repo
stringclasses
679 values
path
stringlengths
6
122
func_name
stringlengths
2
76
original_string
stringlengths
87
70.9k
language
stringclasses
1 value
code
stringlengths
87
70.9k
code_tokens
sequencelengths
20
6.91k
docstring
stringlengths
1
21.7k
docstring_tokens
sequencelengths
1
1.6k
sha
stringclasses
679 values
url
stringlengths
92
213
partition
stringclasses
1 value
tensorlayer/tensorlayer
tensorlayer/prepro.py
obj_box_zoom
def obj_box_zoom( im, classes=None, coords=None, zoom_range=(0.9, 1.1), row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1, is_rescale=False, is_center=False, is_random=False, thresh_wh=0.02, thresh_wh2=12. ): """Zoom in and out of a single image, randomly or non-randomly, and compute the new bounding box coordinates. Objects outside the cropped image will be removed. Parameters ----------- im : numpy.array An image with dimension of [row, col, channel] (default). classes : list of int or None Class IDs. coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...]. zoom_range row_index col_index channel_index is_random fill_mode cval and order : see ``tl.prepro.zoom``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean Set to True, if the x and y of coordinates are the centroid. (i.e. darknet format). Default is False. thresh_wh : float Threshold, remove the box if its ratio of width(height) to image size less than the threshold. thresh_wh2 : float Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold. Returns ------- numpy.array A processed image list of int A list of classes list of list of 4 numbers A list of new bounding boxes. """ if classes is None: classes = [] if coords is None: coords = [] if len(zoom_range) != 2: raise Exception('zoom_range should be a tuple or list of two floats. ' 'Received arg: ', zoom_range) if is_random: if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 tl.logging.info(" random_zoom : not zoom in/out") else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) else: zx, zy = zoom_range # tl.logging.info(zx, zy) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) h, w = im.shape[row_index], im.shape[col_index] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) im_new = affine_transform(im, transform_matrix, channel_index, fill_mode, cval, order) # modified from obj_box_crop def _get_coord(coord): """Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates, before getting the new coordinates. Boxes outsides the cropped image will be removed. """ if is_center: coord = obj_box_coord_centroid_to_upleft(coord) # ======= pixel unit format and upleft, w, h ========== x = (coord[0] - im.shape[1] / 2) / zy + im.shape[1] / 2 # only change this y = (coord[1] - im.shape[0] / 2) / zx + im.shape[0] / 2 # only change this w = coord[2] / zy # only change this h = coord[3] / zx # only change thisS if x < 0: if x + w <= 0: return None w = w + x x = 0 elif x > im_new.shape[1]: # object outside the cropped image return None if y < 0: if y + h <= 0: return None h = h + y y = 0 elif y > im_new.shape[0]: # object outside the cropped image return None if (x is not None) and (x + w > im_new.shape[1]): # box outside the cropped image w = im_new.shape[1] - x if (y is not None) and (y + h > im_new.shape[0]): # box outside the cropped image h = im_new.shape[0] - y if (w / (h + 1.) > thresh_wh2) or (h / (w + 1.) > thresh_wh2): # object shape strange: too narrow # tl.logging.info('xx', w, h) return None if (w / (im_new.shape[1] * 1.) < thresh_wh) or (h / (im_new.shape[0] * 1.) < thresh_wh): # object shape strange: too narrow # tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0]) return None coord = [x, y, w, h] # convert back if input format is center. if is_center: coord = obj_box_coord_upleft_to_centroid(coord) return coord coords_new = list() classes_new = list() for i, _ in enumerate(coords): coord = coords[i] if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") if is_rescale: # for scaled coord, upscaled before process and scale back in the end. coord = obj_box_coord_scale_to_pixelunit(coord, im.shape) coord = _get_coord(coord) if coord is not None: coord = obj_box_coord_rescale(coord, im_new.shape) coords_new.append(coord) classes_new.append(classes[i]) else: coord = _get_coord(coord) if coord is not None: coords_new.append(coord) classes_new.append(classes[i]) return im_new, classes_new, coords_new
python
def obj_box_zoom( im, classes=None, coords=None, zoom_range=(0.9, 1.1), row_index=0, col_index=1, channel_index=2, fill_mode='nearest', cval=0., order=1, is_rescale=False, is_center=False, is_random=False, thresh_wh=0.02, thresh_wh2=12. ): """Zoom in and out of a single image, randomly or non-randomly, and compute the new bounding box coordinates. Objects outside the cropped image will be removed. Parameters ----------- im : numpy.array An image with dimension of [row, col, channel] (default). classes : list of int or None Class IDs. coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...]. zoom_range row_index col_index channel_index is_random fill_mode cval and order : see ``tl.prepro.zoom``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean Set to True, if the x and y of coordinates are the centroid. (i.e. darknet format). Default is False. thresh_wh : float Threshold, remove the box if its ratio of width(height) to image size less than the threshold. thresh_wh2 : float Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold. Returns ------- numpy.array A processed image list of int A list of classes list of list of 4 numbers A list of new bounding boxes. """ if classes is None: classes = [] if coords is None: coords = [] if len(zoom_range) != 2: raise Exception('zoom_range should be a tuple or list of two floats. ' 'Received arg: ', zoom_range) if is_random: if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 tl.logging.info(" random_zoom : not zoom in/out") else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) else: zx, zy = zoom_range # tl.logging.info(zx, zy) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) h, w = im.shape[row_index], im.shape[col_index] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) im_new = affine_transform(im, transform_matrix, channel_index, fill_mode, cval, order) # modified from obj_box_crop def _get_coord(coord): """Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates, before getting the new coordinates. Boxes outsides the cropped image will be removed. """ if is_center: coord = obj_box_coord_centroid_to_upleft(coord) # ======= pixel unit format and upleft, w, h ========== x = (coord[0] - im.shape[1] / 2) / zy + im.shape[1] / 2 # only change this y = (coord[1] - im.shape[0] / 2) / zx + im.shape[0] / 2 # only change this w = coord[2] / zy # only change this h = coord[3] / zx # only change thisS if x < 0: if x + w <= 0: return None w = w + x x = 0 elif x > im_new.shape[1]: # object outside the cropped image return None if y < 0: if y + h <= 0: return None h = h + y y = 0 elif y > im_new.shape[0]: # object outside the cropped image return None if (x is not None) and (x + w > im_new.shape[1]): # box outside the cropped image w = im_new.shape[1] - x if (y is not None) and (y + h > im_new.shape[0]): # box outside the cropped image h = im_new.shape[0] - y if (w / (h + 1.) > thresh_wh2) or (h / (w + 1.) > thresh_wh2): # object shape strange: too narrow # tl.logging.info('xx', w, h) return None if (w / (im_new.shape[1] * 1.) < thresh_wh) or (h / (im_new.shape[0] * 1.) < thresh_wh): # object shape strange: too narrow # tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0]) return None coord = [x, y, w, h] # convert back if input format is center. if is_center: coord = obj_box_coord_upleft_to_centroid(coord) return coord coords_new = list() classes_new = list() for i, _ in enumerate(coords): coord = coords[i] if len(coord) != 4: raise AssertionError("coordinate should be 4 values : [x, y, w, h]") if is_rescale: # for scaled coord, upscaled before process and scale back in the end. coord = obj_box_coord_scale_to_pixelunit(coord, im.shape) coord = _get_coord(coord) if coord is not None: coord = obj_box_coord_rescale(coord, im_new.shape) coords_new.append(coord) classes_new.append(classes[i]) else: coord = _get_coord(coord) if coord is not None: coords_new.append(coord) classes_new.append(classes[i]) return im_new, classes_new, coords_new
[ "def", "obj_box_zoom", "(", "im", ",", "classes", "=", "None", ",", "coords", "=", "None", ",", "zoom_range", "=", "(", "0.9", ",", "1.1", ")", ",", "row_index", "=", "0", ",", "col_index", "=", "1", ",", "channel_index", "=", "2", ",", "fill_mode", "=", "'nearest'", ",", "cval", "=", "0.", ",", "order", "=", "1", ",", "is_rescale", "=", "False", ",", "is_center", "=", "False", ",", "is_random", "=", "False", ",", "thresh_wh", "=", "0.02", ",", "thresh_wh2", "=", "12.", ")", ":", "if", "classes", "is", "None", ":", "classes", "=", "[", "]", "if", "coords", "is", "None", ":", "coords", "=", "[", "]", "if", "len", "(", "zoom_range", ")", "!=", "2", ":", "raise", "Exception", "(", "'zoom_range should be a tuple or list of two floats. '", "'Received arg: '", ",", "zoom_range", ")", "if", "is_random", ":", "if", "zoom_range", "[", "0", "]", "==", "1", "and", "zoom_range", "[", "1", "]", "==", "1", ":", "zx", ",", "zy", "=", "1", ",", "1", "tl", ".", "logging", ".", "info", "(", "\" random_zoom : not zoom in/out\"", ")", "else", ":", "zx", ",", "zy", "=", "np", ".", "random", ".", "uniform", "(", "zoom_range", "[", "0", "]", ",", "zoom_range", "[", "1", "]", ",", "2", ")", "else", ":", "zx", ",", "zy", "=", "zoom_range", "# tl.logging.info(zx, zy)", "zoom_matrix", "=", "np", ".", "array", "(", "[", "[", "zx", ",", "0", ",", "0", "]", ",", "[", "0", ",", "zy", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "h", ",", "w", "=", "im", ".", "shape", "[", "row_index", "]", ",", "im", ".", "shape", "[", "col_index", "]", "transform_matrix", "=", "transform_matrix_offset_center", "(", "zoom_matrix", ",", "h", ",", "w", ")", "im_new", "=", "affine_transform", "(", "im", ",", "transform_matrix", ",", "channel_index", ",", "fill_mode", ",", "cval", ",", "order", ")", "# modified from obj_box_crop", "def", "_get_coord", "(", "coord", ")", ":", "\"\"\"Input pixel-unit [x, y, w, h] format, then make sure [x, y] it is the up-left coordinates,\n before getting the new coordinates.\n Boxes outsides the cropped image will be removed.\n\n \"\"\"", "if", "is_center", ":", "coord", "=", "obj_box_coord_centroid_to_upleft", "(", "coord", ")", "# ======= pixel unit format and upleft, w, h ==========", "x", "=", "(", "coord", "[", "0", "]", "-", "im", ".", "shape", "[", "1", "]", "/", "2", ")", "/", "zy", "+", "im", ".", "shape", "[", "1", "]", "/", "2", "# only change this", "y", "=", "(", "coord", "[", "1", "]", "-", "im", ".", "shape", "[", "0", "]", "/", "2", ")", "/", "zx", "+", "im", ".", "shape", "[", "0", "]", "/", "2", "# only change this", "w", "=", "coord", "[", "2", "]", "/", "zy", "# only change this", "h", "=", "coord", "[", "3", "]", "/", "zx", "# only change thisS", "if", "x", "<", "0", ":", "if", "x", "+", "w", "<=", "0", ":", "return", "None", "w", "=", "w", "+", "x", "x", "=", "0", "elif", "x", ">", "im_new", ".", "shape", "[", "1", "]", ":", "# object outside the cropped image", "return", "None", "if", "y", "<", "0", ":", "if", "y", "+", "h", "<=", "0", ":", "return", "None", "h", "=", "h", "+", "y", "y", "=", "0", "elif", "y", ">", "im_new", ".", "shape", "[", "0", "]", ":", "# object outside the cropped image", "return", "None", "if", "(", "x", "is", "not", "None", ")", "and", "(", "x", "+", "w", ">", "im_new", ".", "shape", "[", "1", "]", ")", ":", "# box outside the cropped image", "w", "=", "im_new", ".", "shape", "[", "1", "]", "-", "x", "if", "(", "y", "is", "not", "None", ")", "and", "(", "y", "+", "h", ">", "im_new", ".", "shape", "[", "0", "]", ")", ":", "# box outside the cropped image", "h", "=", "im_new", ".", "shape", "[", "0", "]", "-", "y", "if", "(", "w", "/", "(", "h", "+", "1.", ")", ">", "thresh_wh2", ")", "or", "(", "h", "/", "(", "w", "+", "1.", ")", ">", "thresh_wh2", ")", ":", "# object shape strange: too narrow", "# tl.logging.info('xx', w, h)", "return", "None", "if", "(", "w", "/", "(", "im_new", ".", "shape", "[", "1", "]", "*", "1.", ")", "<", "thresh_wh", ")", "or", "(", "h", "/", "(", "im_new", ".", "shape", "[", "0", "]", "*", "1.", ")", "<", "thresh_wh", ")", ":", "# object shape strange: too narrow", "# tl.logging.info('yy', w, im_new.shape[1], h, im_new.shape[0])", "return", "None", "coord", "=", "[", "x", ",", "y", ",", "w", ",", "h", "]", "# convert back if input format is center.", "if", "is_center", ":", "coord", "=", "obj_box_coord_upleft_to_centroid", "(", "coord", ")", "return", "coord", "coords_new", "=", "list", "(", ")", "classes_new", "=", "list", "(", ")", "for", "i", ",", "_", "in", "enumerate", "(", "coords", ")", ":", "coord", "=", "coords", "[", "i", "]", "if", "len", "(", "coord", ")", "!=", "4", ":", "raise", "AssertionError", "(", "\"coordinate should be 4 values : [x, y, w, h]\"", ")", "if", "is_rescale", ":", "# for scaled coord, upscaled before process and scale back in the end.", "coord", "=", "obj_box_coord_scale_to_pixelunit", "(", "coord", ",", "im", ".", "shape", ")", "coord", "=", "_get_coord", "(", "coord", ")", "if", "coord", "is", "not", "None", ":", "coord", "=", "obj_box_coord_rescale", "(", "coord", ",", "im_new", ".", "shape", ")", "coords_new", ".", "append", "(", "coord", ")", "classes_new", ".", "append", "(", "classes", "[", "i", "]", ")", "else", ":", "coord", "=", "_get_coord", "(", "coord", ")", "if", "coord", "is", "not", "None", ":", "coords_new", ".", "append", "(", "coord", ")", "classes_new", ".", "append", "(", "classes", "[", "i", "]", ")", "return", "im_new", ",", "classes_new", ",", "coords_new" ]
Zoom in and out of a single image, randomly or non-randomly, and compute the new bounding box coordinates. Objects outside the cropped image will be removed. Parameters ----------- im : numpy.array An image with dimension of [row, col, channel] (default). classes : list of int or None Class IDs. coords : list of list of 4 int/float or None Coordinates [[x, y, w, h], [x, y, w, h], ...]. zoom_range row_index col_index channel_index is_random fill_mode cval and order : see ``tl.prepro.zoom``. is_rescale : boolean Set to True, if the input coordinates are rescaled to [0, 1]. Default is False. is_center : boolean Set to True, if the x and y of coordinates are the centroid. (i.e. darknet format). Default is False. thresh_wh : float Threshold, remove the box if its ratio of width(height) to image size less than the threshold. thresh_wh2 : float Threshold, remove the box if its ratio of width to height or vice verse higher than the threshold. Returns ------- numpy.array A processed image list of int A list of classes list of list of 4 numbers A list of new bounding boxes.
[ "Zoom", "in", "and", "out", "of", "a", "single", "image", "randomly", "or", "non", "-", "randomly", "and", "compute", "the", "new", "bounding", "box", "coordinates", ".", "Objects", "outside", "the", "cropped", "image", "will", "be", "removed", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3147-L3281
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
pad_sequences
def pad_sequences(sequences, maxlen=None, dtype='int32', padding='post', truncating='pre', value=0.): """Pads each sequence to the same length: the length of the longest sequence. If maxlen is provided, any sequence longer than maxlen is truncated to maxlen. Truncation happens off either the beginning (default) or the end of the sequence. Supports post-padding and pre-padding (default). Parameters ---------- sequences : list of list of int All sequences where each row is a sequence. maxlen : int Maximum length. dtype : numpy.dtype or str Data type to cast the resulting sequence. padding : str Either 'pre' or 'post', pad either before or after each sequence. truncating : str Either 'pre' or 'post', remove values from sequences larger than maxlen either in the beginning or in the end of the sequence value : float Value to pad the sequences to the desired value. Returns ---------- x : numpy.array With dimensions (number_of_sequences, maxlen) Examples ---------- >>> sequences = [[1,1,1,1,1],[2,2,2],[3,3]] >>> sequences = pad_sequences(sequences, maxlen=None, dtype='int32', ... padding='post', truncating='pre', value=0.) [[1 1 1 1 1] [2 2 2 0 0] [3 3 0 0 0]] """ lengths = [len(s) for s in sequences] nb_samples = len(sequences) if maxlen is None: maxlen = np.max(lengths) # take the sample shape from the first non empty sequence # checking for consistency in the main loop below. sample_shape = tuple() for s in sequences: if len(s) > 0: sample_shape = np.asarray(s).shape[1:] break x = (np.ones((nb_samples, maxlen) + sample_shape) * value).astype(dtype) for idx, s in enumerate(sequences): if len(s) == 0: continue # empty list was found if truncating == 'pre': trunc = s[-maxlen:] elif truncating == 'post': trunc = s[:maxlen] else: raise ValueError('Truncating type "%s" not understood' % truncating) # check `trunc` has expected shape trunc = np.asarray(trunc, dtype=dtype) if trunc.shape[1:] != sample_shape: raise ValueError( 'Shape of sample %s of sequence at position %s is different from expected shape %s' % (trunc.shape[1:], idx, sample_shape) ) if padding == 'post': x[idx, :len(trunc)] = trunc elif padding == 'pre': x[idx, -len(trunc):] = trunc else: raise ValueError('Padding type "%s" not understood' % padding) return x.tolist()
python
def pad_sequences(sequences, maxlen=None, dtype='int32', padding='post', truncating='pre', value=0.): """Pads each sequence to the same length: the length of the longest sequence. If maxlen is provided, any sequence longer than maxlen is truncated to maxlen. Truncation happens off either the beginning (default) or the end of the sequence. Supports post-padding and pre-padding (default). Parameters ---------- sequences : list of list of int All sequences where each row is a sequence. maxlen : int Maximum length. dtype : numpy.dtype or str Data type to cast the resulting sequence. padding : str Either 'pre' or 'post', pad either before or after each sequence. truncating : str Either 'pre' or 'post', remove values from sequences larger than maxlen either in the beginning or in the end of the sequence value : float Value to pad the sequences to the desired value. Returns ---------- x : numpy.array With dimensions (number_of_sequences, maxlen) Examples ---------- >>> sequences = [[1,1,1,1,1],[2,2,2],[3,3]] >>> sequences = pad_sequences(sequences, maxlen=None, dtype='int32', ... padding='post', truncating='pre', value=0.) [[1 1 1 1 1] [2 2 2 0 0] [3 3 0 0 0]] """ lengths = [len(s) for s in sequences] nb_samples = len(sequences) if maxlen is None: maxlen = np.max(lengths) # take the sample shape from the first non empty sequence # checking for consistency in the main loop below. sample_shape = tuple() for s in sequences: if len(s) > 0: sample_shape = np.asarray(s).shape[1:] break x = (np.ones((nb_samples, maxlen) + sample_shape) * value).astype(dtype) for idx, s in enumerate(sequences): if len(s) == 0: continue # empty list was found if truncating == 'pre': trunc = s[-maxlen:] elif truncating == 'post': trunc = s[:maxlen] else: raise ValueError('Truncating type "%s" not understood' % truncating) # check `trunc` has expected shape trunc = np.asarray(trunc, dtype=dtype) if trunc.shape[1:] != sample_shape: raise ValueError( 'Shape of sample %s of sequence at position %s is different from expected shape %s' % (trunc.shape[1:], idx, sample_shape) ) if padding == 'post': x[idx, :len(trunc)] = trunc elif padding == 'pre': x[idx, -len(trunc):] = trunc else: raise ValueError('Padding type "%s" not understood' % padding) return x.tolist()
[ "def", "pad_sequences", "(", "sequences", ",", "maxlen", "=", "None", ",", "dtype", "=", "'int32'", ",", "padding", "=", "'post'", ",", "truncating", "=", "'pre'", ",", "value", "=", "0.", ")", ":", "lengths", "=", "[", "len", "(", "s", ")", "for", "s", "in", "sequences", "]", "nb_samples", "=", "len", "(", "sequences", ")", "if", "maxlen", "is", "None", ":", "maxlen", "=", "np", ".", "max", "(", "lengths", ")", "# take the sample shape from the first non empty sequence", "# checking for consistency in the main loop below.", "sample_shape", "=", "tuple", "(", ")", "for", "s", "in", "sequences", ":", "if", "len", "(", "s", ")", ">", "0", ":", "sample_shape", "=", "np", ".", "asarray", "(", "s", ")", ".", "shape", "[", "1", ":", "]", "break", "x", "=", "(", "np", ".", "ones", "(", "(", "nb_samples", ",", "maxlen", ")", "+", "sample_shape", ")", "*", "value", ")", ".", "astype", "(", "dtype", ")", "for", "idx", ",", "s", "in", "enumerate", "(", "sequences", ")", ":", "if", "len", "(", "s", ")", "==", "0", ":", "continue", "# empty list was found", "if", "truncating", "==", "'pre'", ":", "trunc", "=", "s", "[", "-", "maxlen", ":", "]", "elif", "truncating", "==", "'post'", ":", "trunc", "=", "s", "[", ":", "maxlen", "]", "else", ":", "raise", "ValueError", "(", "'Truncating type \"%s\" not understood'", "%", "truncating", ")", "# check `trunc` has expected shape", "trunc", "=", "np", ".", "asarray", "(", "trunc", ",", "dtype", "=", "dtype", ")", "if", "trunc", ".", "shape", "[", "1", ":", "]", "!=", "sample_shape", ":", "raise", "ValueError", "(", "'Shape of sample %s of sequence at position %s is different from expected shape %s'", "%", "(", "trunc", ".", "shape", "[", "1", ":", "]", ",", "idx", ",", "sample_shape", ")", ")", "if", "padding", "==", "'post'", ":", "x", "[", "idx", ",", ":", "len", "(", "trunc", ")", "]", "=", "trunc", "elif", "padding", "==", "'pre'", ":", "x", "[", "idx", ",", "-", "len", "(", "trunc", ")", ":", "]", "=", "trunc", "else", ":", "raise", "ValueError", "(", "'Padding type \"%s\" not understood'", "%", "padding", ")", "return", "x", ".", "tolist", "(", ")" ]
Pads each sequence to the same length: the length of the longest sequence. If maxlen is provided, any sequence longer than maxlen is truncated to maxlen. Truncation happens off either the beginning (default) or the end of the sequence. Supports post-padding and pre-padding (default). Parameters ---------- sequences : list of list of int All sequences where each row is a sequence. maxlen : int Maximum length. dtype : numpy.dtype or str Data type to cast the resulting sequence. padding : str Either 'pre' or 'post', pad either before or after each sequence. truncating : str Either 'pre' or 'post', remove values from sequences larger than maxlen either in the beginning or in the end of the sequence value : float Value to pad the sequences to the desired value. Returns ---------- x : numpy.array With dimensions (number_of_sequences, maxlen) Examples ---------- >>> sequences = [[1,1,1,1,1],[2,2,2],[3,3]] >>> sequences = pad_sequences(sequences, maxlen=None, dtype='int32', ... padding='post', truncating='pre', value=0.) [[1 1 1 1 1] [2 2 2 0 0] [3 3 0 0 0]]
[ "Pads", "each", "sequence", "to", "the", "same", "length", ":", "the", "length", "of", "the", "longest", "sequence", ".", "If", "maxlen", "is", "provided", "any", "sequence", "longer", "than", "maxlen", "is", "truncated", "to", "maxlen", ".", "Truncation", "happens", "off", "either", "the", "beginning", "(", "default", ")", "or", "the", "end", "of", "the", "sequence", ".", "Supports", "post", "-", "padding", "and", "pre", "-", "padding", "(", "default", ")", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3284-L3362
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
remove_pad_sequences
def remove_pad_sequences(sequences, pad_id=0): """Remove padding. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. pad_id : int The pad ID. Returns ---------- list of list of int The processed sequences. Examples ---------- >>> sequences = [[2,3,4,0,0], [5,1,2,3,4,0,0,0], [4,5,0,2,4,0,0,0]] >>> print(remove_pad_sequences(sequences, pad_id=0)) [[2, 3, 4], [5, 1, 2, 3, 4], [4, 5, 0, 2, 4]] """ sequences_out = copy.deepcopy(sequences) for i, _ in enumerate(sequences): # for j in range(len(sequences[i])): # if sequences[i][j] == pad_id: # sequences_out[i] = sequences_out[i][:j] # break for j in range(1, len(sequences[i])): if sequences[i][-j] != pad_id: sequences_out[i] = sequences_out[i][0:-j + 1] break return sequences_out
python
def remove_pad_sequences(sequences, pad_id=0): """Remove padding. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. pad_id : int The pad ID. Returns ---------- list of list of int The processed sequences. Examples ---------- >>> sequences = [[2,3,4,0,0], [5,1,2,3,4,0,0,0], [4,5,0,2,4,0,0,0]] >>> print(remove_pad_sequences(sequences, pad_id=0)) [[2, 3, 4], [5, 1, 2, 3, 4], [4, 5, 0, 2, 4]] """ sequences_out = copy.deepcopy(sequences) for i, _ in enumerate(sequences): # for j in range(len(sequences[i])): # if sequences[i][j] == pad_id: # sequences_out[i] = sequences_out[i][:j] # break for j in range(1, len(sequences[i])): if sequences[i][-j] != pad_id: sequences_out[i] = sequences_out[i][0:-j + 1] break return sequences_out
[ "def", "remove_pad_sequences", "(", "sequences", ",", "pad_id", "=", "0", ")", ":", "sequences_out", "=", "copy", ".", "deepcopy", "(", "sequences", ")", "for", "i", ",", "_", "in", "enumerate", "(", "sequences", ")", ":", "# for j in range(len(sequences[i])):", "# if sequences[i][j] == pad_id:", "# sequences_out[i] = sequences_out[i][:j]", "# break", "for", "j", "in", "range", "(", "1", ",", "len", "(", "sequences", "[", "i", "]", ")", ")", ":", "if", "sequences", "[", "i", "]", "[", "-", "j", "]", "!=", "pad_id", ":", "sequences_out", "[", "i", "]", "=", "sequences_out", "[", "i", "]", "[", "0", ":", "-", "j", "+", "1", "]", "break", "return", "sequences_out" ]
Remove padding. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. pad_id : int The pad ID. Returns ---------- list of list of int The processed sequences. Examples ---------- >>> sequences = [[2,3,4,0,0], [5,1,2,3,4,0,0,0], [4,5,0,2,4,0,0,0]] >>> print(remove_pad_sequences(sequences, pad_id=0)) [[2, 3, 4], [5, 1, 2, 3, 4], [4, 5, 0, 2, 4]]
[ "Remove", "padding", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3365-L3399
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
process_sequences
def process_sequences(sequences, end_id=0, pad_val=0, is_shorten=True, remain_end_id=False): """Set all tokens(ids) after END token to the padding value, and then shorten (option) it to the maximum sequence length in this batch. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. end_id : int The special token for END. pad_val : int Replace the `end_id` and the IDs after `end_id` to this value. is_shorten : boolean Shorten the sequences. Default is True. remain_end_id : boolean Keep an `end_id` in the end. Default is False. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sentences_ids = [[4, 3, 5, 3, 2, 2, 2, 2], <-- end_id is 2 ... [5, 3, 9, 4, 9, 2, 2, 3]] <-- end_id is 2 >>> sentences_ids = precess_sequences(sentences_ids, end_id=vocab.end_id, pad_val=0, is_shorten=True) [[4, 3, 5, 3, 0], [5, 3, 9, 4, 9]] """ max_length = 0 for _, seq in enumerate(sequences): is_end = False for i_w, n in enumerate(seq): if n == end_id and is_end == False: # 1st time to see end_id is_end = True if max_length < i_w: max_length = i_w if remain_end_id is False: seq[i_w] = pad_val # set end_id to pad_val elif is_end ==True: seq[i_w] = pad_val if remain_end_id is True: max_length += 1 if is_shorten: for i, seq in enumerate(sequences): sequences[i] = seq[:max_length] return sequences
python
def process_sequences(sequences, end_id=0, pad_val=0, is_shorten=True, remain_end_id=False): """Set all tokens(ids) after END token to the padding value, and then shorten (option) it to the maximum sequence length in this batch. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. end_id : int The special token for END. pad_val : int Replace the `end_id` and the IDs after `end_id` to this value. is_shorten : boolean Shorten the sequences. Default is True. remain_end_id : boolean Keep an `end_id` in the end. Default is False. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sentences_ids = [[4, 3, 5, 3, 2, 2, 2, 2], <-- end_id is 2 ... [5, 3, 9, 4, 9, 2, 2, 3]] <-- end_id is 2 >>> sentences_ids = precess_sequences(sentences_ids, end_id=vocab.end_id, pad_val=0, is_shorten=True) [[4, 3, 5, 3, 0], [5, 3, 9, 4, 9]] """ max_length = 0 for _, seq in enumerate(sequences): is_end = False for i_w, n in enumerate(seq): if n == end_id and is_end == False: # 1st time to see end_id is_end = True if max_length < i_w: max_length = i_w if remain_end_id is False: seq[i_w] = pad_val # set end_id to pad_val elif is_end ==True: seq[i_w] = pad_val if remain_end_id is True: max_length += 1 if is_shorten: for i, seq in enumerate(sequences): sequences[i] = seq[:max_length] return sequences
[ "def", "process_sequences", "(", "sequences", ",", "end_id", "=", "0", ",", "pad_val", "=", "0", ",", "is_shorten", "=", "True", ",", "remain_end_id", "=", "False", ")", ":", "max_length", "=", "0", "for", "_", ",", "seq", "in", "enumerate", "(", "sequences", ")", ":", "is_end", "=", "False", "for", "i_w", ",", "n", "in", "enumerate", "(", "seq", ")", ":", "if", "n", "==", "end_id", "and", "is_end", "==", "False", ":", "# 1st time to see end_id", "is_end", "=", "True", "if", "max_length", "<", "i_w", ":", "max_length", "=", "i_w", "if", "remain_end_id", "is", "False", ":", "seq", "[", "i_w", "]", "=", "pad_val", "# set end_id to pad_val", "elif", "is_end", "==", "True", ":", "seq", "[", "i_w", "]", "=", "pad_val", "if", "remain_end_id", "is", "True", ":", "max_length", "+=", "1", "if", "is_shorten", ":", "for", "i", ",", "seq", "in", "enumerate", "(", "sequences", ")", ":", "sequences", "[", "i", "]", "=", "seq", "[", ":", "max_length", "]", "return", "sequences" ]
Set all tokens(ids) after END token to the padding value, and then shorten (option) it to the maximum sequence length in this batch. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. end_id : int The special token for END. pad_val : int Replace the `end_id` and the IDs after `end_id` to this value. is_shorten : boolean Shorten the sequences. Default is True. remain_end_id : boolean Keep an `end_id` in the end. Default is False. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sentences_ids = [[4, 3, 5, 3, 2, 2, 2, 2], <-- end_id is 2 ... [5, 3, 9, 4, 9, 2, 2, 3]] <-- end_id is 2 >>> sentences_ids = precess_sequences(sentences_ids, end_id=vocab.end_id, pad_val=0, is_shorten=True) [[4, 3, 5, 3, 0], [5, 3, 9, 4, 9]]
[ "Set", "all", "tokens", "(", "ids", ")", "after", "END", "token", "to", "the", "padding", "value", "and", "then", "shorten", "(", "option", ")", "it", "to", "the", "maximum", "sequence", "length", "in", "this", "batch", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3402-L3449
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
sequences_add_start_id
def sequences_add_start_id(sequences, start_id=0, remove_last=False): """Add special start token(id) in the beginning of each sequence. Parameters ------------ sequences : list of list of int All sequences where each row is a sequence. start_id : int The start ID. remove_last : boolean Remove the last value of each sequences. Usually be used for removing the end ID. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sentences_ids = [[4,3,5,3,2,2,2,2], [5,3,9,4,9,2,2,3]] >>> sentences_ids = sequences_add_start_id(sentences_ids, start_id=2) [[2, 4, 3, 5, 3, 2, 2, 2, 2], [2, 5, 3, 9, 4, 9, 2, 2, 3]] >>> sentences_ids = sequences_add_start_id(sentences_ids, start_id=2, remove_last=True) [[2, 4, 3, 5, 3, 2, 2, 2], [2, 5, 3, 9, 4, 9, 2, 2]] For Seq2seq >>> input = [a, b, c] >>> target = [x, y, z] >>> decode_seq = [start_id, a, b] <-- sequences_add_start_id(input, start_id, True) """ sequences_out = [[] for _ in range(len(sequences))] #[[]] * len(sequences) for i, _ in enumerate(sequences): if remove_last: sequences_out[i] = [start_id] + sequences[i][:-1] else: sequences_out[i] = [start_id] + sequences[i] return sequences_out
python
def sequences_add_start_id(sequences, start_id=0, remove_last=False): """Add special start token(id) in the beginning of each sequence. Parameters ------------ sequences : list of list of int All sequences where each row is a sequence. start_id : int The start ID. remove_last : boolean Remove the last value of each sequences. Usually be used for removing the end ID. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sentences_ids = [[4,3,5,3,2,2,2,2], [5,3,9,4,9,2,2,3]] >>> sentences_ids = sequences_add_start_id(sentences_ids, start_id=2) [[2, 4, 3, 5, 3, 2, 2, 2, 2], [2, 5, 3, 9, 4, 9, 2, 2, 3]] >>> sentences_ids = sequences_add_start_id(sentences_ids, start_id=2, remove_last=True) [[2, 4, 3, 5, 3, 2, 2, 2], [2, 5, 3, 9, 4, 9, 2, 2]] For Seq2seq >>> input = [a, b, c] >>> target = [x, y, z] >>> decode_seq = [start_id, a, b] <-- sequences_add_start_id(input, start_id, True) """ sequences_out = [[] for _ in range(len(sequences))] #[[]] * len(sequences) for i, _ in enumerate(sequences): if remove_last: sequences_out[i] = [start_id] + sequences[i][:-1] else: sequences_out[i] = [start_id] + sequences[i] return sequences_out
[ "def", "sequences_add_start_id", "(", "sequences", ",", "start_id", "=", "0", ",", "remove_last", "=", "False", ")", ":", "sequences_out", "=", "[", "[", "]", "for", "_", "in", "range", "(", "len", "(", "sequences", ")", ")", "]", "#[[]] * len(sequences)", "for", "i", ",", "_", "in", "enumerate", "(", "sequences", ")", ":", "if", "remove_last", ":", "sequences_out", "[", "i", "]", "=", "[", "start_id", "]", "+", "sequences", "[", "i", "]", "[", ":", "-", "1", "]", "else", ":", "sequences_out", "[", "i", "]", "=", "[", "start_id", "]", "+", "sequences", "[", "i", "]", "return", "sequences_out" ]
Add special start token(id) in the beginning of each sequence. Parameters ------------ sequences : list of list of int All sequences where each row is a sequence. start_id : int The start ID. remove_last : boolean Remove the last value of each sequences. Usually be used for removing the end ID. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sentences_ids = [[4,3,5,3,2,2,2,2], [5,3,9,4,9,2,2,3]] >>> sentences_ids = sequences_add_start_id(sentences_ids, start_id=2) [[2, 4, 3, 5, 3, 2, 2, 2, 2], [2, 5, 3, 9, 4, 9, 2, 2, 3]] >>> sentences_ids = sequences_add_start_id(sentences_ids, start_id=2, remove_last=True) [[2, 4, 3, 5, 3, 2, 2, 2], [2, 5, 3, 9, 4, 9, 2, 2]] For Seq2seq >>> input = [a, b, c] >>> target = [x, y, z] >>> decode_seq = [start_id, a, b] <-- sequences_add_start_id(input, start_id, True)
[ "Add", "special", "start", "token", "(", "id", ")", "in", "the", "beginning", "of", "each", "sequence", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3452-L3490
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
sequences_add_end_id
def sequences_add_end_id(sequences, end_id=888): """Add special end token(id) in the end of each sequence. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. end_id : int The end ID. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sequences = [[1,2,3],[4,5,6,7]] >>> print(sequences_add_end_id(sequences, end_id=999)) [[1, 2, 3, 999], [4, 5, 6, 999]] """ sequences_out = [[] for _ in range(len(sequences))] #[[]] * len(sequences) for i, _ in enumerate(sequences): sequences_out[i] = sequences[i] + [end_id] return sequences_out
python
def sequences_add_end_id(sequences, end_id=888): """Add special end token(id) in the end of each sequence. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. end_id : int The end ID. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sequences = [[1,2,3],[4,5,6,7]] >>> print(sequences_add_end_id(sequences, end_id=999)) [[1, 2, 3, 999], [4, 5, 6, 999]] """ sequences_out = [[] for _ in range(len(sequences))] #[[]] * len(sequences) for i, _ in enumerate(sequences): sequences_out[i] = sequences[i] + [end_id] return sequences_out
[ "def", "sequences_add_end_id", "(", "sequences", ",", "end_id", "=", "888", ")", ":", "sequences_out", "=", "[", "[", "]", "for", "_", "in", "range", "(", "len", "(", "sequences", ")", ")", "]", "#[[]] * len(sequences)", "for", "i", ",", "_", "in", "enumerate", "(", "sequences", ")", ":", "sequences_out", "[", "i", "]", "=", "sequences", "[", "i", "]", "+", "[", "end_id", "]", "return", "sequences_out" ]
Add special end token(id) in the end of each sequence. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. end_id : int The end ID. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sequences = [[1,2,3],[4,5,6,7]] >>> print(sequences_add_end_id(sequences, end_id=999)) [[1, 2, 3, 999], [4, 5, 6, 999]]
[ "Add", "special", "end", "token", "(", "id", ")", "in", "the", "end", "of", "each", "sequence", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3493-L3518
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
sequences_add_end_id_after_pad
def sequences_add_end_id_after_pad(sequences, end_id=888, pad_id=0): """Add special end token(id) in the end of each sequence. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. end_id : int The end ID. pad_id : int The pad ID. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sequences = [[1,2,0,0], [1,2,3,0], [1,2,3,4]] >>> print(sequences_add_end_id_after_pad(sequences, end_id=99, pad_id=0)) [[1, 2, 99, 0], [1, 2, 3, 99], [1, 2, 3, 4]] """ # sequences_out = [[] for _ in range(len(sequences))]#[[]] * len(sequences) sequences_out = copy.deepcopy(sequences) # # add a pad to all # for i in range(len(sequences)): # for j in range(len(sequences[i])): # sequences_out[i].append(pad_id) # # pad -- > end # max_len = 0 for i, v in enumerate(sequences): for j, _v2 in enumerate(v): if sequences[i][j] == pad_id: sequences_out[i][j] = end_id # if j > max_len: # max_len = j break # # remove pad if too long # for i in range(len(sequences)): # for j in range(len(sequences[i])): # sequences_out[i] = sequences_out[i][:max_len+1] return sequences_out
python
def sequences_add_end_id_after_pad(sequences, end_id=888, pad_id=0): """Add special end token(id) in the end of each sequence. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. end_id : int The end ID. pad_id : int The pad ID. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sequences = [[1,2,0,0], [1,2,3,0], [1,2,3,4]] >>> print(sequences_add_end_id_after_pad(sequences, end_id=99, pad_id=0)) [[1, 2, 99, 0], [1, 2, 3, 99], [1, 2, 3, 4]] """ # sequences_out = [[] for _ in range(len(sequences))]#[[]] * len(sequences) sequences_out = copy.deepcopy(sequences) # # add a pad to all # for i in range(len(sequences)): # for j in range(len(sequences[i])): # sequences_out[i].append(pad_id) # # pad -- > end # max_len = 0 for i, v in enumerate(sequences): for j, _v2 in enumerate(v): if sequences[i][j] == pad_id: sequences_out[i][j] = end_id # if j > max_len: # max_len = j break # # remove pad if too long # for i in range(len(sequences)): # for j in range(len(sequences[i])): # sequences_out[i] = sequences_out[i][:max_len+1] return sequences_out
[ "def", "sequences_add_end_id_after_pad", "(", "sequences", ",", "end_id", "=", "888", ",", "pad_id", "=", "0", ")", ":", "# sequences_out = [[] for _ in range(len(sequences))]#[[]] * len(sequences)", "sequences_out", "=", "copy", ".", "deepcopy", "(", "sequences", ")", "# # add a pad to all", "# for i in range(len(sequences)):", "# for j in range(len(sequences[i])):", "# sequences_out[i].append(pad_id)", "# # pad -- > end", "# max_len = 0", "for", "i", ",", "v", "in", "enumerate", "(", "sequences", ")", ":", "for", "j", ",", "_v2", "in", "enumerate", "(", "v", ")", ":", "if", "sequences", "[", "i", "]", "[", "j", "]", "==", "pad_id", ":", "sequences_out", "[", "i", "]", "[", "j", "]", "=", "end_id", "# if j > max_len:", "# max_len = j", "break", "# # remove pad if too long", "# for i in range(len(sequences)):", "# for j in range(len(sequences[i])):", "# sequences_out[i] = sequences_out[i][:max_len+1]", "return", "sequences_out" ]
Add special end token(id) in the end of each sequence. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. end_id : int The end ID. pad_id : int The pad ID. Returns ---------- list of list of int The processed sequences. Examples --------- >>> sequences = [[1,2,0,0], [1,2,3,0], [1,2,3,4]] >>> print(sequences_add_end_id_after_pad(sequences, end_id=99, pad_id=0)) [[1, 2, 99, 0], [1, 2, 3, 99], [1, 2, 3, 4]]
[ "Add", "special", "end", "token", "(", "id", ")", "in", "the", "end", "of", "each", "sequence", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3521-L3567
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
sequences_get_mask
def sequences_get_mask(sequences, pad_val=0): """Return mask for sequences. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. pad_val : int The pad value. Returns ---------- list of list of int The mask. Examples --------- >>> sentences_ids = [[4, 0, 5, 3, 0, 0], ... [5, 3, 9, 4, 9, 0]] >>> mask = sequences_get_mask(sentences_ids, pad_val=0) [[1 1 1 1 0 0] [1 1 1 1 1 0]] """ mask = np.ones_like(sequences) for i, seq in enumerate(sequences): for i_w in reversed(range(len(seq))): if seq[i_w] == pad_val: mask[i, i_w] = 0 else: break # <-- exit the for loop, prepcess next sequence return mask
python
def sequences_get_mask(sequences, pad_val=0): """Return mask for sequences. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. pad_val : int The pad value. Returns ---------- list of list of int The mask. Examples --------- >>> sentences_ids = [[4, 0, 5, 3, 0, 0], ... [5, 3, 9, 4, 9, 0]] >>> mask = sequences_get_mask(sentences_ids, pad_val=0) [[1 1 1 1 0 0] [1 1 1 1 1 0]] """ mask = np.ones_like(sequences) for i, seq in enumerate(sequences): for i_w in reversed(range(len(seq))): if seq[i_w] == pad_val: mask[i, i_w] = 0 else: break # <-- exit the for loop, prepcess next sequence return mask
[ "def", "sequences_get_mask", "(", "sequences", ",", "pad_val", "=", "0", ")", ":", "mask", "=", "np", ".", "ones_like", "(", "sequences", ")", "for", "i", ",", "seq", "in", "enumerate", "(", "sequences", ")", ":", "for", "i_w", "in", "reversed", "(", "range", "(", "len", "(", "seq", ")", ")", ")", ":", "if", "seq", "[", "i_w", "]", "==", "pad_val", ":", "mask", "[", "i", ",", "i_w", "]", "=", "0", "else", ":", "break", "# <-- exit the for loop, prepcess next sequence", "return", "mask" ]
Return mask for sequences. Parameters ----------- sequences : list of list of int All sequences where each row is a sequence. pad_val : int The pad value. Returns ---------- list of list of int The mask. Examples --------- >>> sentences_ids = [[4, 0, 5, 3, 0, 0], ... [5, 3, 9, 4, 9, 0]] >>> mask = sequences_get_mask(sentences_ids, pad_val=0) [[1 1 1 1 0 0] [1 1 1 1 1 0]]
[ "Return", "mask", "for", "sequences", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3570-L3601
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
keypoint_random_crop
def keypoint_random_crop(image, annos, mask=None, size=(368, 368)): """Randomly crop an image and corresponding keypoints without influence scales, given by ``keypoint_random_resize_shortestedge``. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. size : tuple of int The size of returned image. Returns ---------- preprocessed image, annotation, mask """ _target_height = size[0] _target_width = size[1] target_size = (_target_width, _target_height) if len(np.shape(image)) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) height, width, _ = np.shape(image) for _ in range(50): x = random.randrange(0, width - target_size[0]) if width > target_size[0] else 0 y = random.randrange(0, height - target_size[1]) if height > target_size[1] else 0 # check whether any face is inside the box to generate a reasonably-balanced datasets for joint in annos: if x <= joint[0][0] < x + target_size[0] and y <= joint[0][1] < y + target_size[1]: break def pose_crop(image, annos, mask, x, y, w, h): # TODO : speed up with affine transform # adjust image target_size = (w, h) img = image resized = img[y:y + target_size[1], x:x + target_size[0], :] resized_mask = mask[y:y + target_size[1], x:x + target_size[0]] # adjust meta data adjust_joint_list = [] for joint in annos: adjust_joint = [] for point in joint: if point[0] < -10 or point[1] < -10: adjust_joint.append((-1000, -1000)) continue new_x, new_y = point[0] - x, point[1] - y # should not crop outside the image if new_x > w - 1 or new_y > h - 1: adjust_joint.append((-1000, -1000)) continue adjust_joint.append((new_x, new_y)) adjust_joint_list.append(adjust_joint) return resized, adjust_joint_list, resized_mask return pose_crop(image, annos, mask, x, y, target_size[0], target_size[1])
python
def keypoint_random_crop(image, annos, mask=None, size=(368, 368)): """Randomly crop an image and corresponding keypoints without influence scales, given by ``keypoint_random_resize_shortestedge``. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. size : tuple of int The size of returned image. Returns ---------- preprocessed image, annotation, mask """ _target_height = size[0] _target_width = size[1] target_size = (_target_width, _target_height) if len(np.shape(image)) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) height, width, _ = np.shape(image) for _ in range(50): x = random.randrange(0, width - target_size[0]) if width > target_size[0] else 0 y = random.randrange(0, height - target_size[1]) if height > target_size[1] else 0 # check whether any face is inside the box to generate a reasonably-balanced datasets for joint in annos: if x <= joint[0][0] < x + target_size[0] and y <= joint[0][1] < y + target_size[1]: break def pose_crop(image, annos, mask, x, y, w, h): # TODO : speed up with affine transform # adjust image target_size = (w, h) img = image resized = img[y:y + target_size[1], x:x + target_size[0], :] resized_mask = mask[y:y + target_size[1], x:x + target_size[0]] # adjust meta data adjust_joint_list = [] for joint in annos: adjust_joint = [] for point in joint: if point[0] < -10 or point[1] < -10: adjust_joint.append((-1000, -1000)) continue new_x, new_y = point[0] - x, point[1] - y # should not crop outside the image if new_x > w - 1 or new_y > h - 1: adjust_joint.append((-1000, -1000)) continue adjust_joint.append((new_x, new_y)) adjust_joint_list.append(adjust_joint) return resized, adjust_joint_list, resized_mask return pose_crop(image, annos, mask, x, y, target_size[0], target_size[1])
[ "def", "keypoint_random_crop", "(", "image", ",", "annos", ",", "mask", "=", "None", ",", "size", "=", "(", "368", ",", "368", ")", ")", ":", "_target_height", "=", "size", "[", "0", "]", "_target_width", "=", "size", "[", "1", "]", "target_size", "=", "(", "_target_width", ",", "_target_height", ")", "if", "len", "(", "np", ".", "shape", "(", "image", ")", ")", "==", "2", ":", "image", "=", "cv2", ".", "cvtColor", "(", "image", ",", "cv2", ".", "COLOR_GRAY2RGB", ")", "height", ",", "width", ",", "_", "=", "np", ".", "shape", "(", "image", ")", "for", "_", "in", "range", "(", "50", ")", ":", "x", "=", "random", ".", "randrange", "(", "0", ",", "width", "-", "target_size", "[", "0", "]", ")", "if", "width", ">", "target_size", "[", "0", "]", "else", "0", "y", "=", "random", ".", "randrange", "(", "0", ",", "height", "-", "target_size", "[", "1", "]", ")", "if", "height", ">", "target_size", "[", "1", "]", "else", "0", "# check whether any face is inside the box to generate a reasonably-balanced datasets", "for", "joint", "in", "annos", ":", "if", "x", "<=", "joint", "[", "0", "]", "[", "0", "]", "<", "x", "+", "target_size", "[", "0", "]", "and", "y", "<=", "joint", "[", "0", "]", "[", "1", "]", "<", "y", "+", "target_size", "[", "1", "]", ":", "break", "def", "pose_crop", "(", "image", ",", "annos", ",", "mask", ",", "x", ",", "y", ",", "w", ",", "h", ")", ":", "# TODO : speed up with affine transform", "# adjust image", "target_size", "=", "(", "w", ",", "h", ")", "img", "=", "image", "resized", "=", "img", "[", "y", ":", "y", "+", "target_size", "[", "1", "]", ",", "x", ":", "x", "+", "target_size", "[", "0", "]", ",", ":", "]", "resized_mask", "=", "mask", "[", "y", ":", "y", "+", "target_size", "[", "1", "]", ",", "x", ":", "x", "+", "target_size", "[", "0", "]", "]", "# adjust meta data", "adjust_joint_list", "=", "[", "]", "for", "joint", "in", "annos", ":", "adjust_joint", "=", "[", "]", "for", "point", "in", "joint", ":", "if", "point", "[", "0", "]", "<", "-", "10", "or", "point", "[", "1", "]", "<", "-", "10", ":", "adjust_joint", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "new_x", ",", "new_y", "=", "point", "[", "0", "]", "-", "x", ",", "point", "[", "1", "]", "-", "y", "# should not crop outside the image", "if", "new_x", ">", "w", "-", "1", "or", "new_y", ">", "h", "-", "1", ":", "adjust_joint", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "adjust_joint", ".", "append", "(", "(", "new_x", ",", "new_y", ")", ")", "adjust_joint_list", ".", "append", "(", "adjust_joint", ")", "return", "resized", ",", "adjust_joint_list", ",", "resized_mask", "return", "pose_crop", "(", "image", ",", "annos", ",", "mask", ",", "x", ",", "y", ",", "target_size", "[", "0", "]", ",", "target_size", "[", "1", "]", ")" ]
Randomly crop an image and corresponding keypoints without influence scales, given by ``keypoint_random_resize_shortestedge``. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. size : tuple of int The size of returned image. Returns ---------- preprocessed image, annotation, mask
[ "Randomly", "crop", "an", "image", "and", "corresponding", "keypoints", "without", "influence", "scales", "given", "by", "keypoint_random_resize_shortestedge", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3604-L3666
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
keypoint_resize_random_crop
def keypoint_resize_random_crop(image, annos, mask=None, size=(368, 368)): """Reszie the image to make either its width or height equals to the given sizes. Then randomly crop image without influence scales. Resize the image match with the minimum size before cropping, this API will change the zoom scale of object. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. size : tuple of int The size (height, width) of returned image. Returns ---------- preprocessed image, annos, mask """ if len(np.shape(image)) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) def resize_image(image, annos, mask, target_width, target_height): """Reszie image Parameters ----------- image : 3 channel image The given image. annos : list of list of floats Keypoints of people mask : single channel image or None The mask if available. target_width : int Expected width of returned image. target_height : int Expected height of returned image. Returns ---------- preprocessed input image, annos, mask """ y, x, _ = np.shape(image) ratio_y = target_height / y ratio_x = target_width / x new_joints = [] # update meta for people in annos: new_keypoints = [] for keypoints in people: if keypoints[0] < 0 or keypoints[1] < 0: new_keypoints.append((-1000, -1000)) continue pts = (int(keypoints[0] * ratio_x + 0.5), int(keypoints[1] * ratio_y + 0.5)) if pts[0] > target_width - 1 or pts[1] > target_height - 1: new_keypoints.append((-1000, -1000)) continue new_keypoints.append(pts) new_joints.append(new_keypoints) annos = new_joints new_image = cv2.resize(image, (target_width, target_height), interpolation=cv2.INTER_AREA) if mask is not None: new_mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_AREA) return new_image, annos, new_mask else: return new_image, annos, None _target_height = size[0] _target_width = size[1] if len(np.shape(image)) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) height, width, _ = np.shape(image) # print("the size of original img is:", height, width) if height <= width: ratio = _target_height / height new_width = int(ratio * width) if height == width: new_width = _target_height image, annos, mask = resize_image(image, annos, mask, new_width, _target_height) # for i in annos: # if len(i) is not 19: # print('Joints of person is not 19 ERROR FROM RESIZE') if new_width > _target_width: crop_range_x = np.random.randint(0, new_width - _target_width) else: crop_range_x = 0 image = image[:, crop_range_x:crop_range_x + _target_width, :] if mask is not None: mask = mask[:, crop_range_x:crop_range_x + _target_width] # joint_list= [] new_joints = [] #annos-pepople-joints (must be 19 or []) for people in annos: # print("number of keypoints is", np.shape(people)) new_keypoints = [] for keypoints in people: if keypoints[0] < -10 or keypoints[1] < -10: new_keypoints.append((-1000, -1000)) continue top = crop_range_x + _target_width - 1 if keypoints[0] >= crop_range_x and keypoints[0] <= top: # pts = (keypoints[0]-crop_range_x, keypoints[1]) pts = (int(keypoints[0] - crop_range_x), int(keypoints[1])) else: pts = (-1000, -1000) new_keypoints.append(pts) new_joints.append(new_keypoints) # if len(new_keypoints) != 19: # print('1:The Length of joints list should be 0 or 19 but actually:', len(new_keypoints)) annos = new_joints if height > width: ratio = _target_width / width new_height = int(ratio * height) image, annos, mask = resize_image(image, annos, mask, _target_width, new_height) # for i in annos: # if len(i) is not 19: # print('Joints of person is not 19 ERROR') if new_height > _target_height: crop_range_y = np.random.randint(0, new_height - _target_height) else: crop_range_y = 0 image = image[crop_range_y:crop_range_y + _target_width, :, :] if mask is not None: mask = mask[crop_range_y:crop_range_y + _target_width, :] new_joints = [] for people in annos: # TODO : speed up with affine transform new_keypoints = [] for keypoints in people: # case orginal points are not usable if keypoints[0] < 0 or keypoints[1] < 0: new_keypoints.append((-1000, -1000)) continue # y axis coordinate change bot = crop_range_y + _target_height - 1 if keypoints[1] >= crop_range_y and keypoints[1] <= bot: # pts = (keypoints[0], keypoints[1]-crop_range_y) pts = (int(keypoints[0]), int(keypoints[1] - crop_range_y)) # if pts[0]>367 or pts[1]>367: # print('Error2') else: pts = (-1000, -1000) new_keypoints.append(pts) new_joints.append(new_keypoints) # if len(new_keypoints) != 19: # print('2:The Length of joints list should be 0 or 19 but actually:', len(new_keypoints)) annos = new_joints # mask = cv2.resize(mask, (46, 46), interpolation=cv2.INTER_AREA) if mask is not None: return image, annos, mask else: return image, annos, None
python
def keypoint_resize_random_crop(image, annos, mask=None, size=(368, 368)): """Reszie the image to make either its width or height equals to the given sizes. Then randomly crop image without influence scales. Resize the image match with the minimum size before cropping, this API will change the zoom scale of object. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. size : tuple of int The size (height, width) of returned image. Returns ---------- preprocessed image, annos, mask """ if len(np.shape(image)) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) def resize_image(image, annos, mask, target_width, target_height): """Reszie image Parameters ----------- image : 3 channel image The given image. annos : list of list of floats Keypoints of people mask : single channel image or None The mask if available. target_width : int Expected width of returned image. target_height : int Expected height of returned image. Returns ---------- preprocessed input image, annos, mask """ y, x, _ = np.shape(image) ratio_y = target_height / y ratio_x = target_width / x new_joints = [] # update meta for people in annos: new_keypoints = [] for keypoints in people: if keypoints[0] < 0 or keypoints[1] < 0: new_keypoints.append((-1000, -1000)) continue pts = (int(keypoints[0] * ratio_x + 0.5), int(keypoints[1] * ratio_y + 0.5)) if pts[0] > target_width - 1 or pts[1] > target_height - 1: new_keypoints.append((-1000, -1000)) continue new_keypoints.append(pts) new_joints.append(new_keypoints) annos = new_joints new_image = cv2.resize(image, (target_width, target_height), interpolation=cv2.INTER_AREA) if mask is not None: new_mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_AREA) return new_image, annos, new_mask else: return new_image, annos, None _target_height = size[0] _target_width = size[1] if len(np.shape(image)) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) height, width, _ = np.shape(image) # print("the size of original img is:", height, width) if height <= width: ratio = _target_height / height new_width = int(ratio * width) if height == width: new_width = _target_height image, annos, mask = resize_image(image, annos, mask, new_width, _target_height) # for i in annos: # if len(i) is not 19: # print('Joints of person is not 19 ERROR FROM RESIZE') if new_width > _target_width: crop_range_x = np.random.randint(0, new_width - _target_width) else: crop_range_x = 0 image = image[:, crop_range_x:crop_range_x + _target_width, :] if mask is not None: mask = mask[:, crop_range_x:crop_range_x + _target_width] # joint_list= [] new_joints = [] #annos-pepople-joints (must be 19 or []) for people in annos: # print("number of keypoints is", np.shape(people)) new_keypoints = [] for keypoints in people: if keypoints[0] < -10 or keypoints[1] < -10: new_keypoints.append((-1000, -1000)) continue top = crop_range_x + _target_width - 1 if keypoints[0] >= crop_range_x and keypoints[0] <= top: # pts = (keypoints[0]-crop_range_x, keypoints[1]) pts = (int(keypoints[0] - crop_range_x), int(keypoints[1])) else: pts = (-1000, -1000) new_keypoints.append(pts) new_joints.append(new_keypoints) # if len(new_keypoints) != 19: # print('1:The Length of joints list should be 0 or 19 but actually:', len(new_keypoints)) annos = new_joints if height > width: ratio = _target_width / width new_height = int(ratio * height) image, annos, mask = resize_image(image, annos, mask, _target_width, new_height) # for i in annos: # if len(i) is not 19: # print('Joints of person is not 19 ERROR') if new_height > _target_height: crop_range_y = np.random.randint(0, new_height - _target_height) else: crop_range_y = 0 image = image[crop_range_y:crop_range_y + _target_width, :, :] if mask is not None: mask = mask[crop_range_y:crop_range_y + _target_width, :] new_joints = [] for people in annos: # TODO : speed up with affine transform new_keypoints = [] for keypoints in people: # case orginal points are not usable if keypoints[0] < 0 or keypoints[1] < 0: new_keypoints.append((-1000, -1000)) continue # y axis coordinate change bot = crop_range_y + _target_height - 1 if keypoints[1] >= crop_range_y and keypoints[1] <= bot: # pts = (keypoints[0], keypoints[1]-crop_range_y) pts = (int(keypoints[0]), int(keypoints[1] - crop_range_y)) # if pts[0]>367 or pts[1]>367: # print('Error2') else: pts = (-1000, -1000) new_keypoints.append(pts) new_joints.append(new_keypoints) # if len(new_keypoints) != 19: # print('2:The Length of joints list should be 0 or 19 but actually:', len(new_keypoints)) annos = new_joints # mask = cv2.resize(mask, (46, 46), interpolation=cv2.INTER_AREA) if mask is not None: return image, annos, mask else: return image, annos, None
[ "def", "keypoint_resize_random_crop", "(", "image", ",", "annos", ",", "mask", "=", "None", ",", "size", "=", "(", "368", ",", "368", ")", ")", ":", "if", "len", "(", "np", ".", "shape", "(", "image", ")", ")", "==", "2", ":", "image", "=", "cv2", ".", "cvtColor", "(", "image", ",", "cv2", ".", "COLOR_GRAY2RGB", ")", "def", "resize_image", "(", "image", ",", "annos", ",", "mask", ",", "target_width", ",", "target_height", ")", ":", "\"\"\"Reszie image\n\n Parameters\n -----------\n image : 3 channel image\n The given image.\n annos : list of list of floats\n Keypoints of people\n mask : single channel image or None\n The mask if available.\n target_width : int\n Expected width of returned image.\n target_height : int\n Expected height of returned image.\n\n Returns\n ----------\n preprocessed input image, annos, mask\n\n \"\"\"", "y", ",", "x", ",", "_", "=", "np", ".", "shape", "(", "image", ")", "ratio_y", "=", "target_height", "/", "y", "ratio_x", "=", "target_width", "/", "x", "new_joints", "=", "[", "]", "# update meta", "for", "people", "in", "annos", ":", "new_keypoints", "=", "[", "]", "for", "keypoints", "in", "people", ":", "if", "keypoints", "[", "0", "]", "<", "0", "or", "keypoints", "[", "1", "]", "<", "0", ":", "new_keypoints", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "pts", "=", "(", "int", "(", "keypoints", "[", "0", "]", "*", "ratio_x", "+", "0.5", ")", ",", "int", "(", "keypoints", "[", "1", "]", "*", "ratio_y", "+", "0.5", ")", ")", "if", "pts", "[", "0", "]", ">", "target_width", "-", "1", "or", "pts", "[", "1", "]", ">", "target_height", "-", "1", ":", "new_keypoints", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "new_keypoints", ".", "append", "(", "pts", ")", "new_joints", ".", "append", "(", "new_keypoints", ")", "annos", "=", "new_joints", "new_image", "=", "cv2", ".", "resize", "(", "image", ",", "(", "target_width", ",", "target_height", ")", ",", "interpolation", "=", "cv2", ".", "INTER_AREA", ")", "if", "mask", "is", "not", "None", ":", "new_mask", "=", "cv2", ".", "resize", "(", "mask", ",", "(", "target_width", ",", "target_height", ")", ",", "interpolation", "=", "cv2", ".", "INTER_AREA", ")", "return", "new_image", ",", "annos", ",", "new_mask", "else", ":", "return", "new_image", ",", "annos", ",", "None", "_target_height", "=", "size", "[", "0", "]", "_target_width", "=", "size", "[", "1", "]", "if", "len", "(", "np", ".", "shape", "(", "image", ")", ")", "==", "2", ":", "image", "=", "cv2", ".", "cvtColor", "(", "image", ",", "cv2", ".", "COLOR_GRAY2RGB", ")", "height", ",", "width", ",", "_", "=", "np", ".", "shape", "(", "image", ")", "# print(\"the size of original img is:\", height, width)", "if", "height", "<=", "width", ":", "ratio", "=", "_target_height", "/", "height", "new_width", "=", "int", "(", "ratio", "*", "width", ")", "if", "height", "==", "width", ":", "new_width", "=", "_target_height", "image", ",", "annos", ",", "mask", "=", "resize_image", "(", "image", ",", "annos", ",", "mask", ",", "new_width", ",", "_target_height", ")", "# for i in annos:", "# if len(i) is not 19:", "# print('Joints of person is not 19 ERROR FROM RESIZE')", "if", "new_width", ">", "_target_width", ":", "crop_range_x", "=", "np", ".", "random", ".", "randint", "(", "0", ",", "new_width", "-", "_target_width", ")", "else", ":", "crop_range_x", "=", "0", "image", "=", "image", "[", ":", ",", "crop_range_x", ":", "crop_range_x", "+", "_target_width", ",", ":", "]", "if", "mask", "is", "not", "None", ":", "mask", "=", "mask", "[", ":", ",", "crop_range_x", ":", "crop_range_x", "+", "_target_width", "]", "# joint_list= []", "new_joints", "=", "[", "]", "#annos-pepople-joints (must be 19 or [])", "for", "people", "in", "annos", ":", "# print(\"number of keypoints is\", np.shape(people))", "new_keypoints", "=", "[", "]", "for", "keypoints", "in", "people", ":", "if", "keypoints", "[", "0", "]", "<", "-", "10", "or", "keypoints", "[", "1", "]", "<", "-", "10", ":", "new_keypoints", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "top", "=", "crop_range_x", "+", "_target_width", "-", "1", "if", "keypoints", "[", "0", "]", ">=", "crop_range_x", "and", "keypoints", "[", "0", "]", "<=", "top", ":", "# pts = (keypoints[0]-crop_range_x, keypoints[1])", "pts", "=", "(", "int", "(", "keypoints", "[", "0", "]", "-", "crop_range_x", ")", ",", "int", "(", "keypoints", "[", "1", "]", ")", ")", "else", ":", "pts", "=", "(", "-", "1000", ",", "-", "1000", ")", "new_keypoints", ".", "append", "(", "pts", ")", "new_joints", ".", "append", "(", "new_keypoints", ")", "# if len(new_keypoints) != 19:", "# print('1:The Length of joints list should be 0 or 19 but actually:', len(new_keypoints))", "annos", "=", "new_joints", "if", "height", ">", "width", ":", "ratio", "=", "_target_width", "/", "width", "new_height", "=", "int", "(", "ratio", "*", "height", ")", "image", ",", "annos", ",", "mask", "=", "resize_image", "(", "image", ",", "annos", ",", "mask", ",", "_target_width", ",", "new_height", ")", "# for i in annos:", "# if len(i) is not 19:", "# print('Joints of person is not 19 ERROR')", "if", "new_height", ">", "_target_height", ":", "crop_range_y", "=", "np", ".", "random", ".", "randint", "(", "0", ",", "new_height", "-", "_target_height", ")", "else", ":", "crop_range_y", "=", "0", "image", "=", "image", "[", "crop_range_y", ":", "crop_range_y", "+", "_target_width", ",", ":", ",", ":", "]", "if", "mask", "is", "not", "None", ":", "mask", "=", "mask", "[", "crop_range_y", ":", "crop_range_y", "+", "_target_width", ",", ":", "]", "new_joints", "=", "[", "]", "for", "people", "in", "annos", ":", "# TODO : speed up with affine transform", "new_keypoints", "=", "[", "]", "for", "keypoints", "in", "people", ":", "# case orginal points are not usable", "if", "keypoints", "[", "0", "]", "<", "0", "or", "keypoints", "[", "1", "]", "<", "0", ":", "new_keypoints", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "# y axis coordinate change", "bot", "=", "crop_range_y", "+", "_target_height", "-", "1", "if", "keypoints", "[", "1", "]", ">=", "crop_range_y", "and", "keypoints", "[", "1", "]", "<=", "bot", ":", "# pts = (keypoints[0], keypoints[1]-crop_range_y)", "pts", "=", "(", "int", "(", "keypoints", "[", "0", "]", ")", ",", "int", "(", "keypoints", "[", "1", "]", "-", "crop_range_y", ")", ")", "# if pts[0]>367 or pts[1]>367:", "# print('Error2')", "else", ":", "pts", "=", "(", "-", "1000", ",", "-", "1000", ")", "new_keypoints", ".", "append", "(", "pts", ")", "new_joints", ".", "append", "(", "new_keypoints", ")", "# if len(new_keypoints) != 19:", "# print('2:The Length of joints list should be 0 or 19 but actually:', len(new_keypoints))", "annos", "=", "new_joints", "# mask = cv2.resize(mask, (46, 46), interpolation=cv2.INTER_AREA)", "if", "mask", "is", "not", "None", ":", "return", "image", ",", "annos", ",", "mask", "else", ":", "return", "image", ",", "annos", ",", "None" ]
Reszie the image to make either its width or height equals to the given sizes. Then randomly crop image without influence scales. Resize the image match with the minimum size before cropping, this API will change the zoom scale of object. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. size : tuple of int The size (height, width) of returned image. Returns ---------- preprocessed image, annos, mask
[ "Reszie", "the", "image", "to", "make", "either", "its", "width", "or", "height", "equals", "to", "the", "given", "sizes", ".", "Then", "randomly", "crop", "image", "without", "influence", "scales", ".", "Resize", "the", "image", "match", "with", "the", "minimum", "size", "before", "cropping", "this", "API", "will", "change", "the", "zoom", "scale", "of", "object", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3669-L3841
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
keypoint_random_rotate
def keypoint_random_rotate(image, annos, mask=None, rg=15.): """Rotate an image and corresponding keypoints. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. rg : int or float Degree to rotate, usually 0 ~ 180. Returns ---------- preprocessed image, annos, mask """ def _rotate_coord(shape, newxy, point, angle): angle = -1 * angle / 180.0 * math.pi ox, oy = shape px, py = point ox /= 2 oy /= 2 qx = math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy) qy = math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy) new_x, new_y = newxy qx += ox - new_x qy += oy - new_y return int(qx + 0.5), int(qy + 0.5) def _largest_rotated_rect(w, h, angle): """ Get largest rectangle after rotation. http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders """ angle = angle / 180.0 * math.pi if w <= 0 or h <= 0: return 0, 0 width_is_longer = w >= h side_long, side_short = (w, h) if width_is_longer else (h, w) # since the solutions for angle, -angle and 180-angle are all the same, # if suffices to look at the first quadrant and the absolute values of sin,cos: sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle)) if side_short <= 2. * sin_a * cos_a * side_long: # half constrained case: two crop corners touch the longer side, # the other two corners are on the mid-line parallel to the longer line x = 0.5 * side_short wr, hr = (x / sin_a, x / cos_a) if width_is_longer else (x / cos_a, x / sin_a) else: # fully constrained case: crop touches all 4 sides cos_2a = cos_a * cos_a - sin_a * sin_a wr, hr = (w * cos_a - h * sin_a) / cos_2a, (h * cos_a - w * sin_a) / cos_2a return int(np.round(wr)), int(np.round(hr)) img_shape = np.shape(image) height = img_shape[0] width = img_shape[1] deg = np.random.uniform(-rg, rg) img = image center = (img.shape[1] * 0.5, img.shape[0] * 0.5) # x, y rot_m = cv2.getRotationMatrix2D((int(center[0]), int(center[1])), deg, 1) ret = cv2.warpAffine(img, rot_m, img.shape[1::-1], flags=cv2.INTER_AREA, borderMode=cv2.BORDER_CONSTANT) if img.ndim == 3 and ret.ndim == 2: ret = ret[:, :, np.newaxis] neww, newh = _largest_rotated_rect(ret.shape[1], ret.shape[0], deg) neww = min(neww, ret.shape[1]) newh = min(newh, ret.shape[0]) newx = int(center[0] - neww * 0.5) newy = int(center[1] - newh * 0.5) # print(ret.shape, deg, newx, newy, neww, newh) img = ret[newy:newy + newh, newx:newx + neww] # adjust meta data adjust_joint_list = [] for joint in annos: # TODO : speed up with affine transform adjust_joint = [] for point in joint: if point[0] < -100 or point[1] < -100: adjust_joint.append((-1000, -1000)) continue x, y = _rotate_coord((width, height), (newx, newy), point, deg) if x > neww - 1 or y > newh - 1: adjust_joint.append((-1000, -1000)) continue if x < 0 or y < 0: adjust_joint.append((-1000, -1000)) continue adjust_joint.append((x, y)) adjust_joint_list.append(adjust_joint) joint_list = adjust_joint_list if mask is not None: msk = mask center = (msk.shape[1] * 0.5, msk.shape[0] * 0.5) # x, y rot_m = cv2.getRotationMatrix2D((int(center[0]), int(center[1])), deg, 1) ret = cv2.warpAffine(msk, rot_m, msk.shape[1::-1], flags=cv2.INTER_AREA, borderMode=cv2.BORDER_CONSTANT) if msk.ndim == 3 and msk.ndim == 2: ret = ret[:, :, np.newaxis] neww, newh = _largest_rotated_rect(ret.shape[1], ret.shape[0], deg) neww = min(neww, ret.shape[1]) newh = min(newh, ret.shape[0]) newx = int(center[0] - neww * 0.5) newy = int(center[1] - newh * 0.5) # print(ret.shape, deg, newx, newy, neww, newh) msk = ret[newy:newy + newh, newx:newx + neww] return img, joint_list, msk else: return img, joint_list, None
python
def keypoint_random_rotate(image, annos, mask=None, rg=15.): """Rotate an image and corresponding keypoints. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. rg : int or float Degree to rotate, usually 0 ~ 180. Returns ---------- preprocessed image, annos, mask """ def _rotate_coord(shape, newxy, point, angle): angle = -1 * angle / 180.0 * math.pi ox, oy = shape px, py = point ox /= 2 oy /= 2 qx = math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy) qy = math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy) new_x, new_y = newxy qx += ox - new_x qy += oy - new_y return int(qx + 0.5), int(qy + 0.5) def _largest_rotated_rect(w, h, angle): """ Get largest rectangle after rotation. http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders """ angle = angle / 180.0 * math.pi if w <= 0 or h <= 0: return 0, 0 width_is_longer = w >= h side_long, side_short = (w, h) if width_is_longer else (h, w) # since the solutions for angle, -angle and 180-angle are all the same, # if suffices to look at the first quadrant and the absolute values of sin,cos: sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle)) if side_short <= 2. * sin_a * cos_a * side_long: # half constrained case: two crop corners touch the longer side, # the other two corners are on the mid-line parallel to the longer line x = 0.5 * side_short wr, hr = (x / sin_a, x / cos_a) if width_is_longer else (x / cos_a, x / sin_a) else: # fully constrained case: crop touches all 4 sides cos_2a = cos_a * cos_a - sin_a * sin_a wr, hr = (w * cos_a - h * sin_a) / cos_2a, (h * cos_a - w * sin_a) / cos_2a return int(np.round(wr)), int(np.round(hr)) img_shape = np.shape(image) height = img_shape[0] width = img_shape[1] deg = np.random.uniform(-rg, rg) img = image center = (img.shape[1] * 0.5, img.shape[0] * 0.5) # x, y rot_m = cv2.getRotationMatrix2D((int(center[0]), int(center[1])), deg, 1) ret = cv2.warpAffine(img, rot_m, img.shape[1::-1], flags=cv2.INTER_AREA, borderMode=cv2.BORDER_CONSTANT) if img.ndim == 3 and ret.ndim == 2: ret = ret[:, :, np.newaxis] neww, newh = _largest_rotated_rect(ret.shape[1], ret.shape[0], deg) neww = min(neww, ret.shape[1]) newh = min(newh, ret.shape[0]) newx = int(center[0] - neww * 0.5) newy = int(center[1] - newh * 0.5) # print(ret.shape, deg, newx, newy, neww, newh) img = ret[newy:newy + newh, newx:newx + neww] # adjust meta data adjust_joint_list = [] for joint in annos: # TODO : speed up with affine transform adjust_joint = [] for point in joint: if point[0] < -100 or point[1] < -100: adjust_joint.append((-1000, -1000)) continue x, y = _rotate_coord((width, height), (newx, newy), point, deg) if x > neww - 1 or y > newh - 1: adjust_joint.append((-1000, -1000)) continue if x < 0 or y < 0: adjust_joint.append((-1000, -1000)) continue adjust_joint.append((x, y)) adjust_joint_list.append(adjust_joint) joint_list = adjust_joint_list if mask is not None: msk = mask center = (msk.shape[1] * 0.5, msk.shape[0] * 0.5) # x, y rot_m = cv2.getRotationMatrix2D((int(center[0]), int(center[1])), deg, 1) ret = cv2.warpAffine(msk, rot_m, msk.shape[1::-1], flags=cv2.INTER_AREA, borderMode=cv2.BORDER_CONSTANT) if msk.ndim == 3 and msk.ndim == 2: ret = ret[:, :, np.newaxis] neww, newh = _largest_rotated_rect(ret.shape[1], ret.shape[0], deg) neww = min(neww, ret.shape[1]) newh = min(newh, ret.shape[0]) newx = int(center[0] - neww * 0.5) newy = int(center[1] - newh * 0.5) # print(ret.shape, deg, newx, newy, neww, newh) msk = ret[newy:newy + newh, newx:newx + neww] return img, joint_list, msk else: return img, joint_list, None
[ "def", "keypoint_random_rotate", "(", "image", ",", "annos", ",", "mask", "=", "None", ",", "rg", "=", "15.", ")", ":", "def", "_rotate_coord", "(", "shape", ",", "newxy", ",", "point", ",", "angle", ")", ":", "angle", "=", "-", "1", "*", "angle", "/", "180.0", "*", "math", ".", "pi", "ox", ",", "oy", "=", "shape", "px", ",", "py", "=", "point", "ox", "/=", "2", "oy", "/=", "2", "qx", "=", "math", ".", "cos", "(", "angle", ")", "*", "(", "px", "-", "ox", ")", "-", "math", ".", "sin", "(", "angle", ")", "*", "(", "py", "-", "oy", ")", "qy", "=", "math", ".", "sin", "(", "angle", ")", "*", "(", "px", "-", "ox", ")", "+", "math", ".", "cos", "(", "angle", ")", "*", "(", "py", "-", "oy", ")", "new_x", ",", "new_y", "=", "newxy", "qx", "+=", "ox", "-", "new_x", "qy", "+=", "oy", "-", "new_y", "return", "int", "(", "qx", "+", "0.5", ")", ",", "int", "(", "qy", "+", "0.5", ")", "def", "_largest_rotated_rect", "(", "w", ",", "h", ",", "angle", ")", ":", "\"\"\"\n Get largest rectangle after rotation.\n http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders\n \"\"\"", "angle", "=", "angle", "/", "180.0", "*", "math", ".", "pi", "if", "w", "<=", "0", "or", "h", "<=", "0", ":", "return", "0", ",", "0", "width_is_longer", "=", "w", ">=", "h", "side_long", ",", "side_short", "=", "(", "w", ",", "h", ")", "if", "width_is_longer", "else", "(", "h", ",", "w", ")", "# since the solutions for angle, -angle and 180-angle are all the same,", "# if suffices to look at the first quadrant and the absolute values of sin,cos:", "sin_a", ",", "cos_a", "=", "abs", "(", "math", ".", "sin", "(", "angle", ")", ")", ",", "abs", "(", "math", ".", "cos", "(", "angle", ")", ")", "if", "side_short", "<=", "2.", "*", "sin_a", "*", "cos_a", "*", "side_long", ":", "# half constrained case: two crop corners touch the longer side,", "# the other two corners are on the mid-line parallel to the longer line", "x", "=", "0.5", "*", "side_short", "wr", ",", "hr", "=", "(", "x", "/", "sin_a", ",", "x", "/", "cos_a", ")", "if", "width_is_longer", "else", "(", "x", "/", "cos_a", ",", "x", "/", "sin_a", ")", "else", ":", "# fully constrained case: crop touches all 4 sides", "cos_2a", "=", "cos_a", "*", "cos_a", "-", "sin_a", "*", "sin_a", "wr", ",", "hr", "=", "(", "w", "*", "cos_a", "-", "h", "*", "sin_a", ")", "/", "cos_2a", ",", "(", "h", "*", "cos_a", "-", "w", "*", "sin_a", ")", "/", "cos_2a", "return", "int", "(", "np", ".", "round", "(", "wr", ")", ")", ",", "int", "(", "np", ".", "round", "(", "hr", ")", ")", "img_shape", "=", "np", ".", "shape", "(", "image", ")", "height", "=", "img_shape", "[", "0", "]", "width", "=", "img_shape", "[", "1", "]", "deg", "=", "np", ".", "random", ".", "uniform", "(", "-", "rg", ",", "rg", ")", "img", "=", "image", "center", "=", "(", "img", ".", "shape", "[", "1", "]", "*", "0.5", ",", "img", ".", "shape", "[", "0", "]", "*", "0.5", ")", "# x, y", "rot_m", "=", "cv2", ".", "getRotationMatrix2D", "(", "(", "int", "(", "center", "[", "0", "]", ")", ",", "int", "(", "center", "[", "1", "]", ")", ")", ",", "deg", ",", "1", ")", "ret", "=", "cv2", ".", "warpAffine", "(", "img", ",", "rot_m", ",", "img", ".", "shape", "[", "1", ":", ":", "-", "1", "]", ",", "flags", "=", "cv2", ".", "INTER_AREA", ",", "borderMode", "=", "cv2", ".", "BORDER_CONSTANT", ")", "if", "img", ".", "ndim", "==", "3", "and", "ret", ".", "ndim", "==", "2", ":", "ret", "=", "ret", "[", ":", ",", ":", ",", "np", ".", "newaxis", "]", "neww", ",", "newh", "=", "_largest_rotated_rect", "(", "ret", ".", "shape", "[", "1", "]", ",", "ret", ".", "shape", "[", "0", "]", ",", "deg", ")", "neww", "=", "min", "(", "neww", ",", "ret", ".", "shape", "[", "1", "]", ")", "newh", "=", "min", "(", "newh", ",", "ret", ".", "shape", "[", "0", "]", ")", "newx", "=", "int", "(", "center", "[", "0", "]", "-", "neww", "*", "0.5", ")", "newy", "=", "int", "(", "center", "[", "1", "]", "-", "newh", "*", "0.5", ")", "# print(ret.shape, deg, newx, newy, neww, newh)", "img", "=", "ret", "[", "newy", ":", "newy", "+", "newh", ",", "newx", ":", "newx", "+", "neww", "]", "# adjust meta data", "adjust_joint_list", "=", "[", "]", "for", "joint", "in", "annos", ":", "# TODO : speed up with affine transform", "adjust_joint", "=", "[", "]", "for", "point", "in", "joint", ":", "if", "point", "[", "0", "]", "<", "-", "100", "or", "point", "[", "1", "]", "<", "-", "100", ":", "adjust_joint", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "x", ",", "y", "=", "_rotate_coord", "(", "(", "width", ",", "height", ")", ",", "(", "newx", ",", "newy", ")", ",", "point", ",", "deg", ")", "if", "x", ">", "neww", "-", "1", "or", "y", ">", "newh", "-", "1", ":", "adjust_joint", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "if", "x", "<", "0", "or", "y", "<", "0", ":", "adjust_joint", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "adjust_joint", ".", "append", "(", "(", "x", ",", "y", ")", ")", "adjust_joint_list", ".", "append", "(", "adjust_joint", ")", "joint_list", "=", "adjust_joint_list", "if", "mask", "is", "not", "None", ":", "msk", "=", "mask", "center", "=", "(", "msk", ".", "shape", "[", "1", "]", "*", "0.5", ",", "msk", ".", "shape", "[", "0", "]", "*", "0.5", ")", "# x, y", "rot_m", "=", "cv2", ".", "getRotationMatrix2D", "(", "(", "int", "(", "center", "[", "0", "]", ")", ",", "int", "(", "center", "[", "1", "]", ")", ")", ",", "deg", ",", "1", ")", "ret", "=", "cv2", ".", "warpAffine", "(", "msk", ",", "rot_m", ",", "msk", ".", "shape", "[", "1", ":", ":", "-", "1", "]", ",", "flags", "=", "cv2", ".", "INTER_AREA", ",", "borderMode", "=", "cv2", ".", "BORDER_CONSTANT", ")", "if", "msk", ".", "ndim", "==", "3", "and", "msk", ".", "ndim", "==", "2", ":", "ret", "=", "ret", "[", ":", ",", ":", ",", "np", ".", "newaxis", "]", "neww", ",", "newh", "=", "_largest_rotated_rect", "(", "ret", ".", "shape", "[", "1", "]", ",", "ret", ".", "shape", "[", "0", "]", ",", "deg", ")", "neww", "=", "min", "(", "neww", ",", "ret", ".", "shape", "[", "1", "]", ")", "newh", "=", "min", "(", "newh", ",", "ret", ".", "shape", "[", "0", "]", ")", "newx", "=", "int", "(", "center", "[", "0", "]", "-", "neww", "*", "0.5", ")", "newy", "=", "int", "(", "center", "[", "1", "]", "-", "newh", "*", "0.5", ")", "# print(ret.shape, deg, newx, newy, neww, newh)", "msk", "=", "ret", "[", "newy", ":", "newy", "+", "newh", ",", "newx", ":", "newx", "+", "neww", "]", "return", "img", ",", "joint_list", ",", "msk", "else", ":", "return", "img", ",", "joint_list", ",", "None" ]
Rotate an image and corresponding keypoints. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. rg : int or float Degree to rotate, usually 0 ~ 180. Returns ---------- preprocessed image, annos, mask
[ "Rotate", "an", "image", "and", "corresponding", "keypoints", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3844-L3959
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
keypoint_random_flip
def keypoint_random_flip( image, annos, mask=None, prob=0.5, flip_list=(0, 1, 5, 6, 7, 2, 3, 4, 11, 12, 13, 8, 9, 10, 15, 14, 17, 16, 18) ): """Flip an image and corresponding keypoints. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. prob : float, 0 to 1 The probability to flip the image, if 1, always flip the image. flip_list : tuple of int Denotes how the keypoints number be changed after flipping which is required for pose estimation task. The left and right body should be maintained rather than switch. (Default COCO format). Set to an empty tuple if you don't need to maintain left and right information. Returns ---------- preprocessed image, annos, mask """ _prob = np.random.uniform(0, 1.0) if _prob < prob: return image, annos, mask _, width, _ = np.shape(image) image = cv2.flip(image, 1) mask = cv2.flip(mask, 1) new_joints = [] for people in annos: # TODO : speed up with affine transform new_keypoints = [] for k in flip_list: point = people[k] if point[0] < 0 or point[1] < 0: new_keypoints.append((-1000, -1000)) continue if point[0] > image.shape[1] - 1 or point[1] > image.shape[0] - 1: new_keypoints.append((-1000, -1000)) continue if (width - point[0]) > image.shape[1] - 1: new_keypoints.append((-1000, -1000)) continue new_keypoints.append((width - point[0], point[1])) new_joints.append(new_keypoints) annos = new_joints return image, annos, mask
python
def keypoint_random_flip( image, annos, mask=None, prob=0.5, flip_list=(0, 1, 5, 6, 7, 2, 3, 4, 11, 12, 13, 8, 9, 10, 15, 14, 17, 16, 18) ): """Flip an image and corresponding keypoints. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. prob : float, 0 to 1 The probability to flip the image, if 1, always flip the image. flip_list : tuple of int Denotes how the keypoints number be changed after flipping which is required for pose estimation task. The left and right body should be maintained rather than switch. (Default COCO format). Set to an empty tuple if you don't need to maintain left and right information. Returns ---------- preprocessed image, annos, mask """ _prob = np.random.uniform(0, 1.0) if _prob < prob: return image, annos, mask _, width, _ = np.shape(image) image = cv2.flip(image, 1) mask = cv2.flip(mask, 1) new_joints = [] for people in annos: # TODO : speed up with affine transform new_keypoints = [] for k in flip_list: point = people[k] if point[0] < 0 or point[1] < 0: new_keypoints.append((-1000, -1000)) continue if point[0] > image.shape[1] - 1 or point[1] > image.shape[0] - 1: new_keypoints.append((-1000, -1000)) continue if (width - point[0]) > image.shape[1] - 1: new_keypoints.append((-1000, -1000)) continue new_keypoints.append((width - point[0], point[1])) new_joints.append(new_keypoints) annos = new_joints return image, annos, mask
[ "def", "keypoint_random_flip", "(", "image", ",", "annos", ",", "mask", "=", "None", ",", "prob", "=", "0.5", ",", "flip_list", "=", "(", "0", ",", "1", ",", "5", ",", "6", ",", "7", ",", "2", ",", "3", ",", "4", ",", "11", ",", "12", ",", "13", ",", "8", ",", "9", ",", "10", ",", "15", ",", "14", ",", "17", ",", "16", ",", "18", ")", ")", ":", "_prob", "=", "np", ".", "random", ".", "uniform", "(", "0", ",", "1.0", ")", "if", "_prob", "<", "prob", ":", "return", "image", ",", "annos", ",", "mask", "_", ",", "width", ",", "_", "=", "np", ".", "shape", "(", "image", ")", "image", "=", "cv2", ".", "flip", "(", "image", ",", "1", ")", "mask", "=", "cv2", ".", "flip", "(", "mask", ",", "1", ")", "new_joints", "=", "[", "]", "for", "people", "in", "annos", ":", "# TODO : speed up with affine transform", "new_keypoints", "=", "[", "]", "for", "k", "in", "flip_list", ":", "point", "=", "people", "[", "k", "]", "if", "point", "[", "0", "]", "<", "0", "or", "point", "[", "1", "]", "<", "0", ":", "new_keypoints", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "if", "point", "[", "0", "]", ">", "image", ".", "shape", "[", "1", "]", "-", "1", "or", "point", "[", "1", "]", ">", "image", ".", "shape", "[", "0", "]", "-", "1", ":", "new_keypoints", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "if", "(", "width", "-", "point", "[", "0", "]", ")", ">", "image", ".", "shape", "[", "1", "]", "-", "1", ":", "new_keypoints", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "new_keypoints", ".", "append", "(", "(", "width", "-", "point", "[", "0", "]", ",", "point", "[", "1", "]", ")", ")", "new_joints", ".", "append", "(", "new_keypoints", ")", "annos", "=", "new_joints", "return", "image", ",", "annos", ",", "mask" ]
Flip an image and corresponding keypoints. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. prob : float, 0 to 1 The probability to flip the image, if 1, always flip the image. flip_list : tuple of int Denotes how the keypoints number be changed after flipping which is required for pose estimation task. The left and right body should be maintained rather than switch. (Default COCO format). Set to an empty tuple if you don't need to maintain left and right information. Returns ---------- preprocessed image, annos, mask
[ "Flip", "an", "image", "and", "corresponding", "keypoints", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L3962-L4014
valid
tensorlayer/tensorlayer
tensorlayer/prepro.py
keypoint_random_resize
def keypoint_random_resize(image, annos, mask=None, zoom_range=(0.8, 1.2)): """Randomly resize an image and corresponding keypoints. The height and width of image will be changed independently, so the scale will be changed. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. zoom_range : tuple of two floats The minimum and maximum factor to zoom in or out, e.g (0.5, 1) means zoom out 1~2 times. Returns ---------- preprocessed image, annos, mask """ height = image.shape[0] width = image.shape[1] _min, _max = zoom_range scalew = np.random.uniform(_min, _max) scaleh = np.random.uniform(_min, _max) neww = int(width * scalew) newh = int(height * scaleh) dst = cv2.resize(image, (neww, newh), interpolation=cv2.INTER_AREA) if mask is not None: mask = cv2.resize(mask, (neww, newh), interpolation=cv2.INTER_AREA) # adjust meta data adjust_joint_list = [] for joint in annos: # TODO : speed up with affine transform adjust_joint = [] for point in joint: if point[0] < -100 or point[1] < -100: adjust_joint.append((-1000, -1000)) continue adjust_joint.append((int(point[0] * scalew + 0.5), int(point[1] * scaleh + 0.5))) adjust_joint_list.append(adjust_joint) if mask is not None: return dst, adjust_joint_list, mask else: return dst, adjust_joint_list, None
python
def keypoint_random_resize(image, annos, mask=None, zoom_range=(0.8, 1.2)): """Randomly resize an image and corresponding keypoints. The height and width of image will be changed independently, so the scale will be changed. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. zoom_range : tuple of two floats The minimum and maximum factor to zoom in or out, e.g (0.5, 1) means zoom out 1~2 times. Returns ---------- preprocessed image, annos, mask """ height = image.shape[0] width = image.shape[1] _min, _max = zoom_range scalew = np.random.uniform(_min, _max) scaleh = np.random.uniform(_min, _max) neww = int(width * scalew) newh = int(height * scaleh) dst = cv2.resize(image, (neww, newh), interpolation=cv2.INTER_AREA) if mask is not None: mask = cv2.resize(mask, (neww, newh), interpolation=cv2.INTER_AREA) # adjust meta data adjust_joint_list = [] for joint in annos: # TODO : speed up with affine transform adjust_joint = [] for point in joint: if point[0] < -100 or point[1] < -100: adjust_joint.append((-1000, -1000)) continue adjust_joint.append((int(point[0] * scalew + 0.5), int(point[1] * scaleh + 0.5))) adjust_joint_list.append(adjust_joint) if mask is not None: return dst, adjust_joint_list, mask else: return dst, adjust_joint_list, None
[ "def", "keypoint_random_resize", "(", "image", ",", "annos", ",", "mask", "=", "None", ",", "zoom_range", "=", "(", "0.8", ",", "1.2", ")", ")", ":", "height", "=", "image", ".", "shape", "[", "0", "]", "width", "=", "image", ".", "shape", "[", "1", "]", "_min", ",", "_max", "=", "zoom_range", "scalew", "=", "np", ".", "random", ".", "uniform", "(", "_min", ",", "_max", ")", "scaleh", "=", "np", ".", "random", ".", "uniform", "(", "_min", ",", "_max", ")", "neww", "=", "int", "(", "width", "*", "scalew", ")", "newh", "=", "int", "(", "height", "*", "scaleh", ")", "dst", "=", "cv2", ".", "resize", "(", "image", ",", "(", "neww", ",", "newh", ")", ",", "interpolation", "=", "cv2", ".", "INTER_AREA", ")", "if", "mask", "is", "not", "None", ":", "mask", "=", "cv2", ".", "resize", "(", "mask", ",", "(", "neww", ",", "newh", ")", ",", "interpolation", "=", "cv2", ".", "INTER_AREA", ")", "# adjust meta data", "adjust_joint_list", "=", "[", "]", "for", "joint", "in", "annos", ":", "# TODO : speed up with affine transform", "adjust_joint", "=", "[", "]", "for", "point", "in", "joint", ":", "if", "point", "[", "0", "]", "<", "-", "100", "or", "point", "[", "1", "]", "<", "-", "100", ":", "adjust_joint", ".", "append", "(", "(", "-", "1000", ",", "-", "1000", ")", ")", "continue", "adjust_joint", ".", "append", "(", "(", "int", "(", "point", "[", "0", "]", "*", "scalew", "+", "0.5", ")", ",", "int", "(", "point", "[", "1", "]", "*", "scaleh", "+", "0.5", ")", ")", ")", "adjust_joint_list", ".", "append", "(", "adjust_joint", ")", "if", "mask", "is", "not", "None", ":", "return", "dst", ",", "adjust_joint_list", ",", "mask", "else", ":", "return", "dst", ",", "adjust_joint_list", ",", "None" ]
Randomly resize an image and corresponding keypoints. The height and width of image will be changed independently, so the scale will be changed. Parameters ----------- image : 3 channel image The given image for augmentation. annos : list of list of floats The keypoints annotation of people. mask : single channel image or None The mask if available. zoom_range : tuple of two floats The minimum and maximum factor to zoom in or out, e.g (0.5, 1) means zoom out 1~2 times. Returns ---------- preprocessed image, annos, mask
[ "Randomly", "resize", "an", "image", "and", "corresponding", "keypoints", ".", "The", "height", "and", "width", "of", "image", "will", "be", "changed", "independently", "so", "the", "scale", "will", "be", "changed", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/prepro.py#L4017-L4062
valid
tensorlayer/tensorlayer
examples/pretrained_cnn/tutorial_vgg19.py
Vgg19
def Vgg19(rgb): """ Build the VGG 19 Model Parameters ----------- rgb : rgb image placeholder [batch, height, width, 3] values scaled [0, 1] """ start_time = time.time() print("build model started") rgb_scaled = rgb * 255.0 # Convert RGB to BGR red, green, blue = tf.split(rgb_scaled, 3, 3) if red.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") if green.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") if blue.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") bgr = tf.concat([ blue - VGG_MEAN[0], green - VGG_MEAN[1], red - VGG_MEAN[2], ], axis=3) if bgr.get_shape().as_list()[1:] != [224, 224, 3]: raise Exception("image size unmatch") # input layer net_in = InputLayer(bgr, name='input') # conv1 net = Conv2dLayer(net_in, act=tf.nn.relu, shape=[3, 3, 3, 64], strides=[1, 1, 1, 1], padding='SAME', name='conv1_1') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 64, 64], strides=[1, 1, 1, 1], padding='SAME', name='conv1_2') net = PoolLayer(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', pool=tf.nn.max_pool, name='pool1') # conv2 net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 64, 128], strides=[1, 1, 1, 1], padding='SAME', name='conv2_1') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 128, 128], strides=[1, 1, 1, 1], padding='SAME', name='conv2_2') net = PoolLayer(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', pool=tf.nn.max_pool, name='pool2') # conv3 net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 128, 256], strides=[1, 1, 1, 1], padding='SAME', name='conv3_1') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 256, 256], strides=[1, 1, 1, 1], padding='SAME', name='conv3_2') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 256, 256], strides=[1, 1, 1, 1], padding='SAME', name='conv3_3') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 256, 256], strides=[1, 1, 1, 1], padding='SAME', name='conv3_4') net = PoolLayer(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', pool=tf.nn.max_pool, name='pool3') # conv4 net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 256, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv4_1') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv4_2') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv4_3') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv4_4') net = PoolLayer(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', pool=tf.nn.max_pool, name='pool4') # conv5 net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv5_1') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv5_2') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv5_3') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv5_4') net = PoolLayer(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', pool=tf.nn.max_pool, name='pool5') # fc 6~8 net = FlattenLayer(net, name='flatten') net = DenseLayer(net, n_units=4096, act=tf.nn.relu, name='fc6') net = DenseLayer(net, n_units=4096, act=tf.nn.relu, name='fc7') net = DenseLayer(net, n_units=1000, act=None, name='fc8') print("build model finished: %fs" % (time.time() - start_time)) return net
python
def Vgg19(rgb): """ Build the VGG 19 Model Parameters ----------- rgb : rgb image placeholder [batch, height, width, 3] values scaled [0, 1] """ start_time = time.time() print("build model started") rgb_scaled = rgb * 255.0 # Convert RGB to BGR red, green, blue = tf.split(rgb_scaled, 3, 3) if red.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") if green.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") if blue.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") bgr = tf.concat([ blue - VGG_MEAN[0], green - VGG_MEAN[1], red - VGG_MEAN[2], ], axis=3) if bgr.get_shape().as_list()[1:] != [224, 224, 3]: raise Exception("image size unmatch") # input layer net_in = InputLayer(bgr, name='input') # conv1 net = Conv2dLayer(net_in, act=tf.nn.relu, shape=[3, 3, 3, 64], strides=[1, 1, 1, 1], padding='SAME', name='conv1_1') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 64, 64], strides=[1, 1, 1, 1], padding='SAME', name='conv1_2') net = PoolLayer(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', pool=tf.nn.max_pool, name='pool1') # conv2 net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 64, 128], strides=[1, 1, 1, 1], padding='SAME', name='conv2_1') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 128, 128], strides=[1, 1, 1, 1], padding='SAME', name='conv2_2') net = PoolLayer(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', pool=tf.nn.max_pool, name='pool2') # conv3 net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 128, 256], strides=[1, 1, 1, 1], padding='SAME', name='conv3_1') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 256, 256], strides=[1, 1, 1, 1], padding='SAME', name='conv3_2') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 256, 256], strides=[1, 1, 1, 1], padding='SAME', name='conv3_3') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 256, 256], strides=[1, 1, 1, 1], padding='SAME', name='conv3_4') net = PoolLayer(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', pool=tf.nn.max_pool, name='pool3') # conv4 net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 256, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv4_1') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv4_2') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv4_3') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv4_4') net = PoolLayer(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', pool=tf.nn.max_pool, name='pool4') # conv5 net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv5_1') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv5_2') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv5_3') net = Conv2dLayer(net, act=tf.nn.relu, shape=[3, 3, 512, 512], strides=[1, 1, 1, 1], padding='SAME', name='conv5_4') net = PoolLayer(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', pool=tf.nn.max_pool, name='pool5') # fc 6~8 net = FlattenLayer(net, name='flatten') net = DenseLayer(net, n_units=4096, act=tf.nn.relu, name='fc6') net = DenseLayer(net, n_units=4096, act=tf.nn.relu, name='fc7') net = DenseLayer(net, n_units=1000, act=None, name='fc8') print("build model finished: %fs" % (time.time() - start_time)) return net
[ "def", "Vgg19", "(", "rgb", ")", ":", "start_time", "=", "time", ".", "time", "(", ")", "print", "(", "\"build model started\"", ")", "rgb_scaled", "=", "rgb", "*", "255.0", "# Convert RGB to BGR", "red", ",", "green", ",", "blue", "=", "tf", ".", "split", "(", "rgb_scaled", ",", "3", ",", "3", ")", "if", "red", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "[", "1", ":", "]", "!=", "[", "224", ",", "224", ",", "1", "]", ":", "raise", "Exception", "(", "\"image size unmatch\"", ")", "if", "green", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "[", "1", ":", "]", "!=", "[", "224", ",", "224", ",", "1", "]", ":", "raise", "Exception", "(", "\"image size unmatch\"", ")", "if", "blue", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "[", "1", ":", "]", "!=", "[", "224", ",", "224", ",", "1", "]", ":", "raise", "Exception", "(", "\"image size unmatch\"", ")", "bgr", "=", "tf", ".", "concat", "(", "[", "blue", "-", "VGG_MEAN", "[", "0", "]", ",", "green", "-", "VGG_MEAN", "[", "1", "]", ",", "red", "-", "VGG_MEAN", "[", "2", "]", ",", "]", ",", "axis", "=", "3", ")", "if", "bgr", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "[", "1", ":", "]", "!=", "[", "224", ",", "224", ",", "3", "]", ":", "raise", "Exception", "(", "\"image size unmatch\"", ")", "# input layer", "net_in", "=", "InputLayer", "(", "bgr", ",", "name", "=", "'input'", ")", "# conv1", "net", "=", "Conv2dLayer", "(", "net_in", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "3", ",", "64", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv1_1'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "64", ",", "64", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv1_2'", ")", "net", "=", "PoolLayer", "(", "net", ",", "ksize", "=", "[", "1", ",", "2", ",", "2", ",", "1", "]", ",", "strides", "=", "[", "1", ",", "2", ",", "2", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "pool", "=", "tf", ".", "nn", ".", "max_pool", ",", "name", "=", "'pool1'", ")", "# conv2", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "64", ",", "128", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv2_1'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "128", ",", "128", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv2_2'", ")", "net", "=", "PoolLayer", "(", "net", ",", "ksize", "=", "[", "1", ",", "2", ",", "2", ",", "1", "]", ",", "strides", "=", "[", "1", ",", "2", ",", "2", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "pool", "=", "tf", ".", "nn", ".", "max_pool", ",", "name", "=", "'pool2'", ")", "# conv3", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "128", ",", "256", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv3_1'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "256", ",", "256", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv3_2'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "256", ",", "256", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv3_3'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "256", ",", "256", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv3_4'", ")", "net", "=", "PoolLayer", "(", "net", ",", "ksize", "=", "[", "1", ",", "2", ",", "2", ",", "1", "]", ",", "strides", "=", "[", "1", ",", "2", ",", "2", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "pool", "=", "tf", ".", "nn", ".", "max_pool", ",", "name", "=", "'pool3'", ")", "# conv4", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "256", ",", "512", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv4_1'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "512", ",", "512", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv4_2'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "512", ",", "512", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv4_3'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "512", ",", "512", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv4_4'", ")", "net", "=", "PoolLayer", "(", "net", ",", "ksize", "=", "[", "1", ",", "2", ",", "2", ",", "1", "]", ",", "strides", "=", "[", "1", ",", "2", ",", "2", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "pool", "=", "tf", ".", "nn", ".", "max_pool", ",", "name", "=", "'pool4'", ")", "# conv5", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "512", ",", "512", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv5_1'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "512", ",", "512", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv5_2'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "512", ",", "512", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv5_3'", ")", "net", "=", "Conv2dLayer", "(", "net", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "shape", "=", "[", "3", ",", "3", ",", "512", ",", "512", "]", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv5_4'", ")", "net", "=", "PoolLayer", "(", "net", ",", "ksize", "=", "[", "1", ",", "2", ",", "2", ",", "1", "]", ",", "strides", "=", "[", "1", ",", "2", ",", "2", ",", "1", "]", ",", "padding", "=", "'SAME'", ",", "pool", "=", "tf", ".", "nn", ".", "max_pool", ",", "name", "=", "'pool5'", ")", "# fc 6~8", "net", "=", "FlattenLayer", "(", "net", ",", "name", "=", "'flatten'", ")", "net", "=", "DenseLayer", "(", "net", ",", "n_units", "=", "4096", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "name", "=", "'fc6'", ")", "net", "=", "DenseLayer", "(", "net", ",", "n_units", "=", "4096", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "name", "=", "'fc7'", ")", "net", "=", "DenseLayer", "(", "net", ",", "n_units", "=", "1000", ",", "act", "=", "None", ",", "name", "=", "'fc8'", ")", "print", "(", "\"build model finished: %fs\"", "%", "(", "time", ".", "time", "(", ")", "-", "start_time", ")", ")", "return", "net" ]
Build the VGG 19 Model Parameters ----------- rgb : rgb image placeholder [batch, height, width, 3] values scaled [0, 1]
[ "Build", "the", "VGG", "19", "Model" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/pretrained_cnn/tutorial_vgg19.py#L72-L137
valid
tensorlayer/tensorlayer
examples/pretrained_cnn/tutorial_vgg19.py
Vgg19_simple_api
def Vgg19_simple_api(rgb): """ Build the VGG 19 Model Parameters ----------- rgb : rgb image placeholder [batch, height, width, 3] values scaled [0, 1] """ start_time = time.time() print("build model started") rgb_scaled = rgb * 255.0 # Convert RGB to BGR red, green, blue = tf.split(rgb_scaled, 3, 3) if red.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") if green.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") if blue.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") bgr = tf.concat([ blue - VGG_MEAN[0], green - VGG_MEAN[1], red - VGG_MEAN[2], ], axis=3) if bgr.get_shape().as_list()[1:] != [224, 224, 3]: raise Exception("image size unmatch") # input layer net_in = InputLayer(bgr, name='input') # conv1 net = Conv2d(net_in, 64, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv1_1') net = Conv2d(net, n_filter=64, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv1_2') net = MaxPool2d(net, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool1') # conv2 net = Conv2d(net, n_filter=128, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv2_1') net = Conv2d(net, n_filter=128, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv2_2') net = MaxPool2d(net, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool2') # conv3 net = Conv2d(net, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_1') net = Conv2d(net, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_2') net = Conv2d(net, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_3') net = Conv2d(net, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_4') net = MaxPool2d(net, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool3') # conv4 net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_1') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_2') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_3') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_4') net = MaxPool2d(net, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool4') # conv5 net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_1') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_2') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_3') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_4') net = MaxPool2d(net, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool5') # fc 6~8 net = FlattenLayer(net, name='flatten') net = DenseLayer(net, n_units=4096, act=tf.nn.relu, name='fc6') net = DenseLayer(net, n_units=4096, act=tf.nn.relu, name='fc7') net = DenseLayer(net, n_units=1000, act=None, name='fc8') print("build model finished: %fs" % (time.time() - start_time)) return net
python
def Vgg19_simple_api(rgb): """ Build the VGG 19 Model Parameters ----------- rgb : rgb image placeholder [batch, height, width, 3] values scaled [0, 1] """ start_time = time.time() print("build model started") rgb_scaled = rgb * 255.0 # Convert RGB to BGR red, green, blue = tf.split(rgb_scaled, 3, 3) if red.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") if green.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") if blue.get_shape().as_list()[1:] != [224, 224, 1]: raise Exception("image size unmatch") bgr = tf.concat([ blue - VGG_MEAN[0], green - VGG_MEAN[1], red - VGG_MEAN[2], ], axis=3) if bgr.get_shape().as_list()[1:] != [224, 224, 3]: raise Exception("image size unmatch") # input layer net_in = InputLayer(bgr, name='input') # conv1 net = Conv2d(net_in, 64, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv1_1') net = Conv2d(net, n_filter=64, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv1_2') net = MaxPool2d(net, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool1') # conv2 net = Conv2d(net, n_filter=128, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv2_1') net = Conv2d(net, n_filter=128, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv2_2') net = MaxPool2d(net, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool2') # conv3 net = Conv2d(net, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_1') net = Conv2d(net, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_2') net = Conv2d(net, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_3') net = Conv2d(net, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_4') net = MaxPool2d(net, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool3') # conv4 net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_1') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_2') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_3') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_4') net = MaxPool2d(net, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool4') # conv5 net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_1') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_2') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_3') net = Conv2d(net, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_4') net = MaxPool2d(net, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool5') # fc 6~8 net = FlattenLayer(net, name='flatten') net = DenseLayer(net, n_units=4096, act=tf.nn.relu, name='fc6') net = DenseLayer(net, n_units=4096, act=tf.nn.relu, name='fc7') net = DenseLayer(net, n_units=1000, act=None, name='fc8') print("build model finished: %fs" % (time.time() - start_time)) return net
[ "def", "Vgg19_simple_api", "(", "rgb", ")", ":", "start_time", "=", "time", ".", "time", "(", ")", "print", "(", "\"build model started\"", ")", "rgb_scaled", "=", "rgb", "*", "255.0", "# Convert RGB to BGR", "red", ",", "green", ",", "blue", "=", "tf", ".", "split", "(", "rgb_scaled", ",", "3", ",", "3", ")", "if", "red", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "[", "1", ":", "]", "!=", "[", "224", ",", "224", ",", "1", "]", ":", "raise", "Exception", "(", "\"image size unmatch\"", ")", "if", "green", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "[", "1", ":", "]", "!=", "[", "224", ",", "224", ",", "1", "]", ":", "raise", "Exception", "(", "\"image size unmatch\"", ")", "if", "blue", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "[", "1", ":", "]", "!=", "[", "224", ",", "224", ",", "1", "]", ":", "raise", "Exception", "(", "\"image size unmatch\"", ")", "bgr", "=", "tf", ".", "concat", "(", "[", "blue", "-", "VGG_MEAN", "[", "0", "]", ",", "green", "-", "VGG_MEAN", "[", "1", "]", ",", "red", "-", "VGG_MEAN", "[", "2", "]", ",", "]", ",", "axis", "=", "3", ")", "if", "bgr", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "[", "1", ":", "]", "!=", "[", "224", ",", "224", ",", "3", "]", ":", "raise", "Exception", "(", "\"image size unmatch\"", ")", "# input layer", "net_in", "=", "InputLayer", "(", "bgr", ",", "name", "=", "'input'", ")", "# conv1", "net", "=", "Conv2d", "(", "net_in", ",", "64", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv1_1'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "64", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv1_2'", ")", "net", "=", "MaxPool2d", "(", "net", ",", "filter_size", "=", "(", "2", ",", "2", ")", ",", "strides", "=", "(", "2", ",", "2", ")", ",", "padding", "=", "'SAME'", ",", "name", "=", "'pool1'", ")", "# conv2", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "128", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv2_1'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "128", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv2_2'", ")", "net", "=", "MaxPool2d", "(", "net", ",", "filter_size", "=", "(", "2", ",", "2", ")", ",", "strides", "=", "(", "2", ",", "2", ")", ",", "padding", "=", "'SAME'", ",", "name", "=", "'pool2'", ")", "# conv3", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "256", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv3_1'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "256", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv3_2'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "256", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv3_3'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "256", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv3_4'", ")", "net", "=", "MaxPool2d", "(", "net", ",", "filter_size", "=", "(", "2", ",", "2", ")", ",", "strides", "=", "(", "2", ",", "2", ")", ",", "padding", "=", "'SAME'", ",", "name", "=", "'pool3'", ")", "# conv4", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "512", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv4_1'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "512", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv4_2'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "512", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv4_3'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "512", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv4_4'", ")", "net", "=", "MaxPool2d", "(", "net", ",", "filter_size", "=", "(", "2", ",", "2", ")", ",", "strides", "=", "(", "2", ",", "2", ")", ",", "padding", "=", "'SAME'", ",", "name", "=", "'pool4'", ")", "# conv5", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "512", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv5_1'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "512", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv5_2'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "512", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv5_3'", ")", "net", "=", "Conv2d", "(", "net", ",", "n_filter", "=", "512", ",", "filter_size", "=", "(", "3", ",", "3", ")", ",", "strides", "=", "(", "1", ",", "1", ")", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "padding", "=", "'SAME'", ",", "name", "=", "'conv5_4'", ")", "net", "=", "MaxPool2d", "(", "net", ",", "filter_size", "=", "(", "2", ",", "2", ")", ",", "strides", "=", "(", "2", ",", "2", ")", ",", "padding", "=", "'SAME'", ",", "name", "=", "'pool5'", ")", "# fc 6~8", "net", "=", "FlattenLayer", "(", "net", ",", "name", "=", "'flatten'", ")", "net", "=", "DenseLayer", "(", "net", ",", "n_units", "=", "4096", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "name", "=", "'fc6'", ")", "net", "=", "DenseLayer", "(", "net", ",", "n_units", "=", "4096", ",", "act", "=", "tf", ".", "nn", ".", "relu", ",", "name", "=", "'fc7'", ")", "net", "=", "DenseLayer", "(", "net", ",", "n_units", "=", "1000", ",", "act", "=", "None", ",", "name", "=", "'fc8'", ")", "print", "(", "\"build model finished: %fs\"", "%", "(", "time", ".", "time", "(", ")", "-", "start_time", ")", ")", "return", "net" ]
Build the VGG 19 Model Parameters ----------- rgb : rgb image placeholder [batch, height, width, 3] values scaled [0, 1]
[ "Build", "the", "VGG", "19", "Model" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/pretrained_cnn/tutorial_vgg19.py#L140-L206
valid
tensorlayer/tensorlayer
examples/reinforcement_learning/tutorial_atari_pong.py
prepro
def prepro(I): """Prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector.""" I = I[35:195] I = I[::2, ::2, 0] I[I == 144] = 0 I[I == 109] = 0 I[I != 0] = 1 return I.astype(np.float).ravel()
python
def prepro(I): """Prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector.""" I = I[35:195] I = I[::2, ::2, 0] I[I == 144] = 0 I[I == 109] = 0 I[I != 0] = 1 return I.astype(np.float).ravel()
[ "def", "prepro", "(", "I", ")", ":", "I", "=", "I", "[", "35", ":", "195", "]", "I", "=", "I", "[", ":", ":", "2", ",", ":", ":", "2", ",", "0", "]", "I", "[", "I", "==", "144", "]", "=", "0", "I", "[", "I", "==", "109", "]", "=", "0", "I", "[", "I", "!=", "0", "]", "=", "1", "return", "I", ".", "astype", "(", "np", ".", "float", ")", ".", "ravel", "(", ")" ]
Prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector.
[ "Prepro", "210x160x3", "uint8", "frame", "into", "6400", "(", "80x80", ")", "1D", "float", "vector", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/reinforcement_learning/tutorial_atari_pong.py#L47-L54
valid
tensorlayer/tensorlayer
tensorlayer/rein.py
discount_episode_rewards
def discount_episode_rewards(rewards=None, gamma=0.99, mode=0): """Take 1D float array of rewards and compute discounted rewards for an episode. When encount a non-zero value, consider as the end a of an episode. Parameters ---------- rewards : list List of rewards gamma : float Discounted factor mode : int Mode for computing the discount rewards. - If mode == 0, reset the discount process when encount a non-zero reward (Ping-pong game). - If mode == 1, would not reset the discount process. Returns -------- list of float The discounted rewards. Examples ---------- >>> rewards = np.asarray([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1]) >>> gamma = 0.9 >>> discount_rewards = tl.rein.discount_episode_rewards(rewards, gamma) >>> print(discount_rewards) [ 0.72899997 0.81 0.89999998 1. 0.72899997 0.81 0.89999998 1. 0.72899997 0.81 0.89999998 1. ] >>> discount_rewards = tl.rein.discount_episode_rewards(rewards, gamma, mode=1) >>> print(discount_rewards) [ 1.52110755 1.69011939 1.87791049 2.08656716 1.20729685 1.34144104 1.49048996 1.65610003 0.72899997 0.81 0.89999998 1. ] """ if rewards is None: raise Exception("rewards should be a list") discounted_r = np.zeros_like(rewards, dtype=np.float32) running_add = 0 for t in reversed(xrange(0, rewards.size)): if mode == 0: if rewards[t] != 0: running_add = 0 running_add = running_add * gamma + rewards[t] discounted_r[t] = running_add return discounted_r
python
def discount_episode_rewards(rewards=None, gamma=0.99, mode=0): """Take 1D float array of rewards and compute discounted rewards for an episode. When encount a non-zero value, consider as the end a of an episode. Parameters ---------- rewards : list List of rewards gamma : float Discounted factor mode : int Mode for computing the discount rewards. - If mode == 0, reset the discount process when encount a non-zero reward (Ping-pong game). - If mode == 1, would not reset the discount process. Returns -------- list of float The discounted rewards. Examples ---------- >>> rewards = np.asarray([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1]) >>> gamma = 0.9 >>> discount_rewards = tl.rein.discount_episode_rewards(rewards, gamma) >>> print(discount_rewards) [ 0.72899997 0.81 0.89999998 1. 0.72899997 0.81 0.89999998 1. 0.72899997 0.81 0.89999998 1. ] >>> discount_rewards = tl.rein.discount_episode_rewards(rewards, gamma, mode=1) >>> print(discount_rewards) [ 1.52110755 1.69011939 1.87791049 2.08656716 1.20729685 1.34144104 1.49048996 1.65610003 0.72899997 0.81 0.89999998 1. ] """ if rewards is None: raise Exception("rewards should be a list") discounted_r = np.zeros_like(rewards, dtype=np.float32) running_add = 0 for t in reversed(xrange(0, rewards.size)): if mode == 0: if rewards[t] != 0: running_add = 0 running_add = running_add * gamma + rewards[t] discounted_r[t] = running_add return discounted_r
[ "def", "discount_episode_rewards", "(", "rewards", "=", "None", ",", "gamma", "=", "0.99", ",", "mode", "=", "0", ")", ":", "if", "rewards", "is", "None", ":", "raise", "Exception", "(", "\"rewards should be a list\"", ")", "discounted_r", "=", "np", ".", "zeros_like", "(", "rewards", ",", "dtype", "=", "np", ".", "float32", ")", "running_add", "=", "0", "for", "t", "in", "reversed", "(", "xrange", "(", "0", ",", "rewards", ".", "size", ")", ")", ":", "if", "mode", "==", "0", ":", "if", "rewards", "[", "t", "]", "!=", "0", ":", "running_add", "=", "0", "running_add", "=", "running_add", "*", "gamma", "+", "rewards", "[", "t", "]", "discounted_r", "[", "t", "]", "=", "running_add", "return", "discounted_r" ]
Take 1D float array of rewards and compute discounted rewards for an episode. When encount a non-zero value, consider as the end a of an episode. Parameters ---------- rewards : list List of rewards gamma : float Discounted factor mode : int Mode for computing the discount rewards. - If mode == 0, reset the discount process when encount a non-zero reward (Ping-pong game). - If mode == 1, would not reset the discount process. Returns -------- list of float The discounted rewards. Examples ---------- >>> rewards = np.asarray([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1]) >>> gamma = 0.9 >>> discount_rewards = tl.rein.discount_episode_rewards(rewards, gamma) >>> print(discount_rewards) [ 0.72899997 0.81 0.89999998 1. 0.72899997 0.81 0.89999998 1. 0.72899997 0.81 0.89999998 1. ] >>> discount_rewards = tl.rein.discount_episode_rewards(rewards, gamma, mode=1) >>> print(discount_rewards) [ 1.52110755 1.69011939 1.87791049 2.08656716 1.20729685 1.34144104 1.49048996 1.65610003 0.72899997 0.81 0.89999998 1. ]
[ "Take", "1D", "float", "array", "of", "rewards", "and", "compute", "discounted", "rewards", "for", "an", "episode", ".", "When", "encount", "a", "non", "-", "zero", "value", "consider", "as", "the", "end", "a", "of", "an", "episode", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/rein.py#L18-L62
valid
tensorlayer/tensorlayer
tensorlayer/rein.py
cross_entropy_reward_loss
def cross_entropy_reward_loss(logits, actions, rewards, name=None): """Calculate the loss for Policy Gradient Network. Parameters ---------- logits : tensor The network outputs without softmax. This function implements softmax inside. actions : tensor or placeholder The agent actions. rewards : tensor or placeholder The rewards. Returns -------- Tensor The TensorFlow loss function. Examples ---------- >>> states_batch_pl = tf.placeholder(tf.float32, shape=[None, D]) >>> network = InputLayer(states_batch_pl, name='input') >>> network = DenseLayer(network, n_units=H, act=tf.nn.relu, name='relu1') >>> network = DenseLayer(network, n_units=3, name='out') >>> probs = network.outputs >>> sampling_prob = tf.nn.softmax(probs) >>> actions_batch_pl = tf.placeholder(tf.int32, shape=[None]) >>> discount_rewards_batch_pl = tf.placeholder(tf.float32, shape=[None]) >>> loss = tl.rein.cross_entropy_reward_loss(probs, actions_batch_pl, discount_rewards_batch_pl) >>> train_op = tf.train.RMSPropOptimizer(learning_rate, decay_rate).minimize(loss) """ cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=actions, logits=logits, name=name) return tf.reduce_sum(tf.multiply(cross_entropy, rewards))
python
def cross_entropy_reward_loss(logits, actions, rewards, name=None): """Calculate the loss for Policy Gradient Network. Parameters ---------- logits : tensor The network outputs without softmax. This function implements softmax inside. actions : tensor or placeholder The agent actions. rewards : tensor or placeholder The rewards. Returns -------- Tensor The TensorFlow loss function. Examples ---------- >>> states_batch_pl = tf.placeholder(tf.float32, shape=[None, D]) >>> network = InputLayer(states_batch_pl, name='input') >>> network = DenseLayer(network, n_units=H, act=tf.nn.relu, name='relu1') >>> network = DenseLayer(network, n_units=3, name='out') >>> probs = network.outputs >>> sampling_prob = tf.nn.softmax(probs) >>> actions_batch_pl = tf.placeholder(tf.int32, shape=[None]) >>> discount_rewards_batch_pl = tf.placeholder(tf.float32, shape=[None]) >>> loss = tl.rein.cross_entropy_reward_loss(probs, actions_batch_pl, discount_rewards_batch_pl) >>> train_op = tf.train.RMSPropOptimizer(learning_rate, decay_rate).minimize(loss) """ cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=actions, logits=logits, name=name) return tf.reduce_sum(tf.multiply(cross_entropy, rewards))
[ "def", "cross_entropy_reward_loss", "(", "logits", ",", "actions", ",", "rewards", ",", "name", "=", "None", ")", ":", "cross_entropy", "=", "tf", ".", "nn", ".", "sparse_softmax_cross_entropy_with_logits", "(", "labels", "=", "actions", ",", "logits", "=", "logits", ",", "name", "=", "name", ")", "return", "tf", ".", "reduce_sum", "(", "tf", ".", "multiply", "(", "cross_entropy", ",", "rewards", ")", ")" ]
Calculate the loss for Policy Gradient Network. Parameters ---------- logits : tensor The network outputs without softmax. This function implements softmax inside. actions : tensor or placeholder The agent actions. rewards : tensor or placeholder The rewards. Returns -------- Tensor The TensorFlow loss function. Examples ---------- >>> states_batch_pl = tf.placeholder(tf.float32, shape=[None, D]) >>> network = InputLayer(states_batch_pl, name='input') >>> network = DenseLayer(network, n_units=H, act=tf.nn.relu, name='relu1') >>> network = DenseLayer(network, n_units=3, name='out') >>> probs = network.outputs >>> sampling_prob = tf.nn.softmax(probs) >>> actions_batch_pl = tf.placeholder(tf.int32, shape=[None]) >>> discount_rewards_batch_pl = tf.placeholder(tf.float32, shape=[None]) >>> loss = tl.rein.cross_entropy_reward_loss(probs, actions_batch_pl, discount_rewards_batch_pl) >>> train_op = tf.train.RMSPropOptimizer(learning_rate, decay_rate).minimize(loss)
[ "Calculate", "the", "loss", "for", "Policy", "Gradient", "Network", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/rein.py#L65-L98
valid
tensorlayer/tensorlayer
tensorlayer/rein.py
log_weight
def log_weight(probs, weights, name='log_weight'): """Log weight. Parameters ----------- probs : tensor If it is a network output, usually we should scale it to [0, 1] via softmax. weights : tensor The weights. Returns -------- Tensor The Tensor after appling the log weighted expression. """ with tf.variable_scope(name): exp_v = tf.reduce_mean(tf.log(probs) * weights) return exp_v
python
def log_weight(probs, weights, name='log_weight'): """Log weight. Parameters ----------- probs : tensor If it is a network output, usually we should scale it to [0, 1] via softmax. weights : tensor The weights. Returns -------- Tensor The Tensor after appling the log weighted expression. """ with tf.variable_scope(name): exp_v = tf.reduce_mean(tf.log(probs) * weights) return exp_v
[ "def", "log_weight", "(", "probs", ",", "weights", ",", "name", "=", "'log_weight'", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ")", ":", "exp_v", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "log", "(", "probs", ")", "*", "weights", ")", "return", "exp_v" ]
Log weight. Parameters ----------- probs : tensor If it is a network output, usually we should scale it to [0, 1] via softmax. weights : tensor The weights. Returns -------- Tensor The Tensor after appling the log weighted expression.
[ "Log", "weight", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/rein.py#L101-L119
valid
tensorlayer/tensorlayer
tensorlayer/rein.py
choice_action_by_probs
def choice_action_by_probs(probs=(0.5, 0.5), action_list=None): """Choice and return an an action by given the action probability distribution. Parameters ------------ probs : list of float. The probability distribution of all actions. action_list : None or a list of int or others A list of action in integer, string or others. If None, returns an integer range between 0 and len(probs)-1. Returns -------- float int or str The chosen action. Examples ---------- >>> for _ in range(5): >>> a = choice_action_by_probs([0.2, 0.4, 0.4]) >>> print(a) 0 1 1 2 1 >>> for _ in range(3): >>> a = choice_action_by_probs([0.5, 0.5], ['a', 'b']) >>> print(a) a b b """ if action_list is None: n_action = len(probs) action_list = np.arange(n_action) else: if len(action_list) != len(probs): raise Exception("number of actions should equal to number of probabilities.") return np.random.choice(action_list, p=probs)
python
def choice_action_by_probs(probs=(0.5, 0.5), action_list=None): """Choice and return an an action by given the action probability distribution. Parameters ------------ probs : list of float. The probability distribution of all actions. action_list : None or a list of int or others A list of action in integer, string or others. If None, returns an integer range between 0 and len(probs)-1. Returns -------- float int or str The chosen action. Examples ---------- >>> for _ in range(5): >>> a = choice_action_by_probs([0.2, 0.4, 0.4]) >>> print(a) 0 1 1 2 1 >>> for _ in range(3): >>> a = choice_action_by_probs([0.5, 0.5], ['a', 'b']) >>> print(a) a b b """ if action_list is None: n_action = len(probs) action_list = np.arange(n_action) else: if len(action_list) != len(probs): raise Exception("number of actions should equal to number of probabilities.") return np.random.choice(action_list, p=probs)
[ "def", "choice_action_by_probs", "(", "probs", "=", "(", "0.5", ",", "0.5", ")", ",", "action_list", "=", "None", ")", ":", "if", "action_list", "is", "None", ":", "n_action", "=", "len", "(", "probs", ")", "action_list", "=", "np", ".", "arange", "(", "n_action", ")", "else", ":", "if", "len", "(", "action_list", ")", "!=", "len", "(", "probs", ")", ":", "raise", "Exception", "(", "\"number of actions should equal to number of probabilities.\"", ")", "return", "np", ".", "random", ".", "choice", "(", "action_list", ",", "p", "=", "probs", ")" ]
Choice and return an an action by given the action probability distribution. Parameters ------------ probs : list of float. The probability distribution of all actions. action_list : None or a list of int or others A list of action in integer, string or others. If None, returns an integer range between 0 and len(probs)-1. Returns -------- float int or str The chosen action. Examples ---------- >>> for _ in range(5): >>> a = choice_action_by_probs([0.2, 0.4, 0.4]) >>> print(a) 0 1 1 2 1 >>> for _ in range(3): >>> a = choice_action_by_probs([0.5, 0.5], ['a', 'b']) >>> print(a) a b b
[ "Choice", "and", "return", "an", "an", "action", "by", "given", "the", "action", "probability", "distribution", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/rein.py#L122-L161
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
cross_entropy
def cross_entropy(output, target, name=None): """Softmax cross-entropy operation, returns the TensorFlow expression of cross-entropy for two distributions, it implements softmax internally. See ``tf.nn.sparse_softmax_cross_entropy_with_logits``. Parameters ---------- output : Tensor A batch of distribution with shape: [batch_size, num of classes]. target : Tensor A batch of index with shape: [batch_size, ]. name : string Name of this loss. Examples -------- >>> ce = tl.cost.cross_entropy(y_logits, y_target_logits, 'my_loss') References ----------- - About cross-entropy: `<https://en.wikipedia.org/wiki/Cross_entropy>`__. - The code is borrowed from: `<https://en.wikipedia.org/wiki/Cross_entropy>`__. """ if name is None: raise Exception("Please give a unique name to tl.cost.cross_entropy for TF1.0+") return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output), name=name)
python
def cross_entropy(output, target, name=None): """Softmax cross-entropy operation, returns the TensorFlow expression of cross-entropy for two distributions, it implements softmax internally. See ``tf.nn.sparse_softmax_cross_entropy_with_logits``. Parameters ---------- output : Tensor A batch of distribution with shape: [batch_size, num of classes]. target : Tensor A batch of index with shape: [batch_size, ]. name : string Name of this loss. Examples -------- >>> ce = tl.cost.cross_entropy(y_logits, y_target_logits, 'my_loss') References ----------- - About cross-entropy: `<https://en.wikipedia.org/wiki/Cross_entropy>`__. - The code is borrowed from: `<https://en.wikipedia.org/wiki/Cross_entropy>`__. """ if name is None: raise Exception("Please give a unique name to tl.cost.cross_entropy for TF1.0+") return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output), name=name)
[ "def", "cross_entropy", "(", "output", ",", "target", ",", "name", "=", "None", ")", ":", "if", "name", "is", "None", ":", "raise", "Exception", "(", "\"Please give a unique name to tl.cost.cross_entropy for TF1.0+\"", ")", "return", "tf", ".", "reduce_mean", "(", "tf", ".", "nn", ".", "sparse_softmax_cross_entropy_with_logits", "(", "labels", "=", "target", ",", "logits", "=", "output", ")", ",", "name", "=", "name", ")" ]
Softmax cross-entropy operation, returns the TensorFlow expression of cross-entropy for two distributions, it implements softmax internally. See ``tf.nn.sparse_softmax_cross_entropy_with_logits``. Parameters ---------- output : Tensor A batch of distribution with shape: [batch_size, num of classes]. target : Tensor A batch of index with shape: [batch_size, ]. name : string Name of this loss. Examples -------- >>> ce = tl.cost.cross_entropy(y_logits, y_target_logits, 'my_loss') References ----------- - About cross-entropy: `<https://en.wikipedia.org/wiki/Cross_entropy>`__. - The code is borrowed from: `<https://en.wikipedia.org/wiki/Cross_entropy>`__.
[ "Softmax", "cross", "-", "entropy", "operation", "returns", "the", "TensorFlow", "expression", "of", "cross", "-", "entropy", "for", "two", "distributions", "it", "implements", "softmax", "internally", ".", "See", "tf", ".", "nn", ".", "sparse_softmax_cross_entropy_with_logits", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L33-L58
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
sigmoid_cross_entropy
def sigmoid_cross_entropy(output, target, name=None): """Sigmoid cross-entropy operation, see ``tf.nn.sigmoid_cross_entropy_with_logits``. Parameters ---------- output : Tensor A batch of distribution with shape: [batch_size, num of classes]. target : Tensor A batch of index with shape: [batch_size, ]. name : string Name of this loss. """ return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output), name=name)
python
def sigmoid_cross_entropy(output, target, name=None): """Sigmoid cross-entropy operation, see ``tf.nn.sigmoid_cross_entropy_with_logits``. Parameters ---------- output : Tensor A batch of distribution with shape: [batch_size, num of classes]. target : Tensor A batch of index with shape: [batch_size, ]. name : string Name of this loss. """ return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output), name=name)
[ "def", "sigmoid_cross_entropy", "(", "output", ",", "target", ",", "name", "=", "None", ")", ":", "return", "tf", ".", "reduce_mean", "(", "tf", ".", "nn", ".", "sigmoid_cross_entropy_with_logits", "(", "labels", "=", "target", ",", "logits", "=", "output", ")", ",", "name", "=", "name", ")" ]
Sigmoid cross-entropy operation, see ``tf.nn.sigmoid_cross_entropy_with_logits``. Parameters ---------- output : Tensor A batch of distribution with shape: [batch_size, num of classes]. target : Tensor A batch of index with shape: [batch_size, ]. name : string Name of this loss.
[ "Sigmoid", "cross", "-", "entropy", "operation", "see", "tf", ".", "nn", ".", "sigmoid_cross_entropy_with_logits", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L61-L74
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
binary_cross_entropy
def binary_cross_entropy(output, target, epsilon=1e-8, name='bce_loss'): """Binary cross entropy operation. Parameters ---------- output : Tensor Tensor with type of `float32` or `float64`. target : Tensor The target distribution, format the same with `output`. epsilon : float A small value to avoid output to be zero. name : str An optional name to attach to this function. References ----------- - `ericjang-DRAW <https://github.com/ericjang/draw/blob/master/draw.py#L73>`__ """ # with ops.op_scope([output, target], name, "bce_loss") as name: # output = ops.convert_to_tensor(output, name="preds") # target = ops.convert_to_tensor(targets, name="target") # with tf.name_scope(name): return tf.reduce_mean( tf.reduce_sum(-(target * tf.log(output + epsilon) + (1. - target) * tf.log(1. - output + epsilon)), axis=1), name=name )
python
def binary_cross_entropy(output, target, epsilon=1e-8, name='bce_loss'): """Binary cross entropy operation. Parameters ---------- output : Tensor Tensor with type of `float32` or `float64`. target : Tensor The target distribution, format the same with `output`. epsilon : float A small value to avoid output to be zero. name : str An optional name to attach to this function. References ----------- - `ericjang-DRAW <https://github.com/ericjang/draw/blob/master/draw.py#L73>`__ """ # with ops.op_scope([output, target], name, "bce_loss") as name: # output = ops.convert_to_tensor(output, name="preds") # target = ops.convert_to_tensor(targets, name="target") # with tf.name_scope(name): return tf.reduce_mean( tf.reduce_sum(-(target * tf.log(output + epsilon) + (1. - target) * tf.log(1. - output + epsilon)), axis=1), name=name )
[ "def", "binary_cross_entropy", "(", "output", ",", "target", ",", "epsilon", "=", "1e-8", ",", "name", "=", "'bce_loss'", ")", ":", "# with ops.op_scope([output, target], name, \"bce_loss\") as name:", "# output = ops.convert_to_tensor(output, name=\"preds\")", "# target = ops.convert_to_tensor(targets, name=\"target\")", "# with tf.name_scope(name):", "return", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_sum", "(", "-", "(", "target", "*", "tf", ".", "log", "(", "output", "+", "epsilon", ")", "+", "(", "1.", "-", "target", ")", "*", "tf", ".", "log", "(", "1.", "-", "output", "+", "epsilon", ")", ")", ",", "axis", "=", "1", ")", ",", "name", "=", "name", ")" ]
Binary cross entropy operation. Parameters ---------- output : Tensor Tensor with type of `float32` or `float64`. target : Tensor The target distribution, format the same with `output`. epsilon : float A small value to avoid output to be zero. name : str An optional name to attach to this function. References ----------- - `ericjang-DRAW <https://github.com/ericjang/draw/blob/master/draw.py#L73>`__
[ "Binary", "cross", "entropy", "operation", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L77-L104
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
mean_squared_error
def mean_squared_error(output, target, is_mean=False, name="mean_squared_error"): """Return the TensorFlow expression of mean-square-error (L2) of two batch of data. Parameters ---------- output : Tensor 2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel]. target : Tensor The target distribution, format the same with `output`. is_mean : boolean Whether compute the mean or sum for each example. - If True, use ``tf.reduce_mean`` to compute the loss between one target and predict data. - If False, use ``tf.reduce_sum`` (default). name : str An optional name to attach to this function. References ------------ - `Wiki Mean Squared Error <https://en.wikipedia.org/wiki/Mean_squared_error>`__ """ # with tf.name_scope(name): if output.get_shape().ndims == 2: # [batch_size, n_feature] if is_mean: mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), 1), name=name) else: mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), 1), name=name) elif output.get_shape().ndims == 3: # [batch_size, w, h] if is_mean: mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), [1, 2]), name=name) else: mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), [1, 2]), name=name) elif output.get_shape().ndims == 4: # [batch_size, w, h, c] if is_mean: mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), [1, 2, 3]), name=name) else: mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), [1, 2, 3]), name=name) else: raise Exception("Unknow dimension") return mse
python
def mean_squared_error(output, target, is_mean=False, name="mean_squared_error"): """Return the TensorFlow expression of mean-square-error (L2) of two batch of data. Parameters ---------- output : Tensor 2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel]. target : Tensor The target distribution, format the same with `output`. is_mean : boolean Whether compute the mean or sum for each example. - If True, use ``tf.reduce_mean`` to compute the loss between one target and predict data. - If False, use ``tf.reduce_sum`` (default). name : str An optional name to attach to this function. References ------------ - `Wiki Mean Squared Error <https://en.wikipedia.org/wiki/Mean_squared_error>`__ """ # with tf.name_scope(name): if output.get_shape().ndims == 2: # [batch_size, n_feature] if is_mean: mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), 1), name=name) else: mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), 1), name=name) elif output.get_shape().ndims == 3: # [batch_size, w, h] if is_mean: mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), [1, 2]), name=name) else: mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), [1, 2]), name=name) elif output.get_shape().ndims == 4: # [batch_size, w, h, c] if is_mean: mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), [1, 2, 3]), name=name) else: mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), [1, 2, 3]), name=name) else: raise Exception("Unknow dimension") return mse
[ "def", "mean_squared_error", "(", "output", ",", "target", ",", "is_mean", "=", "False", ",", "name", "=", "\"mean_squared_error\"", ")", ":", "# with tf.name_scope(name):", "if", "output", ".", "get_shape", "(", ")", ".", "ndims", "==", "2", ":", "# [batch_size, n_feature]", "if", "is_mean", ":", "mse", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_mean", "(", "tf", ".", "squared_difference", "(", "output", ",", "target", ")", ",", "1", ")", ",", "name", "=", "name", ")", "else", ":", "mse", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "squared_difference", "(", "output", ",", "target", ")", ",", "1", ")", ",", "name", "=", "name", ")", "elif", "output", ".", "get_shape", "(", ")", ".", "ndims", "==", "3", ":", "# [batch_size, w, h]", "if", "is_mean", ":", "mse", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_mean", "(", "tf", ".", "squared_difference", "(", "output", ",", "target", ")", ",", "[", "1", ",", "2", "]", ")", ",", "name", "=", "name", ")", "else", ":", "mse", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "squared_difference", "(", "output", ",", "target", ")", ",", "[", "1", ",", "2", "]", ")", ",", "name", "=", "name", ")", "elif", "output", ".", "get_shape", "(", ")", ".", "ndims", "==", "4", ":", "# [batch_size, w, h, c]", "if", "is_mean", ":", "mse", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_mean", "(", "tf", ".", "squared_difference", "(", "output", ",", "target", ")", ",", "[", "1", ",", "2", ",", "3", "]", ")", ",", "name", "=", "name", ")", "else", ":", "mse", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "squared_difference", "(", "output", ",", "target", ")", ",", "[", "1", ",", "2", ",", "3", "]", ")", ",", "name", "=", "name", ")", "else", ":", "raise", "Exception", "(", "\"Unknow dimension\"", ")", "return", "mse" ]
Return the TensorFlow expression of mean-square-error (L2) of two batch of data. Parameters ---------- output : Tensor 2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel]. target : Tensor The target distribution, format the same with `output`. is_mean : boolean Whether compute the mean or sum for each example. - If True, use ``tf.reduce_mean`` to compute the loss between one target and predict data. - If False, use ``tf.reduce_sum`` (default). name : str An optional name to attach to this function. References ------------ - `Wiki Mean Squared Error <https://en.wikipedia.org/wiki/Mean_squared_error>`__
[ "Return", "the", "TensorFlow", "expression", "of", "mean", "-", "square", "-", "error", "(", "L2", ")", "of", "two", "batch", "of", "data", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L111-L150
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
normalized_mean_square_error
def normalized_mean_square_error(output, target, name="normalized_mean_squared_error_loss"): """Return the TensorFlow expression of normalized mean-square-error of two distributions. Parameters ---------- output : Tensor 2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel]. target : Tensor The target distribution, format the same with `output`. name : str An optional name to attach to this function. """ # with tf.name_scope("normalized_mean_squared_error_loss"): if output.get_shape().ndims == 2: # [batch_size, n_feature] nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(output, target), axis=1)) nmse_b = tf.sqrt(tf.reduce_sum(tf.square(target), axis=1)) elif output.get_shape().ndims == 3: # [batch_size, w, h] nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(output, target), axis=[1, 2])) nmse_b = tf.sqrt(tf.reduce_sum(tf.square(target), axis=[1, 2])) elif output.get_shape().ndims == 4: # [batch_size, w, h, c] nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(output, target), axis=[1, 2, 3])) nmse_b = tf.sqrt(tf.reduce_sum(tf.square(target), axis=[1, 2, 3])) nmse = tf.reduce_mean(nmse_a / nmse_b, name=name) return nmse
python
def normalized_mean_square_error(output, target, name="normalized_mean_squared_error_loss"): """Return the TensorFlow expression of normalized mean-square-error of two distributions. Parameters ---------- output : Tensor 2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel]. target : Tensor The target distribution, format the same with `output`. name : str An optional name to attach to this function. """ # with tf.name_scope("normalized_mean_squared_error_loss"): if output.get_shape().ndims == 2: # [batch_size, n_feature] nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(output, target), axis=1)) nmse_b = tf.sqrt(tf.reduce_sum(tf.square(target), axis=1)) elif output.get_shape().ndims == 3: # [batch_size, w, h] nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(output, target), axis=[1, 2])) nmse_b = tf.sqrt(tf.reduce_sum(tf.square(target), axis=[1, 2])) elif output.get_shape().ndims == 4: # [batch_size, w, h, c] nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(output, target), axis=[1, 2, 3])) nmse_b = tf.sqrt(tf.reduce_sum(tf.square(target), axis=[1, 2, 3])) nmse = tf.reduce_mean(nmse_a / nmse_b, name=name) return nmse
[ "def", "normalized_mean_square_error", "(", "output", ",", "target", ",", "name", "=", "\"normalized_mean_squared_error_loss\"", ")", ":", "# with tf.name_scope(\"normalized_mean_squared_error_loss\"):", "if", "output", ".", "get_shape", "(", ")", ".", "ndims", "==", "2", ":", "# [batch_size, n_feature]", "nmse_a", "=", "tf", ".", "sqrt", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "squared_difference", "(", "output", ",", "target", ")", ",", "axis", "=", "1", ")", ")", "nmse_b", "=", "tf", ".", "sqrt", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "square", "(", "target", ")", ",", "axis", "=", "1", ")", ")", "elif", "output", ".", "get_shape", "(", ")", ".", "ndims", "==", "3", ":", "# [batch_size, w, h]", "nmse_a", "=", "tf", ".", "sqrt", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "squared_difference", "(", "output", ",", "target", ")", ",", "axis", "=", "[", "1", ",", "2", "]", ")", ")", "nmse_b", "=", "tf", ".", "sqrt", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "square", "(", "target", ")", ",", "axis", "=", "[", "1", ",", "2", "]", ")", ")", "elif", "output", ".", "get_shape", "(", ")", ".", "ndims", "==", "4", ":", "# [batch_size, w, h, c]", "nmse_a", "=", "tf", ".", "sqrt", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "squared_difference", "(", "output", ",", "target", ")", ",", "axis", "=", "[", "1", ",", "2", ",", "3", "]", ")", ")", "nmse_b", "=", "tf", ".", "sqrt", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "square", "(", "target", ")", ",", "axis", "=", "[", "1", ",", "2", ",", "3", "]", ")", ")", "nmse", "=", "tf", ".", "reduce_mean", "(", "nmse_a", "/", "nmse_b", ",", "name", "=", "name", ")", "return", "nmse" ]
Return the TensorFlow expression of normalized mean-square-error of two distributions. Parameters ---------- output : Tensor 2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel]. target : Tensor The target distribution, format the same with `output`. name : str An optional name to attach to this function.
[ "Return", "the", "TensorFlow", "expression", "of", "normalized", "mean", "-", "square", "-", "error", "of", "two", "distributions", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L153-L177
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
absolute_difference_error
def absolute_difference_error(output, target, is_mean=False, name="absolute_difference_error_loss"): """Return the TensorFlow expression of absolute difference error (L1) of two batch of data. Parameters ---------- output : Tensor 2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel]. target : Tensor The target distribution, format the same with `output`. is_mean : boolean Whether compute the mean or sum for each example. - If True, use ``tf.reduce_mean`` to compute the loss between one target and predict data. - If False, use ``tf.reduce_sum`` (default). name : str An optional name to attach to this function. """ # with tf.name_scope("absolute_difference_error_loss"): if output.get_shape().ndims == 2: # [batch_size, n_feature] if is_mean: loss = tf.reduce_mean(tf.reduce_mean(tf.abs(output - target), 1), name=name) else: loss = tf.reduce_mean(tf.reduce_sum(tf.abs(output - target), 1), name=name) elif output.get_shape().ndims == 3: # [batch_size, w, h] if is_mean: loss = tf.reduce_mean(tf.reduce_mean(tf.abs(output - target), [1, 2]), name=name) else: loss = tf.reduce_mean(tf.reduce_sum(tf.abs(output - target), [1, 2]), name=name) elif output.get_shape().ndims == 4: # [batch_size, w, h, c] if is_mean: loss = tf.reduce_mean(tf.reduce_mean(tf.abs(output - target), [1, 2, 3]), name=name) else: loss = tf.reduce_mean(tf.reduce_sum(tf.abs(output - target), [1, 2, 3]), name=name) else: raise Exception("Unknow dimension") return loss
python
def absolute_difference_error(output, target, is_mean=False, name="absolute_difference_error_loss"): """Return the TensorFlow expression of absolute difference error (L1) of two batch of data. Parameters ---------- output : Tensor 2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel]. target : Tensor The target distribution, format the same with `output`. is_mean : boolean Whether compute the mean or sum for each example. - If True, use ``tf.reduce_mean`` to compute the loss between one target and predict data. - If False, use ``tf.reduce_sum`` (default). name : str An optional name to attach to this function. """ # with tf.name_scope("absolute_difference_error_loss"): if output.get_shape().ndims == 2: # [batch_size, n_feature] if is_mean: loss = tf.reduce_mean(tf.reduce_mean(tf.abs(output - target), 1), name=name) else: loss = tf.reduce_mean(tf.reduce_sum(tf.abs(output - target), 1), name=name) elif output.get_shape().ndims == 3: # [batch_size, w, h] if is_mean: loss = tf.reduce_mean(tf.reduce_mean(tf.abs(output - target), [1, 2]), name=name) else: loss = tf.reduce_mean(tf.reduce_sum(tf.abs(output - target), [1, 2]), name=name) elif output.get_shape().ndims == 4: # [batch_size, w, h, c] if is_mean: loss = tf.reduce_mean(tf.reduce_mean(tf.abs(output - target), [1, 2, 3]), name=name) else: loss = tf.reduce_mean(tf.reduce_sum(tf.abs(output - target), [1, 2, 3]), name=name) else: raise Exception("Unknow dimension") return loss
[ "def", "absolute_difference_error", "(", "output", ",", "target", ",", "is_mean", "=", "False", ",", "name", "=", "\"absolute_difference_error_loss\"", ")", ":", "# with tf.name_scope(\"absolute_difference_error_loss\"):", "if", "output", ".", "get_shape", "(", ")", ".", "ndims", "==", "2", ":", "# [batch_size, n_feature]", "if", "is_mean", ":", "loss", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_mean", "(", "tf", ".", "abs", "(", "output", "-", "target", ")", ",", "1", ")", ",", "name", "=", "name", ")", "else", ":", "loss", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "abs", "(", "output", "-", "target", ")", ",", "1", ")", ",", "name", "=", "name", ")", "elif", "output", ".", "get_shape", "(", ")", ".", "ndims", "==", "3", ":", "# [batch_size, w, h]", "if", "is_mean", ":", "loss", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_mean", "(", "tf", ".", "abs", "(", "output", "-", "target", ")", ",", "[", "1", ",", "2", "]", ")", ",", "name", "=", "name", ")", "else", ":", "loss", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "abs", "(", "output", "-", "target", ")", ",", "[", "1", ",", "2", "]", ")", ",", "name", "=", "name", ")", "elif", "output", ".", "get_shape", "(", ")", ".", "ndims", "==", "4", ":", "# [batch_size, w, h, c]", "if", "is_mean", ":", "loss", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_mean", "(", "tf", ".", "abs", "(", "output", "-", "target", ")", ",", "[", "1", ",", "2", ",", "3", "]", ")", ",", "name", "=", "name", ")", "else", ":", "loss", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "abs", "(", "output", "-", "target", ")", ",", "[", "1", ",", "2", ",", "3", "]", ")", ",", "name", "=", "name", ")", "else", ":", "raise", "Exception", "(", "\"Unknow dimension\"", ")", "return", "loss" ]
Return the TensorFlow expression of absolute difference error (L1) of two batch of data. Parameters ---------- output : Tensor 2D, 3D or 4D tensor i.e. [batch_size, n_feature], [batch_size, height, width] or [batch_size, height, width, channel]. target : Tensor The target distribution, format the same with `output`. is_mean : boolean Whether compute the mean or sum for each example. - If True, use ``tf.reduce_mean`` to compute the loss between one target and predict data. - If False, use ``tf.reduce_sum`` (default). name : str An optional name to attach to this function.
[ "Return", "the", "TensorFlow", "expression", "of", "absolute", "difference", "error", "(", "L1", ")", "of", "two", "batch", "of", "data", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L180-L215
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
dice_coe
def dice_coe(output, target, loss_type='jaccard', axis=(1, 2, 3), smooth=1e-5): """Soft dice (Sørensen or Jaccard) coefficient for comparing the similarity of two batch of data, usually be used for binary image segmentation i.e. labels are binary. The coefficient between 0 to 1, 1 means totally match. Parameters ----------- output : Tensor A distribution with shape: [batch_size, ....], (any dimensions). target : Tensor The target distribution, format the same with `output`. loss_type : str ``jaccard`` or ``sorensen``, default is ``jaccard``. axis : tuple of int All dimensions are reduced, default ``[1,2,3]``. smooth : float This small value will be added to the numerator and denominator. - If both output and target are empty, it makes sure dice is 1. - If either output or target are empty (all pixels are background), dice = ```smooth/(small_value + smooth)``, then if smooth is very small, dice close to 0 (even the image values lower than the threshold), so in this case, higher smooth can have a higher dice. Examples --------- >>> outputs = tl.act.pixel_wise_softmax(network.outputs) >>> dice_loss = 1 - tl.cost.dice_coe(outputs, y_) References ----------- - `Wiki-Dice <https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient>`__ """ inse = tf.reduce_sum(output * target, axis=axis) if loss_type == 'jaccard': l = tf.reduce_sum(output * output, axis=axis) r = tf.reduce_sum(target * target, axis=axis) elif loss_type == 'sorensen': l = tf.reduce_sum(output, axis=axis) r = tf.reduce_sum(target, axis=axis) else: raise Exception("Unknow loss_type") # old axis=[0,1,2,3] # dice = 2 * (inse) / (l + r) # epsilon = 1e-5 # dice = tf.clip_by_value(dice, 0, 1.0-epsilon) # if all empty, dice = 1 # new haodong dice = (2. * inse + smooth) / (l + r + smooth) ## dice = tf.reduce_mean(dice, name='dice_coe') return dice
python
def dice_coe(output, target, loss_type='jaccard', axis=(1, 2, 3), smooth=1e-5): """Soft dice (Sørensen or Jaccard) coefficient for comparing the similarity of two batch of data, usually be used for binary image segmentation i.e. labels are binary. The coefficient between 0 to 1, 1 means totally match. Parameters ----------- output : Tensor A distribution with shape: [batch_size, ....], (any dimensions). target : Tensor The target distribution, format the same with `output`. loss_type : str ``jaccard`` or ``sorensen``, default is ``jaccard``. axis : tuple of int All dimensions are reduced, default ``[1,2,3]``. smooth : float This small value will be added to the numerator and denominator. - If both output and target are empty, it makes sure dice is 1. - If either output or target are empty (all pixels are background), dice = ```smooth/(small_value + smooth)``, then if smooth is very small, dice close to 0 (even the image values lower than the threshold), so in this case, higher smooth can have a higher dice. Examples --------- >>> outputs = tl.act.pixel_wise_softmax(network.outputs) >>> dice_loss = 1 - tl.cost.dice_coe(outputs, y_) References ----------- - `Wiki-Dice <https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient>`__ """ inse = tf.reduce_sum(output * target, axis=axis) if loss_type == 'jaccard': l = tf.reduce_sum(output * output, axis=axis) r = tf.reduce_sum(target * target, axis=axis) elif loss_type == 'sorensen': l = tf.reduce_sum(output, axis=axis) r = tf.reduce_sum(target, axis=axis) else: raise Exception("Unknow loss_type") # old axis=[0,1,2,3] # dice = 2 * (inse) / (l + r) # epsilon = 1e-5 # dice = tf.clip_by_value(dice, 0, 1.0-epsilon) # if all empty, dice = 1 # new haodong dice = (2. * inse + smooth) / (l + r + smooth) ## dice = tf.reduce_mean(dice, name='dice_coe') return dice
[ "def", "dice_coe", "(", "output", ",", "target", ",", "loss_type", "=", "'jaccard'", ",", "axis", "=", "(", "1", ",", "2", ",", "3", ")", ",", "smooth", "=", "1e-5", ")", ":", "inse", "=", "tf", ".", "reduce_sum", "(", "output", "*", "target", ",", "axis", "=", "axis", ")", "if", "loss_type", "==", "'jaccard'", ":", "l", "=", "tf", ".", "reduce_sum", "(", "output", "*", "output", ",", "axis", "=", "axis", ")", "r", "=", "tf", ".", "reduce_sum", "(", "target", "*", "target", ",", "axis", "=", "axis", ")", "elif", "loss_type", "==", "'sorensen'", ":", "l", "=", "tf", ".", "reduce_sum", "(", "output", ",", "axis", "=", "axis", ")", "r", "=", "tf", ".", "reduce_sum", "(", "target", ",", "axis", "=", "axis", ")", "else", ":", "raise", "Exception", "(", "\"Unknow loss_type\"", ")", "# old axis=[0,1,2,3]", "# dice = 2 * (inse) / (l + r)", "# epsilon = 1e-5", "# dice = tf.clip_by_value(dice, 0, 1.0-epsilon) # if all empty, dice = 1", "# new haodong", "dice", "=", "(", "2.", "*", "inse", "+", "smooth", ")", "/", "(", "l", "+", "r", "+", "smooth", ")", "##", "dice", "=", "tf", ".", "reduce_mean", "(", "dice", ",", "name", "=", "'dice_coe'", ")", "return", "dice" ]
Soft dice (Sørensen or Jaccard) coefficient for comparing the similarity of two batch of data, usually be used for binary image segmentation i.e. labels are binary. The coefficient between 0 to 1, 1 means totally match. Parameters ----------- output : Tensor A distribution with shape: [batch_size, ....], (any dimensions). target : Tensor The target distribution, format the same with `output`. loss_type : str ``jaccard`` or ``sorensen``, default is ``jaccard``. axis : tuple of int All dimensions are reduced, default ``[1,2,3]``. smooth : float This small value will be added to the numerator and denominator. - If both output and target are empty, it makes sure dice is 1. - If either output or target are empty (all pixels are background), dice = ```smooth/(small_value + smooth)``, then if smooth is very small, dice close to 0 (even the image values lower than the threshold), so in this case, higher smooth can have a higher dice. Examples --------- >>> outputs = tl.act.pixel_wise_softmax(network.outputs) >>> dice_loss = 1 - tl.cost.dice_coe(outputs, y_) References ----------- - `Wiki-Dice <https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient>`__
[ "Soft", "dice", "(", "Sørensen", "or", "Jaccard", ")", "coefficient", "for", "comparing", "the", "similarity", "of", "two", "batch", "of", "data", "usually", "be", "used", "for", "binary", "image", "segmentation", "i", ".", "e", ".", "labels", "are", "binary", ".", "The", "coefficient", "between", "0", "to", "1", "1", "means", "totally", "match", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L218-L265
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
dice_hard_coe
def dice_hard_coe(output, target, threshold=0.5, axis=(1, 2, 3), smooth=1e-5): """Non-differentiable Sørensen–Dice coefficient for comparing the similarity of two batch of data, usually be used for binary image segmentation i.e. labels are binary. The coefficient between 0 to 1, 1 if totally match. Parameters ----------- output : tensor A distribution with shape: [batch_size, ....], (any dimensions). target : tensor The target distribution, format the same with `output`. threshold : float The threshold value to be true. axis : tuple of integer All dimensions are reduced, default ``(1,2,3)``. smooth : float This small value will be added to the numerator and denominator, see ``dice_coe``. References ----------- - `Wiki-Dice <https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient>`__ """ output = tf.cast(output > threshold, dtype=tf.float32) target = tf.cast(target > threshold, dtype=tf.float32) inse = tf.reduce_sum(tf.multiply(output, target), axis=axis) l = tf.reduce_sum(output, axis=axis) r = tf.reduce_sum(target, axis=axis) # old axis=[0,1,2,3] # hard_dice = 2 * (inse) / (l + r) # epsilon = 1e-5 # hard_dice = tf.clip_by_value(hard_dice, 0, 1.0-epsilon) # new haodong hard_dice = (2. * inse + smooth) / (l + r + smooth) ## hard_dice = tf.reduce_mean(hard_dice, name='hard_dice') return hard_dice
python
def dice_hard_coe(output, target, threshold=0.5, axis=(1, 2, 3), smooth=1e-5): """Non-differentiable Sørensen–Dice coefficient for comparing the similarity of two batch of data, usually be used for binary image segmentation i.e. labels are binary. The coefficient between 0 to 1, 1 if totally match. Parameters ----------- output : tensor A distribution with shape: [batch_size, ....], (any dimensions). target : tensor The target distribution, format the same with `output`. threshold : float The threshold value to be true. axis : tuple of integer All dimensions are reduced, default ``(1,2,3)``. smooth : float This small value will be added to the numerator and denominator, see ``dice_coe``. References ----------- - `Wiki-Dice <https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient>`__ """ output = tf.cast(output > threshold, dtype=tf.float32) target = tf.cast(target > threshold, dtype=tf.float32) inse = tf.reduce_sum(tf.multiply(output, target), axis=axis) l = tf.reduce_sum(output, axis=axis) r = tf.reduce_sum(target, axis=axis) # old axis=[0,1,2,3] # hard_dice = 2 * (inse) / (l + r) # epsilon = 1e-5 # hard_dice = tf.clip_by_value(hard_dice, 0, 1.0-epsilon) # new haodong hard_dice = (2. * inse + smooth) / (l + r + smooth) ## hard_dice = tf.reduce_mean(hard_dice, name='hard_dice') return hard_dice
[ "def", "dice_hard_coe", "(", "output", ",", "target", ",", "threshold", "=", "0.5", ",", "axis", "=", "(", "1", ",", "2", ",", "3", ")", ",", "smooth", "=", "1e-5", ")", ":", "output", "=", "tf", ".", "cast", "(", "output", ">", "threshold", ",", "dtype", "=", "tf", ".", "float32", ")", "target", "=", "tf", ".", "cast", "(", "target", ">", "threshold", ",", "dtype", "=", "tf", ".", "float32", ")", "inse", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "multiply", "(", "output", ",", "target", ")", ",", "axis", "=", "axis", ")", "l", "=", "tf", ".", "reduce_sum", "(", "output", ",", "axis", "=", "axis", ")", "r", "=", "tf", ".", "reduce_sum", "(", "target", ",", "axis", "=", "axis", ")", "# old axis=[0,1,2,3]", "# hard_dice = 2 * (inse) / (l + r)", "# epsilon = 1e-5", "# hard_dice = tf.clip_by_value(hard_dice, 0, 1.0-epsilon)", "# new haodong", "hard_dice", "=", "(", "2.", "*", "inse", "+", "smooth", ")", "/", "(", "l", "+", "r", "+", "smooth", ")", "##", "hard_dice", "=", "tf", ".", "reduce_mean", "(", "hard_dice", ",", "name", "=", "'hard_dice'", ")", "return", "hard_dice" ]
Non-differentiable Sørensen–Dice coefficient for comparing the similarity of two batch of data, usually be used for binary image segmentation i.e. labels are binary. The coefficient between 0 to 1, 1 if totally match. Parameters ----------- output : tensor A distribution with shape: [batch_size, ....], (any dimensions). target : tensor The target distribution, format the same with `output`. threshold : float The threshold value to be true. axis : tuple of integer All dimensions are reduced, default ``(1,2,3)``. smooth : float This small value will be added to the numerator and denominator, see ``dice_coe``. References ----------- - `Wiki-Dice <https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient>`__
[ "Non", "-", "differentiable", "Sørensen–Dice", "coefficient", "for", "comparing", "the", "similarity", "of", "two", "batch", "of", "data", "usually", "be", "used", "for", "binary", "image", "segmentation", "i", ".", "e", ".", "labels", "are", "binary", ".", "The", "coefficient", "between", "0", "to", "1", "1", "if", "totally", "match", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L268-L304
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
iou_coe
def iou_coe(output, target, threshold=0.5, axis=(1, 2, 3), smooth=1e-5): """Non-differentiable Intersection over Union (IoU) for comparing the similarity of two batch of data, usually be used for evaluating binary image segmentation. The coefficient between 0 to 1, and 1 means totally match. Parameters ----------- output : tensor A batch of distribution with shape: [batch_size, ....], (any dimensions). target : tensor The target distribution, format the same with `output`. threshold : float The threshold value to be true. axis : tuple of integer All dimensions are reduced, default ``(1,2,3)``. smooth : float This small value will be added to the numerator and denominator, see ``dice_coe``. Notes ------ - IoU cannot be used as training loss, people usually use dice coefficient for training, IoU and hard-dice for evaluating. """ pre = tf.cast(output > threshold, dtype=tf.float32) truth = tf.cast(target > threshold, dtype=tf.float32) inse = tf.reduce_sum(tf.multiply(pre, truth), axis=axis) # AND union = tf.reduce_sum(tf.cast(tf.add(pre, truth) >= 1, dtype=tf.float32), axis=axis) # OR # old axis=[0,1,2,3] # epsilon = 1e-5 # batch_iou = inse / (union + epsilon) # new haodong batch_iou = (inse + smooth) / (union + smooth) iou = tf.reduce_mean(batch_iou, name='iou_coe') return iou
python
def iou_coe(output, target, threshold=0.5, axis=(1, 2, 3), smooth=1e-5): """Non-differentiable Intersection over Union (IoU) for comparing the similarity of two batch of data, usually be used for evaluating binary image segmentation. The coefficient between 0 to 1, and 1 means totally match. Parameters ----------- output : tensor A batch of distribution with shape: [batch_size, ....], (any dimensions). target : tensor The target distribution, format the same with `output`. threshold : float The threshold value to be true. axis : tuple of integer All dimensions are reduced, default ``(1,2,3)``. smooth : float This small value will be added to the numerator and denominator, see ``dice_coe``. Notes ------ - IoU cannot be used as training loss, people usually use dice coefficient for training, IoU and hard-dice for evaluating. """ pre = tf.cast(output > threshold, dtype=tf.float32) truth = tf.cast(target > threshold, dtype=tf.float32) inse = tf.reduce_sum(tf.multiply(pre, truth), axis=axis) # AND union = tf.reduce_sum(tf.cast(tf.add(pre, truth) >= 1, dtype=tf.float32), axis=axis) # OR # old axis=[0,1,2,3] # epsilon = 1e-5 # batch_iou = inse / (union + epsilon) # new haodong batch_iou = (inse + smooth) / (union + smooth) iou = tf.reduce_mean(batch_iou, name='iou_coe') return iou
[ "def", "iou_coe", "(", "output", ",", "target", ",", "threshold", "=", "0.5", ",", "axis", "=", "(", "1", ",", "2", ",", "3", ")", ",", "smooth", "=", "1e-5", ")", ":", "pre", "=", "tf", ".", "cast", "(", "output", ">", "threshold", ",", "dtype", "=", "tf", ".", "float32", ")", "truth", "=", "tf", ".", "cast", "(", "target", ">", "threshold", ",", "dtype", "=", "tf", ".", "float32", ")", "inse", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "multiply", "(", "pre", ",", "truth", ")", ",", "axis", "=", "axis", ")", "# AND", "union", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "cast", "(", "tf", ".", "add", "(", "pre", ",", "truth", ")", ">=", "1", ",", "dtype", "=", "tf", ".", "float32", ")", ",", "axis", "=", "axis", ")", "# OR", "# old axis=[0,1,2,3]", "# epsilon = 1e-5", "# batch_iou = inse / (union + epsilon)", "# new haodong", "batch_iou", "=", "(", "inse", "+", "smooth", ")", "/", "(", "union", "+", "smooth", ")", "iou", "=", "tf", ".", "reduce_mean", "(", "batch_iou", ",", "name", "=", "'iou_coe'", ")", "return", "iou" ]
Non-differentiable Intersection over Union (IoU) for comparing the similarity of two batch of data, usually be used for evaluating binary image segmentation. The coefficient between 0 to 1, and 1 means totally match. Parameters ----------- output : tensor A batch of distribution with shape: [batch_size, ....], (any dimensions). target : tensor The target distribution, format the same with `output`. threshold : float The threshold value to be true. axis : tuple of integer All dimensions are reduced, default ``(1,2,3)``. smooth : float This small value will be added to the numerator and denominator, see ``dice_coe``. Notes ------ - IoU cannot be used as training loss, people usually use dice coefficient for training, IoU and hard-dice for evaluating.
[ "Non", "-", "differentiable", "Intersection", "over", "Union", "(", "IoU", ")", "for", "comparing", "the", "similarity", "of", "two", "batch", "of", "data", "usually", "be", "used", "for", "evaluating", "binary", "image", "segmentation", ".", "The", "coefficient", "between", "0", "to", "1", "and", "1", "means", "totally", "match", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L307-L340
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
cross_entropy_seq
def cross_entropy_seq(logits, target_seqs, batch_size=None): # , batch_size=1, num_steps=None): """Returns the expression of cross-entropy of two sequences, implement softmax internally. Normally be used for fixed length RNN outputs, see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`__. Parameters ---------- logits : Tensor 2D tensor with shape of `[batch_size * n_steps, n_classes]`. target_seqs : Tensor The target sequence, 2D tensor `[batch_size, n_steps]`, if the number of step is dynamic, please use ``tl.cost.cross_entropy_seq_with_mask`` instead. batch_size : None or int. Whether to divide the cost by batch size. - If integer, the return cost will be divided by `batch_size`. - If None (default), the return cost will not be divided by anything. Examples -------- >>> see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`__.for more details >>> input_data = tf.placeholder(tf.int32, [batch_size, n_steps]) >>> targets = tf.placeholder(tf.int32, [batch_size, n_steps]) >>> # build the network >>> print(net.outputs) (batch_size * n_steps, n_classes) >>> cost = tl.cost.cross_entropy_seq(network.outputs, targets) """ sequence_loss_by_example_fn = tf.contrib.legacy_seq2seq.sequence_loss_by_example loss = sequence_loss_by_example_fn( [logits], [tf.reshape(target_seqs, [-1])], [tf.ones_like(tf.reshape(target_seqs, [-1]), dtype=tf.float32)] ) # [tf.ones([batch_size * num_steps])]) cost = tf.reduce_sum(loss) # / batch_size if batch_size is not None: cost = cost / batch_size return cost
python
def cross_entropy_seq(logits, target_seqs, batch_size=None): # , batch_size=1, num_steps=None): """Returns the expression of cross-entropy of two sequences, implement softmax internally. Normally be used for fixed length RNN outputs, see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`__. Parameters ---------- logits : Tensor 2D tensor with shape of `[batch_size * n_steps, n_classes]`. target_seqs : Tensor The target sequence, 2D tensor `[batch_size, n_steps]`, if the number of step is dynamic, please use ``tl.cost.cross_entropy_seq_with_mask`` instead. batch_size : None or int. Whether to divide the cost by batch size. - If integer, the return cost will be divided by `batch_size`. - If None (default), the return cost will not be divided by anything. Examples -------- >>> see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`__.for more details >>> input_data = tf.placeholder(tf.int32, [batch_size, n_steps]) >>> targets = tf.placeholder(tf.int32, [batch_size, n_steps]) >>> # build the network >>> print(net.outputs) (batch_size * n_steps, n_classes) >>> cost = tl.cost.cross_entropy_seq(network.outputs, targets) """ sequence_loss_by_example_fn = tf.contrib.legacy_seq2seq.sequence_loss_by_example loss = sequence_loss_by_example_fn( [logits], [tf.reshape(target_seqs, [-1])], [tf.ones_like(tf.reshape(target_seqs, [-1]), dtype=tf.float32)] ) # [tf.ones([batch_size * num_steps])]) cost = tf.reduce_sum(loss) # / batch_size if batch_size is not None: cost = cost / batch_size return cost
[ "def", "cross_entropy_seq", "(", "logits", ",", "target_seqs", ",", "batch_size", "=", "None", ")", ":", "# , batch_size=1, num_steps=None):", "sequence_loss_by_example_fn", "=", "tf", ".", "contrib", ".", "legacy_seq2seq", ".", "sequence_loss_by_example", "loss", "=", "sequence_loss_by_example_fn", "(", "[", "logits", "]", ",", "[", "tf", ".", "reshape", "(", "target_seqs", ",", "[", "-", "1", "]", ")", "]", ",", "[", "tf", ".", "ones_like", "(", "tf", ".", "reshape", "(", "target_seqs", ",", "[", "-", "1", "]", ")", ",", "dtype", "=", "tf", ".", "float32", ")", "]", ")", "# [tf.ones([batch_size * num_steps])])", "cost", "=", "tf", ".", "reduce_sum", "(", "loss", ")", "# / batch_size", "if", "batch_size", "is", "not", "None", ":", "cost", "=", "cost", "/", "batch_size", "return", "cost" ]
Returns the expression of cross-entropy of two sequences, implement softmax internally. Normally be used for fixed length RNN outputs, see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`__. Parameters ---------- logits : Tensor 2D tensor with shape of `[batch_size * n_steps, n_classes]`. target_seqs : Tensor The target sequence, 2D tensor `[batch_size, n_steps]`, if the number of step is dynamic, please use ``tl.cost.cross_entropy_seq_with_mask`` instead. batch_size : None or int. Whether to divide the cost by batch size. - If integer, the return cost will be divided by `batch_size`. - If None (default), the return cost will not be divided by anything. Examples -------- >>> see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`__.for more details >>> input_data = tf.placeholder(tf.int32, [batch_size, n_steps]) >>> targets = tf.placeholder(tf.int32, [batch_size, n_steps]) >>> # build the network >>> print(net.outputs) (batch_size * n_steps, n_classes) >>> cost = tl.cost.cross_entropy_seq(network.outputs, targets)
[ "Returns", "the", "expression", "of", "cross", "-", "entropy", "of", "two", "sequences", "implement", "softmax", "internally", ".", "Normally", "be", "used", "for", "fixed", "length", "RNN", "outputs", "see", "PTB", "example", "<https", ":", "//", "github", ".", "com", "/", "tensorlayer", "/", "tensorlayer", "/", "blob", "/", "master", "/", "example", "/", "tutorial_ptb_lstm_state_is_tuple", ".", "py", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L377-L412
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
cross_entropy_seq_with_mask
def cross_entropy_seq_with_mask(logits, target_seqs, input_mask, return_details=False, name=None): """Returns the expression of cross-entropy of two sequences, implement softmax internally. Normally be used for Dynamic RNN with Synced sequence input and output. Parameters ----------- logits : Tensor 2D tensor with shape of [batch_size * ?, n_classes], `?` means dynamic IDs for each example. - Can be get from `DynamicRNNLayer` by setting ``return_seq_2d`` to `True`. target_seqs : Tensor int of tensor, like word ID. [batch_size, ?], `?` means dynamic IDs for each example. input_mask : Tensor The mask to compute loss, it has the same size with `target_seqs`, normally 0 or 1. return_details : boolean Whether to return detailed losses. - If False (default), only returns the loss. - If True, returns the loss, losses, weights and targets (see source code). Examples -------- >>> batch_size = 64 >>> vocab_size = 10000 >>> embedding_size = 256 >>> input_seqs = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name="input") >>> target_seqs = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name="target") >>> input_mask = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name="mask") >>> net = tl.layers.EmbeddingInputlayer( ... inputs = input_seqs, ... vocabulary_size = vocab_size, ... embedding_size = embedding_size, ... name = 'seq_embedding') >>> net = tl.layers.DynamicRNNLayer(net, ... cell_fn = tf.contrib.rnn.BasicLSTMCell, ... n_hidden = embedding_size, ... dropout = (0.7 if is_train else None), ... sequence_length = tl.layers.retrieve_seq_length_op2(input_seqs), ... return_seq_2d = True, ... name = 'dynamicrnn') >>> print(net.outputs) (?, 256) >>> net = tl.layers.DenseLayer(net, n_units=vocab_size, name="output") >>> print(net.outputs) (?, 10000) >>> loss = tl.cost.cross_entropy_seq_with_mask(net.outputs, target_seqs, input_mask) """ targets = tf.reshape(target_seqs, [-1]) # to one vector weights = tf.to_float(tf.reshape(input_mask, [-1])) # to one vector like targets losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name) * weights # losses = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name)) # for TF1.0 and others loss = tf.divide( tf.reduce_sum(losses), # loss from mask. reduce_sum before element-wise mul with mask !! tf.reduce_sum(weights), name="seq_loss_with_mask" ) if return_details: return loss, losses, weights, targets else: return loss
python
def cross_entropy_seq_with_mask(logits, target_seqs, input_mask, return_details=False, name=None): """Returns the expression of cross-entropy of two sequences, implement softmax internally. Normally be used for Dynamic RNN with Synced sequence input and output. Parameters ----------- logits : Tensor 2D tensor with shape of [batch_size * ?, n_classes], `?` means dynamic IDs for each example. - Can be get from `DynamicRNNLayer` by setting ``return_seq_2d`` to `True`. target_seqs : Tensor int of tensor, like word ID. [batch_size, ?], `?` means dynamic IDs for each example. input_mask : Tensor The mask to compute loss, it has the same size with `target_seqs`, normally 0 or 1. return_details : boolean Whether to return detailed losses. - If False (default), only returns the loss. - If True, returns the loss, losses, weights and targets (see source code). Examples -------- >>> batch_size = 64 >>> vocab_size = 10000 >>> embedding_size = 256 >>> input_seqs = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name="input") >>> target_seqs = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name="target") >>> input_mask = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name="mask") >>> net = tl.layers.EmbeddingInputlayer( ... inputs = input_seqs, ... vocabulary_size = vocab_size, ... embedding_size = embedding_size, ... name = 'seq_embedding') >>> net = tl.layers.DynamicRNNLayer(net, ... cell_fn = tf.contrib.rnn.BasicLSTMCell, ... n_hidden = embedding_size, ... dropout = (0.7 if is_train else None), ... sequence_length = tl.layers.retrieve_seq_length_op2(input_seqs), ... return_seq_2d = True, ... name = 'dynamicrnn') >>> print(net.outputs) (?, 256) >>> net = tl.layers.DenseLayer(net, n_units=vocab_size, name="output") >>> print(net.outputs) (?, 10000) >>> loss = tl.cost.cross_entropy_seq_with_mask(net.outputs, target_seqs, input_mask) """ targets = tf.reshape(target_seqs, [-1]) # to one vector weights = tf.to_float(tf.reshape(input_mask, [-1])) # to one vector like targets losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name) * weights # losses = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name)) # for TF1.0 and others loss = tf.divide( tf.reduce_sum(losses), # loss from mask. reduce_sum before element-wise mul with mask !! tf.reduce_sum(weights), name="seq_loss_with_mask" ) if return_details: return loss, losses, weights, targets else: return loss
[ "def", "cross_entropy_seq_with_mask", "(", "logits", ",", "target_seqs", ",", "input_mask", ",", "return_details", "=", "False", ",", "name", "=", "None", ")", ":", "targets", "=", "tf", ".", "reshape", "(", "target_seqs", ",", "[", "-", "1", "]", ")", "# to one vector", "weights", "=", "tf", ".", "to_float", "(", "tf", ".", "reshape", "(", "input_mask", ",", "[", "-", "1", "]", ")", ")", "# to one vector like targets", "losses", "=", "tf", ".", "nn", ".", "sparse_softmax_cross_entropy_with_logits", "(", "logits", "=", "logits", ",", "labels", "=", "targets", ",", "name", "=", "name", ")", "*", "weights", "# losses = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name)) # for TF1.0 and others", "loss", "=", "tf", ".", "divide", "(", "tf", ".", "reduce_sum", "(", "losses", ")", ",", "# loss from mask. reduce_sum before element-wise mul with mask !!", "tf", ".", "reduce_sum", "(", "weights", ")", ",", "name", "=", "\"seq_loss_with_mask\"", ")", "if", "return_details", ":", "return", "loss", ",", "losses", ",", "weights", ",", "targets", "else", ":", "return", "loss" ]
Returns the expression of cross-entropy of two sequences, implement softmax internally. Normally be used for Dynamic RNN with Synced sequence input and output. Parameters ----------- logits : Tensor 2D tensor with shape of [batch_size * ?, n_classes], `?` means dynamic IDs for each example. - Can be get from `DynamicRNNLayer` by setting ``return_seq_2d`` to `True`. target_seqs : Tensor int of tensor, like word ID. [batch_size, ?], `?` means dynamic IDs for each example. input_mask : Tensor The mask to compute loss, it has the same size with `target_seqs`, normally 0 or 1. return_details : boolean Whether to return detailed losses. - If False (default), only returns the loss. - If True, returns the loss, losses, weights and targets (see source code). Examples -------- >>> batch_size = 64 >>> vocab_size = 10000 >>> embedding_size = 256 >>> input_seqs = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name="input") >>> target_seqs = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name="target") >>> input_mask = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name="mask") >>> net = tl.layers.EmbeddingInputlayer( ... inputs = input_seqs, ... vocabulary_size = vocab_size, ... embedding_size = embedding_size, ... name = 'seq_embedding') >>> net = tl.layers.DynamicRNNLayer(net, ... cell_fn = tf.contrib.rnn.BasicLSTMCell, ... n_hidden = embedding_size, ... dropout = (0.7 if is_train else None), ... sequence_length = tl.layers.retrieve_seq_length_op2(input_seqs), ... return_seq_2d = True, ... name = 'dynamicrnn') >>> print(net.outputs) (?, 256) >>> net = tl.layers.DenseLayer(net, n_units=vocab_size, name="output") >>> print(net.outputs) (?, 10000) >>> loss = tl.cost.cross_entropy_seq_with_mask(net.outputs, target_seqs, input_mask)
[ "Returns", "the", "expression", "of", "cross", "-", "entropy", "of", "two", "sequences", "implement", "softmax", "internally", ".", "Normally", "be", "used", "for", "Dynamic", "RNN", "with", "Synced", "sequence", "input", "and", "output", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L415-L475
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
cosine_similarity
def cosine_similarity(v1, v2): """Cosine similarity [-1, 1]. Parameters ---------- v1, v2 : Tensor Tensor with the same shape [batch_size, n_feature]. References ---------- - `Wiki <https://en.wikipedia.org/wiki/Cosine_similarity>`__. """ return tf.reduce_sum(tf.multiply(v1, v2), 1) / \ (tf.sqrt(tf.reduce_sum(tf.multiply(v1, v1), 1)) * tf.sqrt(tf.reduce_sum(tf.multiply(v2, v2), 1)))
python
def cosine_similarity(v1, v2): """Cosine similarity [-1, 1]. Parameters ---------- v1, v2 : Tensor Tensor with the same shape [batch_size, n_feature]. References ---------- - `Wiki <https://en.wikipedia.org/wiki/Cosine_similarity>`__. """ return tf.reduce_sum(tf.multiply(v1, v2), 1) / \ (tf.sqrt(tf.reduce_sum(tf.multiply(v1, v1), 1)) * tf.sqrt(tf.reduce_sum(tf.multiply(v2, v2), 1)))
[ "def", "cosine_similarity", "(", "v1", ",", "v2", ")", ":", "return", "tf", ".", "reduce_sum", "(", "tf", ".", "multiply", "(", "v1", ",", "v2", ")", ",", "1", ")", "/", "(", "tf", ".", "sqrt", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "multiply", "(", "v1", ",", "v1", ")", ",", "1", ")", ")", "*", "tf", ".", "sqrt", "(", "tf", ".", "reduce_sum", "(", "tf", ".", "multiply", "(", "v2", ",", "v2", ")", ",", "1", ")", ")", ")" ]
Cosine similarity [-1, 1]. Parameters ---------- v1, v2 : Tensor Tensor with the same shape [batch_size, n_feature]. References ---------- - `Wiki <https://en.wikipedia.org/wiki/Cosine_similarity>`__.
[ "Cosine", "similarity", "[", "-", "1", "1", "]", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L478-L494
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
li_regularizer
def li_regularizer(scale, scope=None): """Li regularization removes the neurons of previous layer. The `i` represents `inputs`. Returns a function that can be used to apply group li regularization to weights. The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__. Parameters ---------- scale : float A scalar multiplier `Tensor`. 0.0 disables the regularizer. scope: str An optional scope name for this function. Returns -------- A function with signature `li(weights, name=None)` that apply Li regularization. Raises ------ ValueError : if scale is outside of the range [0.0, 1.0] or if scale is not a float. """ if isinstance(scale, numbers.Integral): raise ValueError('scale cannot be an integer: %s' % scale) if isinstance(scale, numbers.Real): if scale < 0.: raise ValueError('Setting a scale less than 0 on a regularizer: %g' % scale) if scale >= 1.: raise ValueError('Setting a scale greater than 1 on a regularizer: %g' % scale) if scale == 0.: tl.logging.info('Scale of 0 disables regularizer.') return lambda _, name=None: None def li(weights): """Applies li regularization to weights.""" with tf.name_scope('li_regularizer') as scope: my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale') # if tf.__version__ <= '0.12': # standard_ops_fn = standard_ops.mul # else: standard_ops_fn = standard_ops.multiply return standard_ops_fn( my_scale, standard_ops.reduce_sum(standard_ops.sqrt(standard_ops.reduce_sum(tf.square(weights), 1))), name=scope ) return li
python
def li_regularizer(scale, scope=None): """Li regularization removes the neurons of previous layer. The `i` represents `inputs`. Returns a function that can be used to apply group li regularization to weights. The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__. Parameters ---------- scale : float A scalar multiplier `Tensor`. 0.0 disables the regularizer. scope: str An optional scope name for this function. Returns -------- A function with signature `li(weights, name=None)` that apply Li regularization. Raises ------ ValueError : if scale is outside of the range [0.0, 1.0] or if scale is not a float. """ if isinstance(scale, numbers.Integral): raise ValueError('scale cannot be an integer: %s' % scale) if isinstance(scale, numbers.Real): if scale < 0.: raise ValueError('Setting a scale less than 0 on a regularizer: %g' % scale) if scale >= 1.: raise ValueError('Setting a scale greater than 1 on a regularizer: %g' % scale) if scale == 0.: tl.logging.info('Scale of 0 disables regularizer.') return lambda _, name=None: None def li(weights): """Applies li regularization to weights.""" with tf.name_scope('li_regularizer') as scope: my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale') # if tf.__version__ <= '0.12': # standard_ops_fn = standard_ops.mul # else: standard_ops_fn = standard_ops.multiply return standard_ops_fn( my_scale, standard_ops.reduce_sum(standard_ops.sqrt(standard_ops.reduce_sum(tf.square(weights), 1))), name=scope ) return li
[ "def", "li_regularizer", "(", "scale", ",", "scope", "=", "None", ")", ":", "if", "isinstance", "(", "scale", ",", "numbers", ".", "Integral", ")", ":", "raise", "ValueError", "(", "'scale cannot be an integer: %s'", "%", "scale", ")", "if", "isinstance", "(", "scale", ",", "numbers", ".", "Real", ")", ":", "if", "scale", "<", "0.", ":", "raise", "ValueError", "(", "'Setting a scale less than 0 on a regularizer: %g'", "%", "scale", ")", "if", "scale", ">=", "1.", ":", "raise", "ValueError", "(", "'Setting a scale greater than 1 on a regularizer: %g'", "%", "scale", ")", "if", "scale", "==", "0.", ":", "tl", ".", "logging", ".", "info", "(", "'Scale of 0 disables regularizer.'", ")", "return", "lambda", "_", ",", "name", "=", "None", ":", "None", "def", "li", "(", "weights", ")", ":", "\"\"\"Applies li regularization to weights.\"\"\"", "with", "tf", ".", "name_scope", "(", "'li_regularizer'", ")", "as", "scope", ":", "my_scale", "=", "ops", ".", "convert_to_tensor", "(", "scale", ",", "dtype", "=", "weights", ".", "dtype", ".", "base_dtype", ",", "name", "=", "'scale'", ")", "# if tf.__version__ <= '0.12':", "# standard_ops_fn = standard_ops.mul", "# else:", "standard_ops_fn", "=", "standard_ops", ".", "multiply", "return", "standard_ops_fn", "(", "my_scale", ",", "standard_ops", ".", "reduce_sum", "(", "standard_ops", ".", "sqrt", "(", "standard_ops", ".", "reduce_sum", "(", "tf", ".", "square", "(", "weights", ")", ",", "1", ")", ")", ")", ",", "name", "=", "scope", ")", "return", "li" ]
Li regularization removes the neurons of previous layer. The `i` represents `inputs`. Returns a function that can be used to apply group li regularization to weights. The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__. Parameters ---------- scale : float A scalar multiplier `Tensor`. 0.0 disables the regularizer. scope: str An optional scope name for this function. Returns -------- A function with signature `li(weights, name=None)` that apply Li regularization. Raises ------ ValueError : if scale is outside of the range [0.0, 1.0] or if scale is not a float.
[ "Li", "regularization", "removes", "the", "neurons", "of", "previous", "layer", ".", "The", "i", "represents", "inputs", ".", "Returns", "a", "function", "that", "can", "be", "used", "to", "apply", "group", "li", "regularization", "to", "weights", ".", "The", "implementation", "follows", "TensorFlow", "contrib", "<https", ":", "//", "github", ".", "com", "/", "tensorflow", "/", "tensorflow", "/", "blob", "/", "master", "/", "tensorflow", "/", "contrib", "/", "layers", "/", "python", "/", "layers", "/", "regularizers", ".", "py", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L498-L543
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
maxnorm_regularizer
def maxnorm_regularizer(scale=1.0): """Max-norm regularization returns a function that can be used to apply max-norm regularization to weights. More about max-norm, see `wiki-max norm <https://en.wikipedia.org/wiki/Matrix_norm#Max_norm>`_. The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__. Parameters ---------- scale : float A scalar multiplier `Tensor`. 0.0 disables the regularizer. Returns --------- A function with signature `mn(weights, name=None)` that apply Lo regularization. Raises -------- ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float. """ if isinstance(scale, numbers.Integral): raise ValueError('scale cannot be an integer: %s' % scale) if isinstance(scale, numbers.Real): if scale < 0.: raise ValueError('Setting a scale less than 0 on a regularizer: %g' % scale) # if scale >= 1.: # raise ValueError('Setting a scale greater than 1 on a regularizer: %g' % # scale) if scale == 0.: tl.logging.info('Scale of 0 disables regularizer.') return lambda _, name=None: None def mn(weights, name='max_regularizer'): """Applies max-norm regularization to weights.""" with tf.name_scope(name) as scope: my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale') # if tf.__version__ <= '0.12': # standard_ops_fn = standard_ops.mul # else: standard_ops_fn = standard_ops.multiply return standard_ops_fn(my_scale, standard_ops.reduce_max(standard_ops.abs(weights)), name=scope) return mn
python
def maxnorm_regularizer(scale=1.0): """Max-norm regularization returns a function that can be used to apply max-norm regularization to weights. More about max-norm, see `wiki-max norm <https://en.wikipedia.org/wiki/Matrix_norm#Max_norm>`_. The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__. Parameters ---------- scale : float A scalar multiplier `Tensor`. 0.0 disables the regularizer. Returns --------- A function with signature `mn(weights, name=None)` that apply Lo regularization. Raises -------- ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float. """ if isinstance(scale, numbers.Integral): raise ValueError('scale cannot be an integer: %s' % scale) if isinstance(scale, numbers.Real): if scale < 0.: raise ValueError('Setting a scale less than 0 on a regularizer: %g' % scale) # if scale >= 1.: # raise ValueError('Setting a scale greater than 1 on a regularizer: %g' % # scale) if scale == 0.: tl.logging.info('Scale of 0 disables regularizer.') return lambda _, name=None: None def mn(weights, name='max_regularizer'): """Applies max-norm regularization to weights.""" with tf.name_scope(name) as scope: my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale') # if tf.__version__ <= '0.12': # standard_ops_fn = standard_ops.mul # else: standard_ops_fn = standard_ops.multiply return standard_ops_fn(my_scale, standard_ops.reduce_max(standard_ops.abs(weights)), name=scope) return mn
[ "def", "maxnorm_regularizer", "(", "scale", "=", "1.0", ")", ":", "if", "isinstance", "(", "scale", ",", "numbers", ".", "Integral", ")", ":", "raise", "ValueError", "(", "'scale cannot be an integer: %s'", "%", "scale", ")", "if", "isinstance", "(", "scale", ",", "numbers", ".", "Real", ")", ":", "if", "scale", "<", "0.", ":", "raise", "ValueError", "(", "'Setting a scale less than 0 on a regularizer: %g'", "%", "scale", ")", "# if scale >= 1.:", "# raise ValueError('Setting a scale greater than 1 on a regularizer: %g' %", "# scale)", "if", "scale", "==", "0.", ":", "tl", ".", "logging", ".", "info", "(", "'Scale of 0 disables regularizer.'", ")", "return", "lambda", "_", ",", "name", "=", "None", ":", "None", "def", "mn", "(", "weights", ",", "name", "=", "'max_regularizer'", ")", ":", "\"\"\"Applies max-norm regularization to weights.\"\"\"", "with", "tf", ".", "name_scope", "(", "name", ")", "as", "scope", ":", "my_scale", "=", "ops", ".", "convert_to_tensor", "(", "scale", ",", "dtype", "=", "weights", ".", "dtype", ".", "base_dtype", ",", "name", "=", "'scale'", ")", "# if tf.__version__ <= '0.12':", "# standard_ops_fn = standard_ops.mul", "# else:", "standard_ops_fn", "=", "standard_ops", ".", "multiply", "return", "standard_ops_fn", "(", "my_scale", ",", "standard_ops", ".", "reduce_max", "(", "standard_ops", ".", "abs", "(", "weights", ")", ")", ",", "name", "=", "scope", ")", "return", "mn" ]
Max-norm regularization returns a function that can be used to apply max-norm regularization to weights. More about max-norm, see `wiki-max norm <https://en.wikipedia.org/wiki/Matrix_norm#Max_norm>`_. The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__. Parameters ---------- scale : float A scalar multiplier `Tensor`. 0.0 disables the regularizer. Returns --------- A function with signature `mn(weights, name=None)` that apply Lo regularization. Raises -------- ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float.
[ "Max", "-", "norm", "regularization", "returns", "a", "function", "that", "can", "be", "used", "to", "apply", "max", "-", "norm", "regularization", "to", "weights", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L593-L636
valid
tensorlayer/tensorlayer
tensorlayer/cost.py
maxnorm_o_regularizer
def maxnorm_o_regularizer(scale): """Max-norm output regularization removes the neurons of current layer. Returns a function that can be used to apply max-norm regularization to each column of weight matrix. The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__. Parameters ---------- scale : float A scalar multiplier `Tensor`. 0.0 disables the regularizer. Returns --------- A function with signature `mn_o(weights, name=None)` that apply Lo regularization. Raises --------- ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float. """ if isinstance(scale, numbers.Integral): raise ValueError('scale cannot be an integer: %s' % scale) if isinstance(scale, numbers.Real): if scale < 0.: raise ValueError('Setting a scale less than 0 on a regularizer: %g' % scale) # if scale >= 1.: # raise ValueError('Setting a scale greater than 1 on a regularizer: %g' % # scale) if scale == 0.: tl.logging.info('Scale of 0 disables regularizer.') return lambda _, name=None: None def mn_o(weights, name='maxnorm_o_regularizer'): """Applies max-norm regularization to weights.""" with tf.name_scope(name) as scope: my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale') if tf.__version__ <= '0.12': standard_ops_fn = standard_ops.mul else: standard_ops_fn = standard_ops.multiply return standard_ops_fn( my_scale, standard_ops.reduce_sum(standard_ops.reduce_max(standard_ops.abs(weights), 0)), name=scope ) return mn_o
python
def maxnorm_o_regularizer(scale): """Max-norm output regularization removes the neurons of current layer. Returns a function that can be used to apply max-norm regularization to each column of weight matrix. The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__. Parameters ---------- scale : float A scalar multiplier `Tensor`. 0.0 disables the regularizer. Returns --------- A function with signature `mn_o(weights, name=None)` that apply Lo regularization. Raises --------- ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float. """ if isinstance(scale, numbers.Integral): raise ValueError('scale cannot be an integer: %s' % scale) if isinstance(scale, numbers.Real): if scale < 0.: raise ValueError('Setting a scale less than 0 on a regularizer: %g' % scale) # if scale >= 1.: # raise ValueError('Setting a scale greater than 1 on a regularizer: %g' % # scale) if scale == 0.: tl.logging.info('Scale of 0 disables regularizer.') return lambda _, name=None: None def mn_o(weights, name='maxnorm_o_regularizer'): """Applies max-norm regularization to weights.""" with tf.name_scope(name) as scope: my_scale = ops.convert_to_tensor(scale, dtype=weights.dtype.base_dtype, name='scale') if tf.__version__ <= '0.12': standard_ops_fn = standard_ops.mul else: standard_ops_fn = standard_ops.multiply return standard_ops_fn( my_scale, standard_ops.reduce_sum(standard_ops.reduce_max(standard_ops.abs(weights), 0)), name=scope ) return mn_o
[ "def", "maxnorm_o_regularizer", "(", "scale", ")", ":", "if", "isinstance", "(", "scale", ",", "numbers", ".", "Integral", ")", ":", "raise", "ValueError", "(", "'scale cannot be an integer: %s'", "%", "scale", ")", "if", "isinstance", "(", "scale", ",", "numbers", ".", "Real", ")", ":", "if", "scale", "<", "0.", ":", "raise", "ValueError", "(", "'Setting a scale less than 0 on a regularizer: %g'", "%", "scale", ")", "# if scale >= 1.:", "# raise ValueError('Setting a scale greater than 1 on a regularizer: %g' %", "# scale)", "if", "scale", "==", "0.", ":", "tl", ".", "logging", ".", "info", "(", "'Scale of 0 disables regularizer.'", ")", "return", "lambda", "_", ",", "name", "=", "None", ":", "None", "def", "mn_o", "(", "weights", ",", "name", "=", "'maxnorm_o_regularizer'", ")", ":", "\"\"\"Applies max-norm regularization to weights.\"\"\"", "with", "tf", ".", "name_scope", "(", "name", ")", "as", "scope", ":", "my_scale", "=", "ops", ".", "convert_to_tensor", "(", "scale", ",", "dtype", "=", "weights", ".", "dtype", ".", "base_dtype", ",", "name", "=", "'scale'", ")", "if", "tf", ".", "__version__", "<=", "'0.12'", ":", "standard_ops_fn", "=", "standard_ops", ".", "mul", "else", ":", "standard_ops_fn", "=", "standard_ops", ".", "multiply", "return", "standard_ops_fn", "(", "my_scale", ",", "standard_ops", ".", "reduce_sum", "(", "standard_ops", ".", "reduce_max", "(", "standard_ops", ".", "abs", "(", "weights", ")", ",", "0", ")", ")", ",", "name", "=", "scope", ")", "return", "mn_o" ]
Max-norm output regularization removes the neurons of current layer. Returns a function that can be used to apply max-norm regularization to each column of weight matrix. The implementation follows `TensorFlow contrib <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py>`__. Parameters ---------- scale : float A scalar multiplier `Tensor`. 0.0 disables the regularizer. Returns --------- A function with signature `mn_o(weights, name=None)` that apply Lo regularization. Raises --------- ValueError : If scale is outside of the range [0.0, 1.0] or if scale is not a float.
[ "Max", "-", "norm", "output", "regularization", "removes", "the", "neurons", "of", "current", "layer", ".", "Returns", "a", "function", "that", "can", "be", "used", "to", "apply", "max", "-", "norm", "regularization", "to", "each", "column", "of", "weight", "matrix", ".", "The", "implementation", "follows", "TensorFlow", "contrib", "<https", ":", "//", "github", ".", "com", "/", "tensorflow", "/", "tensorflow", "/", "blob", "/", "master", "/", "tensorflow", "/", "contrib", "/", "layers", "/", "python", "/", "layers", "/", "regularizers", ".", "py", ">", "__", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/cost.py#L639-L683
valid
tensorlayer/tensorlayer
tensorlayer/activation.py
ramp
def ramp(x, v_min=0, v_max=1, name=None): """Ramp activation function. Parameters ---------- x : Tensor input. v_min : float cap input to v_min as a lower bound. v_max : float cap input to v_max as a upper bound. name : str The function name (optional). Returns ------- Tensor A ``Tensor`` in the same type as ``x``. """ return tf.clip_by_value(x, clip_value_min=v_min, clip_value_max=v_max, name=name)
python
def ramp(x, v_min=0, v_max=1, name=None): """Ramp activation function. Parameters ---------- x : Tensor input. v_min : float cap input to v_min as a lower bound. v_max : float cap input to v_max as a upper bound. name : str The function name (optional). Returns ------- Tensor A ``Tensor`` in the same type as ``x``. """ return tf.clip_by_value(x, clip_value_min=v_min, clip_value_max=v_max, name=name)
[ "def", "ramp", "(", "x", ",", "v_min", "=", "0", ",", "v_max", "=", "1", ",", "name", "=", "None", ")", ":", "return", "tf", ".", "clip_by_value", "(", "x", ",", "clip_value_min", "=", "v_min", ",", "clip_value_max", "=", "v_max", ",", "name", "=", "name", ")" ]
Ramp activation function. Parameters ---------- x : Tensor input. v_min : float cap input to v_min as a lower bound. v_max : float cap input to v_max as a upper bound. name : str The function name (optional). Returns ------- Tensor A ``Tensor`` in the same type as ``x``.
[ "Ramp", "activation", "function", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/activation.py#L25-L45
valid
tensorlayer/tensorlayer
tensorlayer/activation.py
leaky_relu
def leaky_relu(x, alpha=0.2, name="leaky_relu"): """leaky_relu can be used through its shortcut: :func:`tl.act.lrelu`. This function is a modified version of ReLU, introducing a nonzero gradient for negative input. Introduced by the paper: `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ The function return the following results: - When x < 0: ``f(x) = alpha_low * x``. - When x >= 0: ``f(x) = x``. Parameters ---------- x : Tensor Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``, or ``int8``. alpha : float Slope. name : str The function name (optional). Examples -------- >>> import tensorlayer as tl >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.lrelu(x, 0.2), name='dense') Returns ------- Tensor A ``Tensor`` in the same type as ``x``. References ---------- - `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ """ if not (0 < alpha <= 1): raise ValueError("`alpha` value must be in [0, 1]`") with tf.name_scope(name, "leaky_relu") as name_scope: x = tf.convert_to_tensor(x, name="features") return tf.maximum(x, alpha * x, name=name_scope)
python
def leaky_relu(x, alpha=0.2, name="leaky_relu"): """leaky_relu can be used through its shortcut: :func:`tl.act.lrelu`. This function is a modified version of ReLU, introducing a nonzero gradient for negative input. Introduced by the paper: `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ The function return the following results: - When x < 0: ``f(x) = alpha_low * x``. - When x >= 0: ``f(x) = x``. Parameters ---------- x : Tensor Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``, or ``int8``. alpha : float Slope. name : str The function name (optional). Examples -------- >>> import tensorlayer as tl >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.lrelu(x, 0.2), name='dense') Returns ------- Tensor A ``Tensor`` in the same type as ``x``. References ---------- - `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ """ if not (0 < alpha <= 1): raise ValueError("`alpha` value must be in [0, 1]`") with tf.name_scope(name, "leaky_relu") as name_scope: x = tf.convert_to_tensor(x, name="features") return tf.maximum(x, alpha * x, name=name_scope)
[ "def", "leaky_relu", "(", "x", ",", "alpha", "=", "0.2", ",", "name", "=", "\"leaky_relu\"", ")", ":", "if", "not", "(", "0", "<", "alpha", "<=", "1", ")", ":", "raise", "ValueError", "(", "\"`alpha` value must be in [0, 1]`\"", ")", "with", "tf", ".", "name_scope", "(", "name", ",", "\"leaky_relu\"", ")", "as", "name_scope", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "x", ",", "name", "=", "\"features\"", ")", "return", "tf", ".", "maximum", "(", "x", ",", "alpha", "*", "x", ",", "name", "=", "name_scope", ")" ]
leaky_relu can be used through its shortcut: :func:`tl.act.lrelu`. This function is a modified version of ReLU, introducing a nonzero gradient for negative input. Introduced by the paper: `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ The function return the following results: - When x < 0: ``f(x) = alpha_low * x``. - When x >= 0: ``f(x) = x``. Parameters ---------- x : Tensor Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``, or ``int8``. alpha : float Slope. name : str The function name (optional). Examples -------- >>> import tensorlayer as tl >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.lrelu(x, 0.2), name='dense') Returns ------- Tensor A ``Tensor`` in the same type as ``x``. References ---------- - `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__
[ "leaky_relu", "can", "be", "used", "through", "its", "shortcut", ":", ":", "func", ":", "tl", ".", "act", ".", "lrelu", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/activation.py#L49-L88
valid
tensorlayer/tensorlayer
tensorlayer/activation.py
leaky_relu6
def leaky_relu6(x, alpha=0.2, name="leaky_relu6"): """:func:`leaky_relu6` can be used through its shortcut: :func:`tl.act.lrelu6`. This activation function is a modified version :func:`leaky_relu` introduced by the following paper: `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ This activation function also follows the behaviour of the activation function :func:`tf.nn.relu6` introduced by the following paper: `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__ The function return the following results: - When x < 0: ``f(x) = alpha_low * x``. - When x in [0, 6]: ``f(x) = x``. - When x > 6: ``f(x) = 6``. Parameters ---------- x : Tensor Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``, or ``int8``. alpha : float Slope. name : str The function name (optional). Examples -------- >>> import tensorlayer as tl >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.leaky_relu6(x, 0.2), name='dense') Returns ------- Tensor A ``Tensor`` in the same type as ``x``. References ---------- - `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ - `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__ """ if not isinstance(alpha, tf.Tensor) and not (0 < alpha <= 1): raise ValueError("`alpha` value must be in [0, 1]`") with tf.name_scope(name, "leaky_relu6") as name_scope: x = tf.convert_to_tensor(x, name="features") return tf.minimum(tf.maximum(x, alpha * x), 6, name=name_scope)
python
def leaky_relu6(x, alpha=0.2, name="leaky_relu6"): """:func:`leaky_relu6` can be used through its shortcut: :func:`tl.act.lrelu6`. This activation function is a modified version :func:`leaky_relu` introduced by the following paper: `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ This activation function also follows the behaviour of the activation function :func:`tf.nn.relu6` introduced by the following paper: `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__ The function return the following results: - When x < 0: ``f(x) = alpha_low * x``. - When x in [0, 6]: ``f(x) = x``. - When x > 6: ``f(x) = 6``. Parameters ---------- x : Tensor Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``, or ``int8``. alpha : float Slope. name : str The function name (optional). Examples -------- >>> import tensorlayer as tl >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.leaky_relu6(x, 0.2), name='dense') Returns ------- Tensor A ``Tensor`` in the same type as ``x``. References ---------- - `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ - `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__ """ if not isinstance(alpha, tf.Tensor) and not (0 < alpha <= 1): raise ValueError("`alpha` value must be in [0, 1]`") with tf.name_scope(name, "leaky_relu6") as name_scope: x = tf.convert_to_tensor(x, name="features") return tf.minimum(tf.maximum(x, alpha * x), 6, name=name_scope)
[ "def", "leaky_relu6", "(", "x", ",", "alpha", "=", "0.2", ",", "name", "=", "\"leaky_relu6\"", ")", ":", "if", "not", "isinstance", "(", "alpha", ",", "tf", ".", "Tensor", ")", "and", "not", "(", "0", "<", "alpha", "<=", "1", ")", ":", "raise", "ValueError", "(", "\"`alpha` value must be in [0, 1]`\"", ")", "with", "tf", ".", "name_scope", "(", "name", ",", "\"leaky_relu6\"", ")", "as", "name_scope", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "x", ",", "name", "=", "\"features\"", ")", "return", "tf", ".", "minimum", "(", "tf", ".", "maximum", "(", "x", ",", "alpha", "*", "x", ")", ",", "6", ",", "name", "=", "name_scope", ")" ]
:func:`leaky_relu6` can be used through its shortcut: :func:`tl.act.lrelu6`. This activation function is a modified version :func:`leaky_relu` introduced by the following paper: `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ This activation function also follows the behaviour of the activation function :func:`tf.nn.relu6` introduced by the following paper: `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__ The function return the following results: - When x < 0: ``f(x) = alpha_low * x``. - When x in [0, 6]: ``f(x) = x``. - When x > 6: ``f(x) = 6``. Parameters ---------- x : Tensor Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``, or ``int8``. alpha : float Slope. name : str The function name (optional). Examples -------- >>> import tensorlayer as tl >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.leaky_relu6(x, 0.2), name='dense') Returns ------- Tensor A ``Tensor`` in the same type as ``x``. References ---------- - `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ - `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__
[ ":", "func", ":", "leaky_relu6", "can", "be", "used", "through", "its", "shortcut", ":", ":", "func", ":", "tl", ".", "act", ".", "lrelu6", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/activation.py#L91-L134
valid
tensorlayer/tensorlayer
tensorlayer/activation.py
leaky_twice_relu6
def leaky_twice_relu6(x, alpha_low=0.2, alpha_high=0.2, name="leaky_relu6"): """:func:`leaky_twice_relu6` can be used through its shortcut: :func:`:func:`tl.act.ltrelu6`. This activation function is a modified version :func:`leaky_relu` introduced by the following paper: `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ This activation function also follows the behaviour of the activation function :func:`tf.nn.relu6` introduced by the following paper: `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__ This function push further the logic by adding `leaky` behaviour both below zero and above six. The function return the following results: - When x < 0: ``f(x) = alpha_low * x``. - When x in [0, 6]: ``f(x) = x``. - When x > 6: ``f(x) = 6 + (alpha_high * (x-6))``. Parameters ---------- x : Tensor Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``, or ``int8``. alpha_low : float Slope for x < 0: ``f(x) = alpha_low * x``. alpha_high : float Slope for x < 6: ``f(x) = 6 (alpha_high * (x-6))``. name : str The function name (optional). Examples -------- >>> import tensorlayer as tl >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.leaky_twice_relu6(x, 0.2, 0.2), name='dense') Returns ------- Tensor A ``Tensor`` in the same type as ``x``. References ---------- - `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ - `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__ """ if not isinstance(alpha_high, tf.Tensor) and not (0 < alpha_high <= 1): raise ValueError("`alpha_high` value must be in [0, 1]`") if not isinstance(alpha_low, tf.Tensor) and not (0 < alpha_low <= 1): raise ValueError("`alpha_low` value must be in [0, 1]`") with tf.name_scope(name, "leaky_twice_relu6") as name_scope: x = tf.convert_to_tensor(x, name="features") x_is_above_0 = tf.minimum(x, 6 * (1 - alpha_high) + alpha_high * x) x_is_below_0 = tf.minimum(alpha_low * x, 0) return tf.maximum(x_is_above_0, x_is_below_0, name=name_scope)
python
def leaky_twice_relu6(x, alpha_low=0.2, alpha_high=0.2, name="leaky_relu6"): """:func:`leaky_twice_relu6` can be used through its shortcut: :func:`:func:`tl.act.ltrelu6`. This activation function is a modified version :func:`leaky_relu` introduced by the following paper: `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ This activation function also follows the behaviour of the activation function :func:`tf.nn.relu6` introduced by the following paper: `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__ This function push further the logic by adding `leaky` behaviour both below zero and above six. The function return the following results: - When x < 0: ``f(x) = alpha_low * x``. - When x in [0, 6]: ``f(x) = x``. - When x > 6: ``f(x) = 6 + (alpha_high * (x-6))``. Parameters ---------- x : Tensor Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``, or ``int8``. alpha_low : float Slope for x < 0: ``f(x) = alpha_low * x``. alpha_high : float Slope for x < 6: ``f(x) = 6 (alpha_high * (x-6))``. name : str The function name (optional). Examples -------- >>> import tensorlayer as tl >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.leaky_twice_relu6(x, 0.2, 0.2), name='dense') Returns ------- Tensor A ``Tensor`` in the same type as ``x``. References ---------- - `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ - `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__ """ if not isinstance(alpha_high, tf.Tensor) and not (0 < alpha_high <= 1): raise ValueError("`alpha_high` value must be in [0, 1]`") if not isinstance(alpha_low, tf.Tensor) and not (0 < alpha_low <= 1): raise ValueError("`alpha_low` value must be in [0, 1]`") with tf.name_scope(name, "leaky_twice_relu6") as name_scope: x = tf.convert_to_tensor(x, name="features") x_is_above_0 = tf.minimum(x, 6 * (1 - alpha_high) + alpha_high * x) x_is_below_0 = tf.minimum(alpha_low * x, 0) return tf.maximum(x_is_above_0, x_is_below_0, name=name_scope)
[ "def", "leaky_twice_relu6", "(", "x", ",", "alpha_low", "=", "0.2", ",", "alpha_high", "=", "0.2", ",", "name", "=", "\"leaky_relu6\"", ")", ":", "if", "not", "isinstance", "(", "alpha_high", ",", "tf", ".", "Tensor", ")", "and", "not", "(", "0", "<", "alpha_high", "<=", "1", ")", ":", "raise", "ValueError", "(", "\"`alpha_high` value must be in [0, 1]`\"", ")", "if", "not", "isinstance", "(", "alpha_low", ",", "tf", ".", "Tensor", ")", "and", "not", "(", "0", "<", "alpha_low", "<=", "1", ")", ":", "raise", "ValueError", "(", "\"`alpha_low` value must be in [0, 1]`\"", ")", "with", "tf", ".", "name_scope", "(", "name", ",", "\"leaky_twice_relu6\"", ")", "as", "name_scope", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "x", ",", "name", "=", "\"features\"", ")", "x_is_above_0", "=", "tf", ".", "minimum", "(", "x", ",", "6", "*", "(", "1", "-", "alpha_high", ")", "+", "alpha_high", "*", "x", ")", "x_is_below_0", "=", "tf", ".", "minimum", "(", "alpha_low", "*", "x", ",", "0", ")", "return", "tf", ".", "maximum", "(", "x_is_above_0", ",", "x_is_below_0", ",", "name", "=", "name_scope", ")" ]
:func:`leaky_twice_relu6` can be used through its shortcut: :func:`:func:`tl.act.ltrelu6`. This activation function is a modified version :func:`leaky_relu` introduced by the following paper: `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ This activation function also follows the behaviour of the activation function :func:`tf.nn.relu6` introduced by the following paper: `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__ This function push further the logic by adding `leaky` behaviour both below zero and above six. The function return the following results: - When x < 0: ``f(x) = alpha_low * x``. - When x in [0, 6]: ``f(x) = x``. - When x > 6: ``f(x) = 6 + (alpha_high * (x-6))``. Parameters ---------- x : Tensor Support input type ``float``, ``double``, ``int32``, ``int64``, ``uint8``, ``int16``, or ``int8``. alpha_low : float Slope for x < 0: ``f(x) = alpha_low * x``. alpha_high : float Slope for x < 6: ``f(x) = 6 (alpha_high * (x-6))``. name : str The function name (optional). Examples -------- >>> import tensorlayer as tl >>> net = tl.layers.DenseLayer(net, 100, act=lambda x : tl.act.leaky_twice_relu6(x, 0.2, 0.2), name='dense') Returns ------- Tensor A ``Tensor`` in the same type as ``x``. References ---------- - `Rectifier Nonlinearities Improve Neural Network Acoustic Models [A. L. Maas et al., 2013] <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`__ - `Convolutional Deep Belief Networks on CIFAR-10 [A. Krizhevsky, 2010] <http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf>`__
[ ":", "func", ":", "leaky_twice_relu6", "can", "be", "used", "through", "its", "shortcut", ":", ":", "func", ":", ":", "func", ":", "tl", ".", "act", ".", "ltrelu6", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/activation.py#L137-L192
valid
tensorlayer/tensorlayer
tensorlayer/activation.py
swish
def swish(x, name='swish'): """Swish function. See `Swish: a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941>`__. Parameters ---------- x : Tensor input. name: str function name (optional). Returns ------- Tensor A ``Tensor`` in the same type as ``x``. """ with tf.name_scope(name): x = tf.nn.sigmoid(x) * x return x
python
def swish(x, name='swish'): """Swish function. See `Swish: a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941>`__. Parameters ---------- x : Tensor input. name: str function name (optional). Returns ------- Tensor A ``Tensor`` in the same type as ``x``. """ with tf.name_scope(name): x = tf.nn.sigmoid(x) * x return x
[ "def", "swish", "(", "x", ",", "name", "=", "'swish'", ")", ":", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "x", "=", "tf", ".", "nn", ".", "sigmoid", "(", "x", ")", "*", "x", "return", "x" ]
Swish function. See `Swish: a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941>`__. Parameters ---------- x : Tensor input. name: str function name (optional). Returns ------- Tensor A ``Tensor`` in the same type as ``x``.
[ "Swish", "function", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/activation.py#L195-L215
valid
tensorlayer/tensorlayer
tensorlayer/activation.py
pixel_wise_softmax
def pixel_wise_softmax(x, name='pixel_wise_softmax'): """Return the softmax outputs of images, every pixels have multiple label, the sum of a pixel is 1. Usually be used for image segmentation. Parameters ---------- x : Tensor input. - For 2d image, 4D tensor (batch_size, height, weight, channel), where channel >= 2. - For 3d image, 5D tensor (batch_size, depth, height, weight, channel), where channel >= 2. name : str function name (optional) Returns ------- Tensor A ``Tensor`` in the same type as ``x``. Examples -------- >>> outputs = pixel_wise_softmax(network.outputs) >>> dice_loss = 1 - dice_coe(outputs, y_, epsilon=1e-5) References ---------- - `tf.reverse <https://www.tensorflow.org/versions/master/api_docs/python/array_ops.html#reverse>`__ """ with tf.name_scope(name): return tf.nn.softmax(x)
python
def pixel_wise_softmax(x, name='pixel_wise_softmax'): """Return the softmax outputs of images, every pixels have multiple label, the sum of a pixel is 1. Usually be used for image segmentation. Parameters ---------- x : Tensor input. - For 2d image, 4D tensor (batch_size, height, weight, channel), where channel >= 2. - For 3d image, 5D tensor (batch_size, depth, height, weight, channel), where channel >= 2. name : str function name (optional) Returns ------- Tensor A ``Tensor`` in the same type as ``x``. Examples -------- >>> outputs = pixel_wise_softmax(network.outputs) >>> dice_loss = 1 - dice_coe(outputs, y_, epsilon=1e-5) References ---------- - `tf.reverse <https://www.tensorflow.org/versions/master/api_docs/python/array_ops.html#reverse>`__ """ with tf.name_scope(name): return tf.nn.softmax(x)
[ "def", "pixel_wise_softmax", "(", "x", ",", "name", "=", "'pixel_wise_softmax'", ")", ":", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "return", "tf", ".", "nn", ".", "softmax", "(", "x", ")" ]
Return the softmax outputs of images, every pixels have multiple label, the sum of a pixel is 1. Usually be used for image segmentation. Parameters ---------- x : Tensor input. - For 2d image, 4D tensor (batch_size, height, weight, channel), where channel >= 2. - For 3d image, 5D tensor (batch_size, depth, height, weight, channel), where channel >= 2. name : str function name (optional) Returns ------- Tensor A ``Tensor`` in the same type as ``x``. Examples -------- >>> outputs = pixel_wise_softmax(network.outputs) >>> dice_loss = 1 - dice_coe(outputs, y_, epsilon=1e-5) References ---------- - `tf.reverse <https://www.tensorflow.org/versions/master/api_docs/python/array_ops.html#reverse>`__
[ "Return", "the", "softmax", "outputs", "of", "images", "every", "pixels", "have", "multiple", "label", "the", "sum", "of", "a", "pixel", "is", "1", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/activation.py#L303-L333
valid
tensorlayer/tensorlayer
tensorlayer/layers/recurrent.py
_conv_linear
def _conv_linear(args, filter_size, num_features, bias, bias_start=0.0, scope=None): """convolution: Parameters ---------- args : tensor 4D Tensor or a list of 4D, batch x n, Tensors. filter_size : tuple of int Filter height and width. num_features : int Nnumber of features. bias_start : float Starting value to initialize the bias; 0 by default. scope : VariableScope For the created subgraph; defaults to "Linear". Returns -------- - A 4D Tensor with shape [batch h w num_features] Raises ------- - ValueError : if some of the arguments has unspecified or wrong shape. """ # Calculate the total size of arguments on dimension 1. total_arg_size_depth = 0 shapes = [a.get_shape().as_list() for a in args] for shape in shapes: if len(shape) != 4: raise ValueError("Linear is expecting 4D arguments: %s" % str(shapes)) if not shape[3]: raise ValueError("Linear expects shape[4] of arguments: %s" % str(shapes)) else: total_arg_size_depth += shape[3] dtype = [a.dtype for a in args][0] # Now the computation. with tf.variable_scope(scope or "Conv"): matrix = tf.get_variable( "Matrix", [filter_size[0], filter_size[1], total_arg_size_depth, num_features], dtype=dtype ) if len(args) == 1: res = tf.nn.conv2d(args[0], matrix, strides=[1, 1, 1, 1], padding='SAME') else: res = tf.nn.conv2d(tf.concat(args, 3), matrix, strides=[1, 1, 1, 1], padding='SAME') if not bias: return res bias_term = tf.get_variable( "Bias", [num_features], dtype=dtype, initializer=tf.constant_initializer(bias_start, dtype=dtype) ) return res + bias_term
python
def _conv_linear(args, filter_size, num_features, bias, bias_start=0.0, scope=None): """convolution: Parameters ---------- args : tensor 4D Tensor or a list of 4D, batch x n, Tensors. filter_size : tuple of int Filter height and width. num_features : int Nnumber of features. bias_start : float Starting value to initialize the bias; 0 by default. scope : VariableScope For the created subgraph; defaults to "Linear". Returns -------- - A 4D Tensor with shape [batch h w num_features] Raises ------- - ValueError : if some of the arguments has unspecified or wrong shape. """ # Calculate the total size of arguments on dimension 1. total_arg_size_depth = 0 shapes = [a.get_shape().as_list() for a in args] for shape in shapes: if len(shape) != 4: raise ValueError("Linear is expecting 4D arguments: %s" % str(shapes)) if not shape[3]: raise ValueError("Linear expects shape[4] of arguments: %s" % str(shapes)) else: total_arg_size_depth += shape[3] dtype = [a.dtype for a in args][0] # Now the computation. with tf.variable_scope(scope or "Conv"): matrix = tf.get_variable( "Matrix", [filter_size[0], filter_size[1], total_arg_size_depth, num_features], dtype=dtype ) if len(args) == 1: res = tf.nn.conv2d(args[0], matrix, strides=[1, 1, 1, 1], padding='SAME') else: res = tf.nn.conv2d(tf.concat(args, 3), matrix, strides=[1, 1, 1, 1], padding='SAME') if not bias: return res bias_term = tf.get_variable( "Bias", [num_features], dtype=dtype, initializer=tf.constant_initializer(bias_start, dtype=dtype) ) return res + bias_term
[ "def", "_conv_linear", "(", "args", ",", "filter_size", ",", "num_features", ",", "bias", ",", "bias_start", "=", "0.0", ",", "scope", "=", "None", ")", ":", "# Calculate the total size of arguments on dimension 1.", "total_arg_size_depth", "=", "0", "shapes", "=", "[", "a", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "for", "a", "in", "args", "]", "for", "shape", "in", "shapes", ":", "if", "len", "(", "shape", ")", "!=", "4", ":", "raise", "ValueError", "(", "\"Linear is expecting 4D arguments: %s\"", "%", "str", "(", "shapes", ")", ")", "if", "not", "shape", "[", "3", "]", ":", "raise", "ValueError", "(", "\"Linear expects shape[4] of arguments: %s\"", "%", "str", "(", "shapes", ")", ")", "else", ":", "total_arg_size_depth", "+=", "shape", "[", "3", "]", "dtype", "=", "[", "a", ".", "dtype", "for", "a", "in", "args", "]", "[", "0", "]", "# Now the computation.", "with", "tf", ".", "variable_scope", "(", "scope", "or", "\"Conv\"", ")", ":", "matrix", "=", "tf", ".", "get_variable", "(", "\"Matrix\"", ",", "[", "filter_size", "[", "0", "]", ",", "filter_size", "[", "1", "]", ",", "total_arg_size_depth", ",", "num_features", "]", ",", "dtype", "=", "dtype", ")", "if", "len", "(", "args", ")", "==", "1", ":", "res", "=", "tf", ".", "nn", ".", "conv2d", "(", "args", "[", "0", "]", ",", "matrix", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ")", "else", ":", "res", "=", "tf", ".", "nn", ".", "conv2d", "(", "tf", ".", "concat", "(", "args", ",", "3", ")", ",", "matrix", ",", "strides", "=", "[", "1", ",", "1", ",", "1", ",", "1", "]", ",", "padding", "=", "'SAME'", ")", "if", "not", "bias", ":", "return", "res", "bias_term", "=", "tf", ".", "get_variable", "(", "\"Bias\"", ",", "[", "num_features", "]", ",", "dtype", "=", "dtype", ",", "initializer", "=", "tf", ".", "constant_initializer", "(", "bias_start", ",", "dtype", "=", "dtype", ")", ")", "return", "res", "+", "bias_term" ]
convolution: Parameters ---------- args : tensor 4D Tensor or a list of 4D, batch x n, Tensors. filter_size : tuple of int Filter height and width. num_features : int Nnumber of features. bias_start : float Starting value to initialize the bias; 0 by default. scope : VariableScope For the created subgraph; defaults to "Linear". Returns -------- - A 4D Tensor with shape [batch h w num_features] Raises ------- - ValueError : if some of the arguments has unspecified or wrong shape.
[ "convolution", ":" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/recurrent.py#L596-L648
valid
tensorlayer/tensorlayer
tensorlayer/layers/recurrent.py
advanced_indexing_op
def advanced_indexing_op(inputs, index): """Advanced Indexing for Sequences, returns the outputs by given sequence lengths. When return the last output :class:`DynamicRNNLayer` uses it to get the last outputs with the sequence lengths. Parameters ----------- inputs : tensor for data With shape of [batch_size, n_step(max), n_features] index : tensor for indexing Sequence length in Dynamic RNN. [batch_size] Examples --------- >>> import numpy as np >>> import tensorflow as tf >>> import tensorlayer as tl >>> batch_size, max_length, n_features = 3, 5, 2 >>> z = np.random.uniform(low=-1, high=1, size=[batch_size, max_length, n_features]).astype(np.float32) >>> b_z = tf.constant(z) >>> sl = tf.placeholder(dtype=tf.int32, shape=[batch_size]) >>> o = advanced_indexing_op(b_z, sl) >>> >>> sess = tf.InteractiveSession() >>> tl.layers.initialize_global_variables(sess) >>> >>> order = np.asarray([1,1,2]) >>> print("real",z[0][order[0]-1], z[1][order[1]-1], z[2][order[2]-1]) >>> y = sess.run([o], feed_dict={sl:order}) >>> print("given",order) >>> print("out", y) real [-0.93021595 0.53820813] [-0.92548317 -0.77135968] [ 0.89952248 0.19149846] given [1 1 2] out [array([[-0.93021595, 0.53820813], [-0.92548317, -0.77135968], [ 0.89952248, 0.19149846]], dtype=float32)] References ----------- - Modified from TFlearn (the original code is used for fixed length rnn), `references <https://github.com/tflearn/tflearn/blob/master/tflearn/layers/recurrent.py>`__. """ batch_size = tf.shape(inputs)[0] # max_length = int(inputs.get_shape()[1]) # for fixed length rnn, length is given max_length = tf.shape(inputs)[1] # for dynamic_rnn, length is unknown dim_size = int(inputs.get_shape()[2]) index = tf.range(0, batch_size) * max_length + (index - 1) flat = tf.reshape(inputs, [-1, dim_size]) relevant = tf.gather(flat, index) return relevant
python
def advanced_indexing_op(inputs, index): """Advanced Indexing for Sequences, returns the outputs by given sequence lengths. When return the last output :class:`DynamicRNNLayer` uses it to get the last outputs with the sequence lengths. Parameters ----------- inputs : tensor for data With shape of [batch_size, n_step(max), n_features] index : tensor for indexing Sequence length in Dynamic RNN. [batch_size] Examples --------- >>> import numpy as np >>> import tensorflow as tf >>> import tensorlayer as tl >>> batch_size, max_length, n_features = 3, 5, 2 >>> z = np.random.uniform(low=-1, high=1, size=[batch_size, max_length, n_features]).astype(np.float32) >>> b_z = tf.constant(z) >>> sl = tf.placeholder(dtype=tf.int32, shape=[batch_size]) >>> o = advanced_indexing_op(b_z, sl) >>> >>> sess = tf.InteractiveSession() >>> tl.layers.initialize_global_variables(sess) >>> >>> order = np.asarray([1,1,2]) >>> print("real",z[0][order[0]-1], z[1][order[1]-1], z[2][order[2]-1]) >>> y = sess.run([o], feed_dict={sl:order}) >>> print("given",order) >>> print("out", y) real [-0.93021595 0.53820813] [-0.92548317 -0.77135968] [ 0.89952248 0.19149846] given [1 1 2] out [array([[-0.93021595, 0.53820813], [-0.92548317, -0.77135968], [ 0.89952248, 0.19149846]], dtype=float32)] References ----------- - Modified from TFlearn (the original code is used for fixed length rnn), `references <https://github.com/tflearn/tflearn/blob/master/tflearn/layers/recurrent.py>`__. """ batch_size = tf.shape(inputs)[0] # max_length = int(inputs.get_shape()[1]) # for fixed length rnn, length is given max_length = tf.shape(inputs)[1] # for dynamic_rnn, length is unknown dim_size = int(inputs.get_shape()[2]) index = tf.range(0, batch_size) * max_length + (index - 1) flat = tf.reshape(inputs, [-1, dim_size]) relevant = tf.gather(flat, index) return relevant
[ "def", "advanced_indexing_op", "(", "inputs", ",", "index", ")", ":", "batch_size", "=", "tf", ".", "shape", "(", "inputs", ")", "[", "0", "]", "# max_length = int(inputs.get_shape()[1]) # for fixed length rnn, length is given", "max_length", "=", "tf", ".", "shape", "(", "inputs", ")", "[", "1", "]", "# for dynamic_rnn, length is unknown", "dim_size", "=", "int", "(", "inputs", ".", "get_shape", "(", ")", "[", "2", "]", ")", "index", "=", "tf", ".", "range", "(", "0", ",", "batch_size", ")", "*", "max_length", "+", "(", "index", "-", "1", ")", "flat", "=", "tf", ".", "reshape", "(", "inputs", ",", "[", "-", "1", ",", "dim_size", "]", ")", "relevant", "=", "tf", ".", "gather", "(", "flat", ",", "index", ")", "return", "relevant" ]
Advanced Indexing for Sequences, returns the outputs by given sequence lengths. When return the last output :class:`DynamicRNNLayer` uses it to get the last outputs with the sequence lengths. Parameters ----------- inputs : tensor for data With shape of [batch_size, n_step(max), n_features] index : tensor for indexing Sequence length in Dynamic RNN. [batch_size] Examples --------- >>> import numpy as np >>> import tensorflow as tf >>> import tensorlayer as tl >>> batch_size, max_length, n_features = 3, 5, 2 >>> z = np.random.uniform(low=-1, high=1, size=[batch_size, max_length, n_features]).astype(np.float32) >>> b_z = tf.constant(z) >>> sl = tf.placeholder(dtype=tf.int32, shape=[batch_size]) >>> o = advanced_indexing_op(b_z, sl) >>> >>> sess = tf.InteractiveSession() >>> tl.layers.initialize_global_variables(sess) >>> >>> order = np.asarray([1,1,2]) >>> print("real",z[0][order[0]-1], z[1][order[1]-1], z[2][order[2]-1]) >>> y = sess.run([o], feed_dict={sl:order}) >>> print("given",order) >>> print("out", y) real [-0.93021595 0.53820813] [-0.92548317 -0.77135968] [ 0.89952248 0.19149846] given [1 1 2] out [array([[-0.93021595, 0.53820813], [-0.92548317, -0.77135968], [ 0.89952248, 0.19149846]], dtype=float32)] References ----------- - Modified from TFlearn (the original code is used for fixed length rnn), `references <https://github.com/tflearn/tflearn/blob/master/tflearn/layers/recurrent.py>`__.
[ "Advanced", "Indexing", "for", "Sequences", "returns", "the", "outputs", "by", "given", "sequence", "lengths", ".", "When", "return", "the", "last", "output", ":", "class", ":", "DynamicRNNLayer", "uses", "it", "to", "get", "the", "last", "outputs", "with", "the", "sequence", "lengths", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/recurrent.py#L798-L846
valid
tensorlayer/tensorlayer
tensorlayer/layers/recurrent.py
retrieve_seq_length_op
def retrieve_seq_length_op(data): """An op to compute the length of a sequence from input shape of [batch_size, n_step(max), n_features], it can be used when the features of padding (on right hand side) are all zeros. Parameters ----------- data : tensor [batch_size, n_step(max), n_features] with zero padding on right hand side. Examples --------- >>> data = [[[1],[2],[0],[0],[0]], ... [[1],[2],[3],[0],[0]], ... [[1],[2],[6],[1],[0]]] >>> data = np.asarray(data) >>> print(data.shape) (3, 5, 1) >>> data = tf.constant(data) >>> sl = retrieve_seq_length_op(data) >>> sess = tf.InteractiveSession() >>> tl.layers.initialize_global_variables(sess) >>> y = sl.eval() [2 3 4] Multiple features >>> data = [[[1,2],[2,2],[1,2],[1,2],[0,0]], ... [[2,3],[2,4],[3,2],[0,0],[0,0]], ... [[3,3],[2,2],[5,3],[1,2],[0,0]]] >>> print(sl) [4 3 4] References ------------ Borrow from `TFlearn <https://github.com/tflearn/tflearn/blob/master/tflearn/layers/recurrent.py>`__. """ with tf.name_scope('GetLength'): used = tf.sign(tf.reduce_max(tf.abs(data), 2)) length = tf.reduce_sum(used, 1) return tf.cast(length, tf.int32)
python
def retrieve_seq_length_op(data): """An op to compute the length of a sequence from input shape of [batch_size, n_step(max), n_features], it can be used when the features of padding (on right hand side) are all zeros. Parameters ----------- data : tensor [batch_size, n_step(max), n_features] with zero padding on right hand side. Examples --------- >>> data = [[[1],[2],[0],[0],[0]], ... [[1],[2],[3],[0],[0]], ... [[1],[2],[6],[1],[0]]] >>> data = np.asarray(data) >>> print(data.shape) (3, 5, 1) >>> data = tf.constant(data) >>> sl = retrieve_seq_length_op(data) >>> sess = tf.InteractiveSession() >>> tl.layers.initialize_global_variables(sess) >>> y = sl.eval() [2 3 4] Multiple features >>> data = [[[1,2],[2,2],[1,2],[1,2],[0,0]], ... [[2,3],[2,4],[3,2],[0,0],[0,0]], ... [[3,3],[2,2],[5,3],[1,2],[0,0]]] >>> print(sl) [4 3 4] References ------------ Borrow from `TFlearn <https://github.com/tflearn/tflearn/blob/master/tflearn/layers/recurrent.py>`__. """ with tf.name_scope('GetLength'): used = tf.sign(tf.reduce_max(tf.abs(data), 2)) length = tf.reduce_sum(used, 1) return tf.cast(length, tf.int32)
[ "def", "retrieve_seq_length_op", "(", "data", ")", ":", "with", "tf", ".", "name_scope", "(", "'GetLength'", ")", ":", "used", "=", "tf", ".", "sign", "(", "tf", ".", "reduce_max", "(", "tf", ".", "abs", "(", "data", ")", ",", "2", ")", ")", "length", "=", "tf", ".", "reduce_sum", "(", "used", ",", "1", ")", "return", "tf", ".", "cast", "(", "length", ",", "tf", ".", "int32", ")" ]
An op to compute the length of a sequence from input shape of [batch_size, n_step(max), n_features], it can be used when the features of padding (on right hand side) are all zeros. Parameters ----------- data : tensor [batch_size, n_step(max), n_features] with zero padding on right hand side. Examples --------- >>> data = [[[1],[2],[0],[0],[0]], ... [[1],[2],[3],[0],[0]], ... [[1],[2],[6],[1],[0]]] >>> data = np.asarray(data) >>> print(data.shape) (3, 5, 1) >>> data = tf.constant(data) >>> sl = retrieve_seq_length_op(data) >>> sess = tf.InteractiveSession() >>> tl.layers.initialize_global_variables(sess) >>> y = sl.eval() [2 3 4] Multiple features >>> data = [[[1,2],[2,2],[1,2],[1,2],[0,0]], ... [[2,3],[2,4],[3,2],[0,0],[0,0]], ... [[3,3],[2,2],[5,3],[1,2],[0,0]]] >>> print(sl) [4 3 4] References ------------ Borrow from `TFlearn <https://github.com/tflearn/tflearn/blob/master/tflearn/layers/recurrent.py>`__.
[ "An", "op", "to", "compute", "the", "length", "of", "a", "sequence", "from", "input", "shape", "of", "[", "batch_size", "n_step", "(", "max", ")", "n_features", "]", "it", "can", "be", "used", "when", "the", "features", "of", "padding", "(", "on", "right", "hand", "side", ")", "are", "all", "zeros", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/recurrent.py#L849-L889
valid
tensorlayer/tensorlayer
tensorlayer/layers/recurrent.py
retrieve_seq_length_op2
def retrieve_seq_length_op2(data): """An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)], it can be used when the features of padding (on right hand side) are all zeros. Parameters ----------- data : tensor [batch_size, n_step(max)] with zero padding on right hand side. Examples -------- >>> data = [[1,2,0,0,0], ... [1,2,3,0,0], ... [1,2,6,1,0]] >>> o = retrieve_seq_length_op2(data) >>> sess = tf.InteractiveSession() >>> tl.layers.initialize_global_variables(sess) >>> print(o.eval()) [2 3 4] """ return tf.reduce_sum(tf.cast(tf.greater(data, tf.zeros_like(data)), tf.int32), 1)
python
def retrieve_seq_length_op2(data): """An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)], it can be used when the features of padding (on right hand side) are all zeros. Parameters ----------- data : tensor [batch_size, n_step(max)] with zero padding on right hand side. Examples -------- >>> data = [[1,2,0,0,0], ... [1,2,3,0,0], ... [1,2,6,1,0]] >>> o = retrieve_seq_length_op2(data) >>> sess = tf.InteractiveSession() >>> tl.layers.initialize_global_variables(sess) >>> print(o.eval()) [2 3 4] """ return tf.reduce_sum(tf.cast(tf.greater(data, tf.zeros_like(data)), tf.int32), 1)
[ "def", "retrieve_seq_length_op2", "(", "data", ")", ":", "return", "tf", ".", "reduce_sum", "(", "tf", ".", "cast", "(", "tf", ".", "greater", "(", "data", ",", "tf", ".", "zeros_like", "(", "data", ")", ")", ",", "tf", ".", "int32", ")", ",", "1", ")" ]
An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)], it can be used when the features of padding (on right hand side) are all zeros. Parameters ----------- data : tensor [batch_size, n_step(max)] with zero padding on right hand side. Examples -------- >>> data = [[1,2,0,0,0], ... [1,2,3,0,0], ... [1,2,6,1,0]] >>> o = retrieve_seq_length_op2(data) >>> sess = tf.InteractiveSession() >>> tl.layers.initialize_global_variables(sess) >>> print(o.eval()) [2 3 4]
[ "An", "op", "to", "compute", "the", "length", "of", "a", "sequence", "from", "input", "shape", "of", "[", "batch_size", "n_step", "(", "max", ")", "]", "it", "can", "be", "used", "when", "the", "features", "of", "padding", "(", "on", "right", "hand", "side", ")", "are", "all", "zeros", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/recurrent.py#L892-L913
valid
tensorlayer/tensorlayer
tensorlayer/layers/recurrent.py
retrieve_seq_length_op3
def retrieve_seq_length_op3(data, pad_val=0): # HangSheng: return tensor for sequence length, if input is tf.string """Return tensor for sequence length, if input is ``tf.string``.""" data_shape_size = data.get_shape().ndims if data_shape_size == 3: return tf.reduce_sum(tf.cast(tf.reduce_any(tf.not_equal(data, pad_val), axis=2), dtype=tf.int32), 1) elif data_shape_size == 2: return tf.reduce_sum(tf.cast(tf.not_equal(data, pad_val), dtype=tf.int32), 1) elif data_shape_size == 1: raise ValueError("retrieve_seq_length_op3: data has wrong shape!") else: raise ValueError( "retrieve_seq_length_op3: handling data_shape_size %s hasn't been implemented!" % (data_shape_size) )
python
def retrieve_seq_length_op3(data, pad_val=0): # HangSheng: return tensor for sequence length, if input is tf.string """Return tensor for sequence length, if input is ``tf.string``.""" data_shape_size = data.get_shape().ndims if data_shape_size == 3: return tf.reduce_sum(tf.cast(tf.reduce_any(tf.not_equal(data, pad_val), axis=2), dtype=tf.int32), 1) elif data_shape_size == 2: return tf.reduce_sum(tf.cast(tf.not_equal(data, pad_val), dtype=tf.int32), 1) elif data_shape_size == 1: raise ValueError("retrieve_seq_length_op3: data has wrong shape!") else: raise ValueError( "retrieve_seq_length_op3: handling data_shape_size %s hasn't been implemented!" % (data_shape_size) )
[ "def", "retrieve_seq_length_op3", "(", "data", ",", "pad_val", "=", "0", ")", ":", "# HangSheng: return tensor for sequence length, if input is tf.string", "data_shape_size", "=", "data", ".", "get_shape", "(", ")", ".", "ndims", "if", "data_shape_size", "==", "3", ":", "return", "tf", ".", "reduce_sum", "(", "tf", ".", "cast", "(", "tf", ".", "reduce_any", "(", "tf", ".", "not_equal", "(", "data", ",", "pad_val", ")", ",", "axis", "=", "2", ")", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "1", ")", "elif", "data_shape_size", "==", "2", ":", "return", "tf", ".", "reduce_sum", "(", "tf", ".", "cast", "(", "tf", ".", "not_equal", "(", "data", ",", "pad_val", ")", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "1", ")", "elif", "data_shape_size", "==", "1", ":", "raise", "ValueError", "(", "\"retrieve_seq_length_op3: data has wrong shape!\"", ")", "else", ":", "raise", "ValueError", "(", "\"retrieve_seq_length_op3: handling data_shape_size %s hasn't been implemented!\"", "%", "(", "data_shape_size", ")", ")" ]
Return tensor for sequence length, if input is ``tf.string``.
[ "Return", "tensor", "for", "sequence", "length", "if", "input", "is", "tf", ".", "string", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/recurrent.py#L916-L928
valid
tensorlayer/tensorlayer
tensorlayer/layers/recurrent.py
ConvRNNCell.zero_state
def zero_state(self, batch_size, dtype=LayersConfig.tf_dtype): """Return zero-filled state tensor(s). Args: batch_size: int, float, or unit Tensor representing the batch size. Returns: tensor of shape '[batch_size x shape[0] x shape[1] x num_features] filled with zeros """ shape = self.shape num_features = self.num_features # TODO : TypeError: 'NoneType' object is not subscriptable zeros = tf.zeros([batch_size, shape[0], shape[1], num_features * 2], dtype=dtype) return zeros
python
def zero_state(self, batch_size, dtype=LayersConfig.tf_dtype): """Return zero-filled state tensor(s). Args: batch_size: int, float, or unit Tensor representing the batch size. Returns: tensor of shape '[batch_size x shape[0] x shape[1] x num_features] filled with zeros """ shape = self.shape num_features = self.num_features # TODO : TypeError: 'NoneType' object is not subscriptable zeros = tf.zeros([batch_size, shape[0], shape[1], num_features * 2], dtype=dtype) return zeros
[ "def", "zero_state", "(", "self", ",", "batch_size", ",", "dtype", "=", "LayersConfig", ".", "tf_dtype", ")", ":", "shape", "=", "self", ".", "shape", "num_features", "=", "self", ".", "num_features", "# TODO : TypeError: 'NoneType' object is not subscriptable", "zeros", "=", "tf", ".", "zeros", "(", "[", "batch_size", ",", "shape", "[", "0", "]", ",", "shape", "[", "1", "]", ",", "num_features", "*", "2", "]", ",", "dtype", "=", "dtype", ")", "return", "zeros" ]
Return zero-filled state tensor(s). Args: batch_size: int, float, or unit Tensor representing the batch size. Returns: tensor of shape '[batch_size x shape[0] x shape[1] x num_features] filled with zeros
[ "Return", "zero", "-", "filled", "state", "tensor", "(", "s", ")", ".", "Args", ":", "batch_size", ":", "int", "float", "or", "unit", "Tensor", "representing", "the", "batch", "size", ".", "Returns", ":", "tensor", "of", "shape", "[", "batch_size", "x", "shape", "[", "0", "]", "x", "shape", "[", "1", "]", "x", "num_features", "]", "filled", "with", "zeros" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/recurrent.py#L504-L517
valid
tensorlayer/tensorlayer
tensorlayer/layers/recurrent.py
BasicConvLSTMCell.state_size
def state_size(self): """State size of the LSTMStateTuple.""" return (LSTMStateTuple(self._num_units, self._num_units) if self._state_is_tuple else 2 * self._num_units)
python
def state_size(self): """State size of the LSTMStateTuple.""" return (LSTMStateTuple(self._num_units, self._num_units) if self._state_is_tuple else 2 * self._num_units)
[ "def", "state_size", "(", "self", ")", ":", "return", "(", "LSTMStateTuple", "(", "self", ".", "_num_units", ",", "self", ".", "_num_units", ")", "if", "self", ".", "_state_is_tuple", "else", "2", "*", "self", ".", "_num_units", ")" ]
State size of the LSTMStateTuple.
[ "State", "size", "of", "the", "LSTMStateTuple", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/recurrent.py#L561-L563
valid
tensorlayer/tensorlayer
tensorlayer/layers/convolution/deformable_conv.py
DeformableConv2d._to_bc_h_w
def _to_bc_h_w(self, x, x_shape): """(b, h, w, c) -> (b*c, h, w)""" x = tf.transpose(x, [0, 3, 1, 2]) x = tf.reshape(x, (-1, x_shape[1], x_shape[2])) return x
python
def _to_bc_h_w(self, x, x_shape): """(b, h, w, c) -> (b*c, h, w)""" x = tf.transpose(x, [0, 3, 1, 2]) x = tf.reshape(x, (-1, x_shape[1], x_shape[2])) return x
[ "def", "_to_bc_h_w", "(", "self", ",", "x", ",", "x_shape", ")", ":", "x", "=", "tf", ".", "transpose", "(", "x", ",", "[", "0", ",", "3", ",", "1", ",", "2", "]", ")", "x", "=", "tf", ".", "reshape", "(", "x", ",", "(", "-", "1", ",", "x_shape", "[", "1", "]", ",", "x_shape", "[", "2", "]", ")", ")", "return", "x" ]
(b, h, w, c) -> (b*c, h, w)
[ "(", "b", "h", "w", "c", ")", "-", ">", "(", "b", "*", "c", "h", "w", ")" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/convolution/deformable_conv.py#L158-L162
valid
tensorlayer/tensorlayer
tensorlayer/layers/convolution/deformable_conv.py
DeformableConv2d._to_b_h_w_n_c
def _to_b_h_w_n_c(self, x, x_shape): """(b*c, h, w, n) -> (b, h, w, n, c)""" x = tf.reshape(x, (-1, x_shape[4], x_shape[1], x_shape[2], x_shape[3])) x = tf.transpose(x, [0, 2, 3, 4, 1]) return x
python
def _to_b_h_w_n_c(self, x, x_shape): """(b*c, h, w, n) -> (b, h, w, n, c)""" x = tf.reshape(x, (-1, x_shape[4], x_shape[1], x_shape[2], x_shape[3])) x = tf.transpose(x, [0, 2, 3, 4, 1]) return x
[ "def", "_to_b_h_w_n_c", "(", "self", ",", "x", ",", "x_shape", ")", ":", "x", "=", "tf", ".", "reshape", "(", "x", ",", "(", "-", "1", ",", "x_shape", "[", "4", "]", ",", "x_shape", "[", "1", "]", ",", "x_shape", "[", "2", "]", ",", "x_shape", "[", "3", "]", ")", ")", "x", "=", "tf", ".", "transpose", "(", "x", ",", "[", "0", ",", "2", ",", "3", ",", "4", ",", "1", "]", ")", "return", "x" ]
(b*c, h, w, n) -> (b, h, w, n, c)
[ "(", "b", "*", "c", "h", "w", "n", ")", "-", ">", "(", "b", "h", "w", "n", "c", ")" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/convolution/deformable_conv.py#L165-L169
valid
tensorlayer/tensorlayer
tensorlayer/layers/convolution/deformable_conv.py
DeformableConv2d._tf_repeat
def _tf_repeat(self, a, repeats): """Tensorflow version of np.repeat for 1D""" # https://github.com/tensorflow/tensorflow/issues/8521 if len(a.get_shape()) != 1: raise AssertionError("This is not a 1D Tensor") a = tf.expand_dims(a, -1) a = tf.tile(a, [1, repeats]) a = self.tf_flatten(a) return a
python
def _tf_repeat(self, a, repeats): """Tensorflow version of np.repeat for 1D""" # https://github.com/tensorflow/tensorflow/issues/8521 if len(a.get_shape()) != 1: raise AssertionError("This is not a 1D Tensor") a = tf.expand_dims(a, -1) a = tf.tile(a, [1, repeats]) a = self.tf_flatten(a) return a
[ "def", "_tf_repeat", "(", "self", ",", "a", ",", "repeats", ")", ":", "# https://github.com/tensorflow/tensorflow/issues/8521", "if", "len", "(", "a", ".", "get_shape", "(", ")", ")", "!=", "1", ":", "raise", "AssertionError", "(", "\"This is not a 1D Tensor\"", ")", "a", "=", "tf", ".", "expand_dims", "(", "a", ",", "-", "1", ")", "a", "=", "tf", ".", "tile", "(", "a", ",", "[", "1", ",", "repeats", "]", ")", "a", "=", "self", ".", "tf_flatten", "(", "a", ")", "return", "a" ]
Tensorflow version of np.repeat for 1D
[ "Tensorflow", "version", "of", "np", ".", "repeat", "for", "1D" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/convolution/deformable_conv.py#L187-L197
valid
tensorlayer/tensorlayer
tensorlayer/layers/convolution/deformable_conv.py
DeformableConv2d._tf_batch_map_coordinates
def _tf_batch_map_coordinates(self, inputs, coords): """Batch version of tf_map_coordinates Only supports 2D feature maps Parameters ---------- inputs : ``tf.Tensor`` shape = (b*c, h, w) coords : ``tf.Tensor`` shape = (b*c, h, w, n, 2) Returns ------- ``tf.Tensor`` A Tensor with the shape as (b*c, h, w, n) """ input_shape = inputs.get_shape() coords_shape = coords.get_shape() batch_channel = tf.shape(inputs)[0] input_h = int(input_shape[1]) input_w = int(input_shape[2]) kernel_n = int(coords_shape[3]) n_coords = input_h * input_w * kernel_n coords_lt = tf.cast(tf.floor(coords), 'int32') coords_rb = tf.cast(tf.ceil(coords), 'int32') coords_lb = tf.stack([coords_lt[:, :, :, :, 0], coords_rb[:, :, :, :, 1]], axis=-1) coords_rt = tf.stack([coords_rb[:, :, :, :, 0], coords_lt[:, :, :, :, 1]], axis=-1) idx = self._tf_repeat(tf.range(batch_channel), n_coords) vals_lt = self._get_vals_by_coords(inputs, coords_lt, idx, (batch_channel, input_h, input_w, kernel_n)) vals_rb = self._get_vals_by_coords(inputs, coords_rb, idx, (batch_channel, input_h, input_w, kernel_n)) vals_lb = self._get_vals_by_coords(inputs, coords_lb, idx, (batch_channel, input_h, input_w, kernel_n)) vals_rt = self._get_vals_by_coords(inputs, coords_rt, idx, (batch_channel, input_h, input_w, kernel_n)) coords_offset_lt = coords - tf.cast(coords_lt, 'float32') vals_t = vals_lt + (vals_rt - vals_lt) * coords_offset_lt[:, :, :, :, 0] vals_b = vals_lb + (vals_rb - vals_lb) * coords_offset_lt[:, :, :, :, 0] mapped_vals = vals_t + (vals_b - vals_t) * coords_offset_lt[:, :, :, :, 1] return mapped_vals
python
def _tf_batch_map_coordinates(self, inputs, coords): """Batch version of tf_map_coordinates Only supports 2D feature maps Parameters ---------- inputs : ``tf.Tensor`` shape = (b*c, h, w) coords : ``tf.Tensor`` shape = (b*c, h, w, n, 2) Returns ------- ``tf.Tensor`` A Tensor with the shape as (b*c, h, w, n) """ input_shape = inputs.get_shape() coords_shape = coords.get_shape() batch_channel = tf.shape(inputs)[0] input_h = int(input_shape[1]) input_w = int(input_shape[2]) kernel_n = int(coords_shape[3]) n_coords = input_h * input_w * kernel_n coords_lt = tf.cast(tf.floor(coords), 'int32') coords_rb = tf.cast(tf.ceil(coords), 'int32') coords_lb = tf.stack([coords_lt[:, :, :, :, 0], coords_rb[:, :, :, :, 1]], axis=-1) coords_rt = tf.stack([coords_rb[:, :, :, :, 0], coords_lt[:, :, :, :, 1]], axis=-1) idx = self._tf_repeat(tf.range(batch_channel), n_coords) vals_lt = self._get_vals_by_coords(inputs, coords_lt, idx, (batch_channel, input_h, input_w, kernel_n)) vals_rb = self._get_vals_by_coords(inputs, coords_rb, idx, (batch_channel, input_h, input_w, kernel_n)) vals_lb = self._get_vals_by_coords(inputs, coords_lb, idx, (batch_channel, input_h, input_w, kernel_n)) vals_rt = self._get_vals_by_coords(inputs, coords_rt, idx, (batch_channel, input_h, input_w, kernel_n)) coords_offset_lt = coords - tf.cast(coords_lt, 'float32') vals_t = vals_lt + (vals_rt - vals_lt) * coords_offset_lt[:, :, :, :, 0] vals_b = vals_lb + (vals_rb - vals_lb) * coords_offset_lt[:, :, :, :, 0] mapped_vals = vals_t + (vals_b - vals_t) * coords_offset_lt[:, :, :, :, 1] return mapped_vals
[ "def", "_tf_batch_map_coordinates", "(", "self", ",", "inputs", ",", "coords", ")", ":", "input_shape", "=", "inputs", ".", "get_shape", "(", ")", "coords_shape", "=", "coords", ".", "get_shape", "(", ")", "batch_channel", "=", "tf", ".", "shape", "(", "inputs", ")", "[", "0", "]", "input_h", "=", "int", "(", "input_shape", "[", "1", "]", ")", "input_w", "=", "int", "(", "input_shape", "[", "2", "]", ")", "kernel_n", "=", "int", "(", "coords_shape", "[", "3", "]", ")", "n_coords", "=", "input_h", "*", "input_w", "*", "kernel_n", "coords_lt", "=", "tf", ".", "cast", "(", "tf", ".", "floor", "(", "coords", ")", ",", "'int32'", ")", "coords_rb", "=", "tf", ".", "cast", "(", "tf", ".", "ceil", "(", "coords", ")", ",", "'int32'", ")", "coords_lb", "=", "tf", ".", "stack", "(", "[", "coords_lt", "[", ":", ",", ":", ",", ":", ",", ":", ",", "0", "]", ",", "coords_rb", "[", ":", ",", ":", ",", ":", ",", ":", ",", "1", "]", "]", ",", "axis", "=", "-", "1", ")", "coords_rt", "=", "tf", ".", "stack", "(", "[", "coords_rb", "[", ":", ",", ":", ",", ":", ",", ":", ",", "0", "]", ",", "coords_lt", "[", ":", ",", ":", ",", ":", ",", ":", ",", "1", "]", "]", ",", "axis", "=", "-", "1", ")", "idx", "=", "self", ".", "_tf_repeat", "(", "tf", ".", "range", "(", "batch_channel", ")", ",", "n_coords", ")", "vals_lt", "=", "self", ".", "_get_vals_by_coords", "(", "inputs", ",", "coords_lt", ",", "idx", ",", "(", "batch_channel", ",", "input_h", ",", "input_w", ",", "kernel_n", ")", ")", "vals_rb", "=", "self", ".", "_get_vals_by_coords", "(", "inputs", ",", "coords_rb", ",", "idx", ",", "(", "batch_channel", ",", "input_h", ",", "input_w", ",", "kernel_n", ")", ")", "vals_lb", "=", "self", ".", "_get_vals_by_coords", "(", "inputs", ",", "coords_lb", ",", "idx", ",", "(", "batch_channel", ",", "input_h", ",", "input_w", ",", "kernel_n", ")", ")", "vals_rt", "=", "self", ".", "_get_vals_by_coords", "(", "inputs", ",", "coords_rt", ",", "idx", ",", "(", "batch_channel", ",", "input_h", ",", "input_w", ",", "kernel_n", ")", ")", "coords_offset_lt", "=", "coords", "-", "tf", ".", "cast", "(", "coords_lt", ",", "'float32'", ")", "vals_t", "=", "vals_lt", "+", "(", "vals_rt", "-", "vals_lt", ")", "*", "coords_offset_lt", "[", ":", ",", ":", ",", ":", ",", ":", ",", "0", "]", "vals_b", "=", "vals_lb", "+", "(", "vals_rb", "-", "vals_lb", ")", "*", "coords_offset_lt", "[", ":", ",", ":", ",", ":", ",", ":", ",", "0", "]", "mapped_vals", "=", "vals_t", "+", "(", "vals_b", "-", "vals_t", ")", "*", "coords_offset_lt", "[", ":", ",", ":", ",", ":", ",", ":", ",", "1", "]", "return", "mapped_vals" ]
Batch version of tf_map_coordinates Only supports 2D feature maps Parameters ---------- inputs : ``tf.Tensor`` shape = (b*c, h, w) coords : ``tf.Tensor`` shape = (b*c, h, w, n, 2) Returns ------- ``tf.Tensor`` A Tensor with the shape as (b*c, h, w, n)
[ "Batch", "version", "of", "tf_map_coordinates" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/convolution/deformable_conv.py#L200-L244
valid
tensorlayer/tensorlayer
tensorlayer/layers/convolution/deformable_conv.py
DeformableConv2d._tf_batch_map_offsets
def _tf_batch_map_offsets(self, inputs, offsets, grid_offset): """Batch map offsets into input Parameters ------------ inputs : ``tf.Tensor`` shape = (b, h, w, c) offsets: ``tf.Tensor`` shape = (b, h, w, 2*n) grid_offset: `tf.Tensor`` Offset grids shape = (h, w, n, 2) Returns ------- ``tf.Tensor`` A Tensor with the shape as (b, h, w, c) """ input_shape = inputs.get_shape() batch_size = tf.shape(inputs)[0] kernel_n = int(int(offsets.get_shape()[3]) / 2) input_h = input_shape[1] input_w = input_shape[2] channel = input_shape[3] # inputs (b, h, w, c) --> (b*c, h, w) inputs = self._to_bc_h_w(inputs, input_shape) # offsets (b, h, w, 2*n) --> (b, h, w, n, 2) offsets = tf.reshape(offsets, (batch_size, input_h, input_w, kernel_n, 2)) # offsets (b, h, w, n, 2) --> (b*c, h, w, n, 2) # offsets = tf.tile(offsets, [channel, 1, 1, 1, 1]) coords = tf.expand_dims(grid_offset, 0) # grid_offset --> (1, h, w, n, 2) coords = tf.tile(coords, [batch_size, 1, 1, 1, 1]) + offsets # grid_offset --> (b, h, w, n, 2) # clip out of bound coords = tf.stack( [ tf.clip_by_value(coords[:, :, :, :, 0], 0.0, tf.cast(input_h - 1, 'float32')), tf.clip_by_value(coords[:, :, :, :, 1], 0.0, tf.cast(input_w - 1, 'float32')) ], axis=-1 ) coords = tf.tile(coords, [channel, 1, 1, 1, 1]) mapped_vals = self._tf_batch_map_coordinates(inputs, coords) # (b*c, h, w, n) --> (b, h, w, n, c) mapped_vals = self._to_b_h_w_n_c(mapped_vals, [batch_size, input_h, input_w, kernel_n, channel]) return mapped_vals
python
def _tf_batch_map_offsets(self, inputs, offsets, grid_offset): """Batch map offsets into input Parameters ------------ inputs : ``tf.Tensor`` shape = (b, h, w, c) offsets: ``tf.Tensor`` shape = (b, h, w, 2*n) grid_offset: `tf.Tensor`` Offset grids shape = (h, w, n, 2) Returns ------- ``tf.Tensor`` A Tensor with the shape as (b, h, w, c) """ input_shape = inputs.get_shape() batch_size = tf.shape(inputs)[0] kernel_n = int(int(offsets.get_shape()[3]) / 2) input_h = input_shape[1] input_w = input_shape[2] channel = input_shape[3] # inputs (b, h, w, c) --> (b*c, h, w) inputs = self._to_bc_h_w(inputs, input_shape) # offsets (b, h, w, 2*n) --> (b, h, w, n, 2) offsets = tf.reshape(offsets, (batch_size, input_h, input_w, kernel_n, 2)) # offsets (b, h, w, n, 2) --> (b*c, h, w, n, 2) # offsets = tf.tile(offsets, [channel, 1, 1, 1, 1]) coords = tf.expand_dims(grid_offset, 0) # grid_offset --> (1, h, w, n, 2) coords = tf.tile(coords, [batch_size, 1, 1, 1, 1]) + offsets # grid_offset --> (b, h, w, n, 2) # clip out of bound coords = tf.stack( [ tf.clip_by_value(coords[:, :, :, :, 0], 0.0, tf.cast(input_h - 1, 'float32')), tf.clip_by_value(coords[:, :, :, :, 1], 0.0, tf.cast(input_w - 1, 'float32')) ], axis=-1 ) coords = tf.tile(coords, [channel, 1, 1, 1, 1]) mapped_vals = self._tf_batch_map_coordinates(inputs, coords) # (b*c, h, w, n) --> (b, h, w, n, c) mapped_vals = self._to_b_h_w_n_c(mapped_vals, [batch_size, input_h, input_w, kernel_n, channel]) return mapped_vals
[ "def", "_tf_batch_map_offsets", "(", "self", ",", "inputs", ",", "offsets", ",", "grid_offset", ")", ":", "input_shape", "=", "inputs", ".", "get_shape", "(", ")", "batch_size", "=", "tf", ".", "shape", "(", "inputs", ")", "[", "0", "]", "kernel_n", "=", "int", "(", "int", "(", "offsets", ".", "get_shape", "(", ")", "[", "3", "]", ")", "/", "2", ")", "input_h", "=", "input_shape", "[", "1", "]", "input_w", "=", "input_shape", "[", "2", "]", "channel", "=", "input_shape", "[", "3", "]", "# inputs (b, h, w, c) --> (b*c, h, w)", "inputs", "=", "self", ".", "_to_bc_h_w", "(", "inputs", ",", "input_shape", ")", "# offsets (b, h, w, 2*n) --> (b, h, w, n, 2)", "offsets", "=", "tf", ".", "reshape", "(", "offsets", ",", "(", "batch_size", ",", "input_h", ",", "input_w", ",", "kernel_n", ",", "2", ")", ")", "# offsets (b, h, w, n, 2) --> (b*c, h, w, n, 2)", "# offsets = tf.tile(offsets, [channel, 1, 1, 1, 1])", "coords", "=", "tf", ".", "expand_dims", "(", "grid_offset", ",", "0", ")", "# grid_offset --> (1, h, w, n, 2)", "coords", "=", "tf", ".", "tile", "(", "coords", ",", "[", "batch_size", ",", "1", ",", "1", ",", "1", ",", "1", "]", ")", "+", "offsets", "# grid_offset --> (b, h, w, n, 2)", "# clip out of bound", "coords", "=", "tf", ".", "stack", "(", "[", "tf", ".", "clip_by_value", "(", "coords", "[", ":", ",", ":", ",", ":", ",", ":", ",", "0", "]", ",", "0.0", ",", "tf", ".", "cast", "(", "input_h", "-", "1", ",", "'float32'", ")", ")", ",", "tf", ".", "clip_by_value", "(", "coords", "[", ":", ",", ":", ",", ":", ",", ":", ",", "1", "]", ",", "0.0", ",", "tf", ".", "cast", "(", "input_w", "-", "1", ",", "'float32'", ")", ")", "]", ",", "axis", "=", "-", "1", ")", "coords", "=", "tf", ".", "tile", "(", "coords", ",", "[", "channel", ",", "1", ",", "1", ",", "1", ",", "1", "]", ")", "mapped_vals", "=", "self", ".", "_tf_batch_map_coordinates", "(", "inputs", ",", "coords", ")", "# (b*c, h, w, n) --> (b, h, w, n, c)", "mapped_vals", "=", "self", ".", "_to_b_h_w_n_c", "(", "mapped_vals", ",", "[", "batch_size", ",", "input_h", ",", "input_w", ",", "kernel_n", ",", "channel", "]", ")", "return", "mapped_vals" ]
Batch map offsets into input Parameters ------------ inputs : ``tf.Tensor`` shape = (b, h, w, c) offsets: ``tf.Tensor`` shape = (b, h, w, 2*n) grid_offset: `tf.Tensor`` Offset grids shape = (h, w, n, 2) Returns ------- ``tf.Tensor`` A Tensor with the shape as (b, h, w, c)
[ "Batch", "map", "offsets", "into", "input" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/convolution/deformable_conv.py#L247-L296
valid
tensorlayer/tensorlayer
tensorlayer/iterate.py
minibatches
def minibatches(inputs=None, targets=None, batch_size=None, allow_dynamic_batch_size=False, shuffle=False): """Generate a generator that input a group of example in numpy.array and their labels, return the examples and labels by the given batch size. Parameters ---------- inputs : numpy.array The input features, every row is a example. targets : numpy.array The labels of inputs, every row is a example. batch_size : int The batch size. allow_dynamic_batch_size: boolean Allow the use of the last data batch in case the number of examples is not a multiple of batch_size, this may result in unexpected behaviour if other functions expect a fixed-sized batch-size. shuffle : boolean Indicating whether to use a shuffling queue, shuffle the dataset before return. Examples -------- >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> y = np.asarray([0,1,2,3,4,5]) >>> for batch in tl.iterate.minibatches(inputs=X, targets=y, batch_size=2, shuffle=False): >>> print(batch) (array([['a', 'a'], ['b', 'b']], dtype='<U1'), array([0, 1])) (array([['c', 'c'], ['d', 'd']], dtype='<U1'), array([2, 3])) (array([['e', 'e'], ['f', 'f']], dtype='<U1'), array([4, 5])) Notes ----- If you have two inputs and one label and want to shuffle them together, e.g. X1 (1000, 100), X2 (1000, 80) and Y (1000, 1), you can stack them together (`np.hstack((X1, X2))`) into (1000, 180) and feed to ``inputs``. After getting a batch, you can split it back into X1 and X2. """ if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") if shuffle: indices = np.arange(len(inputs)) np.random.shuffle(indices) # for start_idx in range(0, len(inputs) - batch_size + 1, batch_size): # chulei: handling the case where the number of samples is not a multiple of batch_size, avoiding wasting samples for start_idx in range(0, len(inputs), batch_size): end_idx = start_idx + batch_size if end_idx > len(inputs): if allow_dynamic_batch_size: end_idx = len(inputs) else: break if shuffle: excerpt = indices[start_idx:end_idx] else: excerpt = slice(start_idx, end_idx) if (isinstance(inputs, list) or isinstance(targets, list)) and (shuffle ==True): # zsdonghao: for list indexing when shuffle==True yield [inputs[i] for i in excerpt], [targets[i] for i in excerpt] else: yield inputs[excerpt], targets[excerpt]
python
def minibatches(inputs=None, targets=None, batch_size=None, allow_dynamic_batch_size=False, shuffle=False): """Generate a generator that input a group of example in numpy.array and their labels, return the examples and labels by the given batch size. Parameters ---------- inputs : numpy.array The input features, every row is a example. targets : numpy.array The labels of inputs, every row is a example. batch_size : int The batch size. allow_dynamic_batch_size: boolean Allow the use of the last data batch in case the number of examples is not a multiple of batch_size, this may result in unexpected behaviour if other functions expect a fixed-sized batch-size. shuffle : boolean Indicating whether to use a shuffling queue, shuffle the dataset before return. Examples -------- >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> y = np.asarray([0,1,2,3,4,5]) >>> for batch in tl.iterate.minibatches(inputs=X, targets=y, batch_size=2, shuffle=False): >>> print(batch) (array([['a', 'a'], ['b', 'b']], dtype='<U1'), array([0, 1])) (array([['c', 'c'], ['d', 'd']], dtype='<U1'), array([2, 3])) (array([['e', 'e'], ['f', 'f']], dtype='<U1'), array([4, 5])) Notes ----- If you have two inputs and one label and want to shuffle them together, e.g. X1 (1000, 100), X2 (1000, 80) and Y (1000, 1), you can stack them together (`np.hstack((X1, X2))`) into (1000, 180) and feed to ``inputs``. After getting a batch, you can split it back into X1 and X2. """ if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") if shuffle: indices = np.arange(len(inputs)) np.random.shuffle(indices) # for start_idx in range(0, len(inputs) - batch_size + 1, batch_size): # chulei: handling the case where the number of samples is not a multiple of batch_size, avoiding wasting samples for start_idx in range(0, len(inputs), batch_size): end_idx = start_idx + batch_size if end_idx > len(inputs): if allow_dynamic_batch_size: end_idx = len(inputs) else: break if shuffle: excerpt = indices[start_idx:end_idx] else: excerpt = slice(start_idx, end_idx) if (isinstance(inputs, list) or isinstance(targets, list)) and (shuffle ==True): # zsdonghao: for list indexing when shuffle==True yield [inputs[i] for i in excerpt], [targets[i] for i in excerpt] else: yield inputs[excerpt], targets[excerpt]
[ "def", "minibatches", "(", "inputs", "=", "None", ",", "targets", "=", "None", ",", "batch_size", "=", "None", ",", "allow_dynamic_batch_size", "=", "False", ",", "shuffle", "=", "False", ")", ":", "if", "len", "(", "inputs", ")", "!=", "len", "(", "targets", ")", ":", "raise", "AssertionError", "(", "\"The length of inputs and targets should be equal\"", ")", "if", "shuffle", ":", "indices", "=", "np", ".", "arange", "(", "len", "(", "inputs", ")", ")", "np", ".", "random", ".", "shuffle", "(", "indices", ")", "# for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):", "# chulei: handling the case where the number of samples is not a multiple of batch_size, avoiding wasting samples", "for", "start_idx", "in", "range", "(", "0", ",", "len", "(", "inputs", ")", ",", "batch_size", ")", ":", "end_idx", "=", "start_idx", "+", "batch_size", "if", "end_idx", ">", "len", "(", "inputs", ")", ":", "if", "allow_dynamic_batch_size", ":", "end_idx", "=", "len", "(", "inputs", ")", "else", ":", "break", "if", "shuffle", ":", "excerpt", "=", "indices", "[", "start_idx", ":", "end_idx", "]", "else", ":", "excerpt", "=", "slice", "(", "start_idx", ",", "end_idx", ")", "if", "(", "isinstance", "(", "inputs", ",", "list", ")", "or", "isinstance", "(", "targets", ",", "list", ")", ")", "and", "(", "shuffle", "==", "True", ")", ":", "# zsdonghao: for list indexing when shuffle==True", "yield", "[", "inputs", "[", "i", "]", "for", "i", "in", "excerpt", "]", ",", "[", "targets", "[", "i", "]", "for", "i", "in", "excerpt", "]", "else", ":", "yield", "inputs", "[", "excerpt", "]", ",", "targets", "[", "excerpt", "]" ]
Generate a generator that input a group of example in numpy.array and their labels, return the examples and labels by the given batch size. Parameters ---------- inputs : numpy.array The input features, every row is a example. targets : numpy.array The labels of inputs, every row is a example. batch_size : int The batch size. allow_dynamic_batch_size: boolean Allow the use of the last data batch in case the number of examples is not a multiple of batch_size, this may result in unexpected behaviour if other functions expect a fixed-sized batch-size. shuffle : boolean Indicating whether to use a shuffling queue, shuffle the dataset before return. Examples -------- >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> y = np.asarray([0,1,2,3,4,5]) >>> for batch in tl.iterate.minibatches(inputs=X, targets=y, batch_size=2, shuffle=False): >>> print(batch) (array([['a', 'a'], ['b', 'b']], dtype='<U1'), array([0, 1])) (array([['c', 'c'], ['d', 'd']], dtype='<U1'), array([2, 3])) (array([['e', 'e'], ['f', 'f']], dtype='<U1'), array([4, 5])) Notes ----- If you have two inputs and one label and want to shuffle them together, e.g. X1 (1000, 100), X2 (1000, 80) and Y (1000, 1), you can stack them together (`np.hstack((X1, X2))`) into (1000, 180) and feed to ``inputs``. After getting a batch, you can split it back into X1 and X2.
[ "Generate", "a", "generator", "that", "input", "a", "group", "of", "example", "in", "numpy", ".", "array", "and", "their", "labels", "return", "the", "examples", "and", "labels", "by", "the", "given", "batch", "size", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/iterate.py#L15-L72
valid
tensorlayer/tensorlayer
tensorlayer/iterate.py
seq_minibatches
def seq_minibatches(inputs, targets, batch_size, seq_length, stride=1): """Generate a generator that return a batch of sequence inputs and targets. If `batch_size=100` and `seq_length=5`, one return will have 500 rows (examples). Parameters ---------- inputs : numpy.array The input features, every row is a example. targets : numpy.array The labels of inputs, every element is a example. batch_size : int The batch size. seq_length : int The sequence length. stride : int The stride step, default is 1. Examples -------- Synced sequence input and output. >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> y = np.asarray([0, 1, 2, 3, 4, 5]) >>> for batch in tl.iterate.seq_minibatches(inputs=X, targets=y, batch_size=2, seq_length=2, stride=1): >>> print(batch) (array([['a', 'a'], ['b', 'b'], ['b', 'b'], ['c', 'c']], dtype='<U1'), array([0, 1, 1, 2])) (array([['c', 'c'], ['d', 'd'], ['d', 'd'], ['e', 'e']], dtype='<U1'), array([2, 3, 3, 4])) Many to One >>> return_last = True >>> num_steps = 2 >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> Y = np.asarray([0,1,2,3,4,5]) >>> for batch in tl.iterate.seq_minibatches(inputs=X, targets=Y, batch_size=2, seq_length=num_steps, stride=1): >>> x, y = batch >>> if return_last: >>> tmp_y = y.reshape((-1, num_steps) + y.shape[1:]) >>> y = tmp_y[:, -1] >>> print(x, y) [['a' 'a'] ['b' 'b'] ['b' 'b'] ['c' 'c']] [1 2] [['c' 'c'] ['d' 'd'] ['d' 'd'] ['e' 'e']] [3 4] """ if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") n_loads = (batch_size * stride) + (seq_length - stride) for start_idx in range(0, len(inputs) - n_loads + 1, (batch_size * stride)): seq_inputs = np.zeros((batch_size, seq_length) + inputs.shape[1:], dtype=inputs.dtype) seq_targets = np.zeros((batch_size, seq_length) + targets.shape[1:], dtype=targets.dtype) for b_idx in xrange(batch_size): start_seq_idx = start_idx + (b_idx * stride) end_seq_idx = start_seq_idx + seq_length seq_inputs[b_idx] = inputs[start_seq_idx:end_seq_idx] seq_targets[b_idx] = targets[start_seq_idx:end_seq_idx] flatten_inputs = seq_inputs.reshape((-1, ) + inputs.shape[1:]) flatten_targets = seq_targets.reshape((-1, ) + targets.shape[1:]) yield flatten_inputs, flatten_targets
python
def seq_minibatches(inputs, targets, batch_size, seq_length, stride=1): """Generate a generator that return a batch of sequence inputs and targets. If `batch_size=100` and `seq_length=5`, one return will have 500 rows (examples). Parameters ---------- inputs : numpy.array The input features, every row is a example. targets : numpy.array The labels of inputs, every element is a example. batch_size : int The batch size. seq_length : int The sequence length. stride : int The stride step, default is 1. Examples -------- Synced sequence input and output. >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> y = np.asarray([0, 1, 2, 3, 4, 5]) >>> for batch in tl.iterate.seq_minibatches(inputs=X, targets=y, batch_size=2, seq_length=2, stride=1): >>> print(batch) (array([['a', 'a'], ['b', 'b'], ['b', 'b'], ['c', 'c']], dtype='<U1'), array([0, 1, 1, 2])) (array([['c', 'c'], ['d', 'd'], ['d', 'd'], ['e', 'e']], dtype='<U1'), array([2, 3, 3, 4])) Many to One >>> return_last = True >>> num_steps = 2 >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> Y = np.asarray([0,1,2,3,4,5]) >>> for batch in tl.iterate.seq_minibatches(inputs=X, targets=Y, batch_size=2, seq_length=num_steps, stride=1): >>> x, y = batch >>> if return_last: >>> tmp_y = y.reshape((-1, num_steps) + y.shape[1:]) >>> y = tmp_y[:, -1] >>> print(x, y) [['a' 'a'] ['b' 'b'] ['b' 'b'] ['c' 'c']] [1 2] [['c' 'c'] ['d' 'd'] ['d' 'd'] ['e' 'e']] [3 4] """ if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") n_loads = (batch_size * stride) + (seq_length - stride) for start_idx in range(0, len(inputs) - n_loads + 1, (batch_size * stride)): seq_inputs = np.zeros((batch_size, seq_length) + inputs.shape[1:], dtype=inputs.dtype) seq_targets = np.zeros((batch_size, seq_length) + targets.shape[1:], dtype=targets.dtype) for b_idx in xrange(batch_size): start_seq_idx = start_idx + (b_idx * stride) end_seq_idx = start_seq_idx + seq_length seq_inputs[b_idx] = inputs[start_seq_idx:end_seq_idx] seq_targets[b_idx] = targets[start_seq_idx:end_seq_idx] flatten_inputs = seq_inputs.reshape((-1, ) + inputs.shape[1:]) flatten_targets = seq_targets.reshape((-1, ) + targets.shape[1:]) yield flatten_inputs, flatten_targets
[ "def", "seq_minibatches", "(", "inputs", ",", "targets", ",", "batch_size", ",", "seq_length", ",", "stride", "=", "1", ")", ":", "if", "len", "(", "inputs", ")", "!=", "len", "(", "targets", ")", ":", "raise", "AssertionError", "(", "\"The length of inputs and targets should be equal\"", ")", "n_loads", "=", "(", "batch_size", "*", "stride", ")", "+", "(", "seq_length", "-", "stride", ")", "for", "start_idx", "in", "range", "(", "0", ",", "len", "(", "inputs", ")", "-", "n_loads", "+", "1", ",", "(", "batch_size", "*", "stride", ")", ")", ":", "seq_inputs", "=", "np", ".", "zeros", "(", "(", "batch_size", ",", "seq_length", ")", "+", "inputs", ".", "shape", "[", "1", ":", "]", ",", "dtype", "=", "inputs", ".", "dtype", ")", "seq_targets", "=", "np", ".", "zeros", "(", "(", "batch_size", ",", "seq_length", ")", "+", "targets", ".", "shape", "[", "1", ":", "]", ",", "dtype", "=", "targets", ".", "dtype", ")", "for", "b_idx", "in", "xrange", "(", "batch_size", ")", ":", "start_seq_idx", "=", "start_idx", "+", "(", "b_idx", "*", "stride", ")", "end_seq_idx", "=", "start_seq_idx", "+", "seq_length", "seq_inputs", "[", "b_idx", "]", "=", "inputs", "[", "start_seq_idx", ":", "end_seq_idx", "]", "seq_targets", "[", "b_idx", "]", "=", "targets", "[", "start_seq_idx", ":", "end_seq_idx", "]", "flatten_inputs", "=", "seq_inputs", ".", "reshape", "(", "(", "-", "1", ",", ")", "+", "inputs", ".", "shape", "[", "1", ":", "]", ")", "flatten_targets", "=", "seq_targets", ".", "reshape", "(", "(", "-", "1", ",", ")", "+", "targets", ".", "shape", "[", "1", ":", "]", ")", "yield", "flatten_inputs", ",", "flatten_targets" ]
Generate a generator that return a batch of sequence inputs and targets. If `batch_size=100` and `seq_length=5`, one return will have 500 rows (examples). Parameters ---------- inputs : numpy.array The input features, every row is a example. targets : numpy.array The labels of inputs, every element is a example. batch_size : int The batch size. seq_length : int The sequence length. stride : int The stride step, default is 1. Examples -------- Synced sequence input and output. >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> y = np.asarray([0, 1, 2, 3, 4, 5]) >>> for batch in tl.iterate.seq_minibatches(inputs=X, targets=y, batch_size=2, seq_length=2, stride=1): >>> print(batch) (array([['a', 'a'], ['b', 'b'], ['b', 'b'], ['c', 'c']], dtype='<U1'), array([0, 1, 1, 2])) (array([['c', 'c'], ['d', 'd'], ['d', 'd'], ['e', 'e']], dtype='<U1'), array([2, 3, 3, 4])) Many to One >>> return_last = True >>> num_steps = 2 >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> Y = np.asarray([0,1,2,3,4,5]) >>> for batch in tl.iterate.seq_minibatches(inputs=X, targets=Y, batch_size=2, seq_length=num_steps, stride=1): >>> x, y = batch >>> if return_last: >>> tmp_y = y.reshape((-1, num_steps) + y.shape[1:]) >>> y = tmp_y[:, -1] >>> print(x, y) [['a' 'a'] ['b' 'b'] ['b' 'b'] ['c' 'c']] [1 2] [['c' 'c'] ['d' 'd'] ['d' 'd'] ['e' 'e']] [3 4]
[ "Generate", "a", "generator", "that", "return", "a", "batch", "of", "sequence", "inputs", "and", "targets", ".", "If", "batch_size", "=", "100", "and", "seq_length", "=", "5", "one", "return", "will", "have", "500", "rows", "(", "examples", ")", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/iterate.py#L75-L140
valid
tensorlayer/tensorlayer
tensorlayer/iterate.py
seq_minibatches2
def seq_minibatches2(inputs, targets, batch_size, num_steps): """Generate a generator that iterates on two list of words. Yields (Returns) the source contexts and the target context by the given batch_size and num_steps (sequence_length). In TensorFlow's tutorial, this generates the `batch_size` pointers into the raw PTB data, and allows minibatch iteration along these pointers. Parameters ---------- inputs : list of data The context in list format; note that context usually be represented by splitting by space, and then convert to unique word IDs. targets : list of data The context in list format; note that context usually be represented by splitting by space, and then convert to unique word IDs. batch_size : int The batch size. num_steps : int The number of unrolls. i.e. sequence length Yields ------ Pairs of the batched data, each a matrix of shape [batch_size, num_steps]. Raises ------ ValueError : if batch_size or num_steps are too high. Examples -------- >>> X = [i for i in range(20)] >>> Y = [i for i in range(20,40)] >>> for batch in tl.iterate.seq_minibatches2(X, Y, batch_size=2, num_steps=3): ... x, y = batch ... print(x, y) [[ 0. 1. 2.] [ 10. 11. 12.]] [[ 20. 21. 22.] [ 30. 31. 32.]] [[ 3. 4. 5.] [ 13. 14. 15.]] [[ 23. 24. 25.] [ 33. 34. 35.]] [[ 6. 7. 8.] [ 16. 17. 18.]] [[ 26. 27. 28.] [ 36. 37. 38.]] Notes ----- - Hint, if the input data are images, you can modify the source code `data = np.zeros([batch_size, batch_len)` to `data = np.zeros([batch_size, batch_len, inputs.shape[1], inputs.shape[2], inputs.shape[3]])`. """ if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") data_len = len(inputs) batch_len = data_len // batch_size # data = np.zeros([batch_size, batch_len]) data = np.zeros((batch_size, batch_len) + inputs.shape[1:], dtype=inputs.dtype) data2 = np.zeros([batch_size, batch_len]) for i in range(batch_size): data[i] = inputs[batch_len * i:batch_len * (i + 1)] data2[i] = targets[batch_len * i:batch_len * (i + 1)] epoch_size = (batch_len - 1) // num_steps if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") for i in range(epoch_size): x = data[:, i * num_steps:(i + 1) * num_steps] x2 = data2[:, i * num_steps:(i + 1) * num_steps] yield (x, x2)
python
def seq_minibatches2(inputs, targets, batch_size, num_steps): """Generate a generator that iterates on two list of words. Yields (Returns) the source contexts and the target context by the given batch_size and num_steps (sequence_length). In TensorFlow's tutorial, this generates the `batch_size` pointers into the raw PTB data, and allows minibatch iteration along these pointers. Parameters ---------- inputs : list of data The context in list format; note that context usually be represented by splitting by space, and then convert to unique word IDs. targets : list of data The context in list format; note that context usually be represented by splitting by space, and then convert to unique word IDs. batch_size : int The batch size. num_steps : int The number of unrolls. i.e. sequence length Yields ------ Pairs of the batched data, each a matrix of shape [batch_size, num_steps]. Raises ------ ValueError : if batch_size or num_steps are too high. Examples -------- >>> X = [i for i in range(20)] >>> Y = [i for i in range(20,40)] >>> for batch in tl.iterate.seq_minibatches2(X, Y, batch_size=2, num_steps=3): ... x, y = batch ... print(x, y) [[ 0. 1. 2.] [ 10. 11. 12.]] [[ 20. 21. 22.] [ 30. 31. 32.]] [[ 3. 4. 5.] [ 13. 14. 15.]] [[ 23. 24. 25.] [ 33. 34. 35.]] [[ 6. 7. 8.] [ 16. 17. 18.]] [[ 26. 27. 28.] [ 36. 37. 38.]] Notes ----- - Hint, if the input data are images, you can modify the source code `data = np.zeros([batch_size, batch_len)` to `data = np.zeros([batch_size, batch_len, inputs.shape[1], inputs.shape[2], inputs.shape[3]])`. """ if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") data_len = len(inputs) batch_len = data_len // batch_size # data = np.zeros([batch_size, batch_len]) data = np.zeros((batch_size, batch_len) + inputs.shape[1:], dtype=inputs.dtype) data2 = np.zeros([batch_size, batch_len]) for i in range(batch_size): data[i] = inputs[batch_len * i:batch_len * (i + 1)] data2[i] = targets[batch_len * i:batch_len * (i + 1)] epoch_size = (batch_len - 1) // num_steps if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") for i in range(epoch_size): x = data[:, i * num_steps:(i + 1) * num_steps] x2 = data2[:, i * num_steps:(i + 1) * num_steps] yield (x, x2)
[ "def", "seq_minibatches2", "(", "inputs", ",", "targets", ",", "batch_size", ",", "num_steps", ")", ":", "if", "len", "(", "inputs", ")", "!=", "len", "(", "targets", ")", ":", "raise", "AssertionError", "(", "\"The length of inputs and targets should be equal\"", ")", "data_len", "=", "len", "(", "inputs", ")", "batch_len", "=", "data_len", "//", "batch_size", "# data = np.zeros([batch_size, batch_len])", "data", "=", "np", ".", "zeros", "(", "(", "batch_size", ",", "batch_len", ")", "+", "inputs", ".", "shape", "[", "1", ":", "]", ",", "dtype", "=", "inputs", ".", "dtype", ")", "data2", "=", "np", ".", "zeros", "(", "[", "batch_size", ",", "batch_len", "]", ")", "for", "i", "in", "range", "(", "batch_size", ")", ":", "data", "[", "i", "]", "=", "inputs", "[", "batch_len", "*", "i", ":", "batch_len", "*", "(", "i", "+", "1", ")", "]", "data2", "[", "i", "]", "=", "targets", "[", "batch_len", "*", "i", ":", "batch_len", "*", "(", "i", "+", "1", ")", "]", "epoch_size", "=", "(", "batch_len", "-", "1", ")", "//", "num_steps", "if", "epoch_size", "==", "0", ":", "raise", "ValueError", "(", "\"epoch_size == 0, decrease batch_size or num_steps\"", ")", "for", "i", "in", "range", "(", "epoch_size", ")", ":", "x", "=", "data", "[", ":", ",", "i", "*", "num_steps", ":", "(", "i", "+", "1", ")", "*", "num_steps", "]", "x2", "=", "data2", "[", ":", ",", "i", "*", "num_steps", ":", "(", "i", "+", "1", ")", "*", "num_steps", "]", "yield", "(", "x", ",", "x2", ")" ]
Generate a generator that iterates on two list of words. Yields (Returns) the source contexts and the target context by the given batch_size and num_steps (sequence_length). In TensorFlow's tutorial, this generates the `batch_size` pointers into the raw PTB data, and allows minibatch iteration along these pointers. Parameters ---------- inputs : list of data The context in list format; note that context usually be represented by splitting by space, and then convert to unique word IDs. targets : list of data The context in list format; note that context usually be represented by splitting by space, and then convert to unique word IDs. batch_size : int The batch size. num_steps : int The number of unrolls. i.e. sequence length Yields ------ Pairs of the batched data, each a matrix of shape [batch_size, num_steps]. Raises ------ ValueError : if batch_size or num_steps are too high. Examples -------- >>> X = [i for i in range(20)] >>> Y = [i for i in range(20,40)] >>> for batch in tl.iterate.seq_minibatches2(X, Y, batch_size=2, num_steps=3): ... x, y = batch ... print(x, y) [[ 0. 1. 2.] [ 10. 11. 12.]] [[ 20. 21. 22.] [ 30. 31. 32.]] [[ 3. 4. 5.] [ 13. 14. 15.]] [[ 23. 24. 25.] [ 33. 34. 35.]] [[ 6. 7. 8.] [ 16. 17. 18.]] [[ 26. 27. 28.] [ 36. 37. 38.]] Notes ----- - Hint, if the input data are images, you can modify the source code `data = np.zeros([batch_size, batch_len)` to `data = np.zeros([batch_size, batch_len, inputs.shape[1], inputs.shape[2], inputs.shape[3]])`.
[ "Generate", "a", "generator", "that", "iterates", "on", "two", "list", "of", "words", ".", "Yields", "(", "Returns", ")", "the", "source", "contexts", "and", "the", "target", "context", "by", "the", "given", "batch_size", "and", "num_steps", "(", "sequence_length", ")", ".", "In", "TensorFlow", "s", "tutorial", "this", "generates", "the", "batch_size", "pointers", "into", "the", "raw", "PTB", "data", "and", "allows", "minibatch", "iteration", "along", "these", "pointers", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/iterate.py#L143-L215
valid
tensorlayer/tensorlayer
tensorlayer/iterate.py
ptb_iterator
def ptb_iterator(raw_data, batch_size, num_steps): """Generate a generator that iterates on a list of words, see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`__. Yields the source contexts and the target context by the given batch_size and num_steps (sequence_length). In TensorFlow's tutorial, this generates `batch_size` pointers into the raw PTB data, and allows minibatch iteration along these pointers. Parameters ---------- raw_data : a list the context in list format; note that context usually be represented by splitting by space, and then convert to unique word IDs. batch_size : int the batch size. num_steps : int the number of unrolls. i.e. sequence_length Yields ------ Pairs of the batched data, each a matrix of shape [batch_size, num_steps]. The second element of the tuple is the same data time-shifted to the right by one. Raises ------ ValueError : if batch_size or num_steps are too high. Examples -------- >>> train_data = [i for i in range(20)] >>> for batch in tl.iterate.ptb_iterator(train_data, batch_size=2, num_steps=3): >>> x, y = batch >>> print(x, y) [[ 0 1 2] <---x 1st subset/ iteration [10 11 12]] [[ 1 2 3] <---y [11 12 13]] [[ 3 4 5] <--- 1st batch input 2nd subset/ iteration [13 14 15]] <--- 2nd batch input [[ 4 5 6] <--- 1st batch target [14 15 16]] <--- 2nd batch target [[ 6 7 8] 3rd subset/ iteration [16 17 18]] [[ 7 8 9] [17 18 19]] """ raw_data = np.array(raw_data, dtype=np.int32) data_len = len(raw_data) batch_len = data_len // batch_size data = np.zeros([batch_size, batch_len], dtype=np.int32) for i in range(batch_size): data[i] = raw_data[batch_len * i:batch_len * (i + 1)] epoch_size = (batch_len - 1) // num_steps if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") for i in range(epoch_size): x = data[:, i * num_steps:(i + 1) * num_steps] y = data[:, i * num_steps + 1:(i + 1) * num_steps + 1] yield (x, y)
python
def ptb_iterator(raw_data, batch_size, num_steps): """Generate a generator that iterates on a list of words, see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`__. Yields the source contexts and the target context by the given batch_size and num_steps (sequence_length). In TensorFlow's tutorial, this generates `batch_size` pointers into the raw PTB data, and allows minibatch iteration along these pointers. Parameters ---------- raw_data : a list the context in list format; note that context usually be represented by splitting by space, and then convert to unique word IDs. batch_size : int the batch size. num_steps : int the number of unrolls. i.e. sequence_length Yields ------ Pairs of the batched data, each a matrix of shape [batch_size, num_steps]. The second element of the tuple is the same data time-shifted to the right by one. Raises ------ ValueError : if batch_size or num_steps are too high. Examples -------- >>> train_data = [i for i in range(20)] >>> for batch in tl.iterate.ptb_iterator(train_data, batch_size=2, num_steps=3): >>> x, y = batch >>> print(x, y) [[ 0 1 2] <---x 1st subset/ iteration [10 11 12]] [[ 1 2 3] <---y [11 12 13]] [[ 3 4 5] <--- 1st batch input 2nd subset/ iteration [13 14 15]] <--- 2nd batch input [[ 4 5 6] <--- 1st batch target [14 15 16]] <--- 2nd batch target [[ 6 7 8] 3rd subset/ iteration [16 17 18]] [[ 7 8 9] [17 18 19]] """ raw_data = np.array(raw_data, dtype=np.int32) data_len = len(raw_data) batch_len = data_len // batch_size data = np.zeros([batch_size, batch_len], dtype=np.int32) for i in range(batch_size): data[i] = raw_data[batch_len * i:batch_len * (i + 1)] epoch_size = (batch_len - 1) // num_steps if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") for i in range(epoch_size): x = data[:, i * num_steps:(i + 1) * num_steps] y = data[:, i * num_steps + 1:(i + 1) * num_steps + 1] yield (x, y)
[ "def", "ptb_iterator", "(", "raw_data", ",", "batch_size", ",", "num_steps", ")", ":", "raw_data", "=", "np", ".", "array", "(", "raw_data", ",", "dtype", "=", "np", ".", "int32", ")", "data_len", "=", "len", "(", "raw_data", ")", "batch_len", "=", "data_len", "//", "batch_size", "data", "=", "np", ".", "zeros", "(", "[", "batch_size", ",", "batch_len", "]", ",", "dtype", "=", "np", ".", "int32", ")", "for", "i", "in", "range", "(", "batch_size", ")", ":", "data", "[", "i", "]", "=", "raw_data", "[", "batch_len", "*", "i", ":", "batch_len", "*", "(", "i", "+", "1", ")", "]", "epoch_size", "=", "(", "batch_len", "-", "1", ")", "//", "num_steps", "if", "epoch_size", "==", "0", ":", "raise", "ValueError", "(", "\"epoch_size == 0, decrease batch_size or num_steps\"", ")", "for", "i", "in", "range", "(", "epoch_size", ")", ":", "x", "=", "data", "[", ":", ",", "i", "*", "num_steps", ":", "(", "i", "+", "1", ")", "*", "num_steps", "]", "y", "=", "data", "[", ":", ",", "i", "*", "num_steps", "+", "1", ":", "(", "i", "+", "1", ")", "*", "num_steps", "+", "1", "]", "yield", "(", "x", ",", "y", ")" ]
Generate a generator that iterates on a list of words, see `PTB example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`__. Yields the source contexts and the target context by the given batch_size and num_steps (sequence_length). In TensorFlow's tutorial, this generates `batch_size` pointers into the raw PTB data, and allows minibatch iteration along these pointers. Parameters ---------- raw_data : a list the context in list format; note that context usually be represented by splitting by space, and then convert to unique word IDs. batch_size : int the batch size. num_steps : int the number of unrolls. i.e. sequence_length Yields ------ Pairs of the batched data, each a matrix of shape [batch_size, num_steps]. The second element of the tuple is the same data time-shifted to the right by one. Raises ------ ValueError : if batch_size or num_steps are too high. Examples -------- >>> train_data = [i for i in range(20)] >>> for batch in tl.iterate.ptb_iterator(train_data, batch_size=2, num_steps=3): >>> x, y = batch >>> print(x, y) [[ 0 1 2] <---x 1st subset/ iteration [10 11 12]] [[ 1 2 3] <---y [11 12 13]] [[ 3 4 5] <--- 1st batch input 2nd subset/ iteration [13 14 15]] <--- 2nd batch input [[ 4 5 6] <--- 1st batch target [14 15 16]] <--- 2nd batch target [[ 6 7 8] 3rd subset/ iteration [16 17 18]] [[ 7 8 9] [17 18 19]]
[ "Generate", "a", "generator", "that", "iterates", "on", "a", "list", "of", "words", "see", "PTB", "example", "<https", ":", "//", "github", ".", "com", "/", "tensorlayer", "/", "tensorlayer", "/", "blob", "/", "master", "/", "example", "/", "tutorial_ptb_lstm_state_is_tuple", ".", "py", ">", "__", ".", "Yields", "the", "source", "contexts", "and", "the", "target", "context", "by", "the", "given", "batch_size", "and", "num_steps", "(", "sequence_length", ")", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/iterate.py#L218-L283
valid
tensorlayer/tensorlayer
tensorlayer/initializers.py
deconv2d_bilinear_upsampling_initializer
def deconv2d_bilinear_upsampling_initializer(shape): """Returns the initializer that can be passed to DeConv2dLayer for initializing the weights in correspondence to channel-wise bilinear up-sampling. Used in segmentation approaches such as [FCN](https://arxiv.org/abs/1605.06211) Parameters ---------- shape : tuple of int The shape of the filters, [height, width, output_channels, in_channels]. It must match the shape passed to DeConv2dLayer. Returns ------- ``tf.constant_initializer`` A constant initializer with weights set to correspond to per channel bilinear upsampling when passed as W_int in DeConv2dLayer Examples -------- - Upsampling by a factor of 2, ie e.g 100->200 >>> import tensorflow as tf >>> import tensorlayer as tl >>> rescale_factor = 2 >>> imsize = 128 >>> num_channels = 3 >>> filter_shape = (5, 5) >>> filter_size = (2 * rescale_factor - rescale_factor % 2) #Corresponding bilinear filter size >>> num_in_channels = 3 >>> num_out_channels = 3 >>> deconv_filter_shape = (filter_size, filter_size, num_out_channels, num_in_channels) >>> x = tf.placeholder(tf.float32, (1, imsize, imsize, num_channels)) >>> net = tl.layers.InputLayer(x, name='input_layer') >>> bilinear_init = deconv2d_bilinear_upsampling_initializer(shape=filter_shape) >>> net = tl.layers.DeConv2dLayer(net, ... shape=filter_shape, ... output_shape=(1, imsize*rescale_factor, imsize*rescale_factor, num_out_channels), ... strides=(1, rescale_factor, rescale_factor, 1), ... W_init=bilinear_init, ... padding='SAME', ... act=None, name='g/h1/decon2d') """ if shape[0] != shape[1]: raise Exception('deconv2d_bilinear_upsampling_initializer only supports symmetrical filter sizes') if shape[3] < shape[2]: raise Exception( 'deconv2d_bilinear_upsampling_initializer behaviour is not defined for num_in_channels < num_out_channels ' ) filter_size = shape[0] num_out_channels = shape[2] num_in_channels = shape[3] # Create bilinear filter kernel as numpy array bilinear_kernel = np.zeros([filter_size, filter_size], dtype=np.float32) scale_factor = (filter_size + 1) // 2 if filter_size % 2 == 1: center = scale_factor - 1 else: center = scale_factor - 0.5 for x in range(filter_size): for y in range(filter_size): bilinear_kernel[x, y] = (1 - abs(x - center) / scale_factor) * (1 - abs(y - center) / scale_factor) weights = np.zeros((filter_size, filter_size, num_out_channels, num_in_channels)) for i in range(num_out_channels): weights[:, :, i, i] = bilinear_kernel # assign numpy array to constant_initalizer and pass to get_variable return tf.constant_initializer(value=weights, dtype=LayersConfig.tf_dtype)
python
def deconv2d_bilinear_upsampling_initializer(shape): """Returns the initializer that can be passed to DeConv2dLayer for initializing the weights in correspondence to channel-wise bilinear up-sampling. Used in segmentation approaches such as [FCN](https://arxiv.org/abs/1605.06211) Parameters ---------- shape : tuple of int The shape of the filters, [height, width, output_channels, in_channels]. It must match the shape passed to DeConv2dLayer. Returns ------- ``tf.constant_initializer`` A constant initializer with weights set to correspond to per channel bilinear upsampling when passed as W_int in DeConv2dLayer Examples -------- - Upsampling by a factor of 2, ie e.g 100->200 >>> import tensorflow as tf >>> import tensorlayer as tl >>> rescale_factor = 2 >>> imsize = 128 >>> num_channels = 3 >>> filter_shape = (5, 5) >>> filter_size = (2 * rescale_factor - rescale_factor % 2) #Corresponding bilinear filter size >>> num_in_channels = 3 >>> num_out_channels = 3 >>> deconv_filter_shape = (filter_size, filter_size, num_out_channels, num_in_channels) >>> x = tf.placeholder(tf.float32, (1, imsize, imsize, num_channels)) >>> net = tl.layers.InputLayer(x, name='input_layer') >>> bilinear_init = deconv2d_bilinear_upsampling_initializer(shape=filter_shape) >>> net = tl.layers.DeConv2dLayer(net, ... shape=filter_shape, ... output_shape=(1, imsize*rescale_factor, imsize*rescale_factor, num_out_channels), ... strides=(1, rescale_factor, rescale_factor, 1), ... W_init=bilinear_init, ... padding='SAME', ... act=None, name='g/h1/decon2d') """ if shape[0] != shape[1]: raise Exception('deconv2d_bilinear_upsampling_initializer only supports symmetrical filter sizes') if shape[3] < shape[2]: raise Exception( 'deconv2d_bilinear_upsampling_initializer behaviour is not defined for num_in_channels < num_out_channels ' ) filter_size = shape[0] num_out_channels = shape[2] num_in_channels = shape[3] # Create bilinear filter kernel as numpy array bilinear_kernel = np.zeros([filter_size, filter_size], dtype=np.float32) scale_factor = (filter_size + 1) // 2 if filter_size % 2 == 1: center = scale_factor - 1 else: center = scale_factor - 0.5 for x in range(filter_size): for y in range(filter_size): bilinear_kernel[x, y] = (1 - abs(x - center) / scale_factor) * (1 - abs(y - center) / scale_factor) weights = np.zeros((filter_size, filter_size, num_out_channels, num_in_channels)) for i in range(num_out_channels): weights[:, :, i, i] = bilinear_kernel # assign numpy array to constant_initalizer and pass to get_variable return tf.constant_initializer(value=weights, dtype=LayersConfig.tf_dtype)
[ "def", "deconv2d_bilinear_upsampling_initializer", "(", "shape", ")", ":", "if", "shape", "[", "0", "]", "!=", "shape", "[", "1", "]", ":", "raise", "Exception", "(", "'deconv2d_bilinear_upsampling_initializer only supports symmetrical filter sizes'", ")", "if", "shape", "[", "3", "]", "<", "shape", "[", "2", "]", ":", "raise", "Exception", "(", "'deconv2d_bilinear_upsampling_initializer behaviour is not defined for num_in_channels < num_out_channels '", ")", "filter_size", "=", "shape", "[", "0", "]", "num_out_channels", "=", "shape", "[", "2", "]", "num_in_channels", "=", "shape", "[", "3", "]", "# Create bilinear filter kernel as numpy array", "bilinear_kernel", "=", "np", ".", "zeros", "(", "[", "filter_size", ",", "filter_size", "]", ",", "dtype", "=", "np", ".", "float32", ")", "scale_factor", "=", "(", "filter_size", "+", "1", ")", "//", "2", "if", "filter_size", "%", "2", "==", "1", ":", "center", "=", "scale_factor", "-", "1", "else", ":", "center", "=", "scale_factor", "-", "0.5", "for", "x", "in", "range", "(", "filter_size", ")", ":", "for", "y", "in", "range", "(", "filter_size", ")", ":", "bilinear_kernel", "[", "x", ",", "y", "]", "=", "(", "1", "-", "abs", "(", "x", "-", "center", ")", "/", "scale_factor", ")", "*", "(", "1", "-", "abs", "(", "y", "-", "center", ")", "/", "scale_factor", ")", "weights", "=", "np", ".", "zeros", "(", "(", "filter_size", ",", "filter_size", ",", "num_out_channels", ",", "num_in_channels", ")", ")", "for", "i", "in", "range", "(", "num_out_channels", ")", ":", "weights", "[", ":", ",", ":", ",", "i", ",", "i", "]", "=", "bilinear_kernel", "# assign numpy array to constant_initalizer and pass to get_variable", "return", "tf", ".", "constant_initializer", "(", "value", "=", "weights", ",", "dtype", "=", "LayersConfig", ".", "tf_dtype", ")" ]
Returns the initializer that can be passed to DeConv2dLayer for initializing the weights in correspondence to channel-wise bilinear up-sampling. Used in segmentation approaches such as [FCN](https://arxiv.org/abs/1605.06211) Parameters ---------- shape : tuple of int The shape of the filters, [height, width, output_channels, in_channels]. It must match the shape passed to DeConv2dLayer. Returns ------- ``tf.constant_initializer`` A constant initializer with weights set to correspond to per channel bilinear upsampling when passed as W_int in DeConv2dLayer Examples -------- - Upsampling by a factor of 2, ie e.g 100->200 >>> import tensorflow as tf >>> import tensorlayer as tl >>> rescale_factor = 2 >>> imsize = 128 >>> num_channels = 3 >>> filter_shape = (5, 5) >>> filter_size = (2 * rescale_factor - rescale_factor % 2) #Corresponding bilinear filter size >>> num_in_channels = 3 >>> num_out_channels = 3 >>> deconv_filter_shape = (filter_size, filter_size, num_out_channels, num_in_channels) >>> x = tf.placeholder(tf.float32, (1, imsize, imsize, num_channels)) >>> net = tl.layers.InputLayer(x, name='input_layer') >>> bilinear_init = deconv2d_bilinear_upsampling_initializer(shape=filter_shape) >>> net = tl.layers.DeConv2dLayer(net, ... shape=filter_shape, ... output_shape=(1, imsize*rescale_factor, imsize*rescale_factor, num_out_channels), ... strides=(1, rescale_factor, rescale_factor, 1), ... W_init=bilinear_init, ... padding='SAME', ... act=None, name='g/h1/decon2d')
[ "Returns", "the", "initializer", "that", "can", "be", "passed", "to", "DeConv2dLayer", "for", "initializing", "the", "weights", "in", "correspondence", "to", "channel", "-", "wise", "bilinear", "up", "-", "sampling", ".", "Used", "in", "segmentation", "approaches", "such", "as", "[", "FCN", "]", "(", "https", ":", "//", "arxiv", ".", "org", "/", "abs", "/", "1605", ".", "06211", ")" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/initializers.py#L12-L81
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.save_model
def save_model(self, network=None, model_name='model', **kwargs): """Save model architecture and parameters into database, timestamp will be added automatically. Parameters ---------- network : TensorLayer layer TensorLayer layer instance. model_name : str The name/key of model. kwargs : other events Other events, such as name, accuracy, loss, step number and etc (optinal). Examples --------- Save model architecture and parameters into database. >>> db.save_model(net, accuracy=0.8, loss=2.3, name='second_model') Load one model with parameters from database (run this in other script) >>> net = db.find_top_model(sess=sess, accuracy=0.8, loss=2.3) Find and load the latest model. >>> net = db.find_top_model(sess=sess, sort=[("time", pymongo.DESCENDING)]) >>> net = db.find_top_model(sess=sess, sort=[("time", -1)]) Find and load the oldest model. >>> net = db.find_top_model(sess=sess, sort=[("time", pymongo.ASCENDING)]) >>> net = db.find_top_model(sess=sess, sort=[("time", 1)]) Get model information >>> net._accuracy ... 0.8 Returns --------- boolean : True for success, False for fail. """ kwargs.update({'model_name': model_name}) self._fill_project_info(kwargs) # put project_name into kwargs params = network.get_all_params() s = time.time() kwargs.update({'architecture': network.all_graphs, 'time': datetime.utcnow()}) try: params_id = self.model_fs.put(self._serialization(params)) kwargs.update({'params_id': params_id, 'time': datetime.utcnow()}) self.db.Model.insert_one(kwargs) print("[Database] Save model: SUCCESS, took: {}s".format(round(time.time() - s, 2))) return True except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] logging.info("{} {} {} {} {}".format(exc_type, exc_obj, fname, exc_tb.tb_lineno, e)) print("[Database] Save model: FAIL") return False
python
def save_model(self, network=None, model_name='model', **kwargs): """Save model architecture and parameters into database, timestamp will be added automatically. Parameters ---------- network : TensorLayer layer TensorLayer layer instance. model_name : str The name/key of model. kwargs : other events Other events, such as name, accuracy, loss, step number and etc (optinal). Examples --------- Save model architecture and parameters into database. >>> db.save_model(net, accuracy=0.8, loss=2.3, name='second_model') Load one model with parameters from database (run this in other script) >>> net = db.find_top_model(sess=sess, accuracy=0.8, loss=2.3) Find and load the latest model. >>> net = db.find_top_model(sess=sess, sort=[("time", pymongo.DESCENDING)]) >>> net = db.find_top_model(sess=sess, sort=[("time", -1)]) Find and load the oldest model. >>> net = db.find_top_model(sess=sess, sort=[("time", pymongo.ASCENDING)]) >>> net = db.find_top_model(sess=sess, sort=[("time", 1)]) Get model information >>> net._accuracy ... 0.8 Returns --------- boolean : True for success, False for fail. """ kwargs.update({'model_name': model_name}) self._fill_project_info(kwargs) # put project_name into kwargs params = network.get_all_params() s = time.time() kwargs.update({'architecture': network.all_graphs, 'time': datetime.utcnow()}) try: params_id = self.model_fs.put(self._serialization(params)) kwargs.update({'params_id': params_id, 'time': datetime.utcnow()}) self.db.Model.insert_one(kwargs) print("[Database] Save model: SUCCESS, took: {}s".format(round(time.time() - s, 2))) return True except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] logging.info("{} {} {} {} {}".format(exc_type, exc_obj, fname, exc_tb.tb_lineno, e)) print("[Database] Save model: FAIL") return False
[ "def", "save_model", "(", "self", ",", "network", "=", "None", ",", "model_name", "=", "'model'", ",", "*", "*", "kwargs", ")", ":", "kwargs", ".", "update", "(", "{", "'model_name'", ":", "model_name", "}", ")", "self", ".", "_fill_project_info", "(", "kwargs", ")", "# put project_name into kwargs", "params", "=", "network", ".", "get_all_params", "(", ")", "s", "=", "time", ".", "time", "(", ")", "kwargs", ".", "update", "(", "{", "'architecture'", ":", "network", ".", "all_graphs", ",", "'time'", ":", "datetime", ".", "utcnow", "(", ")", "}", ")", "try", ":", "params_id", "=", "self", ".", "model_fs", ".", "put", "(", "self", ".", "_serialization", "(", "params", ")", ")", "kwargs", ".", "update", "(", "{", "'params_id'", ":", "params_id", ",", "'time'", ":", "datetime", ".", "utcnow", "(", ")", "}", ")", "self", ".", "db", ".", "Model", ".", "insert_one", "(", "kwargs", ")", "print", "(", "\"[Database] Save model: SUCCESS, took: {}s\"", ".", "format", "(", "round", "(", "time", ".", "time", "(", ")", "-", "s", ",", "2", ")", ")", ")", "return", "True", "except", "Exception", "as", "e", ":", "exc_type", ",", "exc_obj", ",", "exc_tb", "=", "sys", ".", "exc_info", "(", ")", "fname", "=", "os", ".", "path", ".", "split", "(", "exc_tb", ".", "tb_frame", ".", "f_code", ".", "co_filename", ")", "[", "1", "]", "logging", ".", "info", "(", "\"{} {} {} {} {}\"", ".", "format", "(", "exc_type", ",", "exc_obj", ",", "fname", ",", "exc_tb", ".", "tb_lineno", ",", "e", ")", ")", "print", "(", "\"[Database] Save model: FAIL\"", ")", "return", "False" ]
Save model architecture and parameters into database, timestamp will be added automatically. Parameters ---------- network : TensorLayer layer TensorLayer layer instance. model_name : str The name/key of model. kwargs : other events Other events, such as name, accuracy, loss, step number and etc (optinal). Examples --------- Save model architecture and parameters into database. >>> db.save_model(net, accuracy=0.8, loss=2.3, name='second_model') Load one model with parameters from database (run this in other script) >>> net = db.find_top_model(sess=sess, accuracy=0.8, loss=2.3) Find and load the latest model. >>> net = db.find_top_model(sess=sess, sort=[("time", pymongo.DESCENDING)]) >>> net = db.find_top_model(sess=sess, sort=[("time", -1)]) Find and load the oldest model. >>> net = db.find_top_model(sess=sess, sort=[("time", pymongo.ASCENDING)]) >>> net = db.find_top_model(sess=sess, sort=[("time", 1)]) Get model information >>> net._accuracy ... 0.8 Returns --------- boolean : True for success, False for fail.
[ "Save", "model", "architecture", "and", "parameters", "into", "database", "timestamp", "will", "be", "added", "automatically", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L113-L169
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.find_top_model
def find_top_model(self, sess, sort=None, model_name='model', **kwargs): """Finds and returns a model architecture and its parameters from the database which matches the requirement. Parameters ---------- sess : Session TensorFlow session. sort : List of tuple PyMongo sort comment, search "PyMongo find one sorting" and `collection level operations <http://api.mongodb.com/python/current/api/pymongo/collection.html>`__ for more details. model_name : str or None The name/key of model. kwargs : other events Other events, such as name, accuracy, loss, step number and etc (optinal). Examples --------- - see ``save_model``. Returns --------- network : TensorLayer layer Note that, the returned network contains all information of the document (record), e.g. if you saved accuracy in the document, you can get the accuracy by using ``net._accuracy``. """ # print(kwargs) # {} kwargs.update({'model_name': model_name}) self._fill_project_info(kwargs) s = time.time() d = self.db.Model.find_one(filter=kwargs, sort=sort) _temp_file_name = '_find_one_model_ztemp_file' if d is not None: params_id = d['params_id'] graphs = d['architecture'] _datetime = d['time'] exists_or_mkdir(_temp_file_name, False) with open(os.path.join(_temp_file_name, 'graph.pkl'), 'wb') as file: pickle.dump(graphs, file, protocol=pickle.HIGHEST_PROTOCOL) else: print("[Database] FAIL! Cannot find model: {}".format(kwargs)) return False try: params = self._deserialization(self.model_fs.get(params_id).read()) np.savez(os.path.join(_temp_file_name, 'params.npz'), params=params) network = load_graph_and_params(name=_temp_file_name, sess=sess) del_folder(_temp_file_name) pc = self.db.Model.find(kwargs) print( "[Database] Find one model SUCCESS. kwargs:{} sort:{} save time:{} took: {}s". format(kwargs, sort, _datetime, round(time.time() - s, 2)) ) # put all informations of model into the TL layer for key in d: network.__dict__.update({"_%s" % key: d[key]}) # check whether more parameters match the requirement params_id_list = pc.distinct('params_id') n_params = len(params_id_list) if n_params != 1: print(" Note that there are {} models match the kwargs".format(n_params)) return network except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] logging.info("{} {} {} {} {}".format(exc_type, exc_obj, fname, exc_tb.tb_lineno, e)) return False
python
def find_top_model(self, sess, sort=None, model_name='model', **kwargs): """Finds and returns a model architecture and its parameters from the database which matches the requirement. Parameters ---------- sess : Session TensorFlow session. sort : List of tuple PyMongo sort comment, search "PyMongo find one sorting" and `collection level operations <http://api.mongodb.com/python/current/api/pymongo/collection.html>`__ for more details. model_name : str or None The name/key of model. kwargs : other events Other events, such as name, accuracy, loss, step number and etc (optinal). Examples --------- - see ``save_model``. Returns --------- network : TensorLayer layer Note that, the returned network contains all information of the document (record), e.g. if you saved accuracy in the document, you can get the accuracy by using ``net._accuracy``. """ # print(kwargs) # {} kwargs.update({'model_name': model_name}) self._fill_project_info(kwargs) s = time.time() d = self.db.Model.find_one(filter=kwargs, sort=sort) _temp_file_name = '_find_one_model_ztemp_file' if d is not None: params_id = d['params_id'] graphs = d['architecture'] _datetime = d['time'] exists_or_mkdir(_temp_file_name, False) with open(os.path.join(_temp_file_name, 'graph.pkl'), 'wb') as file: pickle.dump(graphs, file, protocol=pickle.HIGHEST_PROTOCOL) else: print("[Database] FAIL! Cannot find model: {}".format(kwargs)) return False try: params = self._deserialization(self.model_fs.get(params_id).read()) np.savez(os.path.join(_temp_file_name, 'params.npz'), params=params) network = load_graph_and_params(name=_temp_file_name, sess=sess) del_folder(_temp_file_name) pc = self.db.Model.find(kwargs) print( "[Database] Find one model SUCCESS. kwargs:{} sort:{} save time:{} took: {}s". format(kwargs, sort, _datetime, round(time.time() - s, 2)) ) # put all informations of model into the TL layer for key in d: network.__dict__.update({"_%s" % key: d[key]}) # check whether more parameters match the requirement params_id_list = pc.distinct('params_id') n_params = len(params_id_list) if n_params != 1: print(" Note that there are {} models match the kwargs".format(n_params)) return network except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] logging.info("{} {} {} {} {}".format(exc_type, exc_obj, fname, exc_tb.tb_lineno, e)) return False
[ "def", "find_top_model", "(", "self", ",", "sess", ",", "sort", "=", "None", ",", "model_name", "=", "'model'", ",", "*", "*", "kwargs", ")", ":", "# print(kwargs) # {}", "kwargs", ".", "update", "(", "{", "'model_name'", ":", "model_name", "}", ")", "self", ".", "_fill_project_info", "(", "kwargs", ")", "s", "=", "time", ".", "time", "(", ")", "d", "=", "self", ".", "db", ".", "Model", ".", "find_one", "(", "filter", "=", "kwargs", ",", "sort", "=", "sort", ")", "_temp_file_name", "=", "'_find_one_model_ztemp_file'", "if", "d", "is", "not", "None", ":", "params_id", "=", "d", "[", "'params_id'", "]", "graphs", "=", "d", "[", "'architecture'", "]", "_datetime", "=", "d", "[", "'time'", "]", "exists_or_mkdir", "(", "_temp_file_name", ",", "False", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "_temp_file_name", ",", "'graph.pkl'", ")", ",", "'wb'", ")", "as", "file", ":", "pickle", ".", "dump", "(", "graphs", ",", "file", ",", "protocol", "=", "pickle", ".", "HIGHEST_PROTOCOL", ")", "else", ":", "print", "(", "\"[Database] FAIL! Cannot find model: {}\"", ".", "format", "(", "kwargs", ")", ")", "return", "False", "try", ":", "params", "=", "self", ".", "_deserialization", "(", "self", ".", "model_fs", ".", "get", "(", "params_id", ")", ".", "read", "(", ")", ")", "np", ".", "savez", "(", "os", ".", "path", ".", "join", "(", "_temp_file_name", ",", "'params.npz'", ")", ",", "params", "=", "params", ")", "network", "=", "load_graph_and_params", "(", "name", "=", "_temp_file_name", ",", "sess", "=", "sess", ")", "del_folder", "(", "_temp_file_name", ")", "pc", "=", "self", ".", "db", ".", "Model", ".", "find", "(", "kwargs", ")", "print", "(", "\"[Database] Find one model SUCCESS. kwargs:{} sort:{} save time:{} took: {}s\"", ".", "format", "(", "kwargs", ",", "sort", ",", "_datetime", ",", "round", "(", "time", ".", "time", "(", ")", "-", "s", ",", "2", ")", ")", ")", "# put all informations of model into the TL layer", "for", "key", "in", "d", ":", "network", ".", "__dict__", ".", "update", "(", "{", "\"_%s\"", "%", "key", ":", "d", "[", "key", "]", "}", ")", "# check whether more parameters match the requirement", "params_id_list", "=", "pc", ".", "distinct", "(", "'params_id'", ")", "n_params", "=", "len", "(", "params_id_list", ")", "if", "n_params", "!=", "1", ":", "print", "(", "\" Note that there are {} models match the kwargs\"", ".", "format", "(", "n_params", ")", ")", "return", "network", "except", "Exception", "as", "e", ":", "exc_type", ",", "exc_obj", ",", "exc_tb", "=", "sys", ".", "exc_info", "(", ")", "fname", "=", "os", ".", "path", ".", "split", "(", "exc_tb", ".", "tb_frame", ".", "f_code", ".", "co_filename", ")", "[", "1", "]", "logging", ".", "info", "(", "\"{} {} {} {} {}\"", ".", "format", "(", "exc_type", ",", "exc_obj", ",", "fname", ",", "exc_tb", ".", "tb_lineno", ",", "e", ")", ")", "return", "False" ]
Finds and returns a model architecture and its parameters from the database which matches the requirement. Parameters ---------- sess : Session TensorFlow session. sort : List of tuple PyMongo sort comment, search "PyMongo find one sorting" and `collection level operations <http://api.mongodb.com/python/current/api/pymongo/collection.html>`__ for more details. model_name : str or None The name/key of model. kwargs : other events Other events, such as name, accuracy, loss, step number and etc (optinal). Examples --------- - see ``save_model``. Returns --------- network : TensorLayer layer Note that, the returned network contains all information of the document (record), e.g. if you saved accuracy in the document, you can get the accuracy by using ``net._accuracy``.
[ "Finds", "and", "returns", "a", "model", "architecture", "and", "its", "parameters", "from", "the", "database", "which", "matches", "the", "requirement", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L171-L240
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.delete_model
def delete_model(self, **kwargs): """Delete model. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. """ self._fill_project_info(kwargs) self.db.Model.delete_many(kwargs) logging.info("[Database] Delete Model SUCCESS")
python
def delete_model(self, **kwargs): """Delete model. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. """ self._fill_project_info(kwargs) self.db.Model.delete_many(kwargs) logging.info("[Database] Delete Model SUCCESS")
[ "def", "delete_model", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_fill_project_info", "(", "kwargs", ")", "self", ".", "db", ".", "Model", ".", "delete_many", "(", "kwargs", ")", "logging", ".", "info", "(", "\"[Database] Delete Model SUCCESS\"", ")" ]
Delete model. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log.
[ "Delete", "model", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L242-L252
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.save_dataset
def save_dataset(self, dataset=None, dataset_name=None, **kwargs): """Saves one dataset into database, timestamp will be added automatically. Parameters ---------- dataset : any type The dataset you want to store. dataset_name : str The name of dataset. kwargs : other events Other events, such as description, author and etc (optinal). Examples ---------- Save dataset >>> db.save_dataset([X_train, y_train, X_test, y_test], 'mnist', description='this is a tutorial') Get dataset >>> dataset = db.find_top_dataset('mnist') Returns --------- boolean : Return True if save success, otherwise, return False. """ self._fill_project_info(kwargs) if dataset_name is None: raise Exception("dataset_name is None, please give a dataset name") kwargs.update({'dataset_name': dataset_name}) s = time.time() try: dataset_id = self.dataset_fs.put(self._serialization(dataset)) kwargs.update({'dataset_id': dataset_id, 'time': datetime.utcnow()}) self.db.Dataset.insert_one(kwargs) # print("[Database] Save params: {} SUCCESS, took: {}s".format(file_name, round(time.time()-s, 2))) print("[Database] Save dataset: SUCCESS, took: {}s".format(round(time.time() - s, 2))) return True except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] logging.info("{} {} {} {} {}".format(exc_type, exc_obj, fname, exc_tb.tb_lineno, e)) print("[Database] Save dataset: FAIL") return False
python
def save_dataset(self, dataset=None, dataset_name=None, **kwargs): """Saves one dataset into database, timestamp will be added automatically. Parameters ---------- dataset : any type The dataset you want to store. dataset_name : str The name of dataset. kwargs : other events Other events, such as description, author and etc (optinal). Examples ---------- Save dataset >>> db.save_dataset([X_train, y_train, X_test, y_test], 'mnist', description='this is a tutorial') Get dataset >>> dataset = db.find_top_dataset('mnist') Returns --------- boolean : Return True if save success, otherwise, return False. """ self._fill_project_info(kwargs) if dataset_name is None: raise Exception("dataset_name is None, please give a dataset name") kwargs.update({'dataset_name': dataset_name}) s = time.time() try: dataset_id = self.dataset_fs.put(self._serialization(dataset)) kwargs.update({'dataset_id': dataset_id, 'time': datetime.utcnow()}) self.db.Dataset.insert_one(kwargs) # print("[Database] Save params: {} SUCCESS, took: {}s".format(file_name, round(time.time()-s, 2))) print("[Database] Save dataset: SUCCESS, took: {}s".format(round(time.time() - s, 2))) return True except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] logging.info("{} {} {} {} {}".format(exc_type, exc_obj, fname, exc_tb.tb_lineno, e)) print("[Database] Save dataset: FAIL") return False
[ "def", "save_dataset", "(", "self", ",", "dataset", "=", "None", ",", "dataset_name", "=", "None", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_fill_project_info", "(", "kwargs", ")", "if", "dataset_name", "is", "None", ":", "raise", "Exception", "(", "\"dataset_name is None, please give a dataset name\"", ")", "kwargs", ".", "update", "(", "{", "'dataset_name'", ":", "dataset_name", "}", ")", "s", "=", "time", ".", "time", "(", ")", "try", ":", "dataset_id", "=", "self", ".", "dataset_fs", ".", "put", "(", "self", ".", "_serialization", "(", "dataset", ")", ")", "kwargs", ".", "update", "(", "{", "'dataset_id'", ":", "dataset_id", ",", "'time'", ":", "datetime", ".", "utcnow", "(", ")", "}", ")", "self", ".", "db", ".", "Dataset", ".", "insert_one", "(", "kwargs", ")", "# print(\"[Database] Save params: {} SUCCESS, took: {}s\".format(file_name, round(time.time()-s, 2)))", "print", "(", "\"[Database] Save dataset: SUCCESS, took: {}s\"", ".", "format", "(", "round", "(", "time", ".", "time", "(", ")", "-", "s", ",", "2", ")", ")", ")", "return", "True", "except", "Exception", "as", "e", ":", "exc_type", ",", "exc_obj", ",", "exc_tb", "=", "sys", ".", "exc_info", "(", ")", "fname", "=", "os", ".", "path", ".", "split", "(", "exc_tb", ".", "tb_frame", ".", "f_code", ".", "co_filename", ")", "[", "1", "]", "logging", ".", "info", "(", "\"{} {} {} {} {}\"", ".", "format", "(", "exc_type", ",", "exc_obj", ",", "fname", ",", "exc_tb", ".", "tb_lineno", ",", "e", ")", ")", "print", "(", "\"[Database] Save dataset: FAIL\"", ")", "return", "False" ]
Saves one dataset into database, timestamp will be added automatically. Parameters ---------- dataset : any type The dataset you want to store. dataset_name : str The name of dataset. kwargs : other events Other events, such as description, author and etc (optinal). Examples ---------- Save dataset >>> db.save_dataset([X_train, y_train, X_test, y_test], 'mnist', description='this is a tutorial') Get dataset >>> dataset = db.find_top_dataset('mnist') Returns --------- boolean : Return True if save success, otherwise, return False.
[ "Saves", "one", "dataset", "into", "database", "timestamp", "will", "be", "added", "automatically", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L255-L297
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.find_top_dataset
def find_top_dataset(self, dataset_name=None, sort=None, **kwargs): """Finds and returns a dataset from the database which matches the requirement. Parameters ---------- dataset_name : str The name of dataset. sort : List of tuple PyMongo sort comment, search "PyMongo find one sorting" and `collection level operations <http://api.mongodb.com/python/current/api/pymongo/collection.html>`__ for more details. kwargs : other events Other events, such as description, author and etc (optinal). Examples --------- Save dataset >>> db.save_dataset([X_train, y_train, X_test, y_test], 'mnist', description='this is a tutorial') Get dataset >>> dataset = db.find_top_dataset('mnist') >>> datasets = db.find_datasets('mnist') Returns -------- dataset : the dataset or False Return False if nothing found. """ self._fill_project_info(kwargs) if dataset_name is None: raise Exception("dataset_name is None, please give a dataset name") kwargs.update({'dataset_name': dataset_name}) s = time.time() d = self.db.Dataset.find_one(filter=kwargs, sort=sort) if d is not None: dataset_id = d['dataset_id'] else: print("[Database] FAIL! Cannot find dataset: {}".format(kwargs)) return False try: dataset = self._deserialization(self.dataset_fs.get(dataset_id).read()) pc = self.db.Dataset.find(kwargs) print("[Database] Find one dataset SUCCESS, {} took: {}s".format(kwargs, round(time.time() - s, 2))) # check whether more datasets match the requirement dataset_id_list = pc.distinct('dataset_id') n_dataset = len(dataset_id_list) if n_dataset != 1: print(" Note that there are {} datasets match the requirement".format(n_dataset)) return dataset except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] logging.info("{} {} {} {} {}".format(exc_type, exc_obj, fname, exc_tb.tb_lineno, e)) return False
python
def find_top_dataset(self, dataset_name=None, sort=None, **kwargs): """Finds and returns a dataset from the database which matches the requirement. Parameters ---------- dataset_name : str The name of dataset. sort : List of tuple PyMongo sort comment, search "PyMongo find one sorting" and `collection level operations <http://api.mongodb.com/python/current/api/pymongo/collection.html>`__ for more details. kwargs : other events Other events, such as description, author and etc (optinal). Examples --------- Save dataset >>> db.save_dataset([X_train, y_train, X_test, y_test], 'mnist', description='this is a tutorial') Get dataset >>> dataset = db.find_top_dataset('mnist') >>> datasets = db.find_datasets('mnist') Returns -------- dataset : the dataset or False Return False if nothing found. """ self._fill_project_info(kwargs) if dataset_name is None: raise Exception("dataset_name is None, please give a dataset name") kwargs.update({'dataset_name': dataset_name}) s = time.time() d = self.db.Dataset.find_one(filter=kwargs, sort=sort) if d is not None: dataset_id = d['dataset_id'] else: print("[Database] FAIL! Cannot find dataset: {}".format(kwargs)) return False try: dataset = self._deserialization(self.dataset_fs.get(dataset_id).read()) pc = self.db.Dataset.find(kwargs) print("[Database] Find one dataset SUCCESS, {} took: {}s".format(kwargs, round(time.time() - s, 2))) # check whether more datasets match the requirement dataset_id_list = pc.distinct('dataset_id') n_dataset = len(dataset_id_list) if n_dataset != 1: print(" Note that there are {} datasets match the requirement".format(n_dataset)) return dataset except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] logging.info("{} {} {} {} {}".format(exc_type, exc_obj, fname, exc_tb.tb_lineno, e)) return False
[ "def", "find_top_dataset", "(", "self", ",", "dataset_name", "=", "None", ",", "sort", "=", "None", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_fill_project_info", "(", "kwargs", ")", "if", "dataset_name", "is", "None", ":", "raise", "Exception", "(", "\"dataset_name is None, please give a dataset name\"", ")", "kwargs", ".", "update", "(", "{", "'dataset_name'", ":", "dataset_name", "}", ")", "s", "=", "time", ".", "time", "(", ")", "d", "=", "self", ".", "db", ".", "Dataset", ".", "find_one", "(", "filter", "=", "kwargs", ",", "sort", "=", "sort", ")", "if", "d", "is", "not", "None", ":", "dataset_id", "=", "d", "[", "'dataset_id'", "]", "else", ":", "print", "(", "\"[Database] FAIL! Cannot find dataset: {}\"", ".", "format", "(", "kwargs", ")", ")", "return", "False", "try", ":", "dataset", "=", "self", ".", "_deserialization", "(", "self", ".", "dataset_fs", ".", "get", "(", "dataset_id", ")", ".", "read", "(", ")", ")", "pc", "=", "self", ".", "db", ".", "Dataset", ".", "find", "(", "kwargs", ")", "print", "(", "\"[Database] Find one dataset SUCCESS, {} took: {}s\"", ".", "format", "(", "kwargs", ",", "round", "(", "time", ".", "time", "(", ")", "-", "s", ",", "2", ")", ")", ")", "# check whether more datasets match the requirement", "dataset_id_list", "=", "pc", ".", "distinct", "(", "'dataset_id'", ")", "n_dataset", "=", "len", "(", "dataset_id_list", ")", "if", "n_dataset", "!=", "1", ":", "print", "(", "\" Note that there are {} datasets match the requirement\"", ".", "format", "(", "n_dataset", ")", ")", "return", "dataset", "except", "Exception", "as", "e", ":", "exc_type", ",", "exc_obj", ",", "exc_tb", "=", "sys", ".", "exc_info", "(", ")", "fname", "=", "os", ".", "path", ".", "split", "(", "exc_tb", ".", "tb_frame", ".", "f_code", ".", "co_filename", ")", "[", "1", "]", "logging", ".", "info", "(", "\"{} {} {} {} {}\"", ".", "format", "(", "exc_type", ",", "exc_obj", ",", "fname", ",", "exc_tb", ".", "tb_lineno", ",", "e", ")", ")", "return", "False" ]
Finds and returns a dataset from the database which matches the requirement. Parameters ---------- dataset_name : str The name of dataset. sort : List of tuple PyMongo sort comment, search "PyMongo find one sorting" and `collection level operations <http://api.mongodb.com/python/current/api/pymongo/collection.html>`__ for more details. kwargs : other events Other events, such as description, author and etc (optinal). Examples --------- Save dataset >>> db.save_dataset([X_train, y_train, X_test, y_test], 'mnist', description='this is a tutorial') Get dataset >>> dataset = db.find_top_dataset('mnist') >>> datasets = db.find_datasets('mnist') Returns -------- dataset : the dataset or False Return False if nothing found.
[ "Finds", "and", "returns", "a", "dataset", "from", "the", "database", "which", "matches", "the", "requirement", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L299-L356
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.find_datasets
def find_datasets(self, dataset_name=None, **kwargs): """Finds and returns all datasets from the database which matches the requirement. In some case, the data in a dataset can be stored separately for better management. Parameters ---------- dataset_name : str The name/key of dataset. kwargs : other events Other events, such as description, author and etc (optional). Returns -------- params : the parameters, return False if nothing found. """ self._fill_project_info(kwargs) if dataset_name is None: raise Exception("dataset_name is None, please give a dataset name") kwargs.update({'dataset_name': dataset_name}) s = time.time() pc = self.db.Dataset.find(kwargs) if pc is not None: dataset_id_list = pc.distinct('dataset_id') dataset_list = [] for dataset_id in dataset_id_list: # you may have multiple Buckets files tmp = self.dataset_fs.get(dataset_id).read() dataset_list.append(self._deserialization(tmp)) else: print("[Database] FAIL! Cannot find any dataset: {}".format(kwargs)) return False print("[Database] Find {} datasets SUCCESS, took: {}s".format(len(dataset_list), round(time.time() - s, 2))) return dataset_list
python
def find_datasets(self, dataset_name=None, **kwargs): """Finds and returns all datasets from the database which matches the requirement. In some case, the data in a dataset can be stored separately for better management. Parameters ---------- dataset_name : str The name/key of dataset. kwargs : other events Other events, such as description, author and etc (optional). Returns -------- params : the parameters, return False if nothing found. """ self._fill_project_info(kwargs) if dataset_name is None: raise Exception("dataset_name is None, please give a dataset name") kwargs.update({'dataset_name': dataset_name}) s = time.time() pc = self.db.Dataset.find(kwargs) if pc is not None: dataset_id_list = pc.distinct('dataset_id') dataset_list = [] for dataset_id in dataset_id_list: # you may have multiple Buckets files tmp = self.dataset_fs.get(dataset_id).read() dataset_list.append(self._deserialization(tmp)) else: print("[Database] FAIL! Cannot find any dataset: {}".format(kwargs)) return False print("[Database] Find {} datasets SUCCESS, took: {}s".format(len(dataset_list), round(time.time() - s, 2))) return dataset_list
[ "def", "find_datasets", "(", "self", ",", "dataset_name", "=", "None", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_fill_project_info", "(", "kwargs", ")", "if", "dataset_name", "is", "None", ":", "raise", "Exception", "(", "\"dataset_name is None, please give a dataset name\"", ")", "kwargs", ".", "update", "(", "{", "'dataset_name'", ":", "dataset_name", "}", ")", "s", "=", "time", ".", "time", "(", ")", "pc", "=", "self", ".", "db", ".", "Dataset", ".", "find", "(", "kwargs", ")", "if", "pc", "is", "not", "None", ":", "dataset_id_list", "=", "pc", ".", "distinct", "(", "'dataset_id'", ")", "dataset_list", "=", "[", "]", "for", "dataset_id", "in", "dataset_id_list", ":", "# you may have multiple Buckets files", "tmp", "=", "self", ".", "dataset_fs", ".", "get", "(", "dataset_id", ")", ".", "read", "(", ")", "dataset_list", ".", "append", "(", "self", ".", "_deserialization", "(", "tmp", ")", ")", "else", ":", "print", "(", "\"[Database] FAIL! Cannot find any dataset: {}\"", ".", "format", "(", "kwargs", ")", ")", "return", "False", "print", "(", "\"[Database] Find {} datasets SUCCESS, took: {}s\"", ".", "format", "(", "len", "(", "dataset_list", ")", ",", "round", "(", "time", ".", "time", "(", ")", "-", "s", ",", "2", ")", ")", ")", "return", "dataset_list" ]
Finds and returns all datasets from the database which matches the requirement. In some case, the data in a dataset can be stored separately for better management. Parameters ---------- dataset_name : str The name/key of dataset. kwargs : other events Other events, such as description, author and etc (optional). Returns -------- params : the parameters, return False if nothing found.
[ "Finds", "and", "returns", "all", "datasets", "from", "the", "database", "which", "matches", "the", "requirement", ".", "In", "some", "case", "the", "data", "in", "a", "dataset", "can", "be", "stored", "separately", "for", "better", "management", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L358-L394
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.delete_datasets
def delete_datasets(self, **kwargs): """Delete datasets. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. """ self._fill_project_info(kwargs) self.db.Dataset.delete_many(kwargs) logging.info("[Database] Delete Dataset SUCCESS")
python
def delete_datasets(self, **kwargs): """Delete datasets. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. """ self._fill_project_info(kwargs) self.db.Dataset.delete_many(kwargs) logging.info("[Database] Delete Dataset SUCCESS")
[ "def", "delete_datasets", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_fill_project_info", "(", "kwargs", ")", "self", ".", "db", ".", "Dataset", ".", "delete_many", "(", "kwargs", ")", "logging", ".", "info", "(", "\"[Database] Delete Dataset SUCCESS\"", ")" ]
Delete datasets. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log.
[ "Delete", "datasets", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L396-L408
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.save_training_log
def save_training_log(self, **kwargs): """Saves the training log, timestamp will be added automatically. Parameters ----------- kwargs : logging information Events, such as accuracy, loss, step number and etc. Examples --------- >>> db.save_training_log(accuracy=0.33, loss=0.98) """ self._fill_project_info(kwargs) kwargs.update({'time': datetime.utcnow()}) _result = self.db.TrainLog.insert_one(kwargs) _log = self._print_dict(kwargs) logging.info("[Database] train log: " + _log)
python
def save_training_log(self, **kwargs): """Saves the training log, timestamp will be added automatically. Parameters ----------- kwargs : logging information Events, such as accuracy, loss, step number and etc. Examples --------- >>> db.save_training_log(accuracy=0.33, loss=0.98) """ self._fill_project_info(kwargs) kwargs.update({'time': datetime.utcnow()}) _result = self.db.TrainLog.insert_one(kwargs) _log = self._print_dict(kwargs) logging.info("[Database] train log: " + _log)
[ "def", "save_training_log", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_fill_project_info", "(", "kwargs", ")", "kwargs", ".", "update", "(", "{", "'time'", ":", "datetime", ".", "utcnow", "(", ")", "}", ")", "_result", "=", "self", ".", "db", ".", "TrainLog", ".", "insert_one", "(", "kwargs", ")", "_log", "=", "self", ".", "_print_dict", "(", "kwargs", ")", "logging", ".", "info", "(", "\"[Database] train log: \"", "+", "_log", ")" ]
Saves the training log, timestamp will be added automatically. Parameters ----------- kwargs : logging information Events, such as accuracy, loss, step number and etc. Examples --------- >>> db.save_training_log(accuracy=0.33, loss=0.98)
[ "Saves", "the", "training", "log", "timestamp", "will", "be", "added", "automatically", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L411-L429
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.save_validation_log
def save_validation_log(self, **kwargs): """Saves the validation log, timestamp will be added automatically. Parameters ----------- kwargs : logging information Events, such as accuracy, loss, step number and etc. Examples --------- >>> db.save_validation_log(accuracy=0.33, loss=0.98) """ self._fill_project_info(kwargs) kwargs.update({'time': datetime.utcnow()}) _result = self.db.ValidLog.insert_one(kwargs) _log = self._print_dict(kwargs) logging.info("[Database] valid log: " + _log)
python
def save_validation_log(self, **kwargs): """Saves the validation log, timestamp will be added automatically. Parameters ----------- kwargs : logging information Events, such as accuracy, loss, step number and etc. Examples --------- >>> db.save_validation_log(accuracy=0.33, loss=0.98) """ self._fill_project_info(kwargs) kwargs.update({'time': datetime.utcnow()}) _result = self.db.ValidLog.insert_one(kwargs) _log = self._print_dict(kwargs) logging.info("[Database] valid log: " + _log)
[ "def", "save_validation_log", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_fill_project_info", "(", "kwargs", ")", "kwargs", ".", "update", "(", "{", "'time'", ":", "datetime", ".", "utcnow", "(", ")", "}", ")", "_result", "=", "self", ".", "db", ".", "ValidLog", ".", "insert_one", "(", "kwargs", ")", "_log", "=", "self", ".", "_print_dict", "(", "kwargs", ")", "logging", ".", "info", "(", "\"[Database] valid log: \"", "+", "_log", ")" ]
Saves the validation log, timestamp will be added automatically. Parameters ----------- kwargs : logging information Events, such as accuracy, loss, step number and etc. Examples --------- >>> db.save_validation_log(accuracy=0.33, loss=0.98)
[ "Saves", "the", "validation", "log", "timestamp", "will", "be", "added", "automatically", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L431-L449
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.delete_training_log
def delete_training_log(self, **kwargs): """Deletes training log. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. Examples --------- Save training log >>> db.save_training_log(accuracy=0.33) >>> db.save_training_log(accuracy=0.44) Delete logs that match the requirement >>> db.delete_training_log(accuracy=0.33) Delete all logs >>> db.delete_training_log() """ self._fill_project_info(kwargs) self.db.TrainLog.delete_many(kwargs) logging.info("[Database] Delete TrainLog SUCCESS")
python
def delete_training_log(self, **kwargs): """Deletes training log. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. Examples --------- Save training log >>> db.save_training_log(accuracy=0.33) >>> db.save_training_log(accuracy=0.44) Delete logs that match the requirement >>> db.delete_training_log(accuracy=0.33) Delete all logs >>> db.delete_training_log() """ self._fill_project_info(kwargs) self.db.TrainLog.delete_many(kwargs) logging.info("[Database] Delete TrainLog SUCCESS")
[ "def", "delete_training_log", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_fill_project_info", "(", "kwargs", ")", "self", ".", "db", ".", "TrainLog", ".", "delete_many", "(", "kwargs", ")", "logging", ".", "info", "(", "\"[Database] Delete TrainLog SUCCESS\"", ")" ]
Deletes training log. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. Examples --------- Save training log >>> db.save_training_log(accuracy=0.33) >>> db.save_training_log(accuracy=0.44) Delete logs that match the requirement >>> db.delete_training_log(accuracy=0.33) Delete all logs >>> db.delete_training_log()
[ "Deletes", "training", "log", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L471-L493
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.delete_validation_log
def delete_validation_log(self, **kwargs): """Deletes validation log. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. Examples --------- - see ``save_training_log``. """ self._fill_project_info(kwargs) self.db.ValidLog.delete_many(kwargs) logging.info("[Database] Delete ValidLog SUCCESS")
python
def delete_validation_log(self, **kwargs): """Deletes validation log. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. Examples --------- - see ``save_training_log``. """ self._fill_project_info(kwargs) self.db.ValidLog.delete_many(kwargs) logging.info("[Database] Delete ValidLog SUCCESS")
[ "def", "delete_validation_log", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_fill_project_info", "(", "kwargs", ")", "self", ".", "db", ".", "ValidLog", ".", "delete_many", "(", "kwargs", ")", "logging", ".", "info", "(", "\"[Database] Delete ValidLog SUCCESS\"", ")" ]
Deletes validation log. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. Examples --------- - see ``save_training_log``.
[ "Deletes", "validation", "log", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L495-L509
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.create_task
def create_task(self, task_name=None, script=None, hyper_parameters=None, saved_result_keys=None, **kwargs): """Uploads a task to the database, timestamp will be added automatically. Parameters ----------- task_name : str The task name. script : str File name of the python script. hyper_parameters : dictionary The hyper parameters pass into the script. saved_result_keys : list of str The keys of the task results to keep in the database when the task finishes. kwargs : other parameters Users customized parameters such as description, version number. Examples ----------- Uploads a task >>> db.create_task(task_name='mnist', script='example/tutorial_mnist_simple.py', description='simple tutorial') Finds and runs the latest task >>> db.run_top_task(sess=sess, sort=[("time", pymongo.DESCENDING)]) >>> db.run_top_task(sess=sess, sort=[("time", -1)]) Finds and runs the oldest task >>> db.run_top_task(sess=sess, sort=[("time", pymongo.ASCENDING)]) >>> db.run_top_task(sess=sess, sort=[("time", 1)]) """ if not isinstance(task_name, str): # is None: raise Exception("task_name should be string") if not isinstance(script, str): # is None: raise Exception("script should be string") if hyper_parameters is None: hyper_parameters = {} if saved_result_keys is None: saved_result_keys = [] self._fill_project_info(kwargs) kwargs.update({'time': datetime.utcnow()}) kwargs.update({'hyper_parameters': hyper_parameters}) kwargs.update({'saved_result_keys': saved_result_keys}) _script = open(script, 'rb').read() kwargs.update({'status': 'pending', 'script': _script, 'result': {}}) self.db.Task.insert_one(kwargs) logging.info("[Database] Saved Task - task_name: {} script: {}".format(task_name, script))
python
def create_task(self, task_name=None, script=None, hyper_parameters=None, saved_result_keys=None, **kwargs): """Uploads a task to the database, timestamp will be added automatically. Parameters ----------- task_name : str The task name. script : str File name of the python script. hyper_parameters : dictionary The hyper parameters pass into the script. saved_result_keys : list of str The keys of the task results to keep in the database when the task finishes. kwargs : other parameters Users customized parameters such as description, version number. Examples ----------- Uploads a task >>> db.create_task(task_name='mnist', script='example/tutorial_mnist_simple.py', description='simple tutorial') Finds and runs the latest task >>> db.run_top_task(sess=sess, sort=[("time", pymongo.DESCENDING)]) >>> db.run_top_task(sess=sess, sort=[("time", -1)]) Finds and runs the oldest task >>> db.run_top_task(sess=sess, sort=[("time", pymongo.ASCENDING)]) >>> db.run_top_task(sess=sess, sort=[("time", 1)]) """ if not isinstance(task_name, str): # is None: raise Exception("task_name should be string") if not isinstance(script, str): # is None: raise Exception("script should be string") if hyper_parameters is None: hyper_parameters = {} if saved_result_keys is None: saved_result_keys = [] self._fill_project_info(kwargs) kwargs.update({'time': datetime.utcnow()}) kwargs.update({'hyper_parameters': hyper_parameters}) kwargs.update({'saved_result_keys': saved_result_keys}) _script = open(script, 'rb').read() kwargs.update({'status': 'pending', 'script': _script, 'result': {}}) self.db.Task.insert_one(kwargs) logging.info("[Database] Saved Task - task_name: {} script: {}".format(task_name, script))
[ "def", "create_task", "(", "self", ",", "task_name", "=", "None", ",", "script", "=", "None", ",", "hyper_parameters", "=", "None", ",", "saved_result_keys", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "not", "isinstance", "(", "task_name", ",", "str", ")", ":", "# is None:", "raise", "Exception", "(", "\"task_name should be string\"", ")", "if", "not", "isinstance", "(", "script", ",", "str", ")", ":", "# is None:", "raise", "Exception", "(", "\"script should be string\"", ")", "if", "hyper_parameters", "is", "None", ":", "hyper_parameters", "=", "{", "}", "if", "saved_result_keys", "is", "None", ":", "saved_result_keys", "=", "[", "]", "self", ".", "_fill_project_info", "(", "kwargs", ")", "kwargs", ".", "update", "(", "{", "'time'", ":", "datetime", ".", "utcnow", "(", ")", "}", ")", "kwargs", ".", "update", "(", "{", "'hyper_parameters'", ":", "hyper_parameters", "}", ")", "kwargs", ".", "update", "(", "{", "'saved_result_keys'", ":", "saved_result_keys", "}", ")", "_script", "=", "open", "(", "script", ",", "'rb'", ")", ".", "read", "(", ")", "kwargs", ".", "update", "(", "{", "'status'", ":", "'pending'", ",", "'script'", ":", "_script", ",", "'result'", ":", "{", "}", "}", ")", "self", ".", "db", ".", "Task", ".", "insert_one", "(", "kwargs", ")", "logging", ".", "info", "(", "\"[Database] Saved Task - task_name: {} script: {}\"", ".", "format", "(", "task_name", ",", "script", ")", ")" ]
Uploads a task to the database, timestamp will be added automatically. Parameters ----------- task_name : str The task name. script : str File name of the python script. hyper_parameters : dictionary The hyper parameters pass into the script. saved_result_keys : list of str The keys of the task results to keep in the database when the task finishes. kwargs : other parameters Users customized parameters such as description, version number. Examples ----------- Uploads a task >>> db.create_task(task_name='mnist', script='example/tutorial_mnist_simple.py', description='simple tutorial') Finds and runs the latest task >>> db.run_top_task(sess=sess, sort=[("time", pymongo.DESCENDING)]) >>> db.run_top_task(sess=sess, sort=[("time", -1)]) Finds and runs the oldest task >>> db.run_top_task(sess=sess, sort=[("time", pymongo.ASCENDING)]) >>> db.run_top_task(sess=sess, sort=[("time", 1)])
[ "Uploads", "a", "task", "to", "the", "database", "timestamp", "will", "be", "added", "automatically", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L537-L585
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.run_top_task
def run_top_task(self, task_name=None, sort=None, **kwargs): """Finds and runs a pending task that in the first of the sorting list. Parameters ----------- task_name : str The task name. sort : List of tuple PyMongo sort comment, search "PyMongo find one sorting" and `collection level operations <http://api.mongodb.com/python/current/api/pymongo/collection.html>`__ for more details. kwargs : other parameters Users customized parameters such as description, version number. Examples --------- Monitors the database and pull tasks to run >>> while True: >>> print("waiting task from distributor") >>> db.run_top_task(task_name='mnist', sort=[("time", -1)]) >>> time.sleep(1) Returns -------- boolean : True for success, False for fail. """ if not isinstance(task_name, str): # is None: raise Exception("task_name should be string") self._fill_project_info(kwargs) kwargs.update({'status': 'pending'}) # find task and set status to running task = self.db.Task.find_one_and_update(kwargs, {'$set': {'status': 'running'}}, sort=sort) try: # get task info e.g. hyper parameters, python script if task is None: logging.info("[Database] Find Task FAIL: key: {} sort: {}".format(task_name, sort)) return False else: logging.info("[Database] Find Task SUCCESS: key: {} sort: {}".format(task_name, sort)) _datetime = task['time'] _script = task['script'] _id = task['_id'] _hyper_parameters = task['hyper_parameters'] _saved_result_keys = task['saved_result_keys'] logging.info(" hyper parameters:") for key in _hyper_parameters: globals()[key] = _hyper_parameters[key] logging.info(" {}: {}".format(key, _hyper_parameters[key])) # run task s = time.time() logging.info("[Database] Start Task: key: {} sort: {} push time: {}".format(task_name, sort, _datetime)) _script = _script.decode('utf-8') with tf.Graph().as_default(): # as graph: # clear all TF graphs exec(_script, globals()) # set status to finished _ = self.db.Task.find_one_and_update({'_id': _id}, {'$set': {'status': 'finished'}}) # return results __result = {} for _key in _saved_result_keys: logging.info(" result: {}={} {}".format(_key, globals()[_key], type(globals()[_key]))) __result.update({"%s" % _key: globals()[_key]}) _ = self.db.Task.find_one_and_update( { '_id': _id }, {'$set': { 'result': __result }}, return_document=pymongo.ReturnDocument.AFTER ) logging.info( "[Database] Finished Task: task_name - {} sort: {} push time: {} took: {}s". format(task_name, sort, _datetime, time.time() - s) ) return True except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] logging.info("{} {} {} {} {}".format(exc_type, exc_obj, fname, exc_tb.tb_lineno, e)) logging.info("[Database] Fail to run task") # if fail, set status back to pending _ = self.db.Task.find_one_and_update({'_id': _id}, {'$set': {'status': 'pending'}}) return False
python
def run_top_task(self, task_name=None, sort=None, **kwargs): """Finds and runs a pending task that in the first of the sorting list. Parameters ----------- task_name : str The task name. sort : List of tuple PyMongo sort comment, search "PyMongo find one sorting" and `collection level operations <http://api.mongodb.com/python/current/api/pymongo/collection.html>`__ for more details. kwargs : other parameters Users customized parameters such as description, version number. Examples --------- Monitors the database and pull tasks to run >>> while True: >>> print("waiting task from distributor") >>> db.run_top_task(task_name='mnist', sort=[("time", -1)]) >>> time.sleep(1) Returns -------- boolean : True for success, False for fail. """ if not isinstance(task_name, str): # is None: raise Exception("task_name should be string") self._fill_project_info(kwargs) kwargs.update({'status': 'pending'}) # find task and set status to running task = self.db.Task.find_one_and_update(kwargs, {'$set': {'status': 'running'}}, sort=sort) try: # get task info e.g. hyper parameters, python script if task is None: logging.info("[Database] Find Task FAIL: key: {} sort: {}".format(task_name, sort)) return False else: logging.info("[Database] Find Task SUCCESS: key: {} sort: {}".format(task_name, sort)) _datetime = task['time'] _script = task['script'] _id = task['_id'] _hyper_parameters = task['hyper_parameters'] _saved_result_keys = task['saved_result_keys'] logging.info(" hyper parameters:") for key in _hyper_parameters: globals()[key] = _hyper_parameters[key] logging.info(" {}: {}".format(key, _hyper_parameters[key])) # run task s = time.time() logging.info("[Database] Start Task: key: {} sort: {} push time: {}".format(task_name, sort, _datetime)) _script = _script.decode('utf-8') with tf.Graph().as_default(): # as graph: # clear all TF graphs exec(_script, globals()) # set status to finished _ = self.db.Task.find_one_and_update({'_id': _id}, {'$set': {'status': 'finished'}}) # return results __result = {} for _key in _saved_result_keys: logging.info(" result: {}={} {}".format(_key, globals()[_key], type(globals()[_key]))) __result.update({"%s" % _key: globals()[_key]}) _ = self.db.Task.find_one_and_update( { '_id': _id }, {'$set': { 'result': __result }}, return_document=pymongo.ReturnDocument.AFTER ) logging.info( "[Database] Finished Task: task_name - {} sort: {} push time: {} took: {}s". format(task_name, sort, _datetime, time.time() - s) ) return True except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] logging.info("{} {} {} {} {}".format(exc_type, exc_obj, fname, exc_tb.tb_lineno, e)) logging.info("[Database] Fail to run task") # if fail, set status back to pending _ = self.db.Task.find_one_and_update({'_id': _id}, {'$set': {'status': 'pending'}}) return False
[ "def", "run_top_task", "(", "self", ",", "task_name", "=", "None", ",", "sort", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "not", "isinstance", "(", "task_name", ",", "str", ")", ":", "# is None:", "raise", "Exception", "(", "\"task_name should be string\"", ")", "self", ".", "_fill_project_info", "(", "kwargs", ")", "kwargs", ".", "update", "(", "{", "'status'", ":", "'pending'", "}", ")", "# find task and set status to running", "task", "=", "self", ".", "db", ".", "Task", ".", "find_one_and_update", "(", "kwargs", ",", "{", "'$set'", ":", "{", "'status'", ":", "'running'", "}", "}", ",", "sort", "=", "sort", ")", "try", ":", "# get task info e.g. hyper parameters, python script", "if", "task", "is", "None", ":", "logging", ".", "info", "(", "\"[Database] Find Task FAIL: key: {} sort: {}\"", ".", "format", "(", "task_name", ",", "sort", ")", ")", "return", "False", "else", ":", "logging", ".", "info", "(", "\"[Database] Find Task SUCCESS: key: {} sort: {}\"", ".", "format", "(", "task_name", ",", "sort", ")", ")", "_datetime", "=", "task", "[", "'time'", "]", "_script", "=", "task", "[", "'script'", "]", "_id", "=", "task", "[", "'_id'", "]", "_hyper_parameters", "=", "task", "[", "'hyper_parameters'", "]", "_saved_result_keys", "=", "task", "[", "'saved_result_keys'", "]", "logging", ".", "info", "(", "\" hyper parameters:\"", ")", "for", "key", "in", "_hyper_parameters", ":", "globals", "(", ")", "[", "key", "]", "=", "_hyper_parameters", "[", "key", "]", "logging", ".", "info", "(", "\" {}: {}\"", ".", "format", "(", "key", ",", "_hyper_parameters", "[", "key", "]", ")", ")", "# run task", "s", "=", "time", ".", "time", "(", ")", "logging", ".", "info", "(", "\"[Database] Start Task: key: {} sort: {} push time: {}\"", ".", "format", "(", "task_name", ",", "sort", ",", "_datetime", ")", ")", "_script", "=", "_script", ".", "decode", "(", "'utf-8'", ")", "with", "tf", ".", "Graph", "(", ")", ".", "as_default", "(", ")", ":", "# as graph: # clear all TF graphs", "exec", "(", "_script", ",", "globals", "(", ")", ")", "# set status to finished", "_", "=", "self", ".", "db", ".", "Task", ".", "find_one_and_update", "(", "{", "'_id'", ":", "_id", "}", ",", "{", "'$set'", ":", "{", "'status'", ":", "'finished'", "}", "}", ")", "# return results", "__result", "=", "{", "}", "for", "_key", "in", "_saved_result_keys", ":", "logging", ".", "info", "(", "\" result: {}={} {}\"", ".", "format", "(", "_key", ",", "globals", "(", ")", "[", "_key", "]", ",", "type", "(", "globals", "(", ")", "[", "_key", "]", ")", ")", ")", "__result", ".", "update", "(", "{", "\"%s\"", "%", "_key", ":", "globals", "(", ")", "[", "_key", "]", "}", ")", "_", "=", "self", ".", "db", ".", "Task", ".", "find_one_and_update", "(", "{", "'_id'", ":", "_id", "}", ",", "{", "'$set'", ":", "{", "'result'", ":", "__result", "}", "}", ",", "return_document", "=", "pymongo", ".", "ReturnDocument", ".", "AFTER", ")", "logging", ".", "info", "(", "\"[Database] Finished Task: task_name - {} sort: {} push time: {} took: {}s\"", ".", "format", "(", "task_name", ",", "sort", ",", "_datetime", ",", "time", ".", "time", "(", ")", "-", "s", ")", ")", "return", "True", "except", "Exception", "as", "e", ":", "exc_type", ",", "exc_obj", ",", "exc_tb", "=", "sys", ".", "exc_info", "(", ")", "fname", "=", "os", ".", "path", ".", "split", "(", "exc_tb", ".", "tb_frame", ".", "f_code", ".", "co_filename", ")", "[", "1", "]", "logging", ".", "info", "(", "\"{} {} {} {} {}\"", ".", "format", "(", "exc_type", ",", "exc_obj", ",", "fname", ",", "exc_tb", ".", "tb_lineno", ",", "e", ")", ")", "logging", ".", "info", "(", "\"[Database] Fail to run task\"", ")", "# if fail, set status back to pending", "_", "=", "self", ".", "db", ".", "Task", ".", "find_one_and_update", "(", "{", "'_id'", ":", "_id", "}", ",", "{", "'$set'", ":", "{", "'status'", ":", "'pending'", "}", "}", ")", "return", "False" ]
Finds and runs a pending task that in the first of the sorting list. Parameters ----------- task_name : str The task name. sort : List of tuple PyMongo sort comment, search "PyMongo find one sorting" and `collection level operations <http://api.mongodb.com/python/current/api/pymongo/collection.html>`__ for more details. kwargs : other parameters Users customized parameters such as description, version number. Examples --------- Monitors the database and pull tasks to run >>> while True: >>> print("waiting task from distributor") >>> db.run_top_task(task_name='mnist', sort=[("time", -1)]) >>> time.sleep(1) Returns -------- boolean : True for success, False for fail.
[ "Finds", "and", "runs", "a", "pending", "task", "that", "in", "the", "first", "of", "the", "sorting", "list", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L587-L670
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.delete_tasks
def delete_tasks(self, **kwargs): """Delete tasks. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. Examples --------- >>> db.delete_tasks() """ self._fill_project_info(kwargs) self.db.Task.delete_many(kwargs) logging.info("[Database] Delete Task SUCCESS")
python
def delete_tasks(self, **kwargs): """Delete tasks. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. Examples --------- >>> db.delete_tasks() """ self._fill_project_info(kwargs) self.db.Task.delete_many(kwargs) logging.info("[Database] Delete Task SUCCESS")
[ "def", "delete_tasks", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_fill_project_info", "(", "kwargs", ")", "self", ".", "db", ".", "Task", ".", "delete_many", "(", "kwargs", ")", "logging", ".", "info", "(", "\"[Database] Delete Task SUCCESS\"", ")" ]
Delete tasks. Parameters ----------- kwargs : logging information Find items to delete, leave it empty to delete all log. Examples --------- >>> db.delete_tasks()
[ "Delete", "tasks", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L672-L688
valid
tensorlayer/tensorlayer
tensorlayer/db.py
TensorHub.check_unfinished_task
def check_unfinished_task(self, task_name=None, **kwargs): """Finds and runs a pending task. Parameters ----------- task_name : str The task name. kwargs : other parameters Users customized parameters such as description, version number. Examples --------- Wait until all tasks finish in user's local console >>> while not db.check_unfinished_task(): >>> time.sleep(1) >>> print("all tasks finished") >>> sess = tf.InteractiveSession() >>> net = db.find_top_model(sess=sess, sort=[("test_accuracy", -1)]) >>> print("the best accuracy {} is from model {}".format(net._test_accuracy, net._name)) Returns -------- boolean : True for success, False for fail. """ if not isinstance(task_name, str): # is None: raise Exception("task_name should be string") self._fill_project_info(kwargs) kwargs.update({'$or': [{'status': 'pending'}, {'status': 'running'}]}) # ## find task # task = self.db.Task.find_one(kwargs) task = self.db.Task.find(kwargs) task_id_list = task.distinct('_id') n_task = len(task_id_list) if n_task == 0: logging.info("[Database] No unfinished task - task_name: {}".format(task_name)) return False else: logging.info("[Database] Find {} unfinished task - task_name: {}".format(n_task, task_name)) return True
python
def check_unfinished_task(self, task_name=None, **kwargs): """Finds and runs a pending task. Parameters ----------- task_name : str The task name. kwargs : other parameters Users customized parameters such as description, version number. Examples --------- Wait until all tasks finish in user's local console >>> while not db.check_unfinished_task(): >>> time.sleep(1) >>> print("all tasks finished") >>> sess = tf.InteractiveSession() >>> net = db.find_top_model(sess=sess, sort=[("test_accuracy", -1)]) >>> print("the best accuracy {} is from model {}".format(net._test_accuracy, net._name)) Returns -------- boolean : True for success, False for fail. """ if not isinstance(task_name, str): # is None: raise Exception("task_name should be string") self._fill_project_info(kwargs) kwargs.update({'$or': [{'status': 'pending'}, {'status': 'running'}]}) # ## find task # task = self.db.Task.find_one(kwargs) task = self.db.Task.find(kwargs) task_id_list = task.distinct('_id') n_task = len(task_id_list) if n_task == 0: logging.info("[Database] No unfinished task - task_name: {}".format(task_name)) return False else: logging.info("[Database] Find {} unfinished task - task_name: {}".format(n_task, task_name)) return True
[ "def", "check_unfinished_task", "(", "self", ",", "task_name", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "not", "isinstance", "(", "task_name", ",", "str", ")", ":", "# is None:", "raise", "Exception", "(", "\"task_name should be string\"", ")", "self", ".", "_fill_project_info", "(", "kwargs", ")", "kwargs", ".", "update", "(", "{", "'$or'", ":", "[", "{", "'status'", ":", "'pending'", "}", ",", "{", "'status'", ":", "'running'", "}", "]", "}", ")", "# ## find task", "# task = self.db.Task.find_one(kwargs)", "task", "=", "self", ".", "db", ".", "Task", ".", "find", "(", "kwargs", ")", "task_id_list", "=", "task", ".", "distinct", "(", "'_id'", ")", "n_task", "=", "len", "(", "task_id_list", ")", "if", "n_task", "==", "0", ":", "logging", ".", "info", "(", "\"[Database] No unfinished task - task_name: {}\"", ".", "format", "(", "task_name", ")", ")", "return", "False", "else", ":", "logging", ".", "info", "(", "\"[Database] Find {} unfinished task - task_name: {}\"", ".", "format", "(", "n_task", ",", "task_name", ")", ")", "return", "True" ]
Finds and runs a pending task. Parameters ----------- task_name : str The task name. kwargs : other parameters Users customized parameters such as description, version number. Examples --------- Wait until all tasks finish in user's local console >>> while not db.check_unfinished_task(): >>> time.sleep(1) >>> print("all tasks finished") >>> sess = tf.InteractiveSession() >>> net = db.find_top_model(sess=sess, sort=[("test_accuracy", -1)]) >>> print("the best accuracy {} is from model {}".format(net._test_accuracy, net._name)) Returns -------- boolean : True for success, False for fail.
[ "Finds", "and", "runs", "a", "pending", "task", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/db.py#L690-L736
valid
tensorlayer/tensorlayer
examples/text_classification/tutorial_imdb_fasttext.py
augment_with_ngrams
def augment_with_ngrams(unigrams, unigram_vocab_size, n_buckets, n=2): """Augment unigram features with hashed n-gram features.""" def get_ngrams(n): return list(zip(*[unigrams[i:] for i in range(n)])) def hash_ngram(ngram): bytes_ = array.array('L', ngram).tobytes() hash_ = int(hashlib.sha256(bytes_).hexdigest(), 16) return unigram_vocab_size + hash_ % n_buckets return unigrams + [hash_ngram(ngram) for i in range(2, n + 1) for ngram in get_ngrams(i)]
python
def augment_with_ngrams(unigrams, unigram_vocab_size, n_buckets, n=2): """Augment unigram features with hashed n-gram features.""" def get_ngrams(n): return list(zip(*[unigrams[i:] for i in range(n)])) def hash_ngram(ngram): bytes_ = array.array('L', ngram).tobytes() hash_ = int(hashlib.sha256(bytes_).hexdigest(), 16) return unigram_vocab_size + hash_ % n_buckets return unigrams + [hash_ngram(ngram) for i in range(2, n + 1) for ngram in get_ngrams(i)]
[ "def", "augment_with_ngrams", "(", "unigrams", ",", "unigram_vocab_size", ",", "n_buckets", ",", "n", "=", "2", ")", ":", "def", "get_ngrams", "(", "n", ")", ":", "return", "list", "(", "zip", "(", "*", "[", "unigrams", "[", "i", ":", "]", "for", "i", "in", "range", "(", "n", ")", "]", ")", ")", "def", "hash_ngram", "(", "ngram", ")", ":", "bytes_", "=", "array", ".", "array", "(", "'L'", ",", "ngram", ")", ".", "tobytes", "(", ")", "hash_", "=", "int", "(", "hashlib", ".", "sha256", "(", "bytes_", ")", ".", "hexdigest", "(", ")", ",", "16", ")", "return", "unigram_vocab_size", "+", "hash_", "%", "n_buckets", "return", "unigrams", "+", "[", "hash_ngram", "(", "ngram", ")", "for", "i", "in", "range", "(", "2", ",", "n", "+", "1", ")", "for", "ngram", "in", "get_ngrams", "(", "i", ")", "]" ]
Augment unigram features with hashed n-gram features.
[ "Augment", "unigram", "features", "with", "hashed", "n", "-", "gram", "features", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/text_classification/tutorial_imdb_fasttext.py#L98-L109
valid
tensorlayer/tensorlayer
examples/text_classification/tutorial_imdb_fasttext.py
load_and_preprocess_imdb_data
def load_and_preprocess_imdb_data(n_gram=None): """Load IMDb data and augment with hashed n-gram features.""" X_train, y_train, X_test, y_test = tl.files.load_imdb_dataset(nb_words=VOCAB_SIZE) if n_gram is not None: X_train = np.array([augment_with_ngrams(x, VOCAB_SIZE, N_BUCKETS, n=n_gram) for x in X_train]) X_test = np.array([augment_with_ngrams(x, VOCAB_SIZE, N_BUCKETS, n=n_gram) for x in X_test]) return X_train, y_train, X_test, y_test
python
def load_and_preprocess_imdb_data(n_gram=None): """Load IMDb data and augment with hashed n-gram features.""" X_train, y_train, X_test, y_test = tl.files.load_imdb_dataset(nb_words=VOCAB_SIZE) if n_gram is not None: X_train = np.array([augment_with_ngrams(x, VOCAB_SIZE, N_BUCKETS, n=n_gram) for x in X_train]) X_test = np.array([augment_with_ngrams(x, VOCAB_SIZE, N_BUCKETS, n=n_gram) for x in X_test]) return X_train, y_train, X_test, y_test
[ "def", "load_and_preprocess_imdb_data", "(", "n_gram", "=", "None", ")", ":", "X_train", ",", "y_train", ",", "X_test", ",", "y_test", "=", "tl", ".", "files", ".", "load_imdb_dataset", "(", "nb_words", "=", "VOCAB_SIZE", ")", "if", "n_gram", "is", "not", "None", ":", "X_train", "=", "np", ".", "array", "(", "[", "augment_with_ngrams", "(", "x", ",", "VOCAB_SIZE", ",", "N_BUCKETS", ",", "n", "=", "n_gram", ")", "for", "x", "in", "X_train", "]", ")", "X_test", "=", "np", ".", "array", "(", "[", "augment_with_ngrams", "(", "x", ",", "VOCAB_SIZE", ",", "N_BUCKETS", ",", "n", "=", "n_gram", ")", "for", "x", "in", "X_test", "]", ")", "return", "X_train", ",", "y_train", ",", "X_test", ",", "y_test" ]
Load IMDb data and augment with hashed n-gram features.
[ "Load", "IMDb", "data", "and", "augment", "with", "hashed", "n", "-", "gram", "features", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/text_classification/tutorial_imdb_fasttext.py#L112-L120
valid
tensorlayer/tensorlayer
tensorlayer/visualize.py
read_image
def read_image(image, path=''): """Read one image. Parameters ----------- image : str The image file name. path : str The image folder path. Returns ------- numpy.array The image. """ return imageio.imread(os.path.join(path, image))
python
def read_image(image, path=''): """Read one image. Parameters ----------- image : str The image file name. path : str The image folder path. Returns ------- numpy.array The image. """ return imageio.imread(os.path.join(path, image))
[ "def", "read_image", "(", "image", ",", "path", "=", "''", ")", ":", "return", "imageio", ".", "imread", "(", "os", ".", "path", ".", "join", "(", "path", ",", "image", ")", ")" ]
Read one image. Parameters ----------- image : str The image file name. path : str The image folder path. Returns ------- numpy.array The image.
[ "Read", "one", "image", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/visualize.py#L34-L50
valid
tensorlayer/tensorlayer
tensorlayer/visualize.py
read_images
def read_images(img_list, path='', n_threads=10, printable=True): """Returns all images in list by given path and name of each image file. Parameters ------------- img_list : list of str The image file names. path : str The image folder path. n_threads : int The number of threads to read image. printable : boolean Whether to print information when reading images. Returns ------- list of numpy.array The images. """ imgs = [] for idx in range(0, len(img_list), n_threads): b_imgs_list = img_list[idx:idx + n_threads] b_imgs = tl.prepro.threading_data(b_imgs_list, fn=read_image, path=path) # tl.logging.info(b_imgs.shape) imgs.extend(b_imgs) if printable: tl.logging.info('read %d from %s' % (len(imgs), path)) return imgs
python
def read_images(img_list, path='', n_threads=10, printable=True): """Returns all images in list by given path and name of each image file. Parameters ------------- img_list : list of str The image file names. path : str The image folder path. n_threads : int The number of threads to read image. printable : boolean Whether to print information when reading images. Returns ------- list of numpy.array The images. """ imgs = [] for idx in range(0, len(img_list), n_threads): b_imgs_list = img_list[idx:idx + n_threads] b_imgs = tl.prepro.threading_data(b_imgs_list, fn=read_image, path=path) # tl.logging.info(b_imgs.shape) imgs.extend(b_imgs) if printable: tl.logging.info('read %d from %s' % (len(imgs), path)) return imgs
[ "def", "read_images", "(", "img_list", ",", "path", "=", "''", ",", "n_threads", "=", "10", ",", "printable", "=", "True", ")", ":", "imgs", "=", "[", "]", "for", "idx", "in", "range", "(", "0", ",", "len", "(", "img_list", ")", ",", "n_threads", ")", ":", "b_imgs_list", "=", "img_list", "[", "idx", ":", "idx", "+", "n_threads", "]", "b_imgs", "=", "tl", ".", "prepro", ".", "threading_data", "(", "b_imgs_list", ",", "fn", "=", "read_image", ",", "path", "=", "path", ")", "# tl.logging.info(b_imgs.shape)", "imgs", ".", "extend", "(", "b_imgs", ")", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "'read %d from %s'", "%", "(", "len", "(", "imgs", ")", ",", "path", ")", ")", "return", "imgs" ]
Returns all images in list by given path and name of each image file. Parameters ------------- img_list : list of str The image file names. path : str The image folder path. n_threads : int The number of threads to read image. printable : boolean Whether to print information when reading images. Returns ------- list of numpy.array The images.
[ "Returns", "all", "images", "in", "list", "by", "given", "path", "and", "name", "of", "each", "image", "file", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/visualize.py#L53-L81
valid
tensorlayer/tensorlayer
tensorlayer/visualize.py
save_image
def save_image(image, image_path='_temp.png'): """Save a image. Parameters ----------- image : numpy array [w, h, c] image_path : str path """ try: # RGB imageio.imwrite(image_path, image) except Exception: # Greyscale imageio.imwrite(image_path, image[:, :, 0])
python
def save_image(image, image_path='_temp.png'): """Save a image. Parameters ----------- image : numpy array [w, h, c] image_path : str path """ try: # RGB imageio.imwrite(image_path, image) except Exception: # Greyscale imageio.imwrite(image_path, image[:, :, 0])
[ "def", "save_image", "(", "image", ",", "image_path", "=", "'_temp.png'", ")", ":", "try", ":", "# RGB", "imageio", ".", "imwrite", "(", "image_path", ",", "image", ")", "except", "Exception", ":", "# Greyscale", "imageio", ".", "imwrite", "(", "image_path", ",", "image", "[", ":", ",", ":", ",", "0", "]", ")" ]
Save a image. Parameters ----------- image : numpy array [w, h, c] image_path : str path
[ "Save", "a", "image", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/visualize.py#L84-L98
valid
tensorlayer/tensorlayer
tensorlayer/visualize.py
save_images
def save_images(images, size, image_path='_temp.png'): """Save multiple images into one single image. Parameters ----------- images : numpy array (batch, w, h, c) size : list of 2 ints row and column number. number of images should be equal or less than size[0] * size[1] image_path : str save path Examples --------- >>> import numpy as np >>> import tensorlayer as tl >>> images = np.random.rand(64, 100, 100, 3) >>> tl.visualize.save_images(images, [8, 8], 'temp.png') """ if len(images.shape) == 3: # Greyscale [batch, h, w] --> [batch, h, w, 1] images = images[:, :, :, np.newaxis] def merge(images, size): h, w = images.shape[1], images.shape[2] img = np.zeros((h * size[0], w * size[1], 3), dtype=images.dtype) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w, :] = image return img def imsave(images, size, path): if np.max(images) <= 1 and (-1 <= np.min(images) < 0): images = ((images + 1) * 127.5).astype(np.uint8) elif np.max(images) <= 1 and np.min(images) >= 0: images = (images * 255).astype(np.uint8) return imageio.imwrite(path, merge(images, size)) if len(images) > size[0] * size[1]: raise AssertionError("number of images should be equal or less than size[0] * size[1] {}".format(len(images))) return imsave(images, size, image_path)
python
def save_images(images, size, image_path='_temp.png'): """Save multiple images into one single image. Parameters ----------- images : numpy array (batch, w, h, c) size : list of 2 ints row and column number. number of images should be equal or less than size[0] * size[1] image_path : str save path Examples --------- >>> import numpy as np >>> import tensorlayer as tl >>> images = np.random.rand(64, 100, 100, 3) >>> tl.visualize.save_images(images, [8, 8], 'temp.png') """ if len(images.shape) == 3: # Greyscale [batch, h, w] --> [batch, h, w, 1] images = images[:, :, :, np.newaxis] def merge(images, size): h, w = images.shape[1], images.shape[2] img = np.zeros((h * size[0], w * size[1], 3), dtype=images.dtype) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w, :] = image return img def imsave(images, size, path): if np.max(images) <= 1 and (-1 <= np.min(images) < 0): images = ((images + 1) * 127.5).astype(np.uint8) elif np.max(images) <= 1 and np.min(images) >= 0: images = (images * 255).astype(np.uint8) return imageio.imwrite(path, merge(images, size)) if len(images) > size[0] * size[1]: raise AssertionError("number of images should be equal or less than size[0] * size[1] {}".format(len(images))) return imsave(images, size, image_path)
[ "def", "save_images", "(", "images", ",", "size", ",", "image_path", "=", "'_temp.png'", ")", ":", "if", "len", "(", "images", ".", "shape", ")", "==", "3", ":", "# Greyscale [batch, h, w] --> [batch, h, w, 1]", "images", "=", "images", "[", ":", ",", ":", ",", ":", ",", "np", ".", "newaxis", "]", "def", "merge", "(", "images", ",", "size", ")", ":", "h", ",", "w", "=", "images", ".", "shape", "[", "1", "]", ",", "images", ".", "shape", "[", "2", "]", "img", "=", "np", ".", "zeros", "(", "(", "h", "*", "size", "[", "0", "]", ",", "w", "*", "size", "[", "1", "]", ",", "3", ")", ",", "dtype", "=", "images", ".", "dtype", ")", "for", "idx", ",", "image", "in", "enumerate", "(", "images", ")", ":", "i", "=", "idx", "%", "size", "[", "1", "]", "j", "=", "idx", "//", "size", "[", "1", "]", "img", "[", "j", "*", "h", ":", "j", "*", "h", "+", "h", ",", "i", "*", "w", ":", "i", "*", "w", "+", "w", ",", ":", "]", "=", "image", "return", "img", "def", "imsave", "(", "images", ",", "size", ",", "path", ")", ":", "if", "np", ".", "max", "(", "images", ")", "<=", "1", "and", "(", "-", "1", "<=", "np", ".", "min", "(", "images", ")", "<", "0", ")", ":", "images", "=", "(", "(", "images", "+", "1", ")", "*", "127.5", ")", ".", "astype", "(", "np", ".", "uint8", ")", "elif", "np", ".", "max", "(", "images", ")", "<=", "1", "and", "np", ".", "min", "(", "images", ")", ">=", "0", ":", "images", "=", "(", "images", "*", "255", ")", ".", "astype", "(", "np", ".", "uint8", ")", "return", "imageio", ".", "imwrite", "(", "path", ",", "merge", "(", "images", ",", "size", ")", ")", "if", "len", "(", "images", ")", ">", "size", "[", "0", "]", "*", "size", "[", "1", "]", ":", "raise", "AssertionError", "(", "\"number of images should be equal or less than size[0] * size[1] {}\"", ".", "format", "(", "len", "(", "images", ")", ")", ")", "return", "imsave", "(", "images", ",", "size", ",", "image_path", ")" ]
Save multiple images into one single image. Parameters ----------- images : numpy array (batch, w, h, c) size : list of 2 ints row and column number. number of images should be equal or less than size[0] * size[1] image_path : str save path Examples --------- >>> import numpy as np >>> import tensorlayer as tl >>> images = np.random.rand(64, 100, 100, 3) >>> tl.visualize.save_images(images, [8, 8], 'temp.png')
[ "Save", "multiple", "images", "into", "one", "single", "image", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/visualize.py#L101-L145
valid
tensorlayer/tensorlayer
tensorlayer/visualize.py
draw_boxes_and_labels_to_image
def draw_boxes_and_labels_to_image( image, classes, coords, scores, classes_list, is_center=True, is_rescale=True, save_name=None ): """Draw bboxes and class labels on image. Return or save the image with bboxes, example in the docs of ``tl.prepro``. Parameters ----------- image : numpy.array The RGB image [height, width, channel]. classes : list of int A list of class ID (int). coords : list of int A list of list for coordinates. - Should be [x, y, x2, y2] (up-left and botton-right format) - If [x_center, y_center, w, h] (set is_center to True). scores : list of float A list of score (float). (Optional) classes_list : list of str for converting ID to string on image. is_center : boolean Whether the coordinates is [x_center, y_center, w, h] - If coordinates are [x_center, y_center, w, h], set it to True for converting it to [x, y, x2, y2] (up-left and botton-right) internally. - If coordinates are [x1, x2, y1, y2], set it to False. is_rescale : boolean Whether to rescale the coordinates from pixel-unit format to ratio format. - If True, the input coordinates are the portion of width and high, this API will scale the coordinates to pixel unit internally. - If False, feed the coordinates with pixel unit format. save_name : None or str The name of image file (i.e. image.png), if None, not to save image. Returns ------- numpy.array The saved image. References ----------- - OpenCV rectangle and putText. - `scikit-image <http://scikit-image.org/docs/dev/api/skimage.draw.html#skimage.draw.rectangle>`__. """ if len(coords) != len(classes): raise AssertionError("number of coordinates and classes are equal") if len(scores) > 0 and len(scores) != len(classes): raise AssertionError("number of scores and classes are equal") # don't change the original image, and avoid error https://stackoverflow.com/questions/30249053/python-opencv-drawing-errors-after-manipulating-array-with-numpy image = image.copy() imh, imw = image.shape[0:2] thick = int((imh + imw) // 430) for i, _v in enumerate(coords): if is_center: x, y, x2, y2 = tl.prepro.obj_box_coord_centroid_to_upleft_butright(coords[i]) else: x, y, x2, y2 = coords[i] if is_rescale: # scale back to pixel unit if the coords are the portion of width and high x, y, x2, y2 = tl.prepro.obj_box_coord_scale_to_pixelunit([x, y, x2, y2], (imh, imw)) cv2.rectangle( image, (int(x), int(y)), (int(x2), int(y2)), # up-left and botton-right [0, 255, 0], thick ) cv2.putText( image, classes_list[classes[i]] + ((" %.2f" % (scores[i])) if (len(scores) != 0) else " "), (int(x), int(y)), # button left 0, 1.5e-3 * imh, # bigger = larger font [0, 0, 256], # self.meta['colors'][max_indx], int(thick / 2) + 1 ) # bold if save_name is not None: # cv2.imwrite('_my.png', image) save_image(image, save_name) # if len(coords) == 0: # tl.logging.info("draw_boxes_and_labels_to_image: no bboxes exist, cannot draw !") return image
python
def draw_boxes_and_labels_to_image( image, classes, coords, scores, classes_list, is_center=True, is_rescale=True, save_name=None ): """Draw bboxes and class labels on image. Return or save the image with bboxes, example in the docs of ``tl.prepro``. Parameters ----------- image : numpy.array The RGB image [height, width, channel]. classes : list of int A list of class ID (int). coords : list of int A list of list for coordinates. - Should be [x, y, x2, y2] (up-left and botton-right format) - If [x_center, y_center, w, h] (set is_center to True). scores : list of float A list of score (float). (Optional) classes_list : list of str for converting ID to string on image. is_center : boolean Whether the coordinates is [x_center, y_center, w, h] - If coordinates are [x_center, y_center, w, h], set it to True for converting it to [x, y, x2, y2] (up-left and botton-right) internally. - If coordinates are [x1, x2, y1, y2], set it to False. is_rescale : boolean Whether to rescale the coordinates from pixel-unit format to ratio format. - If True, the input coordinates are the portion of width and high, this API will scale the coordinates to pixel unit internally. - If False, feed the coordinates with pixel unit format. save_name : None or str The name of image file (i.e. image.png), if None, not to save image. Returns ------- numpy.array The saved image. References ----------- - OpenCV rectangle and putText. - `scikit-image <http://scikit-image.org/docs/dev/api/skimage.draw.html#skimage.draw.rectangle>`__. """ if len(coords) != len(classes): raise AssertionError("number of coordinates and classes are equal") if len(scores) > 0 and len(scores) != len(classes): raise AssertionError("number of scores and classes are equal") # don't change the original image, and avoid error https://stackoverflow.com/questions/30249053/python-opencv-drawing-errors-after-manipulating-array-with-numpy image = image.copy() imh, imw = image.shape[0:2] thick = int((imh + imw) // 430) for i, _v in enumerate(coords): if is_center: x, y, x2, y2 = tl.prepro.obj_box_coord_centroid_to_upleft_butright(coords[i]) else: x, y, x2, y2 = coords[i] if is_rescale: # scale back to pixel unit if the coords are the portion of width and high x, y, x2, y2 = tl.prepro.obj_box_coord_scale_to_pixelunit([x, y, x2, y2], (imh, imw)) cv2.rectangle( image, (int(x), int(y)), (int(x2), int(y2)), # up-left and botton-right [0, 255, 0], thick ) cv2.putText( image, classes_list[classes[i]] + ((" %.2f" % (scores[i])) if (len(scores) != 0) else " "), (int(x), int(y)), # button left 0, 1.5e-3 * imh, # bigger = larger font [0, 0, 256], # self.meta['colors'][max_indx], int(thick / 2) + 1 ) # bold if save_name is not None: # cv2.imwrite('_my.png', image) save_image(image, save_name) # if len(coords) == 0: # tl.logging.info("draw_boxes_and_labels_to_image: no bboxes exist, cannot draw !") return image
[ "def", "draw_boxes_and_labels_to_image", "(", "image", ",", "classes", ",", "coords", ",", "scores", ",", "classes_list", ",", "is_center", "=", "True", ",", "is_rescale", "=", "True", ",", "save_name", "=", "None", ")", ":", "if", "len", "(", "coords", ")", "!=", "len", "(", "classes", ")", ":", "raise", "AssertionError", "(", "\"number of coordinates and classes are equal\"", ")", "if", "len", "(", "scores", ")", ">", "0", "and", "len", "(", "scores", ")", "!=", "len", "(", "classes", ")", ":", "raise", "AssertionError", "(", "\"number of scores and classes are equal\"", ")", "# don't change the original image, and avoid error https://stackoverflow.com/questions/30249053/python-opencv-drawing-errors-after-manipulating-array-with-numpy", "image", "=", "image", ".", "copy", "(", ")", "imh", ",", "imw", "=", "image", ".", "shape", "[", "0", ":", "2", "]", "thick", "=", "int", "(", "(", "imh", "+", "imw", ")", "//", "430", ")", "for", "i", ",", "_v", "in", "enumerate", "(", "coords", ")", ":", "if", "is_center", ":", "x", ",", "y", ",", "x2", ",", "y2", "=", "tl", ".", "prepro", ".", "obj_box_coord_centroid_to_upleft_butright", "(", "coords", "[", "i", "]", ")", "else", ":", "x", ",", "y", ",", "x2", ",", "y2", "=", "coords", "[", "i", "]", "if", "is_rescale", ":", "# scale back to pixel unit if the coords are the portion of width and high", "x", ",", "y", ",", "x2", ",", "y2", "=", "tl", ".", "prepro", ".", "obj_box_coord_scale_to_pixelunit", "(", "[", "x", ",", "y", ",", "x2", ",", "y2", "]", ",", "(", "imh", ",", "imw", ")", ")", "cv2", ".", "rectangle", "(", "image", ",", "(", "int", "(", "x", ")", ",", "int", "(", "y", ")", ")", ",", "(", "int", "(", "x2", ")", ",", "int", "(", "y2", ")", ")", ",", "# up-left and botton-right", "[", "0", ",", "255", ",", "0", "]", ",", "thick", ")", "cv2", ".", "putText", "(", "image", ",", "classes_list", "[", "classes", "[", "i", "]", "]", "+", "(", "(", "\" %.2f\"", "%", "(", "scores", "[", "i", "]", ")", ")", "if", "(", "len", "(", "scores", ")", "!=", "0", ")", "else", "\" \"", ")", ",", "(", "int", "(", "x", ")", ",", "int", "(", "y", ")", ")", ",", "# button left", "0", ",", "1.5e-3", "*", "imh", ",", "# bigger = larger font", "[", "0", ",", "0", ",", "256", "]", ",", "# self.meta['colors'][max_indx],", "int", "(", "thick", "/", "2", ")", "+", "1", ")", "# bold", "if", "save_name", "is", "not", "None", ":", "# cv2.imwrite('_my.png', image)", "save_image", "(", "image", ",", "save_name", ")", "# if len(coords) == 0:", "# tl.logging.info(\"draw_boxes_and_labels_to_image: no bboxes exist, cannot draw !\")", "return", "image" ]
Draw bboxes and class labels on image. Return or save the image with bboxes, example in the docs of ``tl.prepro``. Parameters ----------- image : numpy.array The RGB image [height, width, channel]. classes : list of int A list of class ID (int). coords : list of int A list of list for coordinates. - Should be [x, y, x2, y2] (up-left and botton-right format) - If [x_center, y_center, w, h] (set is_center to True). scores : list of float A list of score (float). (Optional) classes_list : list of str for converting ID to string on image. is_center : boolean Whether the coordinates is [x_center, y_center, w, h] - If coordinates are [x_center, y_center, w, h], set it to True for converting it to [x, y, x2, y2] (up-left and botton-right) internally. - If coordinates are [x1, x2, y1, y2], set it to False. is_rescale : boolean Whether to rescale the coordinates from pixel-unit format to ratio format. - If True, the input coordinates are the portion of width and high, this API will scale the coordinates to pixel unit internally. - If False, feed the coordinates with pixel unit format. save_name : None or str The name of image file (i.e. image.png), if None, not to save image. Returns ------- numpy.array The saved image. References ----------- - OpenCV rectangle and putText. - `scikit-image <http://scikit-image.org/docs/dev/api/skimage.draw.html#skimage.draw.rectangle>`__.
[ "Draw", "bboxes", "and", "class", "labels", "on", "image", ".", "Return", "or", "save", "the", "image", "with", "bboxes", "example", "in", "the", "docs", "of", "tl", ".", "prepro", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/visualize.py#L148-L233
valid
tensorlayer/tensorlayer
tensorlayer/visualize.py
draw_mpii_pose_to_image
def draw_mpii_pose_to_image(image, poses, save_name='image.png'): """Draw people(s) into image using MPII dataset format as input, return or save the result image. This is an experimental API, can be changed in the future. Parameters ----------- image : numpy.array The RGB image [height, width, channel]. poses : list of dict The people(s) annotation in MPII format, see ``tl.files.load_mpii_pose_dataset``. save_name : None or str The name of image file (i.e. image.png), if None, not to save image. Returns -------- numpy.array The saved image. Examples -------- >>> import pprint >>> import tensorlayer as tl >>> img_train_list, ann_train_list, img_test_list, ann_test_list = tl.files.load_mpii_pose_dataset() >>> image = tl.vis.read_image(img_train_list[0]) >>> tl.vis.draw_mpii_pose_to_image(image, ann_train_list[0], 'image.png') >>> pprint.pprint(ann_train_list[0]) References ----------- - `MPII Keyponts and ID <http://human-pose.mpi-inf.mpg.de/#download>`__ """ # import skimage # don't change the original image, and avoid error https://stackoverflow.com/questions/30249053/python-opencv-drawing-errors-after-manipulating-array-with-numpy image = image.copy() imh, imw = image.shape[0:2] thick = int((imh + imw) // 430) # radius = int(image.shape[1] / 500) + 1 radius = int(thick * 1.5) if image.max() < 1: image = image * 255 for people in poses: # Pose Keyponts joint_pos = people['joint_pos'] # draw sketch # joint id (0 - r ankle, 1 - r knee, 2 - r hip, 3 - l hip, 4 - l knee, # 5 - l ankle, 6 - pelvis, 7 - thorax, 8 - upper neck, # 9 - head top, 10 - r wrist, 11 - r elbow, 12 - r shoulder, # 13 - l shoulder, 14 - l elbow, 15 - l wrist) # # 9 # 8 # 12 ** 7 ** 13 # * * * # 11 * 14 # * * * # 10 2 * 6 * 3 15 # * * # 1 4 # * * # 0 5 lines = [ [(0, 1), [100, 255, 100]], [(1, 2), [50, 255, 50]], [(2, 6), [0, 255, 0]], # right leg [(3, 4), [100, 100, 255]], [(4, 5), [50, 50, 255]], [(6, 3), [0, 0, 255]], # left leg [(6, 7), [255, 255, 100]], [(7, 8), [255, 150, 50]], # body [(8, 9), [255, 200, 100]], # head [(10, 11), [255, 100, 255]], [(11, 12), [255, 50, 255]], [(12, 8), [255, 0, 255]], # right hand [(8, 13), [0, 255, 255]], [(13, 14), [100, 255, 255]], [(14, 15), [200, 255, 255]] # left hand ] for line in lines: start, end = line[0] if (start in joint_pos) and (end in joint_pos): cv2.line( image, (int(joint_pos[start][0]), int(joint_pos[start][1])), (int(joint_pos[end][0]), int(joint_pos[end][1])), # up-left and botton-right line[1], thick ) # rr, cc, val = skimage.draw.line_aa(int(joint_pos[start][1]), int(joint_pos[start][0]), int(joint_pos[end][1]), int(joint_pos[end][0])) # image[rr, cc] = line[1] # draw circles for pos in joint_pos.items(): _, pos_loc = pos # pos_id, pos_loc pos_loc = (int(pos_loc[0]), int(pos_loc[1])) cv2.circle(image, center=pos_loc, radius=radius, color=(200, 200, 200), thickness=-1) # rr, cc = skimage.draw.circle(int(pos_loc[1]), int(pos_loc[0]), radius) # image[rr, cc] = [0, 255, 0] # Head head_rect = people['head_rect'] if head_rect: # if head exists cv2.rectangle( image, (int(head_rect[0]), int(head_rect[1])), (int(head_rect[2]), int(head_rect[3])), # up-left and botton-right [0, 180, 0], thick ) if save_name is not None: # cv2.imwrite(save_name, image) save_image(image, save_name) return image
python
def draw_mpii_pose_to_image(image, poses, save_name='image.png'): """Draw people(s) into image using MPII dataset format as input, return or save the result image. This is an experimental API, can be changed in the future. Parameters ----------- image : numpy.array The RGB image [height, width, channel]. poses : list of dict The people(s) annotation in MPII format, see ``tl.files.load_mpii_pose_dataset``. save_name : None or str The name of image file (i.e. image.png), if None, not to save image. Returns -------- numpy.array The saved image. Examples -------- >>> import pprint >>> import tensorlayer as tl >>> img_train_list, ann_train_list, img_test_list, ann_test_list = tl.files.load_mpii_pose_dataset() >>> image = tl.vis.read_image(img_train_list[0]) >>> tl.vis.draw_mpii_pose_to_image(image, ann_train_list[0], 'image.png') >>> pprint.pprint(ann_train_list[0]) References ----------- - `MPII Keyponts and ID <http://human-pose.mpi-inf.mpg.de/#download>`__ """ # import skimage # don't change the original image, and avoid error https://stackoverflow.com/questions/30249053/python-opencv-drawing-errors-after-manipulating-array-with-numpy image = image.copy() imh, imw = image.shape[0:2] thick = int((imh + imw) // 430) # radius = int(image.shape[1] / 500) + 1 radius = int(thick * 1.5) if image.max() < 1: image = image * 255 for people in poses: # Pose Keyponts joint_pos = people['joint_pos'] # draw sketch # joint id (0 - r ankle, 1 - r knee, 2 - r hip, 3 - l hip, 4 - l knee, # 5 - l ankle, 6 - pelvis, 7 - thorax, 8 - upper neck, # 9 - head top, 10 - r wrist, 11 - r elbow, 12 - r shoulder, # 13 - l shoulder, 14 - l elbow, 15 - l wrist) # # 9 # 8 # 12 ** 7 ** 13 # * * * # 11 * 14 # * * * # 10 2 * 6 * 3 15 # * * # 1 4 # * * # 0 5 lines = [ [(0, 1), [100, 255, 100]], [(1, 2), [50, 255, 50]], [(2, 6), [0, 255, 0]], # right leg [(3, 4), [100, 100, 255]], [(4, 5), [50, 50, 255]], [(6, 3), [0, 0, 255]], # left leg [(6, 7), [255, 255, 100]], [(7, 8), [255, 150, 50]], # body [(8, 9), [255, 200, 100]], # head [(10, 11), [255, 100, 255]], [(11, 12), [255, 50, 255]], [(12, 8), [255, 0, 255]], # right hand [(8, 13), [0, 255, 255]], [(13, 14), [100, 255, 255]], [(14, 15), [200, 255, 255]] # left hand ] for line in lines: start, end = line[0] if (start in joint_pos) and (end in joint_pos): cv2.line( image, (int(joint_pos[start][0]), int(joint_pos[start][1])), (int(joint_pos[end][0]), int(joint_pos[end][1])), # up-left and botton-right line[1], thick ) # rr, cc, val = skimage.draw.line_aa(int(joint_pos[start][1]), int(joint_pos[start][0]), int(joint_pos[end][1]), int(joint_pos[end][0])) # image[rr, cc] = line[1] # draw circles for pos in joint_pos.items(): _, pos_loc = pos # pos_id, pos_loc pos_loc = (int(pos_loc[0]), int(pos_loc[1])) cv2.circle(image, center=pos_loc, radius=radius, color=(200, 200, 200), thickness=-1) # rr, cc = skimage.draw.circle(int(pos_loc[1]), int(pos_loc[0]), radius) # image[rr, cc] = [0, 255, 0] # Head head_rect = people['head_rect'] if head_rect: # if head exists cv2.rectangle( image, (int(head_rect[0]), int(head_rect[1])), (int(head_rect[2]), int(head_rect[3])), # up-left and botton-right [0, 180, 0], thick ) if save_name is not None: # cv2.imwrite(save_name, image) save_image(image, save_name) return image
[ "def", "draw_mpii_pose_to_image", "(", "image", ",", "poses", ",", "save_name", "=", "'image.png'", ")", ":", "# import skimage", "# don't change the original image, and avoid error https://stackoverflow.com/questions/30249053/python-opencv-drawing-errors-after-manipulating-array-with-numpy", "image", "=", "image", ".", "copy", "(", ")", "imh", ",", "imw", "=", "image", ".", "shape", "[", "0", ":", "2", "]", "thick", "=", "int", "(", "(", "imh", "+", "imw", ")", "//", "430", ")", "# radius = int(image.shape[1] / 500) + 1", "radius", "=", "int", "(", "thick", "*", "1.5", ")", "if", "image", ".", "max", "(", ")", "<", "1", ":", "image", "=", "image", "*", "255", "for", "people", "in", "poses", ":", "# Pose Keyponts", "joint_pos", "=", "people", "[", "'joint_pos'", "]", "# draw sketch", "# joint id (0 - r ankle, 1 - r knee, 2 - r hip, 3 - l hip, 4 - l knee,", "# 5 - l ankle, 6 - pelvis, 7 - thorax, 8 - upper neck,", "# 9 - head top, 10 - r wrist, 11 - r elbow, 12 - r shoulder,", "# 13 - l shoulder, 14 - l elbow, 15 - l wrist)", "#", "# 9", "# 8", "# 12 ** 7 ** 13", "# * * *", "# 11 * 14", "# * * *", "# 10 2 * 6 * 3 15", "# * *", "# 1 4", "# * *", "# 0 5", "lines", "=", "[", "[", "(", "0", ",", "1", ")", ",", "[", "100", ",", "255", ",", "100", "]", "]", ",", "[", "(", "1", ",", "2", ")", ",", "[", "50", ",", "255", ",", "50", "]", "]", ",", "[", "(", "2", ",", "6", ")", ",", "[", "0", ",", "255", ",", "0", "]", "]", ",", "# right leg", "[", "(", "3", ",", "4", ")", ",", "[", "100", ",", "100", ",", "255", "]", "]", ",", "[", "(", "4", ",", "5", ")", ",", "[", "50", ",", "50", ",", "255", "]", "]", ",", "[", "(", "6", ",", "3", ")", ",", "[", "0", ",", "0", ",", "255", "]", "]", ",", "# left leg", "[", "(", "6", ",", "7", ")", ",", "[", "255", ",", "255", ",", "100", "]", "]", ",", "[", "(", "7", ",", "8", ")", ",", "[", "255", ",", "150", ",", "50", "]", "]", ",", "# body", "[", "(", "8", ",", "9", ")", ",", "[", "255", ",", "200", ",", "100", "]", "]", ",", "# head", "[", "(", "10", ",", "11", ")", ",", "[", "255", ",", "100", ",", "255", "]", "]", ",", "[", "(", "11", ",", "12", ")", ",", "[", "255", ",", "50", ",", "255", "]", "]", ",", "[", "(", "12", ",", "8", ")", ",", "[", "255", ",", "0", ",", "255", "]", "]", ",", "# right hand", "[", "(", "8", ",", "13", ")", ",", "[", "0", ",", "255", ",", "255", "]", "]", ",", "[", "(", "13", ",", "14", ")", ",", "[", "100", ",", "255", ",", "255", "]", "]", ",", "[", "(", "14", ",", "15", ")", ",", "[", "200", ",", "255", ",", "255", "]", "]", "# left hand", "]", "for", "line", "in", "lines", ":", "start", ",", "end", "=", "line", "[", "0", "]", "if", "(", "start", "in", "joint_pos", ")", "and", "(", "end", "in", "joint_pos", ")", ":", "cv2", ".", "line", "(", "image", ",", "(", "int", "(", "joint_pos", "[", "start", "]", "[", "0", "]", ")", ",", "int", "(", "joint_pos", "[", "start", "]", "[", "1", "]", ")", ")", ",", "(", "int", "(", "joint_pos", "[", "end", "]", "[", "0", "]", ")", ",", "int", "(", "joint_pos", "[", "end", "]", "[", "1", "]", ")", ")", ",", "# up-left and botton-right", "line", "[", "1", "]", ",", "thick", ")", "# rr, cc, val = skimage.draw.line_aa(int(joint_pos[start][1]), int(joint_pos[start][0]), int(joint_pos[end][1]), int(joint_pos[end][0]))", "# image[rr, cc] = line[1]", "# draw circles", "for", "pos", "in", "joint_pos", ".", "items", "(", ")", ":", "_", ",", "pos_loc", "=", "pos", "# pos_id, pos_loc", "pos_loc", "=", "(", "int", "(", "pos_loc", "[", "0", "]", ")", ",", "int", "(", "pos_loc", "[", "1", "]", ")", ")", "cv2", ".", "circle", "(", "image", ",", "center", "=", "pos_loc", ",", "radius", "=", "radius", ",", "color", "=", "(", "200", ",", "200", ",", "200", ")", ",", "thickness", "=", "-", "1", ")", "# rr, cc = skimage.draw.circle(int(pos_loc[1]), int(pos_loc[0]), radius)", "# image[rr, cc] = [0, 255, 0]", "# Head", "head_rect", "=", "people", "[", "'head_rect'", "]", "if", "head_rect", ":", "# if head exists", "cv2", ".", "rectangle", "(", "image", ",", "(", "int", "(", "head_rect", "[", "0", "]", ")", ",", "int", "(", "head_rect", "[", "1", "]", ")", ")", ",", "(", "int", "(", "head_rect", "[", "2", "]", ")", ",", "int", "(", "head_rect", "[", "3", "]", ")", ")", ",", "# up-left and botton-right", "[", "0", ",", "180", ",", "0", "]", ",", "thick", ")", "if", "save_name", "is", "not", "None", ":", "# cv2.imwrite(save_name, image)", "save_image", "(", "image", ",", "save_name", ")", "return", "image" ]
Draw people(s) into image using MPII dataset format as input, return or save the result image. This is an experimental API, can be changed in the future. Parameters ----------- image : numpy.array The RGB image [height, width, channel]. poses : list of dict The people(s) annotation in MPII format, see ``tl.files.load_mpii_pose_dataset``. save_name : None or str The name of image file (i.e. image.png), if None, not to save image. Returns -------- numpy.array The saved image. Examples -------- >>> import pprint >>> import tensorlayer as tl >>> img_train_list, ann_train_list, img_test_list, ann_test_list = tl.files.load_mpii_pose_dataset() >>> image = tl.vis.read_image(img_train_list[0]) >>> tl.vis.draw_mpii_pose_to_image(image, ann_train_list[0], 'image.png') >>> pprint.pprint(ann_train_list[0]) References ----------- - `MPII Keyponts and ID <http://human-pose.mpi-inf.mpg.de/#download>`__
[ "Draw", "people", "(", "s", ")", "into", "image", "using", "MPII", "dataset", "format", "as", "input", "return", "or", "save", "the", "result", "image", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/visualize.py#L236-L352
valid
tensorlayer/tensorlayer
tensorlayer/visualize.py
frame
def frame(I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=12836): """Display a frame. Make sure OpenAI Gym render() is disable before using it. Parameters ---------- I : numpy.array The image. second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. name : str A name to save the image, if saveable is True. cmap : None or str 'gray' for greyscale, None for default, etc. fig_idx : int matplotlib figure index. Examples -------- >>> env = gym.make("Pong-v0") >>> observation = env.reset() >>> tl.visualize.frame(observation) """ import matplotlib.pyplot as plt if saveable is False: plt.ion() plt.figure(fig_idx) # show all feature images if len(I.shape) and I.shape[-1] == 1: # (10,10,1) --> (10,10) I = I[:, :, 0] plt.imshow(I, cmap) plt.title(name) # plt.gca().xaxis.set_major_locator(plt.NullLocator()) # distable tick # plt.gca().yaxis.set_major_locator(plt.NullLocator()) if saveable: plt.savefig(name + '.pdf', format='pdf') else: plt.draw() plt.pause(second)
python
def frame(I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=12836): """Display a frame. Make sure OpenAI Gym render() is disable before using it. Parameters ---------- I : numpy.array The image. second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. name : str A name to save the image, if saveable is True. cmap : None or str 'gray' for greyscale, None for default, etc. fig_idx : int matplotlib figure index. Examples -------- >>> env = gym.make("Pong-v0") >>> observation = env.reset() >>> tl.visualize.frame(observation) """ import matplotlib.pyplot as plt if saveable is False: plt.ion() plt.figure(fig_idx) # show all feature images if len(I.shape) and I.shape[-1] == 1: # (10,10,1) --> (10,10) I = I[:, :, 0] plt.imshow(I, cmap) plt.title(name) # plt.gca().xaxis.set_major_locator(plt.NullLocator()) # distable tick # plt.gca().yaxis.set_major_locator(plt.NullLocator()) if saveable: plt.savefig(name + '.pdf', format='pdf') else: plt.draw() plt.pause(second)
[ "def", "frame", "(", "I", "=", "None", ",", "second", "=", "5", ",", "saveable", "=", "True", ",", "name", "=", "'frame'", ",", "cmap", "=", "None", ",", "fig_idx", "=", "12836", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "if", "saveable", "is", "False", ":", "plt", ".", "ion", "(", ")", "plt", ".", "figure", "(", "fig_idx", ")", "# show all feature images", "if", "len", "(", "I", ".", "shape", ")", "and", "I", ".", "shape", "[", "-", "1", "]", "==", "1", ":", "# (10,10,1) --> (10,10)", "I", "=", "I", "[", ":", ",", ":", ",", "0", "]", "plt", ".", "imshow", "(", "I", ",", "cmap", ")", "plt", ".", "title", "(", "name", ")", "# plt.gca().xaxis.set_major_locator(plt.NullLocator()) # distable tick", "# plt.gca().yaxis.set_major_locator(plt.NullLocator())", "if", "saveable", ":", "plt", ".", "savefig", "(", "name", "+", "'.pdf'", ",", "format", "=", "'pdf'", ")", "else", ":", "plt", ".", "draw", "(", ")", "plt", ".", "pause", "(", "second", ")" ]
Display a frame. Make sure OpenAI Gym render() is disable before using it. Parameters ---------- I : numpy.array The image. second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. name : str A name to save the image, if saveable is True. cmap : None or str 'gray' for greyscale, None for default, etc. fig_idx : int matplotlib figure index. Examples -------- >>> env = gym.make("Pong-v0") >>> observation = env.reset() >>> tl.visualize.frame(observation)
[ "Display", "a", "frame", ".", "Make", "sure", "OpenAI", "Gym", "render", "()", "is", "disable", "before", "using", "it", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/visualize.py#L358-L400
valid
tensorlayer/tensorlayer
tensorlayer/visualize.py
CNN2d
def CNN2d(CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362): """Display a group of RGB or Greyscale CNN masks. Parameters ---------- CNN : numpy.array The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64). second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. name : str A name to save the image, if saveable is True. fig_idx : int The matplotlib figure index. Examples -------- >>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012) """ import matplotlib.pyplot as plt # tl.logging.info(CNN.shape) # (5, 5, 3, 64) # exit() n_mask = CNN.shape[3] n_row = CNN.shape[0] n_col = CNN.shape[1] n_color = CNN.shape[2] row = int(np.sqrt(n_mask)) col = int(np.ceil(n_mask / row)) plt.ion() # active mode fig = plt.figure(fig_idx) count = 1 for _ir in range(1, row + 1): for _ic in range(1, col + 1): if count > n_mask: break fig.add_subplot(col, row, count) # tl.logging.info(CNN[:,:,:,count-1].shape, n_row, n_col) # (5, 1, 32) 5 5 # exit() # plt.imshow( # np.reshape(CNN[count-1,:,:,:], (n_row, n_col)), # cmap='gray', interpolation="nearest") # theano if n_color == 1: plt.imshow(np.reshape(CNN[:, :, :, count - 1], (n_row, n_col)), cmap='gray', interpolation="nearest") elif n_color == 3: plt.imshow( np.reshape(CNN[:, :, :, count - 1], (n_row, n_col, n_color)), cmap='gray', interpolation="nearest" ) else: raise Exception("Unknown n_color") plt.gca().xaxis.set_major_locator(plt.NullLocator()) # distable tick plt.gca().yaxis.set_major_locator(plt.NullLocator()) count = count + 1 if saveable: plt.savefig(name + '.pdf', format='pdf') else: plt.draw() plt.pause(second)
python
def CNN2d(CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362): """Display a group of RGB or Greyscale CNN masks. Parameters ---------- CNN : numpy.array The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64). second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. name : str A name to save the image, if saveable is True. fig_idx : int The matplotlib figure index. Examples -------- >>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012) """ import matplotlib.pyplot as plt # tl.logging.info(CNN.shape) # (5, 5, 3, 64) # exit() n_mask = CNN.shape[3] n_row = CNN.shape[0] n_col = CNN.shape[1] n_color = CNN.shape[2] row = int(np.sqrt(n_mask)) col = int(np.ceil(n_mask / row)) plt.ion() # active mode fig = plt.figure(fig_idx) count = 1 for _ir in range(1, row + 1): for _ic in range(1, col + 1): if count > n_mask: break fig.add_subplot(col, row, count) # tl.logging.info(CNN[:,:,:,count-1].shape, n_row, n_col) # (5, 1, 32) 5 5 # exit() # plt.imshow( # np.reshape(CNN[count-1,:,:,:], (n_row, n_col)), # cmap='gray', interpolation="nearest") # theano if n_color == 1: plt.imshow(np.reshape(CNN[:, :, :, count - 1], (n_row, n_col)), cmap='gray', interpolation="nearest") elif n_color == 3: plt.imshow( np.reshape(CNN[:, :, :, count - 1], (n_row, n_col, n_color)), cmap='gray', interpolation="nearest" ) else: raise Exception("Unknown n_color") plt.gca().xaxis.set_major_locator(plt.NullLocator()) # distable tick plt.gca().yaxis.set_major_locator(plt.NullLocator()) count = count + 1 if saveable: plt.savefig(name + '.pdf', format='pdf') else: plt.draw() plt.pause(second)
[ "def", "CNN2d", "(", "CNN", "=", "None", ",", "second", "=", "10", ",", "saveable", "=", "True", ",", "name", "=", "'cnn'", ",", "fig_idx", "=", "3119362", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "# tl.logging.info(CNN.shape) # (5, 5, 3, 64)", "# exit()", "n_mask", "=", "CNN", ".", "shape", "[", "3", "]", "n_row", "=", "CNN", ".", "shape", "[", "0", "]", "n_col", "=", "CNN", ".", "shape", "[", "1", "]", "n_color", "=", "CNN", ".", "shape", "[", "2", "]", "row", "=", "int", "(", "np", ".", "sqrt", "(", "n_mask", ")", ")", "col", "=", "int", "(", "np", ".", "ceil", "(", "n_mask", "/", "row", ")", ")", "plt", ".", "ion", "(", ")", "# active mode", "fig", "=", "plt", ".", "figure", "(", "fig_idx", ")", "count", "=", "1", "for", "_ir", "in", "range", "(", "1", ",", "row", "+", "1", ")", ":", "for", "_ic", "in", "range", "(", "1", ",", "col", "+", "1", ")", ":", "if", "count", ">", "n_mask", ":", "break", "fig", ".", "add_subplot", "(", "col", ",", "row", ",", "count", ")", "# tl.logging.info(CNN[:,:,:,count-1].shape, n_row, n_col) # (5, 1, 32) 5 5", "# exit()", "# plt.imshow(", "# np.reshape(CNN[count-1,:,:,:], (n_row, n_col)),", "# cmap='gray', interpolation=\"nearest\") # theano", "if", "n_color", "==", "1", ":", "plt", ".", "imshow", "(", "np", ".", "reshape", "(", "CNN", "[", ":", ",", ":", ",", ":", ",", "count", "-", "1", "]", ",", "(", "n_row", ",", "n_col", ")", ")", ",", "cmap", "=", "'gray'", ",", "interpolation", "=", "\"nearest\"", ")", "elif", "n_color", "==", "3", ":", "plt", ".", "imshow", "(", "np", ".", "reshape", "(", "CNN", "[", ":", ",", ":", ",", ":", ",", "count", "-", "1", "]", ",", "(", "n_row", ",", "n_col", ",", "n_color", ")", ")", ",", "cmap", "=", "'gray'", ",", "interpolation", "=", "\"nearest\"", ")", "else", ":", "raise", "Exception", "(", "\"Unknown n_color\"", ")", "plt", ".", "gca", "(", ")", ".", "xaxis", ".", "set_major_locator", "(", "plt", ".", "NullLocator", "(", ")", ")", "# distable tick", "plt", ".", "gca", "(", ")", ".", "yaxis", ".", "set_major_locator", "(", "plt", ".", "NullLocator", "(", ")", ")", "count", "=", "count", "+", "1", "if", "saveable", ":", "plt", ".", "savefig", "(", "name", "+", "'.pdf'", ",", "format", "=", "'pdf'", ")", "else", ":", "plt", ".", "draw", "(", ")", "plt", ".", "pause", "(", "second", ")" ]
Display a group of RGB or Greyscale CNN masks. Parameters ---------- CNN : numpy.array The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64). second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. name : str A name to save the image, if saveable is True. fig_idx : int The matplotlib figure index. Examples -------- >>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012)
[ "Display", "a", "group", "of", "RGB", "or", "Greyscale", "CNN", "masks", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/visualize.py#L403-L461
valid
tensorlayer/tensorlayer
tensorlayer/visualize.py
tsne_embedding
def tsne_embedding(embeddings, reverse_dictionary, plot_only=500, second=5, saveable=False, name='tsne', fig_idx=9862): """Visualize the embeddings by using t-SNE. Parameters ---------- embeddings : numpy.array The embedding matrix. reverse_dictionary : dictionary id_to_word, mapping id to unique word. plot_only : int The number of examples to plot, choice the most common words. second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. name : str A name to save the image, if saveable is True. fig_idx : int matplotlib figure index. Examples -------- >>> see 'tutorial_word2vec_basic.py' >>> final_embeddings = normalized_embeddings.eval() >>> tl.visualize.tsne_embedding(final_embeddings, labels, reverse_dictionary, ... plot_only=500, second=5, saveable=False, name='tsne') """ import matplotlib.pyplot as plt def plot_with_labels(low_dim_embs, labels, figsize=(18, 18), second=5, saveable=True, name='tsne', fig_idx=9862): if low_dim_embs.shape[0] < len(labels): raise AssertionError("More labels than embeddings") if saveable is False: plt.ion() plt.figure(fig_idx) plt.figure(figsize=figsize) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') if saveable: plt.savefig(name + '.pdf', format='pdf') else: plt.draw() plt.pause(second) try: from sklearn.manifold import TSNE from six.moves import xrange tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) # plot_only = 500 low_dim_embs = tsne.fit_transform(embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels, second=second, saveable=saveable, name=name, fig_idx=fig_idx) except ImportError: _err = "Please install sklearn and matplotlib to visualize embeddings." tl.logging.error(_err) raise ImportError(_err)
python
def tsne_embedding(embeddings, reverse_dictionary, plot_only=500, second=5, saveable=False, name='tsne', fig_idx=9862): """Visualize the embeddings by using t-SNE. Parameters ---------- embeddings : numpy.array The embedding matrix. reverse_dictionary : dictionary id_to_word, mapping id to unique word. plot_only : int The number of examples to plot, choice the most common words. second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. name : str A name to save the image, if saveable is True. fig_idx : int matplotlib figure index. Examples -------- >>> see 'tutorial_word2vec_basic.py' >>> final_embeddings = normalized_embeddings.eval() >>> tl.visualize.tsne_embedding(final_embeddings, labels, reverse_dictionary, ... plot_only=500, second=5, saveable=False, name='tsne') """ import matplotlib.pyplot as plt def plot_with_labels(low_dim_embs, labels, figsize=(18, 18), second=5, saveable=True, name='tsne', fig_idx=9862): if low_dim_embs.shape[0] < len(labels): raise AssertionError("More labels than embeddings") if saveable is False: plt.ion() plt.figure(fig_idx) plt.figure(figsize=figsize) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') if saveable: plt.savefig(name + '.pdf', format='pdf') else: plt.draw() plt.pause(second) try: from sklearn.manifold import TSNE from six.moves import xrange tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) # plot_only = 500 low_dim_embs = tsne.fit_transform(embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels, second=second, saveable=saveable, name=name, fig_idx=fig_idx) except ImportError: _err = "Please install sklearn and matplotlib to visualize embeddings." tl.logging.error(_err) raise ImportError(_err)
[ "def", "tsne_embedding", "(", "embeddings", ",", "reverse_dictionary", ",", "plot_only", "=", "500", ",", "second", "=", "5", ",", "saveable", "=", "False", ",", "name", "=", "'tsne'", ",", "fig_idx", "=", "9862", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "def", "plot_with_labels", "(", "low_dim_embs", ",", "labels", ",", "figsize", "=", "(", "18", ",", "18", ")", ",", "second", "=", "5", ",", "saveable", "=", "True", ",", "name", "=", "'tsne'", ",", "fig_idx", "=", "9862", ")", ":", "if", "low_dim_embs", ".", "shape", "[", "0", "]", "<", "len", "(", "labels", ")", ":", "raise", "AssertionError", "(", "\"More labels than embeddings\"", ")", "if", "saveable", "is", "False", ":", "plt", ".", "ion", "(", ")", "plt", ".", "figure", "(", "fig_idx", ")", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "# in inches", "for", "i", ",", "label", "in", "enumerate", "(", "labels", ")", ":", "x", ",", "y", "=", "low_dim_embs", "[", "i", ",", ":", "]", "plt", ".", "scatter", "(", "x", ",", "y", ")", "plt", ".", "annotate", "(", "label", ",", "xy", "=", "(", "x", ",", "y", ")", ",", "xytext", "=", "(", "5", ",", "2", ")", ",", "textcoords", "=", "'offset points'", ",", "ha", "=", "'right'", ",", "va", "=", "'bottom'", ")", "if", "saveable", ":", "plt", ".", "savefig", "(", "name", "+", "'.pdf'", ",", "format", "=", "'pdf'", ")", "else", ":", "plt", ".", "draw", "(", ")", "plt", ".", "pause", "(", "second", ")", "try", ":", "from", "sklearn", ".", "manifold", "import", "TSNE", "from", "six", ".", "moves", "import", "xrange", "tsne", "=", "TSNE", "(", "perplexity", "=", "30", ",", "n_components", "=", "2", ",", "init", "=", "'pca'", ",", "n_iter", "=", "5000", ")", "# plot_only = 500", "low_dim_embs", "=", "tsne", ".", "fit_transform", "(", "embeddings", "[", ":", "plot_only", ",", ":", "]", ")", "labels", "=", "[", "reverse_dictionary", "[", "i", "]", "for", "i", "in", "xrange", "(", "plot_only", ")", "]", "plot_with_labels", "(", "low_dim_embs", ",", "labels", ",", "second", "=", "second", ",", "saveable", "=", "saveable", ",", "name", "=", "name", ",", "fig_idx", "=", "fig_idx", ")", "except", "ImportError", ":", "_err", "=", "\"Please install sklearn and matplotlib to visualize embeddings.\"", "tl", ".", "logging", ".", "error", "(", "_err", ")", "raise", "ImportError", "(", "_err", ")" ]
Visualize the embeddings by using t-SNE. Parameters ---------- embeddings : numpy.array The embedding matrix. reverse_dictionary : dictionary id_to_word, mapping id to unique word. plot_only : int The number of examples to plot, choice the most common words. second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. name : str A name to save the image, if saveable is True. fig_idx : int matplotlib figure index. Examples -------- >>> see 'tutorial_word2vec_basic.py' >>> final_embeddings = normalized_embeddings.eval() >>> tl.visualize.tsne_embedding(final_embeddings, labels, reverse_dictionary, ... plot_only=500, second=5, saveable=False, name='tsne')
[ "Visualize", "the", "embeddings", "by", "using", "t", "-", "SNE", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/visualize.py#L529-L594
valid
tensorlayer/tensorlayer
tensorlayer/visualize.py
draw_weights
def draw_weights(W=None, second=10, saveable=True, shape=None, name='mnist', fig_idx=2396512): """Visualize every columns of the weight matrix to a group of Greyscale img. Parameters ---------- W : numpy.array The weight matrix second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. shape : a list with 2 int or None The shape of feature image, MNIST is [28, 80]. name : a string A name to save the image, if saveable is True. fig_idx : int matplotlib figure index. Examples -------- >>> tl.visualize.draw_weights(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012) """ if shape is None: shape = [28, 28] import matplotlib.pyplot as plt if saveable is False: plt.ion() fig = plt.figure(fig_idx) # show all feature images n_units = W.shape[1] num_r = int(np.sqrt(n_units)) # 每行显示的个数 若25个hidden unit -> 每行显示5个 num_c = int(np.ceil(n_units / num_r)) count = int(1) for _row in range(1, num_r + 1): for _col in range(1, num_c + 1): if count > n_units: break fig.add_subplot(num_r, num_c, count) # ------------------------------------------------------------ # plt.imshow(np.reshape(W[:,count-1],(28,28)), cmap='gray') # ------------------------------------------------------------ feature = W[:, count - 1] / np.sqrt((W[:, count - 1]**2).sum()) # feature[feature<0.0001] = 0 # value threshold # if count == 1 or count == 2: # print(np.mean(feature)) # if np.std(feature) < 0.03: # condition threshold # feature = np.zeros_like(feature) # if np.mean(feature) < -0.015: # condition threshold # feature = np.zeros_like(feature) plt.imshow( np.reshape(feature, (shape[0], shape[1])), cmap='gray', interpolation="nearest" ) # , vmin=np.min(feature), vmax=np.max(feature)) # plt.title(name) # ------------------------------------------------------------ # plt.imshow(np.reshape(W[:,count-1] ,(np.sqrt(size),np.sqrt(size))), cmap='gray', interpolation="nearest") plt.gca().xaxis.set_major_locator(plt.NullLocator()) # distable tick plt.gca().yaxis.set_major_locator(plt.NullLocator()) count = count + 1 if saveable: plt.savefig(name + '.pdf', format='pdf') else: plt.draw() plt.pause(second)
python
def draw_weights(W=None, second=10, saveable=True, shape=None, name='mnist', fig_idx=2396512): """Visualize every columns of the weight matrix to a group of Greyscale img. Parameters ---------- W : numpy.array The weight matrix second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. shape : a list with 2 int or None The shape of feature image, MNIST is [28, 80]. name : a string A name to save the image, if saveable is True. fig_idx : int matplotlib figure index. Examples -------- >>> tl.visualize.draw_weights(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012) """ if shape is None: shape = [28, 28] import matplotlib.pyplot as plt if saveable is False: plt.ion() fig = plt.figure(fig_idx) # show all feature images n_units = W.shape[1] num_r = int(np.sqrt(n_units)) # 每行显示的个数 若25个hidden unit -> 每行显示5个 num_c = int(np.ceil(n_units / num_r)) count = int(1) for _row in range(1, num_r + 1): for _col in range(1, num_c + 1): if count > n_units: break fig.add_subplot(num_r, num_c, count) # ------------------------------------------------------------ # plt.imshow(np.reshape(W[:,count-1],(28,28)), cmap='gray') # ------------------------------------------------------------ feature = W[:, count - 1] / np.sqrt((W[:, count - 1]**2).sum()) # feature[feature<0.0001] = 0 # value threshold # if count == 1 or count == 2: # print(np.mean(feature)) # if np.std(feature) < 0.03: # condition threshold # feature = np.zeros_like(feature) # if np.mean(feature) < -0.015: # condition threshold # feature = np.zeros_like(feature) plt.imshow( np.reshape(feature, (shape[0], shape[1])), cmap='gray', interpolation="nearest" ) # , vmin=np.min(feature), vmax=np.max(feature)) # plt.title(name) # ------------------------------------------------------------ # plt.imshow(np.reshape(W[:,count-1] ,(np.sqrt(size),np.sqrt(size))), cmap='gray', interpolation="nearest") plt.gca().xaxis.set_major_locator(plt.NullLocator()) # distable tick plt.gca().yaxis.set_major_locator(plt.NullLocator()) count = count + 1 if saveable: plt.savefig(name + '.pdf', format='pdf') else: plt.draw() plt.pause(second)
[ "def", "draw_weights", "(", "W", "=", "None", ",", "second", "=", "10", ",", "saveable", "=", "True", ",", "shape", "=", "None", ",", "name", "=", "'mnist'", ",", "fig_idx", "=", "2396512", ")", ":", "if", "shape", "is", "None", ":", "shape", "=", "[", "28", ",", "28", "]", "import", "matplotlib", ".", "pyplot", "as", "plt", "if", "saveable", "is", "False", ":", "plt", ".", "ion", "(", ")", "fig", "=", "plt", ".", "figure", "(", "fig_idx", ")", "# show all feature images", "n_units", "=", "W", ".", "shape", "[", "1", "]", "num_r", "=", "int", "(", "np", ".", "sqrt", "(", "n_units", ")", ")", "# 每行显示的个数 若25个hidden unit -> 每行显示5个", "num_c", "=", "int", "(", "np", ".", "ceil", "(", "n_units", "/", "num_r", ")", ")", "count", "=", "int", "(", "1", ")", "for", "_row", "in", "range", "(", "1", ",", "num_r", "+", "1", ")", ":", "for", "_col", "in", "range", "(", "1", ",", "num_c", "+", "1", ")", ":", "if", "count", ">", "n_units", ":", "break", "fig", ".", "add_subplot", "(", "num_r", ",", "num_c", ",", "count", ")", "# ------------------------------------------------------------", "# plt.imshow(np.reshape(W[:,count-1],(28,28)), cmap='gray')", "# ------------------------------------------------------------", "feature", "=", "W", "[", ":", ",", "count", "-", "1", "]", "/", "np", ".", "sqrt", "(", "(", "W", "[", ":", ",", "count", "-", "1", "]", "**", "2", ")", ".", "sum", "(", ")", ")", "# feature[feature<0.0001] = 0 # value threshold", "# if count == 1 or count == 2:", "# print(np.mean(feature))", "# if np.std(feature) < 0.03: # condition threshold", "# feature = np.zeros_like(feature)", "# if np.mean(feature) < -0.015: # condition threshold", "# feature = np.zeros_like(feature)", "plt", ".", "imshow", "(", "np", ".", "reshape", "(", "feature", ",", "(", "shape", "[", "0", "]", ",", "shape", "[", "1", "]", ")", ")", ",", "cmap", "=", "'gray'", ",", "interpolation", "=", "\"nearest\"", ")", "# , vmin=np.min(feature), vmax=np.max(feature))", "# plt.title(name)", "# ------------------------------------------------------------", "# plt.imshow(np.reshape(W[:,count-1] ,(np.sqrt(size),np.sqrt(size))), cmap='gray', interpolation=\"nearest\")", "plt", ".", "gca", "(", ")", ".", "xaxis", ".", "set_major_locator", "(", "plt", ".", "NullLocator", "(", ")", ")", "# distable tick", "plt", ".", "gca", "(", ")", ".", "yaxis", ".", "set_major_locator", "(", "plt", ".", "NullLocator", "(", ")", ")", "count", "=", "count", "+", "1", "if", "saveable", ":", "plt", ".", "savefig", "(", "name", "+", "'.pdf'", ",", "format", "=", "'pdf'", ")", "else", ":", "plt", ".", "draw", "(", ")", "plt", ".", "pause", "(", "second", ")" ]
Visualize every columns of the weight matrix to a group of Greyscale img. Parameters ---------- W : numpy.array The weight matrix second : int The display second(s) for the image(s), if saveable is False. saveable : boolean Save or plot the figure. shape : a list with 2 int or None The shape of feature image, MNIST is [28, 80]. name : a string A name to save the image, if saveable is True. fig_idx : int matplotlib figure index. Examples -------- >>> tl.visualize.draw_weights(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012)
[ "Visualize", "every", "columns", "of", "the", "weight", "matrix", "to", "a", "group", "of", "Greyscale", "img", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/visualize.py#L597-L661
valid
tensorlayer/tensorlayer
examples/basic_tutorials/tutorial_cifar10_tfrecord.py
data_to_tfrecord
def data_to_tfrecord(images, labels, filename): """Save data into TFRecord.""" if os.path.isfile(filename): print("%s exists" % filename) return print("Converting data into %s ..." % filename) # cwd = os.getcwd() writer = tf.python_io.TFRecordWriter(filename) for index, img in enumerate(images): img_raw = img.tobytes() # Visualize a image # tl.visualize.frame(np.asarray(img, dtype=np.uint8), second=1, saveable=False, name='frame', fig_idx=1236) label = int(labels[index]) # print(label) # Convert the bytes back to image as follow: # image = Image.frombytes('RGB', (32, 32), img_raw) # image = np.fromstring(img_raw, np.float32) # image = image.reshape([32, 32, 3]) # tl.visualize.frame(np.asarray(image, dtype=np.uint8), second=1, saveable=False, name='frame', fig_idx=1236) example = tf.train.Example( features=tf.train.Features( feature={ "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[label])), 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])), } ) ) writer.write(example.SerializeToString()) # Serialize To String writer.close()
python
def data_to_tfrecord(images, labels, filename): """Save data into TFRecord.""" if os.path.isfile(filename): print("%s exists" % filename) return print("Converting data into %s ..." % filename) # cwd = os.getcwd() writer = tf.python_io.TFRecordWriter(filename) for index, img in enumerate(images): img_raw = img.tobytes() # Visualize a image # tl.visualize.frame(np.asarray(img, dtype=np.uint8), second=1, saveable=False, name='frame', fig_idx=1236) label = int(labels[index]) # print(label) # Convert the bytes back to image as follow: # image = Image.frombytes('RGB', (32, 32), img_raw) # image = np.fromstring(img_raw, np.float32) # image = image.reshape([32, 32, 3]) # tl.visualize.frame(np.asarray(image, dtype=np.uint8), second=1, saveable=False, name='frame', fig_idx=1236) example = tf.train.Example( features=tf.train.Features( feature={ "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[label])), 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])), } ) ) writer.write(example.SerializeToString()) # Serialize To String writer.close()
[ "def", "data_to_tfrecord", "(", "images", ",", "labels", ",", "filename", ")", ":", "if", "os", ".", "path", ".", "isfile", "(", "filename", ")", ":", "print", "(", "\"%s exists\"", "%", "filename", ")", "return", "print", "(", "\"Converting data into %s ...\"", "%", "filename", ")", "# cwd = os.getcwd()", "writer", "=", "tf", ".", "python_io", ".", "TFRecordWriter", "(", "filename", ")", "for", "index", ",", "img", "in", "enumerate", "(", "images", ")", ":", "img_raw", "=", "img", ".", "tobytes", "(", ")", "# Visualize a image", "# tl.visualize.frame(np.asarray(img, dtype=np.uint8), second=1, saveable=False, name='frame', fig_idx=1236)", "label", "=", "int", "(", "labels", "[", "index", "]", ")", "# print(label)", "# Convert the bytes back to image as follow:", "# image = Image.frombytes('RGB', (32, 32), img_raw)", "# image = np.fromstring(img_raw, np.float32)", "# image = image.reshape([32, 32, 3])", "# tl.visualize.frame(np.asarray(image, dtype=np.uint8), second=1, saveable=False, name='frame', fig_idx=1236)", "example", "=", "tf", ".", "train", ".", "Example", "(", "features", "=", "tf", ".", "train", ".", "Features", "(", "feature", "=", "{", "\"label\"", ":", "tf", ".", "train", ".", "Feature", "(", "int64_list", "=", "tf", ".", "train", ".", "Int64List", "(", "value", "=", "[", "label", "]", ")", ")", ",", "'img_raw'", ":", "tf", ".", "train", ".", "Feature", "(", "bytes_list", "=", "tf", ".", "train", ".", "BytesList", "(", "value", "=", "[", "img_raw", "]", ")", ")", ",", "}", ")", ")", "writer", ".", "write", "(", "example", ".", "SerializeToString", "(", ")", ")", "# Serialize To String", "writer", ".", "close", "(", ")" ]
Save data into TFRecord.
[ "Save", "data", "into", "TFRecord", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/basic_tutorials/tutorial_cifar10_tfrecord.py#L64-L92
valid
tensorlayer/tensorlayer
examples/basic_tutorials/tutorial_cifar10_tfrecord.py
read_and_decode
def read_and_decode(filename, is_train=None): """Return tensor to read from TFRecord.""" filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw': tf.FixedLenFeature([], tf.string), } ) # You can do more image distortion here for training data img = tf.decode_raw(features['img_raw'], tf.float32) img = tf.reshape(img, [32, 32, 3]) # img = tf.cast(img, tf.float32) #* (1. / 255) - 0.5 if is_train ==True: # 1. Randomly crop a [height, width] section of the image. img = tf.random_crop(img, [24, 24, 3]) # 2. Randomly flip the image horizontally. img = tf.image.random_flip_left_right(img) # 3. Randomly change brightness. img = tf.image.random_brightness(img, max_delta=63) # 4. Randomly change contrast. img = tf.image.random_contrast(img, lower=0.2, upper=1.8) # 5. Subtract off the mean and divide by the variance of the pixels. img = tf.image.per_image_standardization(img) elif is_train == False: # 1. Crop the central [height, width] of the image. img = tf.image.resize_image_with_crop_or_pad(img, 24, 24) # 2. Subtract off the mean and divide by the variance of the pixels. img = tf.image.per_image_standardization(img) elif is_train == None: img = img label = tf.cast(features['label'], tf.int32) return img, label
python
def read_and_decode(filename, is_train=None): """Return tensor to read from TFRecord.""" filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'img_raw': tf.FixedLenFeature([], tf.string), } ) # You can do more image distortion here for training data img = tf.decode_raw(features['img_raw'], tf.float32) img = tf.reshape(img, [32, 32, 3]) # img = tf.cast(img, tf.float32) #* (1. / 255) - 0.5 if is_train ==True: # 1. Randomly crop a [height, width] section of the image. img = tf.random_crop(img, [24, 24, 3]) # 2. Randomly flip the image horizontally. img = tf.image.random_flip_left_right(img) # 3. Randomly change brightness. img = tf.image.random_brightness(img, max_delta=63) # 4. Randomly change contrast. img = tf.image.random_contrast(img, lower=0.2, upper=1.8) # 5. Subtract off the mean and divide by the variance of the pixels. img = tf.image.per_image_standardization(img) elif is_train == False: # 1. Crop the central [height, width] of the image. img = tf.image.resize_image_with_crop_or_pad(img, 24, 24) # 2. Subtract off the mean and divide by the variance of the pixels. img = tf.image.per_image_standardization(img) elif is_train == None: img = img label = tf.cast(features['label'], tf.int32) return img, label
[ "def", "read_and_decode", "(", "filename", ",", "is_train", "=", "None", ")", ":", "filename_queue", "=", "tf", ".", "train", ".", "string_input_producer", "(", "[", "filename", "]", ")", "reader", "=", "tf", ".", "TFRecordReader", "(", ")", "_", ",", "serialized_example", "=", "reader", ".", "read", "(", "filename_queue", ")", "features", "=", "tf", ".", "parse_single_example", "(", "serialized_example", ",", "features", "=", "{", "'label'", ":", "tf", ".", "FixedLenFeature", "(", "[", "]", ",", "tf", ".", "int64", ")", ",", "'img_raw'", ":", "tf", ".", "FixedLenFeature", "(", "[", "]", ",", "tf", ".", "string", ")", ",", "}", ")", "# You can do more image distortion here for training data", "img", "=", "tf", ".", "decode_raw", "(", "features", "[", "'img_raw'", "]", ",", "tf", ".", "float32", ")", "img", "=", "tf", ".", "reshape", "(", "img", ",", "[", "32", ",", "32", ",", "3", "]", ")", "# img = tf.cast(img, tf.float32) #* (1. / 255) - 0.5", "if", "is_train", "==", "True", ":", "# 1. Randomly crop a [height, width] section of the image.", "img", "=", "tf", ".", "random_crop", "(", "img", ",", "[", "24", ",", "24", ",", "3", "]", ")", "# 2. Randomly flip the image horizontally.", "img", "=", "tf", ".", "image", ".", "random_flip_left_right", "(", "img", ")", "# 3. Randomly change brightness.", "img", "=", "tf", ".", "image", ".", "random_brightness", "(", "img", ",", "max_delta", "=", "63", ")", "# 4. Randomly change contrast.", "img", "=", "tf", ".", "image", ".", "random_contrast", "(", "img", ",", "lower", "=", "0.2", ",", "upper", "=", "1.8", ")", "# 5. Subtract off the mean and divide by the variance of the pixels.", "img", "=", "tf", ".", "image", ".", "per_image_standardization", "(", "img", ")", "elif", "is_train", "==", "False", ":", "# 1. Crop the central [height, width] of the image.", "img", "=", "tf", ".", "image", ".", "resize_image_with_crop_or_pad", "(", "img", ",", "24", ",", "24", ")", "# 2. Subtract off the mean and divide by the variance of the pixels.", "img", "=", "tf", ".", "image", ".", "per_image_standardization", "(", "img", ")", "elif", "is_train", "==", "None", ":", "img", "=", "img", "label", "=", "tf", ".", "cast", "(", "features", "[", "'label'", "]", ",", "tf", ".", "int32", ")", "return", "img", ",", "label" ]
Return tensor to read from TFRecord.
[ "Return", "tensor", "to", "read", "from", "TFRecord", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/basic_tutorials/tutorial_cifar10_tfrecord.py#L95-L137
valid
tensorlayer/tensorlayer
tensorlayer/layers/core.py
Layer.print_params
def print_params(self, details=True, session=None): """Print all info of parameters in the network""" for i, p in enumerate(self.all_params): if details: try: val = p.eval(session=session) logging.info( " param {:3}: {:20} {:15} {} (mean: {:<18}, median: {:<18}, std: {:<18}) ". format(i, p.name, str(val.shape), p.dtype.name, val.mean(), np.median(val), val.std()) ) except Exception as e: logging.info(str(e)) raise Exception( "Hint: print params details after tl.layers.initialize_global_variables(sess) " "or use network.print_params(False)." ) else: logging.info(" param {:3}: {:20} {:15} {}".format(i, p.name, str(p.get_shape()), p.dtype.name)) logging.info(" num of params: %d" % self.count_params())
python
def print_params(self, details=True, session=None): """Print all info of parameters in the network""" for i, p in enumerate(self.all_params): if details: try: val = p.eval(session=session) logging.info( " param {:3}: {:20} {:15} {} (mean: {:<18}, median: {:<18}, std: {:<18}) ". format(i, p.name, str(val.shape), p.dtype.name, val.mean(), np.median(val), val.std()) ) except Exception as e: logging.info(str(e)) raise Exception( "Hint: print params details after tl.layers.initialize_global_variables(sess) " "or use network.print_params(False)." ) else: logging.info(" param {:3}: {:20} {:15} {}".format(i, p.name, str(p.get_shape()), p.dtype.name)) logging.info(" num of params: %d" % self.count_params())
[ "def", "print_params", "(", "self", ",", "details", "=", "True", ",", "session", "=", "None", ")", ":", "for", "i", ",", "p", "in", "enumerate", "(", "self", ".", "all_params", ")", ":", "if", "details", ":", "try", ":", "val", "=", "p", ".", "eval", "(", "session", "=", "session", ")", "logging", ".", "info", "(", "\" param {:3}: {:20} {:15} {} (mean: {:<18}, median: {:<18}, std: {:<18}) \"", ".", "format", "(", "i", ",", "p", ".", "name", ",", "str", "(", "val", ".", "shape", ")", ",", "p", ".", "dtype", ".", "name", ",", "val", ".", "mean", "(", ")", ",", "np", ".", "median", "(", "val", ")", ",", "val", ".", "std", "(", ")", ")", ")", "except", "Exception", "as", "e", ":", "logging", ".", "info", "(", "str", "(", "e", ")", ")", "raise", "Exception", "(", "\"Hint: print params details after tl.layers.initialize_global_variables(sess) \"", "\"or use network.print_params(False).\"", ")", "else", ":", "logging", ".", "info", "(", "\" param {:3}: {:20} {:15} {}\"", ".", "format", "(", "i", ",", "p", ".", "name", ",", "str", "(", "p", ".", "get_shape", "(", ")", ")", ",", "p", ".", "dtype", ".", "name", ")", ")", "logging", ".", "info", "(", "\" num of params: %d\"", "%", "self", ".", "count_params", "(", ")", ")" ]
Print all info of parameters in the network
[ "Print", "all", "info", "of", "parameters", "in", "the", "network" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/core.py#L171-L189
valid
tensorlayer/tensorlayer
tensorlayer/layers/core.py
Layer.print_layers
def print_layers(self): """Print all info of layers in the network.""" for i, layer in enumerate(self.all_layers): # logging.info(" layer %d: %s" % (i, str(layer))) logging.info( " layer {:3}: {:20} {:15} {}".format(i, layer.name, str(layer.get_shape()), layer.dtype.name) )
python
def print_layers(self): """Print all info of layers in the network.""" for i, layer in enumerate(self.all_layers): # logging.info(" layer %d: %s" % (i, str(layer))) logging.info( " layer {:3}: {:20} {:15} {}".format(i, layer.name, str(layer.get_shape()), layer.dtype.name) )
[ "def", "print_layers", "(", "self", ")", ":", "for", "i", ",", "layer", "in", "enumerate", "(", "self", ".", "all_layers", ")", ":", "# logging.info(\" layer %d: %s\" % (i, str(layer)))", "logging", ".", "info", "(", "\" layer {:3}: {:20} {:15} {}\"", ".", "format", "(", "i", ",", "layer", ".", "name", ",", "str", "(", "layer", ".", "get_shape", "(", ")", ")", ",", "layer", ".", "dtype", ".", "name", ")", ")" ]
Print all info of layers in the network.
[ "Print", "all", "info", "of", "layers", "in", "the", "network", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/core.py#L191-L197
valid
tensorlayer/tensorlayer
tensorlayer/layers/core.py
Layer.count_params
def count_params(self): """Returns the number of parameters in the network.""" n_params = 0 for _i, p in enumerate(self.all_params): n = 1 # for s in p.eval().shape: for s in p.get_shape(): try: s = int(s) except Exception: s = 1 if s: n = n * s n_params = n_params + n return n_params
python
def count_params(self): """Returns the number of parameters in the network.""" n_params = 0 for _i, p in enumerate(self.all_params): n = 1 # for s in p.eval().shape: for s in p.get_shape(): try: s = int(s) except Exception: s = 1 if s: n = n * s n_params = n_params + n return n_params
[ "def", "count_params", "(", "self", ")", ":", "n_params", "=", "0", "for", "_i", ",", "p", "in", "enumerate", "(", "self", ".", "all_params", ")", ":", "n", "=", "1", "# for s in p.eval().shape:", "for", "s", "in", "p", ".", "get_shape", "(", ")", ":", "try", ":", "s", "=", "int", "(", "s", ")", "except", "Exception", ":", "s", "=", "1", "if", "s", ":", "n", "=", "n", "*", "s", "n_params", "=", "n_params", "+", "n", "return", "n_params" ]
Returns the number of parameters in the network.
[ "Returns", "the", "number", "of", "parameters", "in", "the", "network", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/core.py#L199-L213
valid
tensorlayer/tensorlayer
tensorlayer/layers/core.py
Layer.get_all_params
def get_all_params(self, session=None): """Return the parameters in a list of array.""" _params = [] for p in self.all_params: if session is None: _params.append(p.eval()) else: _params.append(session.run(p)) return _params
python
def get_all_params(self, session=None): """Return the parameters in a list of array.""" _params = [] for p in self.all_params: if session is None: _params.append(p.eval()) else: _params.append(session.run(p)) return _params
[ "def", "get_all_params", "(", "self", ",", "session", "=", "None", ")", ":", "_params", "=", "[", "]", "for", "p", "in", "self", ".", "all_params", ":", "if", "session", "is", "None", ":", "_params", ".", "append", "(", "p", ".", "eval", "(", ")", ")", "else", ":", "_params", ".", "append", "(", "session", ".", "run", "(", "p", ")", ")", "return", "_params" ]
Return the parameters in a list of array.
[ "Return", "the", "parameters", "in", "a", "list", "of", "array", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/core.py#L215-L223
valid
tensorlayer/tensorlayer
tensorlayer/layers/core.py
Layer._get_init_args
def _get_init_args(self, skip=4): """Get all arguments of current layer for saving the graph.""" stack = inspect.stack() if len(stack) < skip + 1: raise ValueError("The length of the inspection stack is shorter than the requested start position.") args, _, _, values = inspect.getargvalues(stack[skip][0]) params = {} for arg in args: # some args dont need to be saved into the graph. e.g. the input placeholder if values[arg] is not None and arg not in ['self', 'prev_layer', 'inputs']: val = values[arg] # change function (e.g. act) into dictionary of module path and function name if inspect.isfunction(val): params[arg] = {"module_path": val.__module__, "func_name": val.__name__} # ignore more args e.g. TF class elif arg.endswith('init'): continue # for other data type, save them directly else: params[arg] = val return params
python
def _get_init_args(self, skip=4): """Get all arguments of current layer for saving the graph.""" stack = inspect.stack() if len(stack) < skip + 1: raise ValueError("The length of the inspection stack is shorter than the requested start position.") args, _, _, values = inspect.getargvalues(stack[skip][0]) params = {} for arg in args: # some args dont need to be saved into the graph. e.g. the input placeholder if values[arg] is not None and arg not in ['self', 'prev_layer', 'inputs']: val = values[arg] # change function (e.g. act) into dictionary of module path and function name if inspect.isfunction(val): params[arg] = {"module_path": val.__module__, "func_name": val.__name__} # ignore more args e.g. TF class elif arg.endswith('init'): continue # for other data type, save them directly else: params[arg] = val return params
[ "def", "_get_init_args", "(", "self", ",", "skip", "=", "4", ")", ":", "stack", "=", "inspect", ".", "stack", "(", ")", "if", "len", "(", "stack", ")", "<", "skip", "+", "1", ":", "raise", "ValueError", "(", "\"The length of the inspection stack is shorter than the requested start position.\"", ")", "args", ",", "_", ",", "_", ",", "values", "=", "inspect", ".", "getargvalues", "(", "stack", "[", "skip", "]", "[", "0", "]", ")", "params", "=", "{", "}", "for", "arg", "in", "args", ":", "# some args dont need to be saved into the graph. e.g. the input placeholder", "if", "values", "[", "arg", "]", "is", "not", "None", "and", "arg", "not", "in", "[", "'self'", ",", "'prev_layer'", ",", "'inputs'", "]", ":", "val", "=", "values", "[", "arg", "]", "# change function (e.g. act) into dictionary of module path and function name", "if", "inspect", ".", "isfunction", "(", "val", ")", ":", "params", "[", "arg", "]", "=", "{", "\"module_path\"", ":", "val", ".", "__module__", ",", "\"func_name\"", ":", "val", ".", "__name__", "}", "# ignore more args e.g. TF class", "elif", "arg", ".", "endswith", "(", "'init'", ")", ":", "continue", "# for other data type, save them directly", "else", ":", "params", "[", "arg", "]", "=", "val", "return", "params" ]
Get all arguments of current layer for saving the graph.
[ "Get", "all", "arguments", "of", "current", "layer", "for", "saving", "the", "graph", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/core.py#L258-L286
valid
tensorlayer/tensorlayer
tensorlayer/third_party/roi_pooling/roi_pooling/roi_pooling_ops.py
roi_pooling
def roi_pooling(input, rois, pool_height, pool_width): """ returns a tensorflow operation for computing the Region of Interest Pooling @arg input: feature maps on which to perform the pooling operation @arg rois: list of regions of interest in the format (feature map index, upper left, bottom right) @arg pool_width: size of the pooling sections """ # TODO(maciek): ops scope out = roi_pooling_module.roi_pooling(input, rois, pool_height=pool_height, pool_width=pool_width) output, argmax_output = out[0], out[1] return output
python
def roi_pooling(input, rois, pool_height, pool_width): """ returns a tensorflow operation for computing the Region of Interest Pooling @arg input: feature maps on which to perform the pooling operation @arg rois: list of regions of interest in the format (feature map index, upper left, bottom right) @arg pool_width: size of the pooling sections """ # TODO(maciek): ops scope out = roi_pooling_module.roi_pooling(input, rois, pool_height=pool_height, pool_width=pool_width) output, argmax_output = out[0], out[1] return output
[ "def", "roi_pooling", "(", "input", ",", "rois", ",", "pool_height", ",", "pool_width", ")", ":", "# TODO(maciek): ops scope", "out", "=", "roi_pooling_module", ".", "roi_pooling", "(", "input", ",", "rois", ",", "pool_height", "=", "pool_height", ",", "pool_width", "=", "pool_width", ")", "output", ",", "argmax_output", "=", "out", "[", "0", "]", ",", "out", "[", "1", "]", "return", "output" ]
returns a tensorflow operation for computing the Region of Interest Pooling @arg input: feature maps on which to perform the pooling operation @arg rois: list of regions of interest in the format (feature map index, upper left, bottom right) @arg pool_width: size of the pooling sections
[ "returns", "a", "tensorflow", "operation", "for", "computing", "the", "Region", "of", "Interest", "Pooling" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/third_party/roi_pooling/roi_pooling/roi_pooling_ops.py#L12-L23
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_tfrecord3.py
_int64_feature
def _int64_feature(value): """Wrapper for inserting an int64 Feature into a SequenceExample proto, e.g, An integer label. """ return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
python
def _int64_feature(value): """Wrapper for inserting an int64 Feature into a SequenceExample proto, e.g, An integer label. """ return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
[ "def", "_int64_feature", "(", "value", ")", ":", "return", "tf", ".", "train", ".", "Feature", "(", "int64_list", "=", "tf", ".", "train", ".", "Int64List", "(", "value", "=", "[", "value", "]", ")", ")" ]
Wrapper for inserting an int64 Feature into a SequenceExample proto, e.g, An integer label.
[ "Wrapper", "for", "inserting", "an", "int64", "Feature", "into", "a", "SequenceExample", "proto", "e", ".", "g", "An", "integer", "label", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_tfrecord3.py#L26-L30
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_tfrecord3.py
_bytes_feature
def _bytes_feature(value): """Wrapper for inserting a bytes Feature into a SequenceExample proto, e.g, an image in byte """ # return tf.train.Feature(bytes_list=tf.train.BytesList(value=[str(value)])) return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
python
def _bytes_feature(value): """Wrapper for inserting a bytes Feature into a SequenceExample proto, e.g, an image in byte """ # return tf.train.Feature(bytes_list=tf.train.BytesList(value=[str(value)])) return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
[ "def", "_bytes_feature", "(", "value", ")", ":", "# return tf.train.Feature(bytes_list=tf.train.BytesList(value=[str(value)]))", "return", "tf", ".", "train", ".", "Feature", "(", "bytes_list", "=", "tf", ".", "train", ".", "BytesList", "(", "value", "=", "[", "value", "]", ")", ")" ]
Wrapper for inserting a bytes Feature into a SequenceExample proto, e.g, an image in byte
[ "Wrapper", "for", "inserting", "a", "bytes", "Feature", "into", "a", "SequenceExample", "proto", "e", ".", "g", "an", "image", "in", "byte" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_tfrecord3.py#L33-L38
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_tfrecord3.py
_int64_feature_list
def _int64_feature_list(values): """Wrapper for inserting an int64 FeatureList into a SequenceExample proto, e.g, sentence in list of ints """ return tf.train.FeatureList(feature=[_int64_feature(v) for v in values])
python
def _int64_feature_list(values): """Wrapper for inserting an int64 FeatureList into a SequenceExample proto, e.g, sentence in list of ints """ return tf.train.FeatureList(feature=[_int64_feature(v) for v in values])
[ "def", "_int64_feature_list", "(", "values", ")", ":", "return", "tf", ".", "train", ".", "FeatureList", "(", "feature", "=", "[", "_int64_feature", "(", "v", ")", "for", "v", "in", "values", "]", ")" ]
Wrapper for inserting an int64 FeatureList into a SequenceExample proto, e.g, sentence in list of ints
[ "Wrapper", "for", "inserting", "an", "int64", "FeatureList", "into", "a", "SequenceExample", "proto", "e", ".", "g", "sentence", "in", "list", "of", "ints" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_tfrecord3.py#L41-L45
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_tfrecord3.py
_bytes_feature_list
def _bytes_feature_list(values): """Wrapper for inserting a bytes FeatureList into a SequenceExample proto, e.g, sentence in list of bytes """ return tf.train.FeatureList(feature=[_bytes_feature(v) for v in values])
python
def _bytes_feature_list(values): """Wrapper for inserting a bytes FeatureList into a SequenceExample proto, e.g, sentence in list of bytes """ return tf.train.FeatureList(feature=[_bytes_feature(v) for v in values])
[ "def", "_bytes_feature_list", "(", "values", ")", ":", "return", "tf", ".", "train", ".", "FeatureList", "(", "feature", "=", "[", "_bytes_feature", "(", "v", ")", "for", "v", "in", "values", "]", ")" ]
Wrapper for inserting a bytes FeatureList into a SequenceExample proto, e.g, sentence in list of bytes
[ "Wrapper", "for", "inserting", "a", "bytes", "FeatureList", "into", "a", "SequenceExample", "proto", "e", ".", "g", "sentence", "in", "list", "of", "bytes" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_tfrecord3.py#L48-L52
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_tfrecord3.py
distort_image
def distort_image(image, thread_id): """Perform random distortions on an image. Args: image: A float32 Tensor of shape [height, width, 3] with values in [0, 1). thread_id: Preprocessing thread id used to select the ordering of color distortions. There should be a multiple of 2 preprocessing threads. Returns:```` distorted_image: A float32 Tensor of shape [height, width, 3] with values in [0, 1]. """ # Randomly flip horizontally. with tf.name_scope("flip_horizontal"): # , values=[image]): # DH MOdify # with tf.name_scope("flip_horizontal", values=[image]): image = tf.image.random_flip_left_right(image) # Randomly distort the colors based on thread id. color_ordering = thread_id % 2 with tf.name_scope("distort_color"): # , values=[image]): # DH MOdify # with tf.name_scope("distort_color", values=[image]): # DH MOdify if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.032) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.032) # The random_* ops do not necessarily clamp. image = tf.clip_by_value(image, 0.0, 1.0) return image
python
def distort_image(image, thread_id): """Perform random distortions on an image. Args: image: A float32 Tensor of shape [height, width, 3] with values in [0, 1). thread_id: Preprocessing thread id used to select the ordering of color distortions. There should be a multiple of 2 preprocessing threads. Returns:```` distorted_image: A float32 Tensor of shape [height, width, 3] with values in [0, 1]. """ # Randomly flip horizontally. with tf.name_scope("flip_horizontal"): # , values=[image]): # DH MOdify # with tf.name_scope("flip_horizontal", values=[image]): image = tf.image.random_flip_left_right(image) # Randomly distort the colors based on thread id. color_ordering = thread_id % 2 with tf.name_scope("distort_color"): # , values=[image]): # DH MOdify # with tf.name_scope("distort_color", values=[image]): # DH MOdify if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.032) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.032) # The random_* ops do not necessarily clamp. image = tf.clip_by_value(image, 0.0, 1.0) return image
[ "def", "distort_image", "(", "image", ",", "thread_id", ")", ":", "# Randomly flip horizontally.", "with", "tf", ".", "name_scope", "(", "\"flip_horizontal\"", ")", ":", "# , values=[image]): # DH MOdify", "# with tf.name_scope(\"flip_horizontal\", values=[image]):", "image", "=", "tf", ".", "image", ".", "random_flip_left_right", "(", "image", ")", "# Randomly distort the colors based on thread id.", "color_ordering", "=", "thread_id", "%", "2", "with", "tf", ".", "name_scope", "(", "\"distort_color\"", ")", ":", "# , values=[image]): # DH MOdify", "# with tf.name_scope(\"distort_color\", values=[image]): # DH MOdify", "if", "color_ordering", "==", "0", ":", "image", "=", "tf", ".", "image", ".", "random_brightness", "(", "image", ",", "max_delta", "=", "32.", "/", "255.", ")", "image", "=", "tf", ".", "image", ".", "random_saturation", "(", "image", ",", "lower", "=", "0.5", ",", "upper", "=", "1.5", ")", "image", "=", "tf", ".", "image", ".", "random_hue", "(", "image", ",", "max_delta", "=", "0.032", ")", "image", "=", "tf", ".", "image", ".", "random_contrast", "(", "image", ",", "lower", "=", "0.5", ",", "upper", "=", "1.5", ")", "elif", "color_ordering", "==", "1", ":", "image", "=", "tf", ".", "image", ".", "random_brightness", "(", "image", ",", "max_delta", "=", "32.", "/", "255.", ")", "image", "=", "tf", ".", "image", ".", "random_contrast", "(", "image", ",", "lower", "=", "0.5", ",", "upper", "=", "1.5", ")", "image", "=", "tf", ".", "image", ".", "random_saturation", "(", "image", ",", "lower", "=", "0.5", ",", "upper", "=", "1.5", ")", "image", "=", "tf", ".", "image", ".", "random_hue", "(", "image", ",", "max_delta", "=", "0.032", ")", "# The random_* ops do not necessarily clamp.", "image", "=", "tf", ".", "clip_by_value", "(", "image", ",", "0.0", ",", "1.0", ")", "return", "image" ]
Perform random distortions on an image. Args: image: A float32 Tensor of shape [height, width, 3] with values in [0, 1). thread_id: Preprocessing thread id used to select the ordering of color distortions. There should be a multiple of 2 preprocessing threads. Returns:```` distorted_image: A float32 Tensor of shape [height, width, 3] with values in [0, 1].
[ "Perform", "random", "distortions", "on", "an", "image", ".", "Args", ":", "image", ":", "A", "float32", "Tensor", "of", "shape", "[", "height", "width", "3", "]", "with", "values", "in", "[", "0", "1", ")", ".", "thread_id", ":", "Preprocessing", "thread", "id", "used", "to", "select", "the", "ordering", "of", "color", "distortions", ".", "There", "should", "be", "a", "multiple", "of", "2", "preprocessing", "threads", ".", "Returns", ":", "distorted_image", ":", "A", "float32", "Tensor", "of", "shape", "[", "height", "width", "3", "]", "with", "values", "in", "[", "0", "1", "]", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_tfrecord3.py#L121-L152
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_tfrecord3.py
prefetch_input_data
def prefetch_input_data( reader, file_pattern, is_training, batch_size, values_per_shard, input_queue_capacity_factor=16, num_reader_threads=1, shard_queue_name="filename_queue", value_queue_name="input_queue" ): """Prefetches string values from disk into an input queue. In training the capacity of the queue is important because a larger queue means better mixing of training examples between shards. The minimum number of values kept in the queue is values_per_shard * input_queue_capacity_factor, where input_queue_memory factor should be chosen to trade-off better mixing with memory usage. Args: reader: Instance of tf.ReaderBase. file_pattern: Comma-separated list of file patterns (e.g. /tmp/train_data-?????-of-00100). is_training: Boolean; whether prefetching for training or eval. batch_size: Model batch size used to determine queue capacity. values_per_shard: Approximate number of values per shard. input_queue_capacity_factor: Minimum number of values to keep in the queue in multiples of values_per_shard. See comments above. num_reader_threads: Number of reader threads to fill the queue. shard_queue_name: Name for the shards filename queue. value_queue_name: Name for the values input queue. Returns: A Queue containing prefetched string values. """ data_files = [] for pattern in file_pattern.split(","): data_files.extend(tf.gfile.Glob(pattern)) if not data_files: tl.logging.fatal("Found no input files matching %s", file_pattern) else: tl.logging.info("Prefetching values from %d files matching %s", len(data_files), file_pattern) if is_training: print(" is_training == True : RandomShuffleQueue") filename_queue = tf.train.string_input_producer(data_files, shuffle=True, capacity=16, name=shard_queue_name) min_queue_examples = values_per_shard * input_queue_capacity_factor capacity = min_queue_examples + 100 * batch_size values_queue = tf.RandomShuffleQueue( capacity=capacity, min_after_dequeue=min_queue_examples, dtypes=[tf.string], name="random_" + value_queue_name ) else: print(" is_training == False : FIFOQueue") filename_queue = tf.train.string_input_producer(data_files, shuffle=False, capacity=1, name=shard_queue_name) capacity = values_per_shard + 3 * batch_size values_queue = tf.FIFOQueue(capacity=capacity, dtypes=[tf.string], name="fifo_" + value_queue_name) enqueue_ops = [] for _ in range(num_reader_threads): _, value = reader.read(filename_queue) enqueue_ops.append(values_queue.enqueue([value])) tf.train.queue_runner.add_queue_runner(tf.train.queue_runner.QueueRunner(values_queue, enqueue_ops)) tf.summary.scalar( "queue/%s/fraction_of_%d_full" % (values_queue.name, capacity), tf.cast(values_queue.size(), tf.float32) * (1. / capacity) ) return values_queue
python
def prefetch_input_data( reader, file_pattern, is_training, batch_size, values_per_shard, input_queue_capacity_factor=16, num_reader_threads=1, shard_queue_name="filename_queue", value_queue_name="input_queue" ): """Prefetches string values from disk into an input queue. In training the capacity of the queue is important because a larger queue means better mixing of training examples between shards. The minimum number of values kept in the queue is values_per_shard * input_queue_capacity_factor, where input_queue_memory factor should be chosen to trade-off better mixing with memory usage. Args: reader: Instance of tf.ReaderBase. file_pattern: Comma-separated list of file patterns (e.g. /tmp/train_data-?????-of-00100). is_training: Boolean; whether prefetching for training or eval. batch_size: Model batch size used to determine queue capacity. values_per_shard: Approximate number of values per shard. input_queue_capacity_factor: Minimum number of values to keep in the queue in multiples of values_per_shard. See comments above. num_reader_threads: Number of reader threads to fill the queue. shard_queue_name: Name for the shards filename queue. value_queue_name: Name for the values input queue. Returns: A Queue containing prefetched string values. """ data_files = [] for pattern in file_pattern.split(","): data_files.extend(tf.gfile.Glob(pattern)) if not data_files: tl.logging.fatal("Found no input files matching %s", file_pattern) else: tl.logging.info("Prefetching values from %d files matching %s", len(data_files), file_pattern) if is_training: print(" is_training == True : RandomShuffleQueue") filename_queue = tf.train.string_input_producer(data_files, shuffle=True, capacity=16, name=shard_queue_name) min_queue_examples = values_per_shard * input_queue_capacity_factor capacity = min_queue_examples + 100 * batch_size values_queue = tf.RandomShuffleQueue( capacity=capacity, min_after_dequeue=min_queue_examples, dtypes=[tf.string], name="random_" + value_queue_name ) else: print(" is_training == False : FIFOQueue") filename_queue = tf.train.string_input_producer(data_files, shuffle=False, capacity=1, name=shard_queue_name) capacity = values_per_shard + 3 * batch_size values_queue = tf.FIFOQueue(capacity=capacity, dtypes=[tf.string], name="fifo_" + value_queue_name) enqueue_ops = [] for _ in range(num_reader_threads): _, value = reader.read(filename_queue) enqueue_ops.append(values_queue.enqueue([value])) tf.train.queue_runner.add_queue_runner(tf.train.queue_runner.QueueRunner(values_queue, enqueue_ops)) tf.summary.scalar( "queue/%s/fraction_of_%d_full" % (values_queue.name, capacity), tf.cast(values_queue.size(), tf.float32) * (1. / capacity) ) return values_queue
[ "def", "prefetch_input_data", "(", "reader", ",", "file_pattern", ",", "is_training", ",", "batch_size", ",", "values_per_shard", ",", "input_queue_capacity_factor", "=", "16", ",", "num_reader_threads", "=", "1", ",", "shard_queue_name", "=", "\"filename_queue\"", ",", "value_queue_name", "=", "\"input_queue\"", ")", ":", "data_files", "=", "[", "]", "for", "pattern", "in", "file_pattern", ".", "split", "(", "\",\"", ")", ":", "data_files", ".", "extend", "(", "tf", ".", "gfile", ".", "Glob", "(", "pattern", ")", ")", "if", "not", "data_files", ":", "tl", ".", "logging", ".", "fatal", "(", "\"Found no input files matching %s\"", ",", "file_pattern", ")", "else", ":", "tl", ".", "logging", ".", "info", "(", "\"Prefetching values from %d files matching %s\"", ",", "len", "(", "data_files", ")", ",", "file_pattern", ")", "if", "is_training", ":", "print", "(", "\" is_training == True : RandomShuffleQueue\"", ")", "filename_queue", "=", "tf", ".", "train", ".", "string_input_producer", "(", "data_files", ",", "shuffle", "=", "True", ",", "capacity", "=", "16", ",", "name", "=", "shard_queue_name", ")", "min_queue_examples", "=", "values_per_shard", "*", "input_queue_capacity_factor", "capacity", "=", "min_queue_examples", "+", "100", "*", "batch_size", "values_queue", "=", "tf", ".", "RandomShuffleQueue", "(", "capacity", "=", "capacity", ",", "min_after_dequeue", "=", "min_queue_examples", ",", "dtypes", "=", "[", "tf", ".", "string", "]", ",", "name", "=", "\"random_\"", "+", "value_queue_name", ")", "else", ":", "print", "(", "\" is_training == False : FIFOQueue\"", ")", "filename_queue", "=", "tf", ".", "train", ".", "string_input_producer", "(", "data_files", ",", "shuffle", "=", "False", ",", "capacity", "=", "1", ",", "name", "=", "shard_queue_name", ")", "capacity", "=", "values_per_shard", "+", "3", "*", "batch_size", "values_queue", "=", "tf", ".", "FIFOQueue", "(", "capacity", "=", "capacity", ",", "dtypes", "=", "[", "tf", ".", "string", "]", ",", "name", "=", "\"fifo_\"", "+", "value_queue_name", ")", "enqueue_ops", "=", "[", "]", "for", "_", "in", "range", "(", "num_reader_threads", ")", ":", "_", ",", "value", "=", "reader", ".", "read", "(", "filename_queue", ")", "enqueue_ops", ".", "append", "(", "values_queue", ".", "enqueue", "(", "[", "value", "]", ")", ")", "tf", ".", "train", ".", "queue_runner", ".", "add_queue_runner", "(", "tf", ".", "train", ".", "queue_runner", ".", "QueueRunner", "(", "values_queue", ",", "enqueue_ops", ")", ")", "tf", ".", "summary", ".", "scalar", "(", "\"queue/%s/fraction_of_%d_full\"", "%", "(", "values_queue", ".", "name", ",", "capacity", ")", ",", "tf", ".", "cast", "(", "values_queue", ".", "size", "(", ")", ",", "tf", ".", "float32", ")", "*", "(", "1.", "/", "capacity", ")", ")", "return", "values_queue" ]
Prefetches string values from disk into an input queue. In training the capacity of the queue is important because a larger queue means better mixing of training examples between shards. The minimum number of values kept in the queue is values_per_shard * input_queue_capacity_factor, where input_queue_memory factor should be chosen to trade-off better mixing with memory usage. Args: reader: Instance of tf.ReaderBase. file_pattern: Comma-separated list of file patterns (e.g. /tmp/train_data-?????-of-00100). is_training: Boolean; whether prefetching for training or eval. batch_size: Model batch size used to determine queue capacity. values_per_shard: Approximate number of values per shard. input_queue_capacity_factor: Minimum number of values to keep in the queue in multiples of values_per_shard. See comments above. num_reader_threads: Number of reader threads to fill the queue. shard_queue_name: Name for the shards filename queue. value_queue_name: Name for the values input queue. Returns: A Queue containing prefetched string values.
[ "Prefetches", "string", "values", "from", "disk", "into", "an", "input", "queue", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_tfrecord3.py#L231-L293
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_tfrecord3.py
batch_with_dynamic_pad
def batch_with_dynamic_pad(images_and_captions, batch_size, queue_capacity, add_summaries=True): """Batches input images and captions. This function splits the caption into an input sequence and a target sequence, where the target sequence is the input sequence right-shifted by 1. Input and target sequences are batched and padded up to the maximum length of sequences in the batch. A mask is created to distinguish real words from padding words. Example: Actual captions in the batch ('-' denotes padded character): [ [ 1 2 5 4 5 ], [ 1 2 3 4 - ], [ 1 2 3 - - ], ] input_seqs: [ [ 1 2 3 4 ], [ 1 2 3 - ], [ 1 2 - - ], ] target_seqs: [ [ 2 3 4 5 ], [ 2 3 4 - ], [ 2 3 - - ], ] mask: [ [ 1 1 1 1 ], [ 1 1 1 0 ], [ 1 1 0 0 ], ] Args: images_and_captions: A list of pairs [image, caption], where image is a Tensor of shape [height, width, channels] and caption is a 1-D Tensor of any length. Each pair will be processed and added to the queue in a separate thread. batch_size: Batch size. queue_capacity: Queue capacity. add_summaries: If true, add caption length summaries. Returns: images: A Tensor of shape [batch_size, height, width, channels]. input_seqs: An int32 Tensor of shape [batch_size, padded_length]. target_seqs: An int32 Tensor of shape [batch_size, padded_length]. mask: An int32 0/1 Tensor of shape [batch_size, padded_length]. """ enqueue_list = [] for image, caption in images_and_captions: caption_length = tf.shape(caption)[0] input_length = tf.expand_dims(tf.subtract(caption_length, 1), 0) input_seq = tf.slice(caption, [0], input_length) target_seq = tf.slice(caption, [1], input_length) indicator = tf.ones(input_length, dtype=tf.int32) enqueue_list.append([image, input_seq, target_seq, indicator]) images, input_seqs, target_seqs, mask = tf.train.batch_join( enqueue_list, batch_size=batch_size, capacity=queue_capacity, dynamic_pad=True, name="batch_and_pad" ) if add_summaries: lengths = tf.add(tf.reduce_sum(mask, 1), 1) tf.summary.scalar("caption_length/batch_min", tf.reduce_min(lengths)) tf.summary.scalar("caption_length/batch_max", tf.reduce_max(lengths)) tf.summary.scalar("caption_length/batch_mean", tf.reduce_mean(lengths)) return images, input_seqs, target_seqs, mask
python
def batch_with_dynamic_pad(images_and_captions, batch_size, queue_capacity, add_summaries=True): """Batches input images and captions. This function splits the caption into an input sequence and a target sequence, where the target sequence is the input sequence right-shifted by 1. Input and target sequences are batched and padded up to the maximum length of sequences in the batch. A mask is created to distinguish real words from padding words. Example: Actual captions in the batch ('-' denotes padded character): [ [ 1 2 5 4 5 ], [ 1 2 3 4 - ], [ 1 2 3 - - ], ] input_seqs: [ [ 1 2 3 4 ], [ 1 2 3 - ], [ 1 2 - - ], ] target_seqs: [ [ 2 3 4 5 ], [ 2 3 4 - ], [ 2 3 - - ], ] mask: [ [ 1 1 1 1 ], [ 1 1 1 0 ], [ 1 1 0 0 ], ] Args: images_and_captions: A list of pairs [image, caption], where image is a Tensor of shape [height, width, channels] and caption is a 1-D Tensor of any length. Each pair will be processed and added to the queue in a separate thread. batch_size: Batch size. queue_capacity: Queue capacity. add_summaries: If true, add caption length summaries. Returns: images: A Tensor of shape [batch_size, height, width, channels]. input_seqs: An int32 Tensor of shape [batch_size, padded_length]. target_seqs: An int32 Tensor of shape [batch_size, padded_length]. mask: An int32 0/1 Tensor of shape [batch_size, padded_length]. """ enqueue_list = [] for image, caption in images_and_captions: caption_length = tf.shape(caption)[0] input_length = tf.expand_dims(tf.subtract(caption_length, 1), 0) input_seq = tf.slice(caption, [0], input_length) target_seq = tf.slice(caption, [1], input_length) indicator = tf.ones(input_length, dtype=tf.int32) enqueue_list.append([image, input_seq, target_seq, indicator]) images, input_seqs, target_seqs, mask = tf.train.batch_join( enqueue_list, batch_size=batch_size, capacity=queue_capacity, dynamic_pad=True, name="batch_and_pad" ) if add_summaries: lengths = tf.add(tf.reduce_sum(mask, 1), 1) tf.summary.scalar("caption_length/batch_min", tf.reduce_min(lengths)) tf.summary.scalar("caption_length/batch_max", tf.reduce_max(lengths)) tf.summary.scalar("caption_length/batch_mean", tf.reduce_mean(lengths)) return images, input_seqs, target_seqs, mask
[ "def", "batch_with_dynamic_pad", "(", "images_and_captions", ",", "batch_size", ",", "queue_capacity", ",", "add_summaries", "=", "True", ")", ":", "enqueue_list", "=", "[", "]", "for", "image", ",", "caption", "in", "images_and_captions", ":", "caption_length", "=", "tf", ".", "shape", "(", "caption", ")", "[", "0", "]", "input_length", "=", "tf", ".", "expand_dims", "(", "tf", ".", "subtract", "(", "caption_length", ",", "1", ")", ",", "0", ")", "input_seq", "=", "tf", ".", "slice", "(", "caption", ",", "[", "0", "]", ",", "input_length", ")", "target_seq", "=", "tf", ".", "slice", "(", "caption", ",", "[", "1", "]", ",", "input_length", ")", "indicator", "=", "tf", ".", "ones", "(", "input_length", ",", "dtype", "=", "tf", ".", "int32", ")", "enqueue_list", ".", "append", "(", "[", "image", ",", "input_seq", ",", "target_seq", ",", "indicator", "]", ")", "images", ",", "input_seqs", ",", "target_seqs", ",", "mask", "=", "tf", ".", "train", ".", "batch_join", "(", "enqueue_list", ",", "batch_size", "=", "batch_size", ",", "capacity", "=", "queue_capacity", ",", "dynamic_pad", "=", "True", ",", "name", "=", "\"batch_and_pad\"", ")", "if", "add_summaries", ":", "lengths", "=", "tf", ".", "add", "(", "tf", ".", "reduce_sum", "(", "mask", ",", "1", ")", ",", "1", ")", "tf", ".", "summary", ".", "scalar", "(", "\"caption_length/batch_min\"", ",", "tf", ".", "reduce_min", "(", "lengths", ")", ")", "tf", ".", "summary", ".", "scalar", "(", "\"caption_length/batch_max\"", ",", "tf", ".", "reduce_max", "(", "lengths", ")", ")", "tf", ".", "summary", ".", "scalar", "(", "\"caption_length/batch_mean\"", ",", "tf", ".", "reduce_mean", "(", "lengths", ")", ")", "return", "images", ",", "input_seqs", ",", "target_seqs", ",", "mask" ]
Batches input images and captions. This function splits the caption into an input sequence and a target sequence, where the target sequence is the input sequence right-shifted by 1. Input and target sequences are batched and padded up to the maximum length of sequences in the batch. A mask is created to distinguish real words from padding words. Example: Actual captions in the batch ('-' denotes padded character): [ [ 1 2 5 4 5 ], [ 1 2 3 4 - ], [ 1 2 3 - - ], ] input_seqs: [ [ 1 2 3 4 ], [ 1 2 3 - ], [ 1 2 - - ], ] target_seqs: [ [ 2 3 4 5 ], [ 2 3 4 - ], [ 2 3 - - ], ] mask: [ [ 1 1 1 1 ], [ 1 1 1 0 ], [ 1 1 0 0 ], ] Args: images_and_captions: A list of pairs [image, caption], where image is a Tensor of shape [height, width, channels] and caption is a 1-D Tensor of any length. Each pair will be processed and added to the queue in a separate thread. batch_size: Batch size. queue_capacity: Queue capacity. add_summaries: If true, add caption length summaries. Returns: images: A Tensor of shape [batch_size, height, width, channels]. input_seqs: An int32 Tensor of shape [batch_size, padded_length]. target_seqs: An int32 Tensor of shape [batch_size, padded_length]. mask: An int32 0/1 Tensor of shape [batch_size, padded_length].
[ "Batches", "input", "images", "and", "captions", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_tfrecord3.py#L371-L443
valid