option.strip() == "all-casing": _lowercase =re.sub(obja.lower() , obja.lower() , __snake_case ) _lowercase =re.sub(obja.upper() , obja.upper() , __snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowercase =blackify(lines[start_index - 1] + theoretical_code ) _lowercase =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowercase =lines[:start_index] + [theoretical_code] + lines[line_index:] _lowercase =start_index + 1 if overwrite and len(__snake_case ) > 0: # Warn the user a file has been modified. print(F"Detected changes, rewriting {filename}." ) with open(__snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__snake_case ) return diffs def UpperCAmelCase_ ( __snake_case = False ) -> Tuple: """simple docstring""" _lowercase =glob.glob(os.path.join(__snake_case , '''**/*.py''' ) , recursive=__snake_case ) _lowercase =[] for filename in all_files: _lowercase =is_copy_consistent(__snake_case , __snake_case ) diffs += [F"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(__snake_case ) > 0: _lowercase ='''\n'''.join(__snake_case ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
5
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
1
def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _lowercase =grid[0] for row_n in range(1 , len(__snake_case ) ): _lowercase =grid[row_n] _lowercase =fill_row(__snake_case , __snake_case ) _lowercase =grid[row_n] return grid[-1][-1] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(__snake_case ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
5
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
1
import argparse import struct import unittest class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> None: _lowercase =data # Initialize hash values _lowercase =[ 0X6_a_0_9_e_6_6_7, 0Xb_b_6_7_a_e_8_5, 0X3_c_6_e_f_3_7_2, 0Xa_5_4_f_f_5_3_a, 0X5_1_0_e_5_2_7_f, 0X9_b_0_5_6_8_8_c, 0X1_f_8_3_d_9_a_b, 0X5_b_e_0_c_d_1_9, ] # Initialize round constants _lowercase =[ 0X4_2_8_a_2_f_9_8, 0X7_1_3_7_4_4_9_1, 0Xb_5_c_0_f_b_c_f, 0Xe_9_b_5_d_b_a_5, 0X3_9_5_6_c_2_5_b, 0X5_9_f_1_1_1_f_1, 0X9_2_3_f_8_2_a_4, 0Xa_b_1_c_5_e_d_5, 0Xd_8_0_7_a_a_9_8, 0X1_2_8_3_5_b_0_1, 0X2_4_3_1_8_5_b_e, 0X5_5_0_c_7_d_c_3, 0X7_2_b_e_5_d_7_4, 0X8_0_d_e_b_1_f_e, 0X9_b_d_c_0_6_a_7, 0Xc_1_9_b_f_1_7_4, 0Xe_4_9_b_6_9_c_1, 0Xe_f_b_e_4_7_8_6, 0X0_f_c_1_9_d_c_6, 0X2_4_0_c_a_1_c_c, 0X2_d_e_9_2_c_6_f, 0X4_a_7_4_8_4_a_a, 0X5_c_b_0_a_9_d_c, 0X7_6_f_9_8_8_d_a, 0X9_8_3_e_5_1_5_2, 0Xa_8_3_1_c_6_6_d, 0Xb_0_0_3_2_7_c_8, 0Xb_f_5_9_7_f_c_7, 0Xc_6_e_0_0_b_f_3, 0Xd_5_a_7_9_1_4_7, 0X0_6_c_a_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_b_7_0_a_8_5, 0X2_e_1_b_2_1_3_8, 0X4_d_2_c_6_d_f_c, 0X5_3_3_8_0_d_1_3, 0X6_5_0_a_7_3_5_4, 0X7_6_6_a_0_a_b_b, 0X8_1_c_2_c_9_2_e, 0X9_2_7_2_2_c_8_5, 0Xa_2_b_f_e_8_a_1, 0Xa_8_1_a_6_6_4_b, 0Xc_2_4_b_8_b_7_0, 0Xc_7_6_c_5_1_a_3, 0Xd_1_9_2_e_8_1_9, 0Xd_6_9_9_0_6_2_4, 0Xf_4_0_e_3_5_8_5, 0X1_0_6_a_a_0_7_0, 0X1_9_a_4_c_1_1_6, 0X1_e_3_7_6_c_0_8, 0X2_7_4_8_7_7_4_c, 0X3_4_b_0_b_c_b_5, 0X3_9_1_c_0_c_b_3, 0X4_e_d_8_a_a_4_a, 0X5_b_9_c_c_a_4_f, 0X6_8_2_e_6_f_f_3, 0X7_4_8_f_8_2_e_e, 0X7_8_a_5_6_3_6_f, 0X8_4_c_8_7_8_1_4, 0X8_c_c_7_0_2_0_8, 0X9_0_b_e_f_f_f_a, 0Xa_4_5_0_6_c_e_b, 0Xb_e_f_9_a_3_f_7, 0Xc_6_7_1_7_8_f_2, ] _lowercase =self.preprocessing(self.data ) self.final_hash() @staticmethod def __A (UpperCAmelCase ) -> bytes: _lowercase =B'''\x80''' + (B'''\x00''' * (6_3 - (len(UpperCAmelCase ) + 8) % 6_4)) _lowercase =struct.pack('''>Q''' , (len(UpperCAmelCase ) * 8) ) return data + padding + big_endian_integer def __A (self ) -> None: # Convert into blocks of 64 bytes _lowercase =[ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data ) , 6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowercase =list(struct.unpack('''>16L''' , UpperCAmelCase ) ) # add 48 0-ed integers words += [0] * 4_8 _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =self.hashes for index in range(0 , 6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array _lowercase =( self.ror(words[index - 1_5] , 7 ) ^ self.ror(words[index - 1_5] , 1_8 ) ^ (words[index - 1_5] >> 3) ) _lowercase =( self.ror(words[index - 2] , 1_7 ) ^ self.ror(words[index - 2] , 1_9 ) ^ (words[index - 2] >> 1_0) ) _lowercase =( words[index - 1_6] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression _lowercase =self.ror(UpperCAmelCase , 6 ) ^ self.ror(UpperCAmelCase , 1_1 ) ^ self.ror(UpperCAmelCase , 2_5 ) _lowercase =(e & f) ^ ((~e & 0Xf_f_f_f_f_f_f_f) & g) _lowercase =( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 _lowercase =self.ror(UpperCAmelCase , 2 ) ^ self.ror(UpperCAmelCase , 1_3 ) ^ self.ror(UpperCAmelCase , 2_2 ) _lowercase =(a & b) ^ (a & c) ^ (b & c) _lowercase =(sa + maj) % 0X1_0_0_0_0_0_0_0_0 _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) _lowercase =[a, b, c, d, e, f, g, h] # Modify final values _lowercase =[ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] _lowercase =''''''.join([hex(UpperCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> int: return 0Xf_f_f_f_f_f_f_f & (value << (3_2 - rotations)) | (value >> rotations) class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> None: import hashlib _lowercase =bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(UpperCAmelCase ).hash , hashlib.shaaaa(UpperCAmelCase ).hexdigest() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() _lowercase =argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) _lowercase =parser.parse_args() _lowercase =args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: _lowercase =f.read() else: _lowercase =bytes(__snake_case , '''utf-8''' ) print(SHAaaa(__snake_case ).hash ) if __name__ == "__main__": main()
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=[3_0, 3_0] , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=8 , UpperCAmelCase=1_0 , ) -> Tuple: _lowercase =parent _lowercase =batch_size _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =is_training _lowercase =use_labels _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =scope _lowercase =n_targets _lowercase =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens _lowercase =(image_size[1] // patch_size) * (image_size[0] // patch_size) _lowercase =num_patches + 1 + self.num_detection_tokens def __A (self ) -> str: _lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) _lowercase =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) _lowercase =[] for i in range(self.batch_size ): _lowercase ={} _lowercase =torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCAmelCase ) _lowercase =torch.rand(self.n_targets , 4 , device=UpperCAmelCase ) labels.append(UpperCAmelCase ) _lowercase =self.get_config() return config, pixel_values, labels def __A (self ) -> Dict: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =YolosModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _lowercase =YolosForObjectDetection(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(pixel_values=UpperCAmelCase ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) _lowercase =model(pixel_values=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __A (self ) -> List[Any]: _lowercase =self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase =config_and_inputs _lowercase ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[int]: _lowercase =super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": _lowercase =[] for i in range(self.model_tester.batch_size ): _lowercase ={} _lowercase =torch.ones( size=(self.model_tester.n_targets,) , device=UpperCAmelCase , dtype=torch.long ) _lowercase =torch.ones( self.model_tester.n_targets , 4 , device=UpperCAmelCase , dtype=torch.float ) labels.append(UpperCAmelCase ) _lowercase =labels return inputs_dict def __A (self ) -> List[Any]: _lowercase =YolosModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> List[str]: self.config_tester.run_common_tests() def __A (self ) -> Dict: # YOLOS does not use inputs_embeds pass def __A (self ) -> Any: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def __A (self ) -> int: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(UpperCAmelCase ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =True # in YOLOS, the seq_len is different _lowercase =self.model_tester.expected_seq_len for model_class in self.all_model_classes: _lowercase =True _lowercase =False _lowercase =True _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _lowercase =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowercase =True _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _lowercase =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _lowercase =len(UpperCAmelCase ) # Check attention is always last and order is fine _lowercase =True _lowercase =True _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _lowercase =1 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase ) ) _lowercase =outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __A (self ) -> Any: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _lowercase =outputs.hidden_states _lowercase =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # YOLOS has a different seq_length _lowercase =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCAmelCase ) @slow def __A (self ) -> int: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =YolosModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase_ ( ) -> List[str]: """simple docstring""" _lowercase =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): @cached_property def __A (self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __A (self ) -> Optional[int]: _lowercase =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCAmelCase ) _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _lowercase =model(inputs.pixel_values ) # verify outputs _lowercase =torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _lowercase =torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=UpperCAmelCase , ) _lowercase =torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify postprocessing _lowercase =image_processor.post_process_object_detection( UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] _lowercase =torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(UpperCAmelCase ) _lowercase =[7_5, 7_5, 1_7, 6_3, 1_7] _lowercase =torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(UpperCAmelCase ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCAmelCase , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCAmelCase ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCAmelCase ) )
5
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
1
UpperCAmelCase__ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCAmelCase__ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> list[int]: """simple docstring""" _lowercase =True _lowercase =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__snake_case , __snake_case , __snake_case ) order.append(__snake_case ) return order def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> list[int]: """simple docstring""" _lowercase =True _lowercase =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__snake_case , __snake_case , __snake_case ) return component def UpperCAmelCase_ ( __snake_case ) -> list[list[int]]: """simple docstring""" _lowercase =len(__snake_case ) * [False] _lowercase ={vert: [] for vert in range(len(__snake_case ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__snake_case ) _lowercase =[] for i, was_visited in enumerate(__snake_case ): if not was_visited: order += topology_sort(__snake_case , __snake_case , __snake_case ) _lowercase =[] _lowercase =len(__snake_case ) * [False] for i in range(len(__snake_case ) ): _lowercase =order[len(__snake_case ) - i - 1] if not visited[vert]: _lowercase =find_components(__snake_case , __snake_case , __snake_case ) components_list.append(__snake_case ) return components_list
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
# Lint as: python3 import itertools import os import re UpperCAmelCase__ = re.compile(R'''([A-Z]+)([A-Z][a-z])''') UpperCAmelCase__ = re.compile(R'''([a-z\d])([A-Z])''') UpperCAmelCase__ = re.compile(R'''(?<!_)_(?!_)''') UpperCAmelCase__ = re.compile(R'''(_{2,})''') UpperCAmelCase__ = R'''^\w+(\.\w+)*$''' UpperCAmelCase__ = R'''<>:/\|?*''' def UpperCAmelCase_ ( __snake_case ) -> Any: """simple docstring""" _lowercase =_uppercase_uppercase_re.sub(r'''\1_\2''' , __snake_case ) _lowercase =_lowercase_uppercase_re.sub(r'''\1_\2''' , __snake_case ) return name.lower() def UpperCAmelCase_ ( __snake_case ) -> Any: """simple docstring""" _lowercase =_single_underscore_re.split(__snake_case ) _lowercase =[_multiple_underscores_re.split(__snake_case ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__snake_case ) if n != '''''' ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" if os.path.basename(__snake_case ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Optional[Any]: """simple docstring""" if os.path.basename(__snake_case ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __snake_case ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(__snake_case )}-{split}" def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=None ) -> Union[str, Any]: """simple docstring""" _lowercase =filename_prefix_for_split(__snake_case , __snake_case ) if filetype_suffix: prefix += F".{filetype_suffix}" _lowercase =os.path.join(__snake_case , __snake_case ) return F"{filepath}*" def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None ) -> Tuple: """simple docstring""" _lowercase =filename_prefix_for_split(__snake_case , __snake_case ) _lowercase =os.path.join(__snake_case , __snake_case ) if shard_lengths: _lowercase =len(__snake_case ) _lowercase =[F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__snake_case )] if filetype_suffix: _lowercase =[filename + F".{filetype_suffix}" for filename in filenames] return filenames else: _lowercase =prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
5
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
1
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py UpperCAmelCase__ = '''src/transformers''' UpperCAmelCase__ = '''docs/source/en''' UpperCAmelCase__ = '''.''' def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[Any]: """simple docstring""" with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowercase =f.readlines() # Find the start prompt. _lowercase =0 while not lines[start_index].startswith(__snake_case ): start_index += 1 start_index += 1 _lowercase =start_index while not lines[end_index].startswith(__snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | UpperCAmelCase__ = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. UpperCAmelCase__ = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') UpperCAmelCase__ = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase__ = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def UpperCAmelCase_ ( __snake_case ) -> Tuple: """simple docstring""" _lowercase =re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __snake_case ) return [m.group(0 ) for m in matches] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =2 if text == '''✅''' or text == '''❌''' else len(__snake_case ) _lowercase =(width - text_length) // 2 _lowercase =width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" _lowercase =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _lowercase ={ name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _lowercase ={name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) # Let's lookup through all transformers object (once). for attr_name in dir(__snake_case ): _lowercase =None if attr_name.endswith('''Tokenizer''' ): _lowercase =slow_tokenizers _lowercase =attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): _lowercase =fast_tokenizers _lowercase =attr_name[:-13] elif _re_tf_models.match(__snake_case ) is not None: _lowercase =tf_models _lowercase =_re_tf_models.match(__snake_case ).groups()[0] elif _re_flax_models.match(__snake_case ) is not None: _lowercase =flax_models _lowercase =_re_flax_models.match(__snake_case ).groups()[0] elif _re_pt_models.match(__snake_case ) is not None: _lowercase =pt_models _lowercase =_re_pt_models.match(__snake_case ).groups()[0] if lookup_dict is not None: while len(__snake_case ) > 0: if attr_name in model_name_to_prefix.values(): _lowercase =True break # Try again after removing the last word in the name _lowercase =''''''.join(camel_case_split(__snake_case )[:-1] ) # Let's build that table! _lowercase =list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _lowercase =['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _lowercase =[len(__snake_case ) + 2 for c in columns] _lowercase =max([len(__snake_case ) for name in model_names] ) + 2 # Build the table per se _lowercase ='''|''' + '''|'''.join([_center_text(__snake_case , __snake_case ) for c, w in zip(__snake_case , __snake_case )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" _lowercase ={True: '''✅''', False: '''❌'''} for name in model_names: _lowercase =model_name_to_prefix[name] _lowercase =[ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__snake_case , __snake_case ) for l, w in zip(__snake_case , __snake_case )] ) + "|\n" return table def UpperCAmelCase_ ( __snake_case=False ) -> List[str]: """simple docstring""" _lowercase , _lowercase , _lowercase , _lowercase =_find_text_in_file( filename=os.path.join(__snake_case , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) _lowercase =get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__snake_case , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
5
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=3_2 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[1_0, 2_0, 3_0, 4_0] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=1_0 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=[2, 3, 4] , UpperCAmelCase=None , ) -> Optional[int]: _lowercase =parent _lowercase =batch_size _lowercase =image_size _lowercase =num_channels _lowercase =num_stages _lowercase =hidden_sizes _lowercase =depths _lowercase =is_training _lowercase =use_labels _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_labels _lowercase =initializer_range _lowercase =out_features _lowercase =out_indices _lowercase =scope def __A (self ) -> Union[str, Any]: _lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.num_labels ) _lowercase =self.get_config() return config, pixel_values, labels def __A (self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _lowercase =ConvNextVaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =ConvNextVaForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: _lowercase =ConvNextVaBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowercase =None _lowercase =ConvNextVaBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __A (self ) -> Optional[int]: _lowercase =self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase =config_and_inputs _lowercase ={'''pixel_values''': pixel_values} return config, inputs_dict def __A (self ) -> List[str]: _lowercase =self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase =config_and_inputs _lowercase ={'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Optional[Any]: _lowercase =ConvNextVaModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A (self ) -> Tuple: return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def __A (self ) -> Optional[Any]: pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def __A (self ) -> List[str]: pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def __A (self ) -> Any: pass def __A (self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_with_labels() _lowercase =True if model_class.__name__ in [ *get_values(UpperCAmelCase ), *get_values(UpperCAmelCase ), ]: continue _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() _lowercase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _lowercase =model(**UpperCAmelCase ).loss loss.backward() def __A (self ) -> Union[str, Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_with_labels() _lowercase =False _lowercase =True if ( model_class.__name__ in [*get_values(UpperCAmelCase ), *get_values(UpperCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() _lowercase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _lowercase =model(**UpperCAmelCase ).loss loss.backward() def __A (self ) -> Tuple: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(UpperCAmelCase ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> List[Any]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _lowercase =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _lowercase =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase =self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def __A (self ) -> int: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =ConvNextVaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase_ ( ) -> Any: """simple docstring""" _lowercase =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): @cached_property def __A (self ) -> Optional[int]: return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def __A (self ) -> Any: _lowercase =ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(UpperCAmelCase ) _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =preprocessor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _lowercase =model(**UpperCAmelCase ) # verify the logits _lowercase =torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _lowercase =torch.tensor([0.9996, 0.1966, -0.4386] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
5
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
1
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
1
import os def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase =os.path.dirname(os.path.realpath(__snake_case ) ) _lowercase =os.path.join(__snake_case , '''triangle.txt''' ) with open(__snake_case ) as f: _lowercase =f.readlines() _lowercase =[] for line in triangle: _lowercase =[] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(__snake_case ) ) a.append(__snake_case ) for i in range(1 , len(__snake_case ) ): for j in range(len(a[i] ) ): _lowercase =a[i - 1][j] if j != len(a[i - 1] ) else 0 _lowercase =a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__snake_case , __snake_case ) return max(a[-1] ) if __name__ == "__main__": print(solution())
5
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> None: warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
5
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''ChineseCLIPFeatureExtractor'''] UpperCAmelCase__ = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
1
from __future__ import annotations UpperCAmelCase__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" _lowercase =[ [0 for col in range(len(grid[0] ) )] for row in range(len(__snake_case ) ) ] # the reference grid _lowercase =1 _lowercase =[ [0 for col in range(len(grid[0] ) )] for row in range(len(__snake_case ) ) ] # the action grid _lowercase =init[0] _lowercase =init[1] _lowercase =0 _lowercase =g + heuristic[x][y] # cost from starting cell to destination cell _lowercase =[[f, g, x, y]] _lowercase =False # flag that is set when search is complete _lowercase =False # flag set if we can't find expand while not found and not resign: if len(__snake_case ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() _lowercase =cell.pop() _lowercase =next_cell[2] _lowercase =next_cell[3] _lowercase =next_cell[1] if x == goal[0] and y == goal[1]: _lowercase =True else: for i in range(len(__snake_case ) ): # to try out different valid actions _lowercase =x + DIRECTIONS[i][0] _lowercase =y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__snake_case ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: _lowercase =g + cost _lowercase =ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) _lowercase =1 _lowercase =i _lowercase =[] _lowercase =goal[0] _lowercase =goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: _lowercase =x - DIRECTIONS[action[x][y]][0] _lowercase =y - DIRECTIONS[action[x][y]][1] _lowercase =xa _lowercase =ya invpath.append([x, y] ) _lowercase =[] for i in range(len(__snake_case ) ): path.append(invpath[len(__snake_case ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCAmelCase__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCAmelCase__ = [0, 0] # all coordinates are given in format [y,x] UpperCAmelCase__ = [len(grid) - 1, len(grid[0]) - 1] UpperCAmelCase__ = 1 # the cost map which pushes the path closer to the goal UpperCAmelCase__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCAmelCase__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCAmelCase__ = 99 UpperCAmelCase__ ,UpperCAmelCase__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
5
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
1
import qiskit def UpperCAmelCase_ ( __snake_case , __snake_case ) -> qiskit.result.counts.Counts: """simple docstring""" _lowercase =qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _lowercase =qiskit.QuantumCircuit(__snake_case , __snake_case ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _lowercase =qiskit.execute(__snake_case , __snake_case , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__snake_case ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
5
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" _lowercase =os.path.dirname(os.path.realpath(__snake_case ) ) _lowercase =os.path.join(__snake_case , '''words.txt''' ) _lowercase ='''''' with open(__snake_case ) as f: _lowercase =f.readline() _lowercase =[word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] _lowercase =[ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
5
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['''flax''', '''transformers'''] ) class lowerCamelCase__ ( metaclass=lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''flax''', '''transformers'''] def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __A (cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['''flax''', '''transformers'''] )
5
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
class lowerCamelCase__ : def __init__(self ) -> Tuple: _lowercase ='''''' _lowercase ='''''' _lowercase =[] def __A (self , UpperCAmelCase , UpperCAmelCase ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _lowercase =self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _lowercase =self.__min_dist_top_down_dp(UpperCAmelCase , n - 1 ) _lowercase =self.__min_dist_top_down_dp(m - 1 , UpperCAmelCase ) _lowercase =self.__min_dist_top_down_dp(m - 1 , n - 1 ) _lowercase =1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return self.dp[m][n] def __A (self , UpperCAmelCase , UpperCAmelCase ) -> int: _lowercase =worda _lowercase =worda _lowercase =[[-1 for _ in range(len(UpperCAmelCase ) )] for _ in range(len(UpperCAmelCase ) )] return self.__min_dist_top_down_dp(len(UpperCAmelCase ) - 1 , len(UpperCAmelCase ) - 1 ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> int: _lowercase =worda _lowercase =worda _lowercase =len(UpperCAmelCase ) _lowercase =len(UpperCAmelCase ) _lowercase =[[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _lowercase =j elif j == 0: # second string is empty _lowercase =i elif worda[i - 1] == worda[j - 1]: # last characters are equal _lowercase =self.dp[i - 1][j - 1] else: _lowercase =self.dp[i][j - 1] _lowercase =self.dp[i - 1][j] _lowercase =self.dp[i - 1][j - 1] _lowercase =1 + min(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return self.dp[m][n] if __name__ == "__main__": UpperCAmelCase__ = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() UpperCAmelCase__ = input('''Enter the first string: ''').strip() UpperCAmelCase__ = input('''Enter the second string: ''').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
5
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) UpperCAmelCase__ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) UpperCAmelCase__ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) UpperCAmelCase__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) UpperCAmelCase__ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) UpperCAmelCase__ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) UpperCAmelCase__ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) UpperCAmelCase__ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) UpperCAmelCase__ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) UpperCAmelCase__ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) UpperCAmelCase__ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) UpperCAmelCase__ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) UpperCAmelCase__ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) UpperCAmelCase__ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_MAPPING UpperCAmelCase__ = auto_class_update(FlaxAutoModel) class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCamelCase__ ( _BaseAutoModelClass): SCREAMING_SNAKE_CASE__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
5
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=6_4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=1 , ) -> int: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =num_choices _lowercase =scope _lowercase =q_groups _lowercase =k_groups _lowercase =v_groups _lowercase =post_attention_groups _lowercase =intermediate_groups _lowercase =output_groups def __A (self ) -> Optional[Any]: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A (self ) -> Optional[Any]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: _lowercase =SqueezeBertModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , UpperCAmelCase ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _lowercase =SqueezeBertForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _lowercase =SqueezeBertForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =self.num_labels _lowercase =SqueezeBertForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _lowercase =self.num_labels _lowercase =SqueezeBertForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: _lowercase =self.num_choices _lowercase =SqueezeBertForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A (self ) -> str: _lowercase =self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) =config_and_inputs _lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def __A (self ) -> List[Any]: _lowercase =SqueezeBertModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , dim=3_7 ) def __A (self ) -> Optional[int]: self.config_tester.run_common_tests() def __A (self ) -> List[str]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCAmelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCAmelCase ) def __A (self ) -> Optional[int]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCAmelCase ) def __A (self ) -> List[str]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCAmelCase ) def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCAmelCase ) @slow def __A (self ) -> Union[str, Any]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =SqueezeBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase__ ( unittest.TestCase): @slow def __A (self ) -> Dict: _lowercase =SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) _lowercase =torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) _lowercase =model(UpperCAmelCase )[0] _lowercase =torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCAmelCase ) _lowercase =torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-4 ) )
5
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase__ = [0, 25, 50] UpperCAmelCase__ = [25, 50, 75] UpperCAmelCase__ = fuzz.membership.trimf(X, abca) UpperCAmelCase__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase__ = np.ones(75) UpperCAmelCase__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
5
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
1
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Any: """simple docstring""" assert x is not None assert y is not None _lowercase =len(__snake_case ) _lowercase =len(__snake_case ) # declaring the array for storing the dp values _lowercase =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowercase =1 if x[i - 1] == y[j - 1] else 0 _lowercase =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowercase ='''''' _lowercase , _lowercase =m, n while i > 0 and j > 0: _lowercase =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowercase =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": UpperCAmelCase__ = '''AGGTAB''' UpperCAmelCase__ = '''GXTXAYB''' UpperCAmelCase__ = 4 UpperCAmelCase__ = '''GTAB''' UpperCAmelCase__ ,UpperCAmelCase__ = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
5
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
1
from random import randint from tempfile import TemporaryFile import numpy as np def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Dict: """simple docstring""" _lowercase =0 if start < end: _lowercase =randint(__snake_case , __snake_case ) _lowercase =a[end] _lowercase =a[pivot] _lowercase =temp _lowercase , _lowercase =_in_place_partition(__snake_case , __snake_case , __snake_case ) count += _in_place_quick_sort(__snake_case , __snake_case , p - 1 ) count += _in_place_quick_sort(__snake_case , p + 1 , __snake_case ) return count def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" _lowercase =0 _lowercase =randint(__snake_case , __snake_case ) _lowercase =a[end] _lowercase =a[pivot] _lowercase =temp _lowercase =start - 1 for index in range(__snake_case , __snake_case ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _lowercase =new_pivot_index + 1 _lowercase =a[new_pivot_index] _lowercase =a[index] _lowercase =temp _lowercase =a[new_pivot_index + 1] _lowercase =a[end] _lowercase =temp return new_pivot_index + 1, count UpperCAmelCase__ = TemporaryFile() UpperCAmelCase__ = 100 # 1000 elements are to be sorted UpperCAmelCase__ ,UpperCAmelCase__ = 0, 1 # mean and standard deviation UpperCAmelCase__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array UpperCAmelCase__ = np.load(outfile) UpperCAmelCase__ = len(M) - 1 UpperCAmelCase__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
5
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
1
from torch import nn def UpperCAmelCase_ ( __snake_case ) -> Any: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"Unsupported activation function: {act_fn}" )
5
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
1
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) UpperCAmelCase__ = None UpperCAmelCase__ = { '''7B''': 1_1008, '''13B''': 1_3824, '''30B''': 1_7920, '''65B''': 2_2016, '''70B''': 2_8672, } UpperCAmelCase__ = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def UpperCAmelCase_ ( __snake_case , __snake_case=1 , __snake_case=256 ) -> Optional[int]: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" with open(__snake_case , '''r''' ) as f: return json.load(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[str]: """simple docstring""" with open(__snake_case , '''w''' ) as f: json.dump(__snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: """simple docstring""" os.makedirs(__snake_case , exist_ok=__snake_case ) _lowercase =os.path.join(__snake_case , '''tmp''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) _lowercase =read_json(os.path.join(__snake_case , '''params.json''' ) ) _lowercase =NUM_SHARDS[model_size] _lowercase =params['''n_layers'''] _lowercase =params['''n_heads'''] _lowercase =n_heads // num_shards _lowercase =params['''dim'''] _lowercase =dim // n_heads _lowercase =1_00_00.0 _lowercase =1.0 / (base ** (torch.arange(0 , __snake_case , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowercase =params['''n_kv_heads'''] # for GQA / MQA _lowercase =n_heads_per_shard // num_key_value_heads _lowercase =dim // num_key_value_heads else: # compatibility with other checkpoints _lowercase =n_heads _lowercase =n_heads_per_shard _lowercase =dim # permute for sliced rotary def permute(__snake_case , __snake_case=n_heads , __snake_case=dim , __snake_case=dim ): return w.view(__snake_case , dima // n_heads // 2 , 2 , __snake_case ).transpose(1 , 2 ).reshape(__snake_case , __snake_case ) print(F"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowercase =torch.load(os.path.join(__snake_case , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded _lowercase =[ torch.load(os.path.join(__snake_case , F"consolidated.{i:02d}.pth" ) , map_location='''cpu''' ) for i in range(__snake_case ) ] _lowercase =0 _lowercase ={'''weight_map''': {}} for layer_i in range(__snake_case ): _lowercase =F"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded _lowercase ={ F"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wq.weight"] ), F"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wk.weight"] ), F"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[F"layers.{layer_i}.attention.wv.weight"], F"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[F"layers.{layer_i}.attention.wo.weight"], F"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w1.weight"], F"model.layers.{layer_i}.mlp.down_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w2.weight"], F"model.layers.{layer_i}.mlp.up_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w3.weight"], F"model.layers.{layer_i}.input_layernorm.weight": loaded[F"layers.{layer_i}.attention_norm.weight"], F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[F"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowercase ={ F"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ F"layers.{layer_i}.attention_norm.weight" ].clone(), F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ F"layers.{layer_i}.ffn_norm.weight" ].clone(), } _lowercase =permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wq.weight"].view(__snake_case , __snake_case , __snake_case ) for i in range(__snake_case ) ] , dim=0 , ).reshape(__snake_case , __snake_case ) ) _lowercase =permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wk.weight"].view( __snake_case , __snake_case , __snake_case ) for i in range(__snake_case ) ] , dim=0 , ).reshape(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case , ) _lowercase =torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wv.weight"].view( __snake_case , __snake_case , __snake_case ) for i in range(__snake_case ) ] , dim=0 , ).reshape(__snake_case , __snake_case ) _lowercase =torch.cat( [loaded[i][F"layers.{layer_i}.attention.wo.weight"] for i in range(__snake_case )] , dim=1 ) _lowercase =torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w1.weight"] for i in range(__snake_case )] , dim=0 ) _lowercase =torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w2.weight"] for i in range(__snake_case )] , dim=1 ) _lowercase =torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w3.weight"] for i in range(__snake_case )] , dim=0 ) _lowercase =inv_freq for k, v in state_dict.items(): _lowercase =filename param_count += v.numel() torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) ) _lowercase =F"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded _lowercase ={ '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: _lowercase ={ '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(__snake_case )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(__snake_case )] , dim=0 ), } for k, v in state_dict.items(): _lowercase =filename param_count += v.numel() torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) ) # Write configs _lowercase ={'''total_size''': param_count * 2} write_json(__snake_case , os.path.join(__snake_case , '''pytorch_model.bin.index.json''' ) ) _lowercase =params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 _lowercase =params['''multiple_of'''] if '''multiple_of''' in params else 256 _lowercase =LlamaConfig( hidden_size=__snake_case , intermediate_size=compute_intermediate_size(__snake_case , __snake_case , __snake_case ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=__snake_case , ) config.save_pretrained(__snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) _lowercase =LlamaForCausalLM.from_pretrained(__snake_case , torch_dtype=torch.floataa , low_cpu_mem_usage=__snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(__snake_case , safe_serialization=__snake_case ) shutil.rmtree(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[str]: """simple docstring""" _lowercase =LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) _lowercase =tokenizer_class(__snake_case ) tokenizer.save_pretrained(__snake_case ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" _lowercase =argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=__snake_case , help='''Whether or not to save using `safetensors`.''' ) _lowercase =parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowercase =os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , __snake_case ) if __name__ == "__main__": main()
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=3_0 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0 , UpperCAmelCase=0.02 , UpperCAmelCase=None , ) -> List[str]: _lowercase =parent _lowercase =batch_size _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =is_training _lowercase =use_labels _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase =(image_size // patch_size) ** 2 _lowercase =num_patches + 1 def __A (self ) -> Dict: _lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =self.get_config() return config, pixel_values, labels def __A (self ) -> Dict: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _lowercase =ViTMSNModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _lowercase =self.type_sequence_label_size _lowercase =ViTMSNForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , labels=UpperCAmelCase ) print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''' ) print('''Labels: {labels}''' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowercase =1 _lowercase =ViTMSNForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A (self ) -> str: _lowercase =self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase =config_and_inputs _lowercase ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> int: _lowercase =ViTMSNModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMSN does not use inputs_embeds''' ) def __A (self ) -> List[str]: pass def __A (self ) -> Dict: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def __A (self ) -> List[Any]: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(UpperCAmelCase ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A (self ) -> Optional[int]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> str: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def __A (self ) -> Optional[Any]: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =ViTMSNModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase_ ( ) -> Optional[int]: """simple docstring""" _lowercase =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): @cached_property def __A (self ) -> Tuple: return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''' ) if is_vision_available() else None @slow def __A (self ) -> Optional[Any]: torch.manual_seed(2 ) _lowercase =ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''' ).to(UpperCAmelCase ) _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): _lowercase =model(**UpperCAmelCase ) # verify the logits _lowercase =torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _lowercase =torch.tensor([-0.0803, -0.4454, -0.2375] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
5
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
5
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml UpperCAmelCase__ = NewType('''DataClass''', Any) UpperCAmelCase__ = NewType('''DataClassType''', Any) def UpperCAmelCase_ ( __snake_case ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def UpperCAmelCase_ ( __snake_case ) -> Callable[[str], Any]: """simple docstring""" _lowercase ={str(__snake_case ): choice for choice in choices} return lambda __snake_case : str_to_choice.get(__snake_case , __snake_case ) def UpperCAmelCase_ ( *, __snake_case = None , __snake_case = None , __snake_case = dataclasses.MISSING , __snake_case = dataclasses.MISSING , __snake_case = None , **__snake_case , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _lowercase ={} if aliases is not None: _lowercase =aliases if help is not None: _lowercase =help return dataclasses.field(metadata=__snake_case , default=__snake_case , default_factory=__snake_case , **__snake_case ) class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 42 def __init__(self , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: # To make the default appear when using --help if "formatter_class" not in kwargs: _lowercase =ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase ) if dataclasses.is_dataclass(UpperCAmelCase ): _lowercase =[dataclass_types] _lowercase =list(UpperCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase ) @staticmethod def __A (UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =f"--{field.name}" _lowercase =field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) _lowercase =kwargs.pop('''aliases''' , [] ) if isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =[aliases] _lowercase =getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase , '''UnionType''' ) and isinstance(UpperCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f" Problem encountered in field '{field.name}'." ) if type(UpperCAmelCase ) not in field.type.__args__: # filter `str` in Union _lowercase =field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _lowercase =getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _lowercase =( field.type.__args__[0] if isinstance(UpperCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) _lowercase =getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _lowercase ={} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase ) and issubclass(field.type , UpperCAmelCase )): if origin_type is Literal: _lowercase =field.type.__args__ else: _lowercase =[x.value for x in field.type] _lowercase =make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: _lowercase =field.default else: _lowercase =True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _lowercase =copy(UpperCAmelCase ) # Hack because type=bool in argparse does not behave as we want. _lowercase =string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _lowercase =False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _lowercase =default # This tells argparse we accept 0 or 1 value after --field_name _lowercase ='''?''' # This is the value that will get picked if we do --field_name (without value) _lowercase =True elif isclass(UpperCAmelCase ) and issubclass(UpperCAmelCase , UpperCAmelCase ): _lowercase =field.type.__args__[0] _lowercase ='''+''' if field.default_factory is not dataclasses.MISSING: _lowercase =field.default_factory() elif field.default is dataclasses.MISSING: _lowercase =True else: _lowercase =field.type if field.default is not dataclasses.MISSING: _lowercase =field.default elif field.default_factory is not dataclasses.MISSING: _lowercase =field.default_factory() else: _lowercase =True parser.add_argument(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _lowercase =False parser.add_argument(f"--no_{field.name}" , action='''store_false''' , dest=field.name , **UpperCAmelCase ) def __A (self , UpperCAmelCase ) -> Any: if hasattr(UpperCAmelCase , '''_argument_group_name''' ): _lowercase =self.add_argument_group(dtype._argument_group_name ) else: _lowercase =self try: _lowercase =get_type_hints(UpperCAmelCase ) except NameError: raise RuntimeError( f"Type resolution failed for {dtype}. Try declaring the class in global scope or " '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(UpperCAmelCase ): _lowercase ='''.'''.join(map(UpperCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( f"Type resolution failed for {dtype} on Python {python_version}. Try removing " '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(UpperCAmelCase ): if not field.init: continue _lowercase =type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase , UpperCAmelCase ) def __A (self , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _lowercase =[] if args_filename: args_files.append(Path(UpperCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _lowercase =ArgumentParser() args_file_parser.add_argument(UpperCAmelCase , type=UpperCAmelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) _lowercase , _lowercase =args_file_parser.parse_known_args(args=UpperCAmelCase ) _lowercase =vars(UpperCAmelCase ).get(args_file_flag.lstrip('''-''' ) , UpperCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase ) for p in cmd_args_file_paths] ) _lowercase =[] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _lowercase =file_args + args if args is not None else file_args + sys.argv[1:] _lowercase , _lowercase =self.parse_known_args(args=UpperCAmelCase ) _lowercase =[] for dtype in self.dataclass_types: _lowercase ={f.name for f in dataclasses.fields(UpperCAmelCase ) if f.init} _lowercase ={k: v for k, v in vars(UpperCAmelCase ).items() if k in keys} for k in keys: delattr(UpperCAmelCase , UpperCAmelCase ) _lowercase =dtype(**UpperCAmelCase ) outputs.append(UpperCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def __A (self , UpperCAmelCase , UpperCAmelCase = False ) -> Tuple[DataClass, ...]: _lowercase =set(args.keys() ) _lowercase =[] for dtype in self.dataclass_types: _lowercase ={f.name for f in dataclasses.fields(UpperCAmelCase ) if f.init} _lowercase ={k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _lowercase =dtype(**UpperCAmelCase ) outputs.append(UpperCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(f"Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase )}" ) return tuple(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = False ) -> Tuple[DataClass, ...]: with open(Path(UpperCAmelCase ) , encoding='''utf-8''' ) as open_json_file: _lowercase =json.loads(open_json_file.read() ) _lowercase =self.parse_dict(UpperCAmelCase , allow_extra_keys=UpperCAmelCase ) return tuple(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = False ) -> Tuple[DataClass, ...]: _lowercase =self.parse_dict(yaml.safe_load(Path(UpperCAmelCase ).read_text() ) , allow_extra_keys=UpperCAmelCase ) return tuple(UpperCAmelCase )
5
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
1
from __future__ import annotations def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" if len(__snake_case ) == 0: return array _lowercase , _lowercase =min(__snake_case ), max(__snake_case ) # Compute the variables _lowercase =_max - _min + 1 _lowercase , _lowercase =[0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _lowercase =i - _min _lowercase =i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _lowercase =0 for i in range(__snake_case ): while holes_repeat[i] > 0: _lowercase =holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = input('''Enter numbers separated by comma:\n''') UpperCAmelCase__ = [int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
5
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> None: warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
5
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase__ : def __init__(self , UpperCAmelCase ) -> Any: _lowercase =str(id_ ) _lowercase =None _lowercase =None _lowercase =[] _lowercase ={} # {vertex:distance} def __lt__(self , UpperCAmelCase ) -> List[str]: return self.key < other.key def __repr__(self ) -> str: return self.id def __A (self , UpperCAmelCase ) -> Dict: self.neighbors.append(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =weight def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> list: """simple docstring""" _lowercase =[] for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =graph[:] while q: _lowercase =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Iterator[tuple]: """simple docstring""" for u in graph: _lowercase =math.inf _lowercase =None _lowercase =0 _lowercase =list(__snake_case ) hq.heapify(__snake_case ) while h: _lowercase =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowercase =u _lowercase =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
5
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
# flake8: noqa # Lint as: python3 UpperCAmelCase__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
5
1
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCAmelCase__ = 0b1_0_1_1_0_0_1_1_1_1_1_0_1_1_0_0_1_0_0_1_0_0_0_0_0_1_1_1_1_0_1_1_1_0_1_1_0_0_0_1_1_0_0_1_1_1_1_0 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCAmelCase__ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class lowerCamelCase__ : def __init__(self ) -> int: _lowercase =WATERMARK_BITS _lowercase =WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def __A (self , UpperCAmelCase ) -> Dict: # can't encode images that are smaller than 256 if images.shape[-1] < 2_5_6: return images _lowercase =(2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowercase =[self.encoder.encode(UpperCAmelCase , '''dwtDct''' ) for image in images] _lowercase =torch.from_numpy(np.array(UpperCAmelCase ) ).permute(0 , 3 , 1 , 2 ) _lowercase =torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 ) return images
5
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''wavlm''' def __init__(self , UpperCAmelCase=3_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_6 , UpperCAmelCase=3_2_0 , UpperCAmelCase=8_0_0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=1_0 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=1_0 , UpperCAmelCase=3_2_0 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_0 , UpperCAmelCase=2_5_6 , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2_5_6 , UpperCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=5_1_2 , UpperCAmelCase=8_0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) _lowercase =hidden_size _lowercase =feat_extract_norm _lowercase =feat_extract_activation _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =conv_bias _lowercase =num_buckets _lowercase =max_bucket_distance _lowercase =num_conv_pos_embeddings _lowercase =num_conv_pos_embedding_groups _lowercase =len(self.conv_dim ) _lowercase =num_hidden_layers _lowercase =intermediate_size _lowercase =hidden_act _lowercase =num_attention_heads _lowercase =hidden_dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =feat_proj_dropout _lowercase =final_dropout _lowercase =layerdrop _lowercase =layer_norm_eps _lowercase =initializer_range _lowercase =num_ctc_classes _lowercase =vocab_size _lowercase =do_stable_layer_norm _lowercase =use_weighted_layer_sum _lowercase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase =apply_spec_augment _lowercase =mask_time_prob _lowercase =mask_time_length _lowercase =mask_time_min_masks _lowercase =mask_feature_prob _lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations _lowercase =num_codevectors_per_group _lowercase =num_codevector_groups _lowercase =contrastive_logits_temperature _lowercase =num_negatives _lowercase =codevector_dim _lowercase =proj_codevector_dim _lowercase =diversity_loss_weight # ctc loss _lowercase =ctc_loss_reduction _lowercase =ctc_zero_infinity # adapter _lowercase =add_adapter _lowercase =adapter_kernel_size _lowercase =adapter_stride _lowercase =num_adapter_layers _lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =list(UpperCAmelCase ) _lowercase =xvector_output_dim @property def __A (self ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
5
1
def UpperCAmelCase_ ( __snake_case = 4000000 ) -> int: """simple docstring""" _lowercase =[] _lowercase , _lowercase =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__snake_case ) _lowercase , _lowercase =b, a + b return sum(__snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
5
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _lowercase ='''xvjiarui/stable-diffusion-2-inpainting''' _lowercase , _lowercase =FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase , safety_checker=UpperCAmelCase ) _lowercase ='''Face of a yellow cat, high resolution, sitting on a park bench''' _lowercase =jax.random.PRNGKey(0 ) _lowercase =5_0 _lowercase =jax.device_count() _lowercase =num_samples * [prompt] _lowercase =num_samples * [init_image] _lowercase =num_samples * [mask_image] _lowercase , _lowercase , _lowercase =pipeline.prepare_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # shard inputs and rng _lowercase =replicate(UpperCAmelCase ) _lowercase =jax.random.split(UpperCAmelCase , jax.device_count() ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =shard(UpperCAmelCase ) _lowercase =pipeline( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ) _lowercase =output.images.reshape(UpperCAmelCase , 5_1_2 , 5_1_2 , 3 ) _lowercase =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase =jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase =jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
5
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = '''▁''' UpperCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCAmelCase__ = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } UpperCAmelCase__ = { '''facebook/xglm-564M''': 2048, } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] def __init__(self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: _lowercase ={} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _lowercase =7 _lowercase =[f"<madeupword{i}>" for i in range(self.num_madeup_words )] _lowercase =kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) _lowercase =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowercase =1 # Mimic fairseq token-to-id alignment for the first 4 token _lowercase ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} _lowercase =len(self.sp_model ) _lowercase ={f"<madeupword{i}>": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(UpperCAmelCase ) _lowercase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> List[str]: _lowercase =self.__dict__.copy() _lowercase =None _lowercase =self.sp_model.serialized_model_proto() return state def __setstate__(self , UpperCAmelCase ) -> Any: _lowercase =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowercase ={} _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a _lowercase =[self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _lowercase =[self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __A (self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __A (self ) -> Union[str, Any]: _lowercase ={self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A (self , UpperCAmelCase ) -> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def __A (self , UpperCAmelCase ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase =self.sp_model.PieceToId(UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A (self , UpperCAmelCase ) -> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A (self , UpperCAmelCase ) -> Dict: _lowercase =''''''.join(UpperCAmelCase ).replace(UpperCAmelCase , ''' ''' ).strip() return out_string def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowercase =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , '''wb''' ) as fi: _lowercase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
5
import comet # From: unbabel-comet import torch import datasets UpperCAmelCase__ = datasets.logging.get_logger(__name__) UpperCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' UpperCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' UpperCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): def __A (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def __A (self , UpperCAmelCase ) -> Dict: if self.config_name == "default": _lowercase =comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: _lowercase =comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> int: if gpus is None: _lowercase =1 if torch.cuda.is_available() else 0 _lowercase ={'''src''': sources, '''mt''': predictions, '''ref''': references} _lowercase =[dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for t in zip(*data.values() )] _lowercase , _lowercase =self.scorer.predict(UpperCAmelCase , gpus=UpperCAmelCase , progress_bar=UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__(self , UpperCAmelCase=2_0_0_0 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=1e-3 ) -> List[str]: _lowercase =None _lowercase =None _lowercase =None def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> str: _lowercase =torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowercase =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowercase =std.flatten() while len(std.shape ) < len(score.shape ): _lowercase =std.unsqueeze(-1 ) _lowercase =-score / std # compute _lowercase =-1.0 / len(self.timesteps ) _lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowercase =beta_t.unsqueeze(-1 ) _lowercase =-0.5 * beta_t * x _lowercase =torch.sqrt(UpperCAmelCase ) _lowercase =drift - diffusion**2 * score _lowercase =x + drift * dt # add noise _lowercase =randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) _lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__(self ) -> str: return self.config.num_train_timesteps
5
1
import os def UpperCAmelCase_ ( __snake_case = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as input_file: _lowercase =[ [int(__snake_case ) for element in line.split(''',''' )] for line in input_file.readlines() ] _lowercase =len(__snake_case ) _lowercase =len(matrix[0] ) _lowercase =[[-1 for _ in range(__snake_case )] for _ in range(__snake_case )] for i in range(__snake_case ): _lowercase =matrix[i][0] for j in range(1 , __snake_case ): for i in range(__snake_case ): _lowercase =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __snake_case ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
5
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowercase =[144, 192, 240] _lowercase =[16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowercase =[96, 120, 144] _lowercase =[16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowercase =[64, 80, 96] _lowercase =[16, 16, 24, 48, 64, 80, 320] _lowercase =0.05 _lowercase =2.0 if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =512 _lowercase =16 _lowercase =21 _lowercase ='''pascal-voc-id2label.json''' else: _lowercase =1000 _lowercase ='''imagenet-1k-id2label.json''' _lowercase ='''huggingface/label-files''' _lowercase =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowercase ={int(__snake_case ): v for k, v in idalabel.items()} _lowercase =idalabel _lowercase ={v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __snake_case , __snake_case=False ) -> Tuple: """simple docstring""" for i in range(1 , 6 ): if F"layer_{i}." in name: _lowercase =name.replace(F"layer_{i}." , F"encoder.layer.{i - 1}." ) if "conv_1." in name: _lowercase =name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: _lowercase =name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: _lowercase =name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: _lowercase =name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: _lowercase =name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: _lowercase =name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: _lowercase =name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: _lowercase =name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: _lowercase =name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F".{i}.{j}." in name: _lowercase =name.replace(F".{i}.{j}." , F".{i}." ) if "expand_1x1" in name: _lowercase =name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: _lowercase =name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: _lowercase =name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F".global_rep.{i}.weight" in name: _lowercase =name.replace(F".global_rep.{i}.weight" , '''.layernorm.weight''' ) if F".global_rep.{i}.bias" in name: _lowercase =name.replace(F".global_rep.{i}.bias" , '''.layernorm.bias''' ) if ".global_rep." in name: _lowercase =name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: _lowercase =name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: _lowercase =name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: _lowercase =name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: _lowercase =name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: _lowercase =name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: _lowercase =name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: _lowercase =name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: _lowercase =name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: _lowercase =name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: _lowercase =name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: _lowercase =name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): _lowercase ='''mobilevit.''' + name return name def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=False ) -> Optional[Any]: """simple docstring""" if base_model: _lowercase ='''''' else: _lowercase ='''mobilevit.''' for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(__snake_case ) if key[:8] == "encoder.": _lowercase =key[8:] if "qkv" in key: _lowercase =key.split('''.''' ) _lowercase =int(key_split[0][6:] ) - 1 _lowercase =int(key_split[3] ) _lowercase =model.get_submodule(F"{model_prefix}encoder.layer.{layer_num}" ) _lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowercase =( F"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] else: _lowercase =val return orig_state_dict def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" _lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case=False ) -> int: """simple docstring""" _lowercase =get_mobilevit_config(__snake_case ) # load original state_dict _lowercase =torch.load(__snake_case , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): _lowercase =MobileViTForSemanticSegmentation(__snake_case ).eval() else: _lowercase =MobileViTForImageClassification(__snake_case ).eval() _lowercase =convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowercase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowercase =model(**__snake_case ) _lowercase =outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowercase =torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowercase =torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowercase =torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": _lowercase =torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowercase =torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowercase =torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: _lowercase ={ '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) _lowercase =model_mapping[mobilevit_name] image_processor.push_to_hub(__snake_case , organization='''apple''' ) model.push_to_hub(__snake_case , organization='''apple''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
5
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''vision-encoder-decoder''' SCREAMING_SNAKE_CASE__ = True def __init__(self , **UpperCAmelCase ) -> str: super().__init__(**UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) _lowercase =kwargs.pop('''encoder''' ) _lowercase =encoder_config.pop('''model_type''' ) _lowercase =kwargs.pop('''decoder''' ) _lowercase =decoder_config.pop('''model_type''' ) _lowercase =AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase ) _lowercase =AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase ) _lowercase =True @classmethod def __A (cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> PretrainedConfig: logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) _lowercase =True _lowercase =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase ) def __A (self ) -> Optional[Any]: _lowercase =copy.deepcopy(self.__dict__ ) _lowercase =self.encoder.to_dict() _lowercase =self.decoder.to_dict() _lowercase =self.__class__.model_type return output class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = version.parse('''1.11''') @property def __A (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __A (self ) -> float: return 1e-4 @property def __A (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class lowerCamelCase__ ( lowerCAmelCase): @property def __A (self ) -> Mapping[str, Mapping[int, str]]: _lowercase =OrderedDict() _lowercase ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _lowercase ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _lowercase ={0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def __A (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch _lowercase =OrderedDict() _lowercase =super().generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) _lowercase , _lowercase =dummy_input['''input_ids'''].shape _lowercase =(batch, encoder_sequence, self._config.encoder_hidden_size) _lowercase =dummy_input.pop('''input_ids''' ) _lowercase =dummy_input.pop('''attention_mask''' ) _lowercase =torch.zeros(UpperCAmelCase ) return common_inputs class lowerCamelCase__ ( lowerCAmelCase): @property def __A (self ) -> None: pass def __A (self , UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "default" ) -> OnnxConfig: _lowercase =encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(UpperCAmelCase , UpperCAmelCase )
5
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''data2vec-vision''' def __init__(self , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=2_2_4 , UpperCAmelCase=1_6 , UpperCAmelCase=3 , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=True , UpperCAmelCase=[3, 5, 7, 1_1] , UpperCAmelCase=[1, 2, 3, 6] , UpperCAmelCase=True , UpperCAmelCase=0.4 , UpperCAmelCase=2_5_6 , UpperCAmelCase=1 , UpperCAmelCase=False , UpperCAmelCase=2_5_5 , **UpperCAmelCase , ) -> Optional[int]: super().__init__(**UpperCAmelCase ) _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =use_mask_token _lowercase =use_absolute_position_embeddings _lowercase =use_relative_position_bias _lowercase =use_shared_relative_position_bias _lowercase =layer_scale_init_value _lowercase =drop_path_rate _lowercase =use_mean_pooling # decode head attributes (semantic segmentation) _lowercase =out_indices _lowercase =pool_scales # auxiliary head attributes (semantic segmentation) _lowercase =use_auxiliary_head _lowercase =auxiliary_loss_weight _lowercase =auxiliary_channels _lowercase =auxiliary_num_convs _lowercase =auxiliary_concat_input _lowercase =semantic_loss_ignore_index class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = version.parse('''1.11''') @property def __A (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __A (self ) -> float: return 1e-4
5
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 16 UpperCAmelCase__ = 32 def UpperCAmelCase_ ( __snake_case , __snake_case = 16 ) -> Any: """simple docstring""" _lowercase =AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowercase =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case ): # max_length=None => use the model max length (it's actually the default) _lowercase =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase =16 elif accelerator.mixed_precision != "no": _lowercase =8 else: _lowercase =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowercase =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case , drop_last=__snake_case ) _lowercase =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[str]: """simple docstring""" _lowercase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase =config['''lr'''] _lowercase =int(config['''num_epochs'''] ) _lowercase =int(config['''seed'''] ) _lowercase =int(config['''batch_size'''] ) _lowercase =evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _lowercase =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowercase =batch_size // MAX_GPU_BATCH_SIZE _lowercase =MAX_GPU_BATCH_SIZE set_seed(__snake_case ) _lowercase , _lowercase =get_dataloaders(__snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase =model.to(accelerator.device ) # Instantiate optimizer _lowercase =AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler _lowercase =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase =model(**__snake_case ) _lowercase =outputs.loss _lowercase =loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase =model(**__snake_case ) _lowercase =outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) _lowercase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __snake_case ) def UpperCAmelCase_ ( ) -> List[str]: """simple docstring""" _lowercase =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _lowercase =parser.parse_args() _lowercase ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
5
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = ['''input_features''', '''attention_mask'''] def __init__(self , UpperCAmelCase=8_0 , UpperCAmelCase=1_6_0_0_0 , UpperCAmelCase=8_0 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , **UpperCAmelCase , ) -> Dict: super().__init__(feature_size=UpperCAmelCase , sampling_rate=UpperCAmelCase , padding_value=UpperCAmelCase , **UpperCAmelCase ) _lowercase =num_mel_bins _lowercase =do_ceptral_normalize _lowercase =normalize_means _lowercase =normalize_vars _lowercase =True def __A (self , UpperCAmelCase , ) -> np.ndarray: _lowercase =waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers _lowercase =torch.from_numpy(UpperCAmelCase ).unsqueeze(0 ) _lowercase =ta_kaldi.fbank(UpperCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __A (UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = 0.0 , ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: _lowercase =x[:input_length].mean(axis=0 ) _lowercase =np.subtract(UpperCAmelCase , UpperCAmelCase ) if normalize_vars: _lowercase =x[:input_length].std(axis=0 ) _lowercase =np.divide(UpperCAmelCase , UpperCAmelCase ) if input_length < x.shape[0]: _lowercase =padding_value # make sure array is in float32 _lowercase =x.astype(np.floataa ) return x def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[np.ndarray]: _lowercase =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCAmelCase , UpperCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCAmelCase , UpperCAmelCase ) ] def __call__(self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _lowercase =isinstance(UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) _lowercase =is_batched_numpy or ( isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase =[np.asarray(UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase , np.ndarray ): _lowercase =np.asarray(UpperCAmelCase , dtype=np.floataa ) elif isinstance(UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase =raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase =[raw_speech] # extract fbank features _lowercase =[self._extract_fbank_features(UpperCAmelCase ) for waveform in raw_speech] # convert into correct format for padding _lowercase =BatchFeature({'''input_features''': features} ) _lowercase =self.pad( UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , ) # make sure list is in array format _lowercase =padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , UpperCAmelCase ): _lowercase =[np.asarray(UpperCAmelCase , dtype=np.floataa ) for feature in input_features] _lowercase =padded_inputs.get('''attention_mask''' ) if attention_mask is not None: _lowercase =[np.asarray(UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _lowercase =( np.array(UpperCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(UpperCAmelCase , max_length=UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _lowercase =self.normalize( padded_inputs['''input_features'''] , attention_mask=UpperCAmelCase ) if return_tensors is not None: _lowercase =padded_inputs.convert_to_tensors(UpperCAmelCase ) return padded_inputs
5
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase__ = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } UpperCAmelCase__ = {'''mobilebert-uncased''': 512} UpperCAmelCase__ = {} class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = MobileBertTokenizer def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Any: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) _lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase ) != tokenize_chinese_chars ): _lowercase =getattr(UpperCAmelCase , normalizer_state.pop('''type''' ) ) _lowercase =do_lower_case _lowercase =strip_accents _lowercase =tokenize_chinese_chars _lowercase =normalizer_class(**UpperCAmelCase ) _lowercase =do_lower_case def __A (self , UpperCAmelCase , UpperCAmelCase=None ) -> Any: _lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: _lowercase =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
5
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
1
from bisect import bisect from itertools import accumulate def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" _lowercase =sorted(zip(__snake_case , __snake_case ) , key=lambda __snake_case : x[0] / x[1] , reverse=__snake_case ) _lowercase , _lowercase =[i[0] for i in r], [i[1] for i in r] _lowercase =list(accumulate(__snake_case ) ) _lowercase =bisect(__snake_case , __snake_case ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
from typing import Any def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step _lowercase ={} _lowercase ={} for state in states_space: _lowercase =observations_space[0] _lowercase =( initial_probabilities[state] * emission_probabilities[state][observation] ) _lowercase =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): _lowercase =observations_space[o] _lowercase =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _lowercase =probability _lowercase =k_state # Update probabilities and pointers dicts _lowercase =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _lowercase =arg_max # The final observation _lowercase =observations_space[len(__snake_case ) - 1] # argmax for given final observation _lowercase ='''''' _lowercase =-1 for k_state in states_space: _lowercase =probabilities[(k_state, final_observation)] if probability > max_probability: _lowercase =probability _lowercase =k_state _lowercase =arg_max # Process pointers backwards _lowercase =last_state _lowercase =[] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) _lowercase =pointers[previous, observations_space[o]] result.reverse() return result def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a list" raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): _lowercase =F"{var_name} must be a list of strings" raise ValueError(__snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): _lowercase =F"{var_name} must be a dict" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): _lowercase =F"{var_name} all keys must be strings" raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): _lowercase ='''nested dictionary ''' if nested else '''''' _lowercase =F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
5
1
from random import shuffle import tensorflow as tf from numpy import array def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Dict: """simple docstring""" _lowercase =int(__snake_case ) assert noofclusters < len(__snake_case ) # Find out the dimensionality _lowercase =len(vectors[0] ) # Will help select random centroids from among the available vectors _lowercase =list(range(len(__snake_case ) ) ) shuffle(__snake_case ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. _lowercase =tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION _lowercase =tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points _lowercase =[ tf.Variable(vectors[vector_indices[i]] ) for i in range(__snake_case ) ] ##These nodes will assign the centroid Variables the appropriate ##values _lowercase =tf.placeholder('''float64''' , [dim] ) _lowercase =[] for centroid in centroids: cent_assigns.append(tf.assign(__snake_case , __snake_case ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) _lowercase =[tf.Variable(0 ) for i in range(len(__snake_case ) )] ##These nodes will assign an assignment Variable the appropriate ##value _lowercase =tf.placeholder('''int32''' ) _lowercase =[] for assignment in assignments: cluster_assigns.append(tf.assign(__snake_case , __snake_case ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input _lowercase =tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors _lowercase =tf.reduce_mean(__snake_case , 0 ) ##Node for computing Euclidean distances # Placeholders for input _lowercase =tf.placeholder('''float''' , [dim] ) _lowercase =tf.placeholder('''float''' , [dim] ) _lowercase =tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__snake_case , __snake_case ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input _lowercase =tf.placeholder('''float''' , [noofclusters] ) _lowercase =tf.argmin(__snake_case , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. _lowercase =tf.initialize_all_variables() # Initialize all variables sess.run(__snake_case ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. _lowercase =100 for _ in range(__snake_case ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__snake_case ) ): _lowercase =vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. _lowercase =[ sess.run(__snake_case , feed_dict={va: vect, va: sess.run(__snake_case )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input _lowercase =sess.run( __snake_case , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__snake_case ): # Collect all the vectors assigned to this cluster _lowercase =[ vectors[i] for i in range(len(__snake_case ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location _lowercase =sess.run( __snake_case , feed_dict={mean_input: array(__snake_case )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments _lowercase =sess.run(__snake_case ) _lowercase =sess.run(__snake_case ) return centroids, assignments
5
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
1
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> bool: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =len(__snake_case ) _lowercase =[[False for _ in range(m + 1 )] for _ in range(n + 1 )] _lowercase =True for i in range(__snake_case ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _lowercase =True if a[i].islower(): _lowercase =True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
5
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''maskformer-swin''' SCREAMING_SNAKE_CASE__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__(self , UpperCAmelCase=2_2_4 , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=9_6 , UpperCAmelCase=[2, 2, 6, 2] , UpperCAmelCase=[3, 6, 1_2, 2_4] , UpperCAmelCase=7 , UpperCAmelCase=4.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Any: super().__init__(**UpperCAmelCase ) _lowercase =image_size _lowercase =patch_size _lowercase =num_channels _lowercase =embed_dim _lowercase =depths _lowercase =len(UpperCAmelCase ) _lowercase =num_heads _lowercase =window_size _lowercase =mlp_ratio _lowercase =qkv_bias _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =drop_path_rate _lowercase =hidden_act _lowercase =use_absolute_embeddings _lowercase =layer_norm_eps _lowercase =initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowercase =int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) _lowercase =['''stem'''] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase ) + 1 )] _lowercase , _lowercase =get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
5
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCAmelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def UpperCAmelCase_ ( __snake_case , __snake_case=100 , __snake_case=" " ) -> List[str]: """simple docstring""" _lowercase =text.split(__snake_case ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__snake_case ) , __snake_case )] def UpperCAmelCase_ ( __snake_case ) -> dict: """simple docstring""" _lowercase , _lowercase =[], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__snake_case ): titles.append(title if title is not None else '''''' ) texts.append(__snake_case ) return {"title": titles, "text": texts} def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> dict: """simple docstring""" _lowercase =ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__snake_case , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] _lowercase =ctx_encoder(input_ids.to(device=__snake_case ) , return_dict=__snake_case ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , ) -> Dict: """simple docstring""" logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _lowercase =load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _lowercase =dataset.map(__snake_case , batched=__snake_case , num_proc=processing_args.num_proc ) # And compute the embeddings _lowercase =DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__snake_case ) _lowercase =DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _lowercase =Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space _lowercase =dataset.map( partial(__snake_case , ctx_encoder=__snake_case , ctx_tokenizer=__snake_case ) , batched=__snake_case , batch_size=processing_args.batch_size , features=__snake_case , ) # And finally save your dataset _lowercase =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__snake_case ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _lowercase =faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__snake_case ) # And save the index _lowercase =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__snake_case ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = field( default=str(Path(lowerCAmelCase).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''') , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) SCREAMING_SNAKE_CASE__ = field( default=lowerCAmelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) SCREAMING_SNAKE_CASE__ = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) SCREAMING_SNAKE_CASE__ = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) SCREAMING_SNAKE_CASE__ = field( default=str(Path(lowerCAmelCase).parent / '''test_run''' / '''dummy-kb''') , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = field( default=lowerCAmelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) SCREAMING_SNAKE_CASE__ = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) SCREAMING_SNAKE_CASE__ = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCAmelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
5
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Optional[int]: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =num_choices _lowercase =scope def __A (self ) -> Optional[int]: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None if self.use_token_type_ids: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A (self ) -> Optional[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _lowercase =LlamaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Any: _lowercase =True _lowercase =LlamaModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , ) _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]: _lowercase =LlamaForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[Any]: _lowercase =True _lowercase =True _lowercase =LlamaForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # first forward pass _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase , ) _lowercase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowercase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowercase =torch.cat([input_mask, next_mask] , dim=-1 ) _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['''hidden_states'''][0] _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['''hidden_states'''][0] # select random slice _lowercase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowercase =output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def __A (self ) -> Any: _lowercase =self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =config_and_inputs _lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = (LlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Optional[int]: _lowercase =LlamaModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> Dict: self.config_tester.run_common_tests() def __A (self ) -> Union[str, Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase =type self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase =input_dict['''input_ids'''] _lowercase =input_ids.ne(1 ).to(UpperCAmelCase ) _lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowercase =LlamaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A (self ) -> str: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase ='''single_label_classification''' _lowercase =input_dict['''input_ids'''] _lowercase =input_ids.ne(1 ).to(UpperCAmelCase ) _lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowercase =LlamaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A (self ) -> Dict: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase ='''multi_label_classification''' _lowercase =input_dict['''input_ids'''] _lowercase =input_ids.ne(1 ).to(UpperCAmelCase ) _lowercase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowercase =LlamaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def __A (self ) -> Dict: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __A (self , UpperCAmelCase ) -> Optional[Any]: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =ids_tensor([1, 1_0] , config.vocab_size ) _lowercase =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _lowercase =LlamaModel(UpperCAmelCase ) original_model.to(UpperCAmelCase ) original_model.eval() _lowercase =original_model(UpperCAmelCase ).last_hidden_state _lowercase =original_model(UpperCAmelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _lowercase ={'''type''': scaling_type, '''factor''': 10.0} _lowercase =LlamaModel(UpperCAmelCase ) scaled_model.to(UpperCAmelCase ) scaled_model.eval() _lowercase =scaled_model(UpperCAmelCase ).last_hidden_state _lowercase =scaled_model(UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __A (self ) -> Tuple: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _lowercase =torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase =torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __A (self ) -> List[str]: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor(UpperCAmelCase ) ) # Expected mean on dim = -1 _lowercase =torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase =torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __A (self ) -> int: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor(UpperCAmelCase ) ) # Expected mean on dim = -1 _lowercase =torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase =torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def __A (self ) -> Dict: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor(UpperCAmelCase ) ) _lowercase =torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off _lowercase =torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def __A (self ) -> int: _lowercase ='''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' _lowercase ='''Simply put, the theory of relativity states that ''' _lowercase =LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) _lowercase =tokenizer.encode(UpperCAmelCase , return_tensors='''pt''' ) _lowercase =LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCAmelCase ) # greedy generation outputs _lowercase =model.generate(UpperCAmelCase , max_new_tokens=6_4 , top_p=UpperCAmelCase , temperature=1 , do_sample=UpperCAmelCase ) _lowercase =tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1