repo
stringclasses
679 values
path
stringlengths
6
122
func_name
stringlengths
2
76
original_string
stringlengths
87
70.9k
language
stringclasses
1 value
code
stringlengths
87
70.9k
code_tokens
sequencelengths
20
6.91k
docstring
stringlengths
1
21.7k
docstring_tokens
sequencelengths
1
1.6k
sha
stringclasses
679 values
url
stringlengths
92
213
partition
stringclasses
1 value
tensorlayer/tensorlayer
tensorlayer/logging/tl_logging.py
log_every_n
def log_every_n(level, msg, n, *args): """Log 'msg % args' at level 'level' once per 'n' times. Logs the 1st call, (N+1)st call, (2N+1)st call, etc. Not threadsafe. Args: level: The level at which to log. msg: The message to be logged. n: The number of times this should be called before it is logged. *args: The args to be substituted into the msg. """ count = _GetNextLogCountPerToken(_GetFileAndLine()) log_if(level, msg, not (count % n), *args)
python
def log_every_n(level, msg, n, *args): """Log 'msg % args' at level 'level' once per 'n' times. Logs the 1st call, (N+1)st call, (2N+1)st call, etc. Not threadsafe. Args: level: The level at which to log. msg: The message to be logged. n: The number of times this should be called before it is logged. *args: The args to be substituted into the msg. """ count = _GetNextLogCountPerToken(_GetFileAndLine()) log_if(level, msg, not (count % n), *args)
[ "def", "log_every_n", "(", "level", ",", "msg", ",", "n", ",", "*", "args", ")", ":", "count", "=", "_GetNextLogCountPerToken", "(", "_GetFileAndLine", "(", ")", ")", "log_if", "(", "level", ",", "msg", ",", "not", "(", "count", "%", "n", ")", ",", "*", "args", ")" ]
Log 'msg % args' at level 'level' once per 'n' times. Logs the 1st call, (N+1)st call, (2N+1)st call, etc. Not threadsafe. Args: level: The level at which to log. msg: The message to be logged. n: The number of times this should be called before it is logged. *args: The args to be substituted into the msg.
[ "Log", "msg", "%", "args", "at", "level", "level", "once", "per", "n", "times", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/logging/tl_logging.py#L163-L176
valid
tensorlayer/tensorlayer
tensorlayer/logging/tl_logging.py
log_if
def log_if(level, msg, condition, *args): """Log 'msg % args' at level 'level' only if condition is fulfilled.""" if condition: vlog(level, msg, *args)
python
def log_if(level, msg, condition, *args): """Log 'msg % args' at level 'level' only if condition is fulfilled.""" if condition: vlog(level, msg, *args)
[ "def", "log_if", "(", "level", ",", "msg", ",", "condition", ",", "*", "args", ")", ":", "if", "condition", ":", "vlog", "(", "level", ",", "msg", ",", "*", "args", ")" ]
Log 'msg % args' at level 'level' only if condition is fulfilled.
[ "Log", "msg", "%", "args", "at", "level", "level", "only", "if", "condition", "is", "fulfilled", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/logging/tl_logging.py#L194-L197
valid
tensorlayer/tensorlayer
tensorlayer/logging/tl_logging.py
_GetFileAndLine
def _GetFileAndLine(): """Returns (filename, linenumber) for the stack frame.""" # Use sys._getframe(). This avoids creating a traceback object. # pylint: disable=protected-access f = _sys._getframe() # pylint: enable=protected-access our_file = f.f_code.co_filename f = f.f_back while f: code = f.f_code if code.co_filename != our_file: return (code.co_filename, f.f_lineno) f = f.f_back return ('<unknown>', 0)
python
def _GetFileAndLine(): """Returns (filename, linenumber) for the stack frame.""" # Use sys._getframe(). This avoids creating a traceback object. # pylint: disable=protected-access f = _sys._getframe() # pylint: enable=protected-access our_file = f.f_code.co_filename f = f.f_back while f: code = f.f_code if code.co_filename != our_file: return (code.co_filename, f.f_lineno) f = f.f_back return ('<unknown>', 0)
[ "def", "_GetFileAndLine", "(", ")", ":", "# Use sys._getframe(). This avoids creating a traceback object.", "# pylint: disable=protected-access", "f", "=", "_sys", ".", "_getframe", "(", ")", "# pylint: enable=protected-access", "our_file", "=", "f", ".", "f_code", ".", "co_filename", "f", "=", "f", ".", "f_back", "while", "f", ":", "code", "=", "f", ".", "f_code", "if", "code", ".", "co_filename", "!=", "our_file", ":", "return", "(", "code", ".", "co_filename", ",", "f", ".", "f_lineno", ")", "f", "=", "f", ".", "f_back", "return", "(", "'<unknown>'", ",", "0", ")" ]
Returns (filename, linenumber) for the stack frame.
[ "Returns", "(", "filename", "linenumber", ")", "for", "the", "stack", "frame", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/logging/tl_logging.py#L200-L213
valid
tensorlayer/tensorlayer
tensorlayer/logging/tl_logging.py
google2_log_prefix
def google2_log_prefix(level, timestamp=None, file_and_line=None): """Assemble a logline prefix using the google2 format.""" # pylint: disable=global-variable-not-assigned global _level_names # pylint: enable=global-variable-not-assigned # Record current time now = timestamp or _time.time() now_tuple = _time.localtime(now) now_microsecond = int(1e6 * (now % 1.0)) (filename, line) = file_and_line or _GetFileAndLine() basename = _os.path.basename(filename) # Severity string severity = 'I' if level in _level_names: severity = _level_names[level][0] s = '%c%02d%02d %02d: %02d: %02d.%06d %5d %s: %d] ' % ( severity, now_tuple[1], # month now_tuple[2], # day now_tuple[3], # hour now_tuple[4], # min now_tuple[5], # sec now_microsecond, _get_thread_id(), basename, line ) return s
python
def google2_log_prefix(level, timestamp=None, file_and_line=None): """Assemble a logline prefix using the google2 format.""" # pylint: disable=global-variable-not-assigned global _level_names # pylint: enable=global-variable-not-assigned # Record current time now = timestamp or _time.time() now_tuple = _time.localtime(now) now_microsecond = int(1e6 * (now % 1.0)) (filename, line) = file_and_line or _GetFileAndLine() basename = _os.path.basename(filename) # Severity string severity = 'I' if level in _level_names: severity = _level_names[level][0] s = '%c%02d%02d %02d: %02d: %02d.%06d %5d %s: %d] ' % ( severity, now_tuple[1], # month now_tuple[2], # day now_tuple[3], # hour now_tuple[4], # min now_tuple[5], # sec now_microsecond, _get_thread_id(), basename, line ) return s
[ "def", "google2_log_prefix", "(", "level", ",", "timestamp", "=", "None", ",", "file_and_line", "=", "None", ")", ":", "# pylint: disable=global-variable-not-assigned", "global", "_level_names", "# pylint: enable=global-variable-not-assigned", "# Record current time", "now", "=", "timestamp", "or", "_time", ".", "time", "(", ")", "now_tuple", "=", "_time", ".", "localtime", "(", "now", ")", "now_microsecond", "=", "int", "(", "1e6", "*", "(", "now", "%", "1.0", ")", ")", "(", "filename", ",", "line", ")", "=", "file_and_line", "or", "_GetFileAndLine", "(", ")", "basename", "=", "_os", ".", "path", ".", "basename", "(", "filename", ")", "# Severity string", "severity", "=", "'I'", "if", "level", "in", "_level_names", ":", "severity", "=", "_level_names", "[", "level", "]", "[", "0", "]", "s", "=", "'%c%02d%02d %02d: %02d: %02d.%06d %5d %s: %d] '", "%", "(", "severity", ",", "now_tuple", "[", "1", "]", ",", "# month", "now_tuple", "[", "2", "]", ",", "# day", "now_tuple", "[", "3", "]", ",", "# hour", "now_tuple", "[", "4", "]", ",", "# min", "now_tuple", "[", "5", "]", ",", "# sec", "now_microsecond", ",", "_get_thread_id", "(", ")", ",", "basename", ",", "line", ")", "return", "s" ]
Assemble a logline prefix using the google2 format.
[ "Assemble", "a", "logline", "prefix", "using", "the", "google2", "format", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/logging/tl_logging.py#L216-L248
valid
tensorlayer/tensorlayer
tensorlayer/files/dataset_loaders/mpii_dataset.py
load_mpii_pose_dataset
def load_mpii_pose_dataset(path='data', is_16_pos_only=False): """Load MPII Human Pose Dataset. Parameters ----------- path : str The path that the data is downloaded to. is_16_pos_only : boolean If True, only return the peoples contain 16 pose keypoints. (Usually be used for single person pose estimation) Returns ---------- img_train_list : list of str The image directories of training data. ann_train_list : list of dict The annotations of training data. img_test_list : list of str The image directories of testing data. ann_test_list : list of dict The annotations of testing data. Examples -------- >>> import pprint >>> import tensorlayer as tl >>> img_train_list, ann_train_list, img_test_list, ann_test_list = tl.files.load_mpii_pose_dataset() >>> image = tl.vis.read_image(img_train_list[0]) >>> tl.vis.draw_mpii_pose_to_image(image, ann_train_list[0], 'image.png') >>> pprint.pprint(ann_train_list[0]) References ----------- - `MPII Human Pose Dataset. CVPR 14 <http://human-pose.mpi-inf.mpg.de>`__ - `MPII Human Pose Models. CVPR 16 <http://pose.mpi-inf.mpg.de>`__ - `MPII Human Shape, Poselet Conditioned Pictorial Structures and etc <http://pose.mpi-inf.mpg.de/#related>`__ - `MPII Keyponts and ID <http://human-pose.mpi-inf.mpg.de/#download>`__ """ path = os.path.join(path, 'mpii_human_pose') logging.info("Load or Download MPII Human Pose > {}".format(path)) # annotation url = "http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/" tar_filename = "mpii_human_pose_v1_u12_2.zip" extracted_filename = "mpii_human_pose_v1_u12_2" if folder_exists(os.path.join(path, extracted_filename)) is False: logging.info("[MPII] (annotation) {} is nonexistent in {}".format(extracted_filename, path)) maybe_download_and_extract(tar_filename, path, url, extract=True) del_file(os.path.join(path, tar_filename)) # images url = "http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/" tar_filename = "mpii_human_pose_v1.tar.gz" extracted_filename2 = "images" if folder_exists(os.path.join(path, extracted_filename2)) is False: logging.info("[MPII] (images) {} is nonexistent in {}".format(extracted_filename, path)) maybe_download_and_extract(tar_filename, path, url, extract=True) del_file(os.path.join(path, tar_filename)) # parse annotation, format see http://human-pose.mpi-inf.mpg.de/#download import scipy.io as sio logging.info("reading annotations from mat file ...") # mat = sio.loadmat(os.path.join(path, extracted_filename, "mpii_human_pose_v1_u12_1.mat")) # def fix_wrong_joints(joint): # https://github.com/mitmul/deeppose/blob/master/datasets/mpii_dataset.py # if '12' in joint and '13' in joint and '2' in joint and '3' in joint: # if ((joint['12'][0] < joint['13'][0]) and # (joint['3'][0] < joint['2'][0])): # joint['2'], joint['3'] = joint['3'], joint['2'] # if ((joint['12'][0] > joint['13'][0]) and # (joint['3'][0] > joint['2'][0])): # joint['2'], joint['3'] = joint['3'], joint['2'] # return joint ann_train_list = [] ann_test_list = [] img_train_list = [] img_test_list = [] def save_joints(): # joint_data_fn = os.path.join(path, 'data.json') # fp = open(joint_data_fn, 'w') mat = sio.loadmat(os.path.join(path, extracted_filename, "mpii_human_pose_v1_u12_1.mat")) for _, (anno, train_flag) in enumerate( # all images zip(mat['RELEASE']['annolist'][0, 0][0], mat['RELEASE']['img_train'][0, 0][0])): img_fn = anno['image']['name'][0, 0][0] train_flag = int(train_flag) # print(i, img_fn, train_flag) # DEBUG print all images if train_flag: img_train_list.append(img_fn) ann_train_list.append([]) else: img_test_list.append(img_fn) ann_test_list.append([]) head_rect = [] if 'x1' in str(anno['annorect'].dtype): head_rect = zip( [x1[0, 0] for x1 in anno['annorect']['x1'][0]], [y1[0, 0] for y1 in anno['annorect']['y1'][0]], [x2[0, 0] for x2 in anno['annorect']['x2'][0]], [y2[0, 0] for y2 in anno['annorect']['y2'][0]] ) else: head_rect = [] # TODO if 'annopoints' in str(anno['annorect'].dtype): annopoints = anno['annorect']['annopoints'][0] head_x1s = anno['annorect']['x1'][0] head_y1s = anno['annorect']['y1'][0] head_x2s = anno['annorect']['x2'][0] head_y2s = anno['annorect']['y2'][0] for annopoint, head_x1, head_y1, head_x2, head_y2 in zip(annopoints, head_x1s, head_y1s, head_x2s, head_y2s): # if annopoint != []: # if len(annopoint) != 0: if annopoint.size: head_rect = [ float(head_x1[0, 0]), float(head_y1[0, 0]), float(head_x2[0, 0]), float(head_y2[0, 0]) ] # joint coordinates annopoint = annopoint['point'][0, 0] j_id = [str(j_i[0, 0]) for j_i in annopoint['id'][0]] x = [x[0, 0] for x in annopoint['x'][0]] y = [y[0, 0] for y in annopoint['y'][0]] joint_pos = {} for _j_id, (_x, _y) in zip(j_id, zip(x, y)): joint_pos[int(_j_id)] = [float(_x), float(_y)] # joint_pos = fix_wrong_joints(joint_pos) # visibility list if 'is_visible' in str(annopoint.dtype): vis = [v[0] if v.size > 0 else [0] for v in annopoint['is_visible'][0]] vis = dict([(k, int(v[0])) if len(v) > 0 else v for k, v in zip(j_id, vis)]) else: vis = None # if len(joint_pos) == 16: if ((is_16_pos_only ==True) and (len(joint_pos) == 16)) or (is_16_pos_only == False): # only use image with 16 key points / or use all data = { 'filename': img_fn, 'train': train_flag, 'head_rect': head_rect, 'is_visible': vis, 'joint_pos': joint_pos } # print(json.dumps(data), file=fp) # py3 if train_flag: ann_train_list[-1].append(data) else: ann_test_list[-1].append(data) # def write_line(datum, fp): # joints = sorted([[int(k), v] for k, v in datum['joint_pos'].items()]) # joints = np.array([j for i, j in joints]).flatten() # # out = [datum['filename']] # out.extend(joints) # out = [str(o) for o in out] # out = ','.join(out) # # print(out, file=fp) # def split_train_test(): # # fp_test = open('data/mpii/test_joints.csv', 'w') # fp_test = open(os.path.join(path, 'test_joints.csv'), 'w') # # fp_train = open('data/mpii/train_joints.csv', 'w') # fp_train = open(os.path.join(path, 'train_joints.csv'), 'w') # # all_data = open('data/mpii/data.json').readlines() # all_data = open(os.path.join(path, 'data.json')).readlines() # N = len(all_data) # N_test = int(N * 0.1) # N_train = N - N_test # # print('N:{}'.format(N)) # print('N_train:{}'.format(N_train)) # print('N_test:{}'.format(N_test)) # # np.random.seed(1701) # perm = np.random.permutation(N) # test_indices = perm[:N_test] # train_indices = perm[N_test:] # # print('train_indices:{}'.format(len(train_indices))) # print('test_indices:{}'.format(len(test_indices))) # # for i in train_indices: # datum = json.loads(all_data[i].strip()) # write_line(datum, fp_train) # # for i in test_indices: # datum = json.loads(all_data[i].strip()) # write_line(datum, fp_test) save_joints() # split_train_test() # ## read images dir logging.info("reading images list ...") img_dir = os.path.join(path, extracted_filename2) _img_list = load_file_list(path=os.path.join(path, extracted_filename2), regx='\\.jpg', printable=False) # ann_list = json.load(open(os.path.join(path, 'data.json'))) for i, im in enumerate(img_train_list): if im not in _img_list: print('missing training image {} in {} (remove from img(ann)_train_list)'.format(im, img_dir)) # img_train_list.remove(im) del img_train_list[i] del ann_train_list[i] for i, im in enumerate(img_test_list): if im not in _img_list: print('missing testing image {} in {} (remove from img(ann)_test_list)'.format(im, img_dir)) # img_test_list.remove(im) del img_train_list[i] del ann_train_list[i] ## check annotation and images n_train_images = len(img_train_list) n_test_images = len(img_test_list) n_images = n_train_images + n_test_images logging.info("n_images: {} n_train_images: {} n_test_images: {}".format(n_images, n_train_images, n_test_images)) n_train_ann = len(ann_train_list) n_test_ann = len(ann_test_list) n_ann = n_train_ann + n_test_ann logging.info("n_ann: {} n_train_ann: {} n_test_ann: {}".format(n_ann, n_train_ann, n_test_ann)) n_train_people = len(sum(ann_train_list, [])) n_test_people = len(sum(ann_test_list, [])) n_people = n_train_people + n_test_people logging.info("n_people: {} n_train_people: {} n_test_people: {}".format(n_people, n_train_people, n_test_people)) # add path to all image file name for i, value in enumerate(img_train_list): img_train_list[i] = os.path.join(img_dir, value) for i, value in enumerate(img_test_list): img_test_list[i] = os.path.join(img_dir, value) return img_train_list, ann_train_list, img_test_list, ann_test_list
python
def load_mpii_pose_dataset(path='data', is_16_pos_only=False): """Load MPII Human Pose Dataset. Parameters ----------- path : str The path that the data is downloaded to. is_16_pos_only : boolean If True, only return the peoples contain 16 pose keypoints. (Usually be used for single person pose estimation) Returns ---------- img_train_list : list of str The image directories of training data. ann_train_list : list of dict The annotations of training data. img_test_list : list of str The image directories of testing data. ann_test_list : list of dict The annotations of testing data. Examples -------- >>> import pprint >>> import tensorlayer as tl >>> img_train_list, ann_train_list, img_test_list, ann_test_list = tl.files.load_mpii_pose_dataset() >>> image = tl.vis.read_image(img_train_list[0]) >>> tl.vis.draw_mpii_pose_to_image(image, ann_train_list[0], 'image.png') >>> pprint.pprint(ann_train_list[0]) References ----------- - `MPII Human Pose Dataset. CVPR 14 <http://human-pose.mpi-inf.mpg.de>`__ - `MPII Human Pose Models. CVPR 16 <http://pose.mpi-inf.mpg.de>`__ - `MPII Human Shape, Poselet Conditioned Pictorial Structures and etc <http://pose.mpi-inf.mpg.de/#related>`__ - `MPII Keyponts and ID <http://human-pose.mpi-inf.mpg.de/#download>`__ """ path = os.path.join(path, 'mpii_human_pose') logging.info("Load or Download MPII Human Pose > {}".format(path)) # annotation url = "http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/" tar_filename = "mpii_human_pose_v1_u12_2.zip" extracted_filename = "mpii_human_pose_v1_u12_2" if folder_exists(os.path.join(path, extracted_filename)) is False: logging.info("[MPII] (annotation) {} is nonexistent in {}".format(extracted_filename, path)) maybe_download_and_extract(tar_filename, path, url, extract=True) del_file(os.path.join(path, tar_filename)) # images url = "http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/" tar_filename = "mpii_human_pose_v1.tar.gz" extracted_filename2 = "images" if folder_exists(os.path.join(path, extracted_filename2)) is False: logging.info("[MPII] (images) {} is nonexistent in {}".format(extracted_filename, path)) maybe_download_and_extract(tar_filename, path, url, extract=True) del_file(os.path.join(path, tar_filename)) # parse annotation, format see http://human-pose.mpi-inf.mpg.de/#download import scipy.io as sio logging.info("reading annotations from mat file ...") # mat = sio.loadmat(os.path.join(path, extracted_filename, "mpii_human_pose_v1_u12_1.mat")) # def fix_wrong_joints(joint): # https://github.com/mitmul/deeppose/blob/master/datasets/mpii_dataset.py # if '12' in joint and '13' in joint and '2' in joint and '3' in joint: # if ((joint['12'][0] < joint['13'][0]) and # (joint['3'][0] < joint['2'][0])): # joint['2'], joint['3'] = joint['3'], joint['2'] # if ((joint['12'][0] > joint['13'][0]) and # (joint['3'][0] > joint['2'][0])): # joint['2'], joint['3'] = joint['3'], joint['2'] # return joint ann_train_list = [] ann_test_list = [] img_train_list = [] img_test_list = [] def save_joints(): # joint_data_fn = os.path.join(path, 'data.json') # fp = open(joint_data_fn, 'w') mat = sio.loadmat(os.path.join(path, extracted_filename, "mpii_human_pose_v1_u12_1.mat")) for _, (anno, train_flag) in enumerate( # all images zip(mat['RELEASE']['annolist'][0, 0][0], mat['RELEASE']['img_train'][0, 0][0])): img_fn = anno['image']['name'][0, 0][0] train_flag = int(train_flag) # print(i, img_fn, train_flag) # DEBUG print all images if train_flag: img_train_list.append(img_fn) ann_train_list.append([]) else: img_test_list.append(img_fn) ann_test_list.append([]) head_rect = [] if 'x1' in str(anno['annorect'].dtype): head_rect = zip( [x1[0, 0] for x1 in anno['annorect']['x1'][0]], [y1[0, 0] for y1 in anno['annorect']['y1'][0]], [x2[0, 0] for x2 in anno['annorect']['x2'][0]], [y2[0, 0] for y2 in anno['annorect']['y2'][0]] ) else: head_rect = [] # TODO if 'annopoints' in str(anno['annorect'].dtype): annopoints = anno['annorect']['annopoints'][0] head_x1s = anno['annorect']['x1'][0] head_y1s = anno['annorect']['y1'][0] head_x2s = anno['annorect']['x2'][0] head_y2s = anno['annorect']['y2'][0] for annopoint, head_x1, head_y1, head_x2, head_y2 in zip(annopoints, head_x1s, head_y1s, head_x2s, head_y2s): # if annopoint != []: # if len(annopoint) != 0: if annopoint.size: head_rect = [ float(head_x1[0, 0]), float(head_y1[0, 0]), float(head_x2[0, 0]), float(head_y2[0, 0]) ] # joint coordinates annopoint = annopoint['point'][0, 0] j_id = [str(j_i[0, 0]) for j_i in annopoint['id'][0]] x = [x[0, 0] for x in annopoint['x'][0]] y = [y[0, 0] for y in annopoint['y'][0]] joint_pos = {} for _j_id, (_x, _y) in zip(j_id, zip(x, y)): joint_pos[int(_j_id)] = [float(_x), float(_y)] # joint_pos = fix_wrong_joints(joint_pos) # visibility list if 'is_visible' in str(annopoint.dtype): vis = [v[0] if v.size > 0 else [0] for v in annopoint['is_visible'][0]] vis = dict([(k, int(v[0])) if len(v) > 0 else v for k, v in zip(j_id, vis)]) else: vis = None # if len(joint_pos) == 16: if ((is_16_pos_only ==True) and (len(joint_pos) == 16)) or (is_16_pos_only == False): # only use image with 16 key points / or use all data = { 'filename': img_fn, 'train': train_flag, 'head_rect': head_rect, 'is_visible': vis, 'joint_pos': joint_pos } # print(json.dumps(data), file=fp) # py3 if train_flag: ann_train_list[-1].append(data) else: ann_test_list[-1].append(data) # def write_line(datum, fp): # joints = sorted([[int(k), v] for k, v in datum['joint_pos'].items()]) # joints = np.array([j for i, j in joints]).flatten() # # out = [datum['filename']] # out.extend(joints) # out = [str(o) for o in out] # out = ','.join(out) # # print(out, file=fp) # def split_train_test(): # # fp_test = open('data/mpii/test_joints.csv', 'w') # fp_test = open(os.path.join(path, 'test_joints.csv'), 'w') # # fp_train = open('data/mpii/train_joints.csv', 'w') # fp_train = open(os.path.join(path, 'train_joints.csv'), 'w') # # all_data = open('data/mpii/data.json').readlines() # all_data = open(os.path.join(path, 'data.json')).readlines() # N = len(all_data) # N_test = int(N * 0.1) # N_train = N - N_test # # print('N:{}'.format(N)) # print('N_train:{}'.format(N_train)) # print('N_test:{}'.format(N_test)) # # np.random.seed(1701) # perm = np.random.permutation(N) # test_indices = perm[:N_test] # train_indices = perm[N_test:] # # print('train_indices:{}'.format(len(train_indices))) # print('test_indices:{}'.format(len(test_indices))) # # for i in train_indices: # datum = json.loads(all_data[i].strip()) # write_line(datum, fp_train) # # for i in test_indices: # datum = json.loads(all_data[i].strip()) # write_line(datum, fp_test) save_joints() # split_train_test() # ## read images dir logging.info("reading images list ...") img_dir = os.path.join(path, extracted_filename2) _img_list = load_file_list(path=os.path.join(path, extracted_filename2), regx='\\.jpg', printable=False) # ann_list = json.load(open(os.path.join(path, 'data.json'))) for i, im in enumerate(img_train_list): if im not in _img_list: print('missing training image {} in {} (remove from img(ann)_train_list)'.format(im, img_dir)) # img_train_list.remove(im) del img_train_list[i] del ann_train_list[i] for i, im in enumerate(img_test_list): if im not in _img_list: print('missing testing image {} in {} (remove from img(ann)_test_list)'.format(im, img_dir)) # img_test_list.remove(im) del img_train_list[i] del ann_train_list[i] ## check annotation and images n_train_images = len(img_train_list) n_test_images = len(img_test_list) n_images = n_train_images + n_test_images logging.info("n_images: {} n_train_images: {} n_test_images: {}".format(n_images, n_train_images, n_test_images)) n_train_ann = len(ann_train_list) n_test_ann = len(ann_test_list) n_ann = n_train_ann + n_test_ann logging.info("n_ann: {} n_train_ann: {} n_test_ann: {}".format(n_ann, n_train_ann, n_test_ann)) n_train_people = len(sum(ann_train_list, [])) n_test_people = len(sum(ann_test_list, [])) n_people = n_train_people + n_test_people logging.info("n_people: {} n_train_people: {} n_test_people: {}".format(n_people, n_train_people, n_test_people)) # add path to all image file name for i, value in enumerate(img_train_list): img_train_list[i] = os.path.join(img_dir, value) for i, value in enumerate(img_test_list): img_test_list[i] = os.path.join(img_dir, value) return img_train_list, ann_train_list, img_test_list, ann_test_list
[ "def", "load_mpii_pose_dataset", "(", "path", "=", "'data'", ",", "is_16_pos_only", "=", "False", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'mpii_human_pose'", ")", "logging", ".", "info", "(", "\"Load or Download MPII Human Pose > {}\"", ".", "format", "(", "path", ")", ")", "# annotation", "url", "=", "\"http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/\"", "tar_filename", "=", "\"mpii_human_pose_v1_u12_2.zip\"", "extracted_filename", "=", "\"mpii_human_pose_v1_u12_2\"", "if", "folder_exists", "(", "os", ".", "path", ".", "join", "(", "path", ",", "extracted_filename", ")", ")", "is", "False", ":", "logging", ".", "info", "(", "\"[MPII] (annotation) {} is nonexistent in {}\"", ".", "format", "(", "extracted_filename", ",", "path", ")", ")", "maybe_download_and_extract", "(", "tar_filename", ",", "path", ",", "url", ",", "extract", "=", "True", ")", "del_file", "(", "os", ".", "path", ".", "join", "(", "path", ",", "tar_filename", ")", ")", "# images", "url", "=", "\"http://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/\"", "tar_filename", "=", "\"mpii_human_pose_v1.tar.gz\"", "extracted_filename2", "=", "\"images\"", "if", "folder_exists", "(", "os", ".", "path", ".", "join", "(", "path", ",", "extracted_filename2", ")", ")", "is", "False", ":", "logging", ".", "info", "(", "\"[MPII] (images) {} is nonexistent in {}\"", ".", "format", "(", "extracted_filename", ",", "path", ")", ")", "maybe_download_and_extract", "(", "tar_filename", ",", "path", ",", "url", ",", "extract", "=", "True", ")", "del_file", "(", "os", ".", "path", ".", "join", "(", "path", ",", "tar_filename", ")", ")", "# parse annotation, format see http://human-pose.mpi-inf.mpg.de/#download", "import", "scipy", ".", "io", "as", "sio", "logging", ".", "info", "(", "\"reading annotations from mat file ...\"", ")", "# mat = sio.loadmat(os.path.join(path, extracted_filename, \"mpii_human_pose_v1_u12_1.mat\"))", "# def fix_wrong_joints(joint): # https://github.com/mitmul/deeppose/blob/master/datasets/mpii_dataset.py", "# if '12' in joint and '13' in joint and '2' in joint and '3' in joint:", "# if ((joint['12'][0] < joint['13'][0]) and", "# (joint['3'][0] < joint['2'][0])):", "# joint['2'], joint['3'] = joint['3'], joint['2']", "# if ((joint['12'][0] > joint['13'][0]) and", "# (joint['3'][0] > joint['2'][0])):", "# joint['2'], joint['3'] = joint['3'], joint['2']", "# return joint", "ann_train_list", "=", "[", "]", "ann_test_list", "=", "[", "]", "img_train_list", "=", "[", "]", "img_test_list", "=", "[", "]", "def", "save_joints", "(", ")", ":", "# joint_data_fn = os.path.join(path, 'data.json')", "# fp = open(joint_data_fn, 'w')", "mat", "=", "sio", ".", "loadmat", "(", "os", ".", "path", ".", "join", "(", "path", ",", "extracted_filename", ",", "\"mpii_human_pose_v1_u12_1.mat\"", ")", ")", "for", "_", ",", "(", "anno", ",", "train_flag", ")", "in", "enumerate", "(", "# all images", "zip", "(", "mat", "[", "'RELEASE'", "]", "[", "'annolist'", "]", "[", "0", ",", "0", "]", "[", "0", "]", ",", "mat", "[", "'RELEASE'", "]", "[", "'img_train'", "]", "[", "0", ",", "0", "]", "[", "0", "]", ")", ")", ":", "img_fn", "=", "anno", "[", "'image'", "]", "[", "'name'", "]", "[", "0", ",", "0", "]", "[", "0", "]", "train_flag", "=", "int", "(", "train_flag", ")", "# print(i, img_fn, train_flag) # DEBUG print all images", "if", "train_flag", ":", "img_train_list", ".", "append", "(", "img_fn", ")", "ann_train_list", ".", "append", "(", "[", "]", ")", "else", ":", "img_test_list", ".", "append", "(", "img_fn", ")", "ann_test_list", ".", "append", "(", "[", "]", ")", "head_rect", "=", "[", "]", "if", "'x1'", "in", "str", "(", "anno", "[", "'annorect'", "]", ".", "dtype", ")", ":", "head_rect", "=", "zip", "(", "[", "x1", "[", "0", ",", "0", "]", "for", "x1", "in", "anno", "[", "'annorect'", "]", "[", "'x1'", "]", "[", "0", "]", "]", ",", "[", "y1", "[", "0", ",", "0", "]", "for", "y1", "in", "anno", "[", "'annorect'", "]", "[", "'y1'", "]", "[", "0", "]", "]", ",", "[", "x2", "[", "0", ",", "0", "]", "for", "x2", "in", "anno", "[", "'annorect'", "]", "[", "'x2'", "]", "[", "0", "]", "]", ",", "[", "y2", "[", "0", ",", "0", "]", "for", "y2", "in", "anno", "[", "'annorect'", "]", "[", "'y2'", "]", "[", "0", "]", "]", ")", "else", ":", "head_rect", "=", "[", "]", "# TODO", "if", "'annopoints'", "in", "str", "(", "anno", "[", "'annorect'", "]", ".", "dtype", ")", ":", "annopoints", "=", "anno", "[", "'annorect'", "]", "[", "'annopoints'", "]", "[", "0", "]", "head_x1s", "=", "anno", "[", "'annorect'", "]", "[", "'x1'", "]", "[", "0", "]", "head_y1s", "=", "anno", "[", "'annorect'", "]", "[", "'y1'", "]", "[", "0", "]", "head_x2s", "=", "anno", "[", "'annorect'", "]", "[", "'x2'", "]", "[", "0", "]", "head_y2s", "=", "anno", "[", "'annorect'", "]", "[", "'y2'", "]", "[", "0", "]", "for", "annopoint", ",", "head_x1", ",", "head_y1", ",", "head_x2", ",", "head_y2", "in", "zip", "(", "annopoints", ",", "head_x1s", ",", "head_y1s", ",", "head_x2s", ",", "head_y2s", ")", ":", "# if annopoint != []:", "# if len(annopoint) != 0:", "if", "annopoint", ".", "size", ":", "head_rect", "=", "[", "float", "(", "head_x1", "[", "0", ",", "0", "]", ")", ",", "float", "(", "head_y1", "[", "0", ",", "0", "]", ")", ",", "float", "(", "head_x2", "[", "0", ",", "0", "]", ")", ",", "float", "(", "head_y2", "[", "0", ",", "0", "]", ")", "]", "# joint coordinates", "annopoint", "=", "annopoint", "[", "'point'", "]", "[", "0", ",", "0", "]", "j_id", "=", "[", "str", "(", "j_i", "[", "0", ",", "0", "]", ")", "for", "j_i", "in", "annopoint", "[", "'id'", "]", "[", "0", "]", "]", "x", "=", "[", "x", "[", "0", ",", "0", "]", "for", "x", "in", "annopoint", "[", "'x'", "]", "[", "0", "]", "]", "y", "=", "[", "y", "[", "0", ",", "0", "]", "for", "y", "in", "annopoint", "[", "'y'", "]", "[", "0", "]", "]", "joint_pos", "=", "{", "}", "for", "_j_id", ",", "(", "_x", ",", "_y", ")", "in", "zip", "(", "j_id", ",", "zip", "(", "x", ",", "y", ")", ")", ":", "joint_pos", "[", "int", "(", "_j_id", ")", "]", "=", "[", "float", "(", "_x", ")", ",", "float", "(", "_y", ")", "]", "# joint_pos = fix_wrong_joints(joint_pos)", "# visibility list", "if", "'is_visible'", "in", "str", "(", "annopoint", ".", "dtype", ")", ":", "vis", "=", "[", "v", "[", "0", "]", "if", "v", ".", "size", ">", "0", "else", "[", "0", "]", "for", "v", "in", "annopoint", "[", "'is_visible'", "]", "[", "0", "]", "]", "vis", "=", "dict", "(", "[", "(", "k", ",", "int", "(", "v", "[", "0", "]", ")", ")", "if", "len", "(", "v", ")", ">", "0", "else", "v", "for", "k", ",", "v", "in", "zip", "(", "j_id", ",", "vis", ")", "]", ")", "else", ":", "vis", "=", "None", "# if len(joint_pos) == 16:", "if", "(", "(", "is_16_pos_only", "==", "True", ")", "and", "(", "len", "(", "joint_pos", ")", "==", "16", ")", ")", "or", "(", "is_16_pos_only", "==", "False", ")", ":", "# only use image with 16 key points / or use all", "data", "=", "{", "'filename'", ":", "img_fn", ",", "'train'", ":", "train_flag", ",", "'head_rect'", ":", "head_rect", ",", "'is_visible'", ":", "vis", ",", "'joint_pos'", ":", "joint_pos", "}", "# print(json.dumps(data), file=fp) # py3", "if", "train_flag", ":", "ann_train_list", "[", "-", "1", "]", ".", "append", "(", "data", ")", "else", ":", "ann_test_list", "[", "-", "1", "]", ".", "append", "(", "data", ")", "# def write_line(datum, fp):", "# joints = sorted([[int(k), v] for k, v in datum['joint_pos'].items()])", "# joints = np.array([j for i, j in joints]).flatten()", "#", "# out = [datum['filename']]", "# out.extend(joints)", "# out = [str(o) for o in out]", "# out = ','.join(out)", "#", "# print(out, file=fp)", "# def split_train_test():", "# # fp_test = open('data/mpii/test_joints.csv', 'w')", "# fp_test = open(os.path.join(path, 'test_joints.csv'), 'w')", "# # fp_train = open('data/mpii/train_joints.csv', 'w')", "# fp_train = open(os.path.join(path, 'train_joints.csv'), 'w')", "# # all_data = open('data/mpii/data.json').readlines()", "# all_data = open(os.path.join(path, 'data.json')).readlines()", "# N = len(all_data)", "# N_test = int(N * 0.1)", "# N_train = N - N_test", "#", "# print('N:{}'.format(N))", "# print('N_train:{}'.format(N_train))", "# print('N_test:{}'.format(N_test))", "#", "# np.random.seed(1701)", "# perm = np.random.permutation(N)", "# test_indices = perm[:N_test]", "# train_indices = perm[N_test:]", "#", "# print('train_indices:{}'.format(len(train_indices)))", "# print('test_indices:{}'.format(len(test_indices)))", "#", "# for i in train_indices:", "# datum = json.loads(all_data[i].strip())", "# write_line(datum, fp_train)", "#", "# for i in test_indices:", "# datum = json.loads(all_data[i].strip())", "# write_line(datum, fp_test)", "save_joints", "(", ")", "# split_train_test() #", "## read images dir", "logging", ".", "info", "(", "\"reading images list ...\"", ")", "img_dir", "=", "os", ".", "path", ".", "join", "(", "path", ",", "extracted_filename2", ")", "_img_list", "=", "load_file_list", "(", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "extracted_filename2", ")", ",", "regx", "=", "'\\\\.jpg'", ",", "printable", "=", "False", ")", "# ann_list = json.load(open(os.path.join(path, 'data.json')))", "for", "i", ",", "im", "in", "enumerate", "(", "img_train_list", ")", ":", "if", "im", "not", "in", "_img_list", ":", "print", "(", "'missing training image {} in {} (remove from img(ann)_train_list)'", ".", "format", "(", "im", ",", "img_dir", ")", ")", "# img_train_list.remove(im)", "del", "img_train_list", "[", "i", "]", "del", "ann_train_list", "[", "i", "]", "for", "i", ",", "im", "in", "enumerate", "(", "img_test_list", ")", ":", "if", "im", "not", "in", "_img_list", ":", "print", "(", "'missing testing image {} in {} (remove from img(ann)_test_list)'", ".", "format", "(", "im", ",", "img_dir", ")", ")", "# img_test_list.remove(im)", "del", "img_train_list", "[", "i", "]", "del", "ann_train_list", "[", "i", "]", "## check annotation and images", "n_train_images", "=", "len", "(", "img_train_list", ")", "n_test_images", "=", "len", "(", "img_test_list", ")", "n_images", "=", "n_train_images", "+", "n_test_images", "logging", ".", "info", "(", "\"n_images: {} n_train_images: {} n_test_images: {}\"", ".", "format", "(", "n_images", ",", "n_train_images", ",", "n_test_images", ")", ")", "n_train_ann", "=", "len", "(", "ann_train_list", ")", "n_test_ann", "=", "len", "(", "ann_test_list", ")", "n_ann", "=", "n_train_ann", "+", "n_test_ann", "logging", ".", "info", "(", "\"n_ann: {} n_train_ann: {} n_test_ann: {}\"", ".", "format", "(", "n_ann", ",", "n_train_ann", ",", "n_test_ann", ")", ")", "n_train_people", "=", "len", "(", "sum", "(", "ann_train_list", ",", "[", "]", ")", ")", "n_test_people", "=", "len", "(", "sum", "(", "ann_test_list", ",", "[", "]", ")", ")", "n_people", "=", "n_train_people", "+", "n_test_people", "logging", ".", "info", "(", "\"n_people: {} n_train_people: {} n_test_people: {}\"", ".", "format", "(", "n_people", ",", "n_train_people", ",", "n_test_people", ")", ")", "# add path to all image file name", "for", "i", ",", "value", "in", "enumerate", "(", "img_train_list", ")", ":", "img_train_list", "[", "i", "]", "=", "os", ".", "path", ".", "join", "(", "img_dir", ",", "value", ")", "for", "i", ",", "value", "in", "enumerate", "(", "img_test_list", ")", ":", "img_test_list", "[", "i", "]", "=", "os", ".", "path", ".", "join", "(", "img_dir", ",", "value", ")", "return", "img_train_list", ",", "ann_train_list", ",", "img_test_list", ",", "ann_test_list" ]
Load MPII Human Pose Dataset. Parameters ----------- path : str The path that the data is downloaded to. is_16_pos_only : boolean If True, only return the peoples contain 16 pose keypoints. (Usually be used for single person pose estimation) Returns ---------- img_train_list : list of str The image directories of training data. ann_train_list : list of dict The annotations of training data. img_test_list : list of str The image directories of testing data. ann_test_list : list of dict The annotations of testing data. Examples -------- >>> import pprint >>> import tensorlayer as tl >>> img_train_list, ann_train_list, img_test_list, ann_test_list = tl.files.load_mpii_pose_dataset() >>> image = tl.vis.read_image(img_train_list[0]) >>> tl.vis.draw_mpii_pose_to_image(image, ann_train_list[0], 'image.png') >>> pprint.pprint(ann_train_list[0]) References ----------- - `MPII Human Pose Dataset. CVPR 14 <http://human-pose.mpi-inf.mpg.de>`__ - `MPII Human Pose Models. CVPR 16 <http://pose.mpi-inf.mpg.de>`__ - `MPII Human Shape, Poselet Conditioned Pictorial Structures and etc <http://pose.mpi-inf.mpg.de/#related>`__ - `MPII Keyponts and ID <http://human-pose.mpi-inf.mpg.de/#download>`__
[ "Load", "MPII", "Human", "Pose", "Dataset", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/dataset_loaders/mpii_dataset.py#L16-L256
valid
tensorlayer/tensorlayer
tensorlayer/layers/spatial_transformer.py
transformer
def transformer(U, theta, out_size, name='SpatialTransformer2dAffine'): """Spatial Transformer Layer for `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__ , see :class:`SpatialTransformer2dAffineLayer` class. Parameters ---------- U : list of float The output of a convolutional net should have the shape [num_batch, height, width, num_channels]. theta: float The output of the localisation network should be [num_batch, 6], value range should be [0, 1] (via tanh). out_size: tuple of int The size of the output of the network (height, width) name: str Optional function name Returns ------- Tensor The transformed tensor. References ---------- - `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`__ - `TensorFlow/Models <https://github.com/tensorflow/models/tree/master/transformer>`__ Notes ----- To initialize the network to the identity transform init. >>> import tensorflow as tf >>> # ``theta`` to >>> identity = np.array([[1., 0., 0.], [0., 1., 0.]]) >>> identity = identity.flatten() >>> theta = tf.Variable(initial_value=identity) """ def _repeat(x, n_repeats): with tf.variable_scope('_repeat'): rep = tf.transpose(tf.expand_dims(tf.ones(shape=tf.stack([ n_repeats, ])), 1), [1, 0]) rep = tf.cast(rep, 'int32') x = tf.matmul(tf.reshape(x, (-1, 1)), rep) return tf.reshape(x, [-1]) def _interpolate(im, x, y, out_size): with tf.variable_scope('_interpolate'): # constants num_batch = tf.shape(im)[0] height = tf.shape(im)[1] width = tf.shape(im)[2] channels = tf.shape(im)[3] x = tf.cast(x, 'float32') y = tf.cast(y, 'float32') height_f = tf.cast(height, 'float32') width_f = tf.cast(width, 'float32') out_height = out_size[0] out_width = out_size[1] zero = tf.zeros([], dtype='int32') max_y = tf.cast(tf.shape(im)[1] - 1, 'int32') max_x = tf.cast(tf.shape(im)[2] - 1, 'int32') # scale indices from [-1, 1] to [0, width/height] x = (x + 1.0) * (width_f) / 2.0 y = (y + 1.0) * (height_f) / 2.0 # do sampling x0 = tf.cast(tf.floor(x), 'int32') x1 = x0 + 1 y0 = tf.cast(tf.floor(y), 'int32') y1 = y0 + 1 x0 = tf.clip_by_value(x0, zero, max_x) x1 = tf.clip_by_value(x1, zero, max_x) y0 = tf.clip_by_value(y0, zero, max_y) y1 = tf.clip_by_value(y1, zero, max_y) dim2 = width dim1 = width * height base = _repeat(tf.range(num_batch) * dim1, out_height * out_width) base_y0 = base + y0 * dim2 base_y1 = base + y1 * dim2 idx_a = base_y0 + x0 idx_b = base_y1 + x0 idx_c = base_y0 + x1 idx_d = base_y1 + x1 # use indices to lookup pixels in the flat image and restore # channels dim im_flat = tf.reshape(im, tf.stack([-1, channels])) im_flat = tf.cast(im_flat, 'float32') Ia = tf.gather(im_flat, idx_a) Ib = tf.gather(im_flat, idx_b) Ic = tf.gather(im_flat, idx_c) Id = tf.gather(im_flat, idx_d) # and finally calculate interpolated values x0_f = tf.cast(x0, 'float32') x1_f = tf.cast(x1, 'float32') y0_f = tf.cast(y0, 'float32') y1_f = tf.cast(y1, 'float32') wa = tf.expand_dims(((x1_f - x) * (y1_f - y)), 1) wb = tf.expand_dims(((x1_f - x) * (y - y0_f)), 1) wc = tf.expand_dims(((x - x0_f) * (y1_f - y)), 1) wd = tf.expand_dims(((x - x0_f) * (y - y0_f)), 1) output = tf.add_n([wa * Ia, wb * Ib, wc * Ic, wd * Id]) return output def _meshgrid(height, width): with tf.variable_scope('_meshgrid'): # This should be equivalent to: # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), # np.linspace(-1, 1, height)) # ones = np.ones(np.prod(x_t.shape)) # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) x_t = tf.matmul( tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]) ) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat, ones]) return grid def _transform(theta, input_dim, out_size): with tf.variable_scope('_transform'): num_batch = tf.shape(input_dim)[0] num_channels = tf.shape(input_dim)[3] theta = tf.reshape(theta, (-1, 2, 3)) theta = tf.cast(theta, 'float32') # grid of (x_t, y_t, 1), eq (1) in ref [1] out_height = out_size[0] out_width = out_size[1] grid = _meshgrid(out_height, out_width) grid = tf.expand_dims(grid, 0) grid = tf.reshape(grid, [-1]) grid = tf.tile(grid, tf.stack([num_batch])) grid = tf.reshape(grid, tf.stack([num_batch, 3, -1])) # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s) T_g = tf.matmul(theta, grid) x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1]) y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1]) x_s_flat = tf.reshape(x_s, [-1]) y_s_flat = tf.reshape(y_s, [-1]) input_transformed = _interpolate(input_dim, x_s_flat, y_s_flat, out_size) output = tf.reshape(input_transformed, tf.stack([num_batch, out_height, out_width, num_channels])) return output with tf.variable_scope(name): output = _transform(theta, U, out_size) return output
python
def transformer(U, theta, out_size, name='SpatialTransformer2dAffine'): """Spatial Transformer Layer for `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__ , see :class:`SpatialTransformer2dAffineLayer` class. Parameters ---------- U : list of float The output of a convolutional net should have the shape [num_batch, height, width, num_channels]. theta: float The output of the localisation network should be [num_batch, 6], value range should be [0, 1] (via tanh). out_size: tuple of int The size of the output of the network (height, width) name: str Optional function name Returns ------- Tensor The transformed tensor. References ---------- - `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`__ - `TensorFlow/Models <https://github.com/tensorflow/models/tree/master/transformer>`__ Notes ----- To initialize the network to the identity transform init. >>> import tensorflow as tf >>> # ``theta`` to >>> identity = np.array([[1., 0., 0.], [0., 1., 0.]]) >>> identity = identity.flatten() >>> theta = tf.Variable(initial_value=identity) """ def _repeat(x, n_repeats): with tf.variable_scope('_repeat'): rep = tf.transpose(tf.expand_dims(tf.ones(shape=tf.stack([ n_repeats, ])), 1), [1, 0]) rep = tf.cast(rep, 'int32') x = tf.matmul(tf.reshape(x, (-1, 1)), rep) return tf.reshape(x, [-1]) def _interpolate(im, x, y, out_size): with tf.variable_scope('_interpolate'): # constants num_batch = tf.shape(im)[0] height = tf.shape(im)[1] width = tf.shape(im)[2] channels = tf.shape(im)[3] x = tf.cast(x, 'float32') y = tf.cast(y, 'float32') height_f = tf.cast(height, 'float32') width_f = tf.cast(width, 'float32') out_height = out_size[0] out_width = out_size[1] zero = tf.zeros([], dtype='int32') max_y = tf.cast(tf.shape(im)[1] - 1, 'int32') max_x = tf.cast(tf.shape(im)[2] - 1, 'int32') # scale indices from [-1, 1] to [0, width/height] x = (x + 1.0) * (width_f) / 2.0 y = (y + 1.0) * (height_f) / 2.0 # do sampling x0 = tf.cast(tf.floor(x), 'int32') x1 = x0 + 1 y0 = tf.cast(tf.floor(y), 'int32') y1 = y0 + 1 x0 = tf.clip_by_value(x0, zero, max_x) x1 = tf.clip_by_value(x1, zero, max_x) y0 = tf.clip_by_value(y0, zero, max_y) y1 = tf.clip_by_value(y1, zero, max_y) dim2 = width dim1 = width * height base = _repeat(tf.range(num_batch) * dim1, out_height * out_width) base_y0 = base + y0 * dim2 base_y1 = base + y1 * dim2 idx_a = base_y0 + x0 idx_b = base_y1 + x0 idx_c = base_y0 + x1 idx_d = base_y1 + x1 # use indices to lookup pixels in the flat image and restore # channels dim im_flat = tf.reshape(im, tf.stack([-1, channels])) im_flat = tf.cast(im_flat, 'float32') Ia = tf.gather(im_flat, idx_a) Ib = tf.gather(im_flat, idx_b) Ic = tf.gather(im_flat, idx_c) Id = tf.gather(im_flat, idx_d) # and finally calculate interpolated values x0_f = tf.cast(x0, 'float32') x1_f = tf.cast(x1, 'float32') y0_f = tf.cast(y0, 'float32') y1_f = tf.cast(y1, 'float32') wa = tf.expand_dims(((x1_f - x) * (y1_f - y)), 1) wb = tf.expand_dims(((x1_f - x) * (y - y0_f)), 1) wc = tf.expand_dims(((x - x0_f) * (y1_f - y)), 1) wd = tf.expand_dims(((x - x0_f) * (y - y0_f)), 1) output = tf.add_n([wa * Ia, wb * Ib, wc * Ic, wd * Id]) return output def _meshgrid(height, width): with tf.variable_scope('_meshgrid'): # This should be equivalent to: # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), # np.linspace(-1, 1, height)) # ones = np.ones(np.prod(x_t.shape)) # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) x_t = tf.matmul( tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]) ) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat, ones]) return grid def _transform(theta, input_dim, out_size): with tf.variable_scope('_transform'): num_batch = tf.shape(input_dim)[0] num_channels = tf.shape(input_dim)[3] theta = tf.reshape(theta, (-1, 2, 3)) theta = tf.cast(theta, 'float32') # grid of (x_t, y_t, 1), eq (1) in ref [1] out_height = out_size[0] out_width = out_size[1] grid = _meshgrid(out_height, out_width) grid = tf.expand_dims(grid, 0) grid = tf.reshape(grid, [-1]) grid = tf.tile(grid, tf.stack([num_batch])) grid = tf.reshape(grid, tf.stack([num_batch, 3, -1])) # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s) T_g = tf.matmul(theta, grid) x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1]) y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1]) x_s_flat = tf.reshape(x_s, [-1]) y_s_flat = tf.reshape(y_s, [-1]) input_transformed = _interpolate(input_dim, x_s_flat, y_s_flat, out_size) output = tf.reshape(input_transformed, tf.stack([num_batch, out_height, out_width, num_channels])) return output with tf.variable_scope(name): output = _transform(theta, U, out_size) return output
[ "def", "transformer", "(", "U", ",", "theta", ",", "out_size", ",", "name", "=", "'SpatialTransformer2dAffine'", ")", ":", "def", "_repeat", "(", "x", ",", "n_repeats", ")", ":", "with", "tf", ".", "variable_scope", "(", "'_repeat'", ")", ":", "rep", "=", "tf", ".", "transpose", "(", "tf", ".", "expand_dims", "(", "tf", ".", "ones", "(", "shape", "=", "tf", ".", "stack", "(", "[", "n_repeats", ",", "]", ")", ")", ",", "1", ")", ",", "[", "1", ",", "0", "]", ")", "rep", "=", "tf", ".", "cast", "(", "rep", ",", "'int32'", ")", "x", "=", "tf", ".", "matmul", "(", "tf", ".", "reshape", "(", "x", ",", "(", "-", "1", ",", "1", ")", ")", ",", "rep", ")", "return", "tf", ".", "reshape", "(", "x", ",", "[", "-", "1", "]", ")", "def", "_interpolate", "(", "im", ",", "x", ",", "y", ",", "out_size", ")", ":", "with", "tf", ".", "variable_scope", "(", "'_interpolate'", ")", ":", "# constants", "num_batch", "=", "tf", ".", "shape", "(", "im", ")", "[", "0", "]", "height", "=", "tf", ".", "shape", "(", "im", ")", "[", "1", "]", "width", "=", "tf", ".", "shape", "(", "im", ")", "[", "2", "]", "channels", "=", "tf", ".", "shape", "(", "im", ")", "[", "3", "]", "x", "=", "tf", ".", "cast", "(", "x", ",", "'float32'", ")", "y", "=", "tf", ".", "cast", "(", "y", ",", "'float32'", ")", "height_f", "=", "tf", ".", "cast", "(", "height", ",", "'float32'", ")", "width_f", "=", "tf", ".", "cast", "(", "width", ",", "'float32'", ")", "out_height", "=", "out_size", "[", "0", "]", "out_width", "=", "out_size", "[", "1", "]", "zero", "=", "tf", ".", "zeros", "(", "[", "]", ",", "dtype", "=", "'int32'", ")", "max_y", "=", "tf", ".", "cast", "(", "tf", ".", "shape", "(", "im", ")", "[", "1", "]", "-", "1", ",", "'int32'", ")", "max_x", "=", "tf", ".", "cast", "(", "tf", ".", "shape", "(", "im", ")", "[", "2", "]", "-", "1", ",", "'int32'", ")", "# scale indices from [-1, 1] to [0, width/height]", "x", "=", "(", "x", "+", "1.0", ")", "*", "(", "width_f", ")", "/", "2.0", "y", "=", "(", "y", "+", "1.0", ")", "*", "(", "height_f", ")", "/", "2.0", "# do sampling", "x0", "=", "tf", ".", "cast", "(", "tf", ".", "floor", "(", "x", ")", ",", "'int32'", ")", "x1", "=", "x0", "+", "1", "y0", "=", "tf", ".", "cast", "(", "tf", ".", "floor", "(", "y", ")", ",", "'int32'", ")", "y1", "=", "y0", "+", "1", "x0", "=", "tf", ".", "clip_by_value", "(", "x0", ",", "zero", ",", "max_x", ")", "x1", "=", "tf", ".", "clip_by_value", "(", "x1", ",", "zero", ",", "max_x", ")", "y0", "=", "tf", ".", "clip_by_value", "(", "y0", ",", "zero", ",", "max_y", ")", "y1", "=", "tf", ".", "clip_by_value", "(", "y1", ",", "zero", ",", "max_y", ")", "dim2", "=", "width", "dim1", "=", "width", "*", "height", "base", "=", "_repeat", "(", "tf", ".", "range", "(", "num_batch", ")", "*", "dim1", ",", "out_height", "*", "out_width", ")", "base_y0", "=", "base", "+", "y0", "*", "dim2", "base_y1", "=", "base", "+", "y1", "*", "dim2", "idx_a", "=", "base_y0", "+", "x0", "idx_b", "=", "base_y1", "+", "x0", "idx_c", "=", "base_y0", "+", "x1", "idx_d", "=", "base_y1", "+", "x1", "# use indices to lookup pixels in the flat image and restore", "# channels dim", "im_flat", "=", "tf", ".", "reshape", "(", "im", ",", "tf", ".", "stack", "(", "[", "-", "1", ",", "channels", "]", ")", ")", "im_flat", "=", "tf", ".", "cast", "(", "im_flat", ",", "'float32'", ")", "Ia", "=", "tf", ".", "gather", "(", "im_flat", ",", "idx_a", ")", "Ib", "=", "tf", ".", "gather", "(", "im_flat", ",", "idx_b", ")", "Ic", "=", "tf", ".", "gather", "(", "im_flat", ",", "idx_c", ")", "Id", "=", "tf", ".", "gather", "(", "im_flat", ",", "idx_d", ")", "# and finally calculate interpolated values", "x0_f", "=", "tf", ".", "cast", "(", "x0", ",", "'float32'", ")", "x1_f", "=", "tf", ".", "cast", "(", "x1", ",", "'float32'", ")", "y0_f", "=", "tf", ".", "cast", "(", "y0", ",", "'float32'", ")", "y1_f", "=", "tf", ".", "cast", "(", "y1", ",", "'float32'", ")", "wa", "=", "tf", ".", "expand_dims", "(", "(", "(", "x1_f", "-", "x", ")", "*", "(", "y1_f", "-", "y", ")", ")", ",", "1", ")", "wb", "=", "tf", ".", "expand_dims", "(", "(", "(", "x1_f", "-", "x", ")", "*", "(", "y", "-", "y0_f", ")", ")", ",", "1", ")", "wc", "=", "tf", ".", "expand_dims", "(", "(", "(", "x", "-", "x0_f", ")", "*", "(", "y1_f", "-", "y", ")", ")", ",", "1", ")", "wd", "=", "tf", ".", "expand_dims", "(", "(", "(", "x", "-", "x0_f", ")", "*", "(", "y", "-", "y0_f", ")", ")", ",", "1", ")", "output", "=", "tf", ".", "add_n", "(", "[", "wa", "*", "Ia", ",", "wb", "*", "Ib", ",", "wc", "*", "Ic", ",", "wd", "*", "Id", "]", ")", "return", "output", "def", "_meshgrid", "(", "height", ",", "width", ")", ":", "with", "tf", ".", "variable_scope", "(", "'_meshgrid'", ")", ":", "# This should be equivalent to:", "# x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),", "# np.linspace(-1, 1, height))", "# ones = np.ones(np.prod(x_t.shape))", "# grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])", "x_t", "=", "tf", ".", "matmul", "(", "tf", ".", "ones", "(", "shape", "=", "tf", ".", "stack", "(", "[", "height", ",", "1", "]", ")", ")", ",", "tf", ".", "transpose", "(", "tf", ".", "expand_dims", "(", "tf", ".", "linspace", "(", "-", "1.0", ",", "1.0", ",", "width", ")", ",", "1", ")", ",", "[", "1", ",", "0", "]", ")", ")", "y_t", "=", "tf", ".", "matmul", "(", "tf", ".", "expand_dims", "(", "tf", ".", "linspace", "(", "-", "1.0", ",", "1.0", ",", "height", ")", ",", "1", ")", ",", "tf", ".", "ones", "(", "shape", "=", "tf", ".", "stack", "(", "[", "1", ",", "width", "]", ")", ")", ")", "x_t_flat", "=", "tf", ".", "reshape", "(", "x_t", ",", "(", "1", ",", "-", "1", ")", ")", "y_t_flat", "=", "tf", ".", "reshape", "(", "y_t", ",", "(", "1", ",", "-", "1", ")", ")", "ones", "=", "tf", ".", "ones_like", "(", "x_t_flat", ")", "grid", "=", "tf", ".", "concat", "(", "axis", "=", "0", ",", "values", "=", "[", "x_t_flat", ",", "y_t_flat", ",", "ones", "]", ")", "return", "grid", "def", "_transform", "(", "theta", ",", "input_dim", ",", "out_size", ")", ":", "with", "tf", ".", "variable_scope", "(", "'_transform'", ")", ":", "num_batch", "=", "tf", ".", "shape", "(", "input_dim", ")", "[", "0", "]", "num_channels", "=", "tf", ".", "shape", "(", "input_dim", ")", "[", "3", "]", "theta", "=", "tf", ".", "reshape", "(", "theta", ",", "(", "-", "1", ",", "2", ",", "3", ")", ")", "theta", "=", "tf", ".", "cast", "(", "theta", ",", "'float32'", ")", "# grid of (x_t, y_t, 1), eq (1) in ref [1]", "out_height", "=", "out_size", "[", "0", "]", "out_width", "=", "out_size", "[", "1", "]", "grid", "=", "_meshgrid", "(", "out_height", ",", "out_width", ")", "grid", "=", "tf", ".", "expand_dims", "(", "grid", ",", "0", ")", "grid", "=", "tf", ".", "reshape", "(", "grid", ",", "[", "-", "1", "]", ")", "grid", "=", "tf", ".", "tile", "(", "grid", ",", "tf", ".", "stack", "(", "[", "num_batch", "]", ")", ")", "grid", "=", "tf", ".", "reshape", "(", "grid", ",", "tf", ".", "stack", "(", "[", "num_batch", ",", "3", ",", "-", "1", "]", ")", ")", "# Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)", "T_g", "=", "tf", ".", "matmul", "(", "theta", ",", "grid", ")", "x_s", "=", "tf", ".", "slice", "(", "T_g", ",", "[", "0", ",", "0", ",", "0", "]", ",", "[", "-", "1", ",", "1", ",", "-", "1", "]", ")", "y_s", "=", "tf", ".", "slice", "(", "T_g", ",", "[", "0", ",", "1", ",", "0", "]", ",", "[", "-", "1", ",", "1", ",", "-", "1", "]", ")", "x_s_flat", "=", "tf", ".", "reshape", "(", "x_s", ",", "[", "-", "1", "]", ")", "y_s_flat", "=", "tf", ".", "reshape", "(", "y_s", ",", "[", "-", "1", "]", ")", "input_transformed", "=", "_interpolate", "(", "input_dim", ",", "x_s_flat", ",", "y_s_flat", ",", "out_size", ")", "output", "=", "tf", ".", "reshape", "(", "input_transformed", ",", "tf", ".", "stack", "(", "[", "num_batch", ",", "out_height", ",", "out_width", ",", "num_channels", "]", ")", ")", "return", "output", "with", "tf", ".", "variable_scope", "(", "name", ")", ":", "output", "=", "_transform", "(", "theta", ",", "U", ",", "out_size", ")", "return", "output" ]
Spatial Transformer Layer for `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__ , see :class:`SpatialTransformer2dAffineLayer` class. Parameters ---------- U : list of float The output of a convolutional net should have the shape [num_batch, height, width, num_channels]. theta: float The output of the localisation network should be [num_batch, 6], value range should be [0, 1] (via tanh). out_size: tuple of int The size of the output of the network (height, width) name: str Optional function name Returns ------- Tensor The transformed tensor. References ---------- - `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`__ - `TensorFlow/Models <https://github.com/tensorflow/models/tree/master/transformer>`__ Notes ----- To initialize the network to the identity transform init. >>> import tensorflow as tf >>> # ``theta`` to >>> identity = np.array([[1., 0., 0.], [0., 1., 0.]]) >>> identity = identity.flatten() >>> theta = tf.Variable(initial_value=identity)
[ "Spatial", "Transformer", "Layer", "for", "2D", "Affine", "Transformation", "<https", ":", "//", "en", ".", "wikipedia", ".", "org", "/", "wiki", "/", "Affine_transformation", ">", "__", "see", ":", "class", ":", "SpatialTransformer2dAffineLayer", "class", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/spatial_transformer.py#L28-L188
valid
tensorlayer/tensorlayer
tensorlayer/layers/spatial_transformer.py
batch_transformer
def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer2dAffine'): """Batch Spatial Transformer function for `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__. Parameters ---------- U : list of float tensor of inputs [batch, height, width, num_channels] thetas : list of float a set of transformations for each input [batch, num_transforms, 6] out_size : list of int the size of the output [out_height, out_width] name : str optional function name Returns ------ float Tensor of size [batch * num_transforms, out_height, out_width, num_channels] """ with tf.variable_scope(name): num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2]) indices = [[i] * num_transforms for i in xrange(num_batch)] input_repeated = tf.gather(U, tf.reshape(indices, [-1])) return transformer(input_repeated, thetas, out_size)
python
def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer2dAffine'): """Batch Spatial Transformer function for `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__. Parameters ---------- U : list of float tensor of inputs [batch, height, width, num_channels] thetas : list of float a set of transformations for each input [batch, num_transforms, 6] out_size : list of int the size of the output [out_height, out_width] name : str optional function name Returns ------ float Tensor of size [batch * num_transforms, out_height, out_width, num_channels] """ with tf.variable_scope(name): num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2]) indices = [[i] * num_transforms for i in xrange(num_batch)] input_repeated = tf.gather(U, tf.reshape(indices, [-1])) return transformer(input_repeated, thetas, out_size)
[ "def", "batch_transformer", "(", "U", ",", "thetas", ",", "out_size", ",", "name", "=", "'BatchSpatialTransformer2dAffine'", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ")", ":", "num_batch", ",", "num_transforms", "=", "map", "(", "int", ",", "thetas", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "[", ":", "2", "]", ")", "indices", "=", "[", "[", "i", "]", "*", "num_transforms", "for", "i", "in", "xrange", "(", "num_batch", ")", "]", "input_repeated", "=", "tf", ".", "gather", "(", "U", ",", "tf", ".", "reshape", "(", "indices", ",", "[", "-", "1", "]", ")", ")", "return", "transformer", "(", "input_repeated", ",", "thetas", ",", "out_size", ")" ]
Batch Spatial Transformer function for `2D Affine Transformation <https://en.wikipedia.org/wiki/Affine_transformation>`__. Parameters ---------- U : list of float tensor of inputs [batch, height, width, num_channels] thetas : list of float a set of transformations for each input [batch, num_transforms, 6] out_size : list of int the size of the output [out_height, out_width] name : str optional function name Returns ------ float Tensor of size [batch * num_transforms, out_height, out_width, num_channels]
[ "Batch", "Spatial", "Transformer", "function", "for", "2D", "Affine", "Transformation", "<https", ":", "//", "en", ".", "wikipedia", ".", "org", "/", "wiki", "/", "Affine_transformation", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/spatial_transformer.py#L191-L215
valid
tensorlayer/tensorlayer
tensorlayer/distributed.py
create_task_spec_def
def create_task_spec_def(): """Returns the a :class:`TaskSpecDef` based on the environment variables for distributed training. References ---------- - `ML-engine trainer considerations <https://cloud.google.com/ml-engine/docs/trainer-considerations#use_tf_config>`__ - `TensorPort Distributed Computing <https://www.tensorport.com/documentation/code-details/>`__ """ if 'TF_CONFIG' in os.environ: # TF_CONFIG is used in ML-engine env = json.loads(os.environ.get('TF_CONFIG', '{}')) task_data = env.get('task', None) or {'type': 'master', 'index': 0} cluster_data = env.get('cluster', None) or {'ps': None, 'worker': None, 'master': None} return TaskSpecDef( task_type=task_data['type'], index=task_data['index'], trial=task_data['trial'] if 'trial' in task_data else None, ps_hosts=cluster_data['ps'], worker_hosts=cluster_data['worker'], master=cluster_data['master'] if 'master' in cluster_data else None ) elif 'JOB_NAME' in os.environ: # JOB_NAME, TASK_INDEX, PS_HOSTS, WORKER_HOSTS and MASTER_HOST are used in TensorPort return TaskSpecDef( task_type=os.environ['JOB_NAME'], index=os.environ['TASK_INDEX'], ps_hosts=os.environ.get('PS_HOSTS', None), worker_hosts=os.environ.get('WORKER_HOSTS', None), master=os.environ.get('MASTER_HOST', None) ) else: raise Exception('You need to setup TF_CONFIG or JOB_NAME to define the task.')
python
def create_task_spec_def(): """Returns the a :class:`TaskSpecDef` based on the environment variables for distributed training. References ---------- - `ML-engine trainer considerations <https://cloud.google.com/ml-engine/docs/trainer-considerations#use_tf_config>`__ - `TensorPort Distributed Computing <https://www.tensorport.com/documentation/code-details/>`__ """ if 'TF_CONFIG' in os.environ: # TF_CONFIG is used in ML-engine env = json.loads(os.environ.get('TF_CONFIG', '{}')) task_data = env.get('task', None) or {'type': 'master', 'index': 0} cluster_data = env.get('cluster', None) or {'ps': None, 'worker': None, 'master': None} return TaskSpecDef( task_type=task_data['type'], index=task_data['index'], trial=task_data['trial'] if 'trial' in task_data else None, ps_hosts=cluster_data['ps'], worker_hosts=cluster_data['worker'], master=cluster_data['master'] if 'master' in cluster_data else None ) elif 'JOB_NAME' in os.environ: # JOB_NAME, TASK_INDEX, PS_HOSTS, WORKER_HOSTS and MASTER_HOST are used in TensorPort return TaskSpecDef( task_type=os.environ['JOB_NAME'], index=os.environ['TASK_INDEX'], ps_hosts=os.environ.get('PS_HOSTS', None), worker_hosts=os.environ.get('WORKER_HOSTS', None), master=os.environ.get('MASTER_HOST', None) ) else: raise Exception('You need to setup TF_CONFIG or JOB_NAME to define the task.')
[ "def", "create_task_spec_def", "(", ")", ":", "if", "'TF_CONFIG'", "in", "os", ".", "environ", ":", "# TF_CONFIG is used in ML-engine", "env", "=", "json", ".", "loads", "(", "os", ".", "environ", ".", "get", "(", "'TF_CONFIG'", ",", "'{}'", ")", ")", "task_data", "=", "env", ".", "get", "(", "'task'", ",", "None", ")", "or", "{", "'type'", ":", "'master'", ",", "'index'", ":", "0", "}", "cluster_data", "=", "env", ".", "get", "(", "'cluster'", ",", "None", ")", "or", "{", "'ps'", ":", "None", ",", "'worker'", ":", "None", ",", "'master'", ":", "None", "}", "return", "TaskSpecDef", "(", "task_type", "=", "task_data", "[", "'type'", "]", ",", "index", "=", "task_data", "[", "'index'", "]", ",", "trial", "=", "task_data", "[", "'trial'", "]", "if", "'trial'", "in", "task_data", "else", "None", ",", "ps_hosts", "=", "cluster_data", "[", "'ps'", "]", ",", "worker_hosts", "=", "cluster_data", "[", "'worker'", "]", ",", "master", "=", "cluster_data", "[", "'master'", "]", "if", "'master'", "in", "cluster_data", "else", "None", ")", "elif", "'JOB_NAME'", "in", "os", ".", "environ", ":", "# JOB_NAME, TASK_INDEX, PS_HOSTS, WORKER_HOSTS and MASTER_HOST are used in TensorPort", "return", "TaskSpecDef", "(", "task_type", "=", "os", ".", "environ", "[", "'JOB_NAME'", "]", ",", "index", "=", "os", ".", "environ", "[", "'TASK_INDEX'", "]", ",", "ps_hosts", "=", "os", ".", "environ", ".", "get", "(", "'PS_HOSTS'", ",", "None", ")", ",", "worker_hosts", "=", "os", ".", "environ", ".", "get", "(", "'WORKER_HOSTS'", ",", "None", ")", ",", "master", "=", "os", ".", "environ", ".", "get", "(", "'MASTER_HOST'", ",", "None", ")", ")", "else", ":", "raise", "Exception", "(", "'You need to setup TF_CONFIG or JOB_NAME to define the task.'", ")" ]
Returns the a :class:`TaskSpecDef` based on the environment variables for distributed training. References ---------- - `ML-engine trainer considerations <https://cloud.google.com/ml-engine/docs/trainer-considerations#use_tf_config>`__ - `TensorPort Distributed Computing <https://www.tensorport.com/documentation/code-details/>`__
[ "Returns", "the", "a", ":", "class", ":", "TaskSpecDef", "based", "on", "the", "environment", "variables", "for", "distributed", "training", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/distributed.py#L368-L394
valid
tensorlayer/tensorlayer
tensorlayer/distributed.py
create_distributed_session
def create_distributed_session( task_spec=None, checkpoint_dir=None, scaffold=None, hooks=None, chief_only_hooks=None, save_checkpoint_secs=600, save_summaries_steps=object(), save_summaries_secs=object(), config=None, stop_grace_period_secs=120, log_step_count_steps=100 ): """Creates a distributed session. It calls `MonitoredTrainingSession` to create a :class:`MonitoredSession` for distributed training. Parameters ---------- task_spec : :class:`TaskSpecDef`. The task spec definition from create_task_spec_def() checkpoint_dir : str. Optional path to a directory where to restore variables. scaffold : ``Scaffold`` A `Scaffold` used for gathering or building supportive ops. If not specified, a default one is created. It's used to finalize the graph. hooks : list of ``SessionRunHook`` objects. Optional chief_only_hooks : list of ``SessionRunHook`` objects. Activate these hooks if `is_chief==True`, ignore otherwise. save_checkpoint_secs : int The frequency, in seconds, that a checkpoint is saved using a default checkpoint saver. If `save_checkpoint_secs` is set to `None`, then the default checkpoint saver isn't used. save_summaries_steps : int The frequency, in number of global steps, that the summaries are written to disk using a default summary saver. If both `save_summaries_steps` and `save_summaries_secs` are set to `None`, then the default summary saver isn't used. Default 100. save_summaries_secs : int The frequency, in secs, that the summaries are written to disk using a default summary saver. If both `save_summaries_steps` and `save_summaries_secs` are set to `None`, then the default summary saver isn't used. Default not enabled. config : ``tf.ConfigProto`` an instance of `tf.ConfigProto` proto used to configure the session. It's the `config` argument of constructor of `tf.Session`. stop_grace_period_secs : int Number of seconds given to threads to stop after `close()` has been called. log_step_count_steps : int The frequency, in number of global steps, that the global step/sec is logged. Examples -------- A simple example for distributed training where all the workers use the same dataset: >>> task_spec = TaskSpec() >>> with tf.device(task_spec.device_fn()): >>> tensors = create_graph() >>> with tl.DistributedSession(task_spec=task_spec, ... checkpoint_dir='/tmp/ckpt') as session: >>> while not session.should_stop(): >>> session.run(tensors) An example where the dataset is shared among the workers (see https://www.tensorflow.org/programmers_guide/datasets): >>> task_spec = TaskSpec() >>> # dataset is a :class:`tf.data.Dataset` with the raw data >>> dataset = create_dataset() >>> if task_spec is not None: >>> dataset = dataset.shard(task_spec.num_workers, task_spec.shard_index) >>> # shuffle or apply a map function to the new sharded dataset, for example: >>> dataset = dataset.shuffle(buffer_size=10000) >>> dataset = dataset.batch(batch_size) >>> dataset = dataset.repeat(num_epochs) >>> # create the iterator for the dataset and the input tensor >>> iterator = dataset.make_one_shot_iterator() >>> next_element = iterator.get_next() >>> with tf.device(task_spec.device_fn()): >>> # next_element is the input for the graph >>> tensors = create_graph(next_element) >>> with tl.DistributedSession(task_spec=task_spec, ... checkpoint_dir='/tmp/ckpt') as session: >>> while not session.should_stop(): >>> session.run(tensors) References ---------- - `MonitoredTrainingSession <https://www.tensorflow.org/api_docs/python/tf/train/MonitoredTrainingSession>`__ """ target = task_spec.target() if task_spec is not None else None is_chief = task_spec.is_master() if task_spec is not None else True return tf.train.MonitoredTrainingSession( master=target, is_chief=is_chief, checkpoint_dir=checkpoint_dir, scaffold=scaffold, save_checkpoint_secs=save_checkpoint_secs, save_summaries_steps=save_summaries_steps, save_summaries_secs=save_summaries_secs, log_step_count_steps=log_step_count_steps, stop_grace_period_secs=stop_grace_period_secs, config=config, hooks=hooks, chief_only_hooks=chief_only_hooks )
python
def create_distributed_session( task_spec=None, checkpoint_dir=None, scaffold=None, hooks=None, chief_only_hooks=None, save_checkpoint_secs=600, save_summaries_steps=object(), save_summaries_secs=object(), config=None, stop_grace_period_secs=120, log_step_count_steps=100 ): """Creates a distributed session. It calls `MonitoredTrainingSession` to create a :class:`MonitoredSession` for distributed training. Parameters ---------- task_spec : :class:`TaskSpecDef`. The task spec definition from create_task_spec_def() checkpoint_dir : str. Optional path to a directory where to restore variables. scaffold : ``Scaffold`` A `Scaffold` used for gathering or building supportive ops. If not specified, a default one is created. It's used to finalize the graph. hooks : list of ``SessionRunHook`` objects. Optional chief_only_hooks : list of ``SessionRunHook`` objects. Activate these hooks if `is_chief==True`, ignore otherwise. save_checkpoint_secs : int The frequency, in seconds, that a checkpoint is saved using a default checkpoint saver. If `save_checkpoint_secs` is set to `None`, then the default checkpoint saver isn't used. save_summaries_steps : int The frequency, in number of global steps, that the summaries are written to disk using a default summary saver. If both `save_summaries_steps` and `save_summaries_secs` are set to `None`, then the default summary saver isn't used. Default 100. save_summaries_secs : int The frequency, in secs, that the summaries are written to disk using a default summary saver. If both `save_summaries_steps` and `save_summaries_secs` are set to `None`, then the default summary saver isn't used. Default not enabled. config : ``tf.ConfigProto`` an instance of `tf.ConfigProto` proto used to configure the session. It's the `config` argument of constructor of `tf.Session`. stop_grace_period_secs : int Number of seconds given to threads to stop after `close()` has been called. log_step_count_steps : int The frequency, in number of global steps, that the global step/sec is logged. Examples -------- A simple example for distributed training where all the workers use the same dataset: >>> task_spec = TaskSpec() >>> with tf.device(task_spec.device_fn()): >>> tensors = create_graph() >>> with tl.DistributedSession(task_spec=task_spec, ... checkpoint_dir='/tmp/ckpt') as session: >>> while not session.should_stop(): >>> session.run(tensors) An example where the dataset is shared among the workers (see https://www.tensorflow.org/programmers_guide/datasets): >>> task_spec = TaskSpec() >>> # dataset is a :class:`tf.data.Dataset` with the raw data >>> dataset = create_dataset() >>> if task_spec is not None: >>> dataset = dataset.shard(task_spec.num_workers, task_spec.shard_index) >>> # shuffle or apply a map function to the new sharded dataset, for example: >>> dataset = dataset.shuffle(buffer_size=10000) >>> dataset = dataset.batch(batch_size) >>> dataset = dataset.repeat(num_epochs) >>> # create the iterator for the dataset and the input tensor >>> iterator = dataset.make_one_shot_iterator() >>> next_element = iterator.get_next() >>> with tf.device(task_spec.device_fn()): >>> # next_element is the input for the graph >>> tensors = create_graph(next_element) >>> with tl.DistributedSession(task_spec=task_spec, ... checkpoint_dir='/tmp/ckpt') as session: >>> while not session.should_stop(): >>> session.run(tensors) References ---------- - `MonitoredTrainingSession <https://www.tensorflow.org/api_docs/python/tf/train/MonitoredTrainingSession>`__ """ target = task_spec.target() if task_spec is not None else None is_chief = task_spec.is_master() if task_spec is not None else True return tf.train.MonitoredTrainingSession( master=target, is_chief=is_chief, checkpoint_dir=checkpoint_dir, scaffold=scaffold, save_checkpoint_secs=save_checkpoint_secs, save_summaries_steps=save_summaries_steps, save_summaries_secs=save_summaries_secs, log_step_count_steps=log_step_count_steps, stop_grace_period_secs=stop_grace_period_secs, config=config, hooks=hooks, chief_only_hooks=chief_only_hooks )
[ "def", "create_distributed_session", "(", "task_spec", "=", "None", ",", "checkpoint_dir", "=", "None", ",", "scaffold", "=", "None", ",", "hooks", "=", "None", ",", "chief_only_hooks", "=", "None", ",", "save_checkpoint_secs", "=", "600", ",", "save_summaries_steps", "=", "object", "(", ")", ",", "save_summaries_secs", "=", "object", "(", ")", ",", "config", "=", "None", ",", "stop_grace_period_secs", "=", "120", ",", "log_step_count_steps", "=", "100", ")", ":", "target", "=", "task_spec", ".", "target", "(", ")", "if", "task_spec", "is", "not", "None", "else", "None", "is_chief", "=", "task_spec", ".", "is_master", "(", ")", "if", "task_spec", "is", "not", "None", "else", "True", "return", "tf", ".", "train", ".", "MonitoredTrainingSession", "(", "master", "=", "target", ",", "is_chief", "=", "is_chief", ",", "checkpoint_dir", "=", "checkpoint_dir", ",", "scaffold", "=", "scaffold", ",", "save_checkpoint_secs", "=", "save_checkpoint_secs", ",", "save_summaries_steps", "=", "save_summaries_steps", ",", "save_summaries_secs", "=", "save_summaries_secs", ",", "log_step_count_steps", "=", "log_step_count_steps", ",", "stop_grace_period_secs", "=", "stop_grace_period_secs", ",", "config", "=", "config", ",", "hooks", "=", "hooks", ",", "chief_only_hooks", "=", "chief_only_hooks", ")" ]
Creates a distributed session. It calls `MonitoredTrainingSession` to create a :class:`MonitoredSession` for distributed training. Parameters ---------- task_spec : :class:`TaskSpecDef`. The task spec definition from create_task_spec_def() checkpoint_dir : str. Optional path to a directory where to restore variables. scaffold : ``Scaffold`` A `Scaffold` used for gathering or building supportive ops. If not specified, a default one is created. It's used to finalize the graph. hooks : list of ``SessionRunHook`` objects. Optional chief_only_hooks : list of ``SessionRunHook`` objects. Activate these hooks if `is_chief==True`, ignore otherwise. save_checkpoint_secs : int The frequency, in seconds, that a checkpoint is saved using a default checkpoint saver. If `save_checkpoint_secs` is set to `None`, then the default checkpoint saver isn't used. save_summaries_steps : int The frequency, in number of global steps, that the summaries are written to disk using a default summary saver. If both `save_summaries_steps` and `save_summaries_secs` are set to `None`, then the default summary saver isn't used. Default 100. save_summaries_secs : int The frequency, in secs, that the summaries are written to disk using a default summary saver. If both `save_summaries_steps` and `save_summaries_secs` are set to `None`, then the default summary saver isn't used. Default not enabled. config : ``tf.ConfigProto`` an instance of `tf.ConfigProto` proto used to configure the session. It's the `config` argument of constructor of `tf.Session`. stop_grace_period_secs : int Number of seconds given to threads to stop after `close()` has been called. log_step_count_steps : int The frequency, in number of global steps, that the global step/sec is logged. Examples -------- A simple example for distributed training where all the workers use the same dataset: >>> task_spec = TaskSpec() >>> with tf.device(task_spec.device_fn()): >>> tensors = create_graph() >>> with tl.DistributedSession(task_spec=task_spec, ... checkpoint_dir='/tmp/ckpt') as session: >>> while not session.should_stop(): >>> session.run(tensors) An example where the dataset is shared among the workers (see https://www.tensorflow.org/programmers_guide/datasets): >>> task_spec = TaskSpec() >>> # dataset is a :class:`tf.data.Dataset` with the raw data >>> dataset = create_dataset() >>> if task_spec is not None: >>> dataset = dataset.shard(task_spec.num_workers, task_spec.shard_index) >>> # shuffle or apply a map function to the new sharded dataset, for example: >>> dataset = dataset.shuffle(buffer_size=10000) >>> dataset = dataset.batch(batch_size) >>> dataset = dataset.repeat(num_epochs) >>> # create the iterator for the dataset and the input tensor >>> iterator = dataset.make_one_shot_iterator() >>> next_element = iterator.get_next() >>> with tf.device(task_spec.device_fn()): >>> # next_element is the input for the graph >>> tensors = create_graph(next_element) >>> with tl.DistributedSession(task_spec=task_spec, ... checkpoint_dir='/tmp/ckpt') as session: >>> while not session.should_stop(): >>> session.run(tensors) References ---------- - `MonitoredTrainingSession <https://www.tensorflow.org/api_docs/python/tf/train/MonitoredTrainingSession>`__
[ "Creates", "a", "distributed", "session", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/distributed.py#L398-L491
valid
tensorlayer/tensorlayer
tensorlayer/distributed.py
Trainer.validation_metrics
def validation_metrics(self): """A helper function to compute validation related metrics""" if (self._validation_iterator is None) or (self._validation_metrics is None): raise AttributeError('Validation is not setup.') n = 0.0 metric_sums = [0.0] * len(self._validation_metrics) self._sess.run(self._validation_iterator.initializer) while True: try: metrics = self._sess.run(self._validation_metrics) for i, m in enumerate(metrics): metric_sums[i] += m n += 1.0 except tf.errors.OutOfRangeError: break for i, m in enumerate(metric_sums): metric_sums[i] = metric_sums[i] / n return zip(self._validation_metrics, metric_sums)
python
def validation_metrics(self): """A helper function to compute validation related metrics""" if (self._validation_iterator is None) or (self._validation_metrics is None): raise AttributeError('Validation is not setup.') n = 0.0 metric_sums = [0.0] * len(self._validation_metrics) self._sess.run(self._validation_iterator.initializer) while True: try: metrics = self._sess.run(self._validation_metrics) for i, m in enumerate(metrics): metric_sums[i] += m n += 1.0 except tf.errors.OutOfRangeError: break for i, m in enumerate(metric_sums): metric_sums[i] = metric_sums[i] / n return zip(self._validation_metrics, metric_sums)
[ "def", "validation_metrics", "(", "self", ")", ":", "if", "(", "self", ".", "_validation_iterator", "is", "None", ")", "or", "(", "self", ".", "_validation_metrics", "is", "None", ")", ":", "raise", "AttributeError", "(", "'Validation is not setup.'", ")", "n", "=", "0.0", "metric_sums", "=", "[", "0.0", "]", "*", "len", "(", "self", ".", "_validation_metrics", ")", "self", ".", "_sess", ".", "run", "(", "self", ".", "_validation_iterator", ".", "initializer", ")", "while", "True", ":", "try", ":", "metrics", "=", "self", ".", "_sess", ".", "run", "(", "self", ".", "_validation_metrics", ")", "for", "i", ",", "m", "in", "enumerate", "(", "metrics", ")", ":", "metric_sums", "[", "i", "]", "+=", "m", "n", "+=", "1.0", "except", "tf", ".", "errors", ".", "OutOfRangeError", ":", "break", "for", "i", ",", "m", "in", "enumerate", "(", "metric_sums", ")", ":", "metric_sums", "[", "i", "]", "=", "metric_sums", "[", "i", "]", "/", "n", "return", "zip", "(", "self", ".", "_validation_metrics", ",", "metric_sums", ")" ]
A helper function to compute validation related metrics
[ "A", "helper", "function", "to", "compute", "validation", "related", "metrics" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/distributed.py#L187-L206
valid
tensorlayer/tensorlayer
tensorlayer/distributed.py
Trainer.train_and_validate_to_end
def train_and_validate_to_end(self, validate_step_size=50): """A helper function that shows how to train and validate a model at the same time. Parameters ---------- validate_step_size : int Validate the training network every N steps. """ while not self._sess.should_stop(): self.train_on_batch() # Run a training step synchronously. if self.global_step % validate_step_size == 0: # logging.info("Average loss for validation dataset: %s" % self.get_validation_metrics()) log_str = 'step: %d, ' % self.global_step for n, m in self.validation_metrics: log_str += '%s: %f, ' % (n.name, m) logging.info(log_str)
python
def train_and_validate_to_end(self, validate_step_size=50): """A helper function that shows how to train and validate a model at the same time. Parameters ---------- validate_step_size : int Validate the training network every N steps. """ while not self._sess.should_stop(): self.train_on_batch() # Run a training step synchronously. if self.global_step % validate_step_size == 0: # logging.info("Average loss for validation dataset: %s" % self.get_validation_metrics()) log_str = 'step: %d, ' % self.global_step for n, m in self.validation_metrics: log_str += '%s: %f, ' % (n.name, m) logging.info(log_str)
[ "def", "train_and_validate_to_end", "(", "self", ",", "validate_step_size", "=", "50", ")", ":", "while", "not", "self", ".", "_sess", ".", "should_stop", "(", ")", ":", "self", ".", "train_on_batch", "(", ")", "# Run a training step synchronously.", "if", "self", ".", "global_step", "%", "validate_step_size", "==", "0", ":", "# logging.info(\"Average loss for validation dataset: %s\" % self.get_validation_metrics())", "log_str", "=", "'step: %d, '", "%", "self", ".", "global_step", "for", "n", ",", "m", "in", "self", ".", "validation_metrics", ":", "log_str", "+=", "'%s: %f, '", "%", "(", "n", ".", "name", ",", "m", ")", "logging", ".", "info", "(", "log_str", ")" ]
A helper function that shows how to train and validate a model at the same time. Parameters ---------- validate_step_size : int Validate the training network every N steps.
[ "A", "helper", "function", "that", "shows", "how", "to", "train", "and", "validate", "a", "model", "at", "the", "same", "time", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/distributed.py#L212-L228
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
_load_mnist_dataset
def _load_mnist_dataset(shape, path, name='mnist', url='http://yann.lecun.com/exdb/mnist/'): """A generic function to load mnist-like dataset. Parameters: ---------- shape : tuple The shape of digit images. path : str The path that the data is downloaded to. name : str The dataset name you want to use(the default is 'mnist'). url : str The url of dataset(the default is 'http://yann.lecun.com/exdb/mnist/'). """ path = os.path.join(path, name) # Define functions for loading mnist-like data's images and labels. # For convenience, they also download the requested files if needed. def load_mnist_images(path, filename): filepath = maybe_download_and_extract(filename, path, url) logging.info(filepath) # Read the inputs in Yann LeCun's binary format. with gzip.open(filepath, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=16) # The inputs are vectors now, we reshape them to monochrome 2D images, # following the shape convention: (examples, channels, rows, columns) data = data.reshape(shape) # The inputs come as bytes, we convert them to float32 in range [0,1]. # (Actually to range [0, 255/256], for compatibility to the version # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.) return data / np.float32(256) def load_mnist_labels(path, filename): filepath = maybe_download_and_extract(filename, path, url) # Read the labels in Yann LeCun's binary format. with gzip.open(filepath, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=8) # The labels are vectors of integers now, that's exactly what we want. return data # Download and read the training and test set images and labels. logging.info("Load or Download {0} > {1}".format(name.upper(), path)) X_train = load_mnist_images(path, 'train-images-idx3-ubyte.gz') y_train = load_mnist_labels(path, 'train-labels-idx1-ubyte.gz') X_test = load_mnist_images(path, 't10k-images-idx3-ubyte.gz') y_test = load_mnist_labels(path, 't10k-labels-idx1-ubyte.gz') # We reserve the last 10000 training examples for validation. X_train, X_val = X_train[:-10000], X_train[-10000:] y_train, y_val = y_train[:-10000], y_train[-10000:] # We just return all the arrays in order, as expected in main(). # (It doesn't matter how we do this as long as we can read them again.) X_train = np.asarray(X_train, dtype=np.float32) y_train = np.asarray(y_train, dtype=np.int32) X_val = np.asarray(X_val, dtype=np.float32) y_val = np.asarray(y_val, dtype=np.int32) X_test = np.asarray(X_test, dtype=np.float32) y_test = np.asarray(y_test, dtype=np.int32) return X_train, y_train, X_val, y_val, X_test, y_test
python
def _load_mnist_dataset(shape, path, name='mnist', url='http://yann.lecun.com/exdb/mnist/'): """A generic function to load mnist-like dataset. Parameters: ---------- shape : tuple The shape of digit images. path : str The path that the data is downloaded to. name : str The dataset name you want to use(the default is 'mnist'). url : str The url of dataset(the default is 'http://yann.lecun.com/exdb/mnist/'). """ path = os.path.join(path, name) # Define functions for loading mnist-like data's images and labels. # For convenience, they also download the requested files if needed. def load_mnist_images(path, filename): filepath = maybe_download_and_extract(filename, path, url) logging.info(filepath) # Read the inputs in Yann LeCun's binary format. with gzip.open(filepath, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=16) # The inputs are vectors now, we reshape them to monochrome 2D images, # following the shape convention: (examples, channels, rows, columns) data = data.reshape(shape) # The inputs come as bytes, we convert them to float32 in range [0,1]. # (Actually to range [0, 255/256], for compatibility to the version # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.) return data / np.float32(256) def load_mnist_labels(path, filename): filepath = maybe_download_and_extract(filename, path, url) # Read the labels in Yann LeCun's binary format. with gzip.open(filepath, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=8) # The labels are vectors of integers now, that's exactly what we want. return data # Download and read the training and test set images and labels. logging.info("Load or Download {0} > {1}".format(name.upper(), path)) X_train = load_mnist_images(path, 'train-images-idx3-ubyte.gz') y_train = load_mnist_labels(path, 'train-labels-idx1-ubyte.gz') X_test = load_mnist_images(path, 't10k-images-idx3-ubyte.gz') y_test = load_mnist_labels(path, 't10k-labels-idx1-ubyte.gz') # We reserve the last 10000 training examples for validation. X_train, X_val = X_train[:-10000], X_train[-10000:] y_train, y_val = y_train[:-10000], y_train[-10000:] # We just return all the arrays in order, as expected in main(). # (It doesn't matter how we do this as long as we can read them again.) X_train = np.asarray(X_train, dtype=np.float32) y_train = np.asarray(y_train, dtype=np.int32) X_val = np.asarray(X_val, dtype=np.float32) y_val = np.asarray(y_val, dtype=np.int32) X_test = np.asarray(X_test, dtype=np.float32) y_test = np.asarray(y_test, dtype=np.int32) return X_train, y_train, X_val, y_val, X_test, y_test
[ "def", "_load_mnist_dataset", "(", "shape", ",", "path", ",", "name", "=", "'mnist'", ",", "url", "=", "'http://yann.lecun.com/exdb/mnist/'", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "name", ")", "# Define functions for loading mnist-like data's images and labels.", "# For convenience, they also download the requested files if needed.", "def", "load_mnist_images", "(", "path", ",", "filename", ")", ":", "filepath", "=", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ")", "logging", ".", "info", "(", "filepath", ")", "# Read the inputs in Yann LeCun's binary format.", "with", "gzip", ".", "open", "(", "filepath", ",", "'rb'", ")", "as", "f", ":", "data", "=", "np", ".", "frombuffer", "(", "f", ".", "read", "(", ")", ",", "np", ".", "uint8", ",", "offset", "=", "16", ")", "# The inputs are vectors now, we reshape them to monochrome 2D images,", "# following the shape convention: (examples, channels, rows, columns)", "data", "=", "data", ".", "reshape", "(", "shape", ")", "# The inputs come as bytes, we convert them to float32 in range [0,1].", "# (Actually to range [0, 255/256], for compatibility to the version", "# provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)", "return", "data", "/", "np", ".", "float32", "(", "256", ")", "def", "load_mnist_labels", "(", "path", ",", "filename", ")", ":", "filepath", "=", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ")", "# Read the labels in Yann LeCun's binary format.", "with", "gzip", ".", "open", "(", "filepath", ",", "'rb'", ")", "as", "f", ":", "data", "=", "np", ".", "frombuffer", "(", "f", ".", "read", "(", ")", ",", "np", ".", "uint8", ",", "offset", "=", "8", ")", "# The labels are vectors of integers now, that's exactly what we want.", "return", "data", "# Download and read the training and test set images and labels.", "logging", ".", "info", "(", "\"Load or Download {0} > {1}\"", ".", "format", "(", "name", ".", "upper", "(", ")", ",", "path", ")", ")", "X_train", "=", "load_mnist_images", "(", "path", ",", "'train-images-idx3-ubyte.gz'", ")", "y_train", "=", "load_mnist_labels", "(", "path", ",", "'train-labels-idx1-ubyte.gz'", ")", "X_test", "=", "load_mnist_images", "(", "path", ",", "'t10k-images-idx3-ubyte.gz'", ")", "y_test", "=", "load_mnist_labels", "(", "path", ",", "'t10k-labels-idx1-ubyte.gz'", ")", "# We reserve the last 10000 training examples for validation.", "X_train", ",", "X_val", "=", "X_train", "[", ":", "-", "10000", "]", ",", "X_train", "[", "-", "10000", ":", "]", "y_train", ",", "y_val", "=", "y_train", "[", ":", "-", "10000", "]", ",", "y_train", "[", "-", "10000", ":", "]", "# We just return all the arrays in order, as expected in main().", "# (It doesn't matter how we do this as long as we can read them again.)", "X_train", "=", "np", ".", "asarray", "(", "X_train", ",", "dtype", "=", "np", ".", "float32", ")", "y_train", "=", "np", ".", "asarray", "(", "y_train", ",", "dtype", "=", "np", ".", "int32", ")", "X_val", "=", "np", ".", "asarray", "(", "X_val", ",", "dtype", "=", "np", ".", "float32", ")", "y_val", "=", "np", ".", "asarray", "(", "y_val", ",", "dtype", "=", "np", ".", "int32", ")", "X_test", "=", "np", ".", "asarray", "(", "X_test", ",", "dtype", "=", "np", ".", "float32", ")", "y_test", "=", "np", ".", "asarray", "(", "y_test", ",", "dtype", "=", "np", ".", "int32", ")", "return", "X_train", ",", "y_train", ",", "X_val", ",", "y_val", ",", "X_test", ",", "y_test" ]
A generic function to load mnist-like dataset. Parameters: ---------- shape : tuple The shape of digit images. path : str The path that the data is downloaded to. name : str The dataset name you want to use(the default is 'mnist'). url : str The url of dataset(the default is 'http://yann.lecun.com/exdb/mnist/').
[ "A", "generic", "function", "to", "load", "mnist", "-", "like", "dataset", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L135-L195
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_cifar10_dataset
def load_cifar10_dataset(shape=(-1, 32, 32, 3), path='data', plotable=False): """Load CIFAR-10 dataset. It consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. Parameters ---------- shape : tupe The shape of digit images e.g. (-1, 3, 32, 32) and (-1, 32, 32, 3). path : str The path that the data is downloaded to, defaults is ``data/cifar10/``. plotable : boolean Whether to plot some image examples, False as default. Examples -------- >>> X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3)) References ---------- - `CIFAR website <https://www.cs.toronto.edu/~kriz/cifar.html>`__ - `Data download link <https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz>`__ - `<https://teratail.com/questions/28932>`__ """ path = os.path.join(path, 'cifar10') logging.info("Load or Download cifar10 > {}".format(path)) # Helper function to unpickle the data def unpickle(file): fp = open(file, 'rb') if sys.version_info.major == 2: data = pickle.load(fp) elif sys.version_info.major == 3: data = pickle.load(fp, encoding='latin-1') fp.close() return data filename = 'cifar-10-python.tar.gz' url = 'https://www.cs.toronto.edu/~kriz/' # Download and uncompress file maybe_download_and_extract(filename, path, url, extract=True) # Unpickle file and fill in data X_train = None y_train = [] for i in range(1, 6): data_dic = unpickle(os.path.join(path, 'cifar-10-batches-py/', "data_batch_{}".format(i))) if i == 1: X_train = data_dic['data'] else: X_train = np.vstack((X_train, data_dic['data'])) y_train += data_dic['labels'] test_data_dic = unpickle(os.path.join(path, 'cifar-10-batches-py/', "test_batch")) X_test = test_data_dic['data'] y_test = np.array(test_data_dic['labels']) if shape == (-1, 3, 32, 32): X_test = X_test.reshape(shape) X_train = X_train.reshape(shape) elif shape == (-1, 32, 32, 3): X_test = X_test.reshape(shape, order='F') X_train = X_train.reshape(shape, order='F') X_test = np.transpose(X_test, (0, 2, 1, 3)) X_train = np.transpose(X_train, (0, 2, 1, 3)) else: X_test = X_test.reshape(shape) X_train = X_train.reshape(shape) y_train = np.array(y_train) if plotable: logging.info('\nCIFAR-10') fig = plt.figure(1) logging.info('Shape of a training image: X_train[0] %s' % X_train[0].shape) plt.ion() # interactive mode count = 1 for _ in range(10): # each row for _ in range(10): # each column _ = fig.add_subplot(10, 10, count) if shape == (-1, 3, 32, 32): # plt.imshow(X_train[count-1], interpolation='nearest') plt.imshow(np.transpose(X_train[count - 1], (1, 2, 0)), interpolation='nearest') # plt.imshow(np.transpose(X_train[count-1], (2, 1, 0)), interpolation='nearest') elif shape == (-1, 32, 32, 3): plt.imshow(X_train[count - 1], interpolation='nearest') # plt.imshow(np.transpose(X_train[count-1], (1, 0, 2)), interpolation='nearest') else: raise Exception("Do not support the given 'shape' to plot the image examples") plt.gca().xaxis.set_major_locator(plt.NullLocator()) # 不显示刻度(tick) plt.gca().yaxis.set_major_locator(plt.NullLocator()) count = count + 1 plt.draw() # interactive mode plt.pause(3) # interactive mode logging.info("X_train: %s" % X_train.shape) logging.info("y_train: %s" % y_train.shape) logging.info("X_test: %s" % X_test.shape) logging.info("y_test: %s" % y_test.shape) X_train = np.asarray(X_train, dtype=np.float32) X_test = np.asarray(X_test, dtype=np.float32) y_train = np.asarray(y_train, dtype=np.int32) y_test = np.asarray(y_test, dtype=np.int32) return X_train, y_train, X_test, y_test
python
def load_cifar10_dataset(shape=(-1, 32, 32, 3), path='data', plotable=False): """Load CIFAR-10 dataset. It consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. Parameters ---------- shape : tupe The shape of digit images e.g. (-1, 3, 32, 32) and (-1, 32, 32, 3). path : str The path that the data is downloaded to, defaults is ``data/cifar10/``. plotable : boolean Whether to plot some image examples, False as default. Examples -------- >>> X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3)) References ---------- - `CIFAR website <https://www.cs.toronto.edu/~kriz/cifar.html>`__ - `Data download link <https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz>`__ - `<https://teratail.com/questions/28932>`__ """ path = os.path.join(path, 'cifar10') logging.info("Load or Download cifar10 > {}".format(path)) # Helper function to unpickle the data def unpickle(file): fp = open(file, 'rb') if sys.version_info.major == 2: data = pickle.load(fp) elif sys.version_info.major == 3: data = pickle.load(fp, encoding='latin-1') fp.close() return data filename = 'cifar-10-python.tar.gz' url = 'https://www.cs.toronto.edu/~kriz/' # Download and uncompress file maybe_download_and_extract(filename, path, url, extract=True) # Unpickle file and fill in data X_train = None y_train = [] for i in range(1, 6): data_dic = unpickle(os.path.join(path, 'cifar-10-batches-py/', "data_batch_{}".format(i))) if i == 1: X_train = data_dic['data'] else: X_train = np.vstack((X_train, data_dic['data'])) y_train += data_dic['labels'] test_data_dic = unpickle(os.path.join(path, 'cifar-10-batches-py/', "test_batch")) X_test = test_data_dic['data'] y_test = np.array(test_data_dic['labels']) if shape == (-1, 3, 32, 32): X_test = X_test.reshape(shape) X_train = X_train.reshape(shape) elif shape == (-1, 32, 32, 3): X_test = X_test.reshape(shape, order='F') X_train = X_train.reshape(shape, order='F') X_test = np.transpose(X_test, (0, 2, 1, 3)) X_train = np.transpose(X_train, (0, 2, 1, 3)) else: X_test = X_test.reshape(shape) X_train = X_train.reshape(shape) y_train = np.array(y_train) if plotable: logging.info('\nCIFAR-10') fig = plt.figure(1) logging.info('Shape of a training image: X_train[0] %s' % X_train[0].shape) plt.ion() # interactive mode count = 1 for _ in range(10): # each row for _ in range(10): # each column _ = fig.add_subplot(10, 10, count) if shape == (-1, 3, 32, 32): # plt.imshow(X_train[count-1], interpolation='nearest') plt.imshow(np.transpose(X_train[count - 1], (1, 2, 0)), interpolation='nearest') # plt.imshow(np.transpose(X_train[count-1], (2, 1, 0)), interpolation='nearest') elif shape == (-1, 32, 32, 3): plt.imshow(X_train[count - 1], interpolation='nearest') # plt.imshow(np.transpose(X_train[count-1], (1, 0, 2)), interpolation='nearest') else: raise Exception("Do not support the given 'shape' to plot the image examples") plt.gca().xaxis.set_major_locator(plt.NullLocator()) # 不显示刻度(tick) plt.gca().yaxis.set_major_locator(plt.NullLocator()) count = count + 1 plt.draw() # interactive mode plt.pause(3) # interactive mode logging.info("X_train: %s" % X_train.shape) logging.info("y_train: %s" % y_train.shape) logging.info("X_test: %s" % X_test.shape) logging.info("y_test: %s" % y_test.shape) X_train = np.asarray(X_train, dtype=np.float32) X_test = np.asarray(X_test, dtype=np.float32) y_train = np.asarray(y_train, dtype=np.int32) y_test = np.asarray(y_test, dtype=np.int32) return X_train, y_train, X_test, y_test
[ "def", "load_cifar10_dataset", "(", "shape", "=", "(", "-", "1", ",", "32", ",", "32", ",", "3", ")", ",", "path", "=", "'data'", ",", "plotable", "=", "False", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'cifar10'", ")", "logging", ".", "info", "(", "\"Load or Download cifar10 > {}\"", ".", "format", "(", "path", ")", ")", "# Helper function to unpickle the data", "def", "unpickle", "(", "file", ")", ":", "fp", "=", "open", "(", "file", ",", "'rb'", ")", "if", "sys", ".", "version_info", ".", "major", "==", "2", ":", "data", "=", "pickle", ".", "load", "(", "fp", ")", "elif", "sys", ".", "version_info", ".", "major", "==", "3", ":", "data", "=", "pickle", ".", "load", "(", "fp", ",", "encoding", "=", "'latin-1'", ")", "fp", ".", "close", "(", ")", "return", "data", "filename", "=", "'cifar-10-python.tar.gz'", "url", "=", "'https://www.cs.toronto.edu/~kriz/'", "# Download and uncompress file", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ",", "extract", "=", "True", ")", "# Unpickle file and fill in data", "X_train", "=", "None", "y_train", "=", "[", "]", "for", "i", "in", "range", "(", "1", ",", "6", ")", ":", "data_dic", "=", "unpickle", "(", "os", ".", "path", ".", "join", "(", "path", ",", "'cifar-10-batches-py/'", ",", "\"data_batch_{}\"", ".", "format", "(", "i", ")", ")", ")", "if", "i", "==", "1", ":", "X_train", "=", "data_dic", "[", "'data'", "]", "else", ":", "X_train", "=", "np", ".", "vstack", "(", "(", "X_train", ",", "data_dic", "[", "'data'", "]", ")", ")", "y_train", "+=", "data_dic", "[", "'labels'", "]", "test_data_dic", "=", "unpickle", "(", "os", ".", "path", ".", "join", "(", "path", ",", "'cifar-10-batches-py/'", ",", "\"test_batch\"", ")", ")", "X_test", "=", "test_data_dic", "[", "'data'", "]", "y_test", "=", "np", ".", "array", "(", "test_data_dic", "[", "'labels'", "]", ")", "if", "shape", "==", "(", "-", "1", ",", "3", ",", "32", ",", "32", ")", ":", "X_test", "=", "X_test", ".", "reshape", "(", "shape", ")", "X_train", "=", "X_train", ".", "reshape", "(", "shape", ")", "elif", "shape", "==", "(", "-", "1", ",", "32", ",", "32", ",", "3", ")", ":", "X_test", "=", "X_test", ".", "reshape", "(", "shape", ",", "order", "=", "'F'", ")", "X_train", "=", "X_train", ".", "reshape", "(", "shape", ",", "order", "=", "'F'", ")", "X_test", "=", "np", ".", "transpose", "(", "X_test", ",", "(", "0", ",", "2", ",", "1", ",", "3", ")", ")", "X_train", "=", "np", ".", "transpose", "(", "X_train", ",", "(", "0", ",", "2", ",", "1", ",", "3", ")", ")", "else", ":", "X_test", "=", "X_test", ".", "reshape", "(", "shape", ")", "X_train", "=", "X_train", ".", "reshape", "(", "shape", ")", "y_train", "=", "np", ".", "array", "(", "y_train", ")", "if", "plotable", ":", "logging", ".", "info", "(", "'\\nCIFAR-10'", ")", "fig", "=", "plt", ".", "figure", "(", "1", ")", "logging", ".", "info", "(", "'Shape of a training image: X_train[0] %s'", "%", "X_train", "[", "0", "]", ".", "shape", ")", "plt", ".", "ion", "(", ")", "# interactive mode", "count", "=", "1", "for", "_", "in", "range", "(", "10", ")", ":", "# each row", "for", "_", "in", "range", "(", "10", ")", ":", "# each column", "_", "=", "fig", ".", "add_subplot", "(", "10", ",", "10", ",", "count", ")", "if", "shape", "==", "(", "-", "1", ",", "3", ",", "32", ",", "32", ")", ":", "# plt.imshow(X_train[count-1], interpolation='nearest')", "plt", ".", "imshow", "(", "np", ".", "transpose", "(", "X_train", "[", "count", "-", "1", "]", ",", "(", "1", ",", "2", ",", "0", ")", ")", ",", "interpolation", "=", "'nearest'", ")", "# plt.imshow(np.transpose(X_train[count-1], (2, 1, 0)), interpolation='nearest')", "elif", "shape", "==", "(", "-", "1", ",", "32", ",", "32", ",", "3", ")", ":", "plt", ".", "imshow", "(", "X_train", "[", "count", "-", "1", "]", ",", "interpolation", "=", "'nearest'", ")", "# plt.imshow(np.transpose(X_train[count-1], (1, 0, 2)), interpolation='nearest')", "else", ":", "raise", "Exception", "(", "\"Do not support the given 'shape' to plot the image examples\"", ")", "plt", ".", "gca", "(", ")", ".", "xaxis", ".", "set_major_locator", "(", "plt", ".", "NullLocator", "(", ")", ")", "# 不显示刻度(tick)", "plt", ".", "gca", "(", ")", ".", "yaxis", ".", "set_major_locator", "(", "plt", ".", "NullLocator", "(", ")", ")", "count", "=", "count", "+", "1", "plt", ".", "draw", "(", ")", "# interactive mode", "plt", ".", "pause", "(", "3", ")", "# interactive mode", "logging", ".", "info", "(", "\"X_train: %s\"", "%", "X_train", ".", "shape", ")", "logging", ".", "info", "(", "\"y_train: %s\"", "%", "y_train", ".", "shape", ")", "logging", ".", "info", "(", "\"X_test: %s\"", "%", "X_test", ".", "shape", ")", "logging", ".", "info", "(", "\"y_test: %s\"", "%", "y_test", ".", "shape", ")", "X_train", "=", "np", ".", "asarray", "(", "X_train", ",", "dtype", "=", "np", ".", "float32", ")", "X_test", "=", "np", ".", "asarray", "(", "X_test", ",", "dtype", "=", "np", ".", "float32", ")", "y_train", "=", "np", ".", "asarray", "(", "y_train", ",", "dtype", "=", "np", ".", "int32", ")", "y_test", "=", "np", ".", "asarray", "(", "y_test", ",", "dtype", "=", "np", ".", "int32", ")", "return", "X_train", ",", "y_train", ",", "X_test", ",", "y_test" ]
Load CIFAR-10 dataset. It consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. Parameters ---------- shape : tupe The shape of digit images e.g. (-1, 3, 32, 32) and (-1, 32, 32, 3). path : str The path that the data is downloaded to, defaults is ``data/cifar10/``. plotable : boolean Whether to plot some image examples, False as default. Examples -------- >>> X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3)) References ---------- - `CIFAR website <https://www.cs.toronto.edu/~kriz/cifar.html>`__ - `Data download link <https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz>`__ - `<https://teratail.com/questions/28932>`__
[ "Load", "CIFAR", "-", "10", "dataset", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L198-L313
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_cropped_svhn
def load_cropped_svhn(path='data', include_extra=True): """Load Cropped SVHN. The Cropped Street View House Numbers (SVHN) Dataset contains 32x32x3 RGB images. Digit '1' has label 1, '9' has label 9 and '0' has label 0 (the original dataset uses 10 to represent '0'), see `ufldl website <http://ufldl.stanford.edu/housenumbers/>`__. Parameters ---------- path : str The path that the data is downloaded to. include_extra : boolean If True (default), add extra images to the training set. Returns ------- X_train, y_train, X_test, y_test: tuple Return splitted training/test set respectively. Examples --------- >>> X_train, y_train, X_test, y_test = tl.files.load_cropped_svhn(include_extra=False) >>> tl.vis.save_images(X_train[0:100], [10, 10], 'svhn.png') """ start_time = time.time() path = os.path.join(path, 'cropped_svhn') logging.info("Load or Download Cropped SVHN > {} | include extra images: {}".format(path, include_extra)) url = "http://ufldl.stanford.edu/housenumbers/" np_file = os.path.join(path, "train_32x32.npz") if file_exists(np_file) is False: filename = "train_32x32.mat" filepath = maybe_download_and_extract(filename, path, url) mat = sio.loadmat(filepath) X_train = mat['X'] / 255.0 # to [0, 1] X_train = np.transpose(X_train, (3, 0, 1, 2)) y_train = np.squeeze(mat['y'], axis=1) y_train[y_train == 10] = 0 # replace 10 to 0 np.savez(np_file, X=X_train, y=y_train) del_file(filepath) else: v = np.load(np_file) X_train = v['X'] y_train = v['y'] logging.info(" n_train: {}".format(len(y_train))) np_file = os.path.join(path, "test_32x32.npz") if file_exists(np_file) is False: filename = "test_32x32.mat" filepath = maybe_download_and_extract(filename, path, url) mat = sio.loadmat(filepath) X_test = mat['X'] / 255.0 X_test = np.transpose(X_test, (3, 0, 1, 2)) y_test = np.squeeze(mat['y'], axis=1) y_test[y_test == 10] = 0 np.savez(np_file, X=X_test, y=y_test) del_file(filepath) else: v = np.load(np_file) X_test = v['X'] y_test = v['y'] logging.info(" n_test: {}".format(len(y_test))) if include_extra: logging.info(" getting extra 531131 images, please wait ...") np_file = os.path.join(path, "extra_32x32.npz") if file_exists(np_file) is False: logging.info(" the first time to load extra images will take long time to convert the file format ...") filename = "extra_32x32.mat" filepath = maybe_download_and_extract(filename, path, url) mat = sio.loadmat(filepath) X_extra = mat['X'] / 255.0 X_extra = np.transpose(X_extra, (3, 0, 1, 2)) y_extra = np.squeeze(mat['y'], axis=1) y_extra[y_extra == 10] = 0 np.savez(np_file, X=X_extra, y=y_extra) del_file(filepath) else: v = np.load(np_file) X_extra = v['X'] y_extra = v['y'] # print(X_train.shape, X_extra.shape) logging.info(" adding n_extra {} to n_train {}".format(len(y_extra), len(y_train))) t = time.time() X_train = np.concatenate((X_train, X_extra), 0) y_train = np.concatenate((y_train, y_extra), 0) # X_train = np.append(X_train, X_extra, axis=0) # y_train = np.append(y_train, y_extra, axis=0) logging.info(" added n_extra {} to n_train {} took {}s".format(len(y_extra), len(y_train), time.time() - t)) else: logging.info(" no extra images are included") logging.info(" image size: %s n_train: %d n_test: %d" % (str(X_train.shape[1:4]), len(y_train), len(y_test))) logging.info(" took: {}s".format(int(time.time() - start_time))) return X_train, y_train, X_test, y_test
python
def load_cropped_svhn(path='data', include_extra=True): """Load Cropped SVHN. The Cropped Street View House Numbers (SVHN) Dataset contains 32x32x3 RGB images. Digit '1' has label 1, '9' has label 9 and '0' has label 0 (the original dataset uses 10 to represent '0'), see `ufldl website <http://ufldl.stanford.edu/housenumbers/>`__. Parameters ---------- path : str The path that the data is downloaded to. include_extra : boolean If True (default), add extra images to the training set. Returns ------- X_train, y_train, X_test, y_test: tuple Return splitted training/test set respectively. Examples --------- >>> X_train, y_train, X_test, y_test = tl.files.load_cropped_svhn(include_extra=False) >>> tl.vis.save_images(X_train[0:100], [10, 10], 'svhn.png') """ start_time = time.time() path = os.path.join(path, 'cropped_svhn') logging.info("Load or Download Cropped SVHN > {} | include extra images: {}".format(path, include_extra)) url = "http://ufldl.stanford.edu/housenumbers/" np_file = os.path.join(path, "train_32x32.npz") if file_exists(np_file) is False: filename = "train_32x32.mat" filepath = maybe_download_and_extract(filename, path, url) mat = sio.loadmat(filepath) X_train = mat['X'] / 255.0 # to [0, 1] X_train = np.transpose(X_train, (3, 0, 1, 2)) y_train = np.squeeze(mat['y'], axis=1) y_train[y_train == 10] = 0 # replace 10 to 0 np.savez(np_file, X=X_train, y=y_train) del_file(filepath) else: v = np.load(np_file) X_train = v['X'] y_train = v['y'] logging.info(" n_train: {}".format(len(y_train))) np_file = os.path.join(path, "test_32x32.npz") if file_exists(np_file) is False: filename = "test_32x32.mat" filepath = maybe_download_and_extract(filename, path, url) mat = sio.loadmat(filepath) X_test = mat['X'] / 255.0 X_test = np.transpose(X_test, (3, 0, 1, 2)) y_test = np.squeeze(mat['y'], axis=1) y_test[y_test == 10] = 0 np.savez(np_file, X=X_test, y=y_test) del_file(filepath) else: v = np.load(np_file) X_test = v['X'] y_test = v['y'] logging.info(" n_test: {}".format(len(y_test))) if include_extra: logging.info(" getting extra 531131 images, please wait ...") np_file = os.path.join(path, "extra_32x32.npz") if file_exists(np_file) is False: logging.info(" the first time to load extra images will take long time to convert the file format ...") filename = "extra_32x32.mat" filepath = maybe_download_and_extract(filename, path, url) mat = sio.loadmat(filepath) X_extra = mat['X'] / 255.0 X_extra = np.transpose(X_extra, (3, 0, 1, 2)) y_extra = np.squeeze(mat['y'], axis=1) y_extra[y_extra == 10] = 0 np.savez(np_file, X=X_extra, y=y_extra) del_file(filepath) else: v = np.load(np_file) X_extra = v['X'] y_extra = v['y'] # print(X_train.shape, X_extra.shape) logging.info(" adding n_extra {} to n_train {}".format(len(y_extra), len(y_train))) t = time.time() X_train = np.concatenate((X_train, X_extra), 0) y_train = np.concatenate((y_train, y_extra), 0) # X_train = np.append(X_train, X_extra, axis=0) # y_train = np.append(y_train, y_extra, axis=0) logging.info(" added n_extra {} to n_train {} took {}s".format(len(y_extra), len(y_train), time.time() - t)) else: logging.info(" no extra images are included") logging.info(" image size: %s n_train: %d n_test: %d" % (str(X_train.shape[1:4]), len(y_train), len(y_test))) logging.info(" took: {}s".format(int(time.time() - start_time))) return X_train, y_train, X_test, y_test
[ "def", "load_cropped_svhn", "(", "path", "=", "'data'", ",", "include_extra", "=", "True", ")", ":", "start_time", "=", "time", ".", "time", "(", ")", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'cropped_svhn'", ")", "logging", ".", "info", "(", "\"Load or Download Cropped SVHN > {} | include extra images: {}\"", ".", "format", "(", "path", ",", "include_extra", ")", ")", "url", "=", "\"http://ufldl.stanford.edu/housenumbers/\"", "np_file", "=", "os", ".", "path", ".", "join", "(", "path", ",", "\"train_32x32.npz\"", ")", "if", "file_exists", "(", "np_file", ")", "is", "False", ":", "filename", "=", "\"train_32x32.mat\"", "filepath", "=", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ")", "mat", "=", "sio", ".", "loadmat", "(", "filepath", ")", "X_train", "=", "mat", "[", "'X'", "]", "/", "255.0", "# to [0, 1]", "X_train", "=", "np", ".", "transpose", "(", "X_train", ",", "(", "3", ",", "0", ",", "1", ",", "2", ")", ")", "y_train", "=", "np", ".", "squeeze", "(", "mat", "[", "'y'", "]", ",", "axis", "=", "1", ")", "y_train", "[", "y_train", "==", "10", "]", "=", "0", "# replace 10 to 0", "np", ".", "savez", "(", "np_file", ",", "X", "=", "X_train", ",", "y", "=", "y_train", ")", "del_file", "(", "filepath", ")", "else", ":", "v", "=", "np", ".", "load", "(", "np_file", ")", "X_train", "=", "v", "[", "'X'", "]", "y_train", "=", "v", "[", "'y'", "]", "logging", ".", "info", "(", "\" n_train: {}\"", ".", "format", "(", "len", "(", "y_train", ")", ")", ")", "np_file", "=", "os", ".", "path", ".", "join", "(", "path", ",", "\"test_32x32.npz\"", ")", "if", "file_exists", "(", "np_file", ")", "is", "False", ":", "filename", "=", "\"test_32x32.mat\"", "filepath", "=", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ")", "mat", "=", "sio", ".", "loadmat", "(", "filepath", ")", "X_test", "=", "mat", "[", "'X'", "]", "/", "255.0", "X_test", "=", "np", ".", "transpose", "(", "X_test", ",", "(", "3", ",", "0", ",", "1", ",", "2", ")", ")", "y_test", "=", "np", ".", "squeeze", "(", "mat", "[", "'y'", "]", ",", "axis", "=", "1", ")", "y_test", "[", "y_test", "==", "10", "]", "=", "0", "np", ".", "savez", "(", "np_file", ",", "X", "=", "X_test", ",", "y", "=", "y_test", ")", "del_file", "(", "filepath", ")", "else", ":", "v", "=", "np", ".", "load", "(", "np_file", ")", "X_test", "=", "v", "[", "'X'", "]", "y_test", "=", "v", "[", "'y'", "]", "logging", ".", "info", "(", "\" n_test: {}\"", ".", "format", "(", "len", "(", "y_test", ")", ")", ")", "if", "include_extra", ":", "logging", ".", "info", "(", "\" getting extra 531131 images, please wait ...\"", ")", "np_file", "=", "os", ".", "path", ".", "join", "(", "path", ",", "\"extra_32x32.npz\"", ")", "if", "file_exists", "(", "np_file", ")", "is", "False", ":", "logging", ".", "info", "(", "\" the first time to load extra images will take long time to convert the file format ...\"", ")", "filename", "=", "\"extra_32x32.mat\"", "filepath", "=", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ")", "mat", "=", "sio", ".", "loadmat", "(", "filepath", ")", "X_extra", "=", "mat", "[", "'X'", "]", "/", "255.0", "X_extra", "=", "np", ".", "transpose", "(", "X_extra", ",", "(", "3", ",", "0", ",", "1", ",", "2", ")", ")", "y_extra", "=", "np", ".", "squeeze", "(", "mat", "[", "'y'", "]", ",", "axis", "=", "1", ")", "y_extra", "[", "y_extra", "==", "10", "]", "=", "0", "np", ".", "savez", "(", "np_file", ",", "X", "=", "X_extra", ",", "y", "=", "y_extra", ")", "del_file", "(", "filepath", ")", "else", ":", "v", "=", "np", ".", "load", "(", "np_file", ")", "X_extra", "=", "v", "[", "'X'", "]", "y_extra", "=", "v", "[", "'y'", "]", "# print(X_train.shape, X_extra.shape)", "logging", ".", "info", "(", "\" adding n_extra {} to n_train {}\"", ".", "format", "(", "len", "(", "y_extra", ")", ",", "len", "(", "y_train", ")", ")", ")", "t", "=", "time", ".", "time", "(", ")", "X_train", "=", "np", ".", "concatenate", "(", "(", "X_train", ",", "X_extra", ")", ",", "0", ")", "y_train", "=", "np", ".", "concatenate", "(", "(", "y_train", ",", "y_extra", ")", ",", "0", ")", "# X_train = np.append(X_train, X_extra, axis=0)", "# y_train = np.append(y_train, y_extra, axis=0)", "logging", ".", "info", "(", "\" added n_extra {} to n_train {} took {}s\"", ".", "format", "(", "len", "(", "y_extra", ")", ",", "len", "(", "y_train", ")", ",", "time", ".", "time", "(", ")", "-", "t", ")", ")", "else", ":", "logging", ".", "info", "(", "\" no extra images are included\"", ")", "logging", ".", "info", "(", "\" image size: %s n_train: %d n_test: %d\"", "%", "(", "str", "(", "X_train", ".", "shape", "[", "1", ":", "4", "]", ")", ",", "len", "(", "y_train", ")", ",", "len", "(", "y_test", ")", ")", ")", "logging", ".", "info", "(", "\" took: {}s\"", ".", "format", "(", "int", "(", "time", ".", "time", "(", ")", "-", "start_time", ")", ")", ")", "return", "X_train", ",", "y_train", ",", "X_test", ",", "y_test" ]
Load Cropped SVHN. The Cropped Street View House Numbers (SVHN) Dataset contains 32x32x3 RGB images. Digit '1' has label 1, '9' has label 9 and '0' has label 0 (the original dataset uses 10 to represent '0'), see `ufldl website <http://ufldl.stanford.edu/housenumbers/>`__. Parameters ---------- path : str The path that the data is downloaded to. include_extra : boolean If True (default), add extra images to the training set. Returns ------- X_train, y_train, X_test, y_test: tuple Return splitted training/test set respectively. Examples --------- >>> X_train, y_train, X_test, y_test = tl.files.load_cropped_svhn(include_extra=False) >>> tl.vis.save_images(X_train[0:100], [10, 10], 'svhn.png')
[ "Load", "Cropped", "SVHN", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L316-L410
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_ptb_dataset
def load_ptb_dataset(path='data'): """Load Penn TreeBank (PTB) dataset. It is used in many LANGUAGE MODELING papers, including "Empirical Evaluation and Combination of Advanced Language Modeling Techniques", "Recurrent Neural Network Regularization". It consists of 929k training words, 73k validation words, and 82k test words. It has 10k words in its vocabulary. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/ptb/``. Returns -------- train_data, valid_data, test_data : list of int The training, validating and testing data in integer format. vocab_size : int The vocabulary size. Examples -------- >>> train_data, valid_data, test_data, vocab_size = tl.files.load_ptb_dataset() References --------------- - ``tensorflow.models.rnn.ptb import reader`` - `Manual download <http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz>`__ Notes ------ - If you want to get the raw data, see the source code. """ path = os.path.join(path, 'ptb') logging.info("Load or Download Penn TreeBank (PTB) dataset > {}".format(path)) # Maybe dowload and uncompress tar, or load exsisting files filename = 'simple-examples.tgz' url = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/' maybe_download_and_extract(filename, path, url, extract=True) data_path = os.path.join(path, 'simple-examples', 'data') train_path = os.path.join(data_path, "ptb.train.txt") valid_path = os.path.join(data_path, "ptb.valid.txt") test_path = os.path.join(data_path, "ptb.test.txt") word_to_id = nlp.build_vocab(nlp.read_words(train_path)) train_data = nlp.words_to_word_ids(nlp.read_words(train_path), word_to_id) valid_data = nlp.words_to_word_ids(nlp.read_words(valid_path), word_to_id) test_data = nlp.words_to_word_ids(nlp.read_words(test_path), word_to_id) vocab_size = len(word_to_id) # logging.info(nlp.read_words(train_path)) # ... 'according', 'to', 'mr.', '<unk>', '<eos>'] # logging.info(train_data) # ... 214, 5, 23, 1, 2] # logging.info(word_to_id) # ... 'beyond': 1295, 'anti-nuclear': 9599, 'trouble': 1520, '<eos>': 2 ... } # logging.info(vocabulary) # 10000 # exit() return train_data, valid_data, test_data, vocab_size
python
def load_ptb_dataset(path='data'): """Load Penn TreeBank (PTB) dataset. It is used in many LANGUAGE MODELING papers, including "Empirical Evaluation and Combination of Advanced Language Modeling Techniques", "Recurrent Neural Network Regularization". It consists of 929k training words, 73k validation words, and 82k test words. It has 10k words in its vocabulary. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/ptb/``. Returns -------- train_data, valid_data, test_data : list of int The training, validating and testing data in integer format. vocab_size : int The vocabulary size. Examples -------- >>> train_data, valid_data, test_data, vocab_size = tl.files.load_ptb_dataset() References --------------- - ``tensorflow.models.rnn.ptb import reader`` - `Manual download <http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz>`__ Notes ------ - If you want to get the raw data, see the source code. """ path = os.path.join(path, 'ptb') logging.info("Load or Download Penn TreeBank (PTB) dataset > {}".format(path)) # Maybe dowload and uncompress tar, or load exsisting files filename = 'simple-examples.tgz' url = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/' maybe_download_and_extract(filename, path, url, extract=True) data_path = os.path.join(path, 'simple-examples', 'data') train_path = os.path.join(data_path, "ptb.train.txt") valid_path = os.path.join(data_path, "ptb.valid.txt") test_path = os.path.join(data_path, "ptb.test.txt") word_to_id = nlp.build_vocab(nlp.read_words(train_path)) train_data = nlp.words_to_word_ids(nlp.read_words(train_path), word_to_id) valid_data = nlp.words_to_word_ids(nlp.read_words(valid_path), word_to_id) test_data = nlp.words_to_word_ids(nlp.read_words(test_path), word_to_id) vocab_size = len(word_to_id) # logging.info(nlp.read_words(train_path)) # ... 'according', 'to', 'mr.', '<unk>', '<eos>'] # logging.info(train_data) # ... 214, 5, 23, 1, 2] # logging.info(word_to_id) # ... 'beyond': 1295, 'anti-nuclear': 9599, 'trouble': 1520, '<eos>': 2 ... } # logging.info(vocabulary) # 10000 # exit() return train_data, valid_data, test_data, vocab_size
[ "def", "load_ptb_dataset", "(", "path", "=", "'data'", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'ptb'", ")", "logging", ".", "info", "(", "\"Load or Download Penn TreeBank (PTB) dataset > {}\"", ".", "format", "(", "path", ")", ")", "# Maybe dowload and uncompress tar, or load exsisting files", "filename", "=", "'simple-examples.tgz'", "url", "=", "'http://www.fit.vutbr.cz/~imikolov/rnnlm/'", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ",", "extract", "=", "True", ")", "data_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'simple-examples'", ",", "'data'", ")", "train_path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "\"ptb.train.txt\"", ")", "valid_path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "\"ptb.valid.txt\"", ")", "test_path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "\"ptb.test.txt\"", ")", "word_to_id", "=", "nlp", ".", "build_vocab", "(", "nlp", ".", "read_words", "(", "train_path", ")", ")", "train_data", "=", "nlp", ".", "words_to_word_ids", "(", "nlp", ".", "read_words", "(", "train_path", ")", ",", "word_to_id", ")", "valid_data", "=", "nlp", ".", "words_to_word_ids", "(", "nlp", ".", "read_words", "(", "valid_path", ")", ",", "word_to_id", ")", "test_data", "=", "nlp", ".", "words_to_word_ids", "(", "nlp", ".", "read_words", "(", "test_path", ")", ",", "word_to_id", ")", "vocab_size", "=", "len", "(", "word_to_id", ")", "# logging.info(nlp.read_words(train_path)) # ... 'according', 'to', 'mr.', '<unk>', '<eos>']", "# logging.info(train_data) # ... 214, 5, 23, 1, 2]", "# logging.info(word_to_id) # ... 'beyond': 1295, 'anti-nuclear': 9599, 'trouble': 1520, '<eos>': 2 ... }", "# logging.info(vocabulary) # 10000", "# exit()", "return", "train_data", ",", "valid_data", ",", "test_data", ",", "vocab_size" ]
Load Penn TreeBank (PTB) dataset. It is used in many LANGUAGE MODELING papers, including "Empirical Evaluation and Combination of Advanced Language Modeling Techniques", "Recurrent Neural Network Regularization". It consists of 929k training words, 73k validation words, and 82k test words. It has 10k words in its vocabulary. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/ptb/``. Returns -------- train_data, valid_data, test_data : list of int The training, validating and testing data in integer format. vocab_size : int The vocabulary size. Examples -------- >>> train_data, valid_data, test_data, vocab_size = tl.files.load_ptb_dataset() References --------------- - ``tensorflow.models.rnn.ptb import reader`` - `Manual download <http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz>`__ Notes ------ - If you want to get the raw data, see the source code.
[ "Load", "Penn", "TreeBank", "(", "PTB", ")", "dataset", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L413-L473
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_matt_mahoney_text8_dataset
def load_matt_mahoney_text8_dataset(path='data'): """Load Matt Mahoney's dataset. Download a text file from Matt Mahoney's website if not present, and make sure it's the right size. Extract the first file enclosed in a zip file as a list of words. This dataset can be used for Word Embedding. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/mm_test8/``. Returns -------- list of str The raw text data e.g. [.... 'their', 'families', 'who', 'were', 'expelled', 'from', 'jerusalem', ...] Examples -------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> print('Data size', len(words)) """ path = os.path.join(path, 'mm_test8') logging.info("Load or Download matt_mahoney_text8 Dataset> {}".format(path)) filename = 'text8.zip' url = 'http://mattmahoney.net/dc/' maybe_download_and_extract(filename, path, url, expected_bytes=31344016) with zipfile.ZipFile(os.path.join(path, filename)) as f: word_list = f.read(f.namelist()[0]).split() for idx, _ in enumerate(word_list): word_list[idx] = word_list[idx].decode() return word_list
python
def load_matt_mahoney_text8_dataset(path='data'): """Load Matt Mahoney's dataset. Download a text file from Matt Mahoney's website if not present, and make sure it's the right size. Extract the first file enclosed in a zip file as a list of words. This dataset can be used for Word Embedding. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/mm_test8/``. Returns -------- list of str The raw text data e.g. [.... 'their', 'families', 'who', 'were', 'expelled', 'from', 'jerusalem', ...] Examples -------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> print('Data size', len(words)) """ path = os.path.join(path, 'mm_test8') logging.info("Load or Download matt_mahoney_text8 Dataset> {}".format(path)) filename = 'text8.zip' url = 'http://mattmahoney.net/dc/' maybe_download_and_extract(filename, path, url, expected_bytes=31344016) with zipfile.ZipFile(os.path.join(path, filename)) as f: word_list = f.read(f.namelist()[0]).split() for idx, _ in enumerate(word_list): word_list[idx] = word_list[idx].decode() return word_list
[ "def", "load_matt_mahoney_text8_dataset", "(", "path", "=", "'data'", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'mm_test8'", ")", "logging", ".", "info", "(", "\"Load or Download matt_mahoney_text8 Dataset> {}\"", ".", "format", "(", "path", ")", ")", "filename", "=", "'text8.zip'", "url", "=", "'http://mattmahoney.net/dc/'", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ",", "expected_bytes", "=", "31344016", ")", "with", "zipfile", ".", "ZipFile", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", ")", "as", "f", ":", "word_list", "=", "f", ".", "read", "(", "f", ".", "namelist", "(", ")", "[", "0", "]", ")", ".", "split", "(", ")", "for", "idx", ",", "_", "in", "enumerate", "(", "word_list", ")", ":", "word_list", "[", "idx", "]", "=", "word_list", "[", "idx", "]", ".", "decode", "(", ")", "return", "word_list" ]
Load Matt Mahoney's dataset. Download a text file from Matt Mahoney's website if not present, and make sure it's the right size. Extract the first file enclosed in a zip file as a list of words. This dataset can be used for Word Embedding. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/mm_test8/``. Returns -------- list of str The raw text data e.g. [.... 'their', 'families', 'who', 'were', 'expelled', 'from', 'jerusalem', ...] Examples -------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> print('Data size', len(words))
[ "Load", "Matt", "Mahoney", "s", "dataset", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L476-L511
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_imdb_dataset
def load_imdb_dataset( path='data', nb_words=None, skip_top=0, maxlen=None, test_split=0.2, seed=113, start_char=1, oov_char=2, index_from=3 ): """Load IMDB dataset. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/imdb/``. nb_words : int Number of words to get. skip_top : int Top most frequent words to ignore (they will appear as oov_char value in the sequence data). maxlen : int Maximum sequence length. Any longer sequence will be truncated. seed : int Seed for reproducible data shuffling. start_char : int The start of a sequence will be marked with this character. Set to 1 because 0 is usually the padding character. oov_char : int Words that were cut out because of the num_words or skip_top limit will be replaced with this character. index_from : int Index actual words with this index and higher. Examples -------- >>> X_train, y_train, X_test, y_test = tl.files.load_imdb_dataset( ... nb_words=20000, test_split=0.2) >>> print('X_train.shape', X_train.shape) (20000,) [[1, 62, 74, ... 1033, 507, 27],[1, 60, 33, ... 13, 1053, 7]..] >>> print('y_train.shape', y_train.shape) (20000,) [1 0 0 ..., 1 0 1] References ----------- - `Modified from keras. <https://github.com/fchollet/keras/blob/master/keras/datasets/imdb.py>`__ """ path = os.path.join(path, 'imdb') filename = "imdb.pkl" url = 'https://s3.amazonaws.com/text-datasets/' maybe_download_and_extract(filename, path, url) if filename.endswith(".gz"): f = gzip.open(os.path.join(path, filename), 'rb') else: f = open(os.path.join(path, filename), 'rb') X, labels = cPickle.load(f) f.close() np.random.seed(seed) np.random.shuffle(X) np.random.seed(seed) np.random.shuffle(labels) if start_char is not None: X = [[start_char] + [w + index_from for w in x] for x in X] elif index_from: X = [[w + index_from for w in x] for x in X] if maxlen: new_X = [] new_labels = [] for x, y in zip(X, labels): if len(x) < maxlen: new_X.append(x) new_labels.append(y) X = new_X labels = new_labels if not X: raise Exception( 'After filtering for sequences shorter than maxlen=' + str(maxlen) + ', no sequence was kept. ' 'Increase maxlen.' ) if not nb_words: nb_words = max([max(x) for x in X]) # by convention, use 2 as OOV word # reserve 'index_from' (=3 by default) characters: 0 (padding), 1 (start), 2 (OOV) if oov_char is not None: X = [[oov_char if (w >= nb_words or w < skip_top) else w for w in x] for x in X] else: nX = [] for x in X: nx = [] for w in x: if (w >= nb_words or w < skip_top): nx.append(w) nX.append(nx) X = nX X_train = np.array(X[:int(len(X) * (1 - test_split))]) y_train = np.array(labels[:int(len(X) * (1 - test_split))]) X_test = np.array(X[int(len(X) * (1 - test_split)):]) y_test = np.array(labels[int(len(X) * (1 - test_split)):]) return X_train, y_train, X_test, y_test
python
def load_imdb_dataset( path='data', nb_words=None, skip_top=0, maxlen=None, test_split=0.2, seed=113, start_char=1, oov_char=2, index_from=3 ): """Load IMDB dataset. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/imdb/``. nb_words : int Number of words to get. skip_top : int Top most frequent words to ignore (they will appear as oov_char value in the sequence data). maxlen : int Maximum sequence length. Any longer sequence will be truncated. seed : int Seed for reproducible data shuffling. start_char : int The start of a sequence will be marked with this character. Set to 1 because 0 is usually the padding character. oov_char : int Words that were cut out because of the num_words or skip_top limit will be replaced with this character. index_from : int Index actual words with this index and higher. Examples -------- >>> X_train, y_train, X_test, y_test = tl.files.load_imdb_dataset( ... nb_words=20000, test_split=0.2) >>> print('X_train.shape', X_train.shape) (20000,) [[1, 62, 74, ... 1033, 507, 27],[1, 60, 33, ... 13, 1053, 7]..] >>> print('y_train.shape', y_train.shape) (20000,) [1 0 0 ..., 1 0 1] References ----------- - `Modified from keras. <https://github.com/fchollet/keras/blob/master/keras/datasets/imdb.py>`__ """ path = os.path.join(path, 'imdb') filename = "imdb.pkl" url = 'https://s3.amazonaws.com/text-datasets/' maybe_download_and_extract(filename, path, url) if filename.endswith(".gz"): f = gzip.open(os.path.join(path, filename), 'rb') else: f = open(os.path.join(path, filename), 'rb') X, labels = cPickle.load(f) f.close() np.random.seed(seed) np.random.shuffle(X) np.random.seed(seed) np.random.shuffle(labels) if start_char is not None: X = [[start_char] + [w + index_from for w in x] for x in X] elif index_from: X = [[w + index_from for w in x] for x in X] if maxlen: new_X = [] new_labels = [] for x, y in zip(X, labels): if len(x) < maxlen: new_X.append(x) new_labels.append(y) X = new_X labels = new_labels if not X: raise Exception( 'After filtering for sequences shorter than maxlen=' + str(maxlen) + ', no sequence was kept. ' 'Increase maxlen.' ) if not nb_words: nb_words = max([max(x) for x in X]) # by convention, use 2 as OOV word # reserve 'index_from' (=3 by default) characters: 0 (padding), 1 (start), 2 (OOV) if oov_char is not None: X = [[oov_char if (w >= nb_words or w < skip_top) else w for w in x] for x in X] else: nX = [] for x in X: nx = [] for w in x: if (w >= nb_words or w < skip_top): nx.append(w) nX.append(nx) X = nX X_train = np.array(X[:int(len(X) * (1 - test_split))]) y_train = np.array(labels[:int(len(X) * (1 - test_split))]) X_test = np.array(X[int(len(X) * (1 - test_split)):]) y_test = np.array(labels[int(len(X) * (1 - test_split)):]) return X_train, y_train, X_test, y_test
[ "def", "load_imdb_dataset", "(", "path", "=", "'data'", ",", "nb_words", "=", "None", ",", "skip_top", "=", "0", ",", "maxlen", "=", "None", ",", "test_split", "=", "0.2", ",", "seed", "=", "113", ",", "start_char", "=", "1", ",", "oov_char", "=", "2", ",", "index_from", "=", "3", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'imdb'", ")", "filename", "=", "\"imdb.pkl\"", "url", "=", "'https://s3.amazonaws.com/text-datasets/'", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ")", "if", "filename", ".", "endswith", "(", "\".gz\"", ")", ":", "f", "=", "gzip", ".", "open", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", ",", "'rb'", ")", "else", ":", "f", "=", "open", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", ",", "'rb'", ")", "X", ",", "labels", "=", "cPickle", ".", "load", "(", "f", ")", "f", ".", "close", "(", ")", "np", ".", "random", ".", "seed", "(", "seed", ")", "np", ".", "random", ".", "shuffle", "(", "X", ")", "np", ".", "random", ".", "seed", "(", "seed", ")", "np", ".", "random", ".", "shuffle", "(", "labels", ")", "if", "start_char", "is", "not", "None", ":", "X", "=", "[", "[", "start_char", "]", "+", "[", "w", "+", "index_from", "for", "w", "in", "x", "]", "for", "x", "in", "X", "]", "elif", "index_from", ":", "X", "=", "[", "[", "w", "+", "index_from", "for", "w", "in", "x", "]", "for", "x", "in", "X", "]", "if", "maxlen", ":", "new_X", "=", "[", "]", "new_labels", "=", "[", "]", "for", "x", ",", "y", "in", "zip", "(", "X", ",", "labels", ")", ":", "if", "len", "(", "x", ")", "<", "maxlen", ":", "new_X", ".", "append", "(", "x", ")", "new_labels", ".", "append", "(", "y", ")", "X", "=", "new_X", "labels", "=", "new_labels", "if", "not", "X", ":", "raise", "Exception", "(", "'After filtering for sequences shorter than maxlen='", "+", "str", "(", "maxlen", ")", "+", "', no sequence was kept. '", "'Increase maxlen.'", ")", "if", "not", "nb_words", ":", "nb_words", "=", "max", "(", "[", "max", "(", "x", ")", "for", "x", "in", "X", "]", ")", "# by convention, use 2 as OOV word", "# reserve 'index_from' (=3 by default) characters: 0 (padding), 1 (start), 2 (OOV)", "if", "oov_char", "is", "not", "None", ":", "X", "=", "[", "[", "oov_char", "if", "(", "w", ">=", "nb_words", "or", "w", "<", "skip_top", ")", "else", "w", "for", "w", "in", "x", "]", "for", "x", "in", "X", "]", "else", ":", "nX", "=", "[", "]", "for", "x", "in", "X", ":", "nx", "=", "[", "]", "for", "w", "in", "x", ":", "if", "(", "w", ">=", "nb_words", "or", "w", "<", "skip_top", ")", ":", "nx", ".", "append", "(", "w", ")", "nX", ".", "append", "(", "nx", ")", "X", "=", "nX", "X_train", "=", "np", ".", "array", "(", "X", "[", ":", "int", "(", "len", "(", "X", ")", "*", "(", "1", "-", "test_split", ")", ")", "]", ")", "y_train", "=", "np", ".", "array", "(", "labels", "[", ":", "int", "(", "len", "(", "X", ")", "*", "(", "1", "-", "test_split", ")", ")", "]", ")", "X_test", "=", "np", ".", "array", "(", "X", "[", "int", "(", "len", "(", "X", ")", "*", "(", "1", "-", "test_split", ")", ")", ":", "]", ")", "y_test", "=", "np", ".", "array", "(", "labels", "[", "int", "(", "len", "(", "X", ")", "*", "(", "1", "-", "test_split", ")", ")", ":", "]", ")", "return", "X_train", ",", "y_train", ",", "X_test", ",", "y_test" ]
Load IMDB dataset. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/imdb/``. nb_words : int Number of words to get. skip_top : int Top most frequent words to ignore (they will appear as oov_char value in the sequence data). maxlen : int Maximum sequence length. Any longer sequence will be truncated. seed : int Seed for reproducible data shuffling. start_char : int The start of a sequence will be marked with this character. Set to 1 because 0 is usually the padding character. oov_char : int Words that were cut out because of the num_words or skip_top limit will be replaced with this character. index_from : int Index actual words with this index and higher. Examples -------- >>> X_train, y_train, X_test, y_test = tl.files.load_imdb_dataset( ... nb_words=20000, test_split=0.2) >>> print('X_train.shape', X_train.shape) (20000,) [[1, 62, 74, ... 1033, 507, 27],[1, 60, 33, ... 13, 1053, 7]..] >>> print('y_train.shape', y_train.shape) (20000,) [1 0 0 ..., 1 0 1] References ----------- - `Modified from keras. <https://github.com/fchollet/keras/blob/master/keras/datasets/imdb.py>`__
[ "Load", "IMDB", "dataset", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L514-L614
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_nietzsche_dataset
def load_nietzsche_dataset(path='data'): """Load Nietzsche dataset. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/nietzsche/``. Returns -------- str The content. Examples -------- >>> see tutorial_generate_text.py >>> words = tl.files.load_nietzsche_dataset() >>> words = basic_clean_str(words) >>> words = words.split() """ logging.info("Load or Download nietzsche dataset > {}".format(path)) path = os.path.join(path, 'nietzsche') filename = "nietzsche.txt" url = 'https://s3.amazonaws.com/text-datasets/' filepath = maybe_download_and_extract(filename, path, url) with open(filepath, "r") as f: words = f.read() return words
python
def load_nietzsche_dataset(path='data'): """Load Nietzsche dataset. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/nietzsche/``. Returns -------- str The content. Examples -------- >>> see tutorial_generate_text.py >>> words = tl.files.load_nietzsche_dataset() >>> words = basic_clean_str(words) >>> words = words.split() """ logging.info("Load or Download nietzsche dataset > {}".format(path)) path = os.path.join(path, 'nietzsche') filename = "nietzsche.txt" url = 'https://s3.amazonaws.com/text-datasets/' filepath = maybe_download_and_extract(filename, path, url) with open(filepath, "r") as f: words = f.read() return words
[ "def", "load_nietzsche_dataset", "(", "path", "=", "'data'", ")", ":", "logging", ".", "info", "(", "\"Load or Download nietzsche dataset > {}\"", ".", "format", "(", "path", ")", ")", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'nietzsche'", ")", "filename", "=", "\"nietzsche.txt\"", "url", "=", "'https://s3.amazonaws.com/text-datasets/'", "filepath", "=", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ")", "with", "open", "(", "filepath", ",", "\"r\"", ")", "as", "f", ":", "words", "=", "f", ".", "read", "(", ")", "return", "words" ]
Load Nietzsche dataset. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/nietzsche/``. Returns -------- str The content. Examples -------- >>> see tutorial_generate_text.py >>> words = tl.files.load_nietzsche_dataset() >>> words = basic_clean_str(words) >>> words = words.split()
[ "Load", "Nietzsche", "dataset", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L617-L647
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_wmt_en_fr_dataset
def load_wmt_en_fr_dataset(path='data'): """Load WMT'15 English-to-French translation dataset. It will download the data from the WMT'15 Website (10^9-French-English corpus), and the 2013 news test from the same site as development set. Returns the directories of training data and test data. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/wmt_en_fr/``. References ---------- - Code modified from /tensorflow/models/rnn/translation/data_utils.py Notes ----- Usually, it will take a long time to download this dataset. """ path = os.path.join(path, 'wmt_en_fr') # URLs for WMT data. _WMT_ENFR_TRAIN_URL = "http://www.statmt.org/wmt10/" _WMT_ENFR_DEV_URL = "http://www.statmt.org/wmt15/" def gunzip_file(gz_path, new_path): """Unzips from gz_path into new_path.""" logging.info("Unpacking %s to %s" % (gz_path, new_path)) with gzip.open(gz_path, "rb") as gz_file: with open(new_path, "wb") as new_file: for line in gz_file: new_file.write(line) def get_wmt_enfr_train_set(path): """Download the WMT en-fr training corpus to directory unless it's there.""" filename = "training-giga-fren.tar" maybe_download_and_extract(filename, path, _WMT_ENFR_TRAIN_URL, extract=True) train_path = os.path.join(path, "giga-fren.release2.fixed") gunzip_file(train_path + ".fr.gz", train_path + ".fr") gunzip_file(train_path + ".en.gz", train_path + ".en") return train_path def get_wmt_enfr_dev_set(path): """Download the WMT en-fr training corpus to directory unless it's there.""" filename = "dev-v2.tgz" dev_file = maybe_download_and_extract(filename, path, _WMT_ENFR_DEV_URL, extract=False) dev_name = "newstest2013" dev_path = os.path.join(path, "newstest2013") if not (gfile.Exists(dev_path + ".fr") and gfile.Exists(dev_path + ".en")): logging.info("Extracting tgz file %s" % dev_file) with tarfile.open(dev_file, "r:gz") as dev_tar: fr_dev_file = dev_tar.getmember("dev/" + dev_name + ".fr") en_dev_file = dev_tar.getmember("dev/" + dev_name + ".en") fr_dev_file.name = dev_name + ".fr" # Extract without "dev/" prefix. en_dev_file.name = dev_name + ".en" dev_tar.extract(fr_dev_file, path) dev_tar.extract(en_dev_file, path) return dev_path logging.info("Load or Download WMT English-to-French translation > {}".format(path)) train_path = get_wmt_enfr_train_set(path) dev_path = get_wmt_enfr_dev_set(path) return train_path, dev_path
python
def load_wmt_en_fr_dataset(path='data'): """Load WMT'15 English-to-French translation dataset. It will download the data from the WMT'15 Website (10^9-French-English corpus), and the 2013 news test from the same site as development set. Returns the directories of training data and test data. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/wmt_en_fr/``. References ---------- - Code modified from /tensorflow/models/rnn/translation/data_utils.py Notes ----- Usually, it will take a long time to download this dataset. """ path = os.path.join(path, 'wmt_en_fr') # URLs for WMT data. _WMT_ENFR_TRAIN_URL = "http://www.statmt.org/wmt10/" _WMT_ENFR_DEV_URL = "http://www.statmt.org/wmt15/" def gunzip_file(gz_path, new_path): """Unzips from gz_path into new_path.""" logging.info("Unpacking %s to %s" % (gz_path, new_path)) with gzip.open(gz_path, "rb") as gz_file: with open(new_path, "wb") as new_file: for line in gz_file: new_file.write(line) def get_wmt_enfr_train_set(path): """Download the WMT en-fr training corpus to directory unless it's there.""" filename = "training-giga-fren.tar" maybe_download_and_extract(filename, path, _WMT_ENFR_TRAIN_URL, extract=True) train_path = os.path.join(path, "giga-fren.release2.fixed") gunzip_file(train_path + ".fr.gz", train_path + ".fr") gunzip_file(train_path + ".en.gz", train_path + ".en") return train_path def get_wmt_enfr_dev_set(path): """Download the WMT en-fr training corpus to directory unless it's there.""" filename = "dev-v2.tgz" dev_file = maybe_download_and_extract(filename, path, _WMT_ENFR_DEV_URL, extract=False) dev_name = "newstest2013" dev_path = os.path.join(path, "newstest2013") if not (gfile.Exists(dev_path + ".fr") and gfile.Exists(dev_path + ".en")): logging.info("Extracting tgz file %s" % dev_file) with tarfile.open(dev_file, "r:gz") as dev_tar: fr_dev_file = dev_tar.getmember("dev/" + dev_name + ".fr") en_dev_file = dev_tar.getmember("dev/" + dev_name + ".en") fr_dev_file.name = dev_name + ".fr" # Extract without "dev/" prefix. en_dev_file.name = dev_name + ".en" dev_tar.extract(fr_dev_file, path) dev_tar.extract(en_dev_file, path) return dev_path logging.info("Load or Download WMT English-to-French translation > {}".format(path)) train_path = get_wmt_enfr_train_set(path) dev_path = get_wmt_enfr_dev_set(path) return train_path, dev_path
[ "def", "load_wmt_en_fr_dataset", "(", "path", "=", "'data'", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'wmt_en_fr'", ")", "# URLs for WMT data.", "_WMT_ENFR_TRAIN_URL", "=", "\"http://www.statmt.org/wmt10/\"", "_WMT_ENFR_DEV_URL", "=", "\"http://www.statmt.org/wmt15/\"", "def", "gunzip_file", "(", "gz_path", ",", "new_path", ")", ":", "\"\"\"Unzips from gz_path into new_path.\"\"\"", "logging", ".", "info", "(", "\"Unpacking %s to %s\"", "%", "(", "gz_path", ",", "new_path", ")", ")", "with", "gzip", ".", "open", "(", "gz_path", ",", "\"rb\"", ")", "as", "gz_file", ":", "with", "open", "(", "new_path", ",", "\"wb\"", ")", "as", "new_file", ":", "for", "line", "in", "gz_file", ":", "new_file", ".", "write", "(", "line", ")", "def", "get_wmt_enfr_train_set", "(", "path", ")", ":", "\"\"\"Download the WMT en-fr training corpus to directory unless it's there.\"\"\"", "filename", "=", "\"training-giga-fren.tar\"", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "_WMT_ENFR_TRAIN_URL", ",", "extract", "=", "True", ")", "train_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "\"giga-fren.release2.fixed\"", ")", "gunzip_file", "(", "train_path", "+", "\".fr.gz\"", ",", "train_path", "+", "\".fr\"", ")", "gunzip_file", "(", "train_path", "+", "\".en.gz\"", ",", "train_path", "+", "\".en\"", ")", "return", "train_path", "def", "get_wmt_enfr_dev_set", "(", "path", ")", ":", "\"\"\"Download the WMT en-fr training corpus to directory unless it's there.\"\"\"", "filename", "=", "\"dev-v2.tgz\"", "dev_file", "=", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "_WMT_ENFR_DEV_URL", ",", "extract", "=", "False", ")", "dev_name", "=", "\"newstest2013\"", "dev_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "\"newstest2013\"", ")", "if", "not", "(", "gfile", ".", "Exists", "(", "dev_path", "+", "\".fr\"", ")", "and", "gfile", ".", "Exists", "(", "dev_path", "+", "\".en\"", ")", ")", ":", "logging", ".", "info", "(", "\"Extracting tgz file %s\"", "%", "dev_file", ")", "with", "tarfile", ".", "open", "(", "dev_file", ",", "\"r:gz\"", ")", "as", "dev_tar", ":", "fr_dev_file", "=", "dev_tar", ".", "getmember", "(", "\"dev/\"", "+", "dev_name", "+", "\".fr\"", ")", "en_dev_file", "=", "dev_tar", ".", "getmember", "(", "\"dev/\"", "+", "dev_name", "+", "\".en\"", ")", "fr_dev_file", ".", "name", "=", "dev_name", "+", "\".fr\"", "# Extract without \"dev/\" prefix.", "en_dev_file", ".", "name", "=", "dev_name", "+", "\".en\"", "dev_tar", ".", "extract", "(", "fr_dev_file", ",", "path", ")", "dev_tar", ".", "extract", "(", "en_dev_file", ",", "path", ")", "return", "dev_path", "logging", ".", "info", "(", "\"Load or Download WMT English-to-French translation > {}\"", ".", "format", "(", "path", ")", ")", "train_path", "=", "get_wmt_enfr_train_set", "(", "path", ")", "dev_path", "=", "get_wmt_enfr_dev_set", "(", "path", ")", "return", "train_path", ",", "dev_path" ]
Load WMT'15 English-to-French translation dataset. It will download the data from the WMT'15 Website (10^9-French-English corpus), and the 2013 news test from the same site as development set. Returns the directories of training data and test data. Parameters ---------- path : str The path that the data is downloaded to, defaults is ``data/wmt_en_fr/``. References ---------- - Code modified from /tensorflow/models/rnn/translation/data_utils.py Notes ----- Usually, it will take a long time to download this dataset.
[ "Load", "WMT", "15", "English", "-", "to", "-", "French", "translation", "dataset", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L650-L714
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_flickr25k_dataset
def load_flickr25k_dataset(tag='sky', path="data", n_threads=50, printable=False): """Load Flickr25K dataset. Returns a list of images by a given tag from Flick25k dataset, it will download Flickr25k from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`__ at the first time you use it. Parameters ------------ tag : str or None What images to return. - If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`__. - If you want to get all images, set to ``None``. path : str The path that the data is downloaded to, defaults is ``data/flickr25k/``. n_threads : int The number of thread to read image. printable : boolean Whether to print infomation when reading images, default is ``False``. Examples ----------- Get images with tag of sky >>> images = tl.files.load_flickr25k_dataset(tag='sky') Get all images >>> images = tl.files.load_flickr25k_dataset(tag=None, n_threads=100, printable=True) """ path = os.path.join(path, 'flickr25k') filename = 'mirflickr25k.zip' url = 'http://press.liacs.nl/mirflickr/mirflickr25k/' # download dataset if folder_exists(os.path.join(path, "mirflickr")) is False: logging.info("[*] Flickr25k is nonexistent in {}".format(path)) maybe_download_and_extract(filename, path, url, extract=True) del_file(os.path.join(path, filename)) # return images by the given tag. # 1. image path list folder_imgs = os.path.join(path, "mirflickr") path_imgs = load_file_list(path=folder_imgs, regx='\\.jpg', printable=False) path_imgs.sort(key=natural_keys) # 2. tag path list folder_tags = os.path.join(path, "mirflickr", "meta", "tags") path_tags = load_file_list(path=folder_tags, regx='\\.txt', printable=False) path_tags.sort(key=natural_keys) # 3. select images if tag is None: logging.info("[Flickr25k] reading all images") else: logging.info("[Flickr25k] reading images with tag: {}".format(tag)) images_list = [] for idx, _v in enumerate(path_tags): tags = read_file(os.path.join(folder_tags, path_tags[idx])).split('\n') # logging.info(idx+1, tags) if tag is None or tag in tags: images_list.append(path_imgs[idx]) images = visualize.read_images(images_list, folder_imgs, n_threads=n_threads, printable=printable) return images
python
def load_flickr25k_dataset(tag='sky', path="data", n_threads=50, printable=False): """Load Flickr25K dataset. Returns a list of images by a given tag from Flick25k dataset, it will download Flickr25k from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`__ at the first time you use it. Parameters ------------ tag : str or None What images to return. - If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`__. - If you want to get all images, set to ``None``. path : str The path that the data is downloaded to, defaults is ``data/flickr25k/``. n_threads : int The number of thread to read image. printable : boolean Whether to print infomation when reading images, default is ``False``. Examples ----------- Get images with tag of sky >>> images = tl.files.load_flickr25k_dataset(tag='sky') Get all images >>> images = tl.files.load_flickr25k_dataset(tag=None, n_threads=100, printable=True) """ path = os.path.join(path, 'flickr25k') filename = 'mirflickr25k.zip' url = 'http://press.liacs.nl/mirflickr/mirflickr25k/' # download dataset if folder_exists(os.path.join(path, "mirflickr")) is False: logging.info("[*] Flickr25k is nonexistent in {}".format(path)) maybe_download_and_extract(filename, path, url, extract=True) del_file(os.path.join(path, filename)) # return images by the given tag. # 1. image path list folder_imgs = os.path.join(path, "mirflickr") path_imgs = load_file_list(path=folder_imgs, regx='\\.jpg', printable=False) path_imgs.sort(key=natural_keys) # 2. tag path list folder_tags = os.path.join(path, "mirflickr", "meta", "tags") path_tags = load_file_list(path=folder_tags, regx='\\.txt', printable=False) path_tags.sort(key=natural_keys) # 3. select images if tag is None: logging.info("[Flickr25k] reading all images") else: logging.info("[Flickr25k] reading images with tag: {}".format(tag)) images_list = [] for idx, _v in enumerate(path_tags): tags = read_file(os.path.join(folder_tags, path_tags[idx])).split('\n') # logging.info(idx+1, tags) if tag is None or tag in tags: images_list.append(path_imgs[idx]) images = visualize.read_images(images_list, folder_imgs, n_threads=n_threads, printable=printable) return images
[ "def", "load_flickr25k_dataset", "(", "tag", "=", "'sky'", ",", "path", "=", "\"data\"", ",", "n_threads", "=", "50", ",", "printable", "=", "False", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'flickr25k'", ")", "filename", "=", "'mirflickr25k.zip'", "url", "=", "'http://press.liacs.nl/mirflickr/mirflickr25k/'", "# download dataset", "if", "folder_exists", "(", "os", ".", "path", ".", "join", "(", "path", ",", "\"mirflickr\"", ")", ")", "is", "False", ":", "logging", ".", "info", "(", "\"[*] Flickr25k is nonexistent in {}\"", ".", "format", "(", "path", ")", ")", "maybe_download_and_extract", "(", "filename", ",", "path", ",", "url", ",", "extract", "=", "True", ")", "del_file", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", ")", "# return images by the given tag.", "# 1. image path list", "folder_imgs", "=", "os", ".", "path", ".", "join", "(", "path", ",", "\"mirflickr\"", ")", "path_imgs", "=", "load_file_list", "(", "path", "=", "folder_imgs", ",", "regx", "=", "'\\\\.jpg'", ",", "printable", "=", "False", ")", "path_imgs", ".", "sort", "(", "key", "=", "natural_keys", ")", "# 2. tag path list", "folder_tags", "=", "os", ".", "path", ".", "join", "(", "path", ",", "\"mirflickr\"", ",", "\"meta\"", ",", "\"tags\"", ")", "path_tags", "=", "load_file_list", "(", "path", "=", "folder_tags", ",", "regx", "=", "'\\\\.txt'", ",", "printable", "=", "False", ")", "path_tags", ".", "sort", "(", "key", "=", "natural_keys", ")", "# 3. select images", "if", "tag", "is", "None", ":", "logging", ".", "info", "(", "\"[Flickr25k] reading all images\"", ")", "else", ":", "logging", ".", "info", "(", "\"[Flickr25k] reading images with tag: {}\"", ".", "format", "(", "tag", ")", ")", "images_list", "=", "[", "]", "for", "idx", ",", "_v", "in", "enumerate", "(", "path_tags", ")", ":", "tags", "=", "read_file", "(", "os", ".", "path", ".", "join", "(", "folder_tags", ",", "path_tags", "[", "idx", "]", ")", ")", ".", "split", "(", "'\\n'", ")", "# logging.info(idx+1, tags)", "if", "tag", "is", "None", "or", "tag", "in", "tags", ":", "images_list", ".", "append", "(", "path_imgs", "[", "idx", "]", ")", "images", "=", "visualize", ".", "read_images", "(", "images_list", ",", "folder_imgs", ",", "n_threads", "=", "n_threads", ",", "printable", "=", "printable", ")", "return", "images" ]
Load Flickr25K dataset. Returns a list of images by a given tag from Flick25k dataset, it will download Flickr25k from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`__ at the first time you use it. Parameters ------------ tag : str or None What images to return. - If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`__. - If you want to get all images, set to ``None``. path : str The path that the data is downloaded to, defaults is ``data/flickr25k/``. n_threads : int The number of thread to read image. printable : boolean Whether to print infomation when reading images, default is ``False``. Examples ----------- Get images with tag of sky >>> images = tl.files.load_flickr25k_dataset(tag='sky') Get all images >>> images = tl.files.load_flickr25k_dataset(tag=None, n_threads=100, printable=True)
[ "Load", "Flickr25K", "dataset", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L717-L784
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_flickr1M_dataset
def load_flickr1M_dataset(tag='sky', size=10, path="data", n_threads=50, printable=False): """Load Flick1M dataset. Returns a list of images by a given tag from Flickr1M dataset, it will download Flickr1M from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`__ at the first time you use it. Parameters ------------ tag : str or None What images to return. - If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`__. - If you want to get all images, set to ``None``. size : int integer between 1 to 10. 1 means 100k images ... 5 means 500k images, 10 means all 1 million images. Default is 10. path : str The path that the data is downloaded to, defaults is ``data/flickr25k/``. n_threads : int The number of thread to read image. printable : boolean Whether to print infomation when reading images, default is ``False``. Examples ---------- Use 200k images >>> images = tl.files.load_flickr1M_dataset(tag='zebra', size=2) Use 1 Million images >>> images = tl.files.load_flickr1M_dataset(tag='zebra') """ path = os.path.join(path, 'flickr1M') logging.info("[Flickr1M] using {}% of images = {}".format(size * 10, size * 100000)) images_zip = [ 'images0.zip', 'images1.zip', 'images2.zip', 'images3.zip', 'images4.zip', 'images5.zip', 'images6.zip', 'images7.zip', 'images8.zip', 'images9.zip' ] tag_zip = 'tags.zip' url = 'http://press.liacs.nl/mirflickr/mirflickr1m/' # download dataset for image_zip in images_zip[0:size]: image_folder = image_zip.split(".")[0] # logging.info(path+"/"+image_folder) if folder_exists(os.path.join(path, image_folder)) is False: # logging.info(image_zip) logging.info("[Flickr1M] {} is missing in {}".format(image_folder, path)) maybe_download_and_extract(image_zip, path, url, extract=True) del_file(os.path.join(path, image_zip)) # os.system("mv {} {}".format(os.path.join(path, 'images'), os.path.join(path, image_folder))) shutil.move(os.path.join(path, 'images'), os.path.join(path, image_folder)) else: logging.info("[Flickr1M] {} exists in {}".format(image_folder, path)) # download tag if folder_exists(os.path.join(path, "tags")) is False: logging.info("[Flickr1M] tag files is nonexistent in {}".format(path)) maybe_download_and_extract(tag_zip, path, url, extract=True) del_file(os.path.join(path, tag_zip)) else: logging.info("[Flickr1M] tags exists in {}".format(path)) # 1. image path list images_list = [] images_folder_list = [] for i in range(0, size): images_folder_list += load_folder_list(path=os.path.join(path, 'images%d' % i)) images_folder_list.sort(key=lambda s: int(s.split('/')[-1])) # folder/images/ddd for folder in images_folder_list[0:size * 10]: tmp = load_file_list(path=folder, regx='\\.jpg', printable=False) tmp.sort(key=lambda s: int(s.split('.')[-2])) # ddd.jpg images_list.extend([os.path.join(folder, x) for x in tmp]) # 2. tag path list tag_list = [] tag_folder_list = load_folder_list(os.path.join(path, "tags")) # tag_folder_list.sort(key=lambda s: int(s.split("/")[-1])) # folder/images/ddd tag_folder_list.sort(key=lambda s: int(os.path.basename(s))) for folder in tag_folder_list[0:size * 10]: tmp = load_file_list(path=folder, regx='\\.txt', printable=False) tmp.sort(key=lambda s: int(s.split('.')[-2])) # ddd.txt tmp = [os.path.join(folder, s) for s in tmp] tag_list += tmp # 3. select images logging.info("[Flickr1M] searching tag: {}".format(tag)) select_images_list = [] for idx, _val in enumerate(tag_list): tags = read_file(tag_list[idx]).split('\n') if tag in tags: select_images_list.append(images_list[idx]) logging.info("[Flickr1M] reading images with tag: {}".format(tag)) images = visualize.read_images(select_images_list, '', n_threads=n_threads, printable=printable) return images
python
def load_flickr1M_dataset(tag='sky', size=10, path="data", n_threads=50, printable=False): """Load Flick1M dataset. Returns a list of images by a given tag from Flickr1M dataset, it will download Flickr1M from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`__ at the first time you use it. Parameters ------------ tag : str or None What images to return. - If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`__. - If you want to get all images, set to ``None``. size : int integer between 1 to 10. 1 means 100k images ... 5 means 500k images, 10 means all 1 million images. Default is 10. path : str The path that the data is downloaded to, defaults is ``data/flickr25k/``. n_threads : int The number of thread to read image. printable : boolean Whether to print infomation when reading images, default is ``False``. Examples ---------- Use 200k images >>> images = tl.files.load_flickr1M_dataset(tag='zebra', size=2) Use 1 Million images >>> images = tl.files.load_flickr1M_dataset(tag='zebra') """ path = os.path.join(path, 'flickr1M') logging.info("[Flickr1M] using {}% of images = {}".format(size * 10, size * 100000)) images_zip = [ 'images0.zip', 'images1.zip', 'images2.zip', 'images3.zip', 'images4.zip', 'images5.zip', 'images6.zip', 'images7.zip', 'images8.zip', 'images9.zip' ] tag_zip = 'tags.zip' url = 'http://press.liacs.nl/mirflickr/mirflickr1m/' # download dataset for image_zip in images_zip[0:size]: image_folder = image_zip.split(".")[0] # logging.info(path+"/"+image_folder) if folder_exists(os.path.join(path, image_folder)) is False: # logging.info(image_zip) logging.info("[Flickr1M] {} is missing in {}".format(image_folder, path)) maybe_download_and_extract(image_zip, path, url, extract=True) del_file(os.path.join(path, image_zip)) # os.system("mv {} {}".format(os.path.join(path, 'images'), os.path.join(path, image_folder))) shutil.move(os.path.join(path, 'images'), os.path.join(path, image_folder)) else: logging.info("[Flickr1M] {} exists in {}".format(image_folder, path)) # download tag if folder_exists(os.path.join(path, "tags")) is False: logging.info("[Flickr1M] tag files is nonexistent in {}".format(path)) maybe_download_and_extract(tag_zip, path, url, extract=True) del_file(os.path.join(path, tag_zip)) else: logging.info("[Flickr1M] tags exists in {}".format(path)) # 1. image path list images_list = [] images_folder_list = [] for i in range(0, size): images_folder_list += load_folder_list(path=os.path.join(path, 'images%d' % i)) images_folder_list.sort(key=lambda s: int(s.split('/')[-1])) # folder/images/ddd for folder in images_folder_list[0:size * 10]: tmp = load_file_list(path=folder, regx='\\.jpg', printable=False) tmp.sort(key=lambda s: int(s.split('.')[-2])) # ddd.jpg images_list.extend([os.path.join(folder, x) for x in tmp]) # 2. tag path list tag_list = [] tag_folder_list = load_folder_list(os.path.join(path, "tags")) # tag_folder_list.sort(key=lambda s: int(s.split("/")[-1])) # folder/images/ddd tag_folder_list.sort(key=lambda s: int(os.path.basename(s))) for folder in tag_folder_list[0:size * 10]: tmp = load_file_list(path=folder, regx='\\.txt', printable=False) tmp.sort(key=lambda s: int(s.split('.')[-2])) # ddd.txt tmp = [os.path.join(folder, s) for s in tmp] tag_list += tmp # 3. select images logging.info("[Flickr1M] searching tag: {}".format(tag)) select_images_list = [] for idx, _val in enumerate(tag_list): tags = read_file(tag_list[idx]).split('\n') if tag in tags: select_images_list.append(images_list[idx]) logging.info("[Flickr1M] reading images with tag: {}".format(tag)) images = visualize.read_images(select_images_list, '', n_threads=n_threads, printable=printable) return images
[ "def", "load_flickr1M_dataset", "(", "tag", "=", "'sky'", ",", "size", "=", "10", ",", "path", "=", "\"data\"", ",", "n_threads", "=", "50", ",", "printable", "=", "False", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'flickr1M'", ")", "logging", ".", "info", "(", "\"[Flickr1M] using {}% of images = {}\"", ".", "format", "(", "size", "*", "10", ",", "size", "*", "100000", ")", ")", "images_zip", "=", "[", "'images0.zip'", ",", "'images1.zip'", ",", "'images2.zip'", ",", "'images3.zip'", ",", "'images4.zip'", ",", "'images5.zip'", ",", "'images6.zip'", ",", "'images7.zip'", ",", "'images8.zip'", ",", "'images9.zip'", "]", "tag_zip", "=", "'tags.zip'", "url", "=", "'http://press.liacs.nl/mirflickr/mirflickr1m/'", "# download dataset", "for", "image_zip", "in", "images_zip", "[", "0", ":", "size", "]", ":", "image_folder", "=", "image_zip", ".", "split", "(", "\".\"", ")", "[", "0", "]", "# logging.info(path+\"/\"+image_folder)", "if", "folder_exists", "(", "os", ".", "path", ".", "join", "(", "path", ",", "image_folder", ")", ")", "is", "False", ":", "# logging.info(image_zip)", "logging", ".", "info", "(", "\"[Flickr1M] {} is missing in {}\"", ".", "format", "(", "image_folder", ",", "path", ")", ")", "maybe_download_and_extract", "(", "image_zip", ",", "path", ",", "url", ",", "extract", "=", "True", ")", "del_file", "(", "os", ".", "path", ".", "join", "(", "path", ",", "image_zip", ")", ")", "# os.system(\"mv {} {}\".format(os.path.join(path, 'images'), os.path.join(path, image_folder)))", "shutil", ".", "move", "(", "os", ".", "path", ".", "join", "(", "path", ",", "'images'", ")", ",", "os", ".", "path", ".", "join", "(", "path", ",", "image_folder", ")", ")", "else", ":", "logging", ".", "info", "(", "\"[Flickr1M] {} exists in {}\"", ".", "format", "(", "image_folder", ",", "path", ")", ")", "# download tag", "if", "folder_exists", "(", "os", ".", "path", ".", "join", "(", "path", ",", "\"tags\"", ")", ")", "is", "False", ":", "logging", ".", "info", "(", "\"[Flickr1M] tag files is nonexistent in {}\"", ".", "format", "(", "path", ")", ")", "maybe_download_and_extract", "(", "tag_zip", ",", "path", ",", "url", ",", "extract", "=", "True", ")", "del_file", "(", "os", ".", "path", ".", "join", "(", "path", ",", "tag_zip", ")", ")", "else", ":", "logging", ".", "info", "(", "\"[Flickr1M] tags exists in {}\"", ".", "format", "(", "path", ")", ")", "# 1. image path list", "images_list", "=", "[", "]", "images_folder_list", "=", "[", "]", "for", "i", "in", "range", "(", "0", ",", "size", ")", ":", "images_folder_list", "+=", "load_folder_list", "(", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'images%d'", "%", "i", ")", ")", "images_folder_list", ".", "sort", "(", "key", "=", "lambda", "s", ":", "int", "(", "s", ".", "split", "(", "'/'", ")", "[", "-", "1", "]", ")", ")", "# folder/images/ddd", "for", "folder", "in", "images_folder_list", "[", "0", ":", "size", "*", "10", "]", ":", "tmp", "=", "load_file_list", "(", "path", "=", "folder", ",", "regx", "=", "'\\\\.jpg'", ",", "printable", "=", "False", ")", "tmp", ".", "sort", "(", "key", "=", "lambda", "s", ":", "int", "(", "s", ".", "split", "(", "'.'", ")", "[", "-", "2", "]", ")", ")", "# ddd.jpg", "images_list", ".", "extend", "(", "[", "os", ".", "path", ".", "join", "(", "folder", ",", "x", ")", "for", "x", "in", "tmp", "]", ")", "# 2. tag path list", "tag_list", "=", "[", "]", "tag_folder_list", "=", "load_folder_list", "(", "os", ".", "path", ".", "join", "(", "path", ",", "\"tags\"", ")", ")", "# tag_folder_list.sort(key=lambda s: int(s.split(\"/\")[-1])) # folder/images/ddd", "tag_folder_list", ".", "sort", "(", "key", "=", "lambda", "s", ":", "int", "(", "os", ".", "path", ".", "basename", "(", "s", ")", ")", ")", "for", "folder", "in", "tag_folder_list", "[", "0", ":", "size", "*", "10", "]", ":", "tmp", "=", "load_file_list", "(", "path", "=", "folder", ",", "regx", "=", "'\\\\.txt'", ",", "printable", "=", "False", ")", "tmp", ".", "sort", "(", "key", "=", "lambda", "s", ":", "int", "(", "s", ".", "split", "(", "'.'", ")", "[", "-", "2", "]", ")", ")", "# ddd.txt", "tmp", "=", "[", "os", ".", "path", ".", "join", "(", "folder", ",", "s", ")", "for", "s", "in", "tmp", "]", "tag_list", "+=", "tmp", "# 3. select images", "logging", ".", "info", "(", "\"[Flickr1M] searching tag: {}\"", ".", "format", "(", "tag", ")", ")", "select_images_list", "=", "[", "]", "for", "idx", ",", "_val", "in", "enumerate", "(", "tag_list", ")", ":", "tags", "=", "read_file", "(", "tag_list", "[", "idx", "]", ")", ".", "split", "(", "'\\n'", ")", "if", "tag", "in", "tags", ":", "select_images_list", ".", "append", "(", "images_list", "[", "idx", "]", ")", "logging", ".", "info", "(", "\"[Flickr1M] reading images with tag: {}\"", ".", "format", "(", "tag", ")", ")", "images", "=", "visualize", ".", "read_images", "(", "select_images_list", ",", "''", ",", "n_threads", "=", "n_threads", ",", "printable", "=", "printable", ")", "return", "images" ]
Load Flick1M dataset. Returns a list of images by a given tag from Flickr1M dataset, it will download Flickr1M from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`__ at the first time you use it. Parameters ------------ tag : str or None What images to return. - If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`__. - If you want to get all images, set to ``None``. size : int integer between 1 to 10. 1 means 100k images ... 5 means 500k images, 10 means all 1 million images. Default is 10. path : str The path that the data is downloaded to, defaults is ``data/flickr25k/``. n_threads : int The number of thread to read image. printable : boolean Whether to print infomation when reading images, default is ``False``. Examples ---------- Use 200k images >>> images = tl.files.load_flickr1M_dataset(tag='zebra', size=2) Use 1 Million images >>> images = tl.files.load_flickr1M_dataset(tag='zebra')
[ "Load", "Flick1M", "dataset", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L787-L887
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_cyclegan_dataset
def load_cyclegan_dataset(filename='summer2winter_yosemite', path='data'): """Load images from CycleGAN's database, see `this link <https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/>`__. Parameters ------------ filename : str The dataset you want, see `this link <https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/>`__. path : str The path that the data is downloaded to, defaults is `data/cyclegan` Examples --------- >>> im_train_A, im_train_B, im_test_A, im_test_B = load_cyclegan_dataset(filename='summer2winter_yosemite') """ path = os.path.join(path, 'cyclegan') url = 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/' if folder_exists(os.path.join(path, filename)) is False: logging.info("[*] {} is nonexistent in {}".format(filename, path)) maybe_download_and_extract(filename + '.zip', path, url, extract=True) del_file(os.path.join(path, filename + '.zip')) def load_image_from_folder(path): path_imgs = load_file_list(path=path, regx='\\.jpg', printable=False) return visualize.read_images(path_imgs, path=path, n_threads=10, printable=False) im_train_A = load_image_from_folder(os.path.join(path, filename, "trainA")) im_train_B = load_image_from_folder(os.path.join(path, filename, "trainB")) im_test_A = load_image_from_folder(os.path.join(path, filename, "testA")) im_test_B = load_image_from_folder(os.path.join(path, filename, "testB")) def if_2d_to_3d(images): # [h, w] --> [h, w, 3] for i, _v in enumerate(images): if len(images[i].shape) == 2: images[i] = images[i][:, :, np.newaxis] images[i] = np.tile(images[i], (1, 1, 3)) return images im_train_A = if_2d_to_3d(im_train_A) im_train_B = if_2d_to_3d(im_train_B) im_test_A = if_2d_to_3d(im_test_A) im_test_B = if_2d_to_3d(im_test_B) return im_train_A, im_train_B, im_test_A, im_test_B
python
def load_cyclegan_dataset(filename='summer2winter_yosemite', path='data'): """Load images from CycleGAN's database, see `this link <https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/>`__. Parameters ------------ filename : str The dataset you want, see `this link <https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/>`__. path : str The path that the data is downloaded to, defaults is `data/cyclegan` Examples --------- >>> im_train_A, im_train_B, im_test_A, im_test_B = load_cyclegan_dataset(filename='summer2winter_yosemite') """ path = os.path.join(path, 'cyclegan') url = 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/' if folder_exists(os.path.join(path, filename)) is False: logging.info("[*] {} is nonexistent in {}".format(filename, path)) maybe_download_and_extract(filename + '.zip', path, url, extract=True) del_file(os.path.join(path, filename + '.zip')) def load_image_from_folder(path): path_imgs = load_file_list(path=path, regx='\\.jpg', printable=False) return visualize.read_images(path_imgs, path=path, n_threads=10, printable=False) im_train_A = load_image_from_folder(os.path.join(path, filename, "trainA")) im_train_B = load_image_from_folder(os.path.join(path, filename, "trainB")) im_test_A = load_image_from_folder(os.path.join(path, filename, "testA")) im_test_B = load_image_from_folder(os.path.join(path, filename, "testB")) def if_2d_to_3d(images): # [h, w] --> [h, w, 3] for i, _v in enumerate(images): if len(images[i].shape) == 2: images[i] = images[i][:, :, np.newaxis] images[i] = np.tile(images[i], (1, 1, 3)) return images im_train_A = if_2d_to_3d(im_train_A) im_train_B = if_2d_to_3d(im_train_B) im_test_A = if_2d_to_3d(im_test_A) im_test_B = if_2d_to_3d(im_test_B) return im_train_A, im_train_B, im_test_A, im_test_B
[ "def", "load_cyclegan_dataset", "(", "filename", "=", "'summer2winter_yosemite'", ",", "path", "=", "'data'", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'cyclegan'", ")", "url", "=", "'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/'", "if", "folder_exists", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", ")", "is", "False", ":", "logging", ".", "info", "(", "\"[*] {} is nonexistent in {}\"", ".", "format", "(", "filename", ",", "path", ")", ")", "maybe_download_and_extract", "(", "filename", "+", "'.zip'", ",", "path", ",", "url", ",", "extract", "=", "True", ")", "del_file", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", "+", "'.zip'", ")", ")", "def", "load_image_from_folder", "(", "path", ")", ":", "path_imgs", "=", "load_file_list", "(", "path", "=", "path", ",", "regx", "=", "'\\\\.jpg'", ",", "printable", "=", "False", ")", "return", "visualize", ".", "read_images", "(", "path_imgs", ",", "path", "=", "path", ",", "n_threads", "=", "10", ",", "printable", "=", "False", ")", "im_train_A", "=", "load_image_from_folder", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ",", "\"trainA\"", ")", ")", "im_train_B", "=", "load_image_from_folder", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ",", "\"trainB\"", ")", ")", "im_test_A", "=", "load_image_from_folder", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ",", "\"testA\"", ")", ")", "im_test_B", "=", "load_image_from_folder", "(", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ",", "\"testB\"", ")", ")", "def", "if_2d_to_3d", "(", "images", ")", ":", "# [h, w] --> [h, w, 3]", "for", "i", ",", "_v", "in", "enumerate", "(", "images", ")", ":", "if", "len", "(", "images", "[", "i", "]", ".", "shape", ")", "==", "2", ":", "images", "[", "i", "]", "=", "images", "[", "i", "]", "[", ":", ",", ":", ",", "np", ".", "newaxis", "]", "images", "[", "i", "]", "=", "np", ".", "tile", "(", "images", "[", "i", "]", ",", "(", "1", ",", "1", ",", "3", ")", ")", "return", "images", "im_train_A", "=", "if_2d_to_3d", "(", "im_train_A", ")", "im_train_B", "=", "if_2d_to_3d", "(", "im_train_B", ")", "im_test_A", "=", "if_2d_to_3d", "(", "im_test_A", ")", "im_test_B", "=", "if_2d_to_3d", "(", "im_test_B", ")", "return", "im_train_A", ",", "im_train_B", ",", "im_test_A", ",", "im_test_B" ]
Load images from CycleGAN's database, see `this link <https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/>`__. Parameters ------------ filename : str The dataset you want, see `this link <https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/>`__. path : str The path that the data is downloaded to, defaults is `data/cyclegan` Examples --------- >>> im_train_A, im_train_B, im_test_A, im_test_B = load_cyclegan_dataset(filename='summer2winter_yosemite')
[ "Load", "images", "from", "CycleGAN", "s", "database", "see", "this", "link", "<https", ":", "//", "people", ".", "eecs", ".", "berkeley", ".", "edu", "/", "~taesung_park", "/", "CycleGAN", "/", "datasets", "/", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L890-L934
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
download_file_from_google_drive
def download_file_from_google_drive(ID, destination): """Download file from Google Drive. See ``tl.files.load_celebA_dataset`` for example. Parameters -------------- ID : str The driver ID. destination : str The destination for save file. """ def save_response_content(response, destination, chunk_size=32 * 1024): total_size = int(response.headers.get('content-length', 0)) with open(destination, "wb") as f: for chunk in tqdm(response.iter_content(chunk_size), total=total_size, unit='B', unit_scale=True, desc=destination): if chunk: # filter out keep-alive new chunks f.write(chunk) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={'id': ID}, stream=True) token = get_confirm_token(response) if token: params = {'id': ID, 'confirm': token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination)
python
def download_file_from_google_drive(ID, destination): """Download file from Google Drive. See ``tl.files.load_celebA_dataset`` for example. Parameters -------------- ID : str The driver ID. destination : str The destination for save file. """ def save_response_content(response, destination, chunk_size=32 * 1024): total_size = int(response.headers.get('content-length', 0)) with open(destination, "wb") as f: for chunk in tqdm(response.iter_content(chunk_size), total=total_size, unit='B', unit_scale=True, desc=destination): if chunk: # filter out keep-alive new chunks f.write(chunk) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={'id': ID}, stream=True) token = get_confirm_token(response) if token: params = {'id': ID, 'confirm': token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination)
[ "def", "download_file_from_google_drive", "(", "ID", ",", "destination", ")", ":", "def", "save_response_content", "(", "response", ",", "destination", ",", "chunk_size", "=", "32", "*", "1024", ")", ":", "total_size", "=", "int", "(", "response", ".", "headers", ".", "get", "(", "'content-length'", ",", "0", ")", ")", "with", "open", "(", "destination", ",", "\"wb\"", ")", "as", "f", ":", "for", "chunk", "in", "tqdm", "(", "response", ".", "iter_content", "(", "chunk_size", ")", ",", "total", "=", "total_size", ",", "unit", "=", "'B'", ",", "unit_scale", "=", "True", ",", "desc", "=", "destination", ")", ":", "if", "chunk", ":", "# filter out keep-alive new chunks", "f", ".", "write", "(", "chunk", ")", "def", "get_confirm_token", "(", "response", ")", ":", "for", "key", ",", "value", "in", "response", ".", "cookies", ".", "items", "(", ")", ":", "if", "key", ".", "startswith", "(", "'download_warning'", ")", ":", "return", "value", "return", "None", "URL", "=", "\"https://docs.google.com/uc?export=download\"", "session", "=", "requests", ".", "Session", "(", ")", "response", "=", "session", ".", "get", "(", "URL", ",", "params", "=", "{", "'id'", ":", "ID", "}", ",", "stream", "=", "True", ")", "token", "=", "get_confirm_token", "(", "response", ")", "if", "token", ":", "params", "=", "{", "'id'", ":", "ID", ",", "'confirm'", ":", "token", "}", "response", "=", "session", ".", "get", "(", "URL", ",", "params", "=", "params", ",", "stream", "=", "True", ")", "save_response_content", "(", "response", ",", "destination", ")" ]
Download file from Google Drive. See ``tl.files.load_celebA_dataset`` for example. Parameters -------------- ID : str The driver ID. destination : str The destination for save file.
[ "Download", "file", "from", "Google", "Drive", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L937-L974
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_celebA_dataset
def load_celebA_dataset(path='data'): """Load CelebA dataset Return a list of image path. Parameters ----------- path : str The path that the data is downloaded to, defaults is ``data/celebA/``. """ data_dir = 'celebA' filename, drive_id = "img_align_celeba.zip", "0B7EVK8r0v71pZjFTYXZWM3FlRnM" save_path = os.path.join(path, filename) image_path = os.path.join(path, data_dir) if os.path.exists(image_path): logging.info('[*] {} already exists'.format(save_path)) else: exists_or_mkdir(path) download_file_from_google_drive(drive_id, save_path) zip_dir = '' with zipfile.ZipFile(save_path) as zf: zip_dir = zf.namelist()[0] zf.extractall(path) os.remove(save_path) os.rename(os.path.join(path, zip_dir), image_path) data_files = load_file_list(path=image_path, regx='\\.jpg', printable=False) for i, _v in enumerate(data_files): data_files[i] = os.path.join(image_path, data_files[i]) return data_files
python
def load_celebA_dataset(path='data'): """Load CelebA dataset Return a list of image path. Parameters ----------- path : str The path that the data is downloaded to, defaults is ``data/celebA/``. """ data_dir = 'celebA' filename, drive_id = "img_align_celeba.zip", "0B7EVK8r0v71pZjFTYXZWM3FlRnM" save_path = os.path.join(path, filename) image_path = os.path.join(path, data_dir) if os.path.exists(image_path): logging.info('[*] {} already exists'.format(save_path)) else: exists_or_mkdir(path) download_file_from_google_drive(drive_id, save_path) zip_dir = '' with zipfile.ZipFile(save_path) as zf: zip_dir = zf.namelist()[0] zf.extractall(path) os.remove(save_path) os.rename(os.path.join(path, zip_dir), image_path) data_files = load_file_list(path=image_path, regx='\\.jpg', printable=False) for i, _v in enumerate(data_files): data_files[i] = os.path.join(image_path, data_files[i]) return data_files
[ "def", "load_celebA_dataset", "(", "path", "=", "'data'", ")", ":", "data_dir", "=", "'celebA'", "filename", ",", "drive_id", "=", "\"img_align_celeba.zip\"", ",", "\"0B7EVK8r0v71pZjFTYXZWM3FlRnM\"", "save_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", "image_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "data_dir", ")", "if", "os", ".", "path", ".", "exists", "(", "image_path", ")", ":", "logging", ".", "info", "(", "'[*] {} already exists'", ".", "format", "(", "save_path", ")", ")", "else", ":", "exists_or_mkdir", "(", "path", ")", "download_file_from_google_drive", "(", "drive_id", ",", "save_path", ")", "zip_dir", "=", "''", "with", "zipfile", ".", "ZipFile", "(", "save_path", ")", "as", "zf", ":", "zip_dir", "=", "zf", ".", "namelist", "(", ")", "[", "0", "]", "zf", ".", "extractall", "(", "path", ")", "os", ".", "remove", "(", "save_path", ")", "os", ".", "rename", "(", "os", ".", "path", ".", "join", "(", "path", ",", "zip_dir", ")", ",", "image_path", ")", "data_files", "=", "load_file_list", "(", "path", "=", "image_path", ",", "regx", "=", "'\\\\.jpg'", ",", "printable", "=", "False", ")", "for", "i", ",", "_v", "in", "enumerate", "(", "data_files", ")", ":", "data_files", "[", "i", "]", "=", "os", ".", "path", ".", "join", "(", "image_path", ",", "data_files", "[", "i", "]", ")", "return", "data_files" ]
Load CelebA dataset Return a list of image path. Parameters ----------- path : str The path that the data is downloaded to, defaults is ``data/celebA/``.
[ "Load", "CelebA", "dataset" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L977-L1007
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
save_npz
def save_npz(save_list=None, name='model.npz', sess=None): """Input parameters and the file name, save parameters into .npz file. Use tl.utils.load_npz() to restore. Parameters ---------- save_list : list of tensor A list of parameters (tensor) to be saved. name : str The name of the `.npz` file. sess : None or Session Session may be required in some case. Examples -------- Save model to npz >>> tl.files.save_npz(network.all_params, name='model.npz', sess=sess) Load model from npz (Method 1) >>> load_params = tl.files.load_npz(name='model.npz') >>> tl.files.assign_params(sess, load_params, network) Load model from npz (Method 2) >>> tl.files.load_and_assign_npz(sess=sess, name='model.npz', network=network) Notes ----- If you got session issues, you can change the value.eval() to value.eval(session=sess) References ---------- `Saving dictionary using numpy <http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez>`__ """ logging.info("[*] Saving TL params into %s" % name) if save_list is None: save_list = [] save_list_var = [] if sess: save_list_var = sess.run(save_list) else: try: save_list_var.extend([v.eval() for v in save_list]) except Exception: logging.info( " Fail to save model, Hint: pass the session into this function, tl.files.save_npz(network.all_params, name='model.npz', sess=sess)" ) np.savez(name, params=save_list_var) save_list_var = None del save_list_var logging.info("[*] Saved")
python
def save_npz(save_list=None, name='model.npz', sess=None): """Input parameters and the file name, save parameters into .npz file. Use tl.utils.load_npz() to restore. Parameters ---------- save_list : list of tensor A list of parameters (tensor) to be saved. name : str The name of the `.npz` file. sess : None or Session Session may be required in some case. Examples -------- Save model to npz >>> tl.files.save_npz(network.all_params, name='model.npz', sess=sess) Load model from npz (Method 1) >>> load_params = tl.files.load_npz(name='model.npz') >>> tl.files.assign_params(sess, load_params, network) Load model from npz (Method 2) >>> tl.files.load_and_assign_npz(sess=sess, name='model.npz', network=network) Notes ----- If you got session issues, you can change the value.eval() to value.eval(session=sess) References ---------- `Saving dictionary using numpy <http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez>`__ """ logging.info("[*] Saving TL params into %s" % name) if save_list is None: save_list = [] save_list_var = [] if sess: save_list_var = sess.run(save_list) else: try: save_list_var.extend([v.eval() for v in save_list]) except Exception: logging.info( " Fail to save model, Hint: pass the session into this function, tl.files.save_npz(network.all_params, name='model.npz', sess=sess)" ) np.savez(name, params=save_list_var) save_list_var = None del save_list_var logging.info("[*] Saved")
[ "def", "save_npz", "(", "save_list", "=", "None", ",", "name", "=", "'model.npz'", ",", "sess", "=", "None", ")", ":", "logging", ".", "info", "(", "\"[*] Saving TL params into %s\"", "%", "name", ")", "if", "save_list", "is", "None", ":", "save_list", "=", "[", "]", "save_list_var", "=", "[", "]", "if", "sess", ":", "save_list_var", "=", "sess", ".", "run", "(", "save_list", ")", "else", ":", "try", ":", "save_list_var", ".", "extend", "(", "[", "v", ".", "eval", "(", ")", "for", "v", "in", "save_list", "]", ")", "except", "Exception", ":", "logging", ".", "info", "(", "\" Fail to save model, Hint: pass the session into this function, tl.files.save_npz(network.all_params, name='model.npz', sess=sess)\"", ")", "np", ".", "savez", "(", "name", ",", "params", "=", "save_list_var", ")", "save_list_var", "=", "None", "del", "save_list_var", "logging", ".", "info", "(", "\"[*] Saved\"", ")" ]
Input parameters and the file name, save parameters into .npz file. Use tl.utils.load_npz() to restore. Parameters ---------- save_list : list of tensor A list of parameters (tensor) to be saved. name : str The name of the `.npz` file. sess : None or Session Session may be required in some case. Examples -------- Save model to npz >>> tl.files.save_npz(network.all_params, name='model.npz', sess=sess) Load model from npz (Method 1) >>> load_params = tl.files.load_npz(name='model.npz') >>> tl.files.assign_params(sess, load_params, network) Load model from npz (Method 2) >>> tl.files.load_and_assign_npz(sess=sess, name='model.npz', network=network) Notes ----- If you got session issues, you can change the value.eval() to value.eval(session=sess) References ---------- `Saving dictionary using numpy <http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez>`__
[ "Input", "parameters", "and", "the", "file", "name", "save", "parameters", "into", ".", "npz", "file", ".", "Use", "tl", ".", "utils", ".", "load_npz", "()", "to", "restore", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L1568-L1621
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_npz
def load_npz(path='', name='model.npz'): """Load the parameters of a Model saved by tl.files.save_npz(). Parameters ---------- path : str Folder path to `.npz` file. name : str The name of the `.npz` file. Returns -------- list of array A list of parameters in order. Examples -------- - See ``tl.files.save_npz`` References ---------- - `Saving dictionary using numpy <http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez>`__ """ d = np.load(os.path.join(path, name)) return d['params']
python
def load_npz(path='', name='model.npz'): """Load the parameters of a Model saved by tl.files.save_npz(). Parameters ---------- path : str Folder path to `.npz` file. name : str The name of the `.npz` file. Returns -------- list of array A list of parameters in order. Examples -------- - See ``tl.files.save_npz`` References ---------- - `Saving dictionary using numpy <http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez>`__ """ d = np.load(os.path.join(path, name)) return d['params']
[ "def", "load_npz", "(", "path", "=", "''", ",", "name", "=", "'model.npz'", ")", ":", "d", "=", "np", ".", "load", "(", "os", ".", "path", ".", "join", "(", "path", ",", "name", ")", ")", "return", "d", "[", "'params'", "]" ]
Load the parameters of a Model saved by tl.files.save_npz(). Parameters ---------- path : str Folder path to `.npz` file. name : str The name of the `.npz` file. Returns -------- list of array A list of parameters in order. Examples -------- - See ``tl.files.save_npz`` References ---------- - `Saving dictionary using numpy <http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez>`__
[ "Load", "the", "parameters", "of", "a", "Model", "saved", "by", "tl", ".", "files", ".", "save_npz", "()", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L1624-L1649
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
assign_params
def assign_params(sess, params, network): """Assign the given parameters to the TensorLayer network. Parameters ---------- sess : Session TensorFlow Session. params : list of array A list of parameters (array) in order. network : :class:`Layer` The network to be assigned. Returns -------- list of operations A list of tf ops in order that assign params. Support sess.run(ops) manually. Examples -------- - See ``tl.files.save_npz`` References ---------- - `Assign value to a TensorFlow variable <http://stackoverflow.com/questions/34220532/how-to-assign-value-to-a-tensorflow-variable>`__ """ ops = [] for idx, param in enumerate(params): ops.append(network.all_params[idx].assign(param)) if sess is not None: sess.run(ops) return ops
python
def assign_params(sess, params, network): """Assign the given parameters to the TensorLayer network. Parameters ---------- sess : Session TensorFlow Session. params : list of array A list of parameters (array) in order. network : :class:`Layer` The network to be assigned. Returns -------- list of operations A list of tf ops in order that assign params. Support sess.run(ops) manually. Examples -------- - See ``tl.files.save_npz`` References ---------- - `Assign value to a TensorFlow variable <http://stackoverflow.com/questions/34220532/how-to-assign-value-to-a-tensorflow-variable>`__ """ ops = [] for idx, param in enumerate(params): ops.append(network.all_params[idx].assign(param)) if sess is not None: sess.run(ops) return ops
[ "def", "assign_params", "(", "sess", ",", "params", ",", "network", ")", ":", "ops", "=", "[", "]", "for", "idx", ",", "param", "in", "enumerate", "(", "params", ")", ":", "ops", ".", "append", "(", "network", ".", "all_params", "[", "idx", "]", ".", "assign", "(", "param", ")", ")", "if", "sess", "is", "not", "None", ":", "sess", ".", "run", "(", "ops", ")", "return", "ops" ]
Assign the given parameters to the TensorLayer network. Parameters ---------- sess : Session TensorFlow Session. params : list of array A list of parameters (array) in order. network : :class:`Layer` The network to be assigned. Returns -------- list of operations A list of tf ops in order that assign params. Support sess.run(ops) manually. Examples -------- - See ``tl.files.save_npz`` References ---------- - `Assign value to a TensorFlow variable <http://stackoverflow.com/questions/34220532/how-to-assign-value-to-a-tensorflow-variable>`__
[ "Assign", "the", "given", "parameters", "to", "the", "TensorLayer", "network", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L1652-L1683
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_and_assign_npz
def load_and_assign_npz(sess=None, name=None, network=None): """Load model from npz and assign to a network. Parameters ------------- sess : Session TensorFlow Session. name : str The name of the `.npz` file. network : :class:`Layer` The network to be assigned. Returns -------- False or network Returns False, if the model is not exist. Examples -------- - See ``tl.files.save_npz`` """ if network is None: raise ValueError("network is None.") if sess is None: raise ValueError("session is None.") if not os.path.exists(name): logging.error("file {} doesn't exist.".format(name)) return False else: params = load_npz(name=name) assign_params(sess, params, network) logging.info("[*] Load {} SUCCESS!".format(name)) return network
python
def load_and_assign_npz(sess=None, name=None, network=None): """Load model from npz and assign to a network. Parameters ------------- sess : Session TensorFlow Session. name : str The name of the `.npz` file. network : :class:`Layer` The network to be assigned. Returns -------- False or network Returns False, if the model is not exist. Examples -------- - See ``tl.files.save_npz`` """ if network is None: raise ValueError("network is None.") if sess is None: raise ValueError("session is None.") if not os.path.exists(name): logging.error("file {} doesn't exist.".format(name)) return False else: params = load_npz(name=name) assign_params(sess, params, network) logging.info("[*] Load {} SUCCESS!".format(name)) return network
[ "def", "load_and_assign_npz", "(", "sess", "=", "None", ",", "name", "=", "None", ",", "network", "=", "None", ")", ":", "if", "network", "is", "None", ":", "raise", "ValueError", "(", "\"network is None.\"", ")", "if", "sess", "is", "None", ":", "raise", "ValueError", "(", "\"session is None.\"", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "name", ")", ":", "logging", ".", "error", "(", "\"file {} doesn't exist.\"", ".", "format", "(", "name", ")", ")", "return", "False", "else", ":", "params", "=", "load_npz", "(", "name", "=", "name", ")", "assign_params", "(", "sess", ",", "params", ",", "network", ")", "logging", ".", "info", "(", "\"[*] Load {} SUCCESS!\"", ".", "format", "(", "name", ")", ")", "return", "network" ]
Load model from npz and assign to a network. Parameters ------------- sess : Session TensorFlow Session. name : str The name of the `.npz` file. network : :class:`Layer` The network to be assigned. Returns -------- False or network Returns False, if the model is not exist. Examples -------- - See ``tl.files.save_npz``
[ "Load", "model", "from", "npz", "and", "assign", "to", "a", "network", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L1686-L1719
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
save_npz_dict
def save_npz_dict(save_list=None, name='model.npz', sess=None): """Input parameters and the file name, save parameters as a dictionary into .npz file. Use ``tl.files.load_and_assign_npz_dict()`` to restore. Parameters ---------- save_list : list of parameters A list of parameters (tensor) to be saved. name : str The name of the `.npz` file. sess : Session TensorFlow Session. """ if sess is None: raise ValueError("session is None.") if save_list is None: save_list = [] save_list_names = [tensor.name for tensor in save_list] save_list_var = sess.run(save_list) save_var_dict = {save_list_names[idx]: val for idx, val in enumerate(save_list_var)} np.savez(name, **save_var_dict) save_list_var = None save_var_dict = None del save_list_var del save_var_dict logging.info("[*] Model saved in npz_dict %s" % name)
python
def save_npz_dict(save_list=None, name='model.npz', sess=None): """Input parameters and the file name, save parameters as a dictionary into .npz file. Use ``tl.files.load_and_assign_npz_dict()`` to restore. Parameters ---------- save_list : list of parameters A list of parameters (tensor) to be saved. name : str The name of the `.npz` file. sess : Session TensorFlow Session. """ if sess is None: raise ValueError("session is None.") if save_list is None: save_list = [] save_list_names = [tensor.name for tensor in save_list] save_list_var = sess.run(save_list) save_var_dict = {save_list_names[idx]: val for idx, val in enumerate(save_list_var)} np.savez(name, **save_var_dict) save_list_var = None save_var_dict = None del save_list_var del save_var_dict logging.info("[*] Model saved in npz_dict %s" % name)
[ "def", "save_npz_dict", "(", "save_list", "=", "None", ",", "name", "=", "'model.npz'", ",", "sess", "=", "None", ")", ":", "if", "sess", "is", "None", ":", "raise", "ValueError", "(", "\"session is None.\"", ")", "if", "save_list", "is", "None", ":", "save_list", "=", "[", "]", "save_list_names", "=", "[", "tensor", ".", "name", "for", "tensor", "in", "save_list", "]", "save_list_var", "=", "sess", ".", "run", "(", "save_list", ")", "save_var_dict", "=", "{", "save_list_names", "[", "idx", "]", ":", "val", "for", "idx", ",", "val", "in", "enumerate", "(", "save_list_var", ")", "}", "np", ".", "savez", "(", "name", ",", "*", "*", "save_var_dict", ")", "save_list_var", "=", "None", "save_var_dict", "=", "None", "del", "save_list_var", "del", "save_var_dict", "logging", ".", "info", "(", "\"[*] Model saved in npz_dict %s\"", "%", "name", ")" ]
Input parameters and the file name, save parameters as a dictionary into .npz file. Use ``tl.files.load_and_assign_npz_dict()`` to restore. Parameters ---------- save_list : list of parameters A list of parameters (tensor) to be saved. name : str The name of the `.npz` file. sess : Session TensorFlow Session.
[ "Input", "parameters", "and", "the", "file", "name", "save", "parameters", "as", "a", "dictionary", "into", ".", "npz", "file", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L1722-L1750
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_and_assign_npz_dict
def load_and_assign_npz_dict(name='model.npz', sess=None): """Restore the parameters saved by ``tl.files.save_npz_dict()``. Parameters ---------- name : str The name of the `.npz` file. sess : Session TensorFlow Session. """ if sess is None: raise ValueError("session is None.") if not os.path.exists(name): logging.error("file {} doesn't exist.".format(name)) return False params = np.load(name) if len(params.keys()) != len(set(params.keys())): raise Exception("Duplication in model npz_dict %s" % name) ops = list() for key in params.keys(): try: # tensor = tf.get_default_graph().get_tensor_by_name(key) # varlist = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=key) varlist = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=key) if len(varlist) > 1: raise Exception("[!] Multiple candidate variables to be assigned for name %s" % key) elif len(varlist) == 0: raise KeyError else: ops.append(varlist[0].assign(params[key])) logging.info("[*] params restored: %s" % key) except KeyError: logging.info("[!] Warning: Tensor named %s not found in network." % key) sess.run(ops) logging.info("[*] Model restored from npz_dict %s" % name)
python
def load_and_assign_npz_dict(name='model.npz', sess=None): """Restore the parameters saved by ``tl.files.save_npz_dict()``. Parameters ---------- name : str The name of the `.npz` file. sess : Session TensorFlow Session. """ if sess is None: raise ValueError("session is None.") if not os.path.exists(name): logging.error("file {} doesn't exist.".format(name)) return False params = np.load(name) if len(params.keys()) != len(set(params.keys())): raise Exception("Duplication in model npz_dict %s" % name) ops = list() for key in params.keys(): try: # tensor = tf.get_default_graph().get_tensor_by_name(key) # varlist = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=key) varlist = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=key) if len(varlist) > 1: raise Exception("[!] Multiple candidate variables to be assigned for name %s" % key) elif len(varlist) == 0: raise KeyError else: ops.append(varlist[0].assign(params[key])) logging.info("[*] params restored: %s" % key) except KeyError: logging.info("[!] Warning: Tensor named %s not found in network." % key) sess.run(ops) logging.info("[*] Model restored from npz_dict %s" % name)
[ "def", "load_and_assign_npz_dict", "(", "name", "=", "'model.npz'", ",", "sess", "=", "None", ")", ":", "if", "sess", "is", "None", ":", "raise", "ValueError", "(", "\"session is None.\"", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "name", ")", ":", "logging", ".", "error", "(", "\"file {} doesn't exist.\"", ".", "format", "(", "name", ")", ")", "return", "False", "params", "=", "np", ".", "load", "(", "name", ")", "if", "len", "(", "params", ".", "keys", "(", ")", ")", "!=", "len", "(", "set", "(", "params", ".", "keys", "(", ")", ")", ")", ":", "raise", "Exception", "(", "\"Duplication in model npz_dict %s\"", "%", "name", ")", "ops", "=", "list", "(", ")", "for", "key", "in", "params", ".", "keys", "(", ")", ":", "try", ":", "# tensor = tf.get_default_graph().get_tensor_by_name(key)", "# varlist = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=key)", "varlist", "=", "tf", ".", "get_collection", "(", "tf", ".", "GraphKeys", ".", "GLOBAL_VARIABLES", ",", "scope", "=", "key", ")", "if", "len", "(", "varlist", ")", ">", "1", ":", "raise", "Exception", "(", "\"[!] Multiple candidate variables to be assigned for name %s\"", "%", "key", ")", "elif", "len", "(", "varlist", ")", "==", "0", ":", "raise", "KeyError", "else", ":", "ops", ".", "append", "(", "varlist", "[", "0", "]", ".", "assign", "(", "params", "[", "key", "]", ")", ")", "logging", ".", "info", "(", "\"[*] params restored: %s\"", "%", "key", ")", "except", "KeyError", ":", "logging", ".", "info", "(", "\"[!] Warning: Tensor named %s not found in network.\"", "%", "key", ")", "sess", ".", "run", "(", "ops", ")", "logging", ".", "info", "(", "\"[*] Model restored from npz_dict %s\"", "%", "name", ")" ]
Restore the parameters saved by ``tl.files.save_npz_dict()``. Parameters ---------- name : str The name of the `.npz` file. sess : Session TensorFlow Session.
[ "Restore", "the", "parameters", "saved", "by", "tl", ".", "files", ".", "save_npz_dict", "()", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L1753-L1791
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
save_ckpt
def save_ckpt( sess=None, mode_name='model.ckpt', save_dir='checkpoint', var_list=None, global_step=None, printable=False ): """Save parameters into `ckpt` file. Parameters ------------ sess : Session TensorFlow Session. mode_name : str The name of the model, default is ``model.ckpt``. save_dir : str The path / file directory to the `ckpt`, default is ``checkpoint``. var_list : list of tensor The parameters / variables (tensor) to be saved. If empty, save all global variables (default). global_step : int or None Step number. printable : boolean Whether to print all parameters information. See Also -------- load_ckpt """ if sess is None: raise ValueError("session is None.") if var_list is None: var_list = [] ckpt_file = os.path.join(save_dir, mode_name) if var_list == []: var_list = tf.global_variables() logging.info("[*] save %s n_params: %d" % (ckpt_file, len(var_list))) if printable: for idx, v in enumerate(var_list): logging.info(" param {:3}: {:15} {}".format(idx, v.name, str(v.get_shape()))) saver = tf.train.Saver(var_list) saver.save(sess, ckpt_file, global_step=global_step)
python
def save_ckpt( sess=None, mode_name='model.ckpt', save_dir='checkpoint', var_list=None, global_step=None, printable=False ): """Save parameters into `ckpt` file. Parameters ------------ sess : Session TensorFlow Session. mode_name : str The name of the model, default is ``model.ckpt``. save_dir : str The path / file directory to the `ckpt`, default is ``checkpoint``. var_list : list of tensor The parameters / variables (tensor) to be saved. If empty, save all global variables (default). global_step : int or None Step number. printable : boolean Whether to print all parameters information. See Also -------- load_ckpt """ if sess is None: raise ValueError("session is None.") if var_list is None: var_list = [] ckpt_file = os.path.join(save_dir, mode_name) if var_list == []: var_list = tf.global_variables() logging.info("[*] save %s n_params: %d" % (ckpt_file, len(var_list))) if printable: for idx, v in enumerate(var_list): logging.info(" param {:3}: {:15} {}".format(idx, v.name, str(v.get_shape()))) saver = tf.train.Saver(var_list) saver.save(sess, ckpt_file, global_step=global_step)
[ "def", "save_ckpt", "(", "sess", "=", "None", ",", "mode_name", "=", "'model.ckpt'", ",", "save_dir", "=", "'checkpoint'", ",", "var_list", "=", "None", ",", "global_step", "=", "None", ",", "printable", "=", "False", ")", ":", "if", "sess", "is", "None", ":", "raise", "ValueError", "(", "\"session is None.\"", ")", "if", "var_list", "is", "None", ":", "var_list", "=", "[", "]", "ckpt_file", "=", "os", ".", "path", ".", "join", "(", "save_dir", ",", "mode_name", ")", "if", "var_list", "==", "[", "]", ":", "var_list", "=", "tf", ".", "global_variables", "(", ")", "logging", ".", "info", "(", "\"[*] save %s n_params: %d\"", "%", "(", "ckpt_file", ",", "len", "(", "var_list", ")", ")", ")", "if", "printable", ":", "for", "idx", ",", "v", "in", "enumerate", "(", "var_list", ")", ":", "logging", ".", "info", "(", "\" param {:3}: {:15} {}\"", ".", "format", "(", "idx", ",", "v", ".", "name", ",", "str", "(", "v", ".", "get_shape", "(", ")", ")", ")", ")", "saver", "=", "tf", ".", "train", ".", "Saver", "(", "var_list", ")", "saver", ".", "save", "(", "sess", ",", "ckpt_file", ",", "global_step", "=", "global_step", ")" ]
Save parameters into `ckpt` file. Parameters ------------ sess : Session TensorFlow Session. mode_name : str The name of the model, default is ``model.ckpt``. save_dir : str The path / file directory to the `ckpt`, default is ``checkpoint``. var_list : list of tensor The parameters / variables (tensor) to be saved. If empty, save all global variables (default). global_step : int or None Step number. printable : boolean Whether to print all parameters information. See Also -------- load_ckpt
[ "Save", "parameters", "into", "ckpt", "file", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L1794-L1835
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_ckpt
def load_ckpt(sess=None, mode_name='model.ckpt', save_dir='checkpoint', var_list=None, is_latest=True, printable=False): """Load parameters from `ckpt` file. Parameters ------------ sess : Session TensorFlow Session. mode_name : str The name of the model, default is ``model.ckpt``. save_dir : str The path / file directory to the `ckpt`, default is ``checkpoint``. var_list : list of tensor The parameters / variables (tensor) to be saved. If empty, save all global variables (default). is_latest : boolean Whether to load the latest `ckpt`, if False, load the `ckpt` with the name of ```mode_name``. printable : boolean Whether to print all parameters information. Examples ---------- - Save all global parameters. >>> tl.files.save_ckpt(sess=sess, mode_name='model.ckpt', save_dir='model', printable=True) - Save specific parameters. >>> tl.files.save_ckpt(sess=sess, mode_name='model.ckpt', var_list=net.all_params, save_dir='model', printable=True) - Load latest ckpt. >>> tl.files.load_ckpt(sess=sess, var_list=net.all_params, save_dir='model', printable=True) - Load specific ckpt. >>> tl.files.load_ckpt(sess=sess, mode_name='model.ckpt', var_list=net.all_params, save_dir='model', is_latest=False, printable=True) """ if sess is None: raise ValueError("session is None.") if var_list is None: var_list = [] if is_latest: ckpt_file = tf.train.latest_checkpoint(save_dir) else: ckpt_file = os.path.join(save_dir, mode_name) if not var_list: var_list = tf.global_variables() logging.info("[*] load %s n_params: %d" % (ckpt_file, len(var_list))) if printable: for idx, v in enumerate(var_list): logging.info(" param {:3}: {:15} {}".format(idx, v.name, str(v.get_shape()))) try: saver = tf.train.Saver(var_list) saver.restore(sess, ckpt_file) except Exception as e: logging.info(e) logging.info("[*] load ckpt fail ...")
python
def load_ckpt(sess=None, mode_name='model.ckpt', save_dir='checkpoint', var_list=None, is_latest=True, printable=False): """Load parameters from `ckpt` file. Parameters ------------ sess : Session TensorFlow Session. mode_name : str The name of the model, default is ``model.ckpt``. save_dir : str The path / file directory to the `ckpt`, default is ``checkpoint``. var_list : list of tensor The parameters / variables (tensor) to be saved. If empty, save all global variables (default). is_latest : boolean Whether to load the latest `ckpt`, if False, load the `ckpt` with the name of ```mode_name``. printable : boolean Whether to print all parameters information. Examples ---------- - Save all global parameters. >>> tl.files.save_ckpt(sess=sess, mode_name='model.ckpt', save_dir='model', printable=True) - Save specific parameters. >>> tl.files.save_ckpt(sess=sess, mode_name='model.ckpt', var_list=net.all_params, save_dir='model', printable=True) - Load latest ckpt. >>> tl.files.load_ckpt(sess=sess, var_list=net.all_params, save_dir='model', printable=True) - Load specific ckpt. >>> tl.files.load_ckpt(sess=sess, mode_name='model.ckpt', var_list=net.all_params, save_dir='model', is_latest=False, printable=True) """ if sess is None: raise ValueError("session is None.") if var_list is None: var_list = [] if is_latest: ckpt_file = tf.train.latest_checkpoint(save_dir) else: ckpt_file = os.path.join(save_dir, mode_name) if not var_list: var_list = tf.global_variables() logging.info("[*] load %s n_params: %d" % (ckpt_file, len(var_list))) if printable: for idx, v in enumerate(var_list): logging.info(" param {:3}: {:15} {}".format(idx, v.name, str(v.get_shape()))) try: saver = tf.train.Saver(var_list) saver.restore(sess, ckpt_file) except Exception as e: logging.info(e) logging.info("[*] load ckpt fail ...")
[ "def", "load_ckpt", "(", "sess", "=", "None", ",", "mode_name", "=", "'model.ckpt'", ",", "save_dir", "=", "'checkpoint'", ",", "var_list", "=", "None", ",", "is_latest", "=", "True", ",", "printable", "=", "False", ")", ":", "if", "sess", "is", "None", ":", "raise", "ValueError", "(", "\"session is None.\"", ")", "if", "var_list", "is", "None", ":", "var_list", "=", "[", "]", "if", "is_latest", ":", "ckpt_file", "=", "tf", ".", "train", ".", "latest_checkpoint", "(", "save_dir", ")", "else", ":", "ckpt_file", "=", "os", ".", "path", ".", "join", "(", "save_dir", ",", "mode_name", ")", "if", "not", "var_list", ":", "var_list", "=", "tf", ".", "global_variables", "(", ")", "logging", ".", "info", "(", "\"[*] load %s n_params: %d\"", "%", "(", "ckpt_file", ",", "len", "(", "var_list", ")", ")", ")", "if", "printable", ":", "for", "idx", ",", "v", "in", "enumerate", "(", "var_list", ")", ":", "logging", ".", "info", "(", "\" param {:3}: {:15} {}\"", ".", "format", "(", "idx", ",", "v", ".", "name", ",", "str", "(", "v", ".", "get_shape", "(", ")", ")", ")", ")", "try", ":", "saver", "=", "tf", ".", "train", ".", "Saver", "(", "var_list", ")", "saver", ".", "restore", "(", "sess", ",", "ckpt_file", ")", "except", "Exception", "as", "e", ":", "logging", ".", "info", "(", "e", ")", "logging", ".", "info", "(", "\"[*] load ckpt fail ...\"", ")" ]
Load parameters from `ckpt` file. Parameters ------------ sess : Session TensorFlow Session. mode_name : str The name of the model, default is ``model.ckpt``. save_dir : str The path / file directory to the `ckpt`, default is ``checkpoint``. var_list : list of tensor The parameters / variables (tensor) to be saved. If empty, save all global variables (default). is_latest : boolean Whether to load the latest `ckpt`, if False, load the `ckpt` with the name of ```mode_name``. printable : boolean Whether to print all parameters information. Examples ---------- - Save all global parameters. >>> tl.files.save_ckpt(sess=sess, mode_name='model.ckpt', save_dir='model', printable=True) - Save specific parameters. >>> tl.files.save_ckpt(sess=sess, mode_name='model.ckpt', var_list=net.all_params, save_dir='model', printable=True) - Load latest ckpt. >>> tl.files.load_ckpt(sess=sess, var_list=net.all_params, save_dir='model', printable=True) - Load specific ckpt. >>> tl.files.load_ckpt(sess=sess, mode_name='model.ckpt', var_list=net.all_params, save_dir='model', is_latest=False, printable=True)
[ "Load", "parameters", "from", "ckpt", "file", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L1838-L1899
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_npy_to_any
def load_npy_to_any(path='', name='file.npy'): """Load `.npy` file. Parameters ------------ path : str Path to the file (optional). name : str File name. Examples --------- - see tl.files.save_any_to_npy() """ file_path = os.path.join(path, name) try: return np.load(file_path).item() except Exception: return np.load(file_path) raise Exception("[!] Fail to load %s" % file_path)
python
def load_npy_to_any(path='', name='file.npy'): """Load `.npy` file. Parameters ------------ path : str Path to the file (optional). name : str File name. Examples --------- - see tl.files.save_any_to_npy() """ file_path = os.path.join(path, name) try: return np.load(file_path).item() except Exception: return np.load(file_path) raise Exception("[!] Fail to load %s" % file_path)
[ "def", "load_npy_to_any", "(", "path", "=", "''", ",", "name", "=", "'file.npy'", ")", ":", "file_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "name", ")", "try", ":", "return", "np", ".", "load", "(", "file_path", ")", ".", "item", "(", ")", "except", "Exception", ":", "return", "np", ".", "load", "(", "file_path", ")", "raise", "Exception", "(", "\"[!] Fail to load %s\"", "%", "file_path", ")" ]
Load `.npy` file. Parameters ------------ path : str Path to the file (optional). name : str File name. Examples --------- - see tl.files.save_any_to_npy()
[ "Load", ".", "npy", "file", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L2093-L2113
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_file_list
def load_file_list(path=None, regx='\.jpg', printable=True, keep_prefix=False): r"""Return a file list in a folder by given a path and regular expression. Parameters ---------- path : str or None A folder path, if `None`, use the current directory. regx : str The regx of file name. printable : boolean Whether to print the files infomation. keep_prefix : boolean Whether to keep path in the file name. Examples ---------- >>> file_list = tl.files.load_file_list(path=None, regx='w1pre_[0-9]+\.(npz)') """ if path is None: path = os.getcwd() file_list = os.listdir(path) return_list = [] for _, f in enumerate(file_list): if re.search(regx, f): return_list.append(f) # return_list.sort() if keep_prefix: for i, f in enumerate(return_list): return_list[i] = os.path.join(path, f) if printable: logging.info('Match file list = %s' % return_list) logging.info('Number of files = %d' % len(return_list)) return return_list
python
def load_file_list(path=None, regx='\.jpg', printable=True, keep_prefix=False): r"""Return a file list in a folder by given a path and regular expression. Parameters ---------- path : str or None A folder path, if `None`, use the current directory. regx : str The regx of file name. printable : boolean Whether to print the files infomation. keep_prefix : boolean Whether to keep path in the file name. Examples ---------- >>> file_list = tl.files.load_file_list(path=None, regx='w1pre_[0-9]+\.(npz)') """ if path is None: path = os.getcwd() file_list = os.listdir(path) return_list = [] for _, f in enumerate(file_list): if re.search(regx, f): return_list.append(f) # return_list.sort() if keep_prefix: for i, f in enumerate(return_list): return_list[i] = os.path.join(path, f) if printable: logging.info('Match file list = %s' % return_list) logging.info('Number of files = %d' % len(return_list)) return return_list
[ "def", "load_file_list", "(", "path", "=", "None", ",", "regx", "=", "'\\.jpg'", ",", "printable", "=", "True", ",", "keep_prefix", "=", "False", ")", ":", "if", "path", "is", "None", ":", "path", "=", "os", ".", "getcwd", "(", ")", "file_list", "=", "os", ".", "listdir", "(", "path", ")", "return_list", "=", "[", "]", "for", "_", ",", "f", "in", "enumerate", "(", "file_list", ")", ":", "if", "re", ".", "search", "(", "regx", ",", "f", ")", ":", "return_list", ".", "append", "(", "f", ")", "# return_list.sort()", "if", "keep_prefix", ":", "for", "i", ",", "f", "in", "enumerate", "(", "return_list", ")", ":", "return_list", "[", "i", "]", "=", "os", ".", "path", ".", "join", "(", "path", ",", "f", ")", "if", "printable", ":", "logging", ".", "info", "(", "'Match file list = %s'", "%", "return_list", ")", "logging", ".", "info", "(", "'Number of files = %d'", "%", "len", "(", "return_list", ")", ")", "return", "return_list" ]
r"""Return a file list in a folder by given a path and regular expression. Parameters ---------- path : str or None A folder path, if `None`, use the current directory. regx : str The regx of file name. printable : boolean Whether to print the files infomation. keep_prefix : boolean Whether to keep path in the file name. Examples ---------- >>> file_list = tl.files.load_file_list(path=None, regx='w1pre_[0-9]+\.(npz)')
[ "r", "Return", "a", "file", "list", "in", "a", "folder", "by", "given", "a", "path", "and", "regular", "expression", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L2148-L2182
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
load_folder_list
def load_folder_list(path=""): """Return a folder list in a folder by given a folder path. Parameters ---------- path : str A folder path. """ return [os.path.join(path, o) for o in os.listdir(path) if os.path.isdir(os.path.join(path, o))]
python
def load_folder_list(path=""): """Return a folder list in a folder by given a folder path. Parameters ---------- path : str A folder path. """ return [os.path.join(path, o) for o in os.listdir(path) if os.path.isdir(os.path.join(path, o))]
[ "def", "load_folder_list", "(", "path", "=", "\"\"", ")", ":", "return", "[", "os", ".", "path", ".", "join", "(", "path", ",", "o", ")", "for", "o", "in", "os", ".", "listdir", "(", "path", ")", "if", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "path", ",", "o", ")", ")", "]" ]
Return a folder list in a folder by given a folder path. Parameters ---------- path : str A folder path.
[ "Return", "a", "folder", "list", "in", "a", "folder", "by", "given", "a", "folder", "path", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L2185-L2194
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
exists_or_mkdir
def exists_or_mkdir(path, verbose=True): """Check a folder by given name, if not exist, create the folder and return False, if directory exists, return True. Parameters ---------- path : str A folder path. verbose : boolean If True (default), prints results. Returns -------- boolean True if folder already exist, otherwise, returns False and create the folder. Examples -------- >>> tl.files.exists_or_mkdir("checkpoints/train") """ if not os.path.exists(path): if verbose: logging.info("[*] creates %s ..." % path) os.makedirs(path) return False else: if verbose: logging.info("[!] %s exists ..." % path) return True
python
def exists_or_mkdir(path, verbose=True): """Check a folder by given name, if not exist, create the folder and return False, if directory exists, return True. Parameters ---------- path : str A folder path. verbose : boolean If True (default), prints results. Returns -------- boolean True if folder already exist, otherwise, returns False and create the folder. Examples -------- >>> tl.files.exists_or_mkdir("checkpoints/train") """ if not os.path.exists(path): if verbose: logging.info("[*] creates %s ..." % path) os.makedirs(path) return False else: if verbose: logging.info("[!] %s exists ..." % path) return True
[ "def", "exists_or_mkdir", "(", "path", ",", "verbose", "=", "True", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "if", "verbose", ":", "logging", ".", "info", "(", "\"[*] creates %s ...\"", "%", "path", ")", "os", ".", "makedirs", "(", "path", ")", "return", "False", "else", ":", "if", "verbose", ":", "logging", ".", "info", "(", "\"[!] %s exists ...\"", "%", "path", ")", "return", "True" ]
Check a folder by given name, if not exist, create the folder and return False, if directory exists, return True. Parameters ---------- path : str A folder path. verbose : boolean If True (default), prints results. Returns -------- boolean True if folder already exist, otherwise, returns False and create the folder. Examples -------- >>> tl.files.exists_or_mkdir("checkpoints/train")
[ "Check", "a", "folder", "by", "given", "name", "if", "not", "exist", "create", "the", "folder", "and", "return", "False", "if", "directory", "exists", "return", "True", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L2197-L2226
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
maybe_download_and_extract
def maybe_download_and_extract(filename, working_directory, url_source, extract=False, expected_bytes=None): """Checks if file exists in working_directory otherwise tries to dowload the file, and optionally also tries to extract the file if format is ".zip" or ".tar" Parameters ----------- filename : str The name of the (to be) dowloaded file. working_directory : str A folder path to search for the file in and dowload the file to url : str The URL to download the file from extract : boolean If True, tries to uncompress the dowloaded file is ".tar.gz/.tar.bz2" or ".zip" file, default is False. expected_bytes : int or None If set tries to verify that the downloaded file is of the specified size, otherwise raises an Exception, defaults is None which corresponds to no check being performed. Returns ---------- str File path of the dowloaded (uncompressed) file. Examples -------- >>> down_file = tl.files.maybe_download_and_extract(filename='train-images-idx3-ubyte.gz', ... working_directory='data/', ... url_source='http://yann.lecun.com/exdb/mnist/') >>> tl.files.maybe_download_and_extract(filename='ADEChallengeData2016.zip', ... working_directory='data/', ... url_source='http://sceneparsing.csail.mit.edu/data/', ... extract=True) """ # We first define a download function, supporting both Python 2 and 3. def _download(filename, working_directory, url_source): progress_bar = progressbar.ProgressBar() def _dlProgress(count, blockSize, totalSize, pbar=progress_bar): if (totalSize != 0): if not pbar.max_value: totalBlocks = math.ceil(float(totalSize) / float(blockSize)) pbar.max_value = int(totalBlocks) pbar.update(count, force=True) filepath = os.path.join(working_directory, filename) logging.info('Downloading %s...\n' % filename) urlretrieve(url_source + filename, filepath, reporthook=_dlProgress) exists_or_mkdir(working_directory, verbose=False) filepath = os.path.join(working_directory, filename) if not os.path.exists(filepath): _download(filename, working_directory, url_source) statinfo = os.stat(filepath) logging.info('Succesfully downloaded %s %s bytes.' % (filename, statinfo.st_size)) # , 'bytes.') if (not (expected_bytes is None) and (expected_bytes != statinfo.st_size)): raise Exception('Failed to verify ' + filename + '. Can you get to it with a browser?') if (extract): if tarfile.is_tarfile(filepath): logging.info('Trying to extract tar file') tarfile.open(filepath, 'r').extractall(working_directory) logging.info('... Success!') elif zipfile.is_zipfile(filepath): logging.info('Trying to extract zip file') with zipfile.ZipFile(filepath) as zf: zf.extractall(working_directory) logging.info('... Success!') else: logging.info("Unknown compression_format only .tar.gz/.tar.bz2/.tar and .zip supported") return filepath
python
def maybe_download_and_extract(filename, working_directory, url_source, extract=False, expected_bytes=None): """Checks if file exists in working_directory otherwise tries to dowload the file, and optionally also tries to extract the file if format is ".zip" or ".tar" Parameters ----------- filename : str The name of the (to be) dowloaded file. working_directory : str A folder path to search for the file in and dowload the file to url : str The URL to download the file from extract : boolean If True, tries to uncompress the dowloaded file is ".tar.gz/.tar.bz2" or ".zip" file, default is False. expected_bytes : int or None If set tries to verify that the downloaded file is of the specified size, otherwise raises an Exception, defaults is None which corresponds to no check being performed. Returns ---------- str File path of the dowloaded (uncompressed) file. Examples -------- >>> down_file = tl.files.maybe_download_and_extract(filename='train-images-idx3-ubyte.gz', ... working_directory='data/', ... url_source='http://yann.lecun.com/exdb/mnist/') >>> tl.files.maybe_download_and_extract(filename='ADEChallengeData2016.zip', ... working_directory='data/', ... url_source='http://sceneparsing.csail.mit.edu/data/', ... extract=True) """ # We first define a download function, supporting both Python 2 and 3. def _download(filename, working_directory, url_source): progress_bar = progressbar.ProgressBar() def _dlProgress(count, blockSize, totalSize, pbar=progress_bar): if (totalSize != 0): if not pbar.max_value: totalBlocks = math.ceil(float(totalSize) / float(blockSize)) pbar.max_value = int(totalBlocks) pbar.update(count, force=True) filepath = os.path.join(working_directory, filename) logging.info('Downloading %s...\n' % filename) urlretrieve(url_source + filename, filepath, reporthook=_dlProgress) exists_or_mkdir(working_directory, verbose=False) filepath = os.path.join(working_directory, filename) if not os.path.exists(filepath): _download(filename, working_directory, url_source) statinfo = os.stat(filepath) logging.info('Succesfully downloaded %s %s bytes.' % (filename, statinfo.st_size)) # , 'bytes.') if (not (expected_bytes is None) and (expected_bytes != statinfo.st_size)): raise Exception('Failed to verify ' + filename + '. Can you get to it with a browser?') if (extract): if tarfile.is_tarfile(filepath): logging.info('Trying to extract tar file') tarfile.open(filepath, 'r').extractall(working_directory) logging.info('... Success!') elif zipfile.is_zipfile(filepath): logging.info('Trying to extract zip file') with zipfile.ZipFile(filepath) as zf: zf.extractall(working_directory) logging.info('... Success!') else: logging.info("Unknown compression_format only .tar.gz/.tar.bz2/.tar and .zip supported") return filepath
[ "def", "maybe_download_and_extract", "(", "filename", ",", "working_directory", ",", "url_source", ",", "extract", "=", "False", ",", "expected_bytes", "=", "None", ")", ":", "# We first define a download function, supporting both Python 2 and 3.", "def", "_download", "(", "filename", ",", "working_directory", ",", "url_source", ")", ":", "progress_bar", "=", "progressbar", ".", "ProgressBar", "(", ")", "def", "_dlProgress", "(", "count", ",", "blockSize", ",", "totalSize", ",", "pbar", "=", "progress_bar", ")", ":", "if", "(", "totalSize", "!=", "0", ")", ":", "if", "not", "pbar", ".", "max_value", ":", "totalBlocks", "=", "math", ".", "ceil", "(", "float", "(", "totalSize", ")", "/", "float", "(", "blockSize", ")", ")", "pbar", ".", "max_value", "=", "int", "(", "totalBlocks", ")", "pbar", ".", "update", "(", "count", ",", "force", "=", "True", ")", "filepath", "=", "os", ".", "path", ".", "join", "(", "working_directory", ",", "filename", ")", "logging", ".", "info", "(", "'Downloading %s...\\n'", "%", "filename", ")", "urlretrieve", "(", "url_source", "+", "filename", ",", "filepath", ",", "reporthook", "=", "_dlProgress", ")", "exists_or_mkdir", "(", "working_directory", ",", "verbose", "=", "False", ")", "filepath", "=", "os", ".", "path", ".", "join", "(", "working_directory", ",", "filename", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "filepath", ")", ":", "_download", "(", "filename", ",", "working_directory", ",", "url_source", ")", "statinfo", "=", "os", ".", "stat", "(", "filepath", ")", "logging", ".", "info", "(", "'Succesfully downloaded %s %s bytes.'", "%", "(", "filename", ",", "statinfo", ".", "st_size", ")", ")", "# , 'bytes.')", "if", "(", "not", "(", "expected_bytes", "is", "None", ")", "and", "(", "expected_bytes", "!=", "statinfo", ".", "st_size", ")", ")", ":", "raise", "Exception", "(", "'Failed to verify '", "+", "filename", "+", "'. Can you get to it with a browser?'", ")", "if", "(", "extract", ")", ":", "if", "tarfile", ".", "is_tarfile", "(", "filepath", ")", ":", "logging", ".", "info", "(", "'Trying to extract tar file'", ")", "tarfile", ".", "open", "(", "filepath", ",", "'r'", ")", ".", "extractall", "(", "working_directory", ")", "logging", ".", "info", "(", "'... Success!'", ")", "elif", "zipfile", ".", "is_zipfile", "(", "filepath", ")", ":", "logging", ".", "info", "(", "'Trying to extract zip file'", ")", "with", "zipfile", ".", "ZipFile", "(", "filepath", ")", "as", "zf", ":", "zf", ".", "extractall", "(", "working_directory", ")", "logging", ".", "info", "(", "'... Success!'", ")", "else", ":", "logging", ".", "info", "(", "\"Unknown compression_format only .tar.gz/.tar.bz2/.tar and .zip supported\"", ")", "return", "filepath" ]
Checks if file exists in working_directory otherwise tries to dowload the file, and optionally also tries to extract the file if format is ".zip" or ".tar" Parameters ----------- filename : str The name of the (to be) dowloaded file. working_directory : str A folder path to search for the file in and dowload the file to url : str The URL to download the file from extract : boolean If True, tries to uncompress the dowloaded file is ".tar.gz/.tar.bz2" or ".zip" file, default is False. expected_bytes : int or None If set tries to verify that the downloaded file is of the specified size, otherwise raises an Exception, defaults is None which corresponds to no check being performed. Returns ---------- str File path of the dowloaded (uncompressed) file. Examples -------- >>> down_file = tl.files.maybe_download_and_extract(filename='train-images-idx3-ubyte.gz', ... working_directory='data/', ... url_source='http://yann.lecun.com/exdb/mnist/') >>> tl.files.maybe_download_and_extract(filename='ADEChallengeData2016.zip', ... working_directory='data/', ... url_source='http://sceneparsing.csail.mit.edu/data/', ... extract=True)
[ "Checks", "if", "file", "exists", "in", "working_directory", "otherwise", "tries", "to", "dowload", "the", "file", "and", "optionally", "also", "tries", "to", "extract", "the", "file", "if", "format", "is", ".", "zip", "or", ".", "tar" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L2229-L2305
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
natural_keys
def natural_keys(text): """Sort list of string with number in human order. Examples ---------- >>> l = ['im1.jpg', 'im31.jpg', 'im11.jpg', 'im21.jpg', 'im03.jpg', 'im05.jpg'] >>> l.sort(key=tl.files.natural_keys) ['im1.jpg', 'im03.jpg', 'im05', 'im11.jpg', 'im21.jpg', 'im31.jpg'] >>> l.sort() # that is what we dont want ['im03.jpg', 'im05', 'im1.jpg', 'im11.jpg', 'im21.jpg', 'im31.jpg'] References ---------- - `link <http://nedbatchelder.com/blog/200712/human_sorting.html>`__ """ # - alist.sort(key=natural_keys) sorts in human order # http://nedbatchelder.com/blog/200712/human_sorting.html # (See Toothy's implementation in the comments) def atoi(text): return int(text) if text.isdigit() else text return [atoi(c) for c in re.split('(\d+)', text)]
python
def natural_keys(text): """Sort list of string with number in human order. Examples ---------- >>> l = ['im1.jpg', 'im31.jpg', 'im11.jpg', 'im21.jpg', 'im03.jpg', 'im05.jpg'] >>> l.sort(key=tl.files.natural_keys) ['im1.jpg', 'im03.jpg', 'im05', 'im11.jpg', 'im21.jpg', 'im31.jpg'] >>> l.sort() # that is what we dont want ['im03.jpg', 'im05', 'im1.jpg', 'im11.jpg', 'im21.jpg', 'im31.jpg'] References ---------- - `link <http://nedbatchelder.com/blog/200712/human_sorting.html>`__ """ # - alist.sort(key=natural_keys) sorts in human order # http://nedbatchelder.com/blog/200712/human_sorting.html # (See Toothy's implementation in the comments) def atoi(text): return int(text) if text.isdigit() else text return [atoi(c) for c in re.split('(\d+)', text)]
[ "def", "natural_keys", "(", "text", ")", ":", "# - alist.sort(key=natural_keys) sorts in human order", "# http://nedbatchelder.com/blog/200712/human_sorting.html", "# (See Toothy's implementation in the comments)", "def", "atoi", "(", "text", ")", ":", "return", "int", "(", "text", ")", "if", "text", ".", "isdigit", "(", ")", "else", "text", "return", "[", "atoi", "(", "c", ")", "for", "c", "in", "re", ".", "split", "(", "'(\\d+)'", ",", "text", ")", "]" ]
Sort list of string with number in human order. Examples ---------- >>> l = ['im1.jpg', 'im31.jpg', 'im11.jpg', 'im21.jpg', 'im03.jpg', 'im05.jpg'] >>> l.sort(key=tl.files.natural_keys) ['im1.jpg', 'im03.jpg', 'im05', 'im11.jpg', 'im21.jpg', 'im31.jpg'] >>> l.sort() # that is what we dont want ['im03.jpg', 'im05', 'im1.jpg', 'im11.jpg', 'im21.jpg', 'im31.jpg'] References ---------- - `link <http://nedbatchelder.com/blog/200712/human_sorting.html>`__
[ "Sort", "list", "of", "string", "with", "number", "in", "human", "order", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L2308-L2331
valid
tensorlayer/tensorlayer
tensorlayer/files/utils.py
npz_to_W_pdf
def npz_to_W_pdf(path=None, regx='w1pre_[0-9]+\.(npz)'): r"""Convert the first weight matrix of `.npz` file to `.pdf` by using `tl.visualize.W()`. Parameters ---------- path : str A folder path to `npz` files. regx : str Regx for the file name. Examples --------- Convert the first weight matrix of w1_pre...npz file to w1_pre...pdf. >>> tl.files.npz_to_W_pdf(path='/Users/.../npz_file/', regx='w1pre_[0-9]+\.(npz)') """ file_list = load_file_list(path=path, regx=regx) for f in file_list: W = load_npz(path, f)[0] logging.info("%s --> %s" % (f, f.split('.')[0] + '.pdf')) visualize.draw_weights(W, second=10, saveable=True, name=f.split('.')[0], fig_idx=2012)
python
def npz_to_W_pdf(path=None, regx='w1pre_[0-9]+\.(npz)'): r"""Convert the first weight matrix of `.npz` file to `.pdf` by using `tl.visualize.W()`. Parameters ---------- path : str A folder path to `npz` files. regx : str Regx for the file name. Examples --------- Convert the first weight matrix of w1_pre...npz file to w1_pre...pdf. >>> tl.files.npz_to_W_pdf(path='/Users/.../npz_file/', regx='w1pre_[0-9]+\.(npz)') """ file_list = load_file_list(path=path, regx=regx) for f in file_list: W = load_npz(path, f)[0] logging.info("%s --> %s" % (f, f.split('.')[0] + '.pdf')) visualize.draw_weights(W, second=10, saveable=True, name=f.split('.')[0], fig_idx=2012)
[ "def", "npz_to_W_pdf", "(", "path", "=", "None", ",", "regx", "=", "'w1pre_[0-9]+\\.(npz)'", ")", ":", "file_list", "=", "load_file_list", "(", "path", "=", "path", ",", "regx", "=", "regx", ")", "for", "f", "in", "file_list", ":", "W", "=", "load_npz", "(", "path", ",", "f", ")", "[", "0", "]", "logging", ".", "info", "(", "\"%s --> %s\"", "%", "(", "f", ",", "f", ".", "split", "(", "'.'", ")", "[", "0", "]", "+", "'.pdf'", ")", ")", "visualize", ".", "draw_weights", "(", "W", ",", "second", "=", "10", ",", "saveable", "=", "True", ",", "name", "=", "f", ".", "split", "(", "'.'", ")", "[", "0", "]", ",", "fig_idx", "=", "2012", ")" ]
r"""Convert the first weight matrix of `.npz` file to `.pdf` by using `tl.visualize.W()`. Parameters ---------- path : str A folder path to `npz` files. regx : str Regx for the file name. Examples --------- Convert the first weight matrix of w1_pre...npz file to w1_pre...pdf. >>> tl.files.npz_to_W_pdf(path='/Users/.../npz_file/', regx='w1pre_[0-9]+\.(npz)')
[ "r", "Convert", "the", "first", "weight", "matrix", "of", ".", "npz", "file", "to", ".", "pdf", "by", "using", "tl", ".", "visualize", ".", "W", "()", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/files/utils.py#L2335-L2356
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
threading_data
def threading_data(data=None, fn=None, thread_count=None, **kwargs): """Process a batch of data by given function by threading. Usually be used for data augmentation. Parameters ----------- data : numpy.array or others The data to be processed. thread_count : int The number of threads to use. fn : function The function for data processing. more args : the args for `fn` Ssee Examples below. Examples -------- Process images. >>> images, _, _, _ = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3)) >>> images = tl.prepro.threading_data(images[0:32], tl.prepro.zoom, zoom_range=[0.5, 1]) Customized image preprocessing function. >>> def distort_img(x): >>> x = tl.prepro.flip_axis(x, axis=0, is_random=True) >>> x = tl.prepro.flip_axis(x, axis=1, is_random=True) >>> x = tl.prepro.crop(x, 100, 100, is_random=True) >>> return x >>> images = tl.prepro.threading_data(images, distort_img) Process images and masks together (Usually be used for image segmentation). >>> X, Y --> [batch_size, row, col, 1] >>> data = tl.prepro.threading_data([_ for _ in zip(X, Y)], tl.prepro.zoom_multi, zoom_range=[0.5, 1], is_random=True) data --> [batch_size, 2, row, col, 1] >>> X_, Y_ = data.transpose((1,0,2,3,4)) X_, Y_ --> [batch_size, row, col, 1] >>> tl.vis.save_image(X_, 'images.png') >>> tl.vis.save_image(Y_, 'masks.png') Process images and masks together by using ``thread_count``. >>> X, Y --> [batch_size, row, col, 1] >>> data = tl.prepro.threading_data(X, tl.prepro.zoom_multi, 8, zoom_range=[0.5, 1], is_random=True) data --> [batch_size, 2, row, col, 1] >>> X_, Y_ = data.transpose((1,0,2,3,4)) X_, Y_ --> [batch_size, row, col, 1] >>> tl.vis.save_image(X_, 'after.png') >>> tl.vis.save_image(Y_, 'before.png') Customized function for processing images and masks together. >>> def distort_img(data): >>> x, y = data >>> x, y = tl.prepro.flip_axis_multi([x, y], axis=0, is_random=True) >>> x, y = tl.prepro.flip_axis_multi([x, y], axis=1, is_random=True) >>> x, y = tl.prepro.crop_multi([x, y], 100, 100, is_random=True) >>> return x, y >>> X, Y --> [batch_size, row, col, channel] >>> data = tl.prepro.threading_data([_ for _ in zip(X, Y)], distort_img) >>> X_, Y_ = data.transpose((1,0,2,3,4)) Returns ------- list or numpyarray The processed results. References ---------- - `python queue <https://pymotw.com/2/Queue/index.html#module-Queue>`__ - `run with limited queue <http://effbot.org/librarybook/queue.htm>`__ """ def apply_fn(results, i, data, kwargs): results[i] = fn(data, **kwargs) if thread_count is None: results = [None] * len(data) threads = [] # for i in range(len(data)): # t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, data[i], kwargs)) for i, d in enumerate(data): t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, d, kwargs)) t.start() threads.append(t) else: divs = np.linspace(0, len(data), thread_count + 1) divs = np.round(divs).astype(int) results = [None] * thread_count threads = [] for i in range(thread_count): t = threading.Thread( name='threading_and_return', target=apply_fn, args=(results, i, data[divs[i]:divs[i + 1]], kwargs) ) t.start() threads.append(t) for t in threads: t.join() if thread_count is None: try: return np.asarray(results) except Exception: return results else: return np.concatenate(results)
python
def threading_data(data=None, fn=None, thread_count=None, **kwargs): """Process a batch of data by given function by threading. Usually be used for data augmentation. Parameters ----------- data : numpy.array or others The data to be processed. thread_count : int The number of threads to use. fn : function The function for data processing. more args : the args for `fn` Ssee Examples below. Examples -------- Process images. >>> images, _, _, _ = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3)) >>> images = tl.prepro.threading_data(images[0:32], tl.prepro.zoom, zoom_range=[0.5, 1]) Customized image preprocessing function. >>> def distort_img(x): >>> x = tl.prepro.flip_axis(x, axis=0, is_random=True) >>> x = tl.prepro.flip_axis(x, axis=1, is_random=True) >>> x = tl.prepro.crop(x, 100, 100, is_random=True) >>> return x >>> images = tl.prepro.threading_data(images, distort_img) Process images and masks together (Usually be used for image segmentation). >>> X, Y --> [batch_size, row, col, 1] >>> data = tl.prepro.threading_data([_ for _ in zip(X, Y)], tl.prepro.zoom_multi, zoom_range=[0.5, 1], is_random=True) data --> [batch_size, 2, row, col, 1] >>> X_, Y_ = data.transpose((1,0,2,3,4)) X_, Y_ --> [batch_size, row, col, 1] >>> tl.vis.save_image(X_, 'images.png') >>> tl.vis.save_image(Y_, 'masks.png') Process images and masks together by using ``thread_count``. >>> X, Y --> [batch_size, row, col, 1] >>> data = tl.prepro.threading_data(X, tl.prepro.zoom_multi, 8, zoom_range=[0.5, 1], is_random=True) data --> [batch_size, 2, row, col, 1] >>> X_, Y_ = data.transpose((1,0,2,3,4)) X_, Y_ --> [batch_size, row, col, 1] >>> tl.vis.save_image(X_, 'after.png') >>> tl.vis.save_image(Y_, 'before.png') Customized function for processing images and masks together. >>> def distort_img(data): >>> x, y = data >>> x, y = tl.prepro.flip_axis_multi([x, y], axis=0, is_random=True) >>> x, y = tl.prepro.flip_axis_multi([x, y], axis=1, is_random=True) >>> x, y = tl.prepro.crop_multi([x, y], 100, 100, is_random=True) >>> return x, y >>> X, Y --> [batch_size, row, col, channel] >>> data = tl.prepro.threading_data([_ for _ in zip(X, Y)], distort_img) >>> X_, Y_ = data.transpose((1,0,2,3,4)) Returns ------- list or numpyarray The processed results. References ---------- - `python queue <https://pymotw.com/2/Queue/index.html#module-Queue>`__ - `run with limited queue <http://effbot.org/librarybook/queue.htm>`__ """ def apply_fn(results, i, data, kwargs): results[i] = fn(data, **kwargs) if thread_count is None: results = [None] * len(data) threads = [] # for i in range(len(data)): # t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, data[i], kwargs)) for i, d in enumerate(data): t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, d, kwargs)) t.start() threads.append(t) else: divs = np.linspace(0, len(data), thread_count + 1) divs = np.round(divs).astype(int) results = [None] * thread_count threads = [] for i in range(thread_count): t = threading.Thread( name='threading_and_return', target=apply_fn, args=(results, i, data[divs[i]:divs[i + 1]], kwargs) ) t.start() threads.append(t) for t in threads: t.join() if thread_count is None: try: return np.asarray(results) except Exception: return results else: return np.concatenate(results)
[ "def", "threading_data", "(", "data", "=", "None", ",", "fn", "=", "None", ",", "thread_count", "=", "None", ",", "*", "*", "kwargs", ")", ":", "def", "apply_fn", "(", "results", ",", "i", ",", "data", ",", "kwargs", ")", ":", "results", "[", "i", "]", "=", "fn", "(", "data", ",", "*", "*", "kwargs", ")", "if", "thread_count", "is", "None", ":", "results", "=", "[", "None", "]", "*", "len", "(", "data", ")", "threads", "=", "[", "]", "# for i in range(len(data)):", "# t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, data[i], kwargs))", "for", "i", ",", "d", "in", "enumerate", "(", "data", ")", ":", "t", "=", "threading", ".", "Thread", "(", "name", "=", "'threading_and_return'", ",", "target", "=", "apply_fn", ",", "args", "=", "(", "results", ",", "i", ",", "d", ",", "kwargs", ")", ")", "t", ".", "start", "(", ")", "threads", ".", "append", "(", "t", ")", "else", ":", "divs", "=", "np", ".", "linspace", "(", "0", ",", "len", "(", "data", ")", ",", "thread_count", "+", "1", ")", "divs", "=", "np", ".", "round", "(", "divs", ")", ".", "astype", "(", "int", ")", "results", "=", "[", "None", "]", "*", "thread_count", "threads", "=", "[", "]", "for", "i", "in", "range", "(", "thread_count", ")", ":", "t", "=", "threading", ".", "Thread", "(", "name", "=", "'threading_and_return'", ",", "target", "=", "apply_fn", ",", "args", "=", "(", "results", ",", "i", ",", "data", "[", "divs", "[", "i", "]", ":", "divs", "[", "i", "+", "1", "]", "]", ",", "kwargs", ")", ")", "t", ".", "start", "(", ")", "threads", ".", "append", "(", "t", ")", "for", "t", "in", "threads", ":", "t", ".", "join", "(", ")", "if", "thread_count", "is", "None", ":", "try", ":", "return", "np", ".", "asarray", "(", "results", ")", "except", "Exception", ":", "return", "results", "else", ":", "return", "np", ".", "concatenate", "(", "results", ")" ]
Process a batch of data by given function by threading. Usually be used for data augmentation. Parameters ----------- data : numpy.array or others The data to be processed. thread_count : int The number of threads to use. fn : function The function for data processing. more args : the args for `fn` Ssee Examples below. Examples -------- Process images. >>> images, _, _, _ = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3)) >>> images = tl.prepro.threading_data(images[0:32], tl.prepro.zoom, zoom_range=[0.5, 1]) Customized image preprocessing function. >>> def distort_img(x): >>> x = tl.prepro.flip_axis(x, axis=0, is_random=True) >>> x = tl.prepro.flip_axis(x, axis=1, is_random=True) >>> x = tl.prepro.crop(x, 100, 100, is_random=True) >>> return x >>> images = tl.prepro.threading_data(images, distort_img) Process images and masks together (Usually be used for image segmentation). >>> X, Y --> [batch_size, row, col, 1] >>> data = tl.prepro.threading_data([_ for _ in zip(X, Y)], tl.prepro.zoom_multi, zoom_range=[0.5, 1], is_random=True) data --> [batch_size, 2, row, col, 1] >>> X_, Y_ = data.transpose((1,0,2,3,4)) X_, Y_ --> [batch_size, row, col, 1] >>> tl.vis.save_image(X_, 'images.png') >>> tl.vis.save_image(Y_, 'masks.png') Process images and masks together by using ``thread_count``. >>> X, Y --> [batch_size, row, col, 1] >>> data = tl.prepro.threading_data(X, tl.prepro.zoom_multi, 8, zoom_range=[0.5, 1], is_random=True) data --> [batch_size, 2, row, col, 1] >>> X_, Y_ = data.transpose((1,0,2,3,4)) X_, Y_ --> [batch_size, row, col, 1] >>> tl.vis.save_image(X_, 'after.png') >>> tl.vis.save_image(Y_, 'before.png') Customized function for processing images and masks together. >>> def distort_img(data): >>> x, y = data >>> x, y = tl.prepro.flip_axis_multi([x, y], axis=0, is_random=True) >>> x, y = tl.prepro.flip_axis_multi([x, y], axis=1, is_random=True) >>> x, y = tl.prepro.crop_multi([x, y], 100, 100, is_random=True) >>> return x, y >>> X, Y --> [batch_size, row, col, channel] >>> data = tl.prepro.threading_data([_ for _ in zip(X, Y)], distort_img) >>> X_, Y_ = data.transpose((1,0,2,3,4)) Returns ------- list or numpyarray The processed results. References ---------- - `python queue <https://pymotw.com/2/Queue/index.html#module-Queue>`__ - `run with limited queue <http://effbot.org/librarybook/queue.htm>`__
[ "Process", "a", "batch", "of", "data", "by", "given", "function", "by", "threading", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L124-L234
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
affine_rotation_matrix
def affine_rotation_matrix(angle=(-20, 20)): """Create an affine transform matrix for image rotation. NOTE: In OpenCV, x is width and y is height. Parameters ----------- angle : int/float or tuple of two int/float Degree to rotate, usually -180 ~ 180. - int/float, a fixed angle. - tuple of 2 floats/ints, randomly sample a value as the angle between these 2 values. Returns ------- numpy.array An affine transform matrix. """ if isinstance(angle, tuple): theta = np.pi / 180 * np.random.uniform(angle[0], angle[1]) else: theta = np.pi / 180 * angle rotation_matrix = np.array([[np.cos(theta), np.sin(theta), 0], \ [-np.sin(theta), np.cos(theta), 0], \ [0, 0, 1]]) return rotation_matrix
python
def affine_rotation_matrix(angle=(-20, 20)): """Create an affine transform matrix for image rotation. NOTE: In OpenCV, x is width and y is height. Parameters ----------- angle : int/float or tuple of two int/float Degree to rotate, usually -180 ~ 180. - int/float, a fixed angle. - tuple of 2 floats/ints, randomly sample a value as the angle between these 2 values. Returns ------- numpy.array An affine transform matrix. """ if isinstance(angle, tuple): theta = np.pi / 180 * np.random.uniform(angle[0], angle[1]) else: theta = np.pi / 180 * angle rotation_matrix = np.array([[np.cos(theta), np.sin(theta), 0], \ [-np.sin(theta), np.cos(theta), 0], \ [0, 0, 1]]) return rotation_matrix
[ "def", "affine_rotation_matrix", "(", "angle", "=", "(", "-", "20", ",", "20", ")", ")", ":", "if", "isinstance", "(", "angle", ",", "tuple", ")", ":", "theta", "=", "np", ".", "pi", "/", "180", "*", "np", ".", "random", ".", "uniform", "(", "angle", "[", "0", "]", ",", "angle", "[", "1", "]", ")", "else", ":", "theta", "=", "np", ".", "pi", "/", "180", "*", "angle", "rotation_matrix", "=", "np", ".", "array", "(", "[", "[", "np", ".", "cos", "(", "theta", ")", ",", "np", ".", "sin", "(", "theta", ")", ",", "0", "]", ",", "[", "-", "np", ".", "sin", "(", "theta", ")", ",", "np", ".", "cos", "(", "theta", ")", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "return", "rotation_matrix" ]
Create an affine transform matrix for image rotation. NOTE: In OpenCV, x is width and y is height. Parameters ----------- angle : int/float or tuple of two int/float Degree to rotate, usually -180 ~ 180. - int/float, a fixed angle. - tuple of 2 floats/ints, randomly sample a value as the angle between these 2 values. Returns ------- numpy.array An affine transform matrix.
[ "Create", "an", "affine", "transform", "matrix", "for", "image", "rotation", ".", "NOTE", ":", "In", "OpenCV", "x", "is", "width", "and", "y", "is", "height", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L237-L261
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
affine_horizontal_flip_matrix
def affine_horizontal_flip_matrix(prob=0.5): """Create an affine transformation matrix for image horizontal flipping. NOTE: In OpenCV, x is width and y is height. Parameters ---------- prob : float Probability to flip the image. 1.0 means always flip. Returns ------- numpy.array An affine transform matrix. """ factor = np.random.uniform(0, 1) if prob >= factor: filp_matrix = np.array([[ -1. , 0., 0. ], \ [ 0., 1., 0. ], \ [ 0., 0., 1. ]]) return filp_matrix else: filp_matrix = np.array([[ 1. , 0., 0. ], \ [ 0., 1., 0. ], \ [ 0., 0., 1. ]]) return filp_matrix
python
def affine_horizontal_flip_matrix(prob=0.5): """Create an affine transformation matrix for image horizontal flipping. NOTE: In OpenCV, x is width and y is height. Parameters ---------- prob : float Probability to flip the image. 1.0 means always flip. Returns ------- numpy.array An affine transform matrix. """ factor = np.random.uniform(0, 1) if prob >= factor: filp_matrix = np.array([[ -1. , 0., 0. ], \ [ 0., 1., 0. ], \ [ 0., 0., 1. ]]) return filp_matrix else: filp_matrix = np.array([[ 1. , 0., 0. ], \ [ 0., 1., 0. ], \ [ 0., 0., 1. ]]) return filp_matrix
[ "def", "affine_horizontal_flip_matrix", "(", "prob", "=", "0.5", ")", ":", "factor", "=", "np", ".", "random", ".", "uniform", "(", "0", ",", "1", ")", "if", "prob", ">=", "factor", ":", "filp_matrix", "=", "np", ".", "array", "(", "[", "[", "-", "1.", ",", "0.", ",", "0.", "]", ",", "[", "0.", ",", "1.", ",", "0.", "]", ",", "[", "0.", ",", "0.", ",", "1.", "]", "]", ")", "return", "filp_matrix", "else", ":", "filp_matrix", "=", "np", ".", "array", "(", "[", "[", "1.", ",", "0.", ",", "0.", "]", ",", "[", "0.", ",", "1.", ",", "0.", "]", ",", "[", "0.", ",", "0.", ",", "1.", "]", "]", ")", "return", "filp_matrix" ]
Create an affine transformation matrix for image horizontal flipping. NOTE: In OpenCV, x is width and y is height. Parameters ---------- prob : float Probability to flip the image. 1.0 means always flip. Returns ------- numpy.array An affine transform matrix.
[ "Create", "an", "affine", "transformation", "matrix", "for", "image", "horizontal", "flipping", ".", "NOTE", ":", "In", "OpenCV", "x", "is", "width", "and", "y", "is", "height", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L264-L289
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
affine_vertical_flip_matrix
def affine_vertical_flip_matrix(prob=0.5): """Create an affine transformation for image vertical flipping. NOTE: In OpenCV, x is width and y is height. Parameters ---------- prob : float Probability to flip the image. 1.0 means always flip. Returns ------- numpy.array An affine transform matrix. """ factor = np.random.uniform(0, 1) if prob >= factor: filp_matrix = np.array([[ 1. , 0., 0. ], \ [ 0., -1., 0. ], \ [ 0., 0., 1. ]]) return filp_matrix else: filp_matrix = np.array([[ 1. , 0., 0. ], \ [ 0., 1., 0. ], \ [ 0., 0., 1. ]]) return filp_matrix
python
def affine_vertical_flip_matrix(prob=0.5): """Create an affine transformation for image vertical flipping. NOTE: In OpenCV, x is width and y is height. Parameters ---------- prob : float Probability to flip the image. 1.0 means always flip. Returns ------- numpy.array An affine transform matrix. """ factor = np.random.uniform(0, 1) if prob >= factor: filp_matrix = np.array([[ 1. , 0., 0. ], \ [ 0., -1., 0. ], \ [ 0., 0., 1. ]]) return filp_matrix else: filp_matrix = np.array([[ 1. , 0., 0. ], \ [ 0., 1., 0. ], \ [ 0., 0., 1. ]]) return filp_matrix
[ "def", "affine_vertical_flip_matrix", "(", "prob", "=", "0.5", ")", ":", "factor", "=", "np", ".", "random", ".", "uniform", "(", "0", ",", "1", ")", "if", "prob", ">=", "factor", ":", "filp_matrix", "=", "np", ".", "array", "(", "[", "[", "1.", ",", "0.", ",", "0.", "]", ",", "[", "0.", ",", "-", "1.", ",", "0.", "]", ",", "[", "0.", ",", "0.", ",", "1.", "]", "]", ")", "return", "filp_matrix", "else", ":", "filp_matrix", "=", "np", ".", "array", "(", "[", "[", "1.", ",", "0.", ",", "0.", "]", ",", "[", "0.", ",", "1.", ",", "0.", "]", ",", "[", "0.", ",", "0.", ",", "1.", "]", "]", ")", "return", "filp_matrix" ]
Create an affine transformation for image vertical flipping. NOTE: In OpenCV, x is width and y is height. Parameters ---------- prob : float Probability to flip the image. 1.0 means always flip. Returns ------- numpy.array An affine transform matrix.
[ "Create", "an", "affine", "transformation", "for", "image", "vertical", "flipping", ".", "NOTE", ":", "In", "OpenCV", "x", "is", "width", "and", "y", "is", "height", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L292-L317
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
affine_shift_matrix
def affine_shift_matrix(wrg=(-0.1, 0.1), hrg=(-0.1, 0.1), w=200, h=200): """Create an affine transform matrix for image shifting. NOTE: In OpenCV, x is width and y is height. Parameters ----------- wrg : float or tuple of floats Range to shift on width axis, -1 ~ 1. - float, a fixed distance. - tuple of 2 floats, randomly sample a value as the distance between these 2 values. hrg : float or tuple of floats Range to shift on height axis, -1 ~ 1. - float, a fixed distance. - tuple of 2 floats, randomly sample a value as the distance between these 2 values. w, h : int The width and height of the image. Returns ------- numpy.array An affine transform matrix. """ if isinstance(wrg, tuple): tx = np.random.uniform(wrg[0], wrg[1]) * w else: tx = wrg * w if isinstance(hrg, tuple): ty = np.random.uniform(hrg[0], hrg[1]) * h else: ty = hrg * h shift_matrix = np.array([[1, 0, tx], \ [0, 1, ty], \ [0, 0, 1]]) return shift_matrix
python
def affine_shift_matrix(wrg=(-0.1, 0.1), hrg=(-0.1, 0.1), w=200, h=200): """Create an affine transform matrix for image shifting. NOTE: In OpenCV, x is width and y is height. Parameters ----------- wrg : float or tuple of floats Range to shift on width axis, -1 ~ 1. - float, a fixed distance. - tuple of 2 floats, randomly sample a value as the distance between these 2 values. hrg : float or tuple of floats Range to shift on height axis, -1 ~ 1. - float, a fixed distance. - tuple of 2 floats, randomly sample a value as the distance between these 2 values. w, h : int The width and height of the image. Returns ------- numpy.array An affine transform matrix. """ if isinstance(wrg, tuple): tx = np.random.uniform(wrg[0], wrg[1]) * w else: tx = wrg * w if isinstance(hrg, tuple): ty = np.random.uniform(hrg[0], hrg[1]) * h else: ty = hrg * h shift_matrix = np.array([[1, 0, tx], \ [0, 1, ty], \ [0, 0, 1]]) return shift_matrix
[ "def", "affine_shift_matrix", "(", "wrg", "=", "(", "-", "0.1", ",", "0.1", ")", ",", "hrg", "=", "(", "-", "0.1", ",", "0.1", ")", ",", "w", "=", "200", ",", "h", "=", "200", ")", ":", "if", "isinstance", "(", "wrg", ",", "tuple", ")", ":", "tx", "=", "np", ".", "random", ".", "uniform", "(", "wrg", "[", "0", "]", ",", "wrg", "[", "1", "]", ")", "*", "w", "else", ":", "tx", "=", "wrg", "*", "w", "if", "isinstance", "(", "hrg", ",", "tuple", ")", ":", "ty", "=", "np", ".", "random", ".", "uniform", "(", "hrg", "[", "0", "]", ",", "hrg", "[", "1", "]", ")", "*", "h", "else", ":", "ty", "=", "hrg", "*", "h", "shift_matrix", "=", "np", ".", "array", "(", "[", "[", "1", ",", "0", ",", "tx", "]", ",", "[", "0", ",", "1", ",", "ty", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "return", "shift_matrix" ]
Create an affine transform matrix for image shifting. NOTE: In OpenCV, x is width and y is height. Parameters ----------- wrg : float or tuple of floats Range to shift on width axis, -1 ~ 1. - float, a fixed distance. - tuple of 2 floats, randomly sample a value as the distance between these 2 values. hrg : float or tuple of floats Range to shift on height axis, -1 ~ 1. - float, a fixed distance. - tuple of 2 floats, randomly sample a value as the distance between these 2 values. w, h : int The width and height of the image. Returns ------- numpy.array An affine transform matrix.
[ "Create", "an", "affine", "transform", "matrix", "for", "image", "shifting", ".", "NOTE", ":", "In", "OpenCV", "x", "is", "width", "and", "y", "is", "height", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L320-L354
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
affine_shear_matrix
def affine_shear_matrix(x_shear=(-0.1, 0.1), y_shear=(-0.1, 0.1)): """Create affine transform matrix for image shearing. NOTE: In OpenCV, x is width and y is height. Parameters ----------- shear : tuple of two floats Percentage of shears for width and height directions. Returns ------- numpy.array An affine transform matrix. """ # if len(shear) != 2: # raise AssertionError( # "shear should be tuple of 2 floats, or you want to use tl.prepro.shear rather than tl.prepro.shear2 ?" # ) # if isinstance(shear, tuple): # shear = list(shear) # if is_random: # shear[0] = np.random.uniform(-shear[0], shear[0]) # shear[1] = np.random.uniform(-shear[1], shear[1]) if isinstance(x_shear, tuple): x_shear = np.random.uniform(x_shear[0], x_shear[1]) if isinstance(y_shear, tuple): y_shear = np.random.uniform(y_shear[0], y_shear[1]) shear_matrix = np.array([[1, x_shear, 0], \ [y_shear, 1, 0], \ [0, 0, 1]]) return shear_matrix
python
def affine_shear_matrix(x_shear=(-0.1, 0.1), y_shear=(-0.1, 0.1)): """Create affine transform matrix for image shearing. NOTE: In OpenCV, x is width and y is height. Parameters ----------- shear : tuple of two floats Percentage of shears for width and height directions. Returns ------- numpy.array An affine transform matrix. """ # if len(shear) != 2: # raise AssertionError( # "shear should be tuple of 2 floats, or you want to use tl.prepro.shear rather than tl.prepro.shear2 ?" # ) # if isinstance(shear, tuple): # shear = list(shear) # if is_random: # shear[0] = np.random.uniform(-shear[0], shear[0]) # shear[1] = np.random.uniform(-shear[1], shear[1]) if isinstance(x_shear, tuple): x_shear = np.random.uniform(x_shear[0], x_shear[1]) if isinstance(y_shear, tuple): y_shear = np.random.uniform(y_shear[0], y_shear[1]) shear_matrix = np.array([[1, x_shear, 0], \ [y_shear, 1, 0], \ [0, 0, 1]]) return shear_matrix
[ "def", "affine_shear_matrix", "(", "x_shear", "=", "(", "-", "0.1", ",", "0.1", ")", ",", "y_shear", "=", "(", "-", "0.1", ",", "0.1", ")", ")", ":", "# if len(shear) != 2:", "# raise AssertionError(", "# \"shear should be tuple of 2 floats, or you want to use tl.prepro.shear rather than tl.prepro.shear2 ?\"", "# )", "# if isinstance(shear, tuple):", "# shear = list(shear)", "# if is_random:", "# shear[0] = np.random.uniform(-shear[0], shear[0])", "# shear[1] = np.random.uniform(-shear[1], shear[1])", "if", "isinstance", "(", "x_shear", ",", "tuple", ")", ":", "x_shear", "=", "np", ".", "random", ".", "uniform", "(", "x_shear", "[", "0", "]", ",", "x_shear", "[", "1", "]", ")", "if", "isinstance", "(", "y_shear", ",", "tuple", ")", ":", "y_shear", "=", "np", ".", "random", ".", "uniform", "(", "y_shear", "[", "0", "]", ",", "y_shear", "[", "1", "]", ")", "shear_matrix", "=", "np", ".", "array", "(", "[", "[", "1", ",", "x_shear", ",", "0", "]", ",", "[", "y_shear", ",", "1", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "return", "shear_matrix" ]
Create affine transform matrix for image shearing. NOTE: In OpenCV, x is width and y is height. Parameters ----------- shear : tuple of two floats Percentage of shears for width and height directions. Returns ------- numpy.array An affine transform matrix.
[ "Create", "affine", "transform", "matrix", "for", "image", "shearing", ".", "NOTE", ":", "In", "OpenCV", "x", "is", "width", "and", "y", "is", "height", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L357-L389
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
affine_zoom_matrix
def affine_zoom_matrix(zoom_range=(0.8, 1.1)): """Create an affine transform matrix for zooming/scaling an image's height and width. OpenCV format, x is width. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). zoom_range : float or tuple of 2 floats The zooming/scaling ratio, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between these 2 values. Returns ------- numpy.array An affine transform matrix. """ if isinstance(zoom_range, (float, int)): scale = zoom_range elif isinstance(zoom_range, tuple): scale = np.random.uniform(zoom_range[0], zoom_range[1]) else: raise Exception("zoom_range: float or tuple of 2 floats") zoom_matrix = np.array([[scale, 0, 0], \ [0, scale, 0], \ [0, 0, 1]]) return zoom_matrix
python
def affine_zoom_matrix(zoom_range=(0.8, 1.1)): """Create an affine transform matrix for zooming/scaling an image's height and width. OpenCV format, x is width. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). zoom_range : float or tuple of 2 floats The zooming/scaling ratio, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between these 2 values. Returns ------- numpy.array An affine transform matrix. """ if isinstance(zoom_range, (float, int)): scale = zoom_range elif isinstance(zoom_range, tuple): scale = np.random.uniform(zoom_range[0], zoom_range[1]) else: raise Exception("zoom_range: float or tuple of 2 floats") zoom_matrix = np.array([[scale, 0, 0], \ [0, scale, 0], \ [0, 0, 1]]) return zoom_matrix
[ "def", "affine_zoom_matrix", "(", "zoom_range", "=", "(", "0.8", ",", "1.1", ")", ")", ":", "if", "isinstance", "(", "zoom_range", ",", "(", "float", ",", "int", ")", ")", ":", "scale", "=", "zoom_range", "elif", "isinstance", "(", "zoom_range", ",", "tuple", ")", ":", "scale", "=", "np", ".", "random", ".", "uniform", "(", "zoom_range", "[", "0", "]", ",", "zoom_range", "[", "1", "]", ")", "else", ":", "raise", "Exception", "(", "\"zoom_range: float or tuple of 2 floats\"", ")", "zoom_matrix", "=", "np", ".", "array", "(", "[", "[", "scale", ",", "0", ",", "0", "]", ",", "[", "0", ",", "scale", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "return", "zoom_matrix" ]
Create an affine transform matrix for zooming/scaling an image's height and width. OpenCV format, x is width. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). zoom_range : float or tuple of 2 floats The zooming/scaling ratio, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between these 2 values. Returns ------- numpy.array An affine transform matrix.
[ "Create", "an", "affine", "transform", "matrix", "for", "zooming", "/", "scaling", "an", "image", "s", "height", "and", "width", ".", "OpenCV", "format", "x", "is", "width", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L392-L422
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
affine_respective_zoom_matrix
def affine_respective_zoom_matrix(w_range=0.8, h_range=1.1): """Get affine transform matrix for zooming/scaling that height and width are changed independently. OpenCV format, x is width. Parameters ----------- w_range : float or tuple of 2 floats The zooming/scaling ratio of width, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. h_range : float or tuple of 2 floats The zooming/scaling ratio of height, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. Returns ------- numpy.array An affine transform matrix. """ if isinstance(h_range, (float, int)): zy = h_range elif isinstance(h_range, tuple): zy = np.random.uniform(h_range[0], h_range[1]) else: raise Exception("h_range: float or tuple of 2 floats") if isinstance(w_range, (float, int)): zx = w_range elif isinstance(w_range, tuple): zx = np.random.uniform(w_range[0], w_range[1]) else: raise Exception("w_range: float or tuple of 2 floats") zoom_matrix = np.array([[zx, 0, 0], \ [0, zy, 0], \ [0, 0, 1]]) return zoom_matrix
python
def affine_respective_zoom_matrix(w_range=0.8, h_range=1.1): """Get affine transform matrix for zooming/scaling that height and width are changed independently. OpenCV format, x is width. Parameters ----------- w_range : float or tuple of 2 floats The zooming/scaling ratio of width, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. h_range : float or tuple of 2 floats The zooming/scaling ratio of height, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. Returns ------- numpy.array An affine transform matrix. """ if isinstance(h_range, (float, int)): zy = h_range elif isinstance(h_range, tuple): zy = np.random.uniform(h_range[0], h_range[1]) else: raise Exception("h_range: float or tuple of 2 floats") if isinstance(w_range, (float, int)): zx = w_range elif isinstance(w_range, tuple): zx = np.random.uniform(w_range[0], w_range[1]) else: raise Exception("w_range: float or tuple of 2 floats") zoom_matrix = np.array([[zx, 0, 0], \ [0, zy, 0], \ [0, 0, 1]]) return zoom_matrix
[ "def", "affine_respective_zoom_matrix", "(", "w_range", "=", "0.8", ",", "h_range", "=", "1.1", ")", ":", "if", "isinstance", "(", "h_range", ",", "(", "float", ",", "int", ")", ")", ":", "zy", "=", "h_range", "elif", "isinstance", "(", "h_range", ",", "tuple", ")", ":", "zy", "=", "np", ".", "random", ".", "uniform", "(", "h_range", "[", "0", "]", ",", "h_range", "[", "1", "]", ")", "else", ":", "raise", "Exception", "(", "\"h_range: float or tuple of 2 floats\"", ")", "if", "isinstance", "(", "w_range", ",", "(", "float", ",", "int", ")", ")", ":", "zx", "=", "w_range", "elif", "isinstance", "(", "w_range", ",", "tuple", ")", ":", "zx", "=", "np", ".", "random", ".", "uniform", "(", "w_range", "[", "0", "]", ",", "w_range", "[", "1", "]", ")", "else", ":", "raise", "Exception", "(", "\"w_range: float or tuple of 2 floats\"", ")", "zoom_matrix", "=", "np", ".", "array", "(", "[", "[", "zx", ",", "0", ",", "0", "]", ",", "[", "0", ",", "zy", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "return", "zoom_matrix" ]
Get affine transform matrix for zooming/scaling that height and width are changed independently. OpenCV format, x is width. Parameters ----------- w_range : float or tuple of 2 floats The zooming/scaling ratio of width, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. h_range : float or tuple of 2 floats The zooming/scaling ratio of height, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. Returns ------- numpy.array An affine transform matrix.
[ "Get", "affine", "transform", "matrix", "for", "zooming", "/", "scaling", "that", "height", "and", "width", "are", "changed", "independently", ".", "OpenCV", "format", "x", "is", "width", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L425-L464
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
transform_matrix_offset_center
def transform_matrix_offset_center(matrix, y, x): """Convert the matrix from Cartesian coordinates (the origin in the middle of image) to Image coordinates (the origin on the top-left of image). Parameters ---------- matrix : numpy.array Transform matrix. x and y : 2 int Size of image. Returns ------- numpy.array The transform matrix. Examples -------- - See ``tl.prepro.rotation``, ``tl.prepro.shear``, ``tl.prepro.zoom``. """ o_x = (x - 1) / 2.0 o_y = (y - 1) / 2.0 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix
python
def transform_matrix_offset_center(matrix, y, x): """Convert the matrix from Cartesian coordinates (the origin in the middle of image) to Image coordinates (the origin on the top-left of image). Parameters ---------- matrix : numpy.array Transform matrix. x and y : 2 int Size of image. Returns ------- numpy.array The transform matrix. Examples -------- - See ``tl.prepro.rotation``, ``tl.prepro.shear``, ``tl.prepro.zoom``. """ o_x = (x - 1) / 2.0 o_y = (y - 1) / 2.0 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix
[ "def", "transform_matrix_offset_center", "(", "matrix", ",", "y", ",", "x", ")", ":", "o_x", "=", "(", "x", "-", "1", ")", "/", "2.0", "o_y", "=", "(", "y", "-", "1", ")", "/", "2.0", "offset_matrix", "=", "np", ".", "array", "(", "[", "[", "1", ",", "0", ",", "o_x", "]", ",", "[", "0", ",", "1", ",", "o_y", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "reset_matrix", "=", "np", ".", "array", "(", "[", "[", "1", ",", "0", ",", "-", "o_x", "]", ",", "[", "0", ",", "1", ",", "-", "o_y", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "transform_matrix", "=", "np", ".", "dot", "(", "np", ".", "dot", "(", "offset_matrix", ",", "matrix", ")", ",", "reset_matrix", ")", "return", "transform_matrix" ]
Convert the matrix from Cartesian coordinates (the origin in the middle of image) to Image coordinates (the origin on the top-left of image). Parameters ---------- matrix : numpy.array Transform matrix. x and y : 2 int Size of image. Returns ------- numpy.array The transform matrix. Examples -------- - See ``tl.prepro.rotation``, ``tl.prepro.shear``, ``tl.prepro.zoom``.
[ "Convert", "the", "matrix", "from", "Cartesian", "coordinates", "(", "the", "origin", "in", "the", "middle", "of", "image", ")", "to", "Image", "coordinates", "(", "the", "origin", "on", "the", "top", "-", "left", "of", "image", ")", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L468-L492
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
affine_transform
def affine_transform(x, transform_matrix, channel_index=2, fill_mode='nearest', cval=0., order=1): """Return transformed images by given an affine matrix in Scipy format (x is height). Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). transform_matrix : numpy.array Transform matrix (offset center), can be generated by ``transform_matrix_offset_center`` channel_index : int Index of channel, default 2. fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0 order : int The order of interpolation. The order has to be in the range 0-5: - 0 Nearest-neighbor - 1 Bi-linear (default) - 2 Bi-quadratic - 3 Bi-cubic - 4 Bi-quartic - 5 Bi-quintic - `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. Examples -------- >>> M_shear = tl.prepro.affine_shear_matrix(intensity=0.2, is_random=False) >>> M_zoom = tl.prepro.affine_zoom_matrix(zoom_range=0.8) >>> M_combined = M_shear.dot(M_zoom) >>> transform_matrix = tl.prepro.transform_matrix_offset_center(M_combined, h, w) >>> result = tl.prepro.affine_transform(image, transform_matrix) """ # transform_matrix = transform_matrix_offset_center() # asdihasid # asd x = np.rollaxis(x, channel_index, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ ndi.interpolation. affine_transform(x_channel, final_affine_matrix, final_offset, order=order, mode=fill_mode, cval=cval) for x_channel in x ] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_index + 1) return x
python
def affine_transform(x, transform_matrix, channel_index=2, fill_mode='nearest', cval=0., order=1): """Return transformed images by given an affine matrix in Scipy format (x is height). Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). transform_matrix : numpy.array Transform matrix (offset center), can be generated by ``transform_matrix_offset_center`` channel_index : int Index of channel, default 2. fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0 order : int The order of interpolation. The order has to be in the range 0-5: - 0 Nearest-neighbor - 1 Bi-linear (default) - 2 Bi-quadratic - 3 Bi-cubic - 4 Bi-quartic - 5 Bi-quintic - `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. Examples -------- >>> M_shear = tl.prepro.affine_shear_matrix(intensity=0.2, is_random=False) >>> M_zoom = tl.prepro.affine_zoom_matrix(zoom_range=0.8) >>> M_combined = M_shear.dot(M_zoom) >>> transform_matrix = tl.prepro.transform_matrix_offset_center(M_combined, h, w) >>> result = tl.prepro.affine_transform(image, transform_matrix) """ # transform_matrix = transform_matrix_offset_center() # asdihasid # asd x = np.rollaxis(x, channel_index, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ ndi.interpolation. affine_transform(x_channel, final_affine_matrix, final_offset, order=order, mode=fill_mode, cval=cval) for x_channel in x ] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_index + 1) return x
[ "def", "affine_transform", "(", "x", ",", "transform_matrix", ",", "channel_index", "=", "2", ",", "fill_mode", "=", "'nearest'", ",", "cval", "=", "0.", ",", "order", "=", "1", ")", ":", "# transform_matrix = transform_matrix_offset_center()", "# asdihasid", "# asd", "x", "=", "np", ".", "rollaxis", "(", "x", ",", "channel_index", ",", "0", ")", "final_affine_matrix", "=", "transform_matrix", "[", ":", "2", ",", ":", "2", "]", "final_offset", "=", "transform_matrix", "[", ":", "2", ",", "2", "]", "channel_images", "=", "[", "ndi", ".", "interpolation", ".", "affine_transform", "(", "x_channel", ",", "final_affine_matrix", ",", "final_offset", ",", "order", "=", "order", ",", "mode", "=", "fill_mode", ",", "cval", "=", "cval", ")", "for", "x_channel", "in", "x", "]", "x", "=", "np", ".", "stack", "(", "channel_images", ",", "axis", "=", "0", ")", "x", "=", "np", ".", "rollaxis", "(", "x", ",", "0", ",", "channel_index", "+", "1", ")", "return", "x" ]
Return transformed images by given an affine matrix in Scipy format (x is height). Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). transform_matrix : numpy.array Transform matrix (offset center), can be generated by ``transform_matrix_offset_center`` channel_index : int Index of channel, default 2. fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0 order : int The order of interpolation. The order has to be in the range 0-5: - 0 Nearest-neighbor - 1 Bi-linear (default) - 2 Bi-quadratic - 3 Bi-cubic - 4 Bi-quartic - 5 Bi-quintic - `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. Examples -------- >>> M_shear = tl.prepro.affine_shear_matrix(intensity=0.2, is_random=False) >>> M_zoom = tl.prepro.affine_zoom_matrix(zoom_range=0.8) >>> M_combined = M_shear.dot(M_zoom) >>> transform_matrix = tl.prepro.transform_matrix_offset_center(M_combined, h, w) >>> result = tl.prepro.affine_transform(image, transform_matrix)
[ "Return", "transformed", "images", "by", "given", "an", "affine", "matrix", "in", "Scipy", "format", "(", "x", "is", "height", ")", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L495-L548
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
affine_transform_cv2
def affine_transform_cv2(x, transform_matrix, flags=None, border_mode='constant'): """Return transformed images by given an affine matrix in OpenCV format (x is width). (Powered by OpenCV2, faster than ``tl.prepro.affine_transform``) Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). transform_matrix : numpy.array A transform matrix, OpenCV format. border_mode : str - `constant`, pad the image with a constant value (i.e. black or 0) - `replicate`, the row or column at the very edge of the original is replicated to the extra border. Examples -------- >>> M_shear = tl.prepro.affine_shear_matrix(intensity=0.2, is_random=False) >>> M_zoom = tl.prepro.affine_zoom_matrix(zoom_range=0.8) >>> M_combined = M_shear.dot(M_zoom) >>> result = tl.prepro.affine_transform_cv2(image, M_combined) """ rows, cols = x.shape[0], x.shape[1] if flags is None: flags = cv2.INTER_AREA if border_mode is 'constant': border_mode = cv2.BORDER_CONSTANT elif border_mode is 'replicate': border_mode = cv2.BORDER_REPLICATE else: raise Exception("unsupport border_mode, check cv.BORDER_ for more details.") return cv2.warpAffine(x, transform_matrix[0:2,:], \ (cols,rows), flags=flags, borderMode=border_mode)
python
def affine_transform_cv2(x, transform_matrix, flags=None, border_mode='constant'): """Return transformed images by given an affine matrix in OpenCV format (x is width). (Powered by OpenCV2, faster than ``tl.prepro.affine_transform``) Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). transform_matrix : numpy.array A transform matrix, OpenCV format. border_mode : str - `constant`, pad the image with a constant value (i.e. black or 0) - `replicate`, the row or column at the very edge of the original is replicated to the extra border. Examples -------- >>> M_shear = tl.prepro.affine_shear_matrix(intensity=0.2, is_random=False) >>> M_zoom = tl.prepro.affine_zoom_matrix(zoom_range=0.8) >>> M_combined = M_shear.dot(M_zoom) >>> result = tl.prepro.affine_transform_cv2(image, M_combined) """ rows, cols = x.shape[0], x.shape[1] if flags is None: flags = cv2.INTER_AREA if border_mode is 'constant': border_mode = cv2.BORDER_CONSTANT elif border_mode is 'replicate': border_mode = cv2.BORDER_REPLICATE else: raise Exception("unsupport border_mode, check cv.BORDER_ for more details.") return cv2.warpAffine(x, transform_matrix[0:2,:], \ (cols,rows), flags=flags, borderMode=border_mode)
[ "def", "affine_transform_cv2", "(", "x", ",", "transform_matrix", ",", "flags", "=", "None", ",", "border_mode", "=", "'constant'", ")", ":", "rows", ",", "cols", "=", "x", ".", "shape", "[", "0", "]", ",", "x", ".", "shape", "[", "1", "]", "if", "flags", "is", "None", ":", "flags", "=", "cv2", ".", "INTER_AREA", "if", "border_mode", "is", "'constant'", ":", "border_mode", "=", "cv2", ".", "BORDER_CONSTANT", "elif", "border_mode", "is", "'replicate'", ":", "border_mode", "=", "cv2", ".", "BORDER_REPLICATE", "else", ":", "raise", "Exception", "(", "\"unsupport border_mode, check cv.BORDER_ for more details.\"", ")", "return", "cv2", ".", "warpAffine", "(", "x", ",", "transform_matrix", "[", "0", ":", "2", ",", ":", "]", ",", "(", "cols", ",", "rows", ")", ",", "flags", "=", "flags", ",", "borderMode", "=", "border_mode", ")" ]
Return transformed images by given an affine matrix in OpenCV format (x is width). (Powered by OpenCV2, faster than ``tl.prepro.affine_transform``) Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). transform_matrix : numpy.array A transform matrix, OpenCV format. border_mode : str - `constant`, pad the image with a constant value (i.e. black or 0) - `replicate`, the row or column at the very edge of the original is replicated to the extra border. Examples -------- >>> M_shear = tl.prepro.affine_shear_matrix(intensity=0.2, is_random=False) >>> M_zoom = tl.prepro.affine_zoom_matrix(zoom_range=0.8) >>> M_combined = M_shear.dot(M_zoom) >>> result = tl.prepro.affine_transform_cv2(image, M_combined)
[ "Return", "transformed", "images", "by", "given", "an", "affine", "matrix", "in", "OpenCV", "format", "(", "x", "is", "width", ")", ".", "(", "Powered", "by", "OpenCV2", "faster", "than", "tl", ".", "prepro", ".", "affine_transform", ")" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L554-L584
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
affine_transform_keypoints
def affine_transform_keypoints(coords_list, transform_matrix): """Transform keypoint coordinates according to a given affine transform matrix. OpenCV format, x is width. Note that, for pose estimation task, flipping requires maintaining the left and right body information. We should not flip the left and right body, so please use ``tl.prepro.keypoint_random_flip``. Parameters ----------- coords_list : list of list of tuple/list The coordinates e.g., the keypoint coordinates of every person in an image. transform_matrix : numpy.array Transform matrix, OpenCV format. Examples --------- >>> # 1. get all affine transform matrices >>> M_rotate = tl.prepro.affine_rotation_matrix(angle=20) >>> M_flip = tl.prepro.affine_horizontal_flip_matrix(prob=1) >>> # 2. combine all affine transform matrices to one matrix >>> M_combined = dot(M_flip).dot(M_rotate) >>> # 3. transfrom the matrix from Cartesian coordinate (the origin in the middle of image) >>> # to Image coordinate (the origin on the top-left of image) >>> transform_matrix = tl.prepro.transform_matrix_offset_center(M_combined, x=w, y=h) >>> # 4. then we can transfrom the image once for all transformations >>> result = tl.prepro.affine_transform_cv2(image, transform_matrix) # 76 times faster >>> # 5. transform keypoint coordinates >>> coords = [[(50, 100), (100, 100), (100, 50), (200, 200)], [(250, 50), (200, 50), (200, 100)]] >>> coords_result = tl.prepro.affine_transform_keypoints(coords, transform_matrix) """ coords_result_list = [] for coords in coords_list: coords = np.asarray(coords) coords = coords.transpose([1, 0]) coords = np.insert(coords, 2, 1, axis=0) # print(coords) # print(transform_matrix) coords_result = np.matmul(transform_matrix, coords) coords_result = coords_result[0:2, :].transpose([1, 0]) coords_result_list.append(coords_result) return coords_result_list
python
def affine_transform_keypoints(coords_list, transform_matrix): """Transform keypoint coordinates according to a given affine transform matrix. OpenCV format, x is width. Note that, for pose estimation task, flipping requires maintaining the left and right body information. We should not flip the left and right body, so please use ``tl.prepro.keypoint_random_flip``. Parameters ----------- coords_list : list of list of tuple/list The coordinates e.g., the keypoint coordinates of every person in an image. transform_matrix : numpy.array Transform matrix, OpenCV format. Examples --------- >>> # 1. get all affine transform matrices >>> M_rotate = tl.prepro.affine_rotation_matrix(angle=20) >>> M_flip = tl.prepro.affine_horizontal_flip_matrix(prob=1) >>> # 2. combine all affine transform matrices to one matrix >>> M_combined = dot(M_flip).dot(M_rotate) >>> # 3. transfrom the matrix from Cartesian coordinate (the origin in the middle of image) >>> # to Image coordinate (the origin on the top-left of image) >>> transform_matrix = tl.prepro.transform_matrix_offset_center(M_combined, x=w, y=h) >>> # 4. then we can transfrom the image once for all transformations >>> result = tl.prepro.affine_transform_cv2(image, transform_matrix) # 76 times faster >>> # 5. transform keypoint coordinates >>> coords = [[(50, 100), (100, 100), (100, 50), (200, 200)], [(250, 50), (200, 50), (200, 100)]] >>> coords_result = tl.prepro.affine_transform_keypoints(coords, transform_matrix) """ coords_result_list = [] for coords in coords_list: coords = np.asarray(coords) coords = coords.transpose([1, 0]) coords = np.insert(coords, 2, 1, axis=0) # print(coords) # print(transform_matrix) coords_result = np.matmul(transform_matrix, coords) coords_result = coords_result[0:2, :].transpose([1, 0]) coords_result_list.append(coords_result) return coords_result_list
[ "def", "affine_transform_keypoints", "(", "coords_list", ",", "transform_matrix", ")", ":", "coords_result_list", "=", "[", "]", "for", "coords", "in", "coords_list", ":", "coords", "=", "np", ".", "asarray", "(", "coords", ")", "coords", "=", "coords", ".", "transpose", "(", "[", "1", ",", "0", "]", ")", "coords", "=", "np", ".", "insert", "(", "coords", ",", "2", ",", "1", ",", "axis", "=", "0", ")", "# print(coords)", "# print(transform_matrix)", "coords_result", "=", "np", ".", "matmul", "(", "transform_matrix", ",", "coords", ")", "coords_result", "=", "coords_result", "[", "0", ":", "2", ",", ":", "]", ".", "transpose", "(", "[", "1", ",", "0", "]", ")", "coords_result_list", ".", "append", "(", "coords_result", ")", "return", "coords_result_list" ]
Transform keypoint coordinates according to a given affine transform matrix. OpenCV format, x is width. Note that, for pose estimation task, flipping requires maintaining the left and right body information. We should not flip the left and right body, so please use ``tl.prepro.keypoint_random_flip``. Parameters ----------- coords_list : list of list of tuple/list The coordinates e.g., the keypoint coordinates of every person in an image. transform_matrix : numpy.array Transform matrix, OpenCV format. Examples --------- >>> # 1. get all affine transform matrices >>> M_rotate = tl.prepro.affine_rotation_matrix(angle=20) >>> M_flip = tl.prepro.affine_horizontal_flip_matrix(prob=1) >>> # 2. combine all affine transform matrices to one matrix >>> M_combined = dot(M_flip).dot(M_rotate) >>> # 3. transfrom the matrix from Cartesian coordinate (the origin in the middle of image) >>> # to Image coordinate (the origin on the top-left of image) >>> transform_matrix = tl.prepro.transform_matrix_offset_center(M_combined, x=w, y=h) >>> # 4. then we can transfrom the image once for all transformations >>> result = tl.prepro.affine_transform_cv2(image, transform_matrix) # 76 times faster >>> # 5. transform keypoint coordinates >>> coords = [[(50, 100), (100, 100), (100, 50), (200, 200)], [(250, 50), (200, 50), (200, 100)]] >>> coords_result = tl.prepro.affine_transform_keypoints(coords, transform_matrix)
[ "Transform", "keypoint", "coordinates", "according", "to", "a", "given", "affine", "transform", "matrix", ".", "OpenCV", "format", "x", "is", "width", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L587-L628
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
projective_transform_by_points
def projective_transform_by_points( x, src, dst, map_args=None, output_shape=None, order=1, mode='constant', cval=0.0, clip=True, preserve_range=False ): """Projective transform by given coordinates, usually 4 coordinates. see `scikit-image <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`__. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). src : list or numpy The original coordinates, usually 4 coordinates of (width, height). dst : list or numpy The coordinates after transformation, the number of coordinates is the same with src. map_args : dictionary or None Keyword arguments passed to inverse map. output_shape : tuple of 2 int Shape of the output image generated. By default the shape of the input image is preserved. Note that, even for multi-band images, only rows and columns need to be specified. order : int The order of interpolation. The order has to be in the range 0-5: - 0 Nearest-neighbor - 1 Bi-linear (default) - 2 Bi-quadratic - 3 Bi-cubic - 4 Bi-quartic - 5 Bi-quintic mode : str One of `constant` (default), `edge`, `symmetric`, `reflect` or `wrap`. Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of numpy.pad. cval : float Used in conjunction with mode `constant`, the value outside the image boundaries. clip : boolean Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range. preserve_range : boolean Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float. Returns ------- numpy.array A processed image. Examples -------- Assume X is an image from CIFAR-10, i.e. shape == (32, 32, 3) >>> src = [[0,0],[0,32],[32,0],[32,32]] # [w, h] >>> dst = [[10,10],[0,32],[32,0],[32,32]] >>> x = tl.prepro.projective_transform_by_points(X, src, dst) References ----------- - `scikit-image : geometric transformations <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`__ - `scikit-image : examples <http://scikit-image.org/docs/dev/auto_examples/index.html>`__ """ if map_args is None: map_args = {} # if type(src) is list: if isinstance(src, list): # convert to numpy src = np.array(src) # if type(dst) is list: if isinstance(dst, list): dst = np.array(dst) if np.max(x) > 1: # convert to [0, 1] x = x / 255 m = transform.ProjectiveTransform() m.estimate(dst, src) warped = transform.warp( x, m, map_args=map_args, output_shape=output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range ) return warped
python
def projective_transform_by_points( x, src, dst, map_args=None, output_shape=None, order=1, mode='constant', cval=0.0, clip=True, preserve_range=False ): """Projective transform by given coordinates, usually 4 coordinates. see `scikit-image <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`__. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). src : list or numpy The original coordinates, usually 4 coordinates of (width, height). dst : list or numpy The coordinates after transformation, the number of coordinates is the same with src. map_args : dictionary or None Keyword arguments passed to inverse map. output_shape : tuple of 2 int Shape of the output image generated. By default the shape of the input image is preserved. Note that, even for multi-band images, only rows and columns need to be specified. order : int The order of interpolation. The order has to be in the range 0-5: - 0 Nearest-neighbor - 1 Bi-linear (default) - 2 Bi-quadratic - 3 Bi-cubic - 4 Bi-quartic - 5 Bi-quintic mode : str One of `constant` (default), `edge`, `symmetric`, `reflect` or `wrap`. Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of numpy.pad. cval : float Used in conjunction with mode `constant`, the value outside the image boundaries. clip : boolean Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range. preserve_range : boolean Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float. Returns ------- numpy.array A processed image. Examples -------- Assume X is an image from CIFAR-10, i.e. shape == (32, 32, 3) >>> src = [[0,0],[0,32],[32,0],[32,32]] # [w, h] >>> dst = [[10,10],[0,32],[32,0],[32,32]] >>> x = tl.prepro.projective_transform_by_points(X, src, dst) References ----------- - `scikit-image : geometric transformations <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`__ - `scikit-image : examples <http://scikit-image.org/docs/dev/auto_examples/index.html>`__ """ if map_args is None: map_args = {} # if type(src) is list: if isinstance(src, list): # convert to numpy src = np.array(src) # if type(dst) is list: if isinstance(dst, list): dst = np.array(dst) if np.max(x) > 1: # convert to [0, 1] x = x / 255 m = transform.ProjectiveTransform() m.estimate(dst, src) warped = transform.warp( x, m, map_args=map_args, output_shape=output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range ) return warped
[ "def", "projective_transform_by_points", "(", "x", ",", "src", ",", "dst", ",", "map_args", "=", "None", ",", "output_shape", "=", "None", ",", "order", "=", "1", ",", "mode", "=", "'constant'", ",", "cval", "=", "0.0", ",", "clip", "=", "True", ",", "preserve_range", "=", "False", ")", ":", "if", "map_args", "is", "None", ":", "map_args", "=", "{", "}", "# if type(src) is list:", "if", "isinstance", "(", "src", ",", "list", ")", ":", "# convert to numpy", "src", "=", "np", ".", "array", "(", "src", ")", "# if type(dst) is list:", "if", "isinstance", "(", "dst", ",", "list", ")", ":", "dst", "=", "np", ".", "array", "(", "dst", ")", "if", "np", ".", "max", "(", "x", ")", ">", "1", ":", "# convert to [0, 1]", "x", "=", "x", "/", "255", "m", "=", "transform", ".", "ProjectiveTransform", "(", ")", "m", ".", "estimate", "(", "dst", ",", "src", ")", "warped", "=", "transform", ".", "warp", "(", "x", ",", "m", ",", "map_args", "=", "map_args", ",", "output_shape", "=", "output_shape", ",", "order", "=", "order", ",", "mode", "=", "mode", ",", "cval", "=", "cval", ",", "clip", "=", "clip", ",", "preserve_range", "=", "preserve_range", ")", "return", "warped" ]
Projective transform by given coordinates, usually 4 coordinates. see `scikit-image <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`__. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). src : list or numpy The original coordinates, usually 4 coordinates of (width, height). dst : list or numpy The coordinates after transformation, the number of coordinates is the same with src. map_args : dictionary or None Keyword arguments passed to inverse map. output_shape : tuple of 2 int Shape of the output image generated. By default the shape of the input image is preserved. Note that, even for multi-band images, only rows and columns need to be specified. order : int The order of interpolation. The order has to be in the range 0-5: - 0 Nearest-neighbor - 1 Bi-linear (default) - 2 Bi-quadratic - 3 Bi-cubic - 4 Bi-quartic - 5 Bi-quintic mode : str One of `constant` (default), `edge`, `symmetric`, `reflect` or `wrap`. Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of numpy.pad. cval : float Used in conjunction with mode `constant`, the value outside the image boundaries. clip : boolean Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range. preserve_range : boolean Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float. Returns ------- numpy.array A processed image. Examples -------- Assume X is an image from CIFAR-10, i.e. shape == (32, 32, 3) >>> src = [[0,0],[0,32],[32,0],[32,32]] # [w, h] >>> dst = [[10,10],[0,32],[32,0],[32,32]] >>> x = tl.prepro.projective_transform_by_points(X, src, dst) References ----------- - `scikit-image : geometric transformations <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`__ - `scikit-image : examples <http://scikit-image.org/docs/dev/auto_examples/index.html>`__
[ "Projective", "transform", "by", "given", "coordinates", "usually", "4", "coordinates", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L631-L705
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
rotation
def rotation( x, rg=20, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1 ): """Rotate an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). rg : int or float Degree to rotate, usually 0 ~ 180. is_random : boolean If True, randomly rotate. Default is False row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode=`constant`. Default is 0.0 order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. Examples --------- >>> x --> [row, col, 1] >>> x = tl.prepro.rotation(x, rg=40, is_random=False) >>> tl.vis.save_image(x, 'im.png') """ if is_random: theta = np.pi / 180 * np.random.uniform(-rg, rg) else: theta = np.pi / 180 * rg rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w) x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order) return x
python
def rotation( x, rg=20, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1 ): """Rotate an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). rg : int or float Degree to rotate, usually 0 ~ 180. is_random : boolean If True, randomly rotate. Default is False row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode=`constant`. Default is 0.0 order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. Examples --------- >>> x --> [row, col, 1] >>> x = tl.prepro.rotation(x, rg=40, is_random=False) >>> tl.vis.save_image(x, 'im.png') """ if is_random: theta = np.pi / 180 * np.random.uniform(-rg, rg) else: theta = np.pi / 180 * rg rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w) x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order) return x
[ "def", "rotation", "(", "x", ",", "rg", "=", "20", ",", "is_random", "=", "False", ",", "row_index", "=", "0", ",", "col_index", "=", "1", ",", "channel_index", "=", "2", ",", "fill_mode", "=", "'nearest'", ",", "cval", "=", "0.", ",", "order", "=", "1", ")", ":", "if", "is_random", ":", "theta", "=", "np", ".", "pi", "/", "180", "*", "np", ".", "random", ".", "uniform", "(", "-", "rg", ",", "rg", ")", "else", ":", "theta", "=", "np", ".", "pi", "/", "180", "*", "rg", "rotation_matrix", "=", "np", ".", "array", "(", "[", "[", "np", ".", "cos", "(", "theta", ")", ",", "-", "np", ".", "sin", "(", "theta", ")", ",", "0", "]", ",", "[", "np", ".", "sin", "(", "theta", ")", ",", "np", ".", "cos", "(", "theta", ")", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "h", ",", "w", "=", "x", ".", "shape", "[", "row_index", "]", ",", "x", ".", "shape", "[", "col_index", "]", "transform_matrix", "=", "transform_matrix_offset_center", "(", "rotation_matrix", ",", "h", ",", "w", ")", "x", "=", "affine_transform", "(", "x", ",", "transform_matrix", ",", "channel_index", ",", "fill_mode", ",", "cval", ",", "order", ")", "return", "x" ]
Rotate an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). rg : int or float Degree to rotate, usually 0 ~ 180. is_random : boolean If True, randomly rotate. Default is False row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode=`constant`. Default is 0.0 order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. Examples --------- >>> x --> [row, col, 1] >>> x = tl.prepro.rotation(x, rg=40, is_random=False) >>> tl.vis.save_image(x, 'im.png')
[ "Rotate", "an", "image", "randomly", "or", "non", "-", "randomly", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L709-L752
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
crop
def crop(x, wrg, hrg, is_random=False, row_index=0, col_index=1): """Randomly or centrally crop an image. Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). wrg : int Size of width. hrg : int Size of height. is_random : boolean, If True, randomly crop, else central crop. Default is False. row_index: int index of row. col_index: int index of column. Returns ------- numpy.array A processed image. """ h, w = x.shape[row_index], x.shape[col_index] if (h < hrg) or (w < wrg): raise AssertionError("The size of cropping should smaller than or equal to the original image") if is_random: h_offset = int(np.random.uniform(0, h - hrg)) w_offset = int(np.random.uniform(0, w - wrg)) # tl.logging.info(h_offset, w_offset, x[h_offset: hrg+h_offset ,w_offset: wrg+w_offset].shape) return x[h_offset:hrg + h_offset, w_offset:wrg + w_offset] else: # central crop h_offset = int(np.floor((h - hrg) / 2.)) w_offset = int(np.floor((w - wrg) / 2.)) h_end = h_offset + hrg w_end = w_offset + wrg return x[h_offset:h_end, w_offset:w_end]
python
def crop(x, wrg, hrg, is_random=False, row_index=0, col_index=1): """Randomly or centrally crop an image. Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). wrg : int Size of width. hrg : int Size of height. is_random : boolean, If True, randomly crop, else central crop. Default is False. row_index: int index of row. col_index: int index of column. Returns ------- numpy.array A processed image. """ h, w = x.shape[row_index], x.shape[col_index] if (h < hrg) or (w < wrg): raise AssertionError("The size of cropping should smaller than or equal to the original image") if is_random: h_offset = int(np.random.uniform(0, h - hrg)) w_offset = int(np.random.uniform(0, w - wrg)) # tl.logging.info(h_offset, w_offset, x[h_offset: hrg+h_offset ,w_offset: wrg+w_offset].shape) return x[h_offset:hrg + h_offset, w_offset:wrg + w_offset] else: # central crop h_offset = int(np.floor((h - hrg) / 2.)) w_offset = int(np.floor((w - wrg) / 2.)) h_end = h_offset + hrg w_end = w_offset + wrg return x[h_offset:h_end, w_offset:w_end]
[ "def", "crop", "(", "x", ",", "wrg", ",", "hrg", ",", "is_random", "=", "False", ",", "row_index", "=", "0", ",", "col_index", "=", "1", ")", ":", "h", ",", "w", "=", "x", ".", "shape", "[", "row_index", "]", ",", "x", ".", "shape", "[", "col_index", "]", "if", "(", "h", "<", "hrg", ")", "or", "(", "w", "<", "wrg", ")", ":", "raise", "AssertionError", "(", "\"The size of cropping should smaller than or equal to the original image\"", ")", "if", "is_random", ":", "h_offset", "=", "int", "(", "np", ".", "random", ".", "uniform", "(", "0", ",", "h", "-", "hrg", ")", ")", "w_offset", "=", "int", "(", "np", ".", "random", ".", "uniform", "(", "0", ",", "w", "-", "wrg", ")", ")", "# tl.logging.info(h_offset, w_offset, x[h_offset: hrg+h_offset ,w_offset: wrg+w_offset].shape)", "return", "x", "[", "h_offset", ":", "hrg", "+", "h_offset", ",", "w_offset", ":", "wrg", "+", "w_offset", "]", "else", ":", "# central crop", "h_offset", "=", "int", "(", "np", ".", "floor", "(", "(", "h", "-", "hrg", ")", "/", "2.", ")", ")", "w_offset", "=", "int", "(", "np", ".", "floor", "(", "(", "w", "-", "wrg", ")", "/", "2.", ")", ")", "h_end", "=", "h_offset", "+", "hrg", "w_end", "=", "w_offset", "+", "wrg", "return", "x", "[", "h_offset", ":", "h_end", ",", "w_offset", ":", "w_end", "]" ]
Randomly or centrally crop an image. Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). wrg : int Size of width. hrg : int Size of height. is_random : boolean, If True, randomly crop, else central crop. Default is False. row_index: int index of row. col_index: int index of column. Returns ------- numpy.array A processed image.
[ "Randomly", "or", "centrally", "crop", "an", "image", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L794-L833
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
crop_multi
def crop_multi(x, wrg, hrg, is_random=False, row_index=0, col_index=1): """Randomly or centrally crop multiple images. Parameters ---------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.crop``. Returns ------- numpy.array A list of processed images. """ h, w = x[0].shape[row_index], x[0].shape[col_index] if (h < hrg) or (w < wrg): raise AssertionError("The size of cropping should smaller than or equal to the original image") if is_random: h_offset = int(np.random.uniform(0, h - hrg)) w_offset = int(np.random.uniform(0, w - wrg)) results = [] for data in x: results.append(data[h_offset:hrg + h_offset, w_offset:wrg + w_offset]) return np.asarray(results) else: # central crop h_offset = (h - hrg) / 2 w_offset = (w - wrg) / 2 results = [] for data in x: results.append(data[h_offset:h - h_offset, w_offset:w - w_offset]) return np.asarray(results)
python
def crop_multi(x, wrg, hrg, is_random=False, row_index=0, col_index=1): """Randomly or centrally crop multiple images. Parameters ---------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.crop``. Returns ------- numpy.array A list of processed images. """ h, w = x[0].shape[row_index], x[0].shape[col_index] if (h < hrg) or (w < wrg): raise AssertionError("The size of cropping should smaller than or equal to the original image") if is_random: h_offset = int(np.random.uniform(0, h - hrg)) w_offset = int(np.random.uniform(0, w - wrg)) results = [] for data in x: results.append(data[h_offset:hrg + h_offset, w_offset:wrg + w_offset]) return np.asarray(results) else: # central crop h_offset = (h - hrg) / 2 w_offset = (w - wrg) / 2 results = [] for data in x: results.append(data[h_offset:h - h_offset, w_offset:w - w_offset]) return np.asarray(results)
[ "def", "crop_multi", "(", "x", ",", "wrg", ",", "hrg", ",", "is_random", "=", "False", ",", "row_index", "=", "0", ",", "col_index", "=", "1", ")", ":", "h", ",", "w", "=", "x", "[", "0", "]", ".", "shape", "[", "row_index", "]", ",", "x", "[", "0", "]", ".", "shape", "[", "col_index", "]", "if", "(", "h", "<", "hrg", ")", "or", "(", "w", "<", "wrg", ")", ":", "raise", "AssertionError", "(", "\"The size of cropping should smaller than or equal to the original image\"", ")", "if", "is_random", ":", "h_offset", "=", "int", "(", "np", ".", "random", ".", "uniform", "(", "0", ",", "h", "-", "hrg", ")", ")", "w_offset", "=", "int", "(", "np", ".", "random", ".", "uniform", "(", "0", ",", "w", "-", "wrg", ")", ")", "results", "=", "[", "]", "for", "data", "in", "x", ":", "results", ".", "append", "(", "data", "[", "h_offset", ":", "hrg", "+", "h_offset", ",", "w_offset", ":", "wrg", "+", "w_offset", "]", ")", "return", "np", ".", "asarray", "(", "results", ")", "else", ":", "# central crop", "h_offset", "=", "(", "h", "-", "hrg", ")", "/", "2", "w_offset", "=", "(", "w", "-", "wrg", ")", "/", "2", "results", "=", "[", "]", "for", "data", "in", "x", ":", "results", ".", "append", "(", "data", "[", "h_offset", ":", "h", "-", "h_offset", ",", "w_offset", ":", "w", "-", "w_offset", "]", ")", "return", "np", ".", "asarray", "(", "results", ")" ]
Randomly or centrally crop multiple images. Parameters ---------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.crop``. Returns ------- numpy.array A list of processed images.
[ "Randomly", "or", "centrally", "crop", "multiple", "images", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L842-L877
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
flip_axis
def flip_axis(x, axis=1, is_random=False): """Flip the axis of an image, such as flip left and right, up and down, randomly or non-randomly, Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). axis : int Which axis to flip. - 0, flip up and down - 1, flip left and right - 2, flip channel is_random : boolean If True, randomly flip. Default is False. Returns ------- numpy.array A processed image. """ if is_random: factor = np.random.uniform(-1, 1) if factor > 0: x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x else: return x else: x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x
python
def flip_axis(x, axis=1, is_random=False): """Flip the axis of an image, such as flip left and right, up and down, randomly or non-randomly, Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). axis : int Which axis to flip. - 0, flip up and down - 1, flip left and right - 2, flip channel is_random : boolean If True, randomly flip. Default is False. Returns ------- numpy.array A processed image. """ if is_random: factor = np.random.uniform(-1, 1) if factor > 0: x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x else: return x else: x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x
[ "def", "flip_axis", "(", "x", ",", "axis", "=", "1", ",", "is_random", "=", "False", ")", ":", "if", "is_random", ":", "factor", "=", "np", ".", "random", ".", "uniform", "(", "-", "1", ",", "1", ")", "if", "factor", ">", "0", ":", "x", "=", "np", ".", "asarray", "(", "x", ")", ".", "swapaxes", "(", "axis", ",", "0", ")", "x", "=", "x", "[", ":", ":", "-", "1", ",", "...", "]", "x", "=", "x", ".", "swapaxes", "(", "0", ",", "axis", ")", "return", "x", "else", ":", "return", "x", "else", ":", "x", "=", "np", ".", "asarray", "(", "x", ")", ".", "swapaxes", "(", "axis", ",", "0", ")", "x", "=", "x", "[", ":", ":", "-", "1", ",", "...", "]", "x", "=", "x", ".", "swapaxes", "(", "0", ",", "axis", ")", "return", "x" ]
Flip the axis of an image, such as flip left and right, up and down, randomly or non-randomly, Parameters ---------- x : numpy.array An image with dimension of [row, col, channel] (default). axis : int Which axis to flip. - 0, flip up and down - 1, flip left and right - 2, flip channel is_random : boolean If True, randomly flip. Default is False. Returns ------- numpy.array A processed image.
[ "Flip", "the", "axis", "of", "an", "image", "such", "as", "flip", "left", "and", "right", "up", "and", "down", "randomly", "or", "non", "-", "randomly" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L881-L915
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
flip_axis_multi
def flip_axis_multi(x, axis, is_random=False): """Flip the axises of multiple images together, such as flip left and right, up and down, randomly or non-randomly, Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.flip_axis``. Returns ------- numpy.array A list of processed images. """ if is_random: factor = np.random.uniform(-1, 1) if factor > 0: # x = np.asarray(x).swapaxes(axis, 0) # x = x[::-1, ...] # x = x.swapaxes(0, axis) # return x results = [] for data in x: data = np.asarray(data).swapaxes(axis, 0) data = data[::-1, ...] data = data.swapaxes(0, axis) results.append(data) return np.asarray(results) else: return np.asarray(x) else: # x = np.asarray(x).swapaxes(axis, 0) # x = x[::-1, ...] # x = x.swapaxes(0, axis) # return x results = [] for data in x: data = np.asarray(data).swapaxes(axis, 0) data = data[::-1, ...] data = data.swapaxes(0, axis) results.append(data) return np.asarray(results)
python
def flip_axis_multi(x, axis, is_random=False): """Flip the axises of multiple images together, such as flip left and right, up and down, randomly or non-randomly, Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.flip_axis``. Returns ------- numpy.array A list of processed images. """ if is_random: factor = np.random.uniform(-1, 1) if factor > 0: # x = np.asarray(x).swapaxes(axis, 0) # x = x[::-1, ...] # x = x.swapaxes(0, axis) # return x results = [] for data in x: data = np.asarray(data).swapaxes(axis, 0) data = data[::-1, ...] data = data.swapaxes(0, axis) results.append(data) return np.asarray(results) else: return np.asarray(x) else: # x = np.asarray(x).swapaxes(axis, 0) # x = x[::-1, ...] # x = x.swapaxes(0, axis) # return x results = [] for data in x: data = np.asarray(data).swapaxes(axis, 0) data = data[::-1, ...] data = data.swapaxes(0, axis) results.append(data) return np.asarray(results)
[ "def", "flip_axis_multi", "(", "x", ",", "axis", ",", "is_random", "=", "False", ")", ":", "if", "is_random", ":", "factor", "=", "np", ".", "random", ".", "uniform", "(", "-", "1", ",", "1", ")", "if", "factor", ">", "0", ":", "# x = np.asarray(x).swapaxes(axis, 0)", "# x = x[::-1, ...]", "# x = x.swapaxes(0, axis)", "# return x", "results", "=", "[", "]", "for", "data", "in", "x", ":", "data", "=", "np", ".", "asarray", "(", "data", ")", ".", "swapaxes", "(", "axis", ",", "0", ")", "data", "=", "data", "[", ":", ":", "-", "1", ",", "...", "]", "data", "=", "data", ".", "swapaxes", "(", "0", ",", "axis", ")", "results", ".", "append", "(", "data", ")", "return", "np", ".", "asarray", "(", "results", ")", "else", ":", "return", "np", ".", "asarray", "(", "x", ")", "else", ":", "# x = np.asarray(x).swapaxes(axis, 0)", "# x = x[::-1, ...]", "# x = x.swapaxes(0, axis)", "# return x", "results", "=", "[", "]", "for", "data", "in", "x", ":", "data", "=", "np", ".", "asarray", "(", "data", ")", ".", "swapaxes", "(", "axis", ",", "0", ")", "data", "=", "data", "[", ":", ":", "-", "1", ",", "...", "]", "data", "=", "data", ".", "swapaxes", "(", "0", ",", "axis", ")", "results", ".", "append", "(", "data", ")", "return", "np", ".", "asarray", "(", "results", ")" ]
Flip the axises of multiple images together, such as flip left and right, up and down, randomly or non-randomly, Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.flip_axis``. Returns ------- numpy.array A list of processed images.
[ "Flip", "the", "axises", "of", "multiple", "images", "together", "such", "as", "flip", "left", "and", "right", "up", "and", "down", "randomly", "or", "non", "-", "randomly" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L918-L961
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
shift
def shift( x, wrg=0.1, hrg=0.1, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1 ): """Shift an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). wrg : float Percentage of shift in axis x, usually -0.25 ~ 0.25. hrg : float Percentage of shift in axis y, usually -0.25 ~ 0.25. is_random : boolean If True, randomly shift. Default is False. row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0. order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. """ h, w = x.shape[row_index], x.shape[col_index] if is_random: tx = np.random.uniform(-hrg, hrg) * h ty = np.random.uniform(-wrg, wrg) * w else: tx, ty = hrg * h, wrg * w translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = translation_matrix # no need to do offset x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order) return x
python
def shift( x, wrg=0.1, hrg=0.1, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1 ): """Shift an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). wrg : float Percentage of shift in axis x, usually -0.25 ~ 0.25. hrg : float Percentage of shift in axis y, usually -0.25 ~ 0.25. is_random : boolean If True, randomly shift. Default is False. row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0. order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. """ h, w = x.shape[row_index], x.shape[col_index] if is_random: tx = np.random.uniform(-hrg, hrg) * h ty = np.random.uniform(-wrg, wrg) * w else: tx, ty = hrg * h, wrg * w translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = translation_matrix # no need to do offset x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order) return x
[ "def", "shift", "(", "x", ",", "wrg", "=", "0.1", ",", "hrg", "=", "0.1", ",", "is_random", "=", "False", ",", "row_index", "=", "0", ",", "col_index", "=", "1", ",", "channel_index", "=", "2", ",", "fill_mode", "=", "'nearest'", ",", "cval", "=", "0.", ",", "order", "=", "1", ")", ":", "h", ",", "w", "=", "x", ".", "shape", "[", "row_index", "]", ",", "x", ".", "shape", "[", "col_index", "]", "if", "is_random", ":", "tx", "=", "np", ".", "random", ".", "uniform", "(", "-", "hrg", ",", "hrg", ")", "*", "h", "ty", "=", "np", ".", "random", ".", "uniform", "(", "-", "wrg", ",", "wrg", ")", "*", "w", "else", ":", "tx", ",", "ty", "=", "hrg", "*", "h", ",", "wrg", "*", "w", "translation_matrix", "=", "np", ".", "array", "(", "[", "[", "1", ",", "0", ",", "tx", "]", ",", "[", "0", ",", "1", ",", "ty", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "transform_matrix", "=", "translation_matrix", "# no need to do offset", "x", "=", "affine_transform", "(", "x", ",", "transform_matrix", ",", "channel_index", ",", "fill_mode", ",", "cval", ",", "order", ")", "return", "x" ]
Shift an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). wrg : float Percentage of shift in axis x, usually -0.25 ~ 0.25. hrg : float Percentage of shift in axis y, usually -0.25 ~ 0.25. is_random : boolean If True, randomly shift. Default is False. row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0. order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image.
[ "Shift", "an", "image", "randomly", "or", "non", "-", "randomly", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L965-L1006
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
shift_multi
def shift_multi( x, wrg=0.1, hrg=0.1, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1 ): """Shift images with the same arguments, randomly or non-randomly. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.shift``. Returns ------- numpy.array A list of processed images. """ h, w = x[0].shape[row_index], x[0].shape[col_index] if is_random: tx = np.random.uniform(-hrg, hrg) * h ty = np.random.uniform(-wrg, wrg) * w else: tx, ty = hrg * h, wrg * w translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = translation_matrix # no need to do offset results = [] for data in x: results.append(affine_transform(data, transform_matrix, channel_index, fill_mode, cval, order)) return np.asarray(results)
python
def shift_multi( x, wrg=0.1, hrg=0.1, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1 ): """Shift images with the same arguments, randomly or non-randomly. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.shift``. Returns ------- numpy.array A list of processed images. """ h, w = x[0].shape[row_index], x[0].shape[col_index] if is_random: tx = np.random.uniform(-hrg, hrg) * h ty = np.random.uniform(-wrg, wrg) * w else: tx, ty = hrg * h, wrg * w translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = translation_matrix # no need to do offset results = [] for data in x: results.append(affine_transform(data, transform_matrix, channel_index, fill_mode, cval, order)) return np.asarray(results)
[ "def", "shift_multi", "(", "x", ",", "wrg", "=", "0.1", ",", "hrg", "=", "0.1", ",", "is_random", "=", "False", ",", "row_index", "=", "0", ",", "col_index", "=", "1", ",", "channel_index", "=", "2", ",", "fill_mode", "=", "'nearest'", ",", "cval", "=", "0.", ",", "order", "=", "1", ")", ":", "h", ",", "w", "=", "x", "[", "0", "]", ".", "shape", "[", "row_index", "]", ",", "x", "[", "0", "]", ".", "shape", "[", "col_index", "]", "if", "is_random", ":", "tx", "=", "np", ".", "random", ".", "uniform", "(", "-", "hrg", ",", "hrg", ")", "*", "h", "ty", "=", "np", ".", "random", ".", "uniform", "(", "-", "wrg", ",", "wrg", ")", "*", "w", "else", ":", "tx", ",", "ty", "=", "hrg", "*", "h", ",", "wrg", "*", "w", "translation_matrix", "=", "np", ".", "array", "(", "[", "[", "1", ",", "0", ",", "tx", "]", ",", "[", "0", ",", "1", ",", "ty", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "transform_matrix", "=", "translation_matrix", "# no need to do offset", "results", "=", "[", "]", "for", "data", "in", "x", ":", "results", ".", "append", "(", "affine_transform", "(", "data", ",", "transform_matrix", ",", "channel_index", ",", "fill_mode", ",", "cval", ",", "order", ")", ")", "return", "np", ".", "asarray", "(", "results", ")" ]
Shift images with the same arguments, randomly or non-randomly. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.shift``. Returns ------- numpy.array A list of processed images.
[ "Shift", "images", "with", "the", "same", "arguments", "randomly", "or", "non", "-", "randomly", ".", "Usually", "be", "used", "for", "image", "segmentation", "which", "x", "=", "[", "X", "Y", "]", "X", "and", "Y", "should", "be", "matched", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1009-L1041
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
shear
def shear( x, intensity=0.1, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1 ): """Shear an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). intensity : float Percentage of shear, usually -0.5 ~ 0.5 (is_random==True), 0 ~ 0.5 (is_random==False), you can have a quick try by shear(X, 1). is_random : boolean If True, randomly shear. Default is False. row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0. order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. References ----------- - `Affine transformation <https://uk.mathworks.com/discovery/affine-transformation.html>`__ """ if is_random: shear = np.random.uniform(-intensity, intensity) else: shear = intensity shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(shear_matrix, h, w) x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order) return x
python
def shear( x, intensity=0.1, is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1 ): """Shear an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). intensity : float Percentage of shear, usually -0.5 ~ 0.5 (is_random==True), 0 ~ 0.5 (is_random==False), you can have a quick try by shear(X, 1). is_random : boolean If True, randomly shear. Default is False. row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0. order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. References ----------- - `Affine transformation <https://uk.mathworks.com/discovery/affine-transformation.html>`__ """ if is_random: shear = np.random.uniform(-intensity, intensity) else: shear = intensity shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(shear_matrix, h, w) x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order) return x
[ "def", "shear", "(", "x", ",", "intensity", "=", "0.1", ",", "is_random", "=", "False", ",", "row_index", "=", "0", ",", "col_index", "=", "1", ",", "channel_index", "=", "2", ",", "fill_mode", "=", "'nearest'", ",", "cval", "=", "0.", ",", "order", "=", "1", ")", ":", "if", "is_random", ":", "shear", "=", "np", ".", "random", ".", "uniform", "(", "-", "intensity", ",", "intensity", ")", "else", ":", "shear", "=", "intensity", "shear_matrix", "=", "np", ".", "array", "(", "[", "[", "1", ",", "-", "np", ".", "sin", "(", "shear", ")", ",", "0", "]", ",", "[", "0", ",", "np", ".", "cos", "(", "shear", ")", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "h", ",", "w", "=", "x", ".", "shape", "[", "row_index", "]", ",", "x", ".", "shape", "[", "col_index", "]", "transform_matrix", "=", "transform_matrix_offset_center", "(", "shear_matrix", ",", "h", ",", "w", ")", "x", "=", "affine_transform", "(", "x", ",", "transform_matrix", ",", "channel_index", ",", "fill_mode", ",", "cval", ",", "order", ")", "return", "x" ]
Shear an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). intensity : float Percentage of shear, usually -0.5 ~ 0.5 (is_random==True), 0 ~ 0.5 (is_random==False), you can have a quick try by shear(X, 1). is_random : boolean If True, randomly shear. Default is False. row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0. order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. References ----------- - `Affine transformation <https://uk.mathworks.com/discovery/affine-transformation.html>`__
[ "Shear", "an", "image", "randomly", "or", "non", "-", "randomly", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1045-L1088
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
shear2
def shear2( x, shear=(0.1, 0.1), is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1 ): """Shear an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). shear : tuple of two floats Percentage of shear for height and width direction (0, 1). is_random : boolean If True, randomly shear. Default is False. row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0. order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. References ----------- - `Affine transformation <https://uk.mathworks.com/discovery/affine-transformation.html>`__ """ if len(shear) != 2: raise AssertionError( "shear should be tuple of 2 floats, or you want to use tl.prepro.shear rather than tl.prepro.shear2 ?" ) if isinstance(shear, tuple): shear = list(shear) if is_random: shear[0] = np.random.uniform(-shear[0], shear[0]) shear[1] = np.random.uniform(-shear[1], shear[1]) shear_matrix = np.array([[1, shear[0], 0], \ [shear[1], 1, 0], \ [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(shear_matrix, h, w) x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order) return x
python
def shear2( x, shear=(0.1, 0.1), is_random=False, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1 ): """Shear an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). shear : tuple of two floats Percentage of shear for height and width direction (0, 1). is_random : boolean If True, randomly shear. Default is False. row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0. order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. References ----------- - `Affine transformation <https://uk.mathworks.com/discovery/affine-transformation.html>`__ """ if len(shear) != 2: raise AssertionError( "shear should be tuple of 2 floats, or you want to use tl.prepro.shear rather than tl.prepro.shear2 ?" ) if isinstance(shear, tuple): shear = list(shear) if is_random: shear[0] = np.random.uniform(-shear[0], shear[0]) shear[1] = np.random.uniform(-shear[1], shear[1]) shear_matrix = np.array([[1, shear[0], 0], \ [shear[1], 1, 0], \ [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(shear_matrix, h, w) x = affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order) return x
[ "def", "shear2", "(", "x", ",", "shear", "=", "(", "0.1", ",", "0.1", ")", ",", "is_random", "=", "False", ",", "row_index", "=", "0", ",", "col_index", "=", "1", ",", "channel_index", "=", "2", ",", "fill_mode", "=", "'nearest'", ",", "cval", "=", "0.", ",", "order", "=", "1", ")", ":", "if", "len", "(", "shear", ")", "!=", "2", ":", "raise", "AssertionError", "(", "\"shear should be tuple of 2 floats, or you want to use tl.prepro.shear rather than tl.prepro.shear2 ?\"", ")", "if", "isinstance", "(", "shear", ",", "tuple", ")", ":", "shear", "=", "list", "(", "shear", ")", "if", "is_random", ":", "shear", "[", "0", "]", "=", "np", ".", "random", ".", "uniform", "(", "-", "shear", "[", "0", "]", ",", "shear", "[", "0", "]", ")", "shear", "[", "1", "]", "=", "np", ".", "random", ".", "uniform", "(", "-", "shear", "[", "1", "]", ",", "shear", "[", "1", "]", ")", "shear_matrix", "=", "np", ".", "array", "(", "[", "[", "1", ",", "shear", "[", "0", "]", ",", "0", "]", ",", "[", "shear", "[", "1", "]", ",", "1", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "h", ",", "w", "=", "x", ".", "shape", "[", "row_index", "]", ",", "x", ".", "shape", "[", "col_index", "]", "transform_matrix", "=", "transform_matrix_offset_center", "(", "shear_matrix", ",", "h", ",", "w", ")", "x", "=", "affine_transform", "(", "x", ",", "transform_matrix", ",", "channel_index", ",", "fill_mode", ",", "cval", ",", "order", ")", "return", "x" ]
Shear an image randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). shear : tuple of two floats Percentage of shear for height and width direction (0, 1). is_random : boolean If True, randomly shear. Default is False. row_index col_index and channel_index : int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). fill_mode : str Method to fill missing pixel, default `nearest`, more options `constant`, `reflect` or `wrap`, see `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ cval : float Value used for points outside the boundaries of the input if mode='constant'. Default is 0.0. order : int The order of interpolation. The order has to be in the range 0-5. See ``tl.prepro.affine_transform`` and `scipy ndimage affine_transform <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html>`__ Returns ------- numpy.array A processed image. References ----------- - `Affine transformation <https://uk.mathworks.com/discovery/affine-transformation.html>`__
[ "Shear", "an", "image", "randomly", "or", "non", "-", "randomly", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1125-L1175
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
swirl
def swirl( x, center=None, strength=1, radius=100, rotation=0, output_shape=None, order=1, mode='constant', cval=0, clip=True, preserve_range=False, is_random=False ): """Swirl an image randomly or non-randomly, see `scikit-image swirl API <http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.swirl>`__ and `example <http://scikit-image.org/docs/dev/auto_examples/plot_swirl.html>`__. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). center : tuple or 2 int or None Center coordinate of transformation (optional). strength : float The amount of swirling applied. radius : float The extent of the swirl in pixels. The effect dies out rapidly beyond radius. rotation : float Additional rotation applied to the image, usually [0, 360], relates to center. output_shape : tuple of 2 int or None Shape of the output image generated (height, width). By default the shape of the input image is preserved. order : int, optional The order of the spline interpolation, default is 1. The order has to be in the range 0-5. See skimage.transform.warp for detail. mode : str One of `constant` (default), `edge`, `symmetric` `reflect` and `wrap`. Points outside the boundaries of the input are filled according to the given mode, with `constant` used as the default. Modes match the behaviour of numpy.pad. cval : float Used in conjunction with mode `constant`, the value outside the image boundaries. clip : boolean Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range. preserve_range : boolean Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float. is_random : boolean, If True, random swirl. Default is False. - random center = [(0 ~ x.shape[0]), (0 ~ x.shape[1])] - random strength = [0, strength] - random radius = [1e-10, radius] - random rotation = [-rotation, rotation] Returns ------- numpy.array A processed image. Examples --------- >>> x --> [row, col, 1] greyscale >>> x = tl.prepro.swirl(x, strength=4, radius=100) """ if radius == 0: raise AssertionError("Invalid radius value") rotation = np.pi / 180 * rotation if is_random: center_h = int(np.random.uniform(0, x.shape[0])) center_w = int(np.random.uniform(0, x.shape[1])) center = (center_h, center_w) strength = np.random.uniform(0, strength) radius = np.random.uniform(1e-10, radius) rotation = np.random.uniform(-rotation, rotation) max_v = np.max(x) if max_v > 1: # Note: the input of this fn should be [-1, 1], rescale is required. x = x / max_v swirled = skimage.transform.swirl( x, center=center, strength=strength, radius=radius, rotation=rotation, output_shape=output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range ) if max_v > 1: swirled = swirled * max_v return swirled
python
def swirl( x, center=None, strength=1, radius=100, rotation=0, output_shape=None, order=1, mode='constant', cval=0, clip=True, preserve_range=False, is_random=False ): """Swirl an image randomly or non-randomly, see `scikit-image swirl API <http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.swirl>`__ and `example <http://scikit-image.org/docs/dev/auto_examples/plot_swirl.html>`__. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). center : tuple or 2 int or None Center coordinate of transformation (optional). strength : float The amount of swirling applied. radius : float The extent of the swirl in pixels. The effect dies out rapidly beyond radius. rotation : float Additional rotation applied to the image, usually [0, 360], relates to center. output_shape : tuple of 2 int or None Shape of the output image generated (height, width). By default the shape of the input image is preserved. order : int, optional The order of the spline interpolation, default is 1. The order has to be in the range 0-5. See skimage.transform.warp for detail. mode : str One of `constant` (default), `edge`, `symmetric` `reflect` and `wrap`. Points outside the boundaries of the input are filled according to the given mode, with `constant` used as the default. Modes match the behaviour of numpy.pad. cval : float Used in conjunction with mode `constant`, the value outside the image boundaries. clip : boolean Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range. preserve_range : boolean Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float. is_random : boolean, If True, random swirl. Default is False. - random center = [(0 ~ x.shape[0]), (0 ~ x.shape[1])] - random strength = [0, strength] - random radius = [1e-10, radius] - random rotation = [-rotation, rotation] Returns ------- numpy.array A processed image. Examples --------- >>> x --> [row, col, 1] greyscale >>> x = tl.prepro.swirl(x, strength=4, radius=100) """ if radius == 0: raise AssertionError("Invalid radius value") rotation = np.pi / 180 * rotation if is_random: center_h = int(np.random.uniform(0, x.shape[0])) center_w = int(np.random.uniform(0, x.shape[1])) center = (center_h, center_w) strength = np.random.uniform(0, strength) radius = np.random.uniform(1e-10, radius) rotation = np.random.uniform(-rotation, rotation) max_v = np.max(x) if max_v > 1: # Note: the input of this fn should be [-1, 1], rescale is required. x = x / max_v swirled = skimage.transform.swirl( x, center=center, strength=strength, radius=radius, rotation=rotation, output_shape=output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range ) if max_v > 1: swirled = swirled * max_v return swirled
[ "def", "swirl", "(", "x", ",", "center", "=", "None", ",", "strength", "=", "1", ",", "radius", "=", "100", ",", "rotation", "=", "0", ",", "output_shape", "=", "None", ",", "order", "=", "1", ",", "mode", "=", "'constant'", ",", "cval", "=", "0", ",", "clip", "=", "True", ",", "preserve_range", "=", "False", ",", "is_random", "=", "False", ")", ":", "if", "radius", "==", "0", ":", "raise", "AssertionError", "(", "\"Invalid radius value\"", ")", "rotation", "=", "np", ".", "pi", "/", "180", "*", "rotation", "if", "is_random", ":", "center_h", "=", "int", "(", "np", ".", "random", ".", "uniform", "(", "0", ",", "x", ".", "shape", "[", "0", "]", ")", ")", "center_w", "=", "int", "(", "np", ".", "random", ".", "uniform", "(", "0", ",", "x", ".", "shape", "[", "1", "]", ")", ")", "center", "=", "(", "center_h", ",", "center_w", ")", "strength", "=", "np", ".", "random", ".", "uniform", "(", "0", ",", "strength", ")", "radius", "=", "np", ".", "random", ".", "uniform", "(", "1e-10", ",", "radius", ")", "rotation", "=", "np", ".", "random", ".", "uniform", "(", "-", "rotation", ",", "rotation", ")", "max_v", "=", "np", ".", "max", "(", "x", ")", "if", "max_v", ">", "1", ":", "# Note: the input of this fn should be [-1, 1], rescale is required.", "x", "=", "x", "/", "max_v", "swirled", "=", "skimage", ".", "transform", ".", "swirl", "(", "x", ",", "center", "=", "center", ",", "strength", "=", "strength", ",", "radius", "=", "radius", ",", "rotation", "=", "rotation", ",", "output_shape", "=", "output_shape", ",", "order", "=", "order", ",", "mode", "=", "mode", ",", "cval", "=", "cval", ",", "clip", "=", "clip", ",", "preserve_range", "=", "preserve_range", ")", "if", "max_v", ">", "1", ":", "swirled", "=", "swirled", "*", "max_v", "return", "swirled" ]
Swirl an image randomly or non-randomly, see `scikit-image swirl API <http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.swirl>`__ and `example <http://scikit-image.org/docs/dev/auto_examples/plot_swirl.html>`__. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). center : tuple or 2 int or None Center coordinate of transformation (optional). strength : float The amount of swirling applied. radius : float The extent of the swirl in pixels. The effect dies out rapidly beyond radius. rotation : float Additional rotation applied to the image, usually [0, 360], relates to center. output_shape : tuple of 2 int or None Shape of the output image generated (height, width). By default the shape of the input image is preserved. order : int, optional The order of the spline interpolation, default is 1. The order has to be in the range 0-5. See skimage.transform.warp for detail. mode : str One of `constant` (default), `edge`, `symmetric` `reflect` and `wrap`. Points outside the boundaries of the input are filled according to the given mode, with `constant` used as the default. Modes match the behaviour of numpy.pad. cval : float Used in conjunction with mode `constant`, the value outside the image boundaries. clip : boolean Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range. preserve_range : boolean Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float. is_random : boolean, If True, random swirl. Default is False. - random center = [(0 ~ x.shape[0]), (0 ~ x.shape[1])] - random strength = [0, strength] - random radius = [1e-10, radius] - random rotation = [-rotation, rotation] Returns ------- numpy.array A processed image. Examples --------- >>> x --> [row, col, 1] greyscale >>> x = tl.prepro.swirl(x, strength=4, radius=100)
[ "Swirl", "an", "image", "randomly", "or", "non", "-", "randomly", "see", "scikit", "-", "image", "swirl", "API", "<http", ":", "//", "scikit", "-", "image", ".", "org", "/", "docs", "/", "dev", "/", "api", "/", "skimage", ".", "transform", ".", "html#skimage", ".", "transform", ".", "swirl", ">", "__", "and", "example", "<http", ":", "//", "scikit", "-", "image", ".", "org", "/", "docs", "/", "dev", "/", "auto_examples", "/", "plot_swirl", ".", "html", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1219-L1290
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
elastic_transform
def elastic_transform(x, alpha, sigma, mode="constant", cval=0, is_random=False): """Elastic transformation for image as described in `[Simard2003] <http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf>`__. Parameters ----------- x : numpy.array A greyscale image. alpha : float Alpha value for elastic transformation. sigma : float or sequence of float The smaller the sigma, the more transformation. Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. mode : str See `scipy.ndimage.filters.gaussian_filter <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.filters.gaussian_filter.html>`__. Default is `constant`. cval : float, Used in conjunction with `mode` of `constant`, the value outside the image boundaries. is_random : boolean Default is False. Returns ------- numpy.array A processed image. Examples --------- >>> x = tl.prepro.elastic_transform(x, alpha=x.shape[1]*3, sigma=x.shape[1]*0.07) References ------------ - `Github <https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a>`__. - `Kaggle <https://www.kaggle.com/pscion/ultrasound-nerve-segmentation/elastic-transform-for-data-augmentation-0878921a>`__ """ if is_random is False: random_state = np.random.RandomState(None) else: random_state = np.random.RandomState(int(time.time())) # is_3d = False if len(x.shape) == 3 and x.shape[-1] == 1: x = x[:, :, 0] is_3d = True elif len(x.shape) == 3 and x.shape[-1] != 1: raise Exception("Only support greyscale image") if len(x.shape) != 2: raise AssertionError("input should be grey-scale image") shape = x.shape dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode=mode, cval=cval) * alpha dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode=mode, cval=cval) * alpha x_, y_ = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij') indices = np.reshape(x_ + dx, (-1, 1)), np.reshape(y_ + dy, (-1, 1)) if is_3d: return map_coordinates(x, indices, order=1).reshape((shape[0], shape[1], 1)) else: return map_coordinates(x, indices, order=1).reshape(shape)
python
def elastic_transform(x, alpha, sigma, mode="constant", cval=0, is_random=False): """Elastic transformation for image as described in `[Simard2003] <http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf>`__. Parameters ----------- x : numpy.array A greyscale image. alpha : float Alpha value for elastic transformation. sigma : float or sequence of float The smaller the sigma, the more transformation. Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. mode : str See `scipy.ndimage.filters.gaussian_filter <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.filters.gaussian_filter.html>`__. Default is `constant`. cval : float, Used in conjunction with `mode` of `constant`, the value outside the image boundaries. is_random : boolean Default is False. Returns ------- numpy.array A processed image. Examples --------- >>> x = tl.prepro.elastic_transform(x, alpha=x.shape[1]*3, sigma=x.shape[1]*0.07) References ------------ - `Github <https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a>`__. - `Kaggle <https://www.kaggle.com/pscion/ultrasound-nerve-segmentation/elastic-transform-for-data-augmentation-0878921a>`__ """ if is_random is False: random_state = np.random.RandomState(None) else: random_state = np.random.RandomState(int(time.time())) # is_3d = False if len(x.shape) == 3 and x.shape[-1] == 1: x = x[:, :, 0] is_3d = True elif len(x.shape) == 3 and x.shape[-1] != 1: raise Exception("Only support greyscale image") if len(x.shape) != 2: raise AssertionError("input should be grey-scale image") shape = x.shape dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode=mode, cval=cval) * alpha dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode=mode, cval=cval) * alpha x_, y_ = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij') indices = np.reshape(x_ + dx, (-1, 1)), np.reshape(y_ + dy, (-1, 1)) if is_3d: return map_coordinates(x, indices, order=1).reshape((shape[0], shape[1], 1)) else: return map_coordinates(x, indices, order=1).reshape(shape)
[ "def", "elastic_transform", "(", "x", ",", "alpha", ",", "sigma", ",", "mode", "=", "\"constant\"", ",", "cval", "=", "0", ",", "is_random", "=", "False", ")", ":", "if", "is_random", "is", "False", ":", "random_state", "=", "np", ".", "random", ".", "RandomState", "(", "None", ")", "else", ":", "random_state", "=", "np", ".", "random", ".", "RandomState", "(", "int", "(", "time", ".", "time", "(", ")", ")", ")", "#", "is_3d", "=", "False", "if", "len", "(", "x", ".", "shape", ")", "==", "3", "and", "x", ".", "shape", "[", "-", "1", "]", "==", "1", ":", "x", "=", "x", "[", ":", ",", ":", ",", "0", "]", "is_3d", "=", "True", "elif", "len", "(", "x", ".", "shape", ")", "==", "3", "and", "x", ".", "shape", "[", "-", "1", "]", "!=", "1", ":", "raise", "Exception", "(", "\"Only support greyscale image\"", ")", "if", "len", "(", "x", ".", "shape", ")", "!=", "2", ":", "raise", "AssertionError", "(", "\"input should be grey-scale image\"", ")", "shape", "=", "x", ".", "shape", "dx", "=", "gaussian_filter", "(", "(", "random_state", ".", "rand", "(", "*", "shape", ")", "*", "2", "-", "1", ")", ",", "sigma", ",", "mode", "=", "mode", ",", "cval", "=", "cval", ")", "*", "alpha", "dy", "=", "gaussian_filter", "(", "(", "random_state", ".", "rand", "(", "*", "shape", ")", "*", "2", "-", "1", ")", ",", "sigma", ",", "mode", "=", "mode", ",", "cval", "=", "cval", ")", "*", "alpha", "x_", ",", "y_", "=", "np", ".", "meshgrid", "(", "np", ".", "arange", "(", "shape", "[", "0", "]", ")", ",", "np", ".", "arange", "(", "shape", "[", "1", "]", ")", ",", "indexing", "=", "'ij'", ")", "indices", "=", "np", ".", "reshape", "(", "x_", "+", "dx", ",", "(", "-", "1", ",", "1", ")", ")", ",", "np", ".", "reshape", "(", "y_", "+", "dy", ",", "(", "-", "1", ",", "1", ")", ")", "if", "is_3d", ":", "return", "map_coordinates", "(", "x", ",", "indices", ",", "order", "=", "1", ")", ".", "reshape", "(", "(", "shape", "[", "0", "]", ",", "shape", "[", "1", "]", ",", "1", ")", ")", "else", ":", "return", "map_coordinates", "(", "x", ",", "indices", ",", "order", "=", "1", ")", ".", "reshape", "(", "shape", ")" ]
Elastic transformation for image as described in `[Simard2003] <http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf>`__. Parameters ----------- x : numpy.array A greyscale image. alpha : float Alpha value for elastic transformation. sigma : float or sequence of float The smaller the sigma, the more transformation. Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. mode : str See `scipy.ndimage.filters.gaussian_filter <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.filters.gaussian_filter.html>`__. Default is `constant`. cval : float, Used in conjunction with `mode` of `constant`, the value outside the image boundaries. is_random : boolean Default is False. Returns ------- numpy.array A processed image. Examples --------- >>> x = tl.prepro.elastic_transform(x, alpha=x.shape[1]*3, sigma=x.shape[1]*0.07) References ------------ - `Github <https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a>`__. - `Kaggle <https://www.kaggle.com/pscion/ultrasound-nerve-segmentation/elastic-transform-for-data-augmentation-0878921a>`__
[ "Elastic", "transformation", "for", "image", "as", "described", "in", "[", "Simard2003", "]", "<http", ":", "//", "deeplearning", ".", "cs", ".", "cmu", ".", "edu", "/", "pdfs", "/", "Simard", ".", "pdf", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1341-L1399
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
zoom
def zoom(x, zoom_range=(0.9, 1.1), flags=None, border_mode='constant'): """Zooming/Scaling a single image that height and width are changed together. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). zoom_range : float or tuple of 2 floats The zooming/scaling ratio, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. border_mode : str - `constant`, pad the image with a constant value (i.e. black or 0) - `replicate`, the row or column at the very edge of the original is replicated to the extra border. Returns ------- numpy.array A processed image. """ zoom_matrix = affine_zoom_matrix(zoom_range=zoom_range) h, w = x.shape[0], x.shape[1] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) x = affine_transform_cv2(x, transform_matrix, flags=flags, border_mode=border_mode) return x
python
def zoom(x, zoom_range=(0.9, 1.1), flags=None, border_mode='constant'): """Zooming/Scaling a single image that height and width are changed together. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). zoom_range : float or tuple of 2 floats The zooming/scaling ratio, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. border_mode : str - `constant`, pad the image with a constant value (i.e. black or 0) - `replicate`, the row or column at the very edge of the original is replicated to the extra border. Returns ------- numpy.array A processed image. """ zoom_matrix = affine_zoom_matrix(zoom_range=zoom_range) h, w = x.shape[0], x.shape[1] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) x = affine_transform_cv2(x, transform_matrix, flags=flags, border_mode=border_mode) return x
[ "def", "zoom", "(", "x", ",", "zoom_range", "=", "(", "0.9", ",", "1.1", ")", ",", "flags", "=", "None", ",", "border_mode", "=", "'constant'", ")", ":", "zoom_matrix", "=", "affine_zoom_matrix", "(", "zoom_range", "=", "zoom_range", ")", "h", ",", "w", "=", "x", ".", "shape", "[", "0", "]", ",", "x", ".", "shape", "[", "1", "]", "transform_matrix", "=", "transform_matrix_offset_center", "(", "zoom_matrix", ",", "h", ",", "w", ")", "x", "=", "affine_transform_cv2", "(", "x", ",", "transform_matrix", ",", "flags", "=", "flags", ",", "border_mode", "=", "border_mode", ")", "return", "x" ]
Zooming/Scaling a single image that height and width are changed together. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). zoom_range : float or tuple of 2 floats The zooming/scaling ratio, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. border_mode : str - `constant`, pad the image with a constant value (i.e. black or 0) - `replicate`, the row or column at the very edge of the original is replicated to the extra border. Returns ------- numpy.array A processed image.
[ "Zooming", "/", "Scaling", "a", "single", "image", "that", "height", "and", "width", "are", "changed", "together", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1454-L1479
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
respective_zoom
def respective_zoom(x, h_range=(0.9, 1.1), w_range=(0.9, 1.1), flags=None, border_mode='constant'): """Zooming/Scaling a single image that height and width are changed independently. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). h_range : float or tuple of 2 floats The zooming/scaling ratio of height, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. w_range : float or tuple of 2 floats The zooming/scaling ratio of width, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. border_mode : str - `constant`, pad the image with a constant value (i.e. black or 0) - `replicate`, the row or column at the very edge of the original is replicated to the extra border. Returns ------- numpy.array A processed image. """ zoom_matrix = affine_respective_zoom_matrix(h_range=h_range, w_range=w_range) h, w = x.shape[0], x.shape[1] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) x = affine_transform_cv2( x, transform_matrix, flags=flags, border_mode=border_mode ) #affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order) return x
python
def respective_zoom(x, h_range=(0.9, 1.1), w_range=(0.9, 1.1), flags=None, border_mode='constant'): """Zooming/Scaling a single image that height and width are changed independently. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). h_range : float or tuple of 2 floats The zooming/scaling ratio of height, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. w_range : float or tuple of 2 floats The zooming/scaling ratio of width, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. border_mode : str - `constant`, pad the image with a constant value (i.e. black or 0) - `replicate`, the row or column at the very edge of the original is replicated to the extra border. Returns ------- numpy.array A processed image. """ zoom_matrix = affine_respective_zoom_matrix(h_range=h_range, w_range=w_range) h, w = x.shape[0], x.shape[1] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) x = affine_transform_cv2( x, transform_matrix, flags=flags, border_mode=border_mode ) #affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order) return x
[ "def", "respective_zoom", "(", "x", ",", "h_range", "=", "(", "0.9", ",", "1.1", ")", ",", "w_range", "=", "(", "0.9", ",", "1.1", ")", ",", "flags", "=", "None", ",", "border_mode", "=", "'constant'", ")", ":", "zoom_matrix", "=", "affine_respective_zoom_matrix", "(", "h_range", "=", "h_range", ",", "w_range", "=", "w_range", ")", "h", ",", "w", "=", "x", ".", "shape", "[", "0", "]", ",", "x", ".", "shape", "[", "1", "]", "transform_matrix", "=", "transform_matrix_offset_center", "(", "zoom_matrix", ",", "h", ",", "w", ")", "x", "=", "affine_transform_cv2", "(", "x", ",", "transform_matrix", ",", "flags", "=", "flags", ",", "border_mode", "=", "border_mode", ")", "#affine_transform(x, transform_matrix, channel_index, fill_mode, cval, order)", "return", "x" ]
Zooming/Scaling a single image that height and width are changed independently. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). h_range : float or tuple of 2 floats The zooming/scaling ratio of height, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. w_range : float or tuple of 2 floats The zooming/scaling ratio of width, greater than 1 means larger. - float, a fixed ratio. - tuple of 2 floats, randomly sample a value as the ratio between 2 values. border_mode : str - `constant`, pad the image with a constant value (i.e. black or 0) - `replicate`, the row or column at the very edge of the original is replicated to the extra border. Returns ------- numpy.array A processed image.
[ "Zooming", "/", "Scaling", "a", "single", "image", "that", "height", "and", "width", "are", "changed", "independently", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1482-L1513
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
zoom_multi
def zoom_multi(x, zoom_range=(0.9, 1.1), flags=None, border_mode='constant'): """Zoom in and out of images with the same arguments, randomly or non-randomly. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.zoom``. Returns ------- numpy.array A list of processed images. """ zoom_matrix = affine_zoom_matrix(zoom_range=zoom_range) results = [] for img in x: h, w = x.shape[0], x.shape[1] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) results.append(affine_transform_cv2(x, transform_matrix, flags=flags, border_mode=border_mode)) return result
python
def zoom_multi(x, zoom_range=(0.9, 1.1), flags=None, border_mode='constant'): """Zoom in and out of images with the same arguments, randomly or non-randomly. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.zoom``. Returns ------- numpy.array A list of processed images. """ zoom_matrix = affine_zoom_matrix(zoom_range=zoom_range) results = [] for img in x: h, w = x.shape[0], x.shape[1] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) results.append(affine_transform_cv2(x, transform_matrix, flags=flags, border_mode=border_mode)) return result
[ "def", "zoom_multi", "(", "x", ",", "zoom_range", "=", "(", "0.9", ",", "1.1", ")", ",", "flags", "=", "None", ",", "border_mode", "=", "'constant'", ")", ":", "zoom_matrix", "=", "affine_zoom_matrix", "(", "zoom_range", "=", "zoom_range", ")", "results", "=", "[", "]", "for", "img", "in", "x", ":", "h", ",", "w", "=", "x", ".", "shape", "[", "0", "]", ",", "x", ".", "shape", "[", "1", "]", "transform_matrix", "=", "transform_matrix_offset_center", "(", "zoom_matrix", ",", "h", ",", "w", ")", "results", ".", "append", "(", "affine_transform_cv2", "(", "x", ",", "transform_matrix", ",", "flags", "=", "flags", ",", "border_mode", "=", "border_mode", ")", ")", "return", "result" ]
Zoom in and out of images with the same arguments, randomly or non-randomly. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.zoom``. Returns ------- numpy.array A list of processed images.
[ "Zoom", "in", "and", "out", "of", "images", "with", "the", "same", "arguments", "randomly", "or", "non", "-", "randomly", ".", "Usually", "be", "used", "for", "image", "segmentation", "which", "x", "=", "[", "X", "Y", "]", "X", "and", "Y", "should", "be", "matched", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1516-L1540
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
brightness
def brightness(x, gamma=1, gain=1, is_random=False): """Change the brightness of a single image, randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). gamma : float Non negative real number. Default value is 1. - Small than 1 means brighter. - If `is_random` is True, gamma in a range of (1-gamma, 1+gamma). gain : float The constant multiplier. Default value is 1. is_random : boolean If True, randomly change brightness. Default is False. Returns ------- numpy.array A processed image. References ----------- - `skimage.exposure.adjust_gamma <http://scikit-image.org/docs/dev/api/skimage.exposure.html>`__ - `chinese blog <http://www.cnblogs.com/denny402/p/5124402.html>`__ """ if is_random: gamma = np.random.uniform(1 - gamma, 1 + gamma) x = exposure.adjust_gamma(x, gamma, gain) return x
python
def brightness(x, gamma=1, gain=1, is_random=False): """Change the brightness of a single image, randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). gamma : float Non negative real number. Default value is 1. - Small than 1 means brighter. - If `is_random` is True, gamma in a range of (1-gamma, 1+gamma). gain : float The constant multiplier. Default value is 1. is_random : boolean If True, randomly change brightness. Default is False. Returns ------- numpy.array A processed image. References ----------- - `skimage.exposure.adjust_gamma <http://scikit-image.org/docs/dev/api/skimage.exposure.html>`__ - `chinese blog <http://www.cnblogs.com/denny402/p/5124402.html>`__ """ if is_random: gamma = np.random.uniform(1 - gamma, 1 + gamma) x = exposure.adjust_gamma(x, gamma, gain) return x
[ "def", "brightness", "(", "x", ",", "gamma", "=", "1", ",", "gain", "=", "1", ",", "is_random", "=", "False", ")", ":", "if", "is_random", ":", "gamma", "=", "np", ".", "random", ".", "uniform", "(", "1", "-", "gamma", ",", "1", "+", "gamma", ")", "x", "=", "exposure", ".", "adjust_gamma", "(", "x", ",", "gamma", ",", "gain", ")", "return", "x" ]
Change the brightness of a single image, randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). gamma : float Non negative real number. Default value is 1. - Small than 1 means brighter. - If `is_random` is True, gamma in a range of (1-gamma, 1+gamma). gain : float The constant multiplier. Default value is 1. is_random : boolean If True, randomly change brightness. Default is False. Returns ------- numpy.array A processed image. References ----------- - `skimage.exposure.adjust_gamma <http://scikit-image.org/docs/dev/api/skimage.exposure.html>`__ - `chinese blog <http://www.cnblogs.com/denny402/p/5124402.html>`__
[ "Change", "the", "brightness", "of", "a", "single", "image", "randomly", "or", "non", "-", "randomly", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1549-L1579
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
brightness_multi
def brightness_multi(x, gamma=1, gain=1, is_random=False): """Change the brightness of multiply images, randomly or non-randomly. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpyarray List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.brightness``. Returns ------- numpy.array A list of processed images. """ if is_random: gamma = np.random.uniform(1 - gamma, 1 + gamma) results = [] for data in x: results.append(exposure.adjust_gamma(data, gamma, gain)) return np.asarray(results)
python
def brightness_multi(x, gamma=1, gain=1, is_random=False): """Change the brightness of multiply images, randomly or non-randomly. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpyarray List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.brightness``. Returns ------- numpy.array A list of processed images. """ if is_random: gamma = np.random.uniform(1 - gamma, 1 + gamma) results = [] for data in x: results.append(exposure.adjust_gamma(data, gamma, gain)) return np.asarray(results)
[ "def", "brightness_multi", "(", "x", ",", "gamma", "=", "1", ",", "gain", "=", "1", ",", "is_random", "=", "False", ")", ":", "if", "is_random", ":", "gamma", "=", "np", ".", "random", ".", "uniform", "(", "1", "-", "gamma", ",", "1", "+", "gamma", ")", "results", "=", "[", "]", "for", "data", "in", "x", ":", "results", ".", "append", "(", "exposure", ".", "adjust_gamma", "(", "data", ",", "gamma", ",", "gain", ")", ")", "return", "np", ".", "asarray", "(", "results", ")" ]
Change the brightness of multiply images, randomly or non-randomly. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpyarray List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.brightness``. Returns ------- numpy.array A list of processed images.
[ "Change", "the", "brightness", "of", "multiply", "images", "randomly", "or", "non", "-", "randomly", ".", "Usually", "be", "used", "for", "image", "segmentation", "which", "x", "=", "[", "X", "Y", "]", "X", "and", "Y", "should", "be", "matched", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1582-L1605
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
illumination
def illumination(x, gamma=1., contrast=1., saturation=1., is_random=False): """Perform illumination augmentation for a single image, randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). gamma : float Change brightness (the same with ``tl.prepro.brightness``) - if is_random=False, one float number, small than one means brighter, greater than one means darker. - if is_random=True, tuple of two float numbers, (min, max). contrast : float Change contrast. - if is_random=False, one float number, small than one means blur. - if is_random=True, tuple of two float numbers, (min, max). saturation : float Change saturation. - if is_random=False, one float number, small than one means unsaturation. - if is_random=True, tuple of two float numbers, (min, max). is_random : boolean If True, randomly change illumination. Default is False. Returns ------- numpy.array A processed image. Examples --------- Random >>> x = tl.prepro.illumination(x, gamma=(0.5, 5.0), contrast=(0.3, 1.0), saturation=(0.7, 1.0), is_random=True) Non-random >>> x = tl.prepro.illumination(x, 0.5, 0.6, 0.8, is_random=False) """ if is_random: if not (len(gamma) == len(contrast) == len(saturation) == 2): raise AssertionError("if is_random = True, the arguments are (min, max)") ## random change brightness # small --> brighter illum_settings = np.random.randint(0, 3) # 0-brighter, 1-darker, 2 keep normal if illum_settings == 0: # brighter gamma = np.random.uniform(gamma[0], 1.0) # (.5, 1.0) elif illum_settings == 1: # darker gamma = np.random.uniform(1.0, gamma[1]) # (1.0, 5.0) else: gamma = 1 im_ = brightness(x, gamma=gamma, gain=1, is_random=False) # tl.logging.info("using contrast and saturation") image = PIL.Image.fromarray(im_) # array -> PIL contrast_adjust = PIL.ImageEnhance.Contrast(image) image = contrast_adjust.enhance(np.random.uniform(contrast[0], contrast[1])) #0.3,0.9)) saturation_adjust = PIL.ImageEnhance.Color(image) image = saturation_adjust.enhance(np.random.uniform(saturation[0], saturation[1])) # (0.7,1.0)) im_ = np.array(image) # PIL -> array else: im_ = brightness(x, gamma=gamma, gain=1, is_random=False) image = PIL.Image.fromarray(im_) # array -> PIL contrast_adjust = PIL.ImageEnhance.Contrast(image) image = contrast_adjust.enhance(contrast) saturation_adjust = PIL.ImageEnhance.Color(image) image = saturation_adjust.enhance(saturation) im_ = np.array(image) # PIL -> array return np.asarray(im_)
python
def illumination(x, gamma=1., contrast=1., saturation=1., is_random=False): """Perform illumination augmentation for a single image, randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). gamma : float Change brightness (the same with ``tl.prepro.brightness``) - if is_random=False, one float number, small than one means brighter, greater than one means darker. - if is_random=True, tuple of two float numbers, (min, max). contrast : float Change contrast. - if is_random=False, one float number, small than one means blur. - if is_random=True, tuple of two float numbers, (min, max). saturation : float Change saturation. - if is_random=False, one float number, small than one means unsaturation. - if is_random=True, tuple of two float numbers, (min, max). is_random : boolean If True, randomly change illumination. Default is False. Returns ------- numpy.array A processed image. Examples --------- Random >>> x = tl.prepro.illumination(x, gamma=(0.5, 5.0), contrast=(0.3, 1.0), saturation=(0.7, 1.0), is_random=True) Non-random >>> x = tl.prepro.illumination(x, 0.5, 0.6, 0.8, is_random=False) """ if is_random: if not (len(gamma) == len(contrast) == len(saturation) == 2): raise AssertionError("if is_random = True, the arguments are (min, max)") ## random change brightness # small --> brighter illum_settings = np.random.randint(0, 3) # 0-brighter, 1-darker, 2 keep normal if illum_settings == 0: # brighter gamma = np.random.uniform(gamma[0], 1.0) # (.5, 1.0) elif illum_settings == 1: # darker gamma = np.random.uniform(1.0, gamma[1]) # (1.0, 5.0) else: gamma = 1 im_ = brightness(x, gamma=gamma, gain=1, is_random=False) # tl.logging.info("using contrast and saturation") image = PIL.Image.fromarray(im_) # array -> PIL contrast_adjust = PIL.ImageEnhance.Contrast(image) image = contrast_adjust.enhance(np.random.uniform(contrast[0], contrast[1])) #0.3,0.9)) saturation_adjust = PIL.ImageEnhance.Color(image) image = saturation_adjust.enhance(np.random.uniform(saturation[0], saturation[1])) # (0.7,1.0)) im_ = np.array(image) # PIL -> array else: im_ = brightness(x, gamma=gamma, gain=1, is_random=False) image = PIL.Image.fromarray(im_) # array -> PIL contrast_adjust = PIL.ImageEnhance.Contrast(image) image = contrast_adjust.enhance(contrast) saturation_adjust = PIL.ImageEnhance.Color(image) image = saturation_adjust.enhance(saturation) im_ = np.array(image) # PIL -> array return np.asarray(im_)
[ "def", "illumination", "(", "x", ",", "gamma", "=", "1.", ",", "contrast", "=", "1.", ",", "saturation", "=", "1.", ",", "is_random", "=", "False", ")", ":", "if", "is_random", ":", "if", "not", "(", "len", "(", "gamma", ")", "==", "len", "(", "contrast", ")", "==", "len", "(", "saturation", ")", "==", "2", ")", ":", "raise", "AssertionError", "(", "\"if is_random = True, the arguments are (min, max)\"", ")", "## random change brightness # small --> brighter", "illum_settings", "=", "np", ".", "random", ".", "randint", "(", "0", ",", "3", ")", "# 0-brighter, 1-darker, 2 keep normal", "if", "illum_settings", "==", "0", ":", "# brighter", "gamma", "=", "np", ".", "random", ".", "uniform", "(", "gamma", "[", "0", "]", ",", "1.0", ")", "# (.5, 1.0)", "elif", "illum_settings", "==", "1", ":", "# darker", "gamma", "=", "np", ".", "random", ".", "uniform", "(", "1.0", ",", "gamma", "[", "1", "]", ")", "# (1.0, 5.0)", "else", ":", "gamma", "=", "1", "im_", "=", "brightness", "(", "x", ",", "gamma", "=", "gamma", ",", "gain", "=", "1", ",", "is_random", "=", "False", ")", "# tl.logging.info(\"using contrast and saturation\")", "image", "=", "PIL", ".", "Image", ".", "fromarray", "(", "im_", ")", "# array -> PIL", "contrast_adjust", "=", "PIL", ".", "ImageEnhance", ".", "Contrast", "(", "image", ")", "image", "=", "contrast_adjust", ".", "enhance", "(", "np", ".", "random", ".", "uniform", "(", "contrast", "[", "0", "]", ",", "contrast", "[", "1", "]", ")", ")", "#0.3,0.9))", "saturation_adjust", "=", "PIL", ".", "ImageEnhance", ".", "Color", "(", "image", ")", "image", "=", "saturation_adjust", ".", "enhance", "(", "np", ".", "random", ".", "uniform", "(", "saturation", "[", "0", "]", ",", "saturation", "[", "1", "]", ")", ")", "# (0.7,1.0))", "im_", "=", "np", ".", "array", "(", "image", ")", "# PIL -> array", "else", ":", "im_", "=", "brightness", "(", "x", ",", "gamma", "=", "gamma", ",", "gain", "=", "1", ",", "is_random", "=", "False", ")", "image", "=", "PIL", ".", "Image", ".", "fromarray", "(", "im_", ")", "# array -> PIL", "contrast_adjust", "=", "PIL", ".", "ImageEnhance", ".", "Contrast", "(", "image", ")", "image", "=", "contrast_adjust", ".", "enhance", "(", "contrast", ")", "saturation_adjust", "=", "PIL", ".", "ImageEnhance", ".", "Color", "(", "image", ")", "image", "=", "saturation_adjust", ".", "enhance", "(", "saturation", ")", "im_", "=", "np", ".", "array", "(", "image", ")", "# PIL -> array", "return", "np", ".", "asarray", "(", "im_", ")" ]
Perform illumination augmentation for a single image, randomly or non-randomly. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). gamma : float Change brightness (the same with ``tl.prepro.brightness``) - if is_random=False, one float number, small than one means brighter, greater than one means darker. - if is_random=True, tuple of two float numbers, (min, max). contrast : float Change contrast. - if is_random=False, one float number, small than one means blur. - if is_random=True, tuple of two float numbers, (min, max). saturation : float Change saturation. - if is_random=False, one float number, small than one means unsaturation. - if is_random=True, tuple of two float numbers, (min, max). is_random : boolean If True, randomly change illumination. Default is False. Returns ------- numpy.array A processed image. Examples --------- Random >>> x = tl.prepro.illumination(x, gamma=(0.5, 5.0), contrast=(0.3, 1.0), saturation=(0.7, 1.0), is_random=True) Non-random >>> x = tl.prepro.illumination(x, 0.5, 0.6, 0.8, is_random=False)
[ "Perform", "illumination", "augmentation", "for", "a", "single", "image", "randomly", "or", "non", "-", "randomly", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1608-L1678
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
rgb_to_hsv
def rgb_to_hsv(rgb): """Input RGB image [0~255] return HSV image [0~1]. Parameters ------------ rgb : numpy.array An image with values between 0 and 255. Returns ------- numpy.array A processed image. """ # Translated from source of colorsys.rgb_to_hsv # r,g,b should be a numpy arrays with values between 0 and 255 # rgb_to_hsv returns an array of floats between 0.0 and 1.0. rgb = rgb.astype('float') hsv = np.zeros_like(rgb) # in case an RGBA array was passed, just copy the A channel hsv[..., 3:] = rgb[..., 3:] r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2] maxc = np.max(rgb[..., :3], axis=-1) minc = np.min(rgb[..., :3], axis=-1) hsv[..., 2] = maxc mask = maxc != minc hsv[mask, 1] = (maxc - minc)[mask] / maxc[mask] rc = np.zeros_like(r) gc = np.zeros_like(g) bc = np.zeros_like(b) rc[mask] = (maxc - r)[mask] / (maxc - minc)[mask] gc[mask] = (maxc - g)[mask] / (maxc - minc)[mask] bc[mask] = (maxc - b)[mask] / (maxc - minc)[mask] hsv[..., 0] = np.select([r == maxc, g == maxc], [bc - gc, 2.0 + rc - bc], default=4.0 + gc - rc) hsv[..., 0] = (hsv[..., 0] / 6.0) % 1.0 return hsv
python
def rgb_to_hsv(rgb): """Input RGB image [0~255] return HSV image [0~1]. Parameters ------------ rgb : numpy.array An image with values between 0 and 255. Returns ------- numpy.array A processed image. """ # Translated from source of colorsys.rgb_to_hsv # r,g,b should be a numpy arrays with values between 0 and 255 # rgb_to_hsv returns an array of floats between 0.0 and 1.0. rgb = rgb.astype('float') hsv = np.zeros_like(rgb) # in case an RGBA array was passed, just copy the A channel hsv[..., 3:] = rgb[..., 3:] r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2] maxc = np.max(rgb[..., :3], axis=-1) minc = np.min(rgb[..., :3], axis=-1) hsv[..., 2] = maxc mask = maxc != minc hsv[mask, 1] = (maxc - minc)[mask] / maxc[mask] rc = np.zeros_like(r) gc = np.zeros_like(g) bc = np.zeros_like(b) rc[mask] = (maxc - r)[mask] / (maxc - minc)[mask] gc[mask] = (maxc - g)[mask] / (maxc - minc)[mask] bc[mask] = (maxc - b)[mask] / (maxc - minc)[mask] hsv[..., 0] = np.select([r == maxc, g == maxc], [bc - gc, 2.0 + rc - bc], default=4.0 + gc - rc) hsv[..., 0] = (hsv[..., 0] / 6.0) % 1.0 return hsv
[ "def", "rgb_to_hsv", "(", "rgb", ")", ":", "# Translated from source of colorsys.rgb_to_hsv", "# r,g,b should be a numpy arrays with values between 0 and 255", "# rgb_to_hsv returns an array of floats between 0.0 and 1.0.", "rgb", "=", "rgb", ".", "astype", "(", "'float'", ")", "hsv", "=", "np", ".", "zeros_like", "(", "rgb", ")", "# in case an RGBA array was passed, just copy the A channel", "hsv", "[", "...", ",", "3", ":", "]", "=", "rgb", "[", "...", ",", "3", ":", "]", "r", ",", "g", ",", "b", "=", "rgb", "[", "...", ",", "0", "]", ",", "rgb", "[", "...", ",", "1", "]", ",", "rgb", "[", "...", ",", "2", "]", "maxc", "=", "np", ".", "max", "(", "rgb", "[", "...", ",", ":", "3", "]", ",", "axis", "=", "-", "1", ")", "minc", "=", "np", ".", "min", "(", "rgb", "[", "...", ",", ":", "3", "]", ",", "axis", "=", "-", "1", ")", "hsv", "[", "...", ",", "2", "]", "=", "maxc", "mask", "=", "maxc", "!=", "minc", "hsv", "[", "mask", ",", "1", "]", "=", "(", "maxc", "-", "minc", ")", "[", "mask", "]", "/", "maxc", "[", "mask", "]", "rc", "=", "np", ".", "zeros_like", "(", "r", ")", "gc", "=", "np", ".", "zeros_like", "(", "g", ")", "bc", "=", "np", ".", "zeros_like", "(", "b", ")", "rc", "[", "mask", "]", "=", "(", "maxc", "-", "r", ")", "[", "mask", "]", "/", "(", "maxc", "-", "minc", ")", "[", "mask", "]", "gc", "[", "mask", "]", "=", "(", "maxc", "-", "g", ")", "[", "mask", "]", "/", "(", "maxc", "-", "minc", ")", "[", "mask", "]", "bc", "[", "mask", "]", "=", "(", "maxc", "-", "b", ")", "[", "mask", "]", "/", "(", "maxc", "-", "minc", ")", "[", "mask", "]", "hsv", "[", "...", ",", "0", "]", "=", "np", ".", "select", "(", "[", "r", "==", "maxc", ",", "g", "==", "maxc", "]", ",", "[", "bc", "-", "gc", ",", "2.0", "+", "rc", "-", "bc", "]", ",", "default", "=", "4.0", "+", "gc", "-", "rc", ")", "hsv", "[", "...", ",", "0", "]", "=", "(", "hsv", "[", "...", ",", "0", "]", "/", "6.0", ")", "%", "1.0", "return", "hsv" ]
Input RGB image [0~255] return HSV image [0~1]. Parameters ------------ rgb : numpy.array An image with values between 0 and 255. Returns ------- numpy.array A processed image.
[ "Input", "RGB", "image", "[", "0~255", "]", "return", "HSV", "image", "[", "0~1", "]", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1681-L1716
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
hsv_to_rgb
def hsv_to_rgb(hsv): """Input HSV image [0~1] return RGB image [0~255]. Parameters ------------- hsv : numpy.array An image with values between 0.0 and 1.0 Returns ------- numpy.array A processed image. """ # Translated from source of colorsys.hsv_to_rgb # h,s should be a numpy arrays with values between 0.0 and 1.0 # v should be a numpy array with values between 0.0 and 255.0 # hsv_to_rgb returns an array of uints between 0 and 255. rgb = np.empty_like(hsv) rgb[..., 3:] = hsv[..., 3:] h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2] i = (h * 6.0).astype('uint8') f = (h * 6.0) - i p = v * (1.0 - s) q = v * (1.0 - s * f) t = v * (1.0 - s * (1.0 - f)) i = i % 6 conditions = [s == 0.0, i == 1, i == 2, i == 3, i == 4, i == 5] rgb[..., 0] = np.select(conditions, [v, q, p, p, t, v], default=v) rgb[..., 1] = np.select(conditions, [v, v, v, q, p, p], default=t) rgb[..., 2] = np.select(conditions, [v, p, t, v, v, q], default=p) return rgb.astype('uint8')
python
def hsv_to_rgb(hsv): """Input HSV image [0~1] return RGB image [0~255]. Parameters ------------- hsv : numpy.array An image with values between 0.0 and 1.0 Returns ------- numpy.array A processed image. """ # Translated from source of colorsys.hsv_to_rgb # h,s should be a numpy arrays with values between 0.0 and 1.0 # v should be a numpy array with values between 0.0 and 255.0 # hsv_to_rgb returns an array of uints between 0 and 255. rgb = np.empty_like(hsv) rgb[..., 3:] = hsv[..., 3:] h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2] i = (h * 6.0).astype('uint8') f = (h * 6.0) - i p = v * (1.0 - s) q = v * (1.0 - s * f) t = v * (1.0 - s * (1.0 - f)) i = i % 6 conditions = [s == 0.0, i == 1, i == 2, i == 3, i == 4, i == 5] rgb[..., 0] = np.select(conditions, [v, q, p, p, t, v], default=v) rgb[..., 1] = np.select(conditions, [v, v, v, q, p, p], default=t) rgb[..., 2] = np.select(conditions, [v, p, t, v, v, q], default=p) return rgb.astype('uint8')
[ "def", "hsv_to_rgb", "(", "hsv", ")", ":", "# Translated from source of colorsys.hsv_to_rgb", "# h,s should be a numpy arrays with values between 0.0 and 1.0", "# v should be a numpy array with values between 0.0 and 255.0", "# hsv_to_rgb returns an array of uints between 0 and 255.", "rgb", "=", "np", ".", "empty_like", "(", "hsv", ")", "rgb", "[", "...", ",", "3", ":", "]", "=", "hsv", "[", "...", ",", "3", ":", "]", "h", ",", "s", ",", "v", "=", "hsv", "[", "...", ",", "0", "]", ",", "hsv", "[", "...", ",", "1", "]", ",", "hsv", "[", "...", ",", "2", "]", "i", "=", "(", "h", "*", "6.0", ")", ".", "astype", "(", "'uint8'", ")", "f", "=", "(", "h", "*", "6.0", ")", "-", "i", "p", "=", "v", "*", "(", "1.0", "-", "s", ")", "q", "=", "v", "*", "(", "1.0", "-", "s", "*", "f", ")", "t", "=", "v", "*", "(", "1.0", "-", "s", "*", "(", "1.0", "-", "f", ")", ")", "i", "=", "i", "%", "6", "conditions", "=", "[", "s", "==", "0.0", ",", "i", "==", "1", ",", "i", "==", "2", ",", "i", "==", "3", ",", "i", "==", "4", ",", "i", "==", "5", "]", "rgb", "[", "...", ",", "0", "]", "=", "np", ".", "select", "(", "conditions", ",", "[", "v", ",", "q", ",", "p", ",", "p", ",", "t", ",", "v", "]", ",", "default", "=", "v", ")", "rgb", "[", "...", ",", "1", "]", "=", "np", ".", "select", "(", "conditions", ",", "[", "v", ",", "v", ",", "v", ",", "q", ",", "p", ",", "p", "]", ",", "default", "=", "t", ")", "rgb", "[", "...", ",", "2", "]", "=", "np", ".", "select", "(", "conditions", ",", "[", "v", ",", "p", ",", "t", ",", "v", ",", "v", ",", "q", "]", ",", "default", "=", "p", ")", "return", "rgb", ".", "astype", "(", "'uint8'", ")" ]
Input HSV image [0~1] return RGB image [0~255]. Parameters ------------- hsv : numpy.array An image with values between 0.0 and 1.0 Returns ------- numpy.array A processed image.
[ "Input", "HSV", "image", "[", "0~1", "]", "return", "RGB", "image", "[", "0~255", "]", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1719-L1749
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
adjust_hue
def adjust_hue(im, hout=0.66, is_offset=True, is_clip=True, is_random=False): """Adjust hue of an RGB image. This is a convenience method that converts an RGB image to float representation, converts it to HSV, add an offset to the hue channel, converts back to RGB and then back to the original data type. For TF, see `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`__.and `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`__. Parameters ----------- im : numpy.array An image with values between 0 and 255. hout : float The scale value for adjusting hue. - If is_offset is False, set all hue values to this value. 0 is red; 0.33 is green; 0.66 is blue. - If is_offset is True, add this value as the offset to the hue channel. is_offset : boolean Whether `hout` is added on HSV as offset or not. Default is True. is_clip : boolean If HSV value smaller than 0, set to 0. Default is True. is_random : boolean If True, randomly change hue. Default is False. Returns ------- numpy.array A processed image. Examples --------- Random, add a random value between -0.2 and 0.2 as the offset to every hue values. >>> im_hue = tl.prepro.adjust_hue(image, hout=0.2, is_offset=True, is_random=False) Non-random, make all hue to green. >>> im_green = tl.prepro.adjust_hue(image, hout=0.66, is_offset=False, is_random=False) References ----------- - `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`__. - `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`__. - `StackOverflow: Changing image hue with python PIL <https://stackoverflow.com/questions/7274221/changing-image-hue-with-python-pil>`__. """ hsv = rgb_to_hsv(im) if is_random: hout = np.random.uniform(-hout, hout) if is_offset: hsv[..., 0] += hout else: hsv[..., 0] = hout if is_clip: hsv[..., 0] = np.clip(hsv[..., 0], 0, np.inf) # Hao : can remove green dots rgb = hsv_to_rgb(hsv) return rgb
python
def adjust_hue(im, hout=0.66, is_offset=True, is_clip=True, is_random=False): """Adjust hue of an RGB image. This is a convenience method that converts an RGB image to float representation, converts it to HSV, add an offset to the hue channel, converts back to RGB and then back to the original data type. For TF, see `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`__.and `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`__. Parameters ----------- im : numpy.array An image with values between 0 and 255. hout : float The scale value for adjusting hue. - If is_offset is False, set all hue values to this value. 0 is red; 0.33 is green; 0.66 is blue. - If is_offset is True, add this value as the offset to the hue channel. is_offset : boolean Whether `hout` is added on HSV as offset or not. Default is True. is_clip : boolean If HSV value smaller than 0, set to 0. Default is True. is_random : boolean If True, randomly change hue. Default is False. Returns ------- numpy.array A processed image. Examples --------- Random, add a random value between -0.2 and 0.2 as the offset to every hue values. >>> im_hue = tl.prepro.adjust_hue(image, hout=0.2, is_offset=True, is_random=False) Non-random, make all hue to green. >>> im_green = tl.prepro.adjust_hue(image, hout=0.66, is_offset=False, is_random=False) References ----------- - `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`__. - `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`__. - `StackOverflow: Changing image hue with python PIL <https://stackoverflow.com/questions/7274221/changing-image-hue-with-python-pil>`__. """ hsv = rgb_to_hsv(im) if is_random: hout = np.random.uniform(-hout, hout) if is_offset: hsv[..., 0] += hout else: hsv[..., 0] = hout if is_clip: hsv[..., 0] = np.clip(hsv[..., 0], 0, np.inf) # Hao : can remove green dots rgb = hsv_to_rgb(hsv) return rgb
[ "def", "adjust_hue", "(", "im", ",", "hout", "=", "0.66", ",", "is_offset", "=", "True", ",", "is_clip", "=", "True", ",", "is_random", "=", "False", ")", ":", "hsv", "=", "rgb_to_hsv", "(", "im", ")", "if", "is_random", ":", "hout", "=", "np", ".", "random", ".", "uniform", "(", "-", "hout", ",", "hout", ")", "if", "is_offset", ":", "hsv", "[", "...", ",", "0", "]", "+=", "hout", "else", ":", "hsv", "[", "...", ",", "0", "]", "=", "hout", "if", "is_clip", ":", "hsv", "[", "...", ",", "0", "]", "=", "np", ".", "clip", "(", "hsv", "[", "...", ",", "0", "]", ",", "0", ",", "np", ".", "inf", ")", "# Hao : can remove green dots", "rgb", "=", "hsv_to_rgb", "(", "hsv", ")", "return", "rgb" ]
Adjust hue of an RGB image. This is a convenience method that converts an RGB image to float representation, converts it to HSV, add an offset to the hue channel, converts back to RGB and then back to the original data type. For TF, see `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`__.and `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`__. Parameters ----------- im : numpy.array An image with values between 0 and 255. hout : float The scale value for adjusting hue. - If is_offset is False, set all hue values to this value. 0 is red; 0.33 is green; 0.66 is blue. - If is_offset is True, add this value as the offset to the hue channel. is_offset : boolean Whether `hout` is added on HSV as offset or not. Default is True. is_clip : boolean If HSV value smaller than 0, set to 0. Default is True. is_random : boolean If True, randomly change hue. Default is False. Returns ------- numpy.array A processed image. Examples --------- Random, add a random value between -0.2 and 0.2 as the offset to every hue values. >>> im_hue = tl.prepro.adjust_hue(image, hout=0.2, is_offset=True, is_random=False) Non-random, make all hue to green. >>> im_green = tl.prepro.adjust_hue(image, hout=0.66, is_offset=False, is_random=False) References ----------- - `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`__. - `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`__. - `StackOverflow: Changing image hue with python PIL <https://stackoverflow.com/questions/7274221/changing-image-hue-with-python-pil>`__.
[ "Adjust", "hue", "of", "an", "RGB", "image", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1752-L1808
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
imresize
def imresize(x, size=None, interp='bicubic', mode=None): """Resize an image by given output size and method. Warning, this function will rescale the value to [0, 255]. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). size : list of 2 int or None For height and width. interp : str Interpolation method for re-sizing (`nearest`, `lanczos`, `bilinear`, `bicubic` (default) or `cubic`). mode : str The PIL image mode (`P`, `L`, etc.) to convert image before resizing. Returns ------- numpy.array A processed image. References ------------ - `scipy.misc.imresize <https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.imresize.html>`__ """ if size is None: size = [100, 100] if x.shape[-1] == 1: # greyscale x = scipy.misc.imresize(x[:, :, 0], size, interp=interp, mode=mode) return x[:, :, np.newaxis] else: # rgb, bgr, rgba return scipy.misc.imresize(x, size, interp=interp, mode=mode)
python
def imresize(x, size=None, interp='bicubic', mode=None): """Resize an image by given output size and method. Warning, this function will rescale the value to [0, 255]. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). size : list of 2 int or None For height and width. interp : str Interpolation method for re-sizing (`nearest`, `lanczos`, `bilinear`, `bicubic` (default) or `cubic`). mode : str The PIL image mode (`P`, `L`, etc.) to convert image before resizing. Returns ------- numpy.array A processed image. References ------------ - `scipy.misc.imresize <https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.imresize.html>`__ """ if size is None: size = [100, 100] if x.shape[-1] == 1: # greyscale x = scipy.misc.imresize(x[:, :, 0], size, interp=interp, mode=mode) return x[:, :, np.newaxis] else: # rgb, bgr, rgba return scipy.misc.imresize(x, size, interp=interp, mode=mode)
[ "def", "imresize", "(", "x", ",", "size", "=", "None", ",", "interp", "=", "'bicubic'", ",", "mode", "=", "None", ")", ":", "if", "size", "is", "None", ":", "size", "=", "[", "100", ",", "100", "]", "if", "x", ".", "shape", "[", "-", "1", "]", "==", "1", ":", "# greyscale", "x", "=", "scipy", ".", "misc", ".", "imresize", "(", "x", "[", ":", ",", ":", ",", "0", "]", ",", "size", ",", "interp", "=", "interp", ",", "mode", "=", "mode", ")", "return", "x", "[", ":", ",", ":", ",", "np", ".", "newaxis", "]", "else", ":", "# rgb, bgr, rgba", "return", "scipy", ".", "misc", ".", "imresize", "(", "x", ",", "size", ",", "interp", "=", "interp", ",", "mode", "=", "mode", ")" ]
Resize an image by given output size and method. Warning, this function will rescale the value to [0, 255]. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). size : list of 2 int or None For height and width. interp : str Interpolation method for re-sizing (`nearest`, `lanczos`, `bilinear`, `bicubic` (default) or `cubic`). mode : str The PIL image mode (`P`, `L`, etc.) to convert image before resizing. Returns ------- numpy.array A processed image. References ------------ - `scipy.misc.imresize <https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.imresize.html>`__
[ "Resize", "an", "image", "by", "given", "output", "size", "and", "method", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1822-L1857
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
pixel_value_scale
def pixel_value_scale(im, val=0.9, clip=None, is_random=False): """Scales each value in the pixels of the image. Parameters ----------- im : numpy.array An image. val : float The scale value for changing pixel value. - If is_random=False, multiply this value with all pixels. - If is_random=True, multiply a value between [1-val, 1+val] with all pixels. clip : tuple of 2 numbers The minimum and maximum value. is_random : boolean If True, see ``val``. Returns ------- numpy.array A processed image. Examples ---------- Random >>> im = pixel_value_scale(im, 0.1, [0, 255], is_random=True) Non-random >>> im = pixel_value_scale(im, 0.9, [0, 255], is_random=False) """ clip = clip if clip is not None else (-np.inf, np.inf) if is_random: scale = 1 + np.random.uniform(-val, val) im = im * scale else: im = im * val if len(clip) == 2: im = np.clip(im, clip[0], clip[1]) else: raise Exception("clip : tuple of 2 numbers") return im
python
def pixel_value_scale(im, val=0.9, clip=None, is_random=False): """Scales each value in the pixels of the image. Parameters ----------- im : numpy.array An image. val : float The scale value for changing pixel value. - If is_random=False, multiply this value with all pixels. - If is_random=True, multiply a value between [1-val, 1+val] with all pixels. clip : tuple of 2 numbers The minimum and maximum value. is_random : boolean If True, see ``val``. Returns ------- numpy.array A processed image. Examples ---------- Random >>> im = pixel_value_scale(im, 0.1, [0, 255], is_random=True) Non-random >>> im = pixel_value_scale(im, 0.9, [0, 255], is_random=False) """ clip = clip if clip is not None else (-np.inf, np.inf) if is_random: scale = 1 + np.random.uniform(-val, val) im = im * scale else: im = im * val if len(clip) == 2: im = np.clip(im, clip[0], clip[1]) else: raise Exception("clip : tuple of 2 numbers") return im
[ "def", "pixel_value_scale", "(", "im", ",", "val", "=", "0.9", ",", "clip", "=", "None", ",", "is_random", "=", "False", ")", ":", "clip", "=", "clip", "if", "clip", "is", "not", "None", "else", "(", "-", "np", ".", "inf", ",", "np", ".", "inf", ")", "if", "is_random", ":", "scale", "=", "1", "+", "np", ".", "random", ".", "uniform", "(", "-", "val", ",", "val", ")", "im", "=", "im", "*", "scale", "else", ":", "im", "=", "im", "*", "val", "if", "len", "(", "clip", ")", "==", "2", ":", "im", "=", "np", ".", "clip", "(", "im", ",", "clip", "[", "0", "]", ",", "clip", "[", "1", "]", ")", "else", ":", "raise", "Exception", "(", "\"clip : tuple of 2 numbers\"", ")", "return", "im" ]
Scales each value in the pixels of the image. Parameters ----------- im : numpy.array An image. val : float The scale value for changing pixel value. - If is_random=False, multiply this value with all pixels. - If is_random=True, multiply a value between [1-val, 1+val] with all pixels. clip : tuple of 2 numbers The minimum and maximum value. is_random : boolean If True, see ``val``. Returns ------- numpy.array A processed image. Examples ---------- Random >>> im = pixel_value_scale(im, 0.1, [0, 255], is_random=True) Non-random >>> im = pixel_value_scale(im, 0.9, [0, 255], is_random=False)
[ "Scales", "each", "value", "in", "the", "pixels", "of", "the", "image", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1861-L1907
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
samplewise_norm
def samplewise_norm( x, rescale=None, samplewise_center=False, samplewise_std_normalization=False, channel_index=2, epsilon=1e-7 ): """Normalize an image by rescale, samplewise centering and samplewise centering in order. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). rescale : float Rescaling factor. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation) samplewise_center : boolean If True, set each sample mean to 0. samplewise_std_normalization : boolean If True, divide each input by its std. epsilon : float A small position value for dividing standard deviation. Returns ------- numpy.array A processed image. Examples -------- >>> x = samplewise_norm(x, samplewise_center=True, samplewise_std_normalization=True) >>> print(x.shape, np.mean(x), np.std(x)) (160, 176, 1), 0.0, 1.0 Notes ------ When samplewise_center and samplewise_std_normalization are True. - For greyscale image, every pixels are subtracted and divided by the mean and std of whole image. - For RGB image, every pixels are subtracted and divided by the mean and std of this pixel i.e. the mean and std of a pixel is 0 and 1. """ if rescale: x *= rescale if x.shape[channel_index] == 1: # greyscale if samplewise_center: x = x - np.mean(x) if samplewise_std_normalization: x = x / np.std(x) return x elif x.shape[channel_index] == 3: # rgb if samplewise_center: x = x - np.mean(x, axis=channel_index, keepdims=True) if samplewise_std_normalization: x = x / (np.std(x, axis=channel_index, keepdims=True) + epsilon) return x else: raise Exception("Unsupported channels %d" % x.shape[channel_index])
python
def samplewise_norm( x, rescale=None, samplewise_center=False, samplewise_std_normalization=False, channel_index=2, epsilon=1e-7 ): """Normalize an image by rescale, samplewise centering and samplewise centering in order. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). rescale : float Rescaling factor. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation) samplewise_center : boolean If True, set each sample mean to 0. samplewise_std_normalization : boolean If True, divide each input by its std. epsilon : float A small position value for dividing standard deviation. Returns ------- numpy.array A processed image. Examples -------- >>> x = samplewise_norm(x, samplewise_center=True, samplewise_std_normalization=True) >>> print(x.shape, np.mean(x), np.std(x)) (160, 176, 1), 0.0, 1.0 Notes ------ When samplewise_center and samplewise_std_normalization are True. - For greyscale image, every pixels are subtracted and divided by the mean and std of whole image. - For RGB image, every pixels are subtracted and divided by the mean and std of this pixel i.e. the mean and std of a pixel is 0 and 1. """ if rescale: x *= rescale if x.shape[channel_index] == 1: # greyscale if samplewise_center: x = x - np.mean(x) if samplewise_std_normalization: x = x / np.std(x) return x elif x.shape[channel_index] == 3: # rgb if samplewise_center: x = x - np.mean(x, axis=channel_index, keepdims=True) if samplewise_std_normalization: x = x / (np.std(x, axis=channel_index, keepdims=True) + epsilon) return x else: raise Exception("Unsupported channels %d" % x.shape[channel_index])
[ "def", "samplewise_norm", "(", "x", ",", "rescale", "=", "None", ",", "samplewise_center", "=", "False", ",", "samplewise_std_normalization", "=", "False", ",", "channel_index", "=", "2", ",", "epsilon", "=", "1e-7", ")", ":", "if", "rescale", ":", "x", "*=", "rescale", "if", "x", ".", "shape", "[", "channel_index", "]", "==", "1", ":", "# greyscale", "if", "samplewise_center", ":", "x", "=", "x", "-", "np", ".", "mean", "(", "x", ")", "if", "samplewise_std_normalization", ":", "x", "=", "x", "/", "np", ".", "std", "(", "x", ")", "return", "x", "elif", "x", ".", "shape", "[", "channel_index", "]", "==", "3", ":", "# rgb", "if", "samplewise_center", ":", "x", "=", "x", "-", "np", ".", "mean", "(", "x", ",", "axis", "=", "channel_index", ",", "keepdims", "=", "True", ")", "if", "samplewise_std_normalization", ":", "x", "=", "x", "/", "(", "np", ".", "std", "(", "x", ",", "axis", "=", "channel_index", ",", "keepdims", "=", "True", ")", "+", "epsilon", ")", "return", "x", "else", ":", "raise", "Exception", "(", "\"Unsupported channels %d\"", "%", "x", ".", "shape", "[", "channel_index", "]", ")" ]
Normalize an image by rescale, samplewise centering and samplewise centering in order. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). rescale : float Rescaling factor. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation) samplewise_center : boolean If True, set each sample mean to 0. samplewise_std_normalization : boolean If True, divide each input by its std. epsilon : float A small position value for dividing standard deviation. Returns ------- numpy.array A processed image. Examples -------- >>> x = samplewise_norm(x, samplewise_center=True, samplewise_std_normalization=True) >>> print(x.shape, np.mean(x), np.std(x)) (160, 176, 1), 0.0, 1.0 Notes ------ When samplewise_center and samplewise_std_normalization are True. - For greyscale image, every pixels are subtracted and divided by the mean and std of whole image. - For RGB image, every pixels are subtracted and divided by the mean and std of this pixel i.e. the mean and std of a pixel is 0 and 1.
[ "Normalize", "an", "image", "by", "rescale", "samplewise", "centering", "and", "samplewise", "centering", "in", "order", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1911-L1965
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
featurewise_norm
def featurewise_norm(x, mean=None, std=None, epsilon=1e-7): """Normalize every pixels by the same given mean and std, which are usually compute from all examples. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). mean : float Value for subtraction. std : float Value for division. epsilon : float A small position value for dividing standard deviation. Returns ------- numpy.array A processed image. """ if mean: x = x - mean if std: x = x / (std + epsilon) return x
python
def featurewise_norm(x, mean=None, std=None, epsilon=1e-7): """Normalize every pixels by the same given mean and std, which are usually compute from all examples. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). mean : float Value for subtraction. std : float Value for division. epsilon : float A small position value for dividing standard deviation. Returns ------- numpy.array A processed image. """ if mean: x = x - mean if std: x = x / (std + epsilon) return x
[ "def", "featurewise_norm", "(", "x", ",", "mean", "=", "None", ",", "std", "=", "None", ",", "epsilon", "=", "1e-7", ")", ":", "if", "mean", ":", "x", "=", "x", "-", "mean", "if", "std", ":", "x", "=", "x", "/", "(", "std", "+", "epsilon", ")", "return", "x" ]
Normalize every pixels by the same given mean and std, which are usually compute from all examples. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). mean : float Value for subtraction. std : float Value for division. epsilon : float A small position value for dividing standard deviation. Returns ------- numpy.array A processed image.
[ "Normalize", "every", "pixels", "by", "the", "same", "given", "mean", "and", "std", "which", "are", "usually", "compute", "from", "all", "examples", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1968-L1993
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
get_zca_whitening_principal_components_img
def get_zca_whitening_principal_components_img(X): """Return the ZCA whitening principal components matrix. Parameters ----------- x : numpy.array Batch of images with dimension of [n_example, row, col, channel] (default). Returns ------- numpy.array A processed image. """ flatX = np.reshape(X, (X.shape[0], X.shape[1] * X.shape[2] * X.shape[3])) tl.logging.info("zca : computing sigma ..") sigma = np.dot(flatX.T, flatX) / flatX.shape[0] tl.logging.info("zca : computing U, S and V ..") U, S, _ = linalg.svd(sigma) # USV tl.logging.info("zca : computing principal components ..") principal_components = np.dot(np.dot(U, np.diag(1. / np.sqrt(S + 10e-7))), U.T) return principal_components
python
def get_zca_whitening_principal_components_img(X): """Return the ZCA whitening principal components matrix. Parameters ----------- x : numpy.array Batch of images with dimension of [n_example, row, col, channel] (default). Returns ------- numpy.array A processed image. """ flatX = np.reshape(X, (X.shape[0], X.shape[1] * X.shape[2] * X.shape[3])) tl.logging.info("zca : computing sigma ..") sigma = np.dot(flatX.T, flatX) / flatX.shape[0] tl.logging.info("zca : computing U, S and V ..") U, S, _ = linalg.svd(sigma) # USV tl.logging.info("zca : computing principal components ..") principal_components = np.dot(np.dot(U, np.diag(1. / np.sqrt(S + 10e-7))), U.T) return principal_components
[ "def", "get_zca_whitening_principal_components_img", "(", "X", ")", ":", "flatX", "=", "np", ".", "reshape", "(", "X", ",", "(", "X", ".", "shape", "[", "0", "]", ",", "X", ".", "shape", "[", "1", "]", "*", "X", ".", "shape", "[", "2", "]", "*", "X", ".", "shape", "[", "3", "]", ")", ")", "tl", ".", "logging", ".", "info", "(", "\"zca : computing sigma ..\"", ")", "sigma", "=", "np", ".", "dot", "(", "flatX", ".", "T", ",", "flatX", ")", "/", "flatX", ".", "shape", "[", "0", "]", "tl", ".", "logging", ".", "info", "(", "\"zca : computing U, S and V ..\"", ")", "U", ",", "S", ",", "_", "=", "linalg", ".", "svd", "(", "sigma", ")", "# USV", "tl", ".", "logging", ".", "info", "(", "\"zca : computing principal components ..\"", ")", "principal_components", "=", "np", ".", "dot", "(", "np", ".", "dot", "(", "U", ",", "np", ".", "diag", "(", "1.", "/", "np", ".", "sqrt", "(", "S", "+", "10e-7", ")", ")", ")", ",", "U", ".", "T", ")", "return", "principal_components" ]
Return the ZCA whitening principal components matrix. Parameters ----------- x : numpy.array Batch of images with dimension of [n_example, row, col, channel] (default). Returns ------- numpy.array A processed image.
[ "Return", "the", "ZCA", "whitening", "principal", "components", "matrix", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L1997-L2018
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
zca_whitening
def zca_whitening(x, principal_components): """Apply ZCA whitening on an image by given principal components matrix. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). principal_components : matrix Matrix from ``get_zca_whitening_principal_components_img``. Returns ------- numpy.array A processed image. """ flatx = np.reshape(x, (x.size)) # tl.logging.info(principal_components.shape, x.shape) # ((28160, 28160), (160, 176, 1)) # flatx = np.reshape(x, (x.shape)) # flatx = np.reshape(x, (x.shape[0], )) # tl.logging.info(flatx.shape) # (160, 176, 1) whitex = np.dot(flatx, principal_components) x = np.reshape(whitex, (x.shape[0], x.shape[1], x.shape[2])) return x
python
def zca_whitening(x, principal_components): """Apply ZCA whitening on an image by given principal components matrix. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). principal_components : matrix Matrix from ``get_zca_whitening_principal_components_img``. Returns ------- numpy.array A processed image. """ flatx = np.reshape(x, (x.size)) # tl.logging.info(principal_components.shape, x.shape) # ((28160, 28160), (160, 176, 1)) # flatx = np.reshape(x, (x.shape)) # flatx = np.reshape(x, (x.shape[0], )) # tl.logging.info(flatx.shape) # (160, 176, 1) whitex = np.dot(flatx, principal_components) x = np.reshape(whitex, (x.shape[0], x.shape[1], x.shape[2])) return x
[ "def", "zca_whitening", "(", "x", ",", "principal_components", ")", ":", "flatx", "=", "np", ".", "reshape", "(", "x", ",", "(", "x", ".", "size", ")", ")", "# tl.logging.info(principal_components.shape, x.shape) # ((28160, 28160), (160, 176, 1))", "# flatx = np.reshape(x, (x.shape))", "# flatx = np.reshape(x, (x.shape[0], ))", "# tl.logging.info(flatx.shape) # (160, 176, 1)", "whitex", "=", "np", ".", "dot", "(", "flatx", ",", "principal_components", ")", "x", "=", "np", ".", "reshape", "(", "whitex", ",", "(", "x", ".", "shape", "[", "0", "]", ",", "x", ".", "shape", "[", "1", "]", ",", "x", ".", "shape", "[", "2", "]", ")", ")", "return", "x" ]
Apply ZCA whitening on an image by given principal components matrix. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). principal_components : matrix Matrix from ``get_zca_whitening_principal_components_img``. Returns ------- numpy.array A processed image.
[ "Apply", "ZCA", "whitening", "on", "an", "image", "by", "given", "principal", "components", "matrix", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2021-L2044
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
channel_shift
def channel_shift(x, intensity, is_random=False, channel_index=2): """Shift the channels of an image, randomly or non-randomly, see `numpy.rollaxis <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html>`__. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). intensity : float Intensity of shifting. is_random : boolean If True, randomly shift. Default is False. channel_index : int Index of channel. Default is 2. Returns ------- numpy.array A processed image. """ if is_random: factor = np.random.uniform(-intensity, intensity) else: factor = intensity x = np.rollaxis(x, channel_index, 0) min_x, max_x = np.min(x), np.max(x) channel_images = [np.clip(x_channel + factor, min_x, max_x) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_index + 1) return x
python
def channel_shift(x, intensity, is_random=False, channel_index=2): """Shift the channels of an image, randomly or non-randomly, see `numpy.rollaxis <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html>`__. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). intensity : float Intensity of shifting. is_random : boolean If True, randomly shift. Default is False. channel_index : int Index of channel. Default is 2. Returns ------- numpy.array A processed image. """ if is_random: factor = np.random.uniform(-intensity, intensity) else: factor = intensity x = np.rollaxis(x, channel_index, 0) min_x, max_x = np.min(x), np.max(x) channel_images = [np.clip(x_channel + factor, min_x, max_x) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_index + 1) return x
[ "def", "channel_shift", "(", "x", ",", "intensity", ",", "is_random", "=", "False", ",", "channel_index", "=", "2", ")", ":", "if", "is_random", ":", "factor", "=", "np", ".", "random", ".", "uniform", "(", "-", "intensity", ",", "intensity", ")", "else", ":", "factor", "=", "intensity", "x", "=", "np", ".", "rollaxis", "(", "x", ",", "channel_index", ",", "0", ")", "min_x", ",", "max_x", "=", "np", ".", "min", "(", "x", ")", ",", "np", ".", "max", "(", "x", ")", "channel_images", "=", "[", "np", ".", "clip", "(", "x_channel", "+", "factor", ",", "min_x", ",", "max_x", ")", "for", "x_channel", "in", "x", "]", "x", "=", "np", ".", "stack", "(", "channel_images", ",", "axis", "=", "0", ")", "x", "=", "np", ".", "rollaxis", "(", "x", ",", "0", ",", "channel_index", "+", "1", ")", "return", "x" ]
Shift the channels of an image, randomly or non-randomly, see `numpy.rollaxis <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html>`__. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] (default). intensity : float Intensity of shifting. is_random : boolean If True, randomly shift. Default is False. channel_index : int Index of channel. Default is 2. Returns ------- numpy.array A processed image.
[ "Shift", "the", "channels", "of", "an", "image", "randomly", "or", "non", "-", "randomly", "see", "numpy", ".", "rollaxis", "<https", ":", "//", "docs", ".", "scipy", ".", "org", "/", "doc", "/", "numpy", "/", "reference", "/", "generated", "/", "numpy", ".", "rollaxis", ".", "html", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2060-L2089
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
channel_shift_multi
def channel_shift_multi(x, intensity, is_random=False, channel_index=2): """Shift the channels of images with the same arguments, randomly or non-randomly, see `numpy.rollaxis <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html>`__. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.channel_shift``. Returns ------- numpy.array A list of processed images. """ if is_random: factor = np.random.uniform(-intensity, intensity) else: factor = intensity results = [] for data in x: data = np.rollaxis(data, channel_index, 0) min_x, max_x = np.min(data), np.max(data) channel_images = [np.clip(x_channel + factor, min_x, max_x) for x_channel in x] data = np.stack(channel_images, axis=0) data = np.rollaxis(x, 0, channel_index + 1) results.append(data) return np.asarray(results)
python
def channel_shift_multi(x, intensity, is_random=False, channel_index=2): """Shift the channels of images with the same arguments, randomly or non-randomly, see `numpy.rollaxis <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html>`__. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.channel_shift``. Returns ------- numpy.array A list of processed images. """ if is_random: factor = np.random.uniform(-intensity, intensity) else: factor = intensity results = [] for data in x: data = np.rollaxis(data, channel_index, 0) min_x, max_x = np.min(data), np.max(data) channel_images = [np.clip(x_channel + factor, min_x, max_x) for x_channel in x] data = np.stack(channel_images, axis=0) data = np.rollaxis(x, 0, channel_index + 1) results.append(data) return np.asarray(results)
[ "def", "channel_shift_multi", "(", "x", ",", "intensity", ",", "is_random", "=", "False", ",", "channel_index", "=", "2", ")", ":", "if", "is_random", ":", "factor", "=", "np", ".", "random", ".", "uniform", "(", "-", "intensity", ",", "intensity", ")", "else", ":", "factor", "=", "intensity", "results", "=", "[", "]", "for", "data", "in", "x", ":", "data", "=", "np", ".", "rollaxis", "(", "data", ",", "channel_index", ",", "0", ")", "min_x", ",", "max_x", "=", "np", ".", "min", "(", "data", ")", ",", "np", ".", "max", "(", "data", ")", "channel_images", "=", "[", "np", ".", "clip", "(", "x_channel", "+", "factor", ",", "min_x", ",", "max_x", ")", "for", "x_channel", "in", "x", "]", "data", "=", "np", ".", "stack", "(", "channel_images", ",", "axis", "=", "0", ")", "data", "=", "np", ".", "rollaxis", "(", "x", ",", "0", ",", "channel_index", "+", "1", ")", "results", ".", "append", "(", "data", ")", "return", "np", ".", "asarray", "(", "results", ")" ]
Shift the channels of images with the same arguments, randomly or non-randomly, see `numpy.rollaxis <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html>`__. Usually be used for image segmentation which x=[X, Y], X and Y should be matched. Parameters ----------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.channel_shift``. Returns ------- numpy.array A list of processed images.
[ "Shift", "the", "channels", "of", "images", "with", "the", "same", "arguments", "randomly", "or", "non", "-", "randomly", "see", "numpy", ".", "rollaxis", "<https", ":", "//", "docs", ".", "scipy", ".", "org", "/", "doc", "/", "numpy", "/", "reference", "/", "generated", "/", "numpy", ".", "rollaxis", ".", "html", ">", "__", ".", "Usually", "be", "used", "for", "image", "segmentation", "which", "x", "=", "[", "X", "Y", "]", "X", "and", "Y", "should", "be", "matched", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2099-L2129
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
drop
def drop(x, keep=0.5): """Randomly set some pixels to zero by a given keeping probability. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] or [row, col]. keep : float The keeping probability (0, 1), the lower more values will be set to zero. Returns ------- numpy.array A processed image. """ if len(x.shape) == 3: if x.shape[-1] == 3: # color img_size = x.shape mask = np.random.binomial(n=1, p=keep, size=x.shape[:-1]) for i in range(3): x[:, :, i] = np.multiply(x[:, :, i], mask) elif x.shape[-1] == 1: # greyscale image img_size = x.shape x = np.multiply(x, np.random.binomial(n=1, p=keep, size=img_size)) else: raise Exception("Unsupported shape {}".format(x.shape)) elif len(x.shape) == 2 or 1: # greyscale matrix (image) or vector img_size = x.shape x = np.multiply(x, np.random.binomial(n=1, p=keep, size=img_size)) else: raise Exception("Unsupported shape {}".format(x.shape)) return x
python
def drop(x, keep=0.5): """Randomly set some pixels to zero by a given keeping probability. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] or [row, col]. keep : float The keeping probability (0, 1), the lower more values will be set to zero. Returns ------- numpy.array A processed image. """ if len(x.shape) == 3: if x.shape[-1] == 3: # color img_size = x.shape mask = np.random.binomial(n=1, p=keep, size=x.shape[:-1]) for i in range(3): x[:, :, i] = np.multiply(x[:, :, i], mask) elif x.shape[-1] == 1: # greyscale image img_size = x.shape x = np.multiply(x, np.random.binomial(n=1, p=keep, size=img_size)) else: raise Exception("Unsupported shape {}".format(x.shape)) elif len(x.shape) == 2 or 1: # greyscale matrix (image) or vector img_size = x.shape x = np.multiply(x, np.random.binomial(n=1, p=keep, size=img_size)) else: raise Exception("Unsupported shape {}".format(x.shape)) return x
[ "def", "drop", "(", "x", ",", "keep", "=", "0.5", ")", ":", "if", "len", "(", "x", ".", "shape", ")", "==", "3", ":", "if", "x", ".", "shape", "[", "-", "1", "]", "==", "3", ":", "# color", "img_size", "=", "x", ".", "shape", "mask", "=", "np", ".", "random", ".", "binomial", "(", "n", "=", "1", ",", "p", "=", "keep", ",", "size", "=", "x", ".", "shape", "[", ":", "-", "1", "]", ")", "for", "i", "in", "range", "(", "3", ")", ":", "x", "[", ":", ",", ":", ",", "i", "]", "=", "np", ".", "multiply", "(", "x", "[", ":", ",", ":", ",", "i", "]", ",", "mask", ")", "elif", "x", ".", "shape", "[", "-", "1", "]", "==", "1", ":", "# greyscale image", "img_size", "=", "x", ".", "shape", "x", "=", "np", ".", "multiply", "(", "x", ",", "np", ".", "random", ".", "binomial", "(", "n", "=", "1", ",", "p", "=", "keep", ",", "size", "=", "img_size", ")", ")", "else", ":", "raise", "Exception", "(", "\"Unsupported shape {}\"", ".", "format", "(", "x", ".", "shape", ")", ")", "elif", "len", "(", "x", ".", "shape", ")", "==", "2", "or", "1", ":", "# greyscale matrix (image) or vector", "img_size", "=", "x", ".", "shape", "x", "=", "np", ".", "multiply", "(", "x", ",", "np", ".", "random", ".", "binomial", "(", "n", "=", "1", ",", "p", "=", "keep", ",", "size", "=", "img_size", ")", ")", "else", ":", "raise", "Exception", "(", "\"Unsupported shape {}\"", ".", "format", "(", "x", ".", "shape", ")", ")", "return", "x" ]
Randomly set some pixels to zero by a given keeping probability. Parameters ----------- x : numpy.array An image with dimension of [row, col, channel] or [row, col]. keep : float The keeping probability (0, 1), the lower more values will be set to zero. Returns ------- numpy.array A processed image.
[ "Randomly", "set", "some", "pixels", "to", "zero", "by", "a", "given", "keeping", "probability", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2133-L2165
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
array_to_img
def array_to_img(x, dim_ordering=(0, 1, 2), scale=True): """Converts a numpy array to PIL image object (uint8 format). Parameters ---------- x : numpy.array An image with dimension of 3 and channels of 1 or 3. dim_ordering : tuple of 3 int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). scale : boolean If True, converts image to [0, 255] from any range of value like [-1, 2]. Default is True. Returns ------- PIL.image An image. References ----------- `PIL Image.fromarray <http://pillow.readthedocs.io/en/3.1.x/reference/Image.html?highlight=fromarray>`__ """ # if dim_ordering == 'default': # dim_ordering = K.image_dim_ordering() # if dim_ordering == 'th': # theano # x = x.transpose(1, 2, 0) x = x.transpose(dim_ordering) if scale: x += max(-np.min(x), 0) x_max = np.max(x) if x_max != 0: # tl.logging.info(x_max) # x /= x_max x = x / x_max x *= 255 if x.shape[2] == 3: # RGB return PIL.Image.fromarray(x.astype('uint8'), 'RGB') elif x.shape[2] == 1: # grayscale return PIL.Image.fromarray(x[:, :, 0].astype('uint8'), 'L') else: raise Exception('Unsupported channel number: ', x.shape[2])
python
def array_to_img(x, dim_ordering=(0, 1, 2), scale=True): """Converts a numpy array to PIL image object (uint8 format). Parameters ---------- x : numpy.array An image with dimension of 3 and channels of 1 or 3. dim_ordering : tuple of 3 int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). scale : boolean If True, converts image to [0, 255] from any range of value like [-1, 2]. Default is True. Returns ------- PIL.image An image. References ----------- `PIL Image.fromarray <http://pillow.readthedocs.io/en/3.1.x/reference/Image.html?highlight=fromarray>`__ """ # if dim_ordering == 'default': # dim_ordering = K.image_dim_ordering() # if dim_ordering == 'th': # theano # x = x.transpose(1, 2, 0) x = x.transpose(dim_ordering) if scale: x += max(-np.min(x), 0) x_max = np.max(x) if x_max != 0: # tl.logging.info(x_max) # x /= x_max x = x / x_max x *= 255 if x.shape[2] == 3: # RGB return PIL.Image.fromarray(x.astype('uint8'), 'RGB') elif x.shape[2] == 1: # grayscale return PIL.Image.fromarray(x[:, :, 0].astype('uint8'), 'L') else: raise Exception('Unsupported channel number: ', x.shape[2])
[ "def", "array_to_img", "(", "x", ",", "dim_ordering", "=", "(", "0", ",", "1", ",", "2", ")", ",", "scale", "=", "True", ")", ":", "# if dim_ordering == 'default':", "# dim_ordering = K.image_dim_ordering()", "# if dim_ordering == 'th': # theano", "# x = x.transpose(1, 2, 0)", "x", "=", "x", ".", "transpose", "(", "dim_ordering", ")", "if", "scale", ":", "x", "+=", "max", "(", "-", "np", ".", "min", "(", "x", ")", ",", "0", ")", "x_max", "=", "np", ".", "max", "(", "x", ")", "if", "x_max", "!=", "0", ":", "# tl.logging.info(x_max)", "# x /= x_max", "x", "=", "x", "/", "x_max", "x", "*=", "255", "if", "x", ".", "shape", "[", "2", "]", "==", "3", ":", "# RGB", "return", "PIL", ".", "Image", ".", "fromarray", "(", "x", ".", "astype", "(", "'uint8'", ")", ",", "'RGB'", ")", "elif", "x", ".", "shape", "[", "2", "]", "==", "1", ":", "# grayscale", "return", "PIL", ".", "Image", ".", "fromarray", "(", "x", "[", ":", ",", ":", ",", "0", "]", ".", "astype", "(", "'uint8'", ")", ",", "'L'", ")", "else", ":", "raise", "Exception", "(", "'Unsupported channel number: '", ",", "x", ".", "shape", "[", "2", "]", ")" ]
Converts a numpy array to PIL image object (uint8 format). Parameters ---------- x : numpy.array An image with dimension of 3 and channels of 1 or 3. dim_ordering : tuple of 3 int Index of row, col and channel, default (0, 1, 2), for theano (1, 2, 0). scale : boolean If True, converts image to [0, 255] from any range of value like [-1, 2]. Default is True. Returns ------- PIL.image An image. References ----------- `PIL Image.fromarray <http://pillow.readthedocs.io/en/3.1.x/reference/Image.html?highlight=fromarray>`__
[ "Converts", "a", "numpy", "array", "to", "PIL", "image", "object", "(", "uint8", "format", ")", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2180-L2227
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
find_contours
def find_contours(x, level=0.8, fully_connected='low', positive_orientation='low'): """Find iso-valued contours in a 2D array for a given level value, returns list of (n, 2)-ndarrays see `skimage.measure.find_contours <http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.find_contours>`__. Parameters ------------ x : 2D ndarray of double. Input data in which to find contours. level : float Value along which to find contours in the array. fully_connected : str Either `low` or `high`. Indicates whether array elements below the given level value are to be considered fully-connected (and hence elements above the value will only be face connected), or vice-versa. (See notes below for details.) positive_orientation : str Either `low` or `high`. Indicates whether the output contours will produce positively-oriented polygons around islands of low- or high-valued elements. If `low` then contours will wind counter-clockwise around elements below the iso-value. Alternately, this means that low-valued elements are always on the left of the contour. Returns -------- list of (n,2)-ndarrays Each contour is an ndarray of shape (n, 2), consisting of n (row, column) coordinates along the contour. """ return skimage.measure.find_contours( x, level, fully_connected=fully_connected, positive_orientation=positive_orientation )
python
def find_contours(x, level=0.8, fully_connected='low', positive_orientation='low'): """Find iso-valued contours in a 2D array for a given level value, returns list of (n, 2)-ndarrays see `skimage.measure.find_contours <http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.find_contours>`__. Parameters ------------ x : 2D ndarray of double. Input data in which to find contours. level : float Value along which to find contours in the array. fully_connected : str Either `low` or `high`. Indicates whether array elements below the given level value are to be considered fully-connected (and hence elements above the value will only be face connected), or vice-versa. (See notes below for details.) positive_orientation : str Either `low` or `high`. Indicates whether the output contours will produce positively-oriented polygons around islands of low- or high-valued elements. If `low` then contours will wind counter-clockwise around elements below the iso-value. Alternately, this means that low-valued elements are always on the left of the contour. Returns -------- list of (n,2)-ndarrays Each contour is an ndarray of shape (n, 2), consisting of n (row, column) coordinates along the contour. """ return skimage.measure.find_contours( x, level, fully_connected=fully_connected, positive_orientation=positive_orientation )
[ "def", "find_contours", "(", "x", ",", "level", "=", "0.8", ",", "fully_connected", "=", "'low'", ",", "positive_orientation", "=", "'low'", ")", ":", "return", "skimage", ".", "measure", ".", "find_contours", "(", "x", ",", "level", ",", "fully_connected", "=", "fully_connected", ",", "positive_orientation", "=", "positive_orientation", ")" ]
Find iso-valued contours in a 2D array for a given level value, returns list of (n, 2)-ndarrays see `skimage.measure.find_contours <http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.find_contours>`__. Parameters ------------ x : 2D ndarray of double. Input data in which to find contours. level : float Value along which to find contours in the array. fully_connected : str Either `low` or `high`. Indicates whether array elements below the given level value are to be considered fully-connected (and hence elements above the value will only be face connected), or vice-versa. (See notes below for details.) positive_orientation : str Either `low` or `high`. Indicates whether the output contours will produce positively-oriented polygons around islands of low- or high-valued elements. If `low` then contours will wind counter-clockwise around elements below the iso-value. Alternately, this means that low-valued elements are always on the left of the contour. Returns -------- list of (n,2)-ndarrays Each contour is an ndarray of shape (n, 2), consisting of n (row, column) coordinates along the contour.
[ "Find", "iso", "-", "valued", "contours", "in", "a", "2D", "array", "for", "a", "given", "level", "value", "returns", "list", "of", "(", "n", "2", ")", "-", "ndarrays", "see", "skimage", ".", "measure", ".", "find_contours", "<http", ":", "//", "scikit", "-", "image", ".", "org", "/", "docs", "/", "dev", "/", "api", "/", "skimage", ".", "measure", ".", "html#skimage", ".", "measure", ".", "find_contours", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2230-L2253
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
pt2map
def pt2map(list_points=None, size=(100, 100), val=1): """Inputs a list of points, return a 2D image. Parameters -------------- list_points : list of 2 int [[x, y], [x, y]..] for point coordinates. size : tuple of 2 int (w, h) for output size. val : float or int For the contour value. Returns ------- numpy.array An image. """ if list_points is None: raise Exception("list_points : list of 2 int") i_m = np.zeros(size) if len(list_points) == 0: return i_m for xx in list_points: for x in xx: # tl.logging.info(x) i_m[int(np.round(x[0]))][int(np.round(x[1]))] = val return i_m
python
def pt2map(list_points=None, size=(100, 100), val=1): """Inputs a list of points, return a 2D image. Parameters -------------- list_points : list of 2 int [[x, y], [x, y]..] for point coordinates. size : tuple of 2 int (w, h) for output size. val : float or int For the contour value. Returns ------- numpy.array An image. """ if list_points is None: raise Exception("list_points : list of 2 int") i_m = np.zeros(size) if len(list_points) == 0: return i_m for xx in list_points: for x in xx: # tl.logging.info(x) i_m[int(np.round(x[0]))][int(np.round(x[1]))] = val return i_m
[ "def", "pt2map", "(", "list_points", "=", "None", ",", "size", "=", "(", "100", ",", "100", ")", ",", "val", "=", "1", ")", ":", "if", "list_points", "is", "None", ":", "raise", "Exception", "(", "\"list_points : list of 2 int\"", ")", "i_m", "=", "np", ".", "zeros", "(", "size", ")", "if", "len", "(", "list_points", ")", "==", "0", ":", "return", "i_m", "for", "xx", "in", "list_points", ":", "for", "x", "in", "xx", ":", "# tl.logging.info(x)", "i_m", "[", "int", "(", "np", ".", "round", "(", "x", "[", "0", "]", ")", ")", "]", "[", "int", "(", "np", ".", "round", "(", "x", "[", "1", "]", ")", ")", "]", "=", "val", "return", "i_m" ]
Inputs a list of points, return a 2D image. Parameters -------------- list_points : list of 2 int [[x, y], [x, y]..] for point coordinates. size : tuple of 2 int (w, h) for output size. val : float or int For the contour value. Returns ------- numpy.array An image.
[ "Inputs", "a", "list", "of", "points", "return", "a", "2D", "image", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2256-L2283
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
binary_dilation
def binary_dilation(x, radius=3): """Return fast binary morphological dilation of an image. see `skimage.morphology.binary_dilation <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_dilation>`__. Parameters ----------- x : 2D array A binary image. radius : int For the radius of mask. Returns ------- numpy.array A processed binary image. """ mask = disk(radius) x = _binary_dilation(x, selem=mask) return x
python
def binary_dilation(x, radius=3): """Return fast binary morphological dilation of an image. see `skimage.morphology.binary_dilation <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_dilation>`__. Parameters ----------- x : 2D array A binary image. radius : int For the radius of mask. Returns ------- numpy.array A processed binary image. """ mask = disk(radius) x = _binary_dilation(x, selem=mask) return x
[ "def", "binary_dilation", "(", "x", ",", "radius", "=", "3", ")", ":", "mask", "=", "disk", "(", "radius", ")", "x", "=", "_binary_dilation", "(", "x", ",", "selem", "=", "mask", ")", "return", "x" ]
Return fast binary morphological dilation of an image. see `skimage.morphology.binary_dilation <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_dilation>`__. Parameters ----------- x : 2D array A binary image. radius : int For the radius of mask. Returns ------- numpy.array A processed binary image.
[ "Return", "fast", "binary", "morphological", "dilation", "of", "an", "image", ".", "see", "skimage", ".", "morphology", ".", "binary_dilation", "<http", ":", "//", "scikit", "-", "image", ".", "org", "/", "docs", "/", "dev", "/", "api", "/", "skimage", ".", "morphology", ".", "html#skimage", ".", "morphology", ".", "binary_dilation", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2286-L2306
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
dilation
def dilation(x, radius=3): """Return greyscale morphological dilation of an image, see `skimage.morphology.dilation <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.dilation>`__. Parameters ----------- x : 2D array An greyscale image. radius : int For the radius of mask. Returns ------- numpy.array A processed greyscale image. """ mask = disk(radius) x = dilation(x, selem=mask) return x
python
def dilation(x, radius=3): """Return greyscale morphological dilation of an image, see `skimage.morphology.dilation <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.dilation>`__. Parameters ----------- x : 2D array An greyscale image. radius : int For the radius of mask. Returns ------- numpy.array A processed greyscale image. """ mask = disk(radius) x = dilation(x, selem=mask) return x
[ "def", "dilation", "(", "x", ",", "radius", "=", "3", ")", ":", "mask", "=", "disk", "(", "radius", ")", "x", "=", "dilation", "(", "x", ",", "selem", "=", "mask", ")", "return", "x" ]
Return greyscale morphological dilation of an image, see `skimage.morphology.dilation <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.dilation>`__. Parameters ----------- x : 2D array An greyscale image. radius : int For the radius of mask. Returns ------- numpy.array A processed greyscale image.
[ "Return", "greyscale", "morphological", "dilation", "of", "an", "image", "see", "skimage", ".", "morphology", ".", "dilation", "<http", ":", "//", "scikit", "-", "image", ".", "org", "/", "docs", "/", "dev", "/", "api", "/", "skimage", ".", "morphology", ".", "html#skimage", ".", "morphology", ".", "dilation", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2309-L2329
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
binary_erosion
def binary_erosion(x, radius=3): """Return binary morphological erosion of an image, see `skimage.morphology.binary_erosion <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_erosion>`__. Parameters ----------- x : 2D array A binary image. radius : int For the radius of mask. Returns ------- numpy.array A processed binary image. """ mask = disk(radius) x = _binary_erosion(x, selem=mask) return x
python
def binary_erosion(x, radius=3): """Return binary morphological erosion of an image, see `skimage.morphology.binary_erosion <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_erosion>`__. Parameters ----------- x : 2D array A binary image. radius : int For the radius of mask. Returns ------- numpy.array A processed binary image. """ mask = disk(radius) x = _binary_erosion(x, selem=mask) return x
[ "def", "binary_erosion", "(", "x", ",", "radius", "=", "3", ")", ":", "mask", "=", "disk", "(", "radius", ")", "x", "=", "_binary_erosion", "(", "x", ",", "selem", "=", "mask", ")", "return", "x" ]
Return binary morphological erosion of an image, see `skimage.morphology.binary_erosion <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_erosion>`__. Parameters ----------- x : 2D array A binary image. radius : int For the radius of mask. Returns ------- numpy.array A processed binary image.
[ "Return", "binary", "morphological", "erosion", "of", "an", "image", "see", "skimage", ".", "morphology", ".", "binary_erosion", "<http", ":", "//", "scikit", "-", "image", ".", "org", "/", "docs", "/", "dev", "/", "api", "/", "skimage", ".", "morphology", ".", "html#skimage", ".", "morphology", ".", "binary_erosion", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2332-L2351
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
erosion
def erosion(x, radius=3): """Return greyscale morphological erosion of an image, see `skimage.morphology.erosion <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.erosion>`__. Parameters ----------- x : 2D array A greyscale image. radius : int For the radius of mask. Returns ------- numpy.array A processed greyscale image. """ mask = disk(radius) x = _erosion(x, selem=mask) return x
python
def erosion(x, radius=3): """Return greyscale morphological erosion of an image, see `skimage.morphology.erosion <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.erosion>`__. Parameters ----------- x : 2D array A greyscale image. radius : int For the radius of mask. Returns ------- numpy.array A processed greyscale image. """ mask = disk(radius) x = _erosion(x, selem=mask) return x
[ "def", "erosion", "(", "x", ",", "radius", "=", "3", ")", ":", "mask", "=", "disk", "(", "radius", ")", "x", "=", "_erosion", "(", "x", ",", "selem", "=", "mask", ")", "return", "x" ]
Return greyscale morphological erosion of an image, see `skimage.morphology.erosion <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.erosion>`__. Parameters ----------- x : 2D array A greyscale image. radius : int For the radius of mask. Returns ------- numpy.array A processed greyscale image.
[ "Return", "greyscale", "morphological", "erosion", "of", "an", "image", "see", "skimage", ".", "morphology", ".", "erosion", "<http", ":", "//", "scikit", "-", "image", ".", "org", "/", "docs", "/", "dev", "/", "api", "/", "skimage", ".", "morphology", ".", "html#skimage", ".", "morphology", ".", "erosion", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2354-L2373
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_coords_rescale
def obj_box_coords_rescale(coords=None, shape=None): """Scale down a list of coordinates from pixel unit to the ratio of image size i.e. in the range of [0, 1]. Parameters ------------ coords : list of list of 4 ints or None For coordinates of more than one images .e.g.[[x, y, w, h], [x, y, w, h], ...]. shape : list of 2 int or None 【height, width]. Returns ------- list of list of 4 numbers A list of new bounding boxes. Examples --------- >>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50], [10, 10, 20, 20]], shape=[100, 100]) >>> print(coords) [[0.3, 0.4, 0.5, 0.5], [0.1, 0.1, 0.2, 0.2]] >>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50]], shape=[50, 100]) >>> print(coords) [[0.3, 0.8, 0.5, 1.0]] >>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50]], shape=[100, 200]) >>> print(coords) [[0.15, 0.4, 0.25, 0.5]] Returns ------- list of 4 numbers New coordinates. """ if coords is None: coords = [] if shape is None: shape = [100, 200] imh, imw = shape[0], shape[1] imh = imh * 1.0 # * 1.0 for python2 : force division to be float point imw = imw * 1.0 coords_new = list() for coord in coords: if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") x = coord[0] / imw y = coord[1] / imh w = coord[2] / imw h = coord[3] / imh coords_new.append([x, y, w, h]) return coords_new
python
def obj_box_coords_rescale(coords=None, shape=None): """Scale down a list of coordinates from pixel unit to the ratio of image size i.e. in the range of [0, 1]. Parameters ------------ coords : list of list of 4 ints or None For coordinates of more than one images .e.g.[[x, y, w, h], [x, y, w, h], ...]. shape : list of 2 int or None 【height, width]. Returns ------- list of list of 4 numbers A list of new bounding boxes. Examples --------- >>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50], [10, 10, 20, 20]], shape=[100, 100]) >>> print(coords) [[0.3, 0.4, 0.5, 0.5], [0.1, 0.1, 0.2, 0.2]] >>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50]], shape=[50, 100]) >>> print(coords) [[0.3, 0.8, 0.5, 1.0]] >>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50]], shape=[100, 200]) >>> print(coords) [[0.15, 0.4, 0.25, 0.5]] Returns ------- list of 4 numbers New coordinates. """ if coords is None: coords = [] if shape is None: shape = [100, 200] imh, imw = shape[0], shape[1] imh = imh * 1.0 # * 1.0 for python2 : force division to be float point imw = imw * 1.0 coords_new = list() for coord in coords: if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") x = coord[0] / imw y = coord[1] / imh w = coord[2] / imw h = coord[3] / imh coords_new.append([x, y, w, h]) return coords_new
[ "def", "obj_box_coords_rescale", "(", "coords", "=", "None", ",", "shape", "=", "None", ")", ":", "if", "coords", "is", "None", ":", "coords", "=", "[", "]", "if", "shape", "is", "None", ":", "shape", "=", "[", "100", ",", "200", "]", "imh", ",", "imw", "=", "shape", "[", "0", "]", ",", "shape", "[", "1", "]", "imh", "=", "imh", "*", "1.0", "# * 1.0 for python2 : force division to be float point", "imw", "=", "imw", "*", "1.0", "coords_new", "=", "list", "(", ")", "for", "coord", "in", "coords", ":", "if", "len", "(", "coord", ")", "!=", "4", ":", "raise", "AssertionError", "(", "\"coordinate should be 4 values : [x, y, w, h]\"", ")", "x", "=", "coord", "[", "0", "]", "/", "imw", "y", "=", "coord", "[", "1", "]", "/", "imh", "w", "=", "coord", "[", "2", "]", "/", "imw", "h", "=", "coord", "[", "3", "]", "/", "imh", "coords_new", ".", "append", "(", "[", "x", ",", "y", ",", "w", ",", "h", "]", ")", "return", "coords_new" ]
Scale down a list of coordinates from pixel unit to the ratio of image size i.e. in the range of [0, 1]. Parameters ------------ coords : list of list of 4 ints or None For coordinates of more than one images .e.g.[[x, y, w, h], [x, y, w, h], ...]. shape : list of 2 int or None 【height, width]. Returns ------- list of list of 4 numbers A list of new bounding boxes. Examples --------- >>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50], [10, 10, 20, 20]], shape=[100, 100]) >>> print(coords) [[0.3, 0.4, 0.5, 0.5], [0.1, 0.1, 0.2, 0.2]] >>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50]], shape=[50, 100]) >>> print(coords) [[0.3, 0.8, 0.5, 1.0]] >>> coords = obj_box_coords_rescale(coords=[[30, 40, 50, 50]], shape=[100, 200]) >>> print(coords) [[0.15, 0.4, 0.25, 0.5]] Returns ------- list of 4 numbers New coordinates.
[ "Scale", "down", "a", "list", "of", "coordinates", "from", "pixel", "unit", "to", "the", "ratio", "of", "image", "size", "i", ".", "e", ".", "in", "the", "range", "of", "[", "0", "1", "]", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2376-L2429
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_coord_rescale
def obj_box_coord_rescale(coord=None, shape=None): """Scale down one coordinates from pixel unit to the ratio of image size i.e. in the range of [0, 1]. It is the reverse process of ``obj_box_coord_scale_to_pixelunit``. Parameters ------------ coords : list of 4 int or None One coordinates of one image e.g. [x, y, w, h]. shape : list of 2 int or None For [height, width]. Returns ------- list of 4 numbers New bounding box. Examples --------- >>> coord = tl.prepro.obj_box_coord_rescale(coord=[30, 40, 50, 50], shape=[100, 100]) [0.3, 0.4, 0.5, 0.5] """ if coord is None: coord = [] if shape is None: shape = [100, 200] return obj_box_coords_rescale(coords=[coord], shape=shape)[0]
python
def obj_box_coord_rescale(coord=None, shape=None): """Scale down one coordinates from pixel unit to the ratio of image size i.e. in the range of [0, 1]. It is the reverse process of ``obj_box_coord_scale_to_pixelunit``. Parameters ------------ coords : list of 4 int or None One coordinates of one image e.g. [x, y, w, h]. shape : list of 2 int or None For [height, width]. Returns ------- list of 4 numbers New bounding box. Examples --------- >>> coord = tl.prepro.obj_box_coord_rescale(coord=[30, 40, 50, 50], shape=[100, 100]) [0.3, 0.4, 0.5, 0.5] """ if coord is None: coord = [] if shape is None: shape = [100, 200] return obj_box_coords_rescale(coords=[coord], shape=shape)[0]
[ "def", "obj_box_coord_rescale", "(", "coord", "=", "None", ",", "shape", "=", "None", ")", ":", "if", "coord", "is", "None", ":", "coord", "=", "[", "]", "if", "shape", "is", "None", ":", "shape", "=", "[", "100", ",", "200", "]", "return", "obj_box_coords_rescale", "(", "coords", "=", "[", "coord", "]", ",", "shape", "=", "shape", ")", "[", "0", "]" ]
Scale down one coordinates from pixel unit to the ratio of image size i.e. in the range of [0, 1]. It is the reverse process of ``obj_box_coord_scale_to_pixelunit``. Parameters ------------ coords : list of 4 int or None One coordinates of one image e.g. [x, y, w, h]. shape : list of 2 int or None For [height, width]. Returns ------- list of 4 numbers New bounding box. Examples --------- >>> coord = tl.prepro.obj_box_coord_rescale(coord=[30, 40, 50, 50], shape=[100, 100]) [0.3, 0.4, 0.5, 0.5]
[ "Scale", "down", "one", "coordinates", "from", "pixel", "unit", "to", "the", "ratio", "of", "image", "size", "i", ".", "e", ".", "in", "the", "range", "of", "[", "0", "1", "]", ".", "It", "is", "the", "reverse", "process", "of", "obj_box_coord_scale_to_pixelunit", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2432-L2459
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_coord_scale_to_pixelunit
def obj_box_coord_scale_to_pixelunit(coord, shape=None): """Convert one coordinate [x, y, w (or x2), h (or y2)] in ratio format to image coordinate format. It is the reverse process of ``obj_box_coord_rescale``. Parameters ----------- coord : list of 4 float One coordinate of one image [x, y, w (or x2), h (or y2)] in ratio format, i.e value range [0~1]. shape : tuple of 2 or None For [height, width]. Returns ------- list of 4 numbers New bounding box. Examples --------- >>> x, y, x2, y2 = tl.prepro.obj_box_coord_scale_to_pixelunit([0.2, 0.3, 0.5, 0.7], shape=(100, 200, 3)) [40, 30, 100, 70] """ if shape is None: shape = [100, 100] imh, imw = shape[0:2] x = int(coord[0] * imw) x2 = int(coord[2] * imw) y = int(coord[1] * imh) y2 = int(coord[3] * imh) return [x, y, x2, y2]
python
def obj_box_coord_scale_to_pixelunit(coord, shape=None): """Convert one coordinate [x, y, w (or x2), h (or y2)] in ratio format to image coordinate format. It is the reverse process of ``obj_box_coord_rescale``. Parameters ----------- coord : list of 4 float One coordinate of one image [x, y, w (or x2), h (or y2)] in ratio format, i.e value range [0~1]. shape : tuple of 2 or None For [height, width]. Returns ------- list of 4 numbers New bounding box. Examples --------- >>> x, y, x2, y2 = tl.prepro.obj_box_coord_scale_to_pixelunit([0.2, 0.3, 0.5, 0.7], shape=(100, 200, 3)) [40, 30, 100, 70] """ if shape is None: shape = [100, 100] imh, imw = shape[0:2] x = int(coord[0] * imw) x2 = int(coord[2] * imw) y = int(coord[1] * imh) y2 = int(coord[3] * imh) return [x, y, x2, y2]
[ "def", "obj_box_coord_scale_to_pixelunit", "(", "coord", ",", "shape", "=", "None", ")", ":", "if", "shape", "is", "None", ":", "shape", "=", "[", "100", ",", "100", "]", "imh", ",", "imw", "=", "shape", "[", "0", ":", "2", "]", "x", "=", "int", "(", "coord", "[", "0", "]", "*", "imw", ")", "x2", "=", "int", "(", "coord", "[", "2", "]", "*", "imw", ")", "y", "=", "int", "(", "coord", "[", "1", "]", "*", "imh", ")", "y2", "=", "int", "(", "coord", "[", "3", "]", "*", "imh", ")", "return", "[", "x", ",", "y", ",", "x2", ",", "y2", "]" ]
Convert one coordinate [x, y, w (or x2), h (or y2)] in ratio format to image coordinate format. It is the reverse process of ``obj_box_coord_rescale``. Parameters ----------- coord : list of 4 float One coordinate of one image [x, y, w (or x2), h (or y2)] in ratio format, i.e value range [0~1]. shape : tuple of 2 or None For [height, width]. Returns ------- list of 4 numbers New bounding box. Examples --------- >>> x, y, x2, y2 = tl.prepro.obj_box_coord_scale_to_pixelunit([0.2, 0.3, 0.5, 0.7], shape=(100, 200, 3)) [40, 30, 100, 70]
[ "Convert", "one", "coordinate", "[", "x", "y", "w", "(", "or", "x2", ")", "h", "(", "or", "y2", ")", "]", "in", "ratio", "format", "to", "image", "coordinate", "format", ".", "It", "is", "the", "reverse", "process", "of", "obj_box_coord_rescale", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2462-L2492
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_coord_centroid_to_upleft_butright
def obj_box_coord_centroid_to_upleft_butright(coord, to_int=False): """Convert one coordinate [x_center, y_center, w, h] to [x1, y1, x2, y2] in up-left and botton-right format. Parameters ------------ coord : list of 4 int/float One coordinate. to_int : boolean Whether to convert output as integer. Returns ------- list of 4 numbers New bounding box. Examples --------- >>> coord = obj_box_coord_centroid_to_upleft_butright([30, 40, 20, 20]) [20, 30, 40, 50] """ if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") x_center, y_center, w, h = coord x = x_center - w / 2. y = y_center - h / 2. x2 = x + w y2 = y + h if to_int: return [int(x), int(y), int(x2), int(y2)] else: return [x, y, x2, y2]
python
def obj_box_coord_centroid_to_upleft_butright(coord, to_int=False): """Convert one coordinate [x_center, y_center, w, h] to [x1, y1, x2, y2] in up-left and botton-right format. Parameters ------------ coord : list of 4 int/float One coordinate. to_int : boolean Whether to convert output as integer. Returns ------- list of 4 numbers New bounding box. Examples --------- >>> coord = obj_box_coord_centroid_to_upleft_butright([30, 40, 20, 20]) [20, 30, 40, 50] """ if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") x_center, y_center, w, h = coord x = x_center - w / 2. y = y_center - h / 2. x2 = x + w y2 = y + h if to_int: return [int(x), int(y), int(x2), int(y2)] else: return [x, y, x2, y2]
[ "def", "obj_box_coord_centroid_to_upleft_butright", "(", "coord", ",", "to_int", "=", "False", ")", ":", "if", "len", "(", "coord", ")", "!=", "4", ":", "raise", "AssertionError", "(", "\"coordinate should be 4 values : [x, y, w, h]\"", ")", "x_center", ",", "y_center", ",", "w", ",", "h", "=", "coord", "x", "=", "x_center", "-", "w", "/", "2.", "y", "=", "y_center", "-", "h", "/", "2.", "x2", "=", "x", "+", "w", "y2", "=", "y", "+", "h", "if", "to_int", ":", "return", "[", "int", "(", "x", ")", ",", "int", "(", "y", ")", ",", "int", "(", "x2", ")", ",", "int", "(", "y2", ")", "]", "else", ":", "return", "[", "x", ",", "y", ",", "x2", ",", "y2", "]" ]
Convert one coordinate [x_center, y_center, w, h] to [x1, y1, x2, y2] in up-left and botton-right format. Parameters ------------ coord : list of 4 int/float One coordinate. to_int : boolean Whether to convert output as integer. Returns ------- list of 4 numbers New bounding box. Examples --------- >>> coord = obj_box_coord_centroid_to_upleft_butright([30, 40, 20, 20]) [20, 30, 40, 50]
[ "Convert", "one", "coordinate", "[", "x_center", "y_center", "w", "h", "]", "to", "[", "x1", "y1", "x2", "y2", "]", "in", "up", "-", "left", "and", "botton", "-", "right", "format", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2507-L2539
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_coord_upleft_butright_to_centroid
def obj_box_coord_upleft_butright_to_centroid(coord): """Convert one coordinate [x1, y1, x2, y2] to [x_center, y_center, w, h]. It is the reverse process of ``obj_box_coord_centroid_to_upleft_butright``. Parameters ------------ coord : list of 4 int/float One coordinate. Returns ------- list of 4 numbers New bounding box. """ if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x1, y1, x2, y2]") x1, y1, x2, y2 = coord w = x2 - x1 h = y2 - y1 x_c = x1 + w / 2. y_c = y1 + h / 2. return [x_c, y_c, w, h]
python
def obj_box_coord_upleft_butright_to_centroid(coord): """Convert one coordinate [x1, y1, x2, y2] to [x_center, y_center, w, h]. It is the reverse process of ``obj_box_coord_centroid_to_upleft_butright``. Parameters ------------ coord : list of 4 int/float One coordinate. Returns ------- list of 4 numbers New bounding box. """ if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x1, y1, x2, y2]") x1, y1, x2, y2 = coord w = x2 - x1 h = y2 - y1 x_c = x1 + w / 2. y_c = y1 + h / 2. return [x_c, y_c, w, h]
[ "def", "obj_box_coord_upleft_butright_to_centroid", "(", "coord", ")", ":", "if", "len", "(", "coord", ")", "!=", "4", ":", "raise", "AssertionError", "(", "\"coordinate should be 4 values : [x1, y1, x2, y2]\"", ")", "x1", ",", "y1", ",", "x2", ",", "y2", "=", "coord", "w", "=", "x2", "-", "x1", "h", "=", "y2", "-", "y1", "x_c", "=", "x1", "+", "w", "/", "2.", "y_c", "=", "y1", "+", "h", "/", "2.", "return", "[", "x_c", ",", "y_c", ",", "w", ",", "h", "]" ]
Convert one coordinate [x1, y1, x2, y2] to [x_center, y_center, w, h]. It is the reverse process of ``obj_box_coord_centroid_to_upleft_butright``. Parameters ------------ coord : list of 4 int/float One coordinate. Returns ------- list of 4 numbers New bounding box.
[ "Convert", "one", "coordinate", "[", "x1", "y1", "x2", "y2", "]", "to", "[", "x_center", "y_center", "w", "h", "]", ".", "It", "is", "the", "reverse", "process", "of", "obj_box_coord_centroid_to_upleft_butright", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2547-L2569
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_coord_centroid_to_upleft
def obj_box_coord_centroid_to_upleft(coord): """Convert one coordinate [x_center, y_center, w, h] to [x, y, w, h]. It is the reverse process of ``obj_box_coord_upleft_to_centroid``. Parameters ------------ coord : list of 4 int/float One coordinate. Returns ------- list of 4 numbers New bounding box. """ if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") x_center, y_center, w, h = coord x = x_center - w / 2. y = y_center - h / 2. return [x, y, w, h]
python
def obj_box_coord_centroid_to_upleft(coord): """Convert one coordinate [x_center, y_center, w, h] to [x, y, w, h]. It is the reverse process of ``obj_box_coord_upleft_to_centroid``. Parameters ------------ coord : list of 4 int/float One coordinate. Returns ------- list of 4 numbers New bounding box. """ if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") x_center, y_center, w, h = coord x = x_center - w / 2. y = y_center - h / 2. return [x, y, w, h]
[ "def", "obj_box_coord_centroid_to_upleft", "(", "coord", ")", ":", "if", "len", "(", "coord", ")", "!=", "4", ":", "raise", "AssertionError", "(", "\"coordinate should be 4 values : [x, y, w, h]\"", ")", "x_center", ",", "y_center", ",", "w", ",", "h", "=", "coord", "x", "=", "x_center", "-", "w", "/", "2.", "y", "=", "y_center", "-", "h", "/", "2.", "return", "[", "x", ",", "y", ",", "w", ",", "h", "]" ]
Convert one coordinate [x_center, y_center, w, h] to [x, y, w, h]. It is the reverse process of ``obj_box_coord_upleft_to_centroid``. Parameters ------------ coord : list of 4 int/float One coordinate. Returns ------- list of 4 numbers New bounding box.
[ "Convert", "one", "coordinate", "[", "x_center", "y_center", "w", "h", "]", "to", "[", "x", "y", "w", "h", "]", ".", "It", "is", "the", "reverse", "process", "of", "obj_box_coord_upleft_to_centroid", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2572-L2593
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
parse_darknet_ann_str_to_list
def parse_darknet_ann_str_to_list(annotations): r"""Input string format of class, x, y, w, h, return list of list format. Parameters ----------- annotations : str The annotations in darkent format "class, x, y, w, h ...." seperated by "\\n". Returns ------- list of list of 4 numbers List of bounding box. """ annotations = annotations.split("\n") ann = [] for a in annotations: a = a.split() if len(a) == 5: for i, _v in enumerate(a): if i == 0: a[i] = int(a[i]) else: a[i] = float(a[i]) ann.append(a) return ann
python
def parse_darknet_ann_str_to_list(annotations): r"""Input string format of class, x, y, w, h, return list of list format. Parameters ----------- annotations : str The annotations in darkent format "class, x, y, w, h ...." seperated by "\\n". Returns ------- list of list of 4 numbers List of bounding box. """ annotations = annotations.split("\n") ann = [] for a in annotations: a = a.split() if len(a) == 5: for i, _v in enumerate(a): if i == 0: a[i] = int(a[i]) else: a[i] = float(a[i]) ann.append(a) return ann
[ "def", "parse_darknet_ann_str_to_list", "(", "annotations", ")", ":", "annotations", "=", "annotations", ".", "split", "(", "\"\\n\"", ")", "ann", "=", "[", "]", "for", "a", "in", "annotations", ":", "a", "=", "a", ".", "split", "(", ")", "if", "len", "(", "a", ")", "==", "5", ":", "for", "i", ",", "_v", "in", "enumerate", "(", "a", ")", ":", "if", "i", "==", "0", ":", "a", "[", "i", "]", "=", "int", "(", "a", "[", "i", "]", ")", "else", ":", "a", "[", "i", "]", "=", "float", "(", "a", "[", "i", "]", ")", "ann", ".", "append", "(", "a", ")", "return", "ann" ]
r"""Input string format of class, x, y, w, h, return list of list format. Parameters ----------- annotations : str The annotations in darkent format "class, x, y, w, h ...." seperated by "\\n". Returns ------- list of list of 4 numbers List of bounding box.
[ "r", "Input", "string", "format", "of", "class", "x", "y", "w", "h", "return", "list", "of", "list", "format", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2620-L2645
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
parse_darknet_ann_list_to_cls_box
def parse_darknet_ann_list_to_cls_box(annotations): """Parse darknet annotation format into two lists for class and bounding box. Input list of [[class, x, y, w, h], ...], return two list of [class ...] and [[x, y, w, h], ...]. Parameters ------------ annotations : list of list A list of class and bounding boxes of images e.g. [[class, x, y, w, h], ...] Returns ------- list of int List of class labels. list of list of 4 numbers List of bounding box. """ class_list = [] bbox_list = [] for ann in annotations: class_list.append(ann[0]) bbox_list.append(ann[1:]) return class_list, bbox_list
python
def parse_darknet_ann_list_to_cls_box(annotations): """Parse darknet annotation format into two lists for class and bounding box. Input list of [[class, x, y, w, h], ...], return two list of [class ...] and [[x, y, w, h], ...]. Parameters ------------ annotations : list of list A list of class and bounding boxes of images e.g. [[class, x, y, w, h], ...] Returns ------- list of int List of class labels. list of list of 4 numbers List of bounding box. """ class_list = [] bbox_list = [] for ann in annotations: class_list.append(ann[0]) bbox_list.append(ann[1:]) return class_list, bbox_list
[ "def", "parse_darknet_ann_list_to_cls_box", "(", "annotations", ")", ":", "class_list", "=", "[", "]", "bbox_list", "=", "[", "]", "for", "ann", "in", "annotations", ":", "class_list", ".", "append", "(", "ann", "[", "0", "]", ")", "bbox_list", ".", "append", "(", "ann", "[", "1", ":", "]", ")", "return", "class_list", ",", "bbox_list" ]
Parse darknet annotation format into two lists for class and bounding box. Input list of [[class, x, y, w, h], ...], return two list of [class ...] and [[x, y, w, h], ...]. Parameters ------------ annotations : list of list A list of class and bounding boxes of images e.g. [[class, x, y, w, h], ...] Returns ------- list of int List of class labels. list of list of 4 numbers List of bounding box.
[ "Parse", "darknet", "annotation", "format", "into", "two", "lists", "for", "class", "and", "bounding", "box", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2648-L2672
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_horizontal_flip
def obj_box_horizontal_flip(im, coords=None, is_rescale=False, is_center=False, is_random=False): """Left-right flip the image and coordinates for object detection. Parameters ---------- im : numpy.array An image with dimension of [row, col, channel] (default). coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...]. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False. is_random : boolean If True, randomly flip. Default is False. Returns ------- numpy.array A processed image list of list of 4 numbers A list of new bounding boxes. Examples -------- >>> im = np.zeros([80, 100]) # as an image with shape width=100, height=80 >>> im, coords = obj_box_left_right_flip(im, coords=[[0.2, 0.4, 0.3, 0.3], [0.1, 0.5, 0.2, 0.3]], is_rescale=True, is_center=True, is_random=False) >>> print(coords) [[0.8, 0.4, 0.3, 0.3], [0.9, 0.5, 0.2, 0.3]] >>> im, coords = obj_box_left_right_flip(im, coords=[[0.2, 0.4, 0.3, 0.3]], is_rescale=True, is_center=False, is_random=False) >>> print(coords) [[0.5, 0.4, 0.3, 0.3]] >>> im, coords = obj_box_left_right_flip(im, coords=[[20, 40, 30, 30]], is_rescale=False, is_center=True, is_random=False) >>> print(coords) [[80, 40, 30, 30]] >>> im, coords = obj_box_left_right_flip(im, coords=[[20, 40, 30, 30]], is_rescale=False, is_center=False, is_random=False) >>> print(coords) [[50, 40, 30, 30]] """ if coords is None: coords = [] def _flip(im, coords): im = flip_axis(im, axis=1, is_random=False) coords_new = list() for coord in coords: if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") if is_rescale: if is_center: # x_center' = 1 - x x = 1. - coord[0] else: # x_center' = 1 - x - w x = 1. - coord[0] - coord[2] else: if is_center: # x' = im.width - x x = im.shape[1] - coord[0] else: # x' = im.width - x - w x = im.shape[1] - coord[0] - coord[2] coords_new.append([x, coord[1], coord[2], coord[3]]) return im, coords_new if is_random: factor = np.random.uniform(-1, 1) if factor > 0: return _flip(im, coords) else: return im, coords else: return _flip(im, coords)
python
def obj_box_horizontal_flip(im, coords=None, is_rescale=False, is_center=False, is_random=False): """Left-right flip the image and coordinates for object detection. Parameters ---------- im : numpy.array An image with dimension of [row, col, channel] (default). coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...]. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False. is_random : boolean If True, randomly flip. Default is False. Returns ------- numpy.array A processed image list of list of 4 numbers A list of new bounding boxes. Examples -------- >>> im = np.zeros([80, 100]) # as an image with shape width=100, height=80 >>> im, coords = obj_box_left_right_flip(im, coords=[[0.2, 0.4, 0.3, 0.3], [0.1, 0.5, 0.2, 0.3]], is_rescale=True, is_center=True, is_random=False) >>> print(coords) [[0.8, 0.4, 0.3, 0.3], [0.9, 0.5, 0.2, 0.3]] >>> im, coords = obj_box_left_right_flip(im, coords=[[0.2, 0.4, 0.3, 0.3]], is_rescale=True, is_center=False, is_random=False) >>> print(coords) [[0.5, 0.4, 0.3, 0.3]] >>> im, coords = obj_box_left_right_flip(im, coords=[[20, 40, 30, 30]], is_rescale=False, is_center=True, is_random=False) >>> print(coords) [[80, 40, 30, 30]] >>> im, coords = obj_box_left_right_flip(im, coords=[[20, 40, 30, 30]], is_rescale=False, is_center=False, is_random=False) >>> print(coords) [[50, 40, 30, 30]] """ if coords is None: coords = [] def _flip(im, coords): im = flip_axis(im, axis=1, is_random=False) coords_new = list() for coord in coords: if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") if is_rescale: if is_center: # x_center' = 1 - x x = 1. - coord[0] else: # x_center' = 1 - x - w x = 1. - coord[0] - coord[2] else: if is_center: # x' = im.width - x x = im.shape[1] - coord[0] else: # x' = im.width - x - w x = im.shape[1] - coord[0] - coord[2] coords_new.append([x, coord[1], coord[2], coord[3]]) return im, coords_new if is_random: factor = np.random.uniform(-1, 1) if factor > 0: return _flip(im, coords) else: return im, coords else: return _flip(im, coords)
[ "def", "obj_box_horizontal_flip", "(", "im", ",", "coords", "=", "None", ",", "is_rescale", "=", "False", ",", "is_center", "=", "False", ",", "is_random", "=", "False", ")", ":", "if", "coords", "is", "None", ":", "coords", "=", "[", "]", "def", "_flip", "(", "im", ",", "coords", ")", ":", "im", "=", "flip_axis", "(", "im", ",", "axis", "=", "1", ",", "is_random", "=", "False", ")", "coords_new", "=", "list", "(", ")", "for", "coord", "in", "coords", ":", "if", "len", "(", "coord", ")", "!=", "4", ":", "raise", "AssertionError", "(", "\"coordinate should be 4 values : [x, y, w, h]\"", ")", "if", "is_rescale", ":", "if", "is_center", ":", "# x_center' = 1 - x", "x", "=", "1.", "-", "coord", "[", "0", "]", "else", ":", "# x_center' = 1 - x - w", "x", "=", "1.", "-", "coord", "[", "0", "]", "-", "coord", "[", "2", "]", "else", ":", "if", "is_center", ":", "# x' = im.width - x", "x", "=", "im", ".", "shape", "[", "1", "]", "-", "coord", "[", "0", "]", "else", ":", "# x' = im.width - x - w", "x", "=", "im", ".", "shape", "[", "1", "]", "-", "coord", "[", "0", "]", "-", "coord", "[", "2", "]", "coords_new", ".", "append", "(", "[", "x", ",", "coord", "[", "1", "]", ",", "coord", "[", "2", "]", ",", "coord", "[", "3", "]", "]", ")", "return", "im", ",", "coords_new", "if", "is_random", ":", "factor", "=", "np", ".", "random", ".", "uniform", "(", "-", "1", ",", "1", ")", "if", "factor", ">", "0", ":", "return", "_flip", "(", "im", ",", "coords", ")", "else", ":", "return", "im", ",", "coords", "else", ":", "return", "_flip", "(", "im", ",", "coords", ")" ]
Left-right flip the image and coordinates for object detection. Parameters ---------- im : numpy.array An image with dimension of [row, col, channel] (default). coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...]. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False. is_random : boolean If True, randomly flip. Default is False. Returns ------- numpy.array A processed image list of list of 4 numbers A list of new bounding boxes. Examples -------- >>> im = np.zeros([80, 100]) # as an image with shape width=100, height=80 >>> im, coords = obj_box_left_right_flip(im, coords=[[0.2, 0.4, 0.3, 0.3], [0.1, 0.5, 0.2, 0.3]], is_rescale=True, is_center=True, is_random=False) >>> print(coords) [[0.8, 0.4, 0.3, 0.3], [0.9, 0.5, 0.2, 0.3]] >>> im, coords = obj_box_left_right_flip(im, coords=[[0.2, 0.4, 0.3, 0.3]], is_rescale=True, is_center=False, is_random=False) >>> print(coords) [[0.5, 0.4, 0.3, 0.3]] >>> im, coords = obj_box_left_right_flip(im, coords=[[20, 40, 30, 30]], is_rescale=False, is_center=True, is_random=False) >>> print(coords) [[80, 40, 30, 30]] >>> im, coords = obj_box_left_right_flip(im, coords=[[20, 40, 30, 30]], is_rescale=False, is_center=False, is_random=False) >>> print(coords) [[50, 40, 30, 30]]
[ "Left", "-", "right", "flip", "the", "image", "and", "coordinates", "for", "object", "detection", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2675-L2751
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_imresize
def obj_box_imresize(im, coords=None, size=None, interp='bicubic', mode=None, is_rescale=False): """Resize an image, and compute the new bounding box coordinates. Parameters ------------- im : numpy.array An image with dimension of [row, col, channel] (default). coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...] size interp and mode : args See ``tl.prepro.imresize``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1], then return the original coordinates. Default is False. Returns ------- numpy.array A processed image list of list of 4 numbers A list of new bounding boxes. Examples -------- >>> im = np.zeros([80, 100, 3]) # as an image with shape width=100, height=80 >>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30], [10, 20, 20, 20]], size=[160, 200], is_rescale=False) >>> print(coords) [[40, 80, 60, 60], [20, 40, 40, 40]] >>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30]], size=[40, 100], is_rescale=False) >>> print(coords) [[20, 20, 30, 15]] >>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30]], size=[60, 150], is_rescale=False) >>> print(coords) [[30, 30, 45, 22]] >>> im2, coords = obj_box_imresize(im, coords=[[0.2, 0.4, 0.3, 0.3]], size=[160, 200], is_rescale=True) >>> print(coords, im2.shape) [[0.2, 0.4, 0.3, 0.3]] (160, 200, 3) """ if coords is None: coords = [] if size is None: size = [100, 100] imh, imw = im.shape[0:2] imh = imh * 1.0 # * 1.0 for python2 : force division to be float point imw = imw * 1.0 im = imresize(im, size=size, interp=interp, mode=mode) if is_rescale is False: coords_new = list() for coord in coords: if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") # x' = x * (imw'/imw) x = int(coord[0] * (size[1] / imw)) # y' = y * (imh'/imh) # tl.logging.info('>>', coord[1], size[0], imh) y = int(coord[1] * (size[0] / imh)) # w' = w * (imw'/imw) w = int(coord[2] * (size[1] / imw)) # h' = h * (imh'/imh) h = int(coord[3] * (size[0] / imh)) coords_new.append([x, y, w, h]) return im, coords_new else: return im, coords
python
def obj_box_imresize(im, coords=None, size=None, interp='bicubic', mode=None, is_rescale=False): """Resize an image, and compute the new bounding box coordinates. Parameters ------------- im : numpy.array An image with dimension of [row, col, channel] (default). coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...] size interp and mode : args See ``tl.prepro.imresize``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1], then return the original coordinates. Default is False. Returns ------- numpy.array A processed image list of list of 4 numbers A list of new bounding boxes. Examples -------- >>> im = np.zeros([80, 100, 3]) # as an image with shape width=100, height=80 >>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30], [10, 20, 20, 20]], size=[160, 200], is_rescale=False) >>> print(coords) [[40, 80, 60, 60], [20, 40, 40, 40]] >>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30]], size=[40, 100], is_rescale=False) >>> print(coords) [[20, 20, 30, 15]] >>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30]], size=[60, 150], is_rescale=False) >>> print(coords) [[30, 30, 45, 22]] >>> im2, coords = obj_box_imresize(im, coords=[[0.2, 0.4, 0.3, 0.3]], size=[160, 200], is_rescale=True) >>> print(coords, im2.shape) [[0.2, 0.4, 0.3, 0.3]] (160, 200, 3) """ if coords is None: coords = [] if size is None: size = [100, 100] imh, imw = im.shape[0:2] imh = imh * 1.0 # * 1.0 for python2 : force division to be float point imw = imw * 1.0 im = imresize(im, size=size, interp=interp, mode=mode) if is_rescale is False: coords_new = list() for coord in coords: if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") # x' = x * (imw'/imw) x = int(coord[0] * (size[1] / imw)) # y' = y * (imh'/imh) # tl.logging.info('>>', coord[1], size[0], imh) y = int(coord[1] * (size[0] / imh)) # w' = w * (imw'/imw) w = int(coord[2] * (size[1] / imw)) # h' = h * (imh'/imh) h = int(coord[3] * (size[0] / imh)) coords_new.append([x, y, w, h]) return im, coords_new else: return im, coords
[ "def", "obj_box_imresize", "(", "im", ",", "coords", "=", "None", ",", "size", "=", "None", ",", "interp", "=", "'bicubic'", ",", "mode", "=", "None", ",", "is_rescale", "=", "False", ")", ":", "if", "coords", "is", "None", ":", "coords", "=", "[", "]", "if", "size", "is", "None", ":", "size", "=", "[", "100", ",", "100", "]", "imh", ",", "imw", "=", "im", ".", "shape", "[", "0", ":", "2", "]", "imh", "=", "imh", "*", "1.0", "# * 1.0 for python2 : force division to be float point", "imw", "=", "imw", "*", "1.0", "im", "=", "imresize", "(", "im", ",", "size", "=", "size", ",", "interp", "=", "interp", ",", "mode", "=", "mode", ")", "if", "is_rescale", "is", "False", ":", "coords_new", "=", "list", "(", ")", "for", "coord", "in", "coords", ":", "if", "len", "(", "coord", ")", "!=", "4", ":", "raise", "AssertionError", "(", "\"coordinate should be 4 values : [x, y, w, h]\"", ")", "# x' = x * (imw'/imw)", "x", "=", "int", "(", "coord", "[", "0", "]", "*", "(", "size", "[", "1", "]", "/", "imw", ")", ")", "# y' = y * (imh'/imh)", "# tl.logging.info('>>', coord[1], size[0], imh)", "y", "=", "int", "(", "coord", "[", "1", "]", "*", "(", "size", "[", "0", "]", "/", "imh", ")", ")", "# w' = w * (imw'/imw)", "w", "=", "int", "(", "coord", "[", "2", "]", "*", "(", "size", "[", "1", "]", "/", "imw", ")", ")", "# h' = h * (imh'/imh)", "h", "=", "int", "(", "coord", "[", "3", "]", "*", "(", "size", "[", "0", "]", "/", "imh", ")", ")", "coords_new", ".", "append", "(", "[", "x", ",", "y", ",", "w", ",", "h", "]", ")", "return", "im", ",", "coords_new", "else", ":", "return", "im", ",", "coords" ]
Resize an image, and compute the new bounding box coordinates. Parameters ------------- im : numpy.array An image with dimension of [row, col, channel] (default). coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...] size interp and mode : args See ``tl.prepro.imresize``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1], then return the original coordinates. Default is False. Returns ------- numpy.array A processed image list of list of 4 numbers A list of new bounding boxes. Examples -------- >>> im = np.zeros([80, 100, 3]) # as an image with shape width=100, height=80 >>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30], [10, 20, 20, 20]], size=[160, 200], is_rescale=False) >>> print(coords) [[40, 80, 60, 60], [20, 40, 40, 40]] >>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30]], size=[40, 100], is_rescale=False) >>> print(coords) [[20, 20, 30, 15]] >>> _, coords = obj_box_imresize(im, coords=[[20, 40, 30, 30]], size=[60, 150], is_rescale=False) >>> print(coords) [[30, 30, 45, 22]] >>> im2, coords = obj_box_imresize(im, coords=[[0.2, 0.4, 0.3, 0.3]], size=[160, 200], is_rescale=True) >>> print(coords, im2.shape) [[0.2, 0.4, 0.3, 0.3]] (160, 200, 3)
[ "Resize", "an", "image", "and", "compute", "the", "new", "bounding", "box", "coordinates", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2772-L2840
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_crop
def obj_box_crop( im, classes=None, coords=None, wrg=100, hrg=100, is_rescale=False, is_center=False, is_random=False, thresh_wh=0.02, thresh_wh2=12. ): """Randomly or centrally crop an image, and compute the new bounding box coordinates. Objects outside the cropped image will be removed. Parameters ----------- im : numpy.array An image with dimension of [row, col, channel] (default). classes : list of int or None Class IDs. coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...] wrg hrg and is_random : args See ``tl.prepro.crop``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean, default False Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False. thresh_wh : float Threshold, remove the box if its ratio of width(height) to image size less than the threshold. thresh_wh2 : float Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold. Returns ------- numpy.array A processed image list of int A list of classes list of list of 4 numbers A list of new bounding boxes. """ if classes is None: classes = [] if coords is None: coords = [] h, w = im.shape[0], im.shape[1] if (h <= hrg) or (w <= wrg): raise AssertionError("The size of cropping should smaller than the original image") if is_random: h_offset = int(np.random.uniform(0, h - hrg) - 1) w_offset = int(np.random.uniform(0, w - wrg) - 1) h_end = hrg + h_offset w_end = wrg + w_offset im_new = im[h_offset:h_end, w_offset:w_end] else: # central crop h_offset = int(np.floor((h - hrg) / 2.)) w_offset = int(np.floor((w - wrg) / 2.)) h_end = h_offset + hrg w_end = w_offset + wrg im_new = im[h_offset:h_end, w_offset:w_end] # w # _____________________________ # | h/w offset | # | ------- | # h | | | | # | | | | # | ------- | # | h/w end | # |___________________________| def _get_coord(coord): """Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates, before getting the new coordinates. Boxes outsides the cropped image will be removed. """ if is_center: coord = obj_box_coord_centroid_to_upleft(coord) ##======= pixel unit format and upleft, w, h ==========## # x = np.clip( coord[0] - w_offset, 0, w_end - w_offset) # y = np.clip( coord[1] - h_offset, 0, h_end - h_offset) # w = np.clip( coord[2] , 0, w_end - w_offset) # h = np.clip( coord[3] , 0, h_end - h_offset) x = coord[0] - w_offset y = coord[1] - h_offset w = coord[2] h = coord[3] if x < 0: if x + w <= 0: return None w = w + x x = 0 elif x > im_new.shape[1]: # object outside the cropped image return None if y < 0: if y + h <= 0: return None h = h + y y = 0 elif y > im_new.shape[0]: # object outside the cropped image return None if (x is not None) and (x + w > im_new.shape[1]): # box outside the cropped image w = im_new.shape[1] - x if (y is not None) and (y + h > im_new.shape[0]): # box outside the cropped image h = im_new.shape[0] - y if (w / (h + 1.) > thresh_wh2) or (h / (w + 1.) > thresh_wh2): # object shape strange: too narrow # tl.logging.info('xx', w, h) return None if (w / (im_new.shape[1] * 1.) < thresh_wh) or (h / (im_new.shape[0] * 1.) < thresh_wh): # object shape strange: too narrow # tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0]) return None coord = [x, y, w, h] ## convert back if input format is center. if is_center: coord = obj_box_coord_upleft_to_centroid(coord) return coord coords_new = list() classes_new = list() for i, _ in enumerate(coords): coord = coords[i] if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") if is_rescale: # for scaled coord, upscaled before process and scale back in the end. coord = obj_box_coord_scale_to_pixelunit(coord, im.shape) coord = _get_coord(coord) if coord is not None: coord = obj_box_coord_rescale(coord, im_new.shape) coords_new.append(coord) classes_new.append(classes[i]) else: coord = _get_coord(coord) if coord is not None: coords_new.append(coord) classes_new.append(classes[i]) return im_new, classes_new, coords_new
python
def obj_box_crop( im, classes=None, coords=None, wrg=100, hrg=100, is_rescale=False, is_center=False, is_random=False, thresh_wh=0.02, thresh_wh2=12. ): """Randomly or centrally crop an image, and compute the new bounding box coordinates. Objects outside the cropped image will be removed. Parameters ----------- im : numpy.array An image with dimension of [row, col, channel] (default). classes : list of int or None Class IDs. coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...] wrg hrg and is_random : args See ``tl.prepro.crop``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean, default False Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False. thresh_wh : float Threshold, remove the box if its ratio of width(height) to image size less than the threshold. thresh_wh2 : float Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold. Returns ------- numpy.array A processed image list of int A list of classes list of list of 4 numbers A list of new bounding boxes. """ if classes is None: classes = [] if coords is None: coords = [] h, w = im.shape[0], im.shape[1] if (h <= hrg) or (w <= wrg): raise AssertionError("The size of cropping should smaller than the original image") if is_random: h_offset = int(np.random.uniform(0, h - hrg) - 1) w_offset = int(np.random.uniform(0, w - wrg) - 1) h_end = hrg + h_offset w_end = wrg + w_offset im_new = im[h_offset:h_end, w_offset:w_end] else: # central crop h_offset = int(np.floor((h - hrg) / 2.)) w_offset = int(np.floor((w - wrg) / 2.)) h_end = h_offset + hrg w_end = w_offset + wrg im_new = im[h_offset:h_end, w_offset:w_end] # w # _____________________________ # | h/w offset | # | ------- | # h | | | | # | | | | # | ------- | # | h/w end | # |___________________________| def _get_coord(coord): """Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates, before getting the new coordinates. Boxes outsides the cropped image will be removed. """ if is_center: coord = obj_box_coord_centroid_to_upleft(coord) ##======= pixel unit format and upleft, w, h ==========## # x = np.clip( coord[0] - w_offset, 0, w_end - w_offset) # y = np.clip( coord[1] - h_offset, 0, h_end - h_offset) # w = np.clip( coord[2] , 0, w_end - w_offset) # h = np.clip( coord[3] , 0, h_end - h_offset) x = coord[0] - w_offset y = coord[1] - h_offset w = coord[2] h = coord[3] if x < 0: if x + w <= 0: return None w = w + x x = 0 elif x > im_new.shape[1]: # object outside the cropped image return None if y < 0: if y + h <= 0: return None h = h + y y = 0 elif y > im_new.shape[0]: # object outside the cropped image return None if (x is not None) and (x + w > im_new.shape[1]): # box outside the cropped image w = im_new.shape[1] - x if (y is not None) and (y + h > im_new.shape[0]): # box outside the cropped image h = im_new.shape[0] - y if (w / (h + 1.) > thresh_wh2) or (h / (w + 1.) > thresh_wh2): # object shape strange: too narrow # tl.logging.info('xx', w, h) return None if (w / (im_new.shape[1] * 1.) < thresh_wh) or (h / (im_new.shape[0] * 1.) < thresh_wh): # object shape strange: too narrow # tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0]) return None coord = [x, y, w, h] ## convert back if input format is center. if is_center: coord = obj_box_coord_upleft_to_centroid(coord) return coord coords_new = list() classes_new = list() for i, _ in enumerate(coords): coord = coords[i] if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") if is_rescale: # for scaled coord, upscaled before process and scale back in the end. coord = obj_box_coord_scale_to_pixelunit(coord, im.shape) coord = _get_coord(coord) if coord is not None: coord = obj_box_coord_rescale(coord, im_new.shape) coords_new.append(coord) classes_new.append(classes[i]) else: coord = _get_coord(coord) if coord is not None: coords_new.append(coord) classes_new.append(classes[i]) return im_new, classes_new, coords_new
[ "def", "obj_box_crop", "(", "im", ",", "classes", "=", "None", ",", "coords", "=", "None", ",", "wrg", "=", "100", ",", "hrg", "=", "100", ",", "is_rescale", "=", "False", ",", "is_center", "=", "False", ",", "is_random", "=", "False", ",", "thresh_wh", "=", "0.02", ",", "thresh_wh2", "=", "12.", ")", ":", "if", "classes", "is", "None", ":", "classes", "=", "[", "]", "if", "coords", "is", "None", ":", "coords", "=", "[", "]", "h", ",", "w", "=", "im", ".", "shape", "[", "0", "]", ",", "im", ".", "shape", "[", "1", "]", "if", "(", "h", "<=", "hrg", ")", "or", "(", "w", "<=", "wrg", ")", ":", "raise", "AssertionError", "(", "\"The size of cropping should smaller than the original image\"", ")", "if", "is_random", ":", "h_offset", "=", "int", "(", "np", ".", "random", ".", "uniform", "(", "0", ",", "h", "-", "hrg", ")", "-", "1", ")", "w_offset", "=", "int", "(", "np", ".", "random", ".", "uniform", "(", "0", ",", "w", "-", "wrg", ")", "-", "1", ")", "h_end", "=", "hrg", "+", "h_offset", "w_end", "=", "wrg", "+", "w_offset", "im_new", "=", "im", "[", "h_offset", ":", "h_end", ",", "w_offset", ":", "w_end", "]", "else", ":", "# central crop", "h_offset", "=", "int", "(", "np", ".", "floor", "(", "(", "h", "-", "hrg", ")", "/", "2.", ")", ")", "w_offset", "=", "int", "(", "np", ".", "floor", "(", "(", "w", "-", "wrg", ")", "/", "2.", ")", ")", "h_end", "=", "h_offset", "+", "hrg", "w_end", "=", "w_offset", "+", "wrg", "im_new", "=", "im", "[", "h_offset", ":", "h_end", ",", "w_offset", ":", "w_end", "]", "# w", "# _____________________________", "# | h/w offset |", "# | ------- |", "# h | | | |", "# | | | |", "# | ------- |", "# | h/w end |", "# |___________________________|", "def", "_get_coord", "(", "coord", ")", ":", "\"\"\"Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates,\n before getting the new coordinates.\n Boxes outsides the cropped image will be removed.\n\n \"\"\"", "if", "is_center", ":", "coord", "=", "obj_box_coord_centroid_to_upleft", "(", "coord", ")", "##======= pixel unit format and upleft, w, h ==========##", "# x = np.clip( coord[0] - w_offset, 0, w_end - w_offset)", "# y = np.clip( coord[1] - h_offset, 0, h_end - h_offset)", "# w = np.clip( coord[2] , 0, w_end - w_offset)", "# h = np.clip( coord[3] , 0, h_end - h_offset)", "x", "=", "coord", "[", "0", "]", "-", "w_offset", "y", "=", "coord", "[", "1", "]", "-", "h_offset", "w", "=", "coord", "[", "2", "]", "h", "=", "coord", "[", "3", "]", "if", "x", "<", "0", ":", "if", "x", "+", "w", "<=", "0", ":", "return", "None", "w", "=", "w", "+", "x", "x", "=", "0", "elif", "x", ">", "im_new", ".", "shape", "[", "1", "]", ":", "# object outside the cropped image", "return", "None", "if", "y", "<", "0", ":", "if", "y", "+", "h", "<=", "0", ":", "return", "None", "h", "=", "h", "+", "y", "y", "=", "0", "elif", "y", ">", "im_new", ".", "shape", "[", "0", "]", ":", "# object outside the cropped image", "return", "None", "if", "(", "x", "is", "not", "None", ")", "and", "(", "x", "+", "w", ">", "im_new", ".", "shape", "[", "1", "]", ")", ":", "# box outside the cropped image", "w", "=", "im_new", ".", "shape", "[", "1", "]", "-", "x", "if", "(", "y", "is", "not", "None", ")", "and", "(", "y", "+", "h", ">", "im_new", ".", "shape", "[", "0", "]", ")", ":", "# box outside the cropped image", "h", "=", "im_new", ".", "shape", "[", "0", "]", "-", "y", "if", "(", "w", "/", "(", "h", "+", "1.", ")", ">", "thresh_wh2", ")", "or", "(", "h", "/", "(", "w", "+", "1.", ")", ">", "thresh_wh2", ")", ":", "# object shape strange: too narrow", "# tl.logging.info('xx', w, h)", "return", "None", "if", "(", "w", "/", "(", "im_new", ".", "shape", "[", "1", "]", "*", "1.", ")", "<", "thresh_wh", ")", "or", "(", "h", "/", "(", "im_new", ".", "shape", "[", "0", "]", "*", "1.", ")", "<", "thresh_wh", ")", ":", "# object shape strange: too narrow", "# tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0])", "return", "None", "coord", "=", "[", "x", ",", "y", ",", "w", ",", "h", "]", "## convert back if input format is center.", "if", "is_center", ":", "coord", "=", "obj_box_coord_upleft_to_centroid", "(", "coord", ")", "return", "coord", "coords_new", "=", "list", "(", ")", "classes_new", "=", "list", "(", ")", "for", "i", ",", "_", "in", "enumerate", "(", "coords", ")", ":", "coord", "=", "coords", "[", "i", "]", "if", "len", "(", "coord", ")", "!=", "4", ":", "raise", "AssertionError", "(", "\"coordinate should be 4 values : [x, y, w, h]\"", ")", "if", "is_rescale", ":", "# for scaled coord, upscaled before process and scale back in the end.", "coord", "=", "obj_box_coord_scale_to_pixelunit", "(", "coord", ",", "im", ".", "shape", ")", "coord", "=", "_get_coord", "(", "coord", ")", "if", "coord", "is", "not", "None", ":", "coord", "=", "obj_box_coord_rescale", "(", "coord", ",", "im_new", ".", "shape", ")", "coords_new", ".", "append", "(", "coord", ")", "classes_new", ".", "append", "(", "classes", "[", "i", "]", ")", "else", ":", "coord", "=", "_get_coord", "(", "coord", ")", "if", "coord", "is", "not", "None", ":", "coords_new", ".", "append", "(", "coord", ")", "classes_new", ".", "append", "(", "classes", "[", "i", "]", ")", "return", "im_new", ",", "classes_new", ",", "coords_new" ]
Randomly or centrally crop an image, and compute the new bounding box coordinates. Objects outside the cropped image will be removed. Parameters ----------- im : numpy.array An image with dimension of [row, col, channel] (default). classes : list of int or None Class IDs. coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...] wrg hrg and is_random : args See ``tl.prepro.crop``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean, default False Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False. thresh_wh : float Threshold, remove the box if its ratio of width(height) to image size less than the threshold. thresh_wh2 : float Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold. Returns ------- numpy.array A processed image list of int A list of classes list of list of 4 numbers A list of new bounding boxes.
[ "Randomly", "or", "centrally", "crop", "an", "image", "and", "compute", "the", "new", "bounding", "box", "coordinates", ".", "Objects", "outside", "the", "cropped", "image", "will", "be", "removed", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L2859-L3009
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_shift
def obj_box_shift( im, classes=None, coords=None, wrg=0.1, hrg=0.1, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1, is_rescale=False, is_center=False, is_random=False, thresh_wh=0.02, thresh_wh2=12. ): """Shift an image randomly or non-randomly, and compute the new bounding box coordinates. Objects outside the cropped image will be removed. Parameters ----------- im : numpy.array An image with dimension of [row, col, channel] (default). classes : list of int or None Class IDs. coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...] wrg, hrg row_index col_index channel_index is_random fill_mode cval and order : see ``tl.prepro.shift``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False. thresh_wh : float Threshold, remove the box if its ratio of width(height) to image size less than the threshold. thresh_wh2 : float Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold. Returns ------- numpy.array A processed image list of int A list of classes list of list of 4 numbers A list of new bounding boxes. """ if classes is None: classes = [] if coords is None: coords = [] imh, imw = im.shape[row_index], im.shape[col_index] if (hrg >= 1.0) and (hrg <= 0.) and (wrg >= 1.0) and (wrg <= 0.): raise AssertionError("shift range should be (0, 1)") if is_random: tx = np.random.uniform(-hrg, hrg) * imh ty = np.random.uniform(-wrg, wrg) * imw else: tx, ty = hrg * imh, wrg * imw translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = translation_matrix # no need to do offset im_new = affine_transform(im, transform_matrix, channel_index, fill_mode, cval, order) # modified from obj_box_crop def _get_coord(coord): """Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates, before getting the new coordinates. Boxes outsides the cropped image will be removed. """ if is_center: coord = obj_box_coord_centroid_to_upleft(coord) ##======= pixel unit format and upleft, w, h ==========## x = coord[0] - ty # only change this y = coord[1] - tx # only change this w = coord[2] h = coord[3] if x < 0: if x + w <= 0: return None w = w + x x = 0 elif x > im_new.shape[1]: # object outside the cropped image return None if y < 0: if y + h <= 0: return None h = h + y y = 0 elif y > im_new.shape[0]: # object outside the cropped image return None if (x is not None) and (x + w > im_new.shape[1]): # box outside the cropped image w = im_new.shape[1] - x if (y is not None) and (y + h > im_new.shape[0]): # box outside the cropped image h = im_new.shape[0] - y if (w / (h + 1.) > thresh_wh2) or (h / (w + 1.) > thresh_wh2): # object shape strange: too narrow # tl.logging.info('xx', w, h) return None if (w / (im_new.shape[1] * 1.) < thresh_wh) or (h / (im_new.shape[0] * 1.) < thresh_wh): # object shape strange: too narrow # tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0]) return None coord = [x, y, w, h] ## convert back if input format is center. if is_center: coord = obj_box_coord_upleft_to_centroid(coord) return coord coords_new = list() classes_new = list() for i, _ in enumerate(coords): coord = coords[i] if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") if is_rescale: # for scaled coord, upscaled before process and scale back in the end. coord = obj_box_coord_scale_to_pixelunit(coord, im.shape) coord = _get_coord(coord) if coord is not None: coord = obj_box_coord_rescale(coord, im_new.shape) coords_new.append(coord) classes_new.append(classes[i]) else: coord = _get_coord(coord) if coord is not None: coords_new.append(coord) classes_new.append(classes[i]) return im_new, classes_new, coords_new
python
def obj_box_shift( im, classes=None, coords=None, wrg=0.1, hrg=0.1, row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1, is_rescale=False, is_center=False, is_random=False, thresh_wh=0.02, thresh_wh2=12. ): """Shift an image randomly or non-randomly, and compute the new bounding box coordinates. Objects outside the cropped image will be removed. Parameters ----------- im : numpy.array An image with dimension of [row, col, channel] (default). classes : list of int or None Class IDs. coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...] wrg, hrg row_index col_index channel_index is_random fill_mode cval and order : see ``tl.prepro.shift``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False. thresh_wh : float Threshold, remove the box if its ratio of width(height) to image size less than the threshold. thresh_wh2 : float Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold. Returns ------- numpy.array A processed image list of int A list of classes list of list of 4 numbers A list of new bounding boxes. """ if classes is None: classes = [] if coords is None: coords = [] imh, imw = im.shape[row_index], im.shape[col_index] if (hrg >= 1.0) and (hrg <= 0.) and (wrg >= 1.0) and (wrg <= 0.): raise AssertionError("shift range should be (0, 1)") if is_random: tx = np.random.uniform(-hrg, hrg) * imh ty = np.random.uniform(-wrg, wrg) * imw else: tx, ty = hrg * imh, wrg * imw translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = translation_matrix # no need to do offset im_new = affine_transform(im, transform_matrix, channel_index, fill_mode, cval, order) # modified from obj_box_crop def _get_coord(coord): """Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates, before getting the new coordinates. Boxes outsides the cropped image will be removed. """ if is_center: coord = obj_box_coord_centroid_to_upleft(coord) ##======= pixel unit format and upleft, w, h ==========## x = coord[0] - ty # only change this y = coord[1] - tx # only change this w = coord[2] h = coord[3] if x < 0: if x + w <= 0: return None w = w + x x = 0 elif x > im_new.shape[1]: # object outside the cropped image return None if y < 0: if y + h <= 0: return None h = h + y y = 0 elif y > im_new.shape[0]: # object outside the cropped image return None if (x is not None) and (x + w > im_new.shape[1]): # box outside the cropped image w = im_new.shape[1] - x if (y is not None) and (y + h > im_new.shape[0]): # box outside the cropped image h = im_new.shape[0] - y if (w / (h + 1.) > thresh_wh2) or (h / (w + 1.) > thresh_wh2): # object shape strange: too narrow # tl.logging.info('xx', w, h) return None if (w / (im_new.shape[1] * 1.) < thresh_wh) or (h / (im_new.shape[0] * 1.) < thresh_wh): # object shape strange: too narrow # tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0]) return None coord = [x, y, w, h] ## convert back if input format is center. if is_center: coord = obj_box_coord_upleft_to_centroid(coord) return coord coords_new = list() classes_new = list() for i, _ in enumerate(coords): coord = coords[i] if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") if is_rescale: # for scaled coord, upscaled before process and scale back in the end. coord = obj_box_coord_scale_to_pixelunit(coord, im.shape) coord = _get_coord(coord) if coord is not None: coord = obj_box_coord_rescale(coord, im_new.shape) coords_new.append(coord) classes_new.append(classes[i]) else: coord = _get_coord(coord) if coord is not None: coords_new.append(coord) classes_new.append(classes[i]) return im_new, classes_new, coords_new
[ "def", "obj_box_shift", "(", "im", ",", "classes", "=", "None", ",", "coords", "=", "None", ",", "wrg", "=", "0.1", ",", "hrg", "=", "0.1", ",", "row_index", "=", "0", ",", "col_index", "=", "1", ",", "channel_index", "=", "2", ",", "fill_mode", "=", "'nearest'", ",", "cval", "=", "0.", ",", "order", "=", "1", ",", "is_rescale", "=", "False", ",", "is_center", "=", "False", ",", "is_random", "=", "False", ",", "thresh_wh", "=", "0.02", ",", "thresh_wh2", "=", "12.", ")", ":", "if", "classes", "is", "None", ":", "classes", "=", "[", "]", "if", "coords", "is", "None", ":", "coords", "=", "[", "]", "imh", ",", "imw", "=", "im", ".", "shape", "[", "row_index", "]", ",", "im", ".", "shape", "[", "col_index", "]", "if", "(", "hrg", ">=", "1.0", ")", "and", "(", "hrg", "<=", "0.", ")", "and", "(", "wrg", ">=", "1.0", ")", "and", "(", "wrg", "<=", "0.", ")", ":", "raise", "AssertionError", "(", "\"shift range should be (0, 1)\"", ")", "if", "is_random", ":", "tx", "=", "np", ".", "random", ".", "uniform", "(", "-", "hrg", ",", "hrg", ")", "*", "imh", "ty", "=", "np", ".", "random", ".", "uniform", "(", "-", "wrg", ",", "wrg", ")", "*", "imw", "else", ":", "tx", ",", "ty", "=", "hrg", "*", "imh", ",", "wrg", "*", "imw", "translation_matrix", "=", "np", ".", "array", "(", "[", "[", "1", ",", "0", ",", "tx", "]", ",", "[", "0", ",", "1", ",", "ty", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "transform_matrix", "=", "translation_matrix", "# no need to do offset", "im_new", "=", "affine_transform", "(", "im", ",", "transform_matrix", ",", "channel_index", ",", "fill_mode", ",", "cval", ",", "order", ")", "# modified from obj_box_crop", "def", "_get_coord", "(", "coord", ")", ":", "\"\"\"Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates,\n before getting the new coordinates.\n Boxes outsides the cropped image will be removed.\n\n \"\"\"", "if", "is_center", ":", "coord", "=", "obj_box_coord_centroid_to_upleft", "(", "coord", ")", "##======= pixel unit format and upleft, w, h ==========##", "x", "=", "coord", "[", "0", "]", "-", "ty", "# only change this", "y", "=", "coord", "[", "1", "]", "-", "tx", "# only change this", "w", "=", "coord", "[", "2", "]", "h", "=", "coord", "[", "3", "]", "if", "x", "<", "0", ":", "if", "x", "+", "w", "<=", "0", ":", "return", "None", "w", "=", "w", "+", "x", "x", "=", "0", "elif", "x", ">", "im_new", ".", "shape", "[", "1", "]", ":", "# object outside the cropped image", "return", "None", "if", "y", "<", "0", ":", "if", "y", "+", "h", "<=", "0", ":", "return", "None", "h", "=", "h", "+", "y", "y", "=", "0", "elif", "y", ">", "im_new", ".", "shape", "[", "0", "]", ":", "# object outside the cropped image", "return", "None", "if", "(", "x", "is", "not", "None", ")", "and", "(", "x", "+", "w", ">", "im_new", ".", "shape", "[", "1", "]", ")", ":", "# box outside the cropped image", "w", "=", "im_new", ".", "shape", "[", "1", "]", "-", "x", "if", "(", "y", "is", "not", "None", ")", "and", "(", "y", "+", "h", ">", "im_new", ".", "shape", "[", "0", "]", ")", ":", "# box outside the cropped image", "h", "=", "im_new", ".", "shape", "[", "0", "]", "-", "y", "if", "(", "w", "/", "(", "h", "+", "1.", ")", ">", "thresh_wh2", ")", "or", "(", "h", "/", "(", "w", "+", "1.", ")", ">", "thresh_wh2", ")", ":", "# object shape strange: too narrow", "# tl.logging.info('xx', w, h)", "return", "None", "if", "(", "w", "/", "(", "im_new", ".", "shape", "[", "1", "]", "*", "1.", ")", "<", "thresh_wh", ")", "or", "(", "h", "/", "(", "im_new", ".", "shape", "[", "0", "]", "*", "1.", ")", "<", "thresh_wh", ")", ":", "# object shape strange: too narrow", "# tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0])", "return", "None", "coord", "=", "[", "x", ",", "y", ",", "w", ",", "h", "]", "## convert back if input format is center.", "if", "is_center", ":", "coord", "=", "obj_box_coord_upleft_to_centroid", "(", "coord", ")", "return", "coord", "coords_new", "=", "list", "(", ")", "classes_new", "=", "list", "(", ")", "for", "i", ",", "_", "in", "enumerate", "(", "coords", ")", ":", "coord", "=", "coords", "[", "i", "]", "if", "len", "(", "coord", ")", "!=", "4", ":", "raise", "AssertionError", "(", "\"coordinate should be 4 values : [x, y, w, h]\"", ")", "if", "is_rescale", ":", "# for scaled coord, upscaled before process and scale back in the end.", "coord", "=", "obj_box_coord_scale_to_pixelunit", "(", "coord", ",", "im", ".", "shape", ")", "coord", "=", "_get_coord", "(", "coord", ")", "if", "coord", "is", "not", "None", ":", "coord", "=", "obj_box_coord_rescale", "(", "coord", ",", "im_new", ".", "shape", ")", "coords_new", ".", "append", "(", "coord", ")", "classes_new", ".", "append", "(", "classes", "[", "i", "]", ")", "else", ":", "coord", "=", "_get_coord", "(", "coord", ")", "if", "coord", "is", "not", "None", ":", "coords_new", ".", "append", "(", "coord", ")", "classes_new", ".", "append", "(", "classes", "[", "i", "]", ")", "return", "im_new", ",", "classes_new", ",", "coords_new" ]
Shift an image randomly or non-randomly, and compute the new bounding box coordinates. Objects outside the cropped image will be removed. Parameters ----------- im : numpy.array An image with dimension of [row, col, channel] (default). classes : list of int or None Class IDs. coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...] wrg, hrg row_index col_index channel_index is_random fill_mode cval and order : see ``tl.prepro.shift``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean Set to True, if the x and y of coordinates are the centroid (i.e. darknet format). Default is False. thresh_wh : float Threshold, remove the box if its ratio of width(height) to image size less than the threshold. thresh_wh2 : float Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold. Returns ------- numpy.array A processed image list of int A list of classes list of list of 4 numbers A list of new bounding boxes.
[ "Shift", "an", "image", "randomly", "or", "non", "-", "randomly", "and", "compute", "the", "new", "bounding", "box", "coordinates", ".", "Objects", "outside", "the", "cropped", "image", "will", "be", "removed", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3012-L3144
valid