repo
stringclasses
679 values
path
stringlengths
6
122
func_name
stringlengths
2
76
original_string
stringlengths
87
70.9k
language
stringclasses
1 value
code
stringlengths
87
70.9k
code_tokens
sequencelengths
20
6.91k
docstring
stringlengths
1
21.7k
docstring_tokens
sequencelengths
1
1.6k
sha
stringclasses
679 values
url
stringlengths
92
213
partition
stringclasses
1 value
tensorlayer/tensorlayer
tensorlayer/layers/normalization.py
_to_channel_first_bias
def _to_channel_first_bias(b): """Reshape [c] to [c, 1, 1].""" channel_size = int(b.shape[0]) new_shape = (channel_size, 1, 1) # new_shape = [-1, 1, 1] # doesn't work with tensorRT return tf.reshape(b, new_shape)
python
def _to_channel_first_bias(b): """Reshape [c] to [c, 1, 1].""" channel_size = int(b.shape[0]) new_shape = (channel_size, 1, 1) # new_shape = [-1, 1, 1] # doesn't work with tensorRT return tf.reshape(b, new_shape)
[ "def", "_to_channel_first_bias", "(", "b", ")", ":", "channel_size", "=", "int", "(", "b", ".", "shape", "[", "0", "]", ")", "new_shape", "=", "(", "channel_size", ",", "1", ",", "1", ")", "# new_shape = [-1, 1, 1] # doesn't work with tensorRT", "return", "tf", ".", "reshape", "(", "b", ",", "new_shape", ")" ]
Reshape [c] to [c, 1, 1].
[ "Reshape", "[", "c", "]", "to", "[", "c", "1", "1", "]", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/normalization.py#L74-L79
valid
tensorlayer/tensorlayer
tensorlayer/layers/normalization.py
_bias_scale
def _bias_scale(x, b, data_format): """The multiplication counter part of tf.nn.bias_add.""" if data_format == 'NHWC': return x * b elif data_format == 'NCHW': return x * _to_channel_first_bias(b) else: raise ValueError('invalid data_format: %s' % data_format)
python
def _bias_scale(x, b, data_format): """The multiplication counter part of tf.nn.bias_add.""" if data_format == 'NHWC': return x * b elif data_format == 'NCHW': return x * _to_channel_first_bias(b) else: raise ValueError('invalid data_format: %s' % data_format)
[ "def", "_bias_scale", "(", "x", ",", "b", ",", "data_format", ")", ":", "if", "data_format", "==", "'NHWC'", ":", "return", "x", "*", "b", "elif", "data_format", "==", "'NCHW'", ":", "return", "x", "*", "_to_channel_first_bias", "(", "b", ")", "else", ":", "raise", "ValueError", "(", "'invalid data_format: %s'", "%", "data_format", ")" ]
The multiplication counter part of tf.nn.bias_add.
[ "The", "multiplication", "counter", "part", "of", "tf", ".", "nn", ".", "bias_add", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/normalization.py#L82-L89
valid
tensorlayer/tensorlayer
tensorlayer/layers/normalization.py
_bias_add
def _bias_add(x, b, data_format): """Alternative implementation of tf.nn.bias_add which is compatiable with tensorRT.""" if data_format == 'NHWC': return tf.add(x, b) elif data_format == 'NCHW': return tf.add(x, _to_channel_first_bias(b)) else: raise ValueError('invalid data_format: %s' % data_format)
python
def _bias_add(x, b, data_format): """Alternative implementation of tf.nn.bias_add which is compatiable with tensorRT.""" if data_format == 'NHWC': return tf.add(x, b) elif data_format == 'NCHW': return tf.add(x, _to_channel_first_bias(b)) else: raise ValueError('invalid data_format: %s' % data_format)
[ "def", "_bias_add", "(", "x", ",", "b", ",", "data_format", ")", ":", "if", "data_format", "==", "'NHWC'", ":", "return", "tf", ".", "add", "(", "x", ",", "b", ")", "elif", "data_format", "==", "'NCHW'", ":", "return", "tf", ".", "add", "(", "x", ",", "_to_channel_first_bias", "(", "b", ")", ")", "else", ":", "raise", "ValueError", "(", "'invalid data_format: %s'", "%", "data_format", ")" ]
Alternative implementation of tf.nn.bias_add which is compatiable with tensorRT.
[ "Alternative", "implementation", "of", "tf", ".", "nn", ".", "bias_add", "which", "is", "compatiable", "with", "tensorRT", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/normalization.py#L92-L99
valid
tensorlayer/tensorlayer
tensorlayer/layers/normalization.py
batch_normalization
def batch_normalization(x, mean, variance, offset, scale, variance_epsilon, data_format, name=None): """Data Format aware version of tf.nn.batch_normalization.""" with ops.name_scope(name, 'batchnorm', [x, mean, variance, scale, offset]): inv = math_ops.rsqrt(variance + variance_epsilon) if scale is not None: inv *= scale a = math_ops.cast(inv, x.dtype) b = math_ops.cast(offset - mean * inv if offset is not None else -mean * inv, x.dtype) # Return a * x + b with customized data_format. # Currently TF doesn't have bias_scale, and tensorRT has bug in converting tf.nn.bias_add # So we reimplemted them to allow make the model work with tensorRT. # See https://github.com/tensorlayer/openpose-plus/issues/75 for more details. df = {'channels_first': 'NCHW', 'channels_last': 'NHWC'} return _bias_add(_bias_scale(x, a, df[data_format]), b, df[data_format])
python
def batch_normalization(x, mean, variance, offset, scale, variance_epsilon, data_format, name=None): """Data Format aware version of tf.nn.batch_normalization.""" with ops.name_scope(name, 'batchnorm', [x, mean, variance, scale, offset]): inv = math_ops.rsqrt(variance + variance_epsilon) if scale is not None: inv *= scale a = math_ops.cast(inv, x.dtype) b = math_ops.cast(offset - mean * inv if offset is not None else -mean * inv, x.dtype) # Return a * x + b with customized data_format. # Currently TF doesn't have bias_scale, and tensorRT has bug in converting tf.nn.bias_add # So we reimplemted them to allow make the model work with tensorRT. # See https://github.com/tensorlayer/openpose-plus/issues/75 for more details. df = {'channels_first': 'NCHW', 'channels_last': 'NHWC'} return _bias_add(_bias_scale(x, a, df[data_format]), b, df[data_format])
[ "def", "batch_normalization", "(", "x", ",", "mean", ",", "variance", ",", "offset", ",", "scale", ",", "variance_epsilon", ",", "data_format", ",", "name", "=", "None", ")", ":", "with", "ops", ".", "name_scope", "(", "name", ",", "'batchnorm'", ",", "[", "x", ",", "mean", ",", "variance", ",", "scale", ",", "offset", "]", ")", ":", "inv", "=", "math_ops", ".", "rsqrt", "(", "variance", "+", "variance_epsilon", ")", "if", "scale", "is", "not", "None", ":", "inv", "*=", "scale", "a", "=", "math_ops", ".", "cast", "(", "inv", ",", "x", ".", "dtype", ")", "b", "=", "math_ops", ".", "cast", "(", "offset", "-", "mean", "*", "inv", "if", "offset", "is", "not", "None", "else", "-", "mean", "*", "inv", ",", "x", ".", "dtype", ")", "# Return a * x + b with customized data_format.", "# Currently TF doesn't have bias_scale, and tensorRT has bug in converting tf.nn.bias_add", "# So we reimplemted them to allow make the model work with tensorRT.", "# See https://github.com/tensorlayer/openpose-plus/issues/75 for more details.", "df", "=", "{", "'channels_first'", ":", "'NCHW'", ",", "'channels_last'", ":", "'NHWC'", "}", "return", "_bias_add", "(", "_bias_scale", "(", "x", ",", "a", ",", "df", "[", "data_format", "]", ")", ",", "b", ",", "df", "[", "data_format", "]", ")" ]
Data Format aware version of tf.nn.batch_normalization.
[ "Data", "Format", "aware", "version", "of", "tf", ".", "nn", ".", "batch_normalization", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/normalization.py#L102-L117
valid
tensorlayer/tensorlayer
tensorlayer/layers/utils.py
compute_alpha
def compute_alpha(x): """Computing the scale parameter.""" threshold = _compute_threshold(x) alpha1_temp1 = tf.where(tf.greater(x, threshold), x, tf.zeros_like(x, tf.float32)) alpha1_temp2 = tf.where(tf.less(x, -threshold), x, tf.zeros_like(x, tf.float32)) alpha_array = tf.add(alpha1_temp1, alpha1_temp2, name=None) alpha_array_abs = tf.abs(alpha_array) alpha_array_abs1 = tf.where( tf.greater(alpha_array_abs, 0), tf.ones_like(alpha_array_abs, tf.float32), tf.zeros_like(alpha_array_abs, tf.float32) ) alpha_sum = tf.reduce_sum(alpha_array_abs) n = tf.reduce_sum(alpha_array_abs1) alpha = tf.div(alpha_sum, n) return alpha
python
def compute_alpha(x): """Computing the scale parameter.""" threshold = _compute_threshold(x) alpha1_temp1 = tf.where(tf.greater(x, threshold), x, tf.zeros_like(x, tf.float32)) alpha1_temp2 = tf.where(tf.less(x, -threshold), x, tf.zeros_like(x, tf.float32)) alpha_array = tf.add(alpha1_temp1, alpha1_temp2, name=None) alpha_array_abs = tf.abs(alpha_array) alpha_array_abs1 = tf.where( tf.greater(alpha_array_abs, 0), tf.ones_like(alpha_array_abs, tf.float32), tf.zeros_like(alpha_array_abs, tf.float32) ) alpha_sum = tf.reduce_sum(alpha_array_abs) n = tf.reduce_sum(alpha_array_abs1) alpha = tf.div(alpha_sum, n) return alpha
[ "def", "compute_alpha", "(", "x", ")", ":", "threshold", "=", "_compute_threshold", "(", "x", ")", "alpha1_temp1", "=", "tf", ".", "where", "(", "tf", ".", "greater", "(", "x", ",", "threshold", ")", ",", "x", ",", "tf", ".", "zeros_like", "(", "x", ",", "tf", ".", "float32", ")", ")", "alpha1_temp2", "=", "tf", ".", "where", "(", "tf", ".", "less", "(", "x", ",", "-", "threshold", ")", ",", "x", ",", "tf", ".", "zeros_like", "(", "x", ",", "tf", ".", "float32", ")", ")", "alpha_array", "=", "tf", ".", "add", "(", "alpha1_temp1", ",", "alpha1_temp2", ",", "name", "=", "None", ")", "alpha_array_abs", "=", "tf", ".", "abs", "(", "alpha_array", ")", "alpha_array_abs1", "=", "tf", ".", "where", "(", "tf", ".", "greater", "(", "alpha_array_abs", ",", "0", ")", ",", "tf", ".", "ones_like", "(", "alpha_array_abs", ",", "tf", ".", "float32", ")", ",", "tf", ".", "zeros_like", "(", "alpha_array_abs", ",", "tf", ".", "float32", ")", ")", "alpha_sum", "=", "tf", ".", "reduce_sum", "(", "alpha_array_abs", ")", "n", "=", "tf", ".", "reduce_sum", "(", "alpha_array_abs1", ")", "alpha", "=", "tf", ".", "div", "(", "alpha_sum", ",", "n", ")", "return", "alpha" ]
Computing the scale parameter.
[ "Computing", "the", "scale", "parameter", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/utils.py#L47-L61
valid
tensorlayer/tensorlayer
tensorlayer/layers/utils.py
flatten_reshape
def flatten_reshape(variable, name='flatten'): """Reshapes a high-dimension vector input. [batch_size, mask_row, mask_col, n_mask] ---> [batch_size, mask_row x mask_col x n_mask] Parameters ---------- variable : TensorFlow variable or tensor The variable or tensor to be flatten. name : str A unique layer name. Returns ------- Tensor Flatten Tensor Examples -------- >>> import tensorflow as tf >>> import tensorlayer as tl >>> x = tf.placeholder(tf.float32, [None, 128, 128, 3]) >>> # Convolution Layer with 32 filters and a kernel size of 5 >>> network = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu) >>> # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 >>> network = tf.layers.max_pooling2d(network, 2, 2) >>> print(network.get_shape()[:].as_list()) >>> [None, 62, 62, 32] >>> network = tl.layers.flatten_reshape(network) >>> print(network.get_shape()[:].as_list()[1:]) >>> [None, 123008] """ dim = 1 for d in variable.get_shape()[1:].as_list(): dim *= d return tf.reshape(variable, shape=[-1, dim], name=name)
python
def flatten_reshape(variable, name='flatten'): """Reshapes a high-dimension vector input. [batch_size, mask_row, mask_col, n_mask] ---> [batch_size, mask_row x mask_col x n_mask] Parameters ---------- variable : TensorFlow variable or tensor The variable or tensor to be flatten. name : str A unique layer name. Returns ------- Tensor Flatten Tensor Examples -------- >>> import tensorflow as tf >>> import tensorlayer as tl >>> x = tf.placeholder(tf.float32, [None, 128, 128, 3]) >>> # Convolution Layer with 32 filters and a kernel size of 5 >>> network = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu) >>> # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 >>> network = tf.layers.max_pooling2d(network, 2, 2) >>> print(network.get_shape()[:].as_list()) >>> [None, 62, 62, 32] >>> network = tl.layers.flatten_reshape(network) >>> print(network.get_shape()[:].as_list()[1:]) >>> [None, 123008] """ dim = 1 for d in variable.get_shape()[1:].as_list(): dim *= d return tf.reshape(variable, shape=[-1, dim], name=name)
[ "def", "flatten_reshape", "(", "variable", ",", "name", "=", "'flatten'", ")", ":", "dim", "=", "1", "for", "d", "in", "variable", ".", "get_shape", "(", ")", "[", "1", ":", "]", ".", "as_list", "(", ")", ":", "dim", "*=", "d", "return", "tf", ".", "reshape", "(", "variable", ",", "shape", "=", "[", "-", "1", ",", "dim", "]", ",", "name", "=", "name", ")" ]
Reshapes a high-dimension vector input. [batch_size, mask_row, mask_col, n_mask] ---> [batch_size, mask_row x mask_col x n_mask] Parameters ---------- variable : TensorFlow variable or tensor The variable or tensor to be flatten. name : str A unique layer name. Returns ------- Tensor Flatten Tensor Examples -------- >>> import tensorflow as tf >>> import tensorlayer as tl >>> x = tf.placeholder(tf.float32, [None, 128, 128, 3]) >>> # Convolution Layer with 32 filters and a kernel size of 5 >>> network = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu) >>> # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 >>> network = tf.layers.max_pooling2d(network, 2, 2) >>> print(network.get_shape()[:].as_list()) >>> [None, 62, 62, 32] >>> network = tl.layers.flatten_reshape(network) >>> print(network.get_shape()[:].as_list()[1:]) >>> [None, 123008]
[ "Reshapes", "a", "high", "-", "dimension", "vector", "input", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/utils.py#L64-L99
valid
tensorlayer/tensorlayer
tensorlayer/layers/utils.py
get_layers_with_name
def get_layers_with_name(net, name="", verbose=False): """Get a list of layers' output in a network by a given name scope. Parameters ----------- net : :class:`Layer` The last layer of the network. name : str Get the layers' output that contain this name. verbose : boolean If True, print information of all the layers' output Returns -------- list of Tensor A list of layers' output (TensorFlow tensor) Examples --------- >>> import tensorlayer as tl >>> layers = tl.layers.get_layers_with_name(net, "CNN", True) """ logging.info(" [*] geting layers with %s" % name) layers = [] i = 0 for layer in net.all_layers: # logging.info(type(layer.name)) if name in layer.name: layers.append(layer) if verbose: logging.info(" got {:3}: {:15} {}".format(i, layer.name, str(layer.get_shape()))) i = i + 1 return layers
python
def get_layers_with_name(net, name="", verbose=False): """Get a list of layers' output in a network by a given name scope. Parameters ----------- net : :class:`Layer` The last layer of the network. name : str Get the layers' output that contain this name. verbose : boolean If True, print information of all the layers' output Returns -------- list of Tensor A list of layers' output (TensorFlow tensor) Examples --------- >>> import tensorlayer as tl >>> layers = tl.layers.get_layers_with_name(net, "CNN", True) """ logging.info(" [*] geting layers with %s" % name) layers = [] i = 0 for layer in net.all_layers: # logging.info(type(layer.name)) if name in layer.name: layers.append(layer) if verbose: logging.info(" got {:3}: {:15} {}".format(i, layer.name, str(layer.get_shape()))) i = i + 1 return layers
[ "def", "get_layers_with_name", "(", "net", ",", "name", "=", "\"\"", ",", "verbose", "=", "False", ")", ":", "logging", ".", "info", "(", "\" [*] geting layers with %s\"", "%", "name", ")", "layers", "=", "[", "]", "i", "=", "0", "for", "layer", "in", "net", ".", "all_layers", ":", "# logging.info(type(layer.name))", "if", "name", "in", "layer", ".", "name", ":", "layers", ".", "append", "(", "layer", ")", "if", "verbose", ":", "logging", ".", "info", "(", "\" got {:3}: {:15} {}\"", ".", "format", "(", "i", ",", "layer", ".", "name", ",", "str", "(", "layer", ".", "get_shape", "(", ")", ")", ")", ")", "i", "=", "i", "+", "1", "return", "layers" ]
Get a list of layers' output in a network by a given name scope. Parameters ----------- net : :class:`Layer` The last layer of the network. name : str Get the layers' output that contain this name. verbose : boolean If True, print information of all the layers' output Returns -------- list of Tensor A list of layers' output (TensorFlow tensor) Examples --------- >>> import tensorlayer as tl >>> layers = tl.layers.get_layers_with_name(net, "CNN", True)
[ "Get", "a", "list", "of", "layers", "output", "in", "a", "network", "by", "a", "given", "name", "scope", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/utils.py#L112-L149
valid
tensorlayer/tensorlayer
tensorlayer/layers/utils.py
get_variables_with_name
def get_variables_with_name(name=None, train_only=True, verbose=False): """Get a list of TensorFlow variables by a given name scope. Parameters ---------- name : str Get the variables that contain this name. train_only : boolean If Ture, only get the trainable variables. verbose : boolean If True, print the information of all variables. Returns ------- list of Tensor A list of TensorFlow variables Examples -------- >>> import tensorlayer as tl >>> dense_vars = tl.layers.get_variables_with_name('dense', True, True) """ if name is None: raise Exception("please input a name") logging.info(" [*] geting variables with %s" % name) # tvar = tf.trainable_variables() if train_only else tf.all_variables() if train_only: t_vars = tf.trainable_variables() else: t_vars = tf.global_variables() d_vars = [var for var in t_vars if name in var.name] if verbose: for idx, v in enumerate(d_vars): logging.info(" got {:3}: {:15} {}".format(idx, v.name, str(v.get_shape()))) return d_vars
python
def get_variables_with_name(name=None, train_only=True, verbose=False): """Get a list of TensorFlow variables by a given name scope. Parameters ---------- name : str Get the variables that contain this name. train_only : boolean If Ture, only get the trainable variables. verbose : boolean If True, print the information of all variables. Returns ------- list of Tensor A list of TensorFlow variables Examples -------- >>> import tensorlayer as tl >>> dense_vars = tl.layers.get_variables_with_name('dense', True, True) """ if name is None: raise Exception("please input a name") logging.info(" [*] geting variables with %s" % name) # tvar = tf.trainable_variables() if train_only else tf.all_variables() if train_only: t_vars = tf.trainable_variables() else: t_vars = tf.global_variables() d_vars = [var for var in t_vars if name in var.name] if verbose: for idx, v in enumerate(d_vars): logging.info(" got {:3}: {:15} {}".format(idx, v.name, str(v.get_shape()))) return d_vars
[ "def", "get_variables_with_name", "(", "name", "=", "None", ",", "train_only", "=", "True", ",", "verbose", "=", "False", ")", ":", "if", "name", "is", "None", ":", "raise", "Exception", "(", "\"please input a name\"", ")", "logging", ".", "info", "(", "\" [*] geting variables with %s\"", "%", "name", ")", "# tvar = tf.trainable_variables() if train_only else tf.all_variables()", "if", "train_only", ":", "t_vars", "=", "tf", ".", "trainable_variables", "(", ")", "else", ":", "t_vars", "=", "tf", ".", "global_variables", "(", ")", "d_vars", "=", "[", "var", "for", "var", "in", "t_vars", "if", "name", "in", "var", ".", "name", "]", "if", "verbose", ":", "for", "idx", ",", "v", "in", "enumerate", "(", "d_vars", ")", ":", "logging", ".", "info", "(", "\" got {:3}: {:15} {}\"", ".", "format", "(", "idx", ",", "v", ".", "name", ",", "str", "(", "v", ".", "get_shape", "(", ")", ")", ")", ")", "return", "d_vars" ]
Get a list of TensorFlow variables by a given name scope. Parameters ---------- name : str Get the variables that contain this name. train_only : boolean If Ture, only get the trainable variables. verbose : boolean If True, print the information of all variables. Returns ------- list of Tensor A list of TensorFlow variables Examples -------- >>> import tensorlayer as tl >>> dense_vars = tl.layers.get_variables_with_name('dense', True, True)
[ "Get", "a", "list", "of", "TensorFlow", "variables", "by", "a", "given", "name", "scope", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/utils.py#L153-L194
valid
tensorlayer/tensorlayer
tensorlayer/layers/utils.py
initialize_rnn_state
def initialize_rnn_state(state, feed_dict=None): """Returns the initialized RNN state. The inputs are `LSTMStateTuple` or `State` of `RNNCells`, and an optional `feed_dict`. Parameters ---------- state : RNN state. The TensorFlow's RNN state. feed_dict : dictionary Initial RNN state; if None, returns zero state. Returns ------- RNN state The TensorFlow's RNN state. """ if isinstance(state, LSTMStateTuple): c = state.c.eval(feed_dict=feed_dict) h = state.h.eval(feed_dict=feed_dict) return c, h else: new_state = state.eval(feed_dict=feed_dict) return new_state
python
def initialize_rnn_state(state, feed_dict=None): """Returns the initialized RNN state. The inputs are `LSTMStateTuple` or `State` of `RNNCells`, and an optional `feed_dict`. Parameters ---------- state : RNN state. The TensorFlow's RNN state. feed_dict : dictionary Initial RNN state; if None, returns zero state. Returns ------- RNN state The TensorFlow's RNN state. """ if isinstance(state, LSTMStateTuple): c = state.c.eval(feed_dict=feed_dict) h = state.h.eval(feed_dict=feed_dict) return c, h else: new_state = state.eval(feed_dict=feed_dict) return new_state
[ "def", "initialize_rnn_state", "(", "state", ",", "feed_dict", "=", "None", ")", ":", "if", "isinstance", "(", "state", ",", "LSTMStateTuple", ")", ":", "c", "=", "state", ".", "c", ".", "eval", "(", "feed_dict", "=", "feed_dict", ")", "h", "=", "state", ".", "h", ".", "eval", "(", "feed_dict", "=", "feed_dict", ")", "return", "c", ",", "h", "else", ":", "new_state", "=", "state", ".", "eval", "(", "feed_dict", "=", "feed_dict", ")", "return", "new_state" ]
Returns the initialized RNN state. The inputs are `LSTMStateTuple` or `State` of `RNNCells`, and an optional `feed_dict`. Parameters ---------- state : RNN state. The TensorFlow's RNN state. feed_dict : dictionary Initial RNN state; if None, returns zero state. Returns ------- RNN state The TensorFlow's RNN state.
[ "Returns", "the", "initialized", "RNN", "state", ".", "The", "inputs", "are", "LSTMStateTuple", "or", "State", "of", "RNNCells", "and", "an", "optional", "feed_dict", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/utils.py#L216-L239
valid
tensorlayer/tensorlayer
tensorlayer/layers/utils.py
list_remove_repeat
def list_remove_repeat(x): """Remove the repeated items in a list, and return the processed list. You may need it to create merged layer like Concat, Elementwise and etc. Parameters ---------- x : list Input Returns ------- list A list that after removing it's repeated items Examples ------- >>> l = [2, 3, 4, 2, 3] >>> l = list_remove_repeat(l) [2, 3, 4] """ y = [] for i in x: if i not in y: y.append(i) return y
python
def list_remove_repeat(x): """Remove the repeated items in a list, and return the processed list. You may need it to create merged layer like Concat, Elementwise and etc. Parameters ---------- x : list Input Returns ------- list A list that after removing it's repeated items Examples ------- >>> l = [2, 3, 4, 2, 3] >>> l = list_remove_repeat(l) [2, 3, 4] """ y = [] for i in x: if i not in y: y.append(i) return y
[ "def", "list_remove_repeat", "(", "x", ")", ":", "y", "=", "[", "]", "for", "i", "in", "x", ":", "if", "i", "not", "in", "y", ":", "y", ".", "append", "(", "i", ")", "return", "y" ]
Remove the repeated items in a list, and return the processed list. You may need it to create merged layer like Concat, Elementwise and etc. Parameters ---------- x : list Input Returns ------- list A list that after removing it's repeated items Examples ------- >>> l = [2, 3, 4, 2, 3] >>> l = list_remove_repeat(l) [2, 3, 4]
[ "Remove", "the", "repeated", "items", "in", "a", "list", "and", "return", "the", "processed", "list", ".", "You", "may", "need", "it", "to", "create", "merged", "layer", "like", "Concat", "Elementwise", "and", "etc", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/utils.py#L242-L268
valid
tensorlayer/tensorlayer
tensorlayer/layers/utils.py
merge_networks
def merge_networks(layers=None): """Merge all parameters, layers and dropout probabilities to a :class:`Layer`. The output of return network is the first network in the list. Parameters ---------- layers : list of :class:`Layer` Merge all parameters, layers and dropout probabilities to the first layer in the list. Returns -------- :class:`Layer` The network after merging all parameters, layers and dropout probabilities to the first network in the list. Examples --------- >>> import tensorlayer as tl >>> n1 = ... >>> n2 = ... >>> n1 = tl.layers.merge_networks([n1, n2]) """ if layers is None: raise Exception("layers should be a list of TensorLayer's Layers.") layer = layers[0] all_params = [] all_layers = [] all_drop = {} for l in layers: all_params.extend(l.all_params) all_layers.extend(l.all_layers) all_drop.update(l.all_drop) layer.all_params = list(all_params) layer.all_layers = list(all_layers) layer.all_drop = dict(all_drop) layer.all_layers = list_remove_repeat(layer.all_layers) layer.all_params = list_remove_repeat(layer.all_params) return layer
python
def merge_networks(layers=None): """Merge all parameters, layers and dropout probabilities to a :class:`Layer`. The output of return network is the first network in the list. Parameters ---------- layers : list of :class:`Layer` Merge all parameters, layers and dropout probabilities to the first layer in the list. Returns -------- :class:`Layer` The network after merging all parameters, layers and dropout probabilities to the first network in the list. Examples --------- >>> import tensorlayer as tl >>> n1 = ... >>> n2 = ... >>> n1 = tl.layers.merge_networks([n1, n2]) """ if layers is None: raise Exception("layers should be a list of TensorLayer's Layers.") layer = layers[0] all_params = [] all_layers = [] all_drop = {} for l in layers: all_params.extend(l.all_params) all_layers.extend(l.all_layers) all_drop.update(l.all_drop) layer.all_params = list(all_params) layer.all_layers = list(all_layers) layer.all_drop = dict(all_drop) layer.all_layers = list_remove_repeat(layer.all_layers) layer.all_params = list_remove_repeat(layer.all_params) return layer
[ "def", "merge_networks", "(", "layers", "=", "None", ")", ":", "if", "layers", "is", "None", ":", "raise", "Exception", "(", "\"layers should be a list of TensorLayer's Layers.\"", ")", "layer", "=", "layers", "[", "0", "]", "all_params", "=", "[", "]", "all_layers", "=", "[", "]", "all_drop", "=", "{", "}", "for", "l", "in", "layers", ":", "all_params", ".", "extend", "(", "l", ".", "all_params", ")", "all_layers", ".", "extend", "(", "l", ".", "all_layers", ")", "all_drop", ".", "update", "(", "l", ".", "all_drop", ")", "layer", ".", "all_params", "=", "list", "(", "all_params", ")", "layer", ".", "all_layers", "=", "list", "(", "all_layers", ")", "layer", ".", "all_drop", "=", "dict", "(", "all_drop", ")", "layer", ".", "all_layers", "=", "list_remove_repeat", "(", "layer", ".", "all_layers", ")", "layer", ".", "all_params", "=", "list_remove_repeat", "(", "layer", ".", "all_params", ")", "return", "layer" ]
Merge all parameters, layers and dropout probabilities to a :class:`Layer`. The output of return network is the first network in the list. Parameters ---------- layers : list of :class:`Layer` Merge all parameters, layers and dropout probabilities to the first layer in the list. Returns -------- :class:`Layer` The network after merging all parameters, layers and dropout probabilities to the first network in the list. Examples --------- >>> import tensorlayer as tl >>> n1 = ... >>> n2 = ... >>> n1 = tl.layers.merge_networks([n1, n2])
[ "Merge", "all", "parameters", "layers", "and", "dropout", "probabilities", "to", "a", ":", "class", ":", "Layer", ".", "The", "output", "of", "return", "network", "is", "the", "first", "network", "in", "the", "list", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/utils.py#L271-L313
valid
tensorlayer/tensorlayer
tensorlayer/layers/utils.py
print_all_variables
def print_all_variables(train_only=False): """Print information of trainable or all variables, without ``tl.layers.initialize_global_variables(sess)``. Parameters ---------- train_only : boolean Whether print trainable variables only. - If True, print the trainable variables. - If False, print all variables. """ # tvar = tf.trainable_variables() if train_only else tf.all_variables() if train_only: t_vars = tf.trainable_variables() logging.info(" [*] printing trainable variables") else: t_vars = tf.global_variables() logging.info(" [*] printing global variables") for idx, v in enumerate(t_vars): logging.info(" var {:3}: {:15} {}".format(idx, str(v.get_shape()), v.name))
python
def print_all_variables(train_only=False): """Print information of trainable or all variables, without ``tl.layers.initialize_global_variables(sess)``. Parameters ---------- train_only : boolean Whether print trainable variables only. - If True, print the trainable variables. - If False, print all variables. """ # tvar = tf.trainable_variables() if train_only else tf.all_variables() if train_only: t_vars = tf.trainable_variables() logging.info(" [*] printing trainable variables") else: t_vars = tf.global_variables() logging.info(" [*] printing global variables") for idx, v in enumerate(t_vars): logging.info(" var {:3}: {:15} {}".format(idx, str(v.get_shape()), v.name))
[ "def", "print_all_variables", "(", "train_only", "=", "False", ")", ":", "# tvar = tf.trainable_variables() if train_only else tf.all_variables()", "if", "train_only", ":", "t_vars", "=", "tf", ".", "trainable_variables", "(", ")", "logging", ".", "info", "(", "\" [*] printing trainable variables\"", ")", "else", ":", "t_vars", "=", "tf", ".", "global_variables", "(", ")", "logging", ".", "info", "(", "\" [*] printing global variables\"", ")", "for", "idx", ",", "v", "in", "enumerate", "(", "t_vars", ")", ":", "logging", ".", "info", "(", "\" var {:3}: {:15} {}\"", ".", "format", "(", "idx", ",", "str", "(", "v", ".", "get_shape", "(", ")", ")", ",", "v", ".", "name", ")", ")" ]
Print information of trainable or all variables, without ``tl.layers.initialize_global_variables(sess)``. Parameters ---------- train_only : boolean Whether print trainable variables only. - If True, print the trainable variables. - If False, print all variables.
[ "Print", "information", "of", "trainable", "or", "all", "variables", "without", "tl", ".", "layers", ".", "initialize_global_variables", "(", "sess", ")", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/utils.py#L316-L338
valid
tensorlayer/tensorlayer
tensorlayer/layers/utils.py
ternary_operation
def ternary_operation(x): """Ternary operation use threshold computed with weights.""" g = tf.get_default_graph() with g.gradient_override_map({"Sign": "Identity"}): threshold = _compute_threshold(x) x = tf.sign(tf.add(tf.sign(tf.add(x, threshold)), tf.sign(tf.add(x, -threshold)))) return x
python
def ternary_operation(x): """Ternary operation use threshold computed with weights.""" g = tf.get_default_graph() with g.gradient_override_map({"Sign": "Identity"}): threshold = _compute_threshold(x) x = tf.sign(tf.add(tf.sign(tf.add(x, threshold)), tf.sign(tf.add(x, -threshold)))) return x
[ "def", "ternary_operation", "(", "x", ")", ":", "g", "=", "tf", ".", "get_default_graph", "(", ")", "with", "g", ".", "gradient_override_map", "(", "{", "\"Sign\"", ":", "\"Identity\"", "}", ")", ":", "threshold", "=", "_compute_threshold", "(", "x", ")", "x", "=", "tf", ".", "sign", "(", "tf", ".", "add", "(", "tf", ".", "sign", "(", "tf", ".", "add", "(", "x", ",", "threshold", ")", ")", ",", "tf", ".", "sign", "(", "tf", ".", "add", "(", "x", ",", "-", "threshold", ")", ")", ")", ")", "return", "x" ]
Ternary operation use threshold computed with weights.
[ "Ternary", "operation", "use", "threshold", "computed", "with", "weights", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/utils.py#L383-L389
valid
tensorlayer/tensorlayer
tensorlayer/layers/utils.py
_compute_threshold
def _compute_threshold(x): """ ref: https://github.com/XJTUWYD/TWN Computing the threshold. """ x_sum = tf.reduce_sum(tf.abs(x), reduction_indices=None, keepdims=False, name=None) threshold = tf.div(x_sum, tf.cast(tf.size(x), tf.float32), name=None) threshold = tf.multiply(0.7, threshold, name=None) return threshold
python
def _compute_threshold(x): """ ref: https://github.com/XJTUWYD/TWN Computing the threshold. """ x_sum = tf.reduce_sum(tf.abs(x), reduction_indices=None, keepdims=False, name=None) threshold = tf.div(x_sum, tf.cast(tf.size(x), tf.float32), name=None) threshold = tf.multiply(0.7, threshold, name=None) return threshold
[ "def", "_compute_threshold", "(", "x", ")", ":", "x_sum", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "abs", "(", "x", ")", ",", "reduction_indices", "=", "None", ",", "keepdims", "=", "False", ",", "name", "=", "None", ")", "threshold", "=", "tf", ".", "div", "(", "x_sum", ",", "tf", ".", "cast", "(", "tf", ".", "size", "(", "x", ")", ",", "tf", ".", "float32", ")", ",", "name", "=", "None", ")", "threshold", "=", "tf", ".", "multiply", "(", "0.7", ",", "threshold", ",", "name", "=", "None", ")", "return", "threshold" ]
ref: https://github.com/XJTUWYD/TWN Computing the threshold.
[ "ref", ":", "https", ":", "//", "github", ".", "com", "/", "XJTUWYD", "/", "TWN", "Computing", "the", "threshold", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/layers/utils.py#L418-L426
valid
tensorlayer/tensorlayer
examples/tutorial_work_with_onnx.py
freeze_graph
def freeze_graph(graph_path, checkpoint_path, output_path, end_node_names, is_binary_graph): """Reimplementation of the TensorFlow official freeze_graph function to freeze the graph and checkpoint together: Parameters ----------- graph_path : string the path where your graph file save. checkpoint_output_path : string the path where your checkpoint save. output_path : string the path where you want to save the output proto buff end_node_names : string the name of the end node in your graph you want to get in your proto buff is_binary_graph : boolean declare your file whether is a binary graph References ---------- - `onnx-tf exporting tutorial <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxTensorflowExport.ipynb>`__ - `tensorflow freeze_graph <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py>` """ _freeze_graph( input_graph=graph_path, input_saver='', input_binary=is_binary_graph, input_checkpoint=checkpoint_path, output_graph=output_path, output_node_names=end_node_names, restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', clear_devices=True, initializer_nodes=None )
python
def freeze_graph(graph_path, checkpoint_path, output_path, end_node_names, is_binary_graph): """Reimplementation of the TensorFlow official freeze_graph function to freeze the graph and checkpoint together: Parameters ----------- graph_path : string the path where your graph file save. checkpoint_output_path : string the path where your checkpoint save. output_path : string the path where you want to save the output proto buff end_node_names : string the name of the end node in your graph you want to get in your proto buff is_binary_graph : boolean declare your file whether is a binary graph References ---------- - `onnx-tf exporting tutorial <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxTensorflowExport.ipynb>`__ - `tensorflow freeze_graph <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py>` """ _freeze_graph( input_graph=graph_path, input_saver='', input_binary=is_binary_graph, input_checkpoint=checkpoint_path, output_graph=output_path, output_node_names=end_node_names, restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', clear_devices=True, initializer_nodes=None )
[ "def", "freeze_graph", "(", "graph_path", ",", "checkpoint_path", ",", "output_path", ",", "end_node_names", ",", "is_binary_graph", ")", ":", "_freeze_graph", "(", "input_graph", "=", "graph_path", ",", "input_saver", "=", "''", ",", "input_binary", "=", "is_binary_graph", ",", "input_checkpoint", "=", "checkpoint_path", ",", "output_graph", "=", "output_path", ",", "output_node_names", "=", "end_node_names", ",", "restore_op_name", "=", "'save/restore_all'", ",", "filename_tensor_name", "=", "'save/Const:0'", ",", "clear_devices", "=", "True", ",", "initializer_nodes", "=", "None", ")" ]
Reimplementation of the TensorFlow official freeze_graph function to freeze the graph and checkpoint together: Parameters ----------- graph_path : string the path where your graph file save. checkpoint_output_path : string the path where your checkpoint save. output_path : string the path where you want to save the output proto buff end_node_names : string the name of the end node in your graph you want to get in your proto buff is_binary_graph : boolean declare your file whether is a binary graph References ---------- - `onnx-tf exporting tutorial <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxTensorflowExport.ipynb>`__ - `tensorflow freeze_graph <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py>`
[ "Reimplementation", "of", "the", "TensorFlow", "official", "freeze_graph", "function", "to", "freeze", "the", "graph", "and", "checkpoint", "together", ":" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/tutorial_work_with_onnx.py#L251-L276
valid
tensorlayer/tensorlayer
examples/tutorial_work_with_onnx.py
convert_model_to_onnx
def convert_model_to_onnx(frozen_graph_path, end_node_names, onnx_output_path): """Reimplementation of the TensorFlow-onnx official tutorial convert the proto buff to onnx file: Parameters ----------- frozen_graph_path : string the path where your frozen graph file save. end_node_names : string the name of the end node in your graph you want to get in your proto buff onnx_output_path : string the path where you want to save the onnx file. References ----------- - `onnx-tf exporting tutorial <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxTensorflowExport.ipynb>` """ with tf.gfile.GFile(frozen_graph_path, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) onnx_model = tensorflow_graph_to_onnx_model(graph_def, end_node_names, opset=6) file = open(onnx_output_path, "wb") file.write(onnx_model.SerializeToString()) file.close()
python
def convert_model_to_onnx(frozen_graph_path, end_node_names, onnx_output_path): """Reimplementation of the TensorFlow-onnx official tutorial convert the proto buff to onnx file: Parameters ----------- frozen_graph_path : string the path where your frozen graph file save. end_node_names : string the name of the end node in your graph you want to get in your proto buff onnx_output_path : string the path where you want to save the onnx file. References ----------- - `onnx-tf exporting tutorial <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxTensorflowExport.ipynb>` """ with tf.gfile.GFile(frozen_graph_path, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) onnx_model = tensorflow_graph_to_onnx_model(graph_def, end_node_names, opset=6) file = open(onnx_output_path, "wb") file.write(onnx_model.SerializeToString()) file.close()
[ "def", "convert_model_to_onnx", "(", "frozen_graph_path", ",", "end_node_names", ",", "onnx_output_path", ")", ":", "with", "tf", ".", "gfile", ".", "GFile", "(", "frozen_graph_path", ",", "\"rb\"", ")", "as", "f", ":", "graph_def", "=", "tf", ".", "GraphDef", "(", ")", "graph_def", ".", "ParseFromString", "(", "f", ".", "read", "(", ")", ")", "onnx_model", "=", "tensorflow_graph_to_onnx_model", "(", "graph_def", ",", "end_node_names", ",", "opset", "=", "6", ")", "file", "=", "open", "(", "onnx_output_path", ",", "\"wb\"", ")", "file", ".", "write", "(", "onnx_model", ".", "SerializeToString", "(", ")", ")", "file", ".", "close", "(", ")" ]
Reimplementation of the TensorFlow-onnx official tutorial convert the proto buff to onnx file: Parameters ----------- frozen_graph_path : string the path where your frozen graph file save. end_node_names : string the name of the end node in your graph you want to get in your proto buff onnx_output_path : string the path where you want to save the onnx file. References ----------- - `onnx-tf exporting tutorial <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxTensorflowExport.ipynb>`
[ "Reimplementation", "of", "the", "TensorFlow", "-", "onnx", "official", "tutorial", "convert", "the", "proto", "buff", "to", "onnx", "file", ":" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/tutorial_work_with_onnx.py#L279-L301
valid
tensorlayer/tensorlayer
examples/tutorial_work_with_onnx.py
convert_onnx_to_model
def convert_onnx_to_model(onnx_input_path): """Reimplementation of the TensorFlow-onnx official tutorial convert the onnx file to specific: model Parameters ----------- onnx_input_path : string the path where you save the onnx file. References ----------- - `onnx-tf exporting tutorial <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxTensorflowExport.ipynb>`__ """ model = onnx.load(onnx_input_path) tf_rep = prepare(model) # Image Path img = np.load("./assets/image.npz") output = tf_rep.run(img.reshape([1, 784])) print("The digit is classified as ", np.argmax(output))
python
def convert_onnx_to_model(onnx_input_path): """Reimplementation of the TensorFlow-onnx official tutorial convert the onnx file to specific: model Parameters ----------- onnx_input_path : string the path where you save the onnx file. References ----------- - `onnx-tf exporting tutorial <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxTensorflowExport.ipynb>`__ """ model = onnx.load(onnx_input_path) tf_rep = prepare(model) # Image Path img = np.load("./assets/image.npz") output = tf_rep.run(img.reshape([1, 784])) print("The digit is classified as ", np.argmax(output))
[ "def", "convert_onnx_to_model", "(", "onnx_input_path", ")", ":", "model", "=", "onnx", ".", "load", "(", "onnx_input_path", ")", "tf_rep", "=", "prepare", "(", "model", ")", "# Image Path", "img", "=", "np", ".", "load", "(", "\"./assets/image.npz\"", ")", "output", "=", "tf_rep", ".", "run", "(", "img", ".", "reshape", "(", "[", "1", ",", "784", "]", ")", ")", "print", "(", "\"The digit is classified as \"", ",", "np", ".", "argmax", "(", "output", ")", ")" ]
Reimplementation of the TensorFlow-onnx official tutorial convert the onnx file to specific: model Parameters ----------- onnx_input_path : string the path where you save the onnx file. References ----------- - `onnx-tf exporting tutorial <https://github.com/onnx/tutorials/blob/master/tutorials/OnnxTensorflowExport.ipynb>`__
[ "Reimplementation", "of", "the", "TensorFlow", "-", "onnx", "official", "tutorial", "convert", "the", "onnx", "file", "to", "specific", ":", "model" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/tutorial_work_with_onnx.py#L304-L321
valid
tensorlayer/tensorlayer
tensorlayer/decorators/utils.py
_add_deprecated_function_notice_to_docstring
def _add_deprecated_function_notice_to_docstring(doc, date, instructions): """Adds a deprecation notice to a docstring for deprecated functions.""" if instructions: deprecation_message = """ .. warning:: **THIS FUNCTION IS DEPRECATED:** It will be removed after %s. *Instructions for updating:* %s. """ % (('in a future version' if date is None else ('after %s' % date)), instructions) else: deprecation_message = """ .. warning:: **THIS FUNCTION IS DEPRECATED:** It will be removed after %s. """ % (('in a future version' if date is None else ('after %s' % date))) main_text = [deprecation_message] return _add_notice_to_docstring(doc, 'DEPRECATED FUNCTION', main_text)
python
def _add_deprecated_function_notice_to_docstring(doc, date, instructions): """Adds a deprecation notice to a docstring for deprecated functions.""" if instructions: deprecation_message = """ .. warning:: **THIS FUNCTION IS DEPRECATED:** It will be removed after %s. *Instructions for updating:* %s. """ % (('in a future version' if date is None else ('after %s' % date)), instructions) else: deprecation_message = """ .. warning:: **THIS FUNCTION IS DEPRECATED:** It will be removed after %s. """ % (('in a future version' if date is None else ('after %s' % date))) main_text = [deprecation_message] return _add_notice_to_docstring(doc, 'DEPRECATED FUNCTION', main_text)
[ "def", "_add_deprecated_function_notice_to_docstring", "(", "doc", ",", "date", ",", "instructions", ")", ":", "if", "instructions", ":", "deprecation_message", "=", "\"\"\"\n .. warning::\n **THIS FUNCTION IS DEPRECATED:** It will be removed after %s.\n *Instructions for updating:* %s.\n \"\"\"", "%", "(", "(", "'in a future version'", "if", "date", "is", "None", "else", "(", "'after %s'", "%", "date", ")", ")", ",", "instructions", ")", "else", ":", "deprecation_message", "=", "\"\"\"\n .. warning::\n **THIS FUNCTION IS DEPRECATED:** It will be removed after %s.\n \"\"\"", "%", "(", "(", "'in a future version'", "if", "date", "is", "None", "else", "(", "'after %s'", "%", "date", ")", ")", ")", "main_text", "=", "[", "deprecation_message", "]", "return", "_add_notice_to_docstring", "(", "doc", ",", "'DEPRECATED FUNCTION'", ",", "main_text", ")" ]
Adds a deprecation notice to a docstring for deprecated functions.
[ "Adds", "a", "deprecation", "notice", "to", "a", "docstring", "for", "deprecated", "functions", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/decorators/utils.py#L41-L59
valid
tensorlayer/tensorlayer
tensorlayer/decorators/utils.py
_add_notice_to_docstring
def _add_notice_to_docstring(doc, no_doc_str, notice): """Adds a deprecation notice to a docstring.""" if not doc: lines = [no_doc_str] else: lines = _normalize_docstring(doc).splitlines() notice = [''] + notice if len(lines) > 1: # Make sure that we keep our distance from the main body if lines[1].strip(): notice.append('') lines[1:1] = notice else: lines += notice return '\n'.join(lines)
python
def _add_notice_to_docstring(doc, no_doc_str, notice): """Adds a deprecation notice to a docstring.""" if not doc: lines = [no_doc_str] else: lines = _normalize_docstring(doc).splitlines() notice = [''] + notice if len(lines) > 1: # Make sure that we keep our distance from the main body if lines[1].strip(): notice.append('') lines[1:1] = notice else: lines += notice return '\n'.join(lines)
[ "def", "_add_notice_to_docstring", "(", "doc", ",", "no_doc_str", ",", "notice", ")", ":", "if", "not", "doc", ":", "lines", "=", "[", "no_doc_str", "]", "else", ":", "lines", "=", "_normalize_docstring", "(", "doc", ")", ".", "splitlines", "(", ")", "notice", "=", "[", "''", "]", "+", "notice", "if", "len", "(", "lines", ")", ">", "1", ":", "# Make sure that we keep our distance from the main body", "if", "lines", "[", "1", "]", ".", "strip", "(", ")", ":", "notice", ".", "append", "(", "''", ")", "lines", "[", "1", ":", "1", "]", "=", "notice", "else", ":", "lines", "+=", "notice", "return", "'\\n'", ".", "join", "(", "lines", ")" ]
Adds a deprecation notice to a docstring.
[ "Adds", "a", "deprecation", "notice", "to", "a", "docstring", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/decorators/utils.py#L62-L81
valid
tensorlayer/tensorlayer
tensorlayer/array_ops.py
alphas
def alphas(shape, alpha_value, name=None): """Creates a tensor with all elements set to `alpha_value`. This operation returns a tensor of type `dtype` with shape `shape` and all elements set to alpha. Parameters ---------- shape: A list of integers, a tuple of integers, or a 1-D `Tensor` of type `int32`. The shape of the desired tensor alpha_value: `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64` The value used to fill the resulting `Tensor`. name: str A name for the operation (optional). Returns ------- A `Tensor` with all elements set to alpha. Examples -------- >>> tl.alphas([2, 3], tf.int32) # [[alpha, alpha, alpha], [alpha, alpha, alpha]] """ with ops.name_scope(name, "alphas", [shape]) as name: alpha_tensor = convert_to_tensor(alpha_value) alpha_dtype = dtypes.as_dtype(alpha_tensor.dtype).base_dtype if not isinstance(shape, ops.Tensor): try: shape = constant_op._tensor_shape_tensor_conversion_function(tensor_shape.TensorShape(shape)) except (TypeError, ValueError): shape = ops.convert_to_tensor(shape, dtype=dtypes.int32) if not shape._shape_tuple(): shape = reshape(shape, [-1]) # Ensure it's a vector try: output = constant(alpha_value, shape=shape, dtype=alpha_dtype, name=name) except (TypeError, ValueError): output = fill(shape, constant(alpha_value, dtype=alpha_dtype), name=name) if output.dtype.base_dtype != alpha_dtype: raise AssertionError("Dtypes do not corresponds: %s and %s" % (output.dtype.base_dtype, alpha_dtype)) return output
python
def alphas(shape, alpha_value, name=None): """Creates a tensor with all elements set to `alpha_value`. This operation returns a tensor of type `dtype` with shape `shape` and all elements set to alpha. Parameters ---------- shape: A list of integers, a tuple of integers, or a 1-D `Tensor` of type `int32`. The shape of the desired tensor alpha_value: `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64` The value used to fill the resulting `Tensor`. name: str A name for the operation (optional). Returns ------- A `Tensor` with all elements set to alpha. Examples -------- >>> tl.alphas([2, 3], tf.int32) # [[alpha, alpha, alpha], [alpha, alpha, alpha]] """ with ops.name_scope(name, "alphas", [shape]) as name: alpha_tensor = convert_to_tensor(alpha_value) alpha_dtype = dtypes.as_dtype(alpha_tensor.dtype).base_dtype if not isinstance(shape, ops.Tensor): try: shape = constant_op._tensor_shape_tensor_conversion_function(tensor_shape.TensorShape(shape)) except (TypeError, ValueError): shape = ops.convert_to_tensor(shape, dtype=dtypes.int32) if not shape._shape_tuple(): shape = reshape(shape, [-1]) # Ensure it's a vector try: output = constant(alpha_value, shape=shape, dtype=alpha_dtype, name=name) except (TypeError, ValueError): output = fill(shape, constant(alpha_value, dtype=alpha_dtype), name=name) if output.dtype.base_dtype != alpha_dtype: raise AssertionError("Dtypes do not corresponds: %s and %s" % (output.dtype.base_dtype, alpha_dtype)) return output
[ "def", "alphas", "(", "shape", ",", "alpha_value", ",", "name", "=", "None", ")", ":", "with", "ops", ".", "name_scope", "(", "name", ",", "\"alphas\"", ",", "[", "shape", "]", ")", "as", "name", ":", "alpha_tensor", "=", "convert_to_tensor", "(", "alpha_value", ")", "alpha_dtype", "=", "dtypes", ".", "as_dtype", "(", "alpha_tensor", ".", "dtype", ")", ".", "base_dtype", "if", "not", "isinstance", "(", "shape", ",", "ops", ".", "Tensor", ")", ":", "try", ":", "shape", "=", "constant_op", ".", "_tensor_shape_tensor_conversion_function", "(", "tensor_shape", ".", "TensorShape", "(", "shape", ")", ")", "except", "(", "TypeError", ",", "ValueError", ")", ":", "shape", "=", "ops", ".", "convert_to_tensor", "(", "shape", ",", "dtype", "=", "dtypes", ".", "int32", ")", "if", "not", "shape", ".", "_shape_tuple", "(", ")", ":", "shape", "=", "reshape", "(", "shape", ",", "[", "-", "1", "]", ")", "# Ensure it's a vector", "try", ":", "output", "=", "constant", "(", "alpha_value", ",", "shape", "=", "shape", ",", "dtype", "=", "alpha_dtype", ",", "name", "=", "name", ")", "except", "(", "TypeError", ",", "ValueError", ")", ":", "output", "=", "fill", "(", "shape", ",", "constant", "(", "alpha_value", ",", "dtype", "=", "alpha_dtype", ")", ",", "name", "=", "name", ")", "if", "output", ".", "dtype", ".", "base_dtype", "!=", "alpha_dtype", ":", "raise", "AssertionError", "(", "\"Dtypes do not corresponds: %s and %s\"", "%", "(", "output", ".", "dtype", ".", "base_dtype", ",", "alpha_dtype", ")", ")", "return", "output" ]
Creates a tensor with all elements set to `alpha_value`. This operation returns a tensor of type `dtype` with shape `shape` and all elements set to alpha. Parameters ---------- shape: A list of integers, a tuple of integers, or a 1-D `Tensor` of type `int32`. The shape of the desired tensor alpha_value: `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64` The value used to fill the resulting `Tensor`. name: str A name for the operation (optional). Returns ------- A `Tensor` with all elements set to alpha. Examples -------- >>> tl.alphas([2, 3], tf.int32) # [[alpha, alpha, alpha], [alpha, alpha, alpha]]
[ "Creates", "a", "tensor", "with", "all", "elements", "set", "to", "alpha_value", ".", "This", "operation", "returns", "a", "tensor", "of", "type", "dtype", "with", "shape", "shape", "and", "all", "elements", "set", "to", "alpha", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/array_ops.py#L19-L64
valid
tensorlayer/tensorlayer
tensorlayer/array_ops.py
alphas_like
def alphas_like(tensor, alpha_value, name=None, optimize=True): """Creates a tensor with all elements set to `alpha_value`. Given a single tensor (`tensor`), this operation returns a tensor of the same type and shape as `tensor` with all elements set to `alpha_value`. Parameters ---------- tensor: tf.Tensor The Tensorflow Tensor that will be used as a template. alpha_value: `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64` The value used to fill the resulting `Tensor`. name: str A name for the operation (optional). optimize: bool if true, attempt to statically determine the shape of 'tensor' and encode it as a constant. Returns ------- A `Tensor` with all elements set to `alpha_value`. Examples -------- >>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) >>> tl.alphas_like(tensor, 0.5) # [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]] """ with ops.name_scope(name, "alphas_like", [tensor]) as name: tensor = ops.convert_to_tensor(tensor, name="tensor") if context.in_eager_mode(): # and dtype is not None and dtype != tensor.dtype: ret = alphas(shape_internal(tensor, optimize=optimize), alpha_value=alpha_value, name=name) else: # if context.in_graph_mode(): # For now, variant types must be created via zeros_like; as we need to # pass the input variant object to the proper zeros callback. if (optimize and tensor.shape.is_fully_defined()): # We can produce a zeros tensor independent of the value of 'tensor', # since the shape is known statically. ret = alphas(tensor.shape, alpha_value=alpha_value, name=name) # elif dtype is not None and dtype != tensor.dtype and dtype != dtypes.variant: else: ret = alphas(shape_internal(tensor, optimize=optimize), alpha_value=alpha_value, name=name) ret.set_shape(tensor.get_shape()) return ret
python
def alphas_like(tensor, alpha_value, name=None, optimize=True): """Creates a tensor with all elements set to `alpha_value`. Given a single tensor (`tensor`), this operation returns a tensor of the same type and shape as `tensor` with all elements set to `alpha_value`. Parameters ---------- tensor: tf.Tensor The Tensorflow Tensor that will be used as a template. alpha_value: `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64` The value used to fill the resulting `Tensor`. name: str A name for the operation (optional). optimize: bool if true, attempt to statically determine the shape of 'tensor' and encode it as a constant. Returns ------- A `Tensor` with all elements set to `alpha_value`. Examples -------- >>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) >>> tl.alphas_like(tensor, 0.5) # [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]] """ with ops.name_scope(name, "alphas_like", [tensor]) as name: tensor = ops.convert_to_tensor(tensor, name="tensor") if context.in_eager_mode(): # and dtype is not None and dtype != tensor.dtype: ret = alphas(shape_internal(tensor, optimize=optimize), alpha_value=alpha_value, name=name) else: # if context.in_graph_mode(): # For now, variant types must be created via zeros_like; as we need to # pass the input variant object to the proper zeros callback. if (optimize and tensor.shape.is_fully_defined()): # We can produce a zeros tensor independent of the value of 'tensor', # since the shape is known statically. ret = alphas(tensor.shape, alpha_value=alpha_value, name=name) # elif dtype is not None and dtype != tensor.dtype and dtype != dtypes.variant: else: ret = alphas(shape_internal(tensor, optimize=optimize), alpha_value=alpha_value, name=name) ret.set_shape(tensor.get_shape()) return ret
[ "def", "alphas_like", "(", "tensor", ",", "alpha_value", ",", "name", "=", "None", ",", "optimize", "=", "True", ")", ":", "with", "ops", ".", "name_scope", "(", "name", ",", "\"alphas_like\"", ",", "[", "tensor", "]", ")", "as", "name", ":", "tensor", "=", "ops", ".", "convert_to_tensor", "(", "tensor", ",", "name", "=", "\"tensor\"", ")", "if", "context", ".", "in_eager_mode", "(", ")", ":", "# and dtype is not None and dtype != tensor.dtype:", "ret", "=", "alphas", "(", "shape_internal", "(", "tensor", ",", "optimize", "=", "optimize", ")", ",", "alpha_value", "=", "alpha_value", ",", "name", "=", "name", ")", "else", ":", "# if context.in_graph_mode():", "# For now, variant types must be created via zeros_like; as we need to", "# pass the input variant object to the proper zeros callback.", "if", "(", "optimize", "and", "tensor", ".", "shape", ".", "is_fully_defined", "(", ")", ")", ":", "# We can produce a zeros tensor independent of the value of 'tensor',", "# since the shape is known statically.", "ret", "=", "alphas", "(", "tensor", ".", "shape", ",", "alpha_value", "=", "alpha_value", ",", "name", "=", "name", ")", "# elif dtype is not None and dtype != tensor.dtype and dtype != dtypes.variant:", "else", ":", "ret", "=", "alphas", "(", "shape_internal", "(", "tensor", ",", "optimize", "=", "optimize", ")", ",", "alpha_value", "=", "alpha_value", ",", "name", "=", "name", ")", "ret", ".", "set_shape", "(", "tensor", ".", "get_shape", "(", ")", ")", "return", "ret" ]
Creates a tensor with all elements set to `alpha_value`. Given a single tensor (`tensor`), this operation returns a tensor of the same type and shape as `tensor` with all elements set to `alpha_value`. Parameters ---------- tensor: tf.Tensor The Tensorflow Tensor that will be used as a template. alpha_value: `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64` The value used to fill the resulting `Tensor`. name: str A name for the operation (optional). optimize: bool if true, attempt to statically determine the shape of 'tensor' and encode it as a constant. Returns ------- A `Tensor` with all elements set to `alpha_value`. Examples -------- >>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) >>> tl.alphas_like(tensor, 0.5) # [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]
[ "Creates", "a", "tensor", "with", "all", "elements", "set", "to", "alpha_value", ".", "Given", "a", "single", "tensor", "(", "tensor", ")", "this", "operation", "returns", "a", "tensor", "of", "the", "same", "type", "and", "shape", "as", "tensor", "with", "all", "elements", "set", "to", "alpha_value", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/array_ops.py#L67-L114
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_fast_affine_transform.py
example1
def example1(): """ Example 1: Applying transformation one-by-one is very SLOW ! """ st = time.time() for _ in range(100): # Try 100 times and compute the averaged speed xx = tl.prepro.rotation(image, rg=-20, is_random=False) xx = tl.prepro.flip_axis(xx, axis=1, is_random=False) xx = tl.prepro.shear2(xx, shear=(0., -0.2), is_random=False) xx = tl.prepro.zoom(xx, zoom_range=1 / 0.8) xx = tl.prepro.shift(xx, wrg=-0.1, hrg=0, is_random=False) print("apply transforms one-by-one took %fs for each image" % ((time.time() - st) / 100)) tl.vis.save_image(xx, '_result_slow.png')
python
def example1(): """ Example 1: Applying transformation one-by-one is very SLOW ! """ st = time.time() for _ in range(100): # Try 100 times and compute the averaged speed xx = tl.prepro.rotation(image, rg=-20, is_random=False) xx = tl.prepro.flip_axis(xx, axis=1, is_random=False) xx = tl.prepro.shear2(xx, shear=(0., -0.2), is_random=False) xx = tl.prepro.zoom(xx, zoom_range=1 / 0.8) xx = tl.prepro.shift(xx, wrg=-0.1, hrg=0, is_random=False) print("apply transforms one-by-one took %fs for each image" % ((time.time() - st) / 100)) tl.vis.save_image(xx, '_result_slow.png')
[ "def", "example1", "(", ")", ":", "st", "=", "time", ".", "time", "(", ")", "for", "_", "in", "range", "(", "100", ")", ":", "# Try 100 times and compute the averaged speed", "xx", "=", "tl", ".", "prepro", ".", "rotation", "(", "image", ",", "rg", "=", "-", "20", ",", "is_random", "=", "False", ")", "xx", "=", "tl", ".", "prepro", ".", "flip_axis", "(", "xx", ",", "axis", "=", "1", ",", "is_random", "=", "False", ")", "xx", "=", "tl", ".", "prepro", ".", "shear2", "(", "xx", ",", "shear", "=", "(", "0.", ",", "-", "0.2", ")", ",", "is_random", "=", "False", ")", "xx", "=", "tl", ".", "prepro", ".", "zoom", "(", "xx", ",", "zoom_range", "=", "1", "/", "0.8", ")", "xx", "=", "tl", ".", "prepro", ".", "shift", "(", "xx", ",", "wrg", "=", "-", "0.1", ",", "hrg", "=", "0", ",", "is_random", "=", "False", ")", "print", "(", "\"apply transforms one-by-one took %fs for each image\"", "%", "(", "(", "time", ".", "time", "(", ")", "-", "st", ")", "/", "100", ")", ")", "tl", ".", "vis", ".", "save_image", "(", "xx", ",", "'_result_slow.png'", ")" ]
Example 1: Applying transformation one-by-one is very SLOW !
[ "Example", "1", ":", "Applying", "transformation", "one", "-", "by", "-", "one", "is", "very", "SLOW", "!" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_fast_affine_transform.py#L39-L49
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_fast_affine_transform.py
example2
def example2(): """ Example 2: Applying all transforms in one is very FAST ! """ st = time.time() for _ in range(100): # Repeat 100 times and compute the averaged speed transform_matrix = create_transformation_matrix() result = tl.prepro.affine_transform_cv2(image, transform_matrix) # Transform the image using a single operation print("apply all transforms once took %fs for each image" % ((time.time() - st) / 100)) # usually 50x faster tl.vis.save_image(result, '_result_fast.png')
python
def example2(): """ Example 2: Applying all transforms in one is very FAST ! """ st = time.time() for _ in range(100): # Repeat 100 times and compute the averaged speed transform_matrix = create_transformation_matrix() result = tl.prepro.affine_transform_cv2(image, transform_matrix) # Transform the image using a single operation print("apply all transforms once took %fs for each image" % ((time.time() - st) / 100)) # usually 50x faster tl.vis.save_image(result, '_result_fast.png')
[ "def", "example2", "(", ")", ":", "st", "=", "time", ".", "time", "(", ")", "for", "_", "in", "range", "(", "100", ")", ":", "# Repeat 100 times and compute the averaged speed", "transform_matrix", "=", "create_transformation_matrix", "(", ")", "result", "=", "tl", ".", "prepro", ".", "affine_transform_cv2", "(", "image", ",", "transform_matrix", ")", "# Transform the image using a single operation", "print", "(", "\"apply all transforms once took %fs for each image\"", "%", "(", "(", "time", ".", "time", "(", ")", "-", "st", ")", "/", "100", ")", ")", "# usually 50x faster", "tl", ".", "vis", ".", "save_image", "(", "result", ",", "'_result_fast.png'", ")" ]
Example 2: Applying all transforms in one is very FAST !
[ "Example", "2", ":", "Applying", "all", "transforms", "in", "one", "is", "very", "FAST", "!" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_fast_affine_transform.py#L52-L59
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_fast_affine_transform.py
example3
def example3(): """ Example 3: Using TF dataset API to load and process image for training """ n_data = 100 imgs_file_list = ['tiger.jpeg'] * n_data train_targets = [np.ones(1)] * n_data def generator(): if len(imgs_file_list) != len(train_targets): raise RuntimeError('len(imgs_file_list) != len(train_targets)') for _input, _target in zip(imgs_file_list, train_targets): yield _input, _target def _data_aug_fn(image): transform_matrix = create_transformation_matrix() result = tl.prepro.affine_transform_cv2(image, transform_matrix) # Transform the image using a single operation return result def _map_fn(image_path, target): image = tf.read_file(image_path) image = tf.image.decode_jpeg(image, channels=3) # Get RGB with 0~1 image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = tf.py_func(_data_aug_fn, [image], [tf.float32]) # image = tf.reshape(image, (h, w, 3)) target = tf.reshape(target, ()) return image, target n_epoch = 10 batch_size = 5 dataset = tf.data.Dataset().from_generator(generator, output_types=(tf.string, tf.int64)) dataset = dataset.shuffle(buffer_size=4096) # shuffle before loading images dataset = dataset.repeat(n_epoch) dataset = dataset.map(_map_fn, num_parallel_calls=multiprocessing.cpu_count()) dataset = dataset.batch(batch_size) # TODO: consider using tf.contrib.map_and_batch dataset = dataset.prefetch(1) # prefetch 1 batch iterator = dataset.make_one_shot_iterator() one_element = iterator.get_next() sess = tf.Session() # feed `one_element` into a network, for demo, we simply get the data as follows n_step = round(n_epoch * n_data / batch_size) st = time.time() for _ in range(n_step): _images, _targets = sess.run(one_element) print("dataset APIs took %fs for each image" % ((time.time() - st) / batch_size / n_step))
python
def example3(): """ Example 3: Using TF dataset API to load and process image for training """ n_data = 100 imgs_file_list = ['tiger.jpeg'] * n_data train_targets = [np.ones(1)] * n_data def generator(): if len(imgs_file_list) != len(train_targets): raise RuntimeError('len(imgs_file_list) != len(train_targets)') for _input, _target in zip(imgs_file_list, train_targets): yield _input, _target def _data_aug_fn(image): transform_matrix = create_transformation_matrix() result = tl.prepro.affine_transform_cv2(image, transform_matrix) # Transform the image using a single operation return result def _map_fn(image_path, target): image = tf.read_file(image_path) image = tf.image.decode_jpeg(image, channels=3) # Get RGB with 0~1 image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = tf.py_func(_data_aug_fn, [image], [tf.float32]) # image = tf.reshape(image, (h, w, 3)) target = tf.reshape(target, ()) return image, target n_epoch = 10 batch_size = 5 dataset = tf.data.Dataset().from_generator(generator, output_types=(tf.string, tf.int64)) dataset = dataset.shuffle(buffer_size=4096) # shuffle before loading images dataset = dataset.repeat(n_epoch) dataset = dataset.map(_map_fn, num_parallel_calls=multiprocessing.cpu_count()) dataset = dataset.batch(batch_size) # TODO: consider using tf.contrib.map_and_batch dataset = dataset.prefetch(1) # prefetch 1 batch iterator = dataset.make_one_shot_iterator() one_element = iterator.get_next() sess = tf.Session() # feed `one_element` into a network, for demo, we simply get the data as follows n_step = round(n_epoch * n_data / batch_size) st = time.time() for _ in range(n_step): _images, _targets = sess.run(one_element) print("dataset APIs took %fs for each image" % ((time.time() - st) / batch_size / n_step))
[ "def", "example3", "(", ")", ":", "n_data", "=", "100", "imgs_file_list", "=", "[", "'tiger.jpeg'", "]", "*", "n_data", "train_targets", "=", "[", "np", ".", "ones", "(", "1", ")", "]", "*", "n_data", "def", "generator", "(", ")", ":", "if", "len", "(", "imgs_file_list", ")", "!=", "len", "(", "train_targets", ")", ":", "raise", "RuntimeError", "(", "'len(imgs_file_list) != len(train_targets)'", ")", "for", "_input", ",", "_target", "in", "zip", "(", "imgs_file_list", ",", "train_targets", ")", ":", "yield", "_input", ",", "_target", "def", "_data_aug_fn", "(", "image", ")", ":", "transform_matrix", "=", "create_transformation_matrix", "(", ")", "result", "=", "tl", ".", "prepro", ".", "affine_transform_cv2", "(", "image", ",", "transform_matrix", ")", "# Transform the image using a single operation", "return", "result", "def", "_map_fn", "(", "image_path", ",", "target", ")", ":", "image", "=", "tf", ".", "read_file", "(", "image_path", ")", "image", "=", "tf", ".", "image", ".", "decode_jpeg", "(", "image", ",", "channels", "=", "3", ")", "# Get RGB with 0~1", "image", "=", "tf", ".", "image", ".", "convert_image_dtype", "(", "image", ",", "dtype", "=", "tf", ".", "float32", ")", "image", "=", "tf", ".", "py_func", "(", "_data_aug_fn", ",", "[", "image", "]", ",", "[", "tf", ".", "float32", "]", ")", "# image = tf.reshape(image, (h, w, 3))", "target", "=", "tf", ".", "reshape", "(", "target", ",", "(", ")", ")", "return", "image", ",", "target", "n_epoch", "=", "10", "batch_size", "=", "5", "dataset", "=", "tf", ".", "data", ".", "Dataset", "(", ")", ".", "from_generator", "(", "generator", ",", "output_types", "=", "(", "tf", ".", "string", ",", "tf", ".", "int64", ")", ")", "dataset", "=", "dataset", ".", "shuffle", "(", "buffer_size", "=", "4096", ")", "# shuffle before loading images", "dataset", "=", "dataset", ".", "repeat", "(", "n_epoch", ")", "dataset", "=", "dataset", ".", "map", "(", "_map_fn", ",", "num_parallel_calls", "=", "multiprocessing", ".", "cpu_count", "(", ")", ")", "dataset", "=", "dataset", ".", "batch", "(", "batch_size", ")", "# TODO: consider using tf.contrib.map_and_batch", "dataset", "=", "dataset", ".", "prefetch", "(", "1", ")", "# prefetch 1 batch", "iterator", "=", "dataset", ".", "make_one_shot_iterator", "(", ")", "one_element", "=", "iterator", ".", "get_next", "(", ")", "sess", "=", "tf", ".", "Session", "(", ")", "# feed `one_element` into a network, for demo, we simply get the data as follows", "n_step", "=", "round", "(", "n_epoch", "*", "n_data", "/", "batch_size", ")", "st", "=", "time", ".", "time", "(", ")", "for", "_", "in", "range", "(", "n_step", ")", ":", "_images", ",", "_targets", "=", "sess", ".", "run", "(", "one_element", ")", "print", "(", "\"dataset APIs took %fs for each image\"", "%", "(", "(", "time", ".", "time", "(", ")", "-", "st", ")", "/", "batch_size", "/", "n_step", ")", ")" ]
Example 3: Using TF dataset API to load and process image for training
[ "Example", "3", ":", "Using", "TF", "dataset", "API", "to", "load", "and", "process", "image", "for", "training" ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_fast_affine_transform.py#L62-L104
valid
tensorlayer/tensorlayer
examples/data_process/tutorial_fast_affine_transform.py
example4
def example4(): """ Example 4: Transforming coordinates using affine matrix. """ transform_matrix = create_transformation_matrix() result = tl.prepro.affine_transform_cv2(image, transform_matrix) # 76 times faster # Transform keypoint coordinates coords = [[(50, 100), (100, 100), (100, 50), (200, 200)], [(250, 50), (200, 50), (200, 100)]] coords_result = tl.prepro.affine_transform_keypoints(coords, transform_matrix) def imwrite(image, coords_list, name): coords_list_ = [] for coords in coords_list: coords = np.array(coords, np.int32) coords = coords.reshape((-1, 1, 2)) coords_list_.append(coords) image = cv2.polylines(image, coords_list_, True, (0, 255, 255), 3) cv2.imwrite(name, image[..., ::-1]) imwrite(image, coords, '_with_keypoints_origin.png') imwrite(result, coords_result, '_with_keypoints_result.png')
python
def example4(): """ Example 4: Transforming coordinates using affine matrix. """ transform_matrix = create_transformation_matrix() result = tl.prepro.affine_transform_cv2(image, transform_matrix) # 76 times faster # Transform keypoint coordinates coords = [[(50, 100), (100, 100), (100, 50), (200, 200)], [(250, 50), (200, 50), (200, 100)]] coords_result = tl.prepro.affine_transform_keypoints(coords, transform_matrix) def imwrite(image, coords_list, name): coords_list_ = [] for coords in coords_list: coords = np.array(coords, np.int32) coords = coords.reshape((-1, 1, 2)) coords_list_.append(coords) image = cv2.polylines(image, coords_list_, True, (0, 255, 255), 3) cv2.imwrite(name, image[..., ::-1]) imwrite(image, coords, '_with_keypoints_origin.png') imwrite(result, coords_result, '_with_keypoints_result.png')
[ "def", "example4", "(", ")", ":", "transform_matrix", "=", "create_transformation_matrix", "(", ")", "result", "=", "tl", ".", "prepro", ".", "affine_transform_cv2", "(", "image", ",", "transform_matrix", ")", "# 76 times faster", "# Transform keypoint coordinates", "coords", "=", "[", "[", "(", "50", ",", "100", ")", ",", "(", "100", ",", "100", ")", ",", "(", "100", ",", "50", ")", ",", "(", "200", ",", "200", ")", "]", ",", "[", "(", "250", ",", "50", ")", ",", "(", "200", ",", "50", ")", ",", "(", "200", ",", "100", ")", "]", "]", "coords_result", "=", "tl", ".", "prepro", ".", "affine_transform_keypoints", "(", "coords", ",", "transform_matrix", ")", "def", "imwrite", "(", "image", ",", "coords_list", ",", "name", ")", ":", "coords_list_", "=", "[", "]", "for", "coords", "in", "coords_list", ":", "coords", "=", "np", ".", "array", "(", "coords", ",", "np", ".", "int32", ")", "coords", "=", "coords", ".", "reshape", "(", "(", "-", "1", ",", "1", ",", "2", ")", ")", "coords_list_", ".", "append", "(", "coords", ")", "image", "=", "cv2", ".", "polylines", "(", "image", ",", "coords_list_", ",", "True", ",", "(", "0", ",", "255", ",", "255", ")", ",", "3", ")", "cv2", ".", "imwrite", "(", "name", ",", "image", "[", "...", ",", ":", ":", "-", "1", "]", ")", "imwrite", "(", "image", ",", "coords", ",", "'_with_keypoints_origin.png'", ")", "imwrite", "(", "result", ",", "coords_result", ",", "'_with_keypoints_result.png'", ")" ]
Example 4: Transforming coordinates using affine matrix.
[ "Example", "4", ":", "Transforming", "coordinates", "using", "affine", "matrix", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/data_process/tutorial_fast_affine_transform.py#L107-L125
valid
tensorlayer/tensorlayer
examples/basic_tutorials/tutorial_cifar10_placeholder.py
distort_fn
def distort_fn(x, is_train=False): """ The images are processed as follows: .. They are cropped to 24 x 24 pixels, centrally for evaluation or randomly for training. .. They are approximately whitened to make the model insensitive to dynamic range. For training, we additionally apply a series of random distortions to artificially increase the data set size: .. Randomly flip the image from left to right. .. Randomly distort the image brightness. """ # print('begin',x.shape, np.min(x), np.max(x)) x = tl.prepro.crop(x, 24, 24, is_random=is_train) # print('after crop',x.shape, np.min(x), np.max(x)) if is_train: # x = tl.prepro.zoom(x, zoom_range=(0.9, 1.0), is_random=True) # print('after zoom', x.shape, np.min(x), np.max(x)) x = tl.prepro.flip_axis(x, axis=1, is_random=True) # print('after flip',x.shape, np.min(x), np.max(x)) x = tl.prepro.brightness(x, gamma=0.1, gain=1, is_random=True) # print('after brightness',x.shape, np.min(x), np.max(x)) # tmp = np.max(x) # x += np.random.uniform(-20, 20) # x /= tmp # normalize the image x = (x - np.mean(x)) / max(np.std(x), 1e-5) # avoid values divided by 0 # print('after norm', x.shape, np.min(x), np.max(x), np.mean(x)) return x
python
def distort_fn(x, is_train=False): """ The images are processed as follows: .. They are cropped to 24 x 24 pixels, centrally for evaluation or randomly for training. .. They are approximately whitened to make the model insensitive to dynamic range. For training, we additionally apply a series of random distortions to artificially increase the data set size: .. Randomly flip the image from left to right. .. Randomly distort the image brightness. """ # print('begin',x.shape, np.min(x), np.max(x)) x = tl.prepro.crop(x, 24, 24, is_random=is_train) # print('after crop',x.shape, np.min(x), np.max(x)) if is_train: # x = tl.prepro.zoom(x, zoom_range=(0.9, 1.0), is_random=True) # print('after zoom', x.shape, np.min(x), np.max(x)) x = tl.prepro.flip_axis(x, axis=1, is_random=True) # print('after flip',x.shape, np.min(x), np.max(x)) x = tl.prepro.brightness(x, gamma=0.1, gain=1, is_random=True) # print('after brightness',x.shape, np.min(x), np.max(x)) # tmp = np.max(x) # x += np.random.uniform(-20, 20) # x /= tmp # normalize the image x = (x - np.mean(x)) / max(np.std(x), 1e-5) # avoid values divided by 0 # print('after norm', x.shape, np.min(x), np.max(x), np.mean(x)) return x
[ "def", "distort_fn", "(", "x", ",", "is_train", "=", "False", ")", ":", "# print('begin',x.shape, np.min(x), np.max(x))", "x", "=", "tl", ".", "prepro", ".", "crop", "(", "x", ",", "24", ",", "24", ",", "is_random", "=", "is_train", ")", "# print('after crop',x.shape, np.min(x), np.max(x))", "if", "is_train", ":", "# x = tl.prepro.zoom(x, zoom_range=(0.9, 1.0), is_random=True)", "# print('after zoom', x.shape, np.min(x), np.max(x))", "x", "=", "tl", ".", "prepro", ".", "flip_axis", "(", "x", ",", "axis", "=", "1", ",", "is_random", "=", "True", ")", "# print('after flip',x.shape, np.min(x), np.max(x))", "x", "=", "tl", ".", "prepro", ".", "brightness", "(", "x", ",", "gamma", "=", "0.1", ",", "gain", "=", "1", ",", "is_random", "=", "True", ")", "# print('after brightness',x.shape, np.min(x), np.max(x))", "# tmp = np.max(x)", "# x += np.random.uniform(-20, 20)", "# x /= tmp", "# normalize the image", "x", "=", "(", "x", "-", "np", ".", "mean", "(", "x", ")", ")", "/", "max", "(", "np", ".", "std", "(", "x", ")", ",", "1e-5", ")", "# avoid values divided by 0", "# print('after norm', x.shape, np.min(x), np.max(x), np.mean(x))", "return", "x" ]
The images are processed as follows: .. They are cropped to 24 x 24 pixels, centrally for evaluation or randomly for training. .. They are approximately whitened to make the model insensitive to dynamic range. For training, we additionally apply a series of random distortions to artificially increase the data set size: .. Randomly flip the image from left to right. .. Randomly distort the image brightness.
[ "The", "images", "are", "processed", "as", "follows", ":", "..", "They", "are", "cropped", "to", "24", "x", "24", "pixels", "centrally", "for", "evaluation", "or", "randomly", "for", "training", ".", "..", "They", "are", "approximately", "whitened", "to", "make", "the", "model", "insensitive", "to", "dynamic", "range", ".", "For", "training", "we", "additionally", "apply", "a", "series", "of", "random", "distortions", "to", "artificially", "increase", "the", "data", "set", "size", ":", "..", "Randomly", "flip", "the", "image", "from", "left", "to", "right", ".", "..", "Randomly", "distort", "the", "image", "brightness", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/basic_tutorials/tutorial_cifar10_placeholder.py#L85-L111
valid
tensorlayer/tensorlayer
tensorlayer/utils.py
fit
def fit( sess, network, train_op, cost, X_train, y_train, x, y_, acc=None, batch_size=100, n_epoch=100, print_freq=5, X_val=None, y_val=None, eval_train=True, tensorboard_dir=None, tensorboard_epoch_freq=5, tensorboard_weight_histograms=True, tensorboard_graph_vis=True ): """Training a given non time-series network by the given cost function, training data, batch_size, n_epoch etc. - MNIST example click `here <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_. - In order to control the training details, the authors HIGHLY recommend ``tl.iterate`` see two MNIST examples `1 <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py>`_, `2 <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py>`_. Parameters ---------- sess : Session TensorFlow Session. network : TensorLayer layer the network to be trained. train_op : TensorFlow optimizer The optimizer for training e.g. tf.train.AdamOptimizer. X_train : numpy.array The input of training data y_train : numpy.array The target of training data x : placeholder For inputs. y_ : placeholder For targets. acc : TensorFlow expression or None Metric for accuracy or others. If None, would not print the information. batch_size : int The batch size for training and evaluating. n_epoch : int The number of training epochs. print_freq : int Print the training information every ``print_freq`` epochs. X_val : numpy.array or None The input of validation data. If None, would not perform validation. y_val : numpy.array or None The target of validation data. If None, would not perform validation. eval_train : boolean Whether to evaluate the model during training. If X_val and y_val are not None, it reflects whether to evaluate the model on training data. tensorboard_dir : string path to log dir, if set, summary data will be stored to the tensorboard_dir/ directory for visualization with tensorboard. (default None) Also runs `tl.layers.initialize_global_variables(sess)` internally in fit() to setup the summary nodes. tensorboard_epoch_freq : int How many epochs between storing tensorboard checkpoint for visualization to log/ directory (default 5). tensorboard_weight_histograms : boolean If True updates tensorboard data in the logs/ directory for visualization of the weight histograms every tensorboard_epoch_freq epoch (default True). tensorboard_graph_vis : boolean If True stores the graph in the tensorboard summaries saved to log/ (default True). Examples -------- See `tutorial_mnist_simple.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_ >>> tl.utils.fit(sess, network, train_op, cost, X_train, y_train, x, y_, ... acc=acc, batch_size=500, n_epoch=200, print_freq=5, ... X_val=X_val, y_val=y_val, eval_train=False) >>> tl.utils.fit(sess, network, train_op, cost, X_train, y_train, x, y_, ... acc=acc, batch_size=500, n_epoch=200, print_freq=5, ... X_val=X_val, y_val=y_val, eval_train=False, ... tensorboard=True, tensorboard_weight_histograms=True, tensorboard_graph_vis=True) Notes -------- If tensorboard_dir not None, the `global_variables_initializer` will be run inside the fit function in order to initialize the automatically generated summary nodes used for tensorboard visualization, thus `tf.global_variables_initializer().run()` before the `fit()` call will be undefined. """ if X_train.shape[0] < batch_size: raise AssertionError("Number of training examples should be bigger than the batch size") if tensorboard_dir is not None: tl.logging.info("Setting up tensorboard ...") #Set up tensorboard summaries and saver tl.files.exists_or_mkdir(tensorboard_dir) #Only write summaries for more recent TensorFlow versions if hasattr(tf, 'summary') and hasattr(tf.summary, 'FileWriter'): if tensorboard_graph_vis: train_writer = tf.summary.FileWriter(tensorboard_dir + '/train', sess.graph) val_writer = tf.summary.FileWriter(tensorboard_dir + '/validation', sess.graph) else: train_writer = tf.summary.FileWriter(tensorboard_dir + '/train') val_writer = tf.summary.FileWriter(tensorboard_dir + '/validation') #Set up summary nodes if (tensorboard_weight_histograms): for param in network.all_params: if hasattr(tf, 'summary') and hasattr(tf.summary, 'histogram'): tl.logging.info('Param name %s' % param.name) tf.summary.histogram(param.name, param) if hasattr(tf, 'summary') and hasattr(tf.summary, 'histogram'): tf.summary.scalar('cost', cost) merged = tf.summary.merge_all() #Initalize all variables and summaries tl.layers.initialize_global_variables(sess) tl.logging.info("Finished! use `tensorboard --logdir=%s/` to start tensorboard" % tensorboard_dir) tl.logging.info("Start training the network ...") start_time_begin = time.time() tensorboard_train_index, tensorboard_val_index = 0, 0 for epoch in range(n_epoch): start_time = time.time() loss_ep = 0 n_step = 0 for X_train_a, y_train_a in tl.iterate.minibatches(X_train, y_train, batch_size, shuffle=True): feed_dict = {x: X_train_a, y_: y_train_a} feed_dict.update(network.all_drop) # enable noise layers loss, _ = sess.run([cost, train_op], feed_dict=feed_dict) loss_ep += loss n_step += 1 loss_ep = loss_ep / n_step if tensorboard_dir is not None and hasattr(tf, 'summary'): if epoch + 1 == 1 or (epoch + 1) % tensorboard_epoch_freq == 0: for X_train_a, y_train_a in tl.iterate.minibatches(X_train, y_train, batch_size, shuffle=True): dp_dict = dict_to_one(network.all_drop) # disable noise layers feed_dict = {x: X_train_a, y_: y_train_a} feed_dict.update(dp_dict) result = sess.run(merged, feed_dict=feed_dict) train_writer.add_summary(result, tensorboard_train_index) tensorboard_train_index += 1 if (X_val is not None) and (y_val is not None): for X_val_a, y_val_a in tl.iterate.minibatches(X_val, y_val, batch_size, shuffle=True): dp_dict = dict_to_one(network.all_drop) # disable noise layers feed_dict = {x: X_val_a, y_: y_val_a} feed_dict.update(dp_dict) result = sess.run(merged, feed_dict=feed_dict) val_writer.add_summary(result, tensorboard_val_index) tensorboard_val_index += 1 if epoch + 1 == 1 or (epoch + 1) % print_freq == 0: if (X_val is not None) and (y_val is not None): tl.logging.info("Epoch %d of %d took %fs" % (epoch + 1, n_epoch, time.time() - start_time)) if eval_train is True: train_loss, train_acc, n_batch = 0, 0, 0 for X_train_a, y_train_a in tl.iterate.minibatches(X_train, y_train, batch_size, shuffle=True): dp_dict = dict_to_one(network.all_drop) # disable noise layers feed_dict = {x: X_train_a, y_: y_train_a} feed_dict.update(dp_dict) if acc is not None: err, ac = sess.run([cost, acc], feed_dict=feed_dict) train_acc += ac else: err = sess.run(cost, feed_dict=feed_dict) train_loss += err n_batch += 1 tl.logging.info(" train loss: %f" % (train_loss / n_batch)) if acc is not None: tl.logging.info(" train acc: %f" % (train_acc / n_batch)) val_loss, val_acc, n_batch = 0, 0, 0 for X_val_a, y_val_a in tl.iterate.minibatches(X_val, y_val, batch_size, shuffle=True): dp_dict = dict_to_one(network.all_drop) # disable noise layers feed_dict = {x: X_val_a, y_: y_val_a} feed_dict.update(dp_dict) if acc is not None: err, ac = sess.run([cost, acc], feed_dict=feed_dict) val_acc += ac else: err = sess.run(cost, feed_dict=feed_dict) val_loss += err n_batch += 1 tl.logging.info(" val loss: %f" % (val_loss / n_batch)) if acc is not None: tl.logging.info(" val acc: %f" % (val_acc / n_batch)) else: tl.logging.info( "Epoch %d of %d took %fs, loss %f" % (epoch + 1, n_epoch, time.time() - start_time, loss_ep) ) tl.logging.info("Total training time: %fs" % (time.time() - start_time_begin))
python
def fit( sess, network, train_op, cost, X_train, y_train, x, y_, acc=None, batch_size=100, n_epoch=100, print_freq=5, X_val=None, y_val=None, eval_train=True, tensorboard_dir=None, tensorboard_epoch_freq=5, tensorboard_weight_histograms=True, tensorboard_graph_vis=True ): """Training a given non time-series network by the given cost function, training data, batch_size, n_epoch etc. - MNIST example click `here <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_. - In order to control the training details, the authors HIGHLY recommend ``tl.iterate`` see two MNIST examples `1 <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py>`_, `2 <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py>`_. Parameters ---------- sess : Session TensorFlow Session. network : TensorLayer layer the network to be trained. train_op : TensorFlow optimizer The optimizer for training e.g. tf.train.AdamOptimizer. X_train : numpy.array The input of training data y_train : numpy.array The target of training data x : placeholder For inputs. y_ : placeholder For targets. acc : TensorFlow expression or None Metric for accuracy or others. If None, would not print the information. batch_size : int The batch size for training and evaluating. n_epoch : int The number of training epochs. print_freq : int Print the training information every ``print_freq`` epochs. X_val : numpy.array or None The input of validation data. If None, would not perform validation. y_val : numpy.array or None The target of validation data. If None, would not perform validation. eval_train : boolean Whether to evaluate the model during training. If X_val and y_val are not None, it reflects whether to evaluate the model on training data. tensorboard_dir : string path to log dir, if set, summary data will be stored to the tensorboard_dir/ directory for visualization with tensorboard. (default None) Also runs `tl.layers.initialize_global_variables(sess)` internally in fit() to setup the summary nodes. tensorboard_epoch_freq : int How many epochs between storing tensorboard checkpoint for visualization to log/ directory (default 5). tensorboard_weight_histograms : boolean If True updates tensorboard data in the logs/ directory for visualization of the weight histograms every tensorboard_epoch_freq epoch (default True). tensorboard_graph_vis : boolean If True stores the graph in the tensorboard summaries saved to log/ (default True). Examples -------- See `tutorial_mnist_simple.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_ >>> tl.utils.fit(sess, network, train_op, cost, X_train, y_train, x, y_, ... acc=acc, batch_size=500, n_epoch=200, print_freq=5, ... X_val=X_val, y_val=y_val, eval_train=False) >>> tl.utils.fit(sess, network, train_op, cost, X_train, y_train, x, y_, ... acc=acc, batch_size=500, n_epoch=200, print_freq=5, ... X_val=X_val, y_val=y_val, eval_train=False, ... tensorboard=True, tensorboard_weight_histograms=True, tensorboard_graph_vis=True) Notes -------- If tensorboard_dir not None, the `global_variables_initializer` will be run inside the fit function in order to initialize the automatically generated summary nodes used for tensorboard visualization, thus `tf.global_variables_initializer().run()` before the `fit()` call will be undefined. """ if X_train.shape[0] < batch_size: raise AssertionError("Number of training examples should be bigger than the batch size") if tensorboard_dir is not None: tl.logging.info("Setting up tensorboard ...") #Set up tensorboard summaries and saver tl.files.exists_or_mkdir(tensorboard_dir) #Only write summaries for more recent TensorFlow versions if hasattr(tf, 'summary') and hasattr(tf.summary, 'FileWriter'): if tensorboard_graph_vis: train_writer = tf.summary.FileWriter(tensorboard_dir + '/train', sess.graph) val_writer = tf.summary.FileWriter(tensorboard_dir + '/validation', sess.graph) else: train_writer = tf.summary.FileWriter(tensorboard_dir + '/train') val_writer = tf.summary.FileWriter(tensorboard_dir + '/validation') #Set up summary nodes if (tensorboard_weight_histograms): for param in network.all_params: if hasattr(tf, 'summary') and hasattr(tf.summary, 'histogram'): tl.logging.info('Param name %s' % param.name) tf.summary.histogram(param.name, param) if hasattr(tf, 'summary') and hasattr(tf.summary, 'histogram'): tf.summary.scalar('cost', cost) merged = tf.summary.merge_all() #Initalize all variables and summaries tl.layers.initialize_global_variables(sess) tl.logging.info("Finished! use `tensorboard --logdir=%s/` to start tensorboard" % tensorboard_dir) tl.logging.info("Start training the network ...") start_time_begin = time.time() tensorboard_train_index, tensorboard_val_index = 0, 0 for epoch in range(n_epoch): start_time = time.time() loss_ep = 0 n_step = 0 for X_train_a, y_train_a in tl.iterate.minibatches(X_train, y_train, batch_size, shuffle=True): feed_dict = {x: X_train_a, y_: y_train_a} feed_dict.update(network.all_drop) # enable noise layers loss, _ = sess.run([cost, train_op], feed_dict=feed_dict) loss_ep += loss n_step += 1 loss_ep = loss_ep / n_step if tensorboard_dir is not None and hasattr(tf, 'summary'): if epoch + 1 == 1 or (epoch + 1) % tensorboard_epoch_freq == 0: for X_train_a, y_train_a in tl.iterate.minibatches(X_train, y_train, batch_size, shuffle=True): dp_dict = dict_to_one(network.all_drop) # disable noise layers feed_dict = {x: X_train_a, y_: y_train_a} feed_dict.update(dp_dict) result = sess.run(merged, feed_dict=feed_dict) train_writer.add_summary(result, tensorboard_train_index) tensorboard_train_index += 1 if (X_val is not None) and (y_val is not None): for X_val_a, y_val_a in tl.iterate.minibatches(X_val, y_val, batch_size, shuffle=True): dp_dict = dict_to_one(network.all_drop) # disable noise layers feed_dict = {x: X_val_a, y_: y_val_a} feed_dict.update(dp_dict) result = sess.run(merged, feed_dict=feed_dict) val_writer.add_summary(result, tensorboard_val_index) tensorboard_val_index += 1 if epoch + 1 == 1 or (epoch + 1) % print_freq == 0: if (X_val is not None) and (y_val is not None): tl.logging.info("Epoch %d of %d took %fs" % (epoch + 1, n_epoch, time.time() - start_time)) if eval_train is True: train_loss, train_acc, n_batch = 0, 0, 0 for X_train_a, y_train_a in tl.iterate.minibatches(X_train, y_train, batch_size, shuffle=True): dp_dict = dict_to_one(network.all_drop) # disable noise layers feed_dict = {x: X_train_a, y_: y_train_a} feed_dict.update(dp_dict) if acc is not None: err, ac = sess.run([cost, acc], feed_dict=feed_dict) train_acc += ac else: err = sess.run(cost, feed_dict=feed_dict) train_loss += err n_batch += 1 tl.logging.info(" train loss: %f" % (train_loss / n_batch)) if acc is not None: tl.logging.info(" train acc: %f" % (train_acc / n_batch)) val_loss, val_acc, n_batch = 0, 0, 0 for X_val_a, y_val_a in tl.iterate.minibatches(X_val, y_val, batch_size, shuffle=True): dp_dict = dict_to_one(network.all_drop) # disable noise layers feed_dict = {x: X_val_a, y_: y_val_a} feed_dict.update(dp_dict) if acc is not None: err, ac = sess.run([cost, acc], feed_dict=feed_dict) val_acc += ac else: err = sess.run(cost, feed_dict=feed_dict) val_loss += err n_batch += 1 tl.logging.info(" val loss: %f" % (val_loss / n_batch)) if acc is not None: tl.logging.info(" val acc: %f" % (val_acc / n_batch)) else: tl.logging.info( "Epoch %d of %d took %fs, loss %f" % (epoch + 1, n_epoch, time.time() - start_time, loss_ep) ) tl.logging.info("Total training time: %fs" % (time.time() - start_time_begin))
[ "def", "fit", "(", "sess", ",", "network", ",", "train_op", ",", "cost", ",", "X_train", ",", "y_train", ",", "x", ",", "y_", ",", "acc", "=", "None", ",", "batch_size", "=", "100", ",", "n_epoch", "=", "100", ",", "print_freq", "=", "5", ",", "X_val", "=", "None", ",", "y_val", "=", "None", ",", "eval_train", "=", "True", ",", "tensorboard_dir", "=", "None", ",", "tensorboard_epoch_freq", "=", "5", ",", "tensorboard_weight_histograms", "=", "True", ",", "tensorboard_graph_vis", "=", "True", ")", ":", "if", "X_train", ".", "shape", "[", "0", "]", "<", "batch_size", ":", "raise", "AssertionError", "(", "\"Number of training examples should be bigger than the batch size\"", ")", "if", "tensorboard_dir", "is", "not", "None", ":", "tl", ".", "logging", ".", "info", "(", "\"Setting up tensorboard ...\"", ")", "#Set up tensorboard summaries and saver", "tl", ".", "files", ".", "exists_or_mkdir", "(", "tensorboard_dir", ")", "#Only write summaries for more recent TensorFlow versions", "if", "hasattr", "(", "tf", ",", "'summary'", ")", "and", "hasattr", "(", "tf", ".", "summary", ",", "'FileWriter'", ")", ":", "if", "tensorboard_graph_vis", ":", "train_writer", "=", "tf", ".", "summary", ".", "FileWriter", "(", "tensorboard_dir", "+", "'/train'", ",", "sess", ".", "graph", ")", "val_writer", "=", "tf", ".", "summary", ".", "FileWriter", "(", "tensorboard_dir", "+", "'/validation'", ",", "sess", ".", "graph", ")", "else", ":", "train_writer", "=", "tf", ".", "summary", ".", "FileWriter", "(", "tensorboard_dir", "+", "'/train'", ")", "val_writer", "=", "tf", ".", "summary", ".", "FileWriter", "(", "tensorboard_dir", "+", "'/validation'", ")", "#Set up summary nodes", "if", "(", "tensorboard_weight_histograms", ")", ":", "for", "param", "in", "network", ".", "all_params", ":", "if", "hasattr", "(", "tf", ",", "'summary'", ")", "and", "hasattr", "(", "tf", ".", "summary", ",", "'histogram'", ")", ":", "tl", ".", "logging", ".", "info", "(", "'Param name %s'", "%", "param", ".", "name", ")", "tf", ".", "summary", ".", "histogram", "(", "param", ".", "name", ",", "param", ")", "if", "hasattr", "(", "tf", ",", "'summary'", ")", "and", "hasattr", "(", "tf", ".", "summary", ",", "'histogram'", ")", ":", "tf", ".", "summary", ".", "scalar", "(", "'cost'", ",", "cost", ")", "merged", "=", "tf", ".", "summary", ".", "merge_all", "(", ")", "#Initalize all variables and summaries", "tl", ".", "layers", ".", "initialize_global_variables", "(", "sess", ")", "tl", ".", "logging", ".", "info", "(", "\"Finished! use `tensorboard --logdir=%s/` to start tensorboard\"", "%", "tensorboard_dir", ")", "tl", ".", "logging", ".", "info", "(", "\"Start training the network ...\"", ")", "start_time_begin", "=", "time", ".", "time", "(", ")", "tensorboard_train_index", ",", "tensorboard_val_index", "=", "0", ",", "0", "for", "epoch", "in", "range", "(", "n_epoch", ")", ":", "start_time", "=", "time", ".", "time", "(", ")", "loss_ep", "=", "0", "n_step", "=", "0", "for", "X_train_a", ",", "y_train_a", "in", "tl", ".", "iterate", ".", "minibatches", "(", "X_train", ",", "y_train", ",", "batch_size", ",", "shuffle", "=", "True", ")", ":", "feed_dict", "=", "{", "x", ":", "X_train_a", ",", "y_", ":", "y_train_a", "}", "feed_dict", ".", "update", "(", "network", ".", "all_drop", ")", "# enable noise layers", "loss", ",", "_", "=", "sess", ".", "run", "(", "[", "cost", ",", "train_op", "]", ",", "feed_dict", "=", "feed_dict", ")", "loss_ep", "+=", "loss", "n_step", "+=", "1", "loss_ep", "=", "loss_ep", "/", "n_step", "if", "tensorboard_dir", "is", "not", "None", "and", "hasattr", "(", "tf", ",", "'summary'", ")", ":", "if", "epoch", "+", "1", "==", "1", "or", "(", "epoch", "+", "1", ")", "%", "tensorboard_epoch_freq", "==", "0", ":", "for", "X_train_a", ",", "y_train_a", "in", "tl", ".", "iterate", ".", "minibatches", "(", "X_train", ",", "y_train", ",", "batch_size", ",", "shuffle", "=", "True", ")", ":", "dp_dict", "=", "dict_to_one", "(", "network", ".", "all_drop", ")", "# disable noise layers", "feed_dict", "=", "{", "x", ":", "X_train_a", ",", "y_", ":", "y_train_a", "}", "feed_dict", ".", "update", "(", "dp_dict", ")", "result", "=", "sess", ".", "run", "(", "merged", ",", "feed_dict", "=", "feed_dict", ")", "train_writer", ".", "add_summary", "(", "result", ",", "tensorboard_train_index", ")", "tensorboard_train_index", "+=", "1", "if", "(", "X_val", "is", "not", "None", ")", "and", "(", "y_val", "is", "not", "None", ")", ":", "for", "X_val_a", ",", "y_val_a", "in", "tl", ".", "iterate", ".", "minibatches", "(", "X_val", ",", "y_val", ",", "batch_size", ",", "shuffle", "=", "True", ")", ":", "dp_dict", "=", "dict_to_one", "(", "network", ".", "all_drop", ")", "# disable noise layers", "feed_dict", "=", "{", "x", ":", "X_val_a", ",", "y_", ":", "y_val_a", "}", "feed_dict", ".", "update", "(", "dp_dict", ")", "result", "=", "sess", ".", "run", "(", "merged", ",", "feed_dict", "=", "feed_dict", ")", "val_writer", ".", "add_summary", "(", "result", ",", "tensorboard_val_index", ")", "tensorboard_val_index", "+=", "1", "if", "epoch", "+", "1", "==", "1", "or", "(", "epoch", "+", "1", ")", "%", "print_freq", "==", "0", ":", "if", "(", "X_val", "is", "not", "None", ")", "and", "(", "y_val", "is", "not", "None", ")", ":", "tl", ".", "logging", ".", "info", "(", "\"Epoch %d of %d took %fs\"", "%", "(", "epoch", "+", "1", ",", "n_epoch", ",", "time", ".", "time", "(", ")", "-", "start_time", ")", ")", "if", "eval_train", "is", "True", ":", "train_loss", ",", "train_acc", ",", "n_batch", "=", "0", ",", "0", ",", "0", "for", "X_train_a", ",", "y_train_a", "in", "tl", ".", "iterate", ".", "minibatches", "(", "X_train", ",", "y_train", ",", "batch_size", ",", "shuffle", "=", "True", ")", ":", "dp_dict", "=", "dict_to_one", "(", "network", ".", "all_drop", ")", "# disable noise layers", "feed_dict", "=", "{", "x", ":", "X_train_a", ",", "y_", ":", "y_train_a", "}", "feed_dict", ".", "update", "(", "dp_dict", ")", "if", "acc", "is", "not", "None", ":", "err", ",", "ac", "=", "sess", ".", "run", "(", "[", "cost", ",", "acc", "]", ",", "feed_dict", "=", "feed_dict", ")", "train_acc", "+=", "ac", "else", ":", "err", "=", "sess", ".", "run", "(", "cost", ",", "feed_dict", "=", "feed_dict", ")", "train_loss", "+=", "err", "n_batch", "+=", "1", "tl", ".", "logging", ".", "info", "(", "\" train loss: %f\"", "%", "(", "train_loss", "/", "n_batch", ")", ")", "if", "acc", "is", "not", "None", ":", "tl", ".", "logging", ".", "info", "(", "\" train acc: %f\"", "%", "(", "train_acc", "/", "n_batch", ")", ")", "val_loss", ",", "val_acc", ",", "n_batch", "=", "0", ",", "0", ",", "0", "for", "X_val_a", ",", "y_val_a", "in", "tl", ".", "iterate", ".", "minibatches", "(", "X_val", ",", "y_val", ",", "batch_size", ",", "shuffle", "=", "True", ")", ":", "dp_dict", "=", "dict_to_one", "(", "network", ".", "all_drop", ")", "# disable noise layers", "feed_dict", "=", "{", "x", ":", "X_val_a", ",", "y_", ":", "y_val_a", "}", "feed_dict", ".", "update", "(", "dp_dict", ")", "if", "acc", "is", "not", "None", ":", "err", ",", "ac", "=", "sess", ".", "run", "(", "[", "cost", ",", "acc", "]", ",", "feed_dict", "=", "feed_dict", ")", "val_acc", "+=", "ac", "else", ":", "err", "=", "sess", ".", "run", "(", "cost", ",", "feed_dict", "=", "feed_dict", ")", "val_loss", "+=", "err", "n_batch", "+=", "1", "tl", ".", "logging", ".", "info", "(", "\" val loss: %f\"", "%", "(", "val_loss", "/", "n_batch", ")", ")", "if", "acc", "is", "not", "None", ":", "tl", ".", "logging", ".", "info", "(", "\" val acc: %f\"", "%", "(", "val_acc", "/", "n_batch", ")", ")", "else", ":", "tl", ".", "logging", ".", "info", "(", "\"Epoch %d of %d took %fs, loss %f\"", "%", "(", "epoch", "+", "1", ",", "n_epoch", ",", "time", ".", "time", "(", ")", "-", "start_time", ",", "loss_ep", ")", ")", "tl", ".", "logging", ".", "info", "(", "\"Total training time: %fs\"", "%", "(", "time", ".", "time", "(", ")", "-", "start_time_begin", ")", ")" ]
Training a given non time-series network by the given cost function, training data, batch_size, n_epoch etc. - MNIST example click `here <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_. - In order to control the training details, the authors HIGHLY recommend ``tl.iterate`` see two MNIST examples `1 <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py>`_, `2 <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py>`_. Parameters ---------- sess : Session TensorFlow Session. network : TensorLayer layer the network to be trained. train_op : TensorFlow optimizer The optimizer for training e.g. tf.train.AdamOptimizer. X_train : numpy.array The input of training data y_train : numpy.array The target of training data x : placeholder For inputs. y_ : placeholder For targets. acc : TensorFlow expression or None Metric for accuracy or others. If None, would not print the information. batch_size : int The batch size for training and evaluating. n_epoch : int The number of training epochs. print_freq : int Print the training information every ``print_freq`` epochs. X_val : numpy.array or None The input of validation data. If None, would not perform validation. y_val : numpy.array or None The target of validation data. If None, would not perform validation. eval_train : boolean Whether to evaluate the model during training. If X_val and y_val are not None, it reflects whether to evaluate the model on training data. tensorboard_dir : string path to log dir, if set, summary data will be stored to the tensorboard_dir/ directory for visualization with tensorboard. (default None) Also runs `tl.layers.initialize_global_variables(sess)` internally in fit() to setup the summary nodes. tensorboard_epoch_freq : int How many epochs between storing tensorboard checkpoint for visualization to log/ directory (default 5). tensorboard_weight_histograms : boolean If True updates tensorboard data in the logs/ directory for visualization of the weight histograms every tensorboard_epoch_freq epoch (default True). tensorboard_graph_vis : boolean If True stores the graph in the tensorboard summaries saved to log/ (default True). Examples -------- See `tutorial_mnist_simple.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_ >>> tl.utils.fit(sess, network, train_op, cost, X_train, y_train, x, y_, ... acc=acc, batch_size=500, n_epoch=200, print_freq=5, ... X_val=X_val, y_val=y_val, eval_train=False) >>> tl.utils.fit(sess, network, train_op, cost, X_train, y_train, x, y_, ... acc=acc, batch_size=500, n_epoch=200, print_freq=5, ... X_val=X_val, y_val=y_val, eval_train=False, ... tensorboard=True, tensorboard_weight_histograms=True, tensorboard_graph_vis=True) Notes -------- If tensorboard_dir not None, the `global_variables_initializer` will be run inside the fit function in order to initialize the automatically generated summary nodes used for tensorboard visualization, thus `tf.global_variables_initializer().run()` before the `fit()` call will be undefined.
[ "Training", "a", "given", "non", "time", "-", "series", "network", "by", "the", "given", "cost", "function", "training", "data", "batch_size", "n_epoch", "etc", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/utils.py#L42-L219
valid
tensorlayer/tensorlayer
tensorlayer/utils.py
predict
def predict(sess, network, X, x, y_op, batch_size=None): """ Return the predict results of given non time-series network. Parameters ---------- sess : Session TensorFlow Session. network : TensorLayer layer The network. X : numpy.array The inputs. x : placeholder For inputs. y_op : placeholder The argmax expression of softmax outputs. batch_size : int or None The batch size for prediction, when dataset is large, we should use minibatche for prediction; if dataset is small, we can set it to None. Examples -------- See `tutorial_mnist_simple.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_ >>> y = network.outputs >>> y_op = tf.argmax(tf.nn.softmax(y), 1) >>> print(tl.utils.predict(sess, network, X_test, x, y_op)) """ if batch_size is None: dp_dict = dict_to_one(network.all_drop) # disable noise layers feed_dict = { x: X, } feed_dict.update(dp_dict) return sess.run(y_op, feed_dict=feed_dict) else: result = None for X_a, _ in tl.iterate.minibatches(X, X, batch_size, shuffle=False): dp_dict = dict_to_one(network.all_drop) feed_dict = { x: X_a, } feed_dict.update(dp_dict) result_a = sess.run(y_op, feed_dict=feed_dict) if result is None: result = result_a else: result = np.concatenate((result, result_a)) if result is None: if len(X) % batch_size != 0: dp_dict = dict_to_one(network.all_drop) feed_dict = { x: X[-(len(X) % batch_size):, :], } feed_dict.update(dp_dict) result_a = sess.run(y_op, feed_dict=feed_dict) result = result_a else: if len(X) != len(result) and len(X) % batch_size != 0: dp_dict = dict_to_one(network.all_drop) feed_dict = { x: X[-(len(X) % batch_size):, :], } feed_dict.update(dp_dict) result_a = sess.run(y_op, feed_dict=feed_dict) result = np.concatenate((result, result_a)) return result
python
def predict(sess, network, X, x, y_op, batch_size=None): """ Return the predict results of given non time-series network. Parameters ---------- sess : Session TensorFlow Session. network : TensorLayer layer The network. X : numpy.array The inputs. x : placeholder For inputs. y_op : placeholder The argmax expression of softmax outputs. batch_size : int or None The batch size for prediction, when dataset is large, we should use minibatche for prediction; if dataset is small, we can set it to None. Examples -------- See `tutorial_mnist_simple.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_ >>> y = network.outputs >>> y_op = tf.argmax(tf.nn.softmax(y), 1) >>> print(tl.utils.predict(sess, network, X_test, x, y_op)) """ if batch_size is None: dp_dict = dict_to_one(network.all_drop) # disable noise layers feed_dict = { x: X, } feed_dict.update(dp_dict) return sess.run(y_op, feed_dict=feed_dict) else: result = None for X_a, _ in tl.iterate.minibatches(X, X, batch_size, shuffle=False): dp_dict = dict_to_one(network.all_drop) feed_dict = { x: X_a, } feed_dict.update(dp_dict) result_a = sess.run(y_op, feed_dict=feed_dict) if result is None: result = result_a else: result = np.concatenate((result, result_a)) if result is None: if len(X) % batch_size != 0: dp_dict = dict_to_one(network.all_drop) feed_dict = { x: X[-(len(X) % batch_size):, :], } feed_dict.update(dp_dict) result_a = sess.run(y_op, feed_dict=feed_dict) result = result_a else: if len(X) != len(result) and len(X) % batch_size != 0: dp_dict = dict_to_one(network.all_drop) feed_dict = { x: X[-(len(X) % batch_size):, :], } feed_dict.update(dp_dict) result_a = sess.run(y_op, feed_dict=feed_dict) result = np.concatenate((result, result_a)) return result
[ "def", "predict", "(", "sess", ",", "network", ",", "X", ",", "x", ",", "y_op", ",", "batch_size", "=", "None", ")", ":", "if", "batch_size", "is", "None", ":", "dp_dict", "=", "dict_to_one", "(", "network", ".", "all_drop", ")", "# disable noise layers", "feed_dict", "=", "{", "x", ":", "X", ",", "}", "feed_dict", ".", "update", "(", "dp_dict", ")", "return", "sess", ".", "run", "(", "y_op", ",", "feed_dict", "=", "feed_dict", ")", "else", ":", "result", "=", "None", "for", "X_a", ",", "_", "in", "tl", ".", "iterate", ".", "minibatches", "(", "X", ",", "X", ",", "batch_size", ",", "shuffle", "=", "False", ")", ":", "dp_dict", "=", "dict_to_one", "(", "network", ".", "all_drop", ")", "feed_dict", "=", "{", "x", ":", "X_a", ",", "}", "feed_dict", ".", "update", "(", "dp_dict", ")", "result_a", "=", "sess", ".", "run", "(", "y_op", ",", "feed_dict", "=", "feed_dict", ")", "if", "result", "is", "None", ":", "result", "=", "result_a", "else", ":", "result", "=", "np", ".", "concatenate", "(", "(", "result", ",", "result_a", ")", ")", "if", "result", "is", "None", ":", "if", "len", "(", "X", ")", "%", "batch_size", "!=", "0", ":", "dp_dict", "=", "dict_to_one", "(", "network", ".", "all_drop", ")", "feed_dict", "=", "{", "x", ":", "X", "[", "-", "(", "len", "(", "X", ")", "%", "batch_size", ")", ":", ",", ":", "]", ",", "}", "feed_dict", ".", "update", "(", "dp_dict", ")", "result_a", "=", "sess", ".", "run", "(", "y_op", ",", "feed_dict", "=", "feed_dict", ")", "result", "=", "result_a", "else", ":", "if", "len", "(", "X", ")", "!=", "len", "(", "result", ")", "and", "len", "(", "X", ")", "%", "batch_size", "!=", "0", ":", "dp_dict", "=", "dict_to_one", "(", "network", ".", "all_drop", ")", "feed_dict", "=", "{", "x", ":", "X", "[", "-", "(", "len", "(", "X", ")", "%", "batch_size", ")", ":", ",", ":", "]", ",", "}", "feed_dict", ".", "update", "(", "dp_dict", ")", "result_a", "=", "sess", ".", "run", "(", "y_op", ",", "feed_dict", "=", "feed_dict", ")", "result", "=", "np", ".", "concatenate", "(", "(", "result", ",", "result_a", ")", ")", "return", "result" ]
Return the predict results of given non time-series network. Parameters ---------- sess : Session TensorFlow Session. network : TensorLayer layer The network. X : numpy.array The inputs. x : placeholder For inputs. y_op : placeholder The argmax expression of softmax outputs. batch_size : int or None The batch size for prediction, when dataset is large, we should use minibatche for prediction; if dataset is small, we can set it to None. Examples -------- See `tutorial_mnist_simple.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_ >>> y = network.outputs >>> y_op = tf.argmax(tf.nn.softmax(y), 1) >>> print(tl.utils.predict(sess, network, X_test, x, y_op))
[ "Return", "the", "predict", "results", "of", "given", "non", "time", "-", "series", "network", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/utils.py#L289-L356
valid
tensorlayer/tensorlayer
tensorlayer/utils.py
evaluation
def evaluation(y_test=None, y_predict=None, n_classes=None): """ Input the predicted results, targets results and the number of class, return the confusion matrix, F1-score of each class, accuracy and macro F1-score. Parameters ---------- y_test : list The target results y_predict : list The predicted results n_classes : int The number of classes Examples -------- >>> c_mat, f1, acc, f1_macro = tl.utils.evaluation(y_test, y_predict, n_classes) """ c_mat = confusion_matrix(y_test, y_predict, labels=[x for x in range(n_classes)]) f1 = f1_score(y_test, y_predict, average=None, labels=[x for x in range(n_classes)]) f1_macro = f1_score(y_test, y_predict, average='macro') acc = accuracy_score(y_test, y_predict) tl.logging.info('confusion matrix: \n%s' % c_mat) tl.logging.info('f1-score : %s' % f1) tl.logging.info('f1-score(macro) : %f' % f1_macro) # same output with > f1_score(y_true, y_pred, average='macro') tl.logging.info('accuracy-score : %f' % acc) return c_mat, f1, acc, f1_macro
python
def evaluation(y_test=None, y_predict=None, n_classes=None): """ Input the predicted results, targets results and the number of class, return the confusion matrix, F1-score of each class, accuracy and macro F1-score. Parameters ---------- y_test : list The target results y_predict : list The predicted results n_classes : int The number of classes Examples -------- >>> c_mat, f1, acc, f1_macro = tl.utils.evaluation(y_test, y_predict, n_classes) """ c_mat = confusion_matrix(y_test, y_predict, labels=[x for x in range(n_classes)]) f1 = f1_score(y_test, y_predict, average=None, labels=[x for x in range(n_classes)]) f1_macro = f1_score(y_test, y_predict, average='macro') acc = accuracy_score(y_test, y_predict) tl.logging.info('confusion matrix: \n%s' % c_mat) tl.logging.info('f1-score : %s' % f1) tl.logging.info('f1-score(macro) : %f' % f1_macro) # same output with > f1_score(y_true, y_pred, average='macro') tl.logging.info('accuracy-score : %f' % acc) return c_mat, f1, acc, f1_macro
[ "def", "evaluation", "(", "y_test", "=", "None", ",", "y_predict", "=", "None", ",", "n_classes", "=", "None", ")", ":", "c_mat", "=", "confusion_matrix", "(", "y_test", ",", "y_predict", ",", "labels", "=", "[", "x", "for", "x", "in", "range", "(", "n_classes", ")", "]", ")", "f1", "=", "f1_score", "(", "y_test", ",", "y_predict", ",", "average", "=", "None", ",", "labels", "=", "[", "x", "for", "x", "in", "range", "(", "n_classes", ")", "]", ")", "f1_macro", "=", "f1_score", "(", "y_test", ",", "y_predict", ",", "average", "=", "'macro'", ")", "acc", "=", "accuracy_score", "(", "y_test", ",", "y_predict", ")", "tl", ".", "logging", ".", "info", "(", "'confusion matrix: \\n%s'", "%", "c_mat", ")", "tl", ".", "logging", ".", "info", "(", "'f1-score : %s'", "%", "f1", ")", "tl", ".", "logging", ".", "info", "(", "'f1-score(macro) : %f'", "%", "f1_macro", ")", "# same output with > f1_score(y_true, y_pred, average='macro')", "tl", ".", "logging", ".", "info", "(", "'accuracy-score : %f'", "%", "acc", ")", "return", "c_mat", ",", "f1", ",", "acc", ",", "f1_macro" ]
Input the predicted results, targets results and the number of class, return the confusion matrix, F1-score of each class, accuracy and macro F1-score. Parameters ---------- y_test : list The target results y_predict : list The predicted results n_classes : int The number of classes Examples -------- >>> c_mat, f1, acc, f1_macro = tl.utils.evaluation(y_test, y_predict, n_classes)
[ "Input", "the", "predicted", "results", "targets", "results", "and", "the", "number", "of", "class", "return", "the", "confusion", "matrix", "F1", "-", "score", "of", "each", "class", "accuracy", "and", "macro", "F1", "-", "score", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/utils.py#L360-L388
valid
tensorlayer/tensorlayer
tensorlayer/utils.py
class_balancing_oversample
def class_balancing_oversample(X_train=None, y_train=None, printable=True): """Input the features and labels, return the features and labels after oversampling. Parameters ---------- X_train : numpy.array The inputs. y_train : numpy.array The targets. Examples -------- One X >>> X_train, y_train = class_balancing_oversample(X_train, y_train, printable=True) Two X >>> X, y = tl.utils.class_balancing_oversample(X_train=np.hstack((X1, X2)), y_train=y, printable=False) >>> X1 = X[:, 0:5] >>> X2 = X[:, 5:] """ # ======== Classes balancing if printable: tl.logging.info("Classes balancing for training examples...") c = Counter(y_train) if printable: tl.logging.info('the occurrence number of each stage: %s' % c.most_common()) tl.logging.info('the least stage is Label %s have %s instances' % c.most_common()[-1]) tl.logging.info('the most stage is Label %s have %s instances' % c.most_common(1)[0]) most_num = c.most_common(1)[0][1] if printable: tl.logging.info('most num is %d, all classes tend to be this num' % most_num) locations = {} number = {} for lab, num in c.most_common(): # find the index from y_train number[lab] = num locations[lab] = np.where(np.array(y_train) == lab)[0] if printable: tl.logging.info('convert list(np.array) to dict format') X = {} # convert list to dict for lab, num in number.items(): X[lab] = X_train[locations[lab]] # oversampling if printable: tl.logging.info('start oversampling') for key in X: temp = X[key] while True: if len(X[key]) >= most_num: break X[key] = np.vstack((X[key], temp)) if printable: tl.logging.info('first features of label 0 > %d' % len(X[0][0])) tl.logging.info('the occurrence num of each stage after oversampling') for key in X: tl.logging.info("%s %d" % (key, len(X[key]))) if printable: tl.logging.info('make each stage have same num of instances') for key in X: X[key] = X[key][0:most_num, :] tl.logging.info("%s %d" % (key, len(X[key]))) # convert dict to list if printable: tl.logging.info('convert from dict to list format') y_train = [] X_train = np.empty(shape=(0, len(X[0][0]))) for key in X: X_train = np.vstack((X_train, X[key])) y_train.extend([key for i in range(len(X[key]))]) # tl.logging.info(len(X_train), len(y_train)) c = Counter(y_train) if printable: tl.logging.info('the occurrence number of each stage after oversampling: %s' % c.most_common()) # ================ End of Classes balancing return X_train, y_train
python
def class_balancing_oversample(X_train=None, y_train=None, printable=True): """Input the features and labels, return the features and labels after oversampling. Parameters ---------- X_train : numpy.array The inputs. y_train : numpy.array The targets. Examples -------- One X >>> X_train, y_train = class_balancing_oversample(X_train, y_train, printable=True) Two X >>> X, y = tl.utils.class_balancing_oversample(X_train=np.hstack((X1, X2)), y_train=y, printable=False) >>> X1 = X[:, 0:5] >>> X2 = X[:, 5:] """ # ======== Classes balancing if printable: tl.logging.info("Classes balancing for training examples...") c = Counter(y_train) if printable: tl.logging.info('the occurrence number of each stage: %s' % c.most_common()) tl.logging.info('the least stage is Label %s have %s instances' % c.most_common()[-1]) tl.logging.info('the most stage is Label %s have %s instances' % c.most_common(1)[0]) most_num = c.most_common(1)[0][1] if printable: tl.logging.info('most num is %d, all classes tend to be this num' % most_num) locations = {} number = {} for lab, num in c.most_common(): # find the index from y_train number[lab] = num locations[lab] = np.where(np.array(y_train) == lab)[0] if printable: tl.logging.info('convert list(np.array) to dict format') X = {} # convert list to dict for lab, num in number.items(): X[lab] = X_train[locations[lab]] # oversampling if printable: tl.logging.info('start oversampling') for key in X: temp = X[key] while True: if len(X[key]) >= most_num: break X[key] = np.vstack((X[key], temp)) if printable: tl.logging.info('first features of label 0 > %d' % len(X[0][0])) tl.logging.info('the occurrence num of each stage after oversampling') for key in X: tl.logging.info("%s %d" % (key, len(X[key]))) if printable: tl.logging.info('make each stage have same num of instances') for key in X: X[key] = X[key][0:most_num, :] tl.logging.info("%s %d" % (key, len(X[key]))) # convert dict to list if printable: tl.logging.info('convert from dict to list format') y_train = [] X_train = np.empty(shape=(0, len(X[0][0]))) for key in X: X_train = np.vstack((X_train, X[key])) y_train.extend([key for i in range(len(X[key]))]) # tl.logging.info(len(X_train), len(y_train)) c = Counter(y_train) if printable: tl.logging.info('the occurrence number of each stage after oversampling: %s' % c.most_common()) # ================ End of Classes balancing return X_train, y_train
[ "def", "class_balancing_oversample", "(", "X_train", "=", "None", ",", "y_train", "=", "None", ",", "printable", "=", "True", ")", ":", "# ======== Classes balancing", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "\"Classes balancing for training examples...\"", ")", "c", "=", "Counter", "(", "y_train", ")", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "'the occurrence number of each stage: %s'", "%", "c", ".", "most_common", "(", ")", ")", "tl", ".", "logging", ".", "info", "(", "'the least stage is Label %s have %s instances'", "%", "c", ".", "most_common", "(", ")", "[", "-", "1", "]", ")", "tl", ".", "logging", ".", "info", "(", "'the most stage is Label %s have %s instances'", "%", "c", ".", "most_common", "(", "1", ")", "[", "0", "]", ")", "most_num", "=", "c", ".", "most_common", "(", "1", ")", "[", "0", "]", "[", "1", "]", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "'most num is %d, all classes tend to be this num'", "%", "most_num", ")", "locations", "=", "{", "}", "number", "=", "{", "}", "for", "lab", ",", "num", "in", "c", ".", "most_common", "(", ")", ":", "# find the index from y_train", "number", "[", "lab", "]", "=", "num", "locations", "[", "lab", "]", "=", "np", ".", "where", "(", "np", ".", "array", "(", "y_train", ")", "==", "lab", ")", "[", "0", "]", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "'convert list(np.array) to dict format'", ")", "X", "=", "{", "}", "# convert list to dict", "for", "lab", ",", "num", "in", "number", ".", "items", "(", ")", ":", "X", "[", "lab", "]", "=", "X_train", "[", "locations", "[", "lab", "]", "]", "# oversampling", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "'start oversampling'", ")", "for", "key", "in", "X", ":", "temp", "=", "X", "[", "key", "]", "while", "True", ":", "if", "len", "(", "X", "[", "key", "]", ")", ">=", "most_num", ":", "break", "X", "[", "key", "]", "=", "np", ".", "vstack", "(", "(", "X", "[", "key", "]", ",", "temp", ")", ")", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "'first features of label 0 > %d'", "%", "len", "(", "X", "[", "0", "]", "[", "0", "]", ")", ")", "tl", ".", "logging", ".", "info", "(", "'the occurrence num of each stage after oversampling'", ")", "for", "key", "in", "X", ":", "tl", ".", "logging", ".", "info", "(", "\"%s %d\"", "%", "(", "key", ",", "len", "(", "X", "[", "key", "]", ")", ")", ")", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "'make each stage have same num of instances'", ")", "for", "key", "in", "X", ":", "X", "[", "key", "]", "=", "X", "[", "key", "]", "[", "0", ":", "most_num", ",", ":", "]", "tl", ".", "logging", ".", "info", "(", "\"%s %d\"", "%", "(", "key", ",", "len", "(", "X", "[", "key", "]", ")", ")", ")", "# convert dict to list", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "'convert from dict to list format'", ")", "y_train", "=", "[", "]", "X_train", "=", "np", ".", "empty", "(", "shape", "=", "(", "0", ",", "len", "(", "X", "[", "0", "]", "[", "0", "]", ")", ")", ")", "for", "key", "in", "X", ":", "X_train", "=", "np", ".", "vstack", "(", "(", "X_train", ",", "X", "[", "key", "]", ")", ")", "y_train", ".", "extend", "(", "[", "key", "for", "i", "in", "range", "(", "len", "(", "X", "[", "key", "]", ")", ")", "]", ")", "# tl.logging.info(len(X_train), len(y_train))", "c", "=", "Counter", "(", "y_train", ")", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "'the occurrence number of each stage after oversampling: %s'", "%", "c", ".", "most_common", "(", ")", ")", "# ================ End of Classes balancing", "return", "X_train", ",", "y_train" ]
Input the features and labels, return the features and labels after oversampling. Parameters ---------- X_train : numpy.array The inputs. y_train : numpy.array The targets. Examples -------- One X >>> X_train, y_train = class_balancing_oversample(X_train, y_train, printable=True) Two X >>> X, y = tl.utils.class_balancing_oversample(X_train=np.hstack((X1, X2)), y_train=y, printable=False) >>> X1 = X[:, 0:5] >>> X2 = X[:, 5:]
[ "Input", "the", "features", "and", "labels", "return", "the", "features", "and", "labels", "after", "oversampling", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/utils.py#L427-L511
valid
tensorlayer/tensorlayer
tensorlayer/utils.py
get_random_int
def get_random_int(min_v=0, max_v=10, number=5, seed=None): """Return a list of random integer by the given range and quantity. Parameters ----------- min_v : number The minimum value. max_v : number The maximum value. number : int Number of value. seed : int or None The seed for random. Examples --------- >>> r = get_random_int(min_v=0, max_v=10, number=5) [10, 2, 3, 3, 7] """ rnd = random.Random() if seed: rnd = random.Random(seed) # return [random.randint(min,max) for p in range(0, number)] return [rnd.randint(min_v, max_v) for p in range(0, number)]
python
def get_random_int(min_v=0, max_v=10, number=5, seed=None): """Return a list of random integer by the given range and quantity. Parameters ----------- min_v : number The minimum value. max_v : number The maximum value. number : int Number of value. seed : int or None The seed for random. Examples --------- >>> r = get_random_int(min_v=0, max_v=10, number=5) [10, 2, 3, 3, 7] """ rnd = random.Random() if seed: rnd = random.Random(seed) # return [random.randint(min,max) for p in range(0, number)] return [rnd.randint(min_v, max_v) for p in range(0, number)]
[ "def", "get_random_int", "(", "min_v", "=", "0", ",", "max_v", "=", "10", ",", "number", "=", "5", ",", "seed", "=", "None", ")", ":", "rnd", "=", "random", ".", "Random", "(", ")", "if", "seed", ":", "rnd", "=", "random", ".", "Random", "(", "seed", ")", "# return [random.randint(min,max) for p in range(0, number)]", "return", "[", "rnd", ".", "randint", "(", "min_v", ",", "max_v", ")", "for", "p", "in", "range", "(", "0", ",", "number", ")", "]" ]
Return a list of random integer by the given range and quantity. Parameters ----------- min_v : number The minimum value. max_v : number The maximum value. number : int Number of value. seed : int or None The seed for random. Examples --------- >>> r = get_random_int(min_v=0, max_v=10, number=5) [10, 2, 3, 3, 7]
[ "Return", "a", "list", "of", "random", "integer", "by", "the", "given", "range", "and", "quantity", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/utils.py#L515-L539
valid
tensorlayer/tensorlayer
tensorlayer/utils.py
list_string_to_dict
def list_string_to_dict(string): """Inputs ``['a', 'b', 'c']``, returns ``{'a': 0, 'b': 1, 'c': 2}``.""" dictionary = {} for idx, c in enumerate(string): dictionary.update({c: idx}) return dictionary
python
def list_string_to_dict(string): """Inputs ``['a', 'b', 'c']``, returns ``{'a': 0, 'b': 1, 'c': 2}``.""" dictionary = {} for idx, c in enumerate(string): dictionary.update({c: idx}) return dictionary
[ "def", "list_string_to_dict", "(", "string", ")", ":", "dictionary", "=", "{", "}", "for", "idx", ",", "c", "in", "enumerate", "(", "string", ")", ":", "dictionary", ".", "update", "(", "{", "c", ":", "idx", "}", ")", "return", "dictionary" ]
Inputs ``['a', 'b', 'c']``, returns ``{'a': 0, 'b': 1, 'c': 2}``.
[ "Inputs", "[", "a", "b", "c", "]", "returns", "{", "a", ":", "0", "b", ":", "1", "c", ":", "2", "}", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/utils.py#L542-L547
valid
tensorlayer/tensorlayer
tensorlayer/utils.py
exit_tensorflow
def exit_tensorflow(sess=None, port=6006): """Close TensorFlow session, TensorBoard and Nvidia-process if available. Parameters ---------- sess : Session TensorFlow Session. tb_port : int TensorBoard port you want to close, `6006` as default. """ text = "[TL] Close tensorboard and nvidia-process if available" text2 = "[TL] Close tensorboard and nvidia-process not yet supported by this function (tl.ops.exit_tf) on " if sess is not None: sess.close() if _platform == "linux" or _platform == "linux2": tl.logging.info('linux: %s' % text) os.system('nvidia-smi') os.system('fuser ' + port + '/tcp -k') # kill tensorboard 6006 os.system("nvidia-smi | grep python |awk '{print $3}'|xargs kill") # kill all nvidia-smi python process _exit() elif _platform == "darwin": tl.logging.info('OS X: %s' % text) subprocess.Popen( "lsof -i tcp:" + str(port) + " | grep -v PID | awk '{print $2}' | xargs kill", shell=True ) # kill tensorboard elif _platform == "win32": raise NotImplementedError("this function is not supported on the Windows platform") else: tl.logging.info(text2 + _platform)
python
def exit_tensorflow(sess=None, port=6006): """Close TensorFlow session, TensorBoard and Nvidia-process if available. Parameters ---------- sess : Session TensorFlow Session. tb_port : int TensorBoard port you want to close, `6006` as default. """ text = "[TL] Close tensorboard and nvidia-process if available" text2 = "[TL] Close tensorboard and nvidia-process not yet supported by this function (tl.ops.exit_tf) on " if sess is not None: sess.close() if _platform == "linux" or _platform == "linux2": tl.logging.info('linux: %s' % text) os.system('nvidia-smi') os.system('fuser ' + port + '/tcp -k') # kill tensorboard 6006 os.system("nvidia-smi | grep python |awk '{print $3}'|xargs kill") # kill all nvidia-smi python process _exit() elif _platform == "darwin": tl.logging.info('OS X: %s' % text) subprocess.Popen( "lsof -i tcp:" + str(port) + " | grep -v PID | awk '{print $2}' | xargs kill", shell=True ) # kill tensorboard elif _platform == "win32": raise NotImplementedError("this function is not supported on the Windows platform") else: tl.logging.info(text2 + _platform)
[ "def", "exit_tensorflow", "(", "sess", "=", "None", ",", "port", "=", "6006", ")", ":", "text", "=", "\"[TL] Close tensorboard and nvidia-process if available\"", "text2", "=", "\"[TL] Close tensorboard and nvidia-process not yet supported by this function (tl.ops.exit_tf) on \"", "if", "sess", "is", "not", "None", ":", "sess", ".", "close", "(", ")", "if", "_platform", "==", "\"linux\"", "or", "_platform", "==", "\"linux2\"", ":", "tl", ".", "logging", ".", "info", "(", "'linux: %s'", "%", "text", ")", "os", ".", "system", "(", "'nvidia-smi'", ")", "os", ".", "system", "(", "'fuser '", "+", "port", "+", "'/tcp -k'", ")", "# kill tensorboard 6006", "os", ".", "system", "(", "\"nvidia-smi | grep python |awk '{print $3}'|xargs kill\"", ")", "# kill all nvidia-smi python process", "_exit", "(", ")", "elif", "_platform", "==", "\"darwin\"", ":", "tl", ".", "logging", ".", "info", "(", "'OS X: %s'", "%", "text", ")", "subprocess", ".", "Popen", "(", "\"lsof -i tcp:\"", "+", "str", "(", "port", ")", "+", "\" | grep -v PID | awk '{print $2}' | xargs kill\"", ",", "shell", "=", "True", ")", "# kill tensorboard", "elif", "_platform", "==", "\"win32\"", ":", "raise", "NotImplementedError", "(", "\"this function is not supported on the Windows platform\"", ")", "else", ":", "tl", ".", "logging", ".", "info", "(", "text2", "+", "_platform", ")" ]
Close TensorFlow session, TensorBoard and Nvidia-process if available. Parameters ---------- sess : Session TensorFlow Session. tb_port : int TensorBoard port you want to close, `6006` as default.
[ "Close", "TensorFlow", "session", "TensorBoard", "and", "Nvidia", "-", "process", "if", "available", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/utils.py#L550-L583
valid
tensorlayer/tensorlayer
tensorlayer/utils.py
open_tensorboard
def open_tensorboard(log_dir='/tmp/tensorflow', port=6006): """Open Tensorboard. Parameters ---------- log_dir : str Directory where your tensorboard logs are saved port : int TensorBoard port you want to open, 6006 is tensorboard default """ text = "[TL] Open tensorboard, go to localhost:" + str(port) + " to access" text2 = " not yet supported by this function (tl.ops.open_tb)" if not tl.files.exists_or_mkdir(log_dir, verbose=False): tl.logging.info("[TL] Log reportory was created at %s" % log_dir) if _platform == "linux" or _platform == "linux2": raise NotImplementedError() elif _platform == "darwin": tl.logging.info('OS X: %s' % text) subprocess.Popen( sys.prefix + " | python -m tensorflow.tensorboard --logdir=" + log_dir + " --port=" + str(port), shell=True ) # open tensorboard in localhost:6006/ or whatever port you chose elif _platform == "win32": raise NotImplementedError("this function is not supported on the Windows platform") else: tl.logging.info(_platform + text2)
python
def open_tensorboard(log_dir='/tmp/tensorflow', port=6006): """Open Tensorboard. Parameters ---------- log_dir : str Directory where your tensorboard logs are saved port : int TensorBoard port you want to open, 6006 is tensorboard default """ text = "[TL] Open tensorboard, go to localhost:" + str(port) + " to access" text2 = " not yet supported by this function (tl.ops.open_tb)" if not tl.files.exists_or_mkdir(log_dir, verbose=False): tl.logging.info("[TL] Log reportory was created at %s" % log_dir) if _platform == "linux" or _platform == "linux2": raise NotImplementedError() elif _platform == "darwin": tl.logging.info('OS X: %s' % text) subprocess.Popen( sys.prefix + " | python -m tensorflow.tensorboard --logdir=" + log_dir + " --port=" + str(port), shell=True ) # open tensorboard in localhost:6006/ or whatever port you chose elif _platform == "win32": raise NotImplementedError("this function is not supported on the Windows platform") else: tl.logging.info(_platform + text2)
[ "def", "open_tensorboard", "(", "log_dir", "=", "'/tmp/tensorflow'", ",", "port", "=", "6006", ")", ":", "text", "=", "\"[TL] Open tensorboard, go to localhost:\"", "+", "str", "(", "port", ")", "+", "\" to access\"", "text2", "=", "\" not yet supported by this function (tl.ops.open_tb)\"", "if", "not", "tl", ".", "files", ".", "exists_or_mkdir", "(", "log_dir", ",", "verbose", "=", "False", ")", ":", "tl", ".", "logging", ".", "info", "(", "\"[TL] Log reportory was created at %s\"", "%", "log_dir", ")", "if", "_platform", "==", "\"linux\"", "or", "_platform", "==", "\"linux2\"", ":", "raise", "NotImplementedError", "(", ")", "elif", "_platform", "==", "\"darwin\"", ":", "tl", ".", "logging", ".", "info", "(", "'OS X: %s'", "%", "text", ")", "subprocess", ".", "Popen", "(", "sys", ".", "prefix", "+", "\" | python -m tensorflow.tensorboard --logdir=\"", "+", "log_dir", "+", "\" --port=\"", "+", "str", "(", "port", ")", ",", "shell", "=", "True", ")", "# open tensorboard in localhost:6006/ or whatever port you chose", "elif", "_platform", "==", "\"win32\"", ":", "raise", "NotImplementedError", "(", "\"this function is not supported on the Windows platform\"", ")", "else", ":", "tl", ".", "logging", ".", "info", "(", "_platform", "+", "text2", ")" ]
Open Tensorboard. Parameters ---------- log_dir : str Directory where your tensorboard logs are saved port : int TensorBoard port you want to open, 6006 is tensorboard default
[ "Open", "Tensorboard", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/utils.py#L586-L613
valid
tensorlayer/tensorlayer
tensorlayer/utils.py
clear_all_placeholder_variables
def clear_all_placeholder_variables(printable=True): """Clears all the placeholder variables of keep prob, including keeping probabilities of all dropout, denoising, dropconnect etc. Parameters ---------- printable : boolean If True, print all deleted variables. """ tl.logging.info('clear all .....................................') gl = globals().copy() for var in gl: if var[0] == '_': continue if 'func' in str(globals()[var]): continue if 'module' in str(globals()[var]): continue if 'class' in str(globals()[var]): continue if printable: tl.logging.info(" clear_all ------- %s" % str(globals()[var])) del globals()[var]
python
def clear_all_placeholder_variables(printable=True): """Clears all the placeholder variables of keep prob, including keeping probabilities of all dropout, denoising, dropconnect etc. Parameters ---------- printable : boolean If True, print all deleted variables. """ tl.logging.info('clear all .....................................') gl = globals().copy() for var in gl: if var[0] == '_': continue if 'func' in str(globals()[var]): continue if 'module' in str(globals()[var]): continue if 'class' in str(globals()[var]): continue if printable: tl.logging.info(" clear_all ------- %s" % str(globals()[var])) del globals()[var]
[ "def", "clear_all_placeholder_variables", "(", "printable", "=", "True", ")", ":", "tl", ".", "logging", ".", "info", "(", "'clear all .....................................'", ")", "gl", "=", "globals", "(", ")", ".", "copy", "(", ")", "for", "var", "in", "gl", ":", "if", "var", "[", "0", "]", "==", "'_'", ":", "continue", "if", "'func'", "in", "str", "(", "globals", "(", ")", "[", "var", "]", ")", ":", "continue", "if", "'module'", "in", "str", "(", "globals", "(", ")", "[", "var", "]", ")", ":", "continue", "if", "'class'", "in", "str", "(", "globals", "(", ")", "[", "var", "]", ")", ":", "continue", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "\" clear_all ------- %s\"", "%", "str", "(", "globals", "(", ")", "[", "var", "]", ")", ")", "del", "globals", "(", ")", "[", "var", "]" ]
Clears all the placeholder variables of keep prob, including keeping probabilities of all dropout, denoising, dropconnect etc. Parameters ---------- printable : boolean If True, print all deleted variables.
[ "Clears", "all", "the", "placeholder", "variables", "of", "keep", "prob", "including", "keeping", "probabilities", "of", "all", "dropout", "denoising", "dropconnect", "etc", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/utils.py#L616-L637
valid
tensorlayer/tensorlayer
tensorlayer/utils.py
set_gpu_fraction
def set_gpu_fraction(gpu_fraction=0.3): """Set the GPU memory fraction for the application. Parameters ---------- gpu_fraction : float Fraction of GPU memory, (0 ~ 1] References ---------- - `TensorFlow using GPU <https://www.tensorflow.org/versions/r0.9/how_tos/using_gpu/index.html>`__ """ tl.logging.info("[TL]: GPU MEM Fraction %f" % gpu_fraction) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) return sess
python
def set_gpu_fraction(gpu_fraction=0.3): """Set the GPU memory fraction for the application. Parameters ---------- gpu_fraction : float Fraction of GPU memory, (0 ~ 1] References ---------- - `TensorFlow using GPU <https://www.tensorflow.org/versions/r0.9/how_tos/using_gpu/index.html>`__ """ tl.logging.info("[TL]: GPU MEM Fraction %f" % gpu_fraction) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) return sess
[ "def", "set_gpu_fraction", "(", "gpu_fraction", "=", "0.3", ")", ":", "tl", ".", "logging", ".", "info", "(", "\"[TL]: GPU MEM Fraction %f\"", "%", "gpu_fraction", ")", "gpu_options", "=", "tf", ".", "GPUOptions", "(", "per_process_gpu_memory_fraction", "=", "gpu_fraction", ")", "sess", "=", "tf", ".", "Session", "(", "config", "=", "tf", ".", "ConfigProto", "(", "gpu_options", "=", "gpu_options", ")", ")", "return", "sess" ]
Set the GPU memory fraction for the application. Parameters ---------- gpu_fraction : float Fraction of GPU memory, (0 ~ 1] References ---------- - `TensorFlow using GPU <https://www.tensorflow.org/versions/r0.9/how_tos/using_gpu/index.html>`__
[ "Set", "the", "GPU", "memory", "fraction", "for", "the", "application", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/utils.py#L640-L656
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
generate_skip_gram_batch
def generate_skip_gram_batch(data, batch_size, num_skips, skip_window, data_index=0): """Generate a training batch for the Skip-Gram model. See `Word2Vec example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_word2vec_basic.py>`__. Parameters ---------- data : list of data To present context, usually a list of integers. batch_size : int Batch size to return. num_skips : int How many times to reuse an input to generate a label. skip_window : int How many words to consider left and right. data_index : int Index of the context location. This code use `data_index` to instead of yield like ``tl.iterate``. Returns ------- batch : list of data Inputs. labels : list of data Labels data_index : int Index of the context location. Examples -------- Setting num_skips=2, skip_window=1, use the right and left words. In the same way, num_skips=4, skip_window=2 means use the nearby 4 words. >>> data = [1,2,3,4,5,6,7,8,9,10,11] >>> batch, labels, data_index = tl.nlp.generate_skip_gram_batch(data=data, batch_size=8, num_skips=2, skip_window=1, data_index=0) >>> print(batch) [2 2 3 3 4 4 5 5] >>> print(labels) [[3] [1] [4] [2] [5] [3] [4] [6]] """ # global data_index # you can put data_index outside the function, then # modify the global data_index in the function without return it. # note: without using yield, this code use data_index to instead. if batch_size % num_skips != 0: raise Exception("batch_size should be able to be divided by num_skips.") if num_skips > 2 * skip_window: raise Exception("num_skips <= 2 * skip_window") batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch, labels, data_index
python
def generate_skip_gram_batch(data, batch_size, num_skips, skip_window, data_index=0): """Generate a training batch for the Skip-Gram model. See `Word2Vec example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_word2vec_basic.py>`__. Parameters ---------- data : list of data To present context, usually a list of integers. batch_size : int Batch size to return. num_skips : int How many times to reuse an input to generate a label. skip_window : int How many words to consider left and right. data_index : int Index of the context location. This code use `data_index` to instead of yield like ``tl.iterate``. Returns ------- batch : list of data Inputs. labels : list of data Labels data_index : int Index of the context location. Examples -------- Setting num_skips=2, skip_window=1, use the right and left words. In the same way, num_skips=4, skip_window=2 means use the nearby 4 words. >>> data = [1,2,3,4,5,6,7,8,9,10,11] >>> batch, labels, data_index = tl.nlp.generate_skip_gram_batch(data=data, batch_size=8, num_skips=2, skip_window=1, data_index=0) >>> print(batch) [2 2 3 3 4 4 5 5] >>> print(labels) [[3] [1] [4] [2] [5] [3] [4] [6]] """ # global data_index # you can put data_index outside the function, then # modify the global data_index in the function without return it. # note: without using yield, this code use data_index to instead. if batch_size % num_skips != 0: raise Exception("batch_size should be able to be divided by num_skips.") if num_skips > 2 * skip_window: raise Exception("num_skips <= 2 * skip_window") batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch, labels, data_index
[ "def", "generate_skip_gram_batch", "(", "data", ",", "batch_size", ",", "num_skips", ",", "skip_window", ",", "data_index", "=", "0", ")", ":", "# global data_index # you can put data_index outside the function, then", "# modify the global data_index in the function without return it.", "# note: without using yield, this code use data_index to instead.", "if", "batch_size", "%", "num_skips", "!=", "0", ":", "raise", "Exception", "(", "\"batch_size should be able to be divided by num_skips.\"", ")", "if", "num_skips", ">", "2", "*", "skip_window", ":", "raise", "Exception", "(", "\"num_skips <= 2 * skip_window\"", ")", "batch", "=", "np", ".", "ndarray", "(", "shape", "=", "(", "batch_size", ")", ",", "dtype", "=", "np", ".", "int32", ")", "labels", "=", "np", ".", "ndarray", "(", "shape", "=", "(", "batch_size", ",", "1", ")", ",", "dtype", "=", "np", ".", "int32", ")", "span", "=", "2", "*", "skip_window", "+", "1", "# [ skip_window target skip_window ]", "buffer", "=", "collections", ".", "deque", "(", "maxlen", "=", "span", ")", "for", "_", "in", "range", "(", "span", ")", ":", "buffer", ".", "append", "(", "data", "[", "data_index", "]", ")", "data_index", "=", "(", "data_index", "+", "1", ")", "%", "len", "(", "data", ")", "for", "i", "in", "range", "(", "batch_size", "//", "num_skips", ")", ":", "target", "=", "skip_window", "# target label at the center of the buffer", "targets_to_avoid", "=", "[", "skip_window", "]", "for", "j", "in", "range", "(", "num_skips", ")", ":", "while", "target", "in", "targets_to_avoid", ":", "target", "=", "random", ".", "randint", "(", "0", ",", "span", "-", "1", ")", "targets_to_avoid", ".", "append", "(", "target", ")", "batch", "[", "i", "*", "num_skips", "+", "j", "]", "=", "buffer", "[", "skip_window", "]", "labels", "[", "i", "*", "num_skips", "+", "j", ",", "0", "]", "=", "buffer", "[", "target", "]", "buffer", ".", "append", "(", "data", "[", "data_index", "]", ")", "data_index", "=", "(", "data_index", "+", "1", ")", "%", "len", "(", "data", ")", "return", "batch", ",", "labels", ",", "data_index" ]
Generate a training batch for the Skip-Gram model. See `Word2Vec example <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_word2vec_basic.py>`__. Parameters ---------- data : list of data To present context, usually a list of integers. batch_size : int Batch size to return. num_skips : int How many times to reuse an input to generate a label. skip_window : int How many words to consider left and right. data_index : int Index of the context location. This code use `data_index` to instead of yield like ``tl.iterate``. Returns ------- batch : list of data Inputs. labels : list of data Labels data_index : int Index of the context location. Examples -------- Setting num_skips=2, skip_window=1, use the right and left words. In the same way, num_skips=4, skip_window=2 means use the nearby 4 words. >>> data = [1,2,3,4,5,6,7,8,9,10,11] >>> batch, labels, data_index = tl.nlp.generate_skip_gram_batch(data=data, batch_size=8, num_skips=2, skip_window=1, data_index=0) >>> print(batch) [2 2 3 3 4 4 5 5] >>> print(labels) [[3] [1] [4] [2] [5] [3] [4] [6]]
[ "Generate", "a", "training", "batch", "for", "the", "Skip", "-", "Gram", "model", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L52-L125
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
sample
def sample(a=None, temperature=1.0): """Sample an index from a probability array. Parameters ---------- a : list of float List of probabilities. temperature : float or None The higher the more uniform. When a = [0.1, 0.2, 0.7], - temperature = 0.7, the distribution will be sharpen [0.05048273, 0.13588945, 0.81362782] - temperature = 1.0, the distribution will be the same [0.1, 0.2, 0.7] - temperature = 1.5, the distribution will be filtered [0.16008435, 0.25411807, 0.58579758] - If None, it will be ``np.argmax(a)`` Notes ------ - No matter what is the temperature and input list, the sum of all probabilities will be one. Even if input list = [1, 100, 200], the sum of all probabilities will still be one. - For large vocabulary size, choice a higher temperature or ``tl.nlp.sample_top`` to avoid error. """ if a is None: raise Exception("a : list of float") b = np.copy(a) try: if temperature == 1: return np.argmax(np.random.multinomial(1, a, 1)) if temperature is None: return np.argmax(a) else: a = np.log(a) / temperature a = np.exp(a) / np.sum(np.exp(a)) return np.argmax(np.random.multinomial(1, a, 1)) except Exception: # np.set_printoptions(threshold=np.nan) # tl.logging.info(a) # tl.logging.info(np.sum(a)) # tl.logging.info(np.max(a)) # tl.logging.info(np.min(a)) # exit() message = "For large vocabulary_size, choice a higher temperature\ to avoid log error. Hint : use ``sample_top``. " warnings.warn(message, Warning) # tl.logging.info(a) # tl.logging.info(b) return np.argmax(np.random.multinomial(1, b, 1))
python
def sample(a=None, temperature=1.0): """Sample an index from a probability array. Parameters ---------- a : list of float List of probabilities. temperature : float or None The higher the more uniform. When a = [0.1, 0.2, 0.7], - temperature = 0.7, the distribution will be sharpen [0.05048273, 0.13588945, 0.81362782] - temperature = 1.0, the distribution will be the same [0.1, 0.2, 0.7] - temperature = 1.5, the distribution will be filtered [0.16008435, 0.25411807, 0.58579758] - If None, it will be ``np.argmax(a)`` Notes ------ - No matter what is the temperature and input list, the sum of all probabilities will be one. Even if input list = [1, 100, 200], the sum of all probabilities will still be one. - For large vocabulary size, choice a higher temperature or ``tl.nlp.sample_top`` to avoid error. """ if a is None: raise Exception("a : list of float") b = np.copy(a) try: if temperature == 1: return np.argmax(np.random.multinomial(1, a, 1)) if temperature is None: return np.argmax(a) else: a = np.log(a) / temperature a = np.exp(a) / np.sum(np.exp(a)) return np.argmax(np.random.multinomial(1, a, 1)) except Exception: # np.set_printoptions(threshold=np.nan) # tl.logging.info(a) # tl.logging.info(np.sum(a)) # tl.logging.info(np.max(a)) # tl.logging.info(np.min(a)) # exit() message = "For large vocabulary_size, choice a higher temperature\ to avoid log error. Hint : use ``sample_top``. " warnings.warn(message, Warning) # tl.logging.info(a) # tl.logging.info(b) return np.argmax(np.random.multinomial(1, b, 1))
[ "def", "sample", "(", "a", "=", "None", ",", "temperature", "=", "1.0", ")", ":", "if", "a", "is", "None", ":", "raise", "Exception", "(", "\"a : list of float\"", ")", "b", "=", "np", ".", "copy", "(", "a", ")", "try", ":", "if", "temperature", "==", "1", ":", "return", "np", ".", "argmax", "(", "np", ".", "random", ".", "multinomial", "(", "1", ",", "a", ",", "1", ")", ")", "if", "temperature", "is", "None", ":", "return", "np", ".", "argmax", "(", "a", ")", "else", ":", "a", "=", "np", ".", "log", "(", "a", ")", "/", "temperature", "a", "=", "np", ".", "exp", "(", "a", ")", "/", "np", ".", "sum", "(", "np", ".", "exp", "(", "a", ")", ")", "return", "np", ".", "argmax", "(", "np", ".", "random", ".", "multinomial", "(", "1", ",", "a", ",", "1", ")", ")", "except", "Exception", ":", "# np.set_printoptions(threshold=np.nan)", "# tl.logging.info(a)", "# tl.logging.info(np.sum(a))", "# tl.logging.info(np.max(a))", "# tl.logging.info(np.min(a))", "# exit()", "message", "=", "\"For large vocabulary_size, choice a higher temperature\\\n to avoid log error. Hint : use ``sample_top``. \"", "warnings", ".", "warn", "(", "message", ",", "Warning", ")", "# tl.logging.info(a)", "# tl.logging.info(b)", "return", "np", ".", "argmax", "(", "np", ".", "random", ".", "multinomial", "(", "1", ",", "b", ",", "1", ")", ")" ]
Sample an index from a probability array. Parameters ---------- a : list of float List of probabilities. temperature : float or None The higher the more uniform. When a = [0.1, 0.2, 0.7], - temperature = 0.7, the distribution will be sharpen [0.05048273, 0.13588945, 0.81362782] - temperature = 1.0, the distribution will be the same [0.1, 0.2, 0.7] - temperature = 1.5, the distribution will be filtered [0.16008435, 0.25411807, 0.58579758] - If None, it will be ``np.argmax(a)`` Notes ------ - No matter what is the temperature and input list, the sum of all probabilities will be one. Even if input list = [1, 100, 200], the sum of all probabilities will still be one. - For large vocabulary size, choice a higher temperature or ``tl.nlp.sample_top`` to avoid error.
[ "Sample", "an", "index", "from", "a", "probability", "array", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L128-L173
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
sample_top
def sample_top(a=None, top_k=10): """Sample from ``top_k`` probabilities. Parameters ---------- a : list of float List of probabilities. top_k : int Number of candidates to be considered. """ if a is None: a = [] idx = np.argpartition(a, -top_k)[-top_k:] probs = a[idx] # tl.logging.info("new %f" % probs) probs = probs / np.sum(probs) choice = np.random.choice(idx, p=probs) return choice
python
def sample_top(a=None, top_k=10): """Sample from ``top_k`` probabilities. Parameters ---------- a : list of float List of probabilities. top_k : int Number of candidates to be considered. """ if a is None: a = [] idx = np.argpartition(a, -top_k)[-top_k:] probs = a[idx] # tl.logging.info("new %f" % probs) probs = probs / np.sum(probs) choice = np.random.choice(idx, p=probs) return choice
[ "def", "sample_top", "(", "a", "=", "None", ",", "top_k", "=", "10", ")", ":", "if", "a", "is", "None", ":", "a", "=", "[", "]", "idx", "=", "np", ".", "argpartition", "(", "a", ",", "-", "top_k", ")", "[", "-", "top_k", ":", "]", "probs", "=", "a", "[", "idx", "]", "# tl.logging.info(\"new %f\" % probs)", "probs", "=", "probs", "/", "np", ".", "sum", "(", "probs", ")", "choice", "=", "np", ".", "random", ".", "choice", "(", "idx", ",", "p", "=", "probs", ")", "return", "choice" ]
Sample from ``top_k`` probabilities. Parameters ---------- a : list of float List of probabilities. top_k : int Number of candidates to be considered.
[ "Sample", "from", "top_k", "probabilities", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L176-L195
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
process_sentence
def process_sentence(sentence, start_word="<S>", end_word="</S>"): """Seperate a sentence string into a list of string words, add start_word and end_word, see ``create_vocab()`` and ``tutorial_tfrecord3.py``. Parameters ---------- sentence : str A sentence. start_word : str or None The start word. If None, no start word will be appended. end_word : str or None The end word. If None, no end word will be appended. Returns --------- list of str A list of strings that separated into words. Examples ----------- >>> c = "how are you?" >>> c = tl.nlp.process_sentence(c) >>> print(c) ['<S>', 'how', 'are', 'you', '?', '</S>'] Notes ------- - You have to install the following package. - `Installing NLTK <http://www.nltk.org/install.html>`__ - `Installing NLTK data <http://www.nltk.org/data.html>`__ """ if start_word is not None: process_sentence = [start_word] else: process_sentence = [] process_sentence.extend(nltk.tokenize.word_tokenize(sentence.lower())) if end_word is not None: process_sentence.append(end_word) return process_sentence
python
def process_sentence(sentence, start_word="<S>", end_word="</S>"): """Seperate a sentence string into a list of string words, add start_word and end_word, see ``create_vocab()`` and ``tutorial_tfrecord3.py``. Parameters ---------- sentence : str A sentence. start_word : str or None The start word. If None, no start word will be appended. end_word : str or None The end word. If None, no end word will be appended. Returns --------- list of str A list of strings that separated into words. Examples ----------- >>> c = "how are you?" >>> c = tl.nlp.process_sentence(c) >>> print(c) ['<S>', 'how', 'are', 'you', '?', '</S>'] Notes ------- - You have to install the following package. - `Installing NLTK <http://www.nltk.org/install.html>`__ - `Installing NLTK data <http://www.nltk.org/data.html>`__ """ if start_word is not None: process_sentence = [start_word] else: process_sentence = [] process_sentence.extend(nltk.tokenize.word_tokenize(sentence.lower())) if end_word is not None: process_sentence.append(end_word) return process_sentence
[ "def", "process_sentence", "(", "sentence", ",", "start_word", "=", "\"<S>\"", ",", "end_word", "=", "\"</S>\"", ")", ":", "if", "start_word", "is", "not", "None", ":", "process_sentence", "=", "[", "start_word", "]", "else", ":", "process_sentence", "=", "[", "]", "process_sentence", ".", "extend", "(", "nltk", ".", "tokenize", ".", "word_tokenize", "(", "sentence", ".", "lower", "(", ")", ")", ")", "if", "end_word", "is", "not", "None", ":", "process_sentence", ".", "append", "(", "end_word", ")", "return", "process_sentence" ]
Seperate a sentence string into a list of string words, add start_word and end_word, see ``create_vocab()`` and ``tutorial_tfrecord3.py``. Parameters ---------- sentence : str A sentence. start_word : str or None The start word. If None, no start word will be appended. end_word : str or None The end word. If None, no end word will be appended. Returns --------- list of str A list of strings that separated into words. Examples ----------- >>> c = "how are you?" >>> c = tl.nlp.process_sentence(c) >>> print(c) ['<S>', 'how', 'are', 'you', '?', '</S>'] Notes ------- - You have to install the following package. - `Installing NLTK <http://www.nltk.org/install.html>`__ - `Installing NLTK data <http://www.nltk.org/data.html>`__
[ "Seperate", "a", "sentence", "string", "into", "a", "list", "of", "string", "words", "add", "start_word", "and", "end_word", "see", "create_vocab", "()", "and", "tutorial_tfrecord3", ".", "py", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L335-L375
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
create_vocab
def create_vocab(sentences, word_counts_output_file, min_word_count=1): """Creates the vocabulary of word to word_id. See ``tutorial_tfrecord3.py``. The vocabulary is saved to disk in a text file of word counts. The id of each word in the file is its corresponding 0-based line number. Parameters ------------ sentences : list of list of str All sentences for creating the vocabulary. word_counts_output_file : str The file name. min_word_count : int Minimum number of occurrences for a word. Returns -------- :class:`SimpleVocabulary` The simple vocabulary object, see :class:`Vocabulary` for more. Examples -------- Pre-process sentences >>> captions = ["one two , three", "four five five"] >>> processed_capts = [] >>> for c in captions: >>> c = tl.nlp.process_sentence(c, start_word="<S>", end_word="</S>") >>> processed_capts.append(c) >>> print(processed_capts) ...[['<S>', 'one', 'two', ',', 'three', '</S>'], ['<S>', 'four', 'five', 'five', '</S>']] Create vocabulary >>> tl.nlp.create_vocab(processed_capts, word_counts_output_file='vocab.txt', min_word_count=1) Creating vocabulary. Total words: 8 Words in vocabulary: 8 Wrote vocabulary file: vocab.txt Get vocabulary object >>> vocab = tl.nlp.Vocabulary('vocab.txt', start_word="<S>", end_word="</S>", unk_word="<UNK>") INFO:tensorflow:Initializing vocabulary from file: vocab.txt [TL] Vocabulary from vocab.txt : <S> </S> <UNK> vocabulary with 10 words (includes start_word, end_word, unk_word) start_id: 2 end_id: 3 unk_id: 9 pad_id: 0 """ tl.logging.info("Creating vocabulary.") counter = Counter() for c in sentences: counter.update(c) # tl.logging.info('c',c) tl.logging.info(" Total words: %d" % len(counter)) # Filter uncommon words and sort by descending count. word_counts = [x for x in counter.items() if x[1] >= min_word_count] word_counts.sort(key=lambda x: x[1], reverse=True) word_counts = [("<PAD>", 0)] + word_counts # 1st id should be reserved for padding # tl.logging.info(word_counts) tl.logging.info(" Words in vocabulary: %d" % len(word_counts)) # Write out the word counts file. with tf.gfile.FastGFile(word_counts_output_file, "w") as f: f.write("\n".join(["%s %d" % (w, c) for w, c in word_counts])) tl.logging.info(" Wrote vocabulary file: %s" % word_counts_output_file) # Create the vocabulary dictionary. reverse_vocab = [x[0] for x in word_counts] unk_id = len(reverse_vocab) vocab_dict = dict([(x, y) for (y, x) in enumerate(reverse_vocab)]) vocab = SimpleVocabulary(vocab_dict, unk_id) return vocab
python
def create_vocab(sentences, word_counts_output_file, min_word_count=1): """Creates the vocabulary of word to word_id. See ``tutorial_tfrecord3.py``. The vocabulary is saved to disk in a text file of word counts. The id of each word in the file is its corresponding 0-based line number. Parameters ------------ sentences : list of list of str All sentences for creating the vocabulary. word_counts_output_file : str The file name. min_word_count : int Minimum number of occurrences for a word. Returns -------- :class:`SimpleVocabulary` The simple vocabulary object, see :class:`Vocabulary` for more. Examples -------- Pre-process sentences >>> captions = ["one two , three", "four five five"] >>> processed_capts = [] >>> for c in captions: >>> c = tl.nlp.process_sentence(c, start_word="<S>", end_word="</S>") >>> processed_capts.append(c) >>> print(processed_capts) ...[['<S>', 'one', 'two', ',', 'three', '</S>'], ['<S>', 'four', 'five', 'five', '</S>']] Create vocabulary >>> tl.nlp.create_vocab(processed_capts, word_counts_output_file='vocab.txt', min_word_count=1) Creating vocabulary. Total words: 8 Words in vocabulary: 8 Wrote vocabulary file: vocab.txt Get vocabulary object >>> vocab = tl.nlp.Vocabulary('vocab.txt', start_word="<S>", end_word="</S>", unk_word="<UNK>") INFO:tensorflow:Initializing vocabulary from file: vocab.txt [TL] Vocabulary from vocab.txt : <S> </S> <UNK> vocabulary with 10 words (includes start_word, end_word, unk_word) start_id: 2 end_id: 3 unk_id: 9 pad_id: 0 """ tl.logging.info("Creating vocabulary.") counter = Counter() for c in sentences: counter.update(c) # tl.logging.info('c',c) tl.logging.info(" Total words: %d" % len(counter)) # Filter uncommon words and sort by descending count. word_counts = [x for x in counter.items() if x[1] >= min_word_count] word_counts.sort(key=lambda x: x[1], reverse=True) word_counts = [("<PAD>", 0)] + word_counts # 1st id should be reserved for padding # tl.logging.info(word_counts) tl.logging.info(" Words in vocabulary: %d" % len(word_counts)) # Write out the word counts file. with tf.gfile.FastGFile(word_counts_output_file, "w") as f: f.write("\n".join(["%s %d" % (w, c) for w, c in word_counts])) tl.logging.info(" Wrote vocabulary file: %s" % word_counts_output_file) # Create the vocabulary dictionary. reverse_vocab = [x[0] for x in word_counts] unk_id = len(reverse_vocab) vocab_dict = dict([(x, y) for (y, x) in enumerate(reverse_vocab)]) vocab = SimpleVocabulary(vocab_dict, unk_id) return vocab
[ "def", "create_vocab", "(", "sentences", ",", "word_counts_output_file", ",", "min_word_count", "=", "1", ")", ":", "tl", ".", "logging", ".", "info", "(", "\"Creating vocabulary.\"", ")", "counter", "=", "Counter", "(", ")", "for", "c", "in", "sentences", ":", "counter", ".", "update", "(", "c", ")", "# tl.logging.info('c',c)", "tl", ".", "logging", ".", "info", "(", "\" Total words: %d\"", "%", "len", "(", "counter", ")", ")", "# Filter uncommon words and sort by descending count.", "word_counts", "=", "[", "x", "for", "x", "in", "counter", ".", "items", "(", ")", "if", "x", "[", "1", "]", ">=", "min_word_count", "]", "word_counts", ".", "sort", "(", "key", "=", "lambda", "x", ":", "x", "[", "1", "]", ",", "reverse", "=", "True", ")", "word_counts", "=", "[", "(", "\"<PAD>\"", ",", "0", ")", "]", "+", "word_counts", "# 1st id should be reserved for padding", "# tl.logging.info(word_counts)", "tl", ".", "logging", ".", "info", "(", "\" Words in vocabulary: %d\"", "%", "len", "(", "word_counts", ")", ")", "# Write out the word counts file.", "with", "tf", ".", "gfile", ".", "FastGFile", "(", "word_counts_output_file", ",", "\"w\"", ")", "as", "f", ":", "f", ".", "write", "(", "\"\\n\"", ".", "join", "(", "[", "\"%s %d\"", "%", "(", "w", ",", "c", ")", "for", "w", ",", "c", "in", "word_counts", "]", ")", ")", "tl", ".", "logging", ".", "info", "(", "\" Wrote vocabulary file: %s\"", "%", "word_counts_output_file", ")", "# Create the vocabulary dictionary.", "reverse_vocab", "=", "[", "x", "[", "0", "]", "for", "x", "in", "word_counts", "]", "unk_id", "=", "len", "(", "reverse_vocab", ")", "vocab_dict", "=", "dict", "(", "[", "(", "x", ",", "y", ")", "for", "(", "y", ",", "x", ")", "in", "enumerate", "(", "reverse_vocab", ")", "]", ")", "vocab", "=", "SimpleVocabulary", "(", "vocab_dict", ",", "unk_id", ")", "return", "vocab" ]
Creates the vocabulary of word to word_id. See ``tutorial_tfrecord3.py``. The vocabulary is saved to disk in a text file of word counts. The id of each word in the file is its corresponding 0-based line number. Parameters ------------ sentences : list of list of str All sentences for creating the vocabulary. word_counts_output_file : str The file name. min_word_count : int Minimum number of occurrences for a word. Returns -------- :class:`SimpleVocabulary` The simple vocabulary object, see :class:`Vocabulary` for more. Examples -------- Pre-process sentences >>> captions = ["one two , three", "four five five"] >>> processed_capts = [] >>> for c in captions: >>> c = tl.nlp.process_sentence(c, start_word="<S>", end_word="</S>") >>> processed_capts.append(c) >>> print(processed_capts) ...[['<S>', 'one', 'two', ',', 'three', '</S>'], ['<S>', 'four', 'five', 'five', '</S>']] Create vocabulary >>> tl.nlp.create_vocab(processed_capts, word_counts_output_file='vocab.txt', min_word_count=1) Creating vocabulary. Total words: 8 Words in vocabulary: 8 Wrote vocabulary file: vocab.txt Get vocabulary object >>> vocab = tl.nlp.Vocabulary('vocab.txt', start_word="<S>", end_word="</S>", unk_word="<UNK>") INFO:tensorflow:Initializing vocabulary from file: vocab.txt [TL] Vocabulary from vocab.txt : <S> </S> <UNK> vocabulary with 10 words (includes start_word, end_word, unk_word) start_id: 2 end_id: 3 unk_id: 9 pad_id: 0
[ "Creates", "the", "vocabulary", "of", "word", "to", "word_id", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L378-L459
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
read_words
def read_words(filename="nietzsche.txt", replace=None): """Read list format context from a file. For customized read_words method, see ``tutorial_generate_text.py``. Parameters ---------- filename : str a file path. replace : list of str replace original string by target string. Returns ------- list of str The context in a list (split using space). """ if replace is None: replace = ['\n', '<eos>'] with tf.gfile.GFile(filename, "r") as f: try: # python 3.4 or older context_list = f.read().replace(*replace).split() except Exception: # python 3.5 f.seek(0) replace = [x.encode('utf-8') for x in replace] context_list = f.read().replace(*replace).split() return context_list
python
def read_words(filename="nietzsche.txt", replace=None): """Read list format context from a file. For customized read_words method, see ``tutorial_generate_text.py``. Parameters ---------- filename : str a file path. replace : list of str replace original string by target string. Returns ------- list of str The context in a list (split using space). """ if replace is None: replace = ['\n', '<eos>'] with tf.gfile.GFile(filename, "r") as f: try: # python 3.4 or older context_list = f.read().replace(*replace).split() except Exception: # python 3.5 f.seek(0) replace = [x.encode('utf-8') for x in replace] context_list = f.read().replace(*replace).split() return context_list
[ "def", "read_words", "(", "filename", "=", "\"nietzsche.txt\"", ",", "replace", "=", "None", ")", ":", "if", "replace", "is", "None", ":", "replace", "=", "[", "'\\n'", ",", "'<eos>'", "]", "with", "tf", ".", "gfile", ".", "GFile", "(", "filename", ",", "\"r\"", ")", "as", "f", ":", "try", ":", "# python 3.4 or older", "context_list", "=", "f", ".", "read", "(", ")", ".", "replace", "(", "*", "replace", ")", ".", "split", "(", ")", "except", "Exception", ":", "# python 3.5", "f", ".", "seek", "(", "0", ")", "replace", "=", "[", "x", ".", "encode", "(", "'utf-8'", ")", "for", "x", "in", "replace", "]", "context_list", "=", "f", ".", "read", "(", ")", ".", "replace", "(", "*", "replace", ")", ".", "split", "(", ")", "return", "context_list" ]
Read list format context from a file. For customized read_words method, see ``tutorial_generate_text.py``. Parameters ---------- filename : str a file path. replace : list of str replace original string by target string. Returns ------- list of str The context in a list (split using space).
[ "Read", "list", "format", "context", "from", "a", "file", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L482-L509
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
read_analogies_file
def read_analogies_file(eval_file='questions-words.txt', word2id=None): """Reads through an analogy question file, return its id format. Parameters ---------- eval_file : str The file name. word2id : dictionary a dictionary that maps word to ID. Returns -------- numpy.array A ``[n_examples, 4]`` numpy array containing the analogy question's word IDs. Examples --------- The file should be in this format >>> : capital-common-countries >>> Athens Greece Baghdad Iraq >>> Athens Greece Bangkok Thailand >>> Athens Greece Beijing China >>> Athens Greece Berlin Germany >>> Athens Greece Bern Switzerland >>> Athens Greece Cairo Egypt >>> Athens Greece Canberra Australia >>> Athens Greece Hanoi Vietnam >>> Athens Greece Havana Cuba Get the tokenized analogy question data >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) >>> analogy_questions = tl.nlp.read_analogies_file(eval_file='questions-words.txt', word2id=dictionary) >>> print(analogy_questions) [[ 3068 1248 7161 1581] [ 3068 1248 28683 5642] [ 3068 1248 3878 486] ..., [ 1216 4309 19982 25506] [ 1216 4309 3194 8650] [ 1216 4309 140 312]] """ if word2id is None: word2id = {} questions = [] questions_skipped = 0 with open(eval_file, "rb") as analogy_f: for line in analogy_f: if line.startswith(b":"): # Skip comments. continue words = line.strip().lower().split(b" ") # lowercase ids = [word2id.get(w.strip()) for w in words] if None in ids or len(ids) != 4: questions_skipped += 1 else: questions.append(np.array(ids)) tl.logging.info("Eval analogy file: %s" % eval_file) tl.logging.info("Questions: %d", len(questions)) tl.logging.info("Skipped: %d", questions_skipped) analogy_questions = np.array(questions, dtype=np.int32) return analogy_questions
python
def read_analogies_file(eval_file='questions-words.txt', word2id=None): """Reads through an analogy question file, return its id format. Parameters ---------- eval_file : str The file name. word2id : dictionary a dictionary that maps word to ID. Returns -------- numpy.array A ``[n_examples, 4]`` numpy array containing the analogy question's word IDs. Examples --------- The file should be in this format >>> : capital-common-countries >>> Athens Greece Baghdad Iraq >>> Athens Greece Bangkok Thailand >>> Athens Greece Beijing China >>> Athens Greece Berlin Germany >>> Athens Greece Bern Switzerland >>> Athens Greece Cairo Egypt >>> Athens Greece Canberra Australia >>> Athens Greece Hanoi Vietnam >>> Athens Greece Havana Cuba Get the tokenized analogy question data >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) >>> analogy_questions = tl.nlp.read_analogies_file(eval_file='questions-words.txt', word2id=dictionary) >>> print(analogy_questions) [[ 3068 1248 7161 1581] [ 3068 1248 28683 5642] [ 3068 1248 3878 486] ..., [ 1216 4309 19982 25506] [ 1216 4309 3194 8650] [ 1216 4309 140 312]] """ if word2id is None: word2id = {} questions = [] questions_skipped = 0 with open(eval_file, "rb") as analogy_f: for line in analogy_f: if line.startswith(b":"): # Skip comments. continue words = line.strip().lower().split(b" ") # lowercase ids = [word2id.get(w.strip()) for w in words] if None in ids or len(ids) != 4: questions_skipped += 1 else: questions.append(np.array(ids)) tl.logging.info("Eval analogy file: %s" % eval_file) tl.logging.info("Questions: %d", len(questions)) tl.logging.info("Skipped: %d", questions_skipped) analogy_questions = np.array(questions, dtype=np.int32) return analogy_questions
[ "def", "read_analogies_file", "(", "eval_file", "=", "'questions-words.txt'", ",", "word2id", "=", "None", ")", ":", "if", "word2id", "is", "None", ":", "word2id", "=", "{", "}", "questions", "=", "[", "]", "questions_skipped", "=", "0", "with", "open", "(", "eval_file", ",", "\"rb\"", ")", "as", "analogy_f", ":", "for", "line", "in", "analogy_f", ":", "if", "line", ".", "startswith", "(", "b\":\"", ")", ":", "# Skip comments.", "continue", "words", "=", "line", ".", "strip", "(", ")", ".", "lower", "(", ")", ".", "split", "(", "b\" \"", ")", "# lowercase", "ids", "=", "[", "word2id", ".", "get", "(", "w", ".", "strip", "(", ")", ")", "for", "w", "in", "words", "]", "if", "None", "in", "ids", "or", "len", "(", "ids", ")", "!=", "4", ":", "questions_skipped", "+=", "1", "else", ":", "questions", ".", "append", "(", "np", ".", "array", "(", "ids", ")", ")", "tl", ".", "logging", ".", "info", "(", "\"Eval analogy file: %s\"", "%", "eval_file", ")", "tl", ".", "logging", ".", "info", "(", "\"Questions: %d\"", ",", "len", "(", "questions", ")", ")", "tl", ".", "logging", ".", "info", "(", "\"Skipped: %d\"", ",", "questions_skipped", ")", "analogy_questions", "=", "np", ".", "array", "(", "questions", ",", "dtype", "=", "np", ".", "int32", ")", "return", "analogy_questions" ]
Reads through an analogy question file, return its id format. Parameters ---------- eval_file : str The file name. word2id : dictionary a dictionary that maps word to ID. Returns -------- numpy.array A ``[n_examples, 4]`` numpy array containing the analogy question's word IDs. Examples --------- The file should be in this format >>> : capital-common-countries >>> Athens Greece Baghdad Iraq >>> Athens Greece Bangkok Thailand >>> Athens Greece Beijing China >>> Athens Greece Berlin Germany >>> Athens Greece Bern Switzerland >>> Athens Greece Cairo Egypt >>> Athens Greece Canberra Australia >>> Athens Greece Hanoi Vietnam >>> Athens Greece Havana Cuba Get the tokenized analogy question data >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) >>> analogy_questions = tl.nlp.read_analogies_file(eval_file='questions-words.txt', word2id=dictionary) >>> print(analogy_questions) [[ 3068 1248 7161 1581] [ 3068 1248 28683 5642] [ 3068 1248 3878 486] ..., [ 1216 4309 19982 25506] [ 1216 4309 3194 8650] [ 1216 4309 140 312]]
[ "Reads", "through", "an", "analogy", "question", "file", "return", "its", "id", "format", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L512-L576
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
build_reverse_dictionary
def build_reverse_dictionary(word_to_id): """Given a dictionary that maps word to integer id. Returns a reverse dictionary that maps a id to word. Parameters ---------- word_to_id : dictionary that maps word to ID. Returns -------- dictionary A dictionary that maps IDs to words. """ reverse_dictionary = dict(zip(word_to_id.values(), word_to_id.keys())) return reverse_dictionary
python
def build_reverse_dictionary(word_to_id): """Given a dictionary that maps word to integer id. Returns a reverse dictionary that maps a id to word. Parameters ---------- word_to_id : dictionary that maps word to ID. Returns -------- dictionary A dictionary that maps IDs to words. """ reverse_dictionary = dict(zip(word_to_id.values(), word_to_id.keys())) return reverse_dictionary
[ "def", "build_reverse_dictionary", "(", "word_to_id", ")", ":", "reverse_dictionary", "=", "dict", "(", "zip", "(", "word_to_id", ".", "values", "(", ")", ",", "word_to_id", ".", "keys", "(", ")", ")", ")", "return", "reverse_dictionary" ]
Given a dictionary that maps word to integer id. Returns a reverse dictionary that maps a id to word. Parameters ---------- word_to_id : dictionary that maps word to ID. Returns -------- dictionary A dictionary that maps IDs to words.
[ "Given", "a", "dictionary", "that", "maps", "word", "to", "integer", "id", ".", "Returns", "a", "reverse", "dictionary", "that", "maps", "a", "id", "to", "word", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L619-L635
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
build_words_dataset
def build_words_dataset(words=None, vocabulary_size=50000, printable=True, unk_key='UNK'): """Build the words dictionary and replace rare words with 'UNK' token. The most common word has the smallest integer id. Parameters ---------- words : list of str or byte The context in list format. You may need to do preprocessing on the words, such as lower case, remove marks etc. vocabulary_size : int The maximum vocabulary size, limiting the vocabulary size. Then the script replaces rare words with 'UNK' token. printable : boolean Whether to print the read vocabulary size of the given words. unk_key : str Represent the unknown words. Returns -------- data : list of int The context in a list of ID. count : list of tuple and list Pair words and IDs. - count[0] is a list : the number of rare words - count[1:] are tuples : the number of occurrence of each word - e.g. [['UNK', 418391], (b'the', 1061396), (b'of', 593677), (b'and', 416629), (b'one', 411764)] dictionary : dictionary It is `word_to_id` that maps word to ID. reverse_dictionary : a dictionary It is `id_to_word` that maps ID to word. Examples -------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> vocabulary_size = 50000 >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size) References ----------------- - `tensorflow/examples/tutorials/word2vec/word2vec_basic.py <https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py>`__ """ if words is None: raise Exception("words : list of str or byte") count = [[unk_key, -1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) if printable: tl.logging.info('Real vocabulary size %d' % len(collections.Counter(words).keys())) tl.logging.info('Limited vocabulary size {}'.format(vocabulary_size)) if len(collections.Counter(words).keys()) < vocabulary_size: raise Exception( "len(collections.Counter(words).keys()) >= vocabulary_size , the limited vocabulary_size must be less than or equal to the read vocabulary_size" ) return data, count, dictionary, reverse_dictionary
python
def build_words_dataset(words=None, vocabulary_size=50000, printable=True, unk_key='UNK'): """Build the words dictionary and replace rare words with 'UNK' token. The most common word has the smallest integer id. Parameters ---------- words : list of str or byte The context in list format. You may need to do preprocessing on the words, such as lower case, remove marks etc. vocabulary_size : int The maximum vocabulary size, limiting the vocabulary size. Then the script replaces rare words with 'UNK' token. printable : boolean Whether to print the read vocabulary size of the given words. unk_key : str Represent the unknown words. Returns -------- data : list of int The context in a list of ID. count : list of tuple and list Pair words and IDs. - count[0] is a list : the number of rare words - count[1:] are tuples : the number of occurrence of each word - e.g. [['UNK', 418391], (b'the', 1061396), (b'of', 593677), (b'and', 416629), (b'one', 411764)] dictionary : dictionary It is `word_to_id` that maps word to ID. reverse_dictionary : a dictionary It is `id_to_word` that maps ID to word. Examples -------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> vocabulary_size = 50000 >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size) References ----------------- - `tensorflow/examples/tutorials/word2vec/word2vec_basic.py <https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py>`__ """ if words is None: raise Exception("words : list of str or byte") count = [[unk_key, -1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) if printable: tl.logging.info('Real vocabulary size %d' % len(collections.Counter(words).keys())) tl.logging.info('Limited vocabulary size {}'.format(vocabulary_size)) if len(collections.Counter(words).keys()) < vocabulary_size: raise Exception( "len(collections.Counter(words).keys()) >= vocabulary_size , the limited vocabulary_size must be less than or equal to the read vocabulary_size" ) return data, count, dictionary, reverse_dictionary
[ "def", "build_words_dataset", "(", "words", "=", "None", ",", "vocabulary_size", "=", "50000", ",", "printable", "=", "True", ",", "unk_key", "=", "'UNK'", ")", ":", "if", "words", "is", "None", ":", "raise", "Exception", "(", "\"words : list of str or byte\"", ")", "count", "=", "[", "[", "unk_key", ",", "-", "1", "]", "]", "count", ".", "extend", "(", "collections", ".", "Counter", "(", "words", ")", ".", "most_common", "(", "vocabulary_size", "-", "1", ")", ")", "dictionary", "=", "dict", "(", ")", "for", "word", ",", "_", "in", "count", ":", "dictionary", "[", "word", "]", "=", "len", "(", "dictionary", ")", "data", "=", "list", "(", ")", "unk_count", "=", "0", "for", "word", "in", "words", ":", "if", "word", "in", "dictionary", ":", "index", "=", "dictionary", "[", "word", "]", "else", ":", "index", "=", "0", "# dictionary['UNK']", "unk_count", "+=", "1", "data", ".", "append", "(", "index", ")", "count", "[", "0", "]", "[", "1", "]", "=", "unk_count", "reverse_dictionary", "=", "dict", "(", "zip", "(", "dictionary", ".", "values", "(", ")", ",", "dictionary", ".", "keys", "(", ")", ")", ")", "if", "printable", ":", "tl", ".", "logging", ".", "info", "(", "'Real vocabulary size %d'", "%", "len", "(", "collections", ".", "Counter", "(", "words", ")", ".", "keys", "(", ")", ")", ")", "tl", ".", "logging", ".", "info", "(", "'Limited vocabulary size {}'", ".", "format", "(", "vocabulary_size", ")", ")", "if", "len", "(", "collections", ".", "Counter", "(", "words", ")", ".", "keys", "(", ")", ")", "<", "vocabulary_size", ":", "raise", "Exception", "(", "\"len(collections.Counter(words).keys()) >= vocabulary_size , the limited vocabulary_size must be less than or equal to the read vocabulary_size\"", ")", "return", "data", ",", "count", ",", "dictionary", ",", "reverse_dictionary" ]
Build the words dictionary and replace rare words with 'UNK' token. The most common word has the smallest integer id. Parameters ---------- words : list of str or byte The context in list format. You may need to do preprocessing on the words, such as lower case, remove marks etc. vocabulary_size : int The maximum vocabulary size, limiting the vocabulary size. Then the script replaces rare words with 'UNK' token. printable : boolean Whether to print the read vocabulary size of the given words. unk_key : str Represent the unknown words. Returns -------- data : list of int The context in a list of ID. count : list of tuple and list Pair words and IDs. - count[0] is a list : the number of rare words - count[1:] are tuples : the number of occurrence of each word - e.g. [['UNK', 418391], (b'the', 1061396), (b'of', 593677), (b'and', 416629), (b'one', 411764)] dictionary : dictionary It is `word_to_id` that maps word to ID. reverse_dictionary : a dictionary It is `id_to_word` that maps ID to word. Examples -------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> vocabulary_size = 50000 >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size) References ----------------- - `tensorflow/examples/tutorials/word2vec/word2vec_basic.py <https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py>`__
[ "Build", "the", "words", "dictionary", "and", "replace", "rare", "words", "with", "UNK", "token", ".", "The", "most", "common", "word", "has", "the", "smallest", "integer", "id", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L638-L704
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
words_to_word_ids
def words_to_word_ids(data=None, word_to_id=None, unk_key='UNK'): """Convert a list of string (words) to IDs. Parameters ---------- data : list of string or byte The context in list format word_to_id : a dictionary that maps word to ID. unk_key : str Represent the unknown words. Returns -------- list of int A list of IDs to represent the context. Examples -------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> vocabulary_size = 50000 >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) >>> context = [b'hello', b'how', b'are', b'you'] >>> ids = tl.nlp.words_to_word_ids(words, dictionary) >>> context = tl.nlp.word_ids_to_words(ids, reverse_dictionary) >>> print(ids) [6434, 311, 26, 207] >>> print(context) [b'hello', b'how', b'are', b'you'] References --------------- - `tensorflow.models.rnn.ptb.reader <https://github.com/tensorflow/tensorflow/tree/master/tensorflow/models/rnn/ptb>`__ """ if data is None: raise Exception("data : list of string or byte") if word_to_id is None: raise Exception("word_to_id : a dictionary") # if isinstance(data[0], six.string_types): # tl.logging.info(type(data[0])) # # exit() # tl.logging.info(data[0]) # tl.logging.info(word_to_id) # return [word_to_id[str(word)] for word in data] # else: word_ids = [] for word in data: if word_to_id.get(word) is not None: word_ids.append(word_to_id[word]) else: word_ids.append(word_to_id[unk_key]) return word_ids
python
def words_to_word_ids(data=None, word_to_id=None, unk_key='UNK'): """Convert a list of string (words) to IDs. Parameters ---------- data : list of string or byte The context in list format word_to_id : a dictionary that maps word to ID. unk_key : str Represent the unknown words. Returns -------- list of int A list of IDs to represent the context. Examples -------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> vocabulary_size = 50000 >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) >>> context = [b'hello', b'how', b'are', b'you'] >>> ids = tl.nlp.words_to_word_ids(words, dictionary) >>> context = tl.nlp.word_ids_to_words(ids, reverse_dictionary) >>> print(ids) [6434, 311, 26, 207] >>> print(context) [b'hello', b'how', b'are', b'you'] References --------------- - `tensorflow.models.rnn.ptb.reader <https://github.com/tensorflow/tensorflow/tree/master/tensorflow/models/rnn/ptb>`__ """ if data is None: raise Exception("data : list of string or byte") if word_to_id is None: raise Exception("word_to_id : a dictionary") # if isinstance(data[0], six.string_types): # tl.logging.info(type(data[0])) # # exit() # tl.logging.info(data[0]) # tl.logging.info(word_to_id) # return [word_to_id[str(word)] for word in data] # else: word_ids = [] for word in data: if word_to_id.get(word) is not None: word_ids.append(word_to_id[word]) else: word_ids.append(word_to_id[unk_key]) return word_ids
[ "def", "words_to_word_ids", "(", "data", "=", "None", ",", "word_to_id", "=", "None", ",", "unk_key", "=", "'UNK'", ")", ":", "if", "data", "is", "None", ":", "raise", "Exception", "(", "\"data : list of string or byte\"", ")", "if", "word_to_id", "is", "None", ":", "raise", "Exception", "(", "\"word_to_id : a dictionary\"", ")", "# if isinstance(data[0], six.string_types):", "# tl.logging.info(type(data[0]))", "# # exit()", "# tl.logging.info(data[0])", "# tl.logging.info(word_to_id)", "# return [word_to_id[str(word)] for word in data]", "# else:", "word_ids", "=", "[", "]", "for", "word", "in", "data", ":", "if", "word_to_id", ".", "get", "(", "word", ")", "is", "not", "None", ":", "word_ids", ".", "append", "(", "word_to_id", "[", "word", "]", ")", "else", ":", "word_ids", ".", "append", "(", "word_to_id", "[", "unk_key", "]", ")", "return", "word_ids" ]
Convert a list of string (words) to IDs. Parameters ---------- data : list of string or byte The context in list format word_to_id : a dictionary that maps word to ID. unk_key : str Represent the unknown words. Returns -------- list of int A list of IDs to represent the context. Examples -------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> vocabulary_size = 50000 >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) >>> context = [b'hello', b'how', b'are', b'you'] >>> ids = tl.nlp.words_to_word_ids(words, dictionary) >>> context = tl.nlp.word_ids_to_words(ids, reverse_dictionary) >>> print(ids) [6434, 311, 26, 207] >>> print(context) [b'hello', b'how', b'are', b'you'] References --------------- - `tensorflow.models.rnn.ptb.reader <https://github.com/tensorflow/tensorflow/tree/master/tensorflow/models/rnn/ptb>`__
[ "Convert", "a", "list", "of", "string", "(", "words", ")", "to", "IDs", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L707-L760
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
save_vocab
def save_vocab(count=None, name='vocab.txt'): """Save the vocabulary to a file so the model can be reloaded. Parameters ---------- count : a list of tuple and list count[0] is a list : the number of rare words, count[1:] are tuples : the number of occurrence of each word, e.g. [['UNK', 418391], (b'the', 1061396), (b'of', 593677), (b'and', 416629), (b'one', 411764)] Examples --------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> vocabulary_size = 50000 >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) >>> tl.nlp.save_vocab(count, name='vocab_text8.txt') >>> vocab_text8.txt UNK 418391 the 1061396 of 593677 and 416629 one 411764 in 372201 a 325873 to 316376 """ if count is None: count = [] pwd = os.getcwd() vocabulary_size = len(count) with open(os.path.join(pwd, name), "w") as f: for i in xrange(vocabulary_size): f.write("%s %d\n" % (tf.compat.as_text(count[i][0]), count[i][1])) tl.logging.info("%d vocab saved to %s in %s" % (vocabulary_size, name, pwd))
python
def save_vocab(count=None, name='vocab.txt'): """Save the vocabulary to a file so the model can be reloaded. Parameters ---------- count : a list of tuple and list count[0] is a list : the number of rare words, count[1:] are tuples : the number of occurrence of each word, e.g. [['UNK', 418391], (b'the', 1061396), (b'of', 593677), (b'and', 416629), (b'one', 411764)] Examples --------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> vocabulary_size = 50000 >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) >>> tl.nlp.save_vocab(count, name='vocab_text8.txt') >>> vocab_text8.txt UNK 418391 the 1061396 of 593677 and 416629 one 411764 in 372201 a 325873 to 316376 """ if count is None: count = [] pwd = os.getcwd() vocabulary_size = len(count) with open(os.path.join(pwd, name), "w") as f: for i in xrange(vocabulary_size): f.write("%s %d\n" % (tf.compat.as_text(count[i][0]), count[i][1])) tl.logging.info("%d vocab saved to %s in %s" % (vocabulary_size, name, pwd))
[ "def", "save_vocab", "(", "count", "=", "None", ",", "name", "=", "'vocab.txt'", ")", ":", "if", "count", "is", "None", ":", "count", "=", "[", "]", "pwd", "=", "os", ".", "getcwd", "(", ")", "vocabulary_size", "=", "len", "(", "count", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "pwd", ",", "name", ")", ",", "\"w\"", ")", "as", "f", ":", "for", "i", "in", "xrange", "(", "vocabulary_size", ")", ":", "f", ".", "write", "(", "\"%s %d\\n\"", "%", "(", "tf", ".", "compat", ".", "as_text", "(", "count", "[", "i", "]", "[", "0", "]", ")", ",", "count", "[", "i", "]", "[", "1", "]", ")", ")", "tl", ".", "logging", ".", "info", "(", "\"%d vocab saved to %s in %s\"", "%", "(", "vocabulary_size", ",", "name", ",", "pwd", ")", ")" ]
Save the vocabulary to a file so the model can be reloaded. Parameters ---------- count : a list of tuple and list count[0] is a list : the number of rare words, count[1:] are tuples : the number of occurrence of each word, e.g. [['UNK', 418391], (b'the', 1061396), (b'of', 593677), (b'and', 416629), (b'one', 411764)] Examples --------- >>> words = tl.files.load_matt_mahoney_text8_dataset() >>> vocabulary_size = 50000 >>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_dataset(words, vocabulary_size, True) >>> tl.nlp.save_vocab(count, name='vocab_text8.txt') >>> vocab_text8.txt UNK 418391 the 1061396 of 593677 and 416629 one 411764 in 372201 a 325873 to 316376
[ "Save", "the", "vocabulary", "to", "a", "file", "so", "the", "model", "can", "be", "reloaded", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L795-L830
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
basic_tokenizer
def basic_tokenizer(sentence, _WORD_SPLIT=re.compile(b"([.,!?\"':;)(])")): """Very basic tokenizer: split the sentence into a list of tokens. Parameters ----------- sentence : tensorflow.python.platform.gfile.GFile Object _WORD_SPLIT : regular expression for word spliting. Examples -------- >>> see create_vocabulary >>> from tensorflow.python.platform import gfile >>> train_path = "wmt/giga-fren.release2" >>> with gfile.GFile(train_path + ".en", mode="rb") as f: >>> for line in f: >>> tokens = tl.nlp.basic_tokenizer(line) >>> tl.logging.info(tokens) >>> exit() [b'Changing', b'Lives', b'|', b'Changing', b'Society', b'|', b'How', b'It', b'Works', b'|', b'Technology', b'Drives', b'Change', b'Home', b'|', b'Concepts', b'|', b'Teachers', b'|', b'Search', b'|', b'Overview', b'|', b'Credits', b'|', b'HHCC', b'Web', b'|', b'Reference', b'|', b'Feedback', b'Virtual', b'Museum', b'of', b'Canada', b'Home', b'Page'] References ---------- - Code from ``/tensorflow/models/rnn/translation/data_utils.py`` """ words = [] sentence = tf.compat.as_bytes(sentence) for space_separated_fragment in sentence.strip().split(): words.extend(re.split(_WORD_SPLIT, space_separated_fragment)) return [w for w in words if w]
python
def basic_tokenizer(sentence, _WORD_SPLIT=re.compile(b"([.,!?\"':;)(])")): """Very basic tokenizer: split the sentence into a list of tokens. Parameters ----------- sentence : tensorflow.python.platform.gfile.GFile Object _WORD_SPLIT : regular expression for word spliting. Examples -------- >>> see create_vocabulary >>> from tensorflow.python.platform import gfile >>> train_path = "wmt/giga-fren.release2" >>> with gfile.GFile(train_path + ".en", mode="rb") as f: >>> for line in f: >>> tokens = tl.nlp.basic_tokenizer(line) >>> tl.logging.info(tokens) >>> exit() [b'Changing', b'Lives', b'|', b'Changing', b'Society', b'|', b'How', b'It', b'Works', b'|', b'Technology', b'Drives', b'Change', b'Home', b'|', b'Concepts', b'|', b'Teachers', b'|', b'Search', b'|', b'Overview', b'|', b'Credits', b'|', b'HHCC', b'Web', b'|', b'Reference', b'|', b'Feedback', b'Virtual', b'Museum', b'of', b'Canada', b'Home', b'Page'] References ---------- - Code from ``/tensorflow/models/rnn/translation/data_utils.py`` """ words = [] sentence = tf.compat.as_bytes(sentence) for space_separated_fragment in sentence.strip().split(): words.extend(re.split(_WORD_SPLIT, space_separated_fragment)) return [w for w in words if w]
[ "def", "basic_tokenizer", "(", "sentence", ",", "_WORD_SPLIT", "=", "re", ".", "compile", "(", "b\"([.,!?\\\"':;)(])\"", ")", ")", ":", "words", "=", "[", "]", "sentence", "=", "tf", ".", "compat", ".", "as_bytes", "(", "sentence", ")", "for", "space_separated_fragment", "in", "sentence", ".", "strip", "(", ")", ".", "split", "(", ")", ":", "words", ".", "extend", "(", "re", ".", "split", "(", "_WORD_SPLIT", ",", "space_separated_fragment", ")", ")", "return", "[", "w", "for", "w", "in", "words", "if", "w", "]" ]
Very basic tokenizer: split the sentence into a list of tokens. Parameters ----------- sentence : tensorflow.python.platform.gfile.GFile Object _WORD_SPLIT : regular expression for word spliting. Examples -------- >>> see create_vocabulary >>> from tensorflow.python.platform import gfile >>> train_path = "wmt/giga-fren.release2" >>> with gfile.GFile(train_path + ".en", mode="rb") as f: >>> for line in f: >>> tokens = tl.nlp.basic_tokenizer(line) >>> tl.logging.info(tokens) >>> exit() [b'Changing', b'Lives', b'|', b'Changing', b'Society', b'|', b'How', b'It', b'Works', b'|', b'Technology', b'Drives', b'Change', b'Home', b'|', b'Concepts', b'|', b'Teachers', b'|', b'Search', b'|', b'Overview', b'|', b'Credits', b'|', b'HHCC', b'Web', b'|', b'Reference', b'|', b'Feedback', b'Virtual', b'Museum', b'of', b'Canada', b'Home', b'Page'] References ---------- - Code from ``/tensorflow/models/rnn/translation/data_utils.py``
[ "Very", "basic", "tokenizer", ":", "split", "the", "sentence", "into", "a", "list", "of", "tokens", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L836-L870
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
create_vocabulary
def create_vocabulary( vocabulary_path, data_path, max_vocabulary_size, tokenizer=None, normalize_digits=True, _DIGIT_RE=re.compile(br"\d"), _START_VOCAB=None ): r"""Create vocabulary file (if it does not exist yet) from data file. Data file is assumed to contain one sentence per line. Each sentence is tokenized and digits are normalized (if normalize_digits is set). Vocabulary contains the most-frequent tokens up to max_vocabulary_size. We write it to vocabulary_path in a one-token-per-line format, so that later token in the first line gets id=0, second line gets id=1, and so on. Parameters ----------- vocabulary_path : str Path where the vocabulary will be created. data_path : str Data file that will be used to create vocabulary. max_vocabulary_size : int Limit on the size of the created vocabulary. tokenizer : function A function to use to tokenize each data sentence. If None, basic_tokenizer will be used. normalize_digits : boolean If true, all digits are replaced by `0`. _DIGIT_RE : regular expression function Default is ``re.compile(br"\d")``. _START_VOCAB : list of str The pad, go, eos and unk token, default is ``[b"_PAD", b"_GO", b"_EOS", b"_UNK"]``. References ---------- - Code from ``/tensorflow/models/rnn/translation/data_utils.py`` """ if _START_VOCAB is None: _START_VOCAB = [b"_PAD", b"_GO", b"_EOS", b"_UNK"] if not gfile.Exists(vocabulary_path): tl.logging.info("Creating vocabulary %s from data %s" % (vocabulary_path, data_path)) vocab = {} with gfile.GFile(data_path, mode="rb") as f: counter = 0 for line in f: counter += 1 if counter % 100000 == 0: tl.logging.info(" processing line %d" % counter) tokens = tokenizer(line) if tokenizer else basic_tokenizer(line) for w in tokens: word = re.sub(_DIGIT_RE, b"0", w) if normalize_digits else w if word in vocab: vocab[word] += 1 else: vocab[word] = 1 vocab_list = _START_VOCAB + sorted(vocab, key=vocab.get, reverse=True) if len(vocab_list) > max_vocabulary_size: vocab_list = vocab_list[:max_vocabulary_size] with gfile.GFile(vocabulary_path, mode="wb") as vocab_file: for w in vocab_list: vocab_file.write(w + b"\n") else: tl.logging.info("Vocabulary %s from data %s exists" % (vocabulary_path, data_path))
python
def create_vocabulary( vocabulary_path, data_path, max_vocabulary_size, tokenizer=None, normalize_digits=True, _DIGIT_RE=re.compile(br"\d"), _START_VOCAB=None ): r"""Create vocabulary file (if it does not exist yet) from data file. Data file is assumed to contain one sentence per line. Each sentence is tokenized and digits are normalized (if normalize_digits is set). Vocabulary contains the most-frequent tokens up to max_vocabulary_size. We write it to vocabulary_path in a one-token-per-line format, so that later token in the first line gets id=0, second line gets id=1, and so on. Parameters ----------- vocabulary_path : str Path where the vocabulary will be created. data_path : str Data file that will be used to create vocabulary. max_vocabulary_size : int Limit on the size of the created vocabulary. tokenizer : function A function to use to tokenize each data sentence. If None, basic_tokenizer will be used. normalize_digits : boolean If true, all digits are replaced by `0`. _DIGIT_RE : regular expression function Default is ``re.compile(br"\d")``. _START_VOCAB : list of str The pad, go, eos and unk token, default is ``[b"_PAD", b"_GO", b"_EOS", b"_UNK"]``. References ---------- - Code from ``/tensorflow/models/rnn/translation/data_utils.py`` """ if _START_VOCAB is None: _START_VOCAB = [b"_PAD", b"_GO", b"_EOS", b"_UNK"] if not gfile.Exists(vocabulary_path): tl.logging.info("Creating vocabulary %s from data %s" % (vocabulary_path, data_path)) vocab = {} with gfile.GFile(data_path, mode="rb") as f: counter = 0 for line in f: counter += 1 if counter % 100000 == 0: tl.logging.info(" processing line %d" % counter) tokens = tokenizer(line) if tokenizer else basic_tokenizer(line) for w in tokens: word = re.sub(_DIGIT_RE, b"0", w) if normalize_digits else w if word in vocab: vocab[word] += 1 else: vocab[word] = 1 vocab_list = _START_VOCAB + sorted(vocab, key=vocab.get, reverse=True) if len(vocab_list) > max_vocabulary_size: vocab_list = vocab_list[:max_vocabulary_size] with gfile.GFile(vocabulary_path, mode="wb") as vocab_file: for w in vocab_list: vocab_file.write(w + b"\n") else: tl.logging.info("Vocabulary %s from data %s exists" % (vocabulary_path, data_path))
[ "def", "create_vocabulary", "(", "vocabulary_path", ",", "data_path", ",", "max_vocabulary_size", ",", "tokenizer", "=", "None", ",", "normalize_digits", "=", "True", ",", "_DIGIT_RE", "=", "re", ".", "compile", "(", "br\"\\d\"", ")", ",", "_START_VOCAB", "=", "None", ")", ":", "if", "_START_VOCAB", "is", "None", ":", "_START_VOCAB", "=", "[", "b\"_PAD\"", ",", "b\"_GO\"", ",", "b\"_EOS\"", ",", "b\"_UNK\"", "]", "if", "not", "gfile", ".", "Exists", "(", "vocabulary_path", ")", ":", "tl", ".", "logging", ".", "info", "(", "\"Creating vocabulary %s from data %s\"", "%", "(", "vocabulary_path", ",", "data_path", ")", ")", "vocab", "=", "{", "}", "with", "gfile", ".", "GFile", "(", "data_path", ",", "mode", "=", "\"rb\"", ")", "as", "f", ":", "counter", "=", "0", "for", "line", "in", "f", ":", "counter", "+=", "1", "if", "counter", "%", "100000", "==", "0", ":", "tl", ".", "logging", ".", "info", "(", "\" processing line %d\"", "%", "counter", ")", "tokens", "=", "tokenizer", "(", "line", ")", "if", "tokenizer", "else", "basic_tokenizer", "(", "line", ")", "for", "w", "in", "tokens", ":", "word", "=", "re", ".", "sub", "(", "_DIGIT_RE", ",", "b\"0\"", ",", "w", ")", "if", "normalize_digits", "else", "w", "if", "word", "in", "vocab", ":", "vocab", "[", "word", "]", "+=", "1", "else", ":", "vocab", "[", "word", "]", "=", "1", "vocab_list", "=", "_START_VOCAB", "+", "sorted", "(", "vocab", ",", "key", "=", "vocab", ".", "get", ",", "reverse", "=", "True", ")", "if", "len", "(", "vocab_list", ")", ">", "max_vocabulary_size", ":", "vocab_list", "=", "vocab_list", "[", ":", "max_vocabulary_size", "]", "with", "gfile", ".", "GFile", "(", "vocabulary_path", ",", "mode", "=", "\"wb\"", ")", "as", "vocab_file", ":", "for", "w", "in", "vocab_list", ":", "vocab_file", ".", "write", "(", "w", "+", "b\"\\n\"", ")", "else", ":", "tl", ".", "logging", ".", "info", "(", "\"Vocabulary %s from data %s exists\"", "%", "(", "vocabulary_path", ",", "data_path", ")", ")" ]
r"""Create vocabulary file (if it does not exist yet) from data file. Data file is assumed to contain one sentence per line. Each sentence is tokenized and digits are normalized (if normalize_digits is set). Vocabulary contains the most-frequent tokens up to max_vocabulary_size. We write it to vocabulary_path in a one-token-per-line format, so that later token in the first line gets id=0, second line gets id=1, and so on. Parameters ----------- vocabulary_path : str Path where the vocabulary will be created. data_path : str Data file that will be used to create vocabulary. max_vocabulary_size : int Limit on the size of the created vocabulary. tokenizer : function A function to use to tokenize each data sentence. If None, basic_tokenizer will be used. normalize_digits : boolean If true, all digits are replaced by `0`. _DIGIT_RE : regular expression function Default is ``re.compile(br"\d")``. _START_VOCAB : list of str The pad, go, eos and unk token, default is ``[b"_PAD", b"_GO", b"_EOS", b"_UNK"]``. References ---------- - Code from ``/tensorflow/models/rnn/translation/data_utils.py``
[ "r", "Create", "vocabulary", "file", "(", "if", "it", "does", "not", "exist", "yet", ")", "from", "data", "file", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L873-L932
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
initialize_vocabulary
def initialize_vocabulary(vocabulary_path): """Initialize vocabulary from file, return the `word_to_id` (dictionary) and `id_to_word` (list). We assume the vocabulary is stored one-item-per-line, so a file will result in a vocabulary {"dog": 0, "cat": 1}, and this function will also return the reversed-vocabulary ["dog", "cat"]. Parameters ----------- vocabulary_path : str Path to the file containing the vocabulary. Returns -------- vocab : dictionary a dictionary that maps word to ID. rev_vocab : list of int a list that maps ID to word. Examples --------- >>> Assume 'test' contains dog cat bird >>> vocab, rev_vocab = tl.nlp.initialize_vocabulary("test") >>> print(vocab) >>> {b'cat': 1, b'dog': 0, b'bird': 2} >>> print(rev_vocab) >>> [b'dog', b'cat', b'bird'] Raises ------- ValueError : if the provided vocabulary_path does not exist. """ if gfile.Exists(vocabulary_path): rev_vocab = [] with gfile.GFile(vocabulary_path, mode="rb") as f: rev_vocab.extend(f.readlines()) rev_vocab = [tf.compat.as_bytes(line.strip()) for line in rev_vocab] vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)]) return vocab, rev_vocab else: raise ValueError("Vocabulary file %s not found.", vocabulary_path)
python
def initialize_vocabulary(vocabulary_path): """Initialize vocabulary from file, return the `word_to_id` (dictionary) and `id_to_word` (list). We assume the vocabulary is stored one-item-per-line, so a file will result in a vocabulary {"dog": 0, "cat": 1}, and this function will also return the reversed-vocabulary ["dog", "cat"]. Parameters ----------- vocabulary_path : str Path to the file containing the vocabulary. Returns -------- vocab : dictionary a dictionary that maps word to ID. rev_vocab : list of int a list that maps ID to word. Examples --------- >>> Assume 'test' contains dog cat bird >>> vocab, rev_vocab = tl.nlp.initialize_vocabulary("test") >>> print(vocab) >>> {b'cat': 1, b'dog': 0, b'bird': 2} >>> print(rev_vocab) >>> [b'dog', b'cat', b'bird'] Raises ------- ValueError : if the provided vocabulary_path does not exist. """ if gfile.Exists(vocabulary_path): rev_vocab = [] with gfile.GFile(vocabulary_path, mode="rb") as f: rev_vocab.extend(f.readlines()) rev_vocab = [tf.compat.as_bytes(line.strip()) for line in rev_vocab] vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)]) return vocab, rev_vocab else: raise ValueError("Vocabulary file %s not found.", vocabulary_path)
[ "def", "initialize_vocabulary", "(", "vocabulary_path", ")", ":", "if", "gfile", ".", "Exists", "(", "vocabulary_path", ")", ":", "rev_vocab", "=", "[", "]", "with", "gfile", ".", "GFile", "(", "vocabulary_path", ",", "mode", "=", "\"rb\"", ")", "as", "f", ":", "rev_vocab", ".", "extend", "(", "f", ".", "readlines", "(", ")", ")", "rev_vocab", "=", "[", "tf", ".", "compat", ".", "as_bytes", "(", "line", ".", "strip", "(", ")", ")", "for", "line", "in", "rev_vocab", "]", "vocab", "=", "dict", "(", "[", "(", "x", ",", "y", ")", "for", "(", "y", ",", "x", ")", "in", "enumerate", "(", "rev_vocab", ")", "]", ")", "return", "vocab", ",", "rev_vocab", "else", ":", "raise", "ValueError", "(", "\"Vocabulary file %s not found.\"", ",", "vocabulary_path", ")" ]
Initialize vocabulary from file, return the `word_to_id` (dictionary) and `id_to_word` (list). We assume the vocabulary is stored one-item-per-line, so a file will result in a vocabulary {"dog": 0, "cat": 1}, and this function will also return the reversed-vocabulary ["dog", "cat"]. Parameters ----------- vocabulary_path : str Path to the file containing the vocabulary. Returns -------- vocab : dictionary a dictionary that maps word to ID. rev_vocab : list of int a list that maps ID to word. Examples --------- >>> Assume 'test' contains dog cat bird >>> vocab, rev_vocab = tl.nlp.initialize_vocabulary("test") >>> print(vocab) >>> {b'cat': 1, b'dog': 0, b'bird': 2} >>> print(rev_vocab) >>> [b'dog', b'cat', b'bird'] Raises ------- ValueError : if the provided vocabulary_path does not exist.
[ "Initialize", "vocabulary", "from", "file", "return", "the", "word_to_id", "(", "dictionary", ")", "and", "id_to_word", "(", "list", ")", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L935-L978
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
sentence_to_token_ids
def sentence_to_token_ids( sentence, vocabulary, tokenizer=None, normalize_digits=True, UNK_ID=3, _DIGIT_RE=re.compile(br"\d") ): """Convert a string to list of integers representing token-ids. For example, a sentence "I have a dog" may become tokenized into ["I", "have", "a", "dog"] and with vocabulary {"I": 1, "have": 2, "a": 4, "dog": 7"} this function will return [1, 2, 4, 7]. Parameters ----------- sentence : tensorflow.python.platform.gfile.GFile Object The sentence in bytes format to convert to token-ids, see ``basic_tokenizer()`` and ``data_to_token_ids()``. vocabulary : dictionary Mmapping tokens to integers. tokenizer : function A function to use to tokenize each sentence. If None, ``basic_tokenizer`` will be used. normalize_digits : boolean If true, all digits are replaced by 0. Returns -------- list of int The token-ids for the sentence. """ if tokenizer: words = tokenizer(sentence) else: words = basic_tokenizer(sentence) if not normalize_digits: return [vocabulary.get(w, UNK_ID) for w in words] # Normalize digits by 0 before looking words up in the vocabulary. return [vocabulary.get(re.sub(_DIGIT_RE, b"0", w), UNK_ID) for w in words]
python
def sentence_to_token_ids( sentence, vocabulary, tokenizer=None, normalize_digits=True, UNK_ID=3, _DIGIT_RE=re.compile(br"\d") ): """Convert a string to list of integers representing token-ids. For example, a sentence "I have a dog" may become tokenized into ["I", "have", "a", "dog"] and with vocabulary {"I": 1, "have": 2, "a": 4, "dog": 7"} this function will return [1, 2, 4, 7]. Parameters ----------- sentence : tensorflow.python.platform.gfile.GFile Object The sentence in bytes format to convert to token-ids, see ``basic_tokenizer()`` and ``data_to_token_ids()``. vocabulary : dictionary Mmapping tokens to integers. tokenizer : function A function to use to tokenize each sentence. If None, ``basic_tokenizer`` will be used. normalize_digits : boolean If true, all digits are replaced by 0. Returns -------- list of int The token-ids for the sentence. """ if tokenizer: words = tokenizer(sentence) else: words = basic_tokenizer(sentence) if not normalize_digits: return [vocabulary.get(w, UNK_ID) for w in words] # Normalize digits by 0 before looking words up in the vocabulary. return [vocabulary.get(re.sub(_DIGIT_RE, b"0", w), UNK_ID) for w in words]
[ "def", "sentence_to_token_ids", "(", "sentence", ",", "vocabulary", ",", "tokenizer", "=", "None", ",", "normalize_digits", "=", "True", ",", "UNK_ID", "=", "3", ",", "_DIGIT_RE", "=", "re", ".", "compile", "(", "br\"\\d\"", ")", ")", ":", "if", "tokenizer", ":", "words", "=", "tokenizer", "(", "sentence", ")", "else", ":", "words", "=", "basic_tokenizer", "(", "sentence", ")", "if", "not", "normalize_digits", ":", "return", "[", "vocabulary", ".", "get", "(", "w", ",", "UNK_ID", ")", "for", "w", "in", "words", "]", "# Normalize digits by 0 before looking words up in the vocabulary.", "return", "[", "vocabulary", ".", "get", "(", "re", ".", "sub", "(", "_DIGIT_RE", ",", "b\"0\"", ",", "w", ")", ",", "UNK_ID", ")", "for", "w", "in", "words", "]" ]
Convert a string to list of integers representing token-ids. For example, a sentence "I have a dog" may become tokenized into ["I", "have", "a", "dog"] and with vocabulary {"I": 1, "have": 2, "a": 4, "dog": 7"} this function will return [1, 2, 4, 7]. Parameters ----------- sentence : tensorflow.python.platform.gfile.GFile Object The sentence in bytes format to convert to token-ids, see ``basic_tokenizer()`` and ``data_to_token_ids()``. vocabulary : dictionary Mmapping tokens to integers. tokenizer : function A function to use to tokenize each sentence. If None, ``basic_tokenizer`` will be used. normalize_digits : boolean If true, all digits are replaced by 0. Returns -------- list of int The token-ids for the sentence.
[ "Convert", "a", "string", "to", "list", "of", "integers", "representing", "token", "-", "ids", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L981-L1014
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
data_to_token_ids
def data_to_token_ids( data_path, target_path, vocabulary_path, tokenizer=None, normalize_digits=True, UNK_ID=3, _DIGIT_RE=re.compile(br"\d") ): """Tokenize data file and turn into token-ids using given vocabulary file. This function loads data line-by-line from data_path, calls the above sentence_to_token_ids, and saves the result to target_path. See comment for sentence_to_token_ids on the details of token-ids format. Parameters ----------- data_path : str Path to the data file in one-sentence-per-line format. target_path : str Path where the file with token-ids will be created. vocabulary_path : str Path to the vocabulary file. tokenizer : function A function to use to tokenize each sentence. If None, ``basic_tokenizer`` will be used. normalize_digits : boolean If true, all digits are replaced by 0. References ---------- - Code from ``/tensorflow/models/rnn/translation/data_utils.py`` """ if not gfile.Exists(target_path): tl.logging.info("Tokenizing data in %s" % data_path) vocab, _ = initialize_vocabulary(vocabulary_path) with gfile.GFile(data_path, mode="rb") as data_file: with gfile.GFile(target_path, mode="w") as tokens_file: counter = 0 for line in data_file: counter += 1 if counter % 100000 == 0: tl.logging.info(" tokenizing line %d" % counter) token_ids = sentence_to_token_ids( line, vocab, tokenizer, normalize_digits, UNK_ID=UNK_ID, _DIGIT_RE=_DIGIT_RE ) tokens_file.write(" ".join([str(tok) for tok in token_ids]) + "\n") else: tl.logging.info("Target path %s exists" % target_path)
python
def data_to_token_ids( data_path, target_path, vocabulary_path, tokenizer=None, normalize_digits=True, UNK_ID=3, _DIGIT_RE=re.compile(br"\d") ): """Tokenize data file and turn into token-ids using given vocabulary file. This function loads data line-by-line from data_path, calls the above sentence_to_token_ids, and saves the result to target_path. See comment for sentence_to_token_ids on the details of token-ids format. Parameters ----------- data_path : str Path to the data file in one-sentence-per-line format. target_path : str Path where the file with token-ids will be created. vocabulary_path : str Path to the vocabulary file. tokenizer : function A function to use to tokenize each sentence. If None, ``basic_tokenizer`` will be used. normalize_digits : boolean If true, all digits are replaced by 0. References ---------- - Code from ``/tensorflow/models/rnn/translation/data_utils.py`` """ if not gfile.Exists(target_path): tl.logging.info("Tokenizing data in %s" % data_path) vocab, _ = initialize_vocabulary(vocabulary_path) with gfile.GFile(data_path, mode="rb") as data_file: with gfile.GFile(target_path, mode="w") as tokens_file: counter = 0 for line in data_file: counter += 1 if counter % 100000 == 0: tl.logging.info(" tokenizing line %d" % counter) token_ids = sentence_to_token_ids( line, vocab, tokenizer, normalize_digits, UNK_ID=UNK_ID, _DIGIT_RE=_DIGIT_RE ) tokens_file.write(" ".join([str(tok) for tok in token_ids]) + "\n") else: tl.logging.info("Target path %s exists" % target_path)
[ "def", "data_to_token_ids", "(", "data_path", ",", "target_path", ",", "vocabulary_path", ",", "tokenizer", "=", "None", ",", "normalize_digits", "=", "True", ",", "UNK_ID", "=", "3", ",", "_DIGIT_RE", "=", "re", ".", "compile", "(", "br\"\\d\"", ")", ")", ":", "if", "not", "gfile", ".", "Exists", "(", "target_path", ")", ":", "tl", ".", "logging", ".", "info", "(", "\"Tokenizing data in %s\"", "%", "data_path", ")", "vocab", ",", "_", "=", "initialize_vocabulary", "(", "vocabulary_path", ")", "with", "gfile", ".", "GFile", "(", "data_path", ",", "mode", "=", "\"rb\"", ")", "as", "data_file", ":", "with", "gfile", ".", "GFile", "(", "target_path", ",", "mode", "=", "\"w\"", ")", "as", "tokens_file", ":", "counter", "=", "0", "for", "line", "in", "data_file", ":", "counter", "+=", "1", "if", "counter", "%", "100000", "==", "0", ":", "tl", ".", "logging", ".", "info", "(", "\" tokenizing line %d\"", "%", "counter", ")", "token_ids", "=", "sentence_to_token_ids", "(", "line", ",", "vocab", ",", "tokenizer", ",", "normalize_digits", ",", "UNK_ID", "=", "UNK_ID", ",", "_DIGIT_RE", "=", "_DIGIT_RE", ")", "tokens_file", ".", "write", "(", "\" \"", ".", "join", "(", "[", "str", "(", "tok", ")", "for", "tok", "in", "token_ids", "]", ")", "+", "\"\\n\"", ")", "else", ":", "tl", ".", "logging", ".", "info", "(", "\"Target path %s exists\"", "%", "target_path", ")" ]
Tokenize data file and turn into token-ids using given vocabulary file. This function loads data line-by-line from data_path, calls the above sentence_to_token_ids, and saves the result to target_path. See comment for sentence_to_token_ids on the details of token-ids format. Parameters ----------- data_path : str Path to the data file in one-sentence-per-line format. target_path : str Path where the file with token-ids will be created. vocabulary_path : str Path to the vocabulary file. tokenizer : function A function to use to tokenize each sentence. If None, ``basic_tokenizer`` will be used. normalize_digits : boolean If true, all digits are replaced by 0. References ---------- - Code from ``/tensorflow/models/rnn/translation/data_utils.py``
[ "Tokenize", "data", "file", "and", "turn", "into", "token", "-", "ids", "using", "given", "vocabulary", "file", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L1017-L1060
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
moses_multi_bleu
def moses_multi_bleu(hypotheses, references, lowercase=False): """Calculate the bleu score for hypotheses and references using the MOSES ulti-bleu.perl script. Parameters ------------ hypotheses : numpy.array.string A numpy array of strings where each string is a single example. references : numpy.array.string A numpy array of strings where each string is a single example. lowercase : boolean If True, pass the "-lc" flag to the multi-bleu script Examples --------- >>> hypotheses = ["a bird is flying on the sky"] >>> references = ["two birds are flying on the sky", "a bird is on the top of the tree", "an airplane is on the sky",] >>> score = tl.nlp.moses_multi_bleu(hypotheses, references) Returns -------- float The BLEU score References ---------- - `Google/seq2seq/metric/bleu <https://github.com/google/seq2seq>`__ """ if np.size(hypotheses) == 0: return np.float32(0.0) # Get MOSES multi-bleu script try: multi_bleu_path, _ = urllib.request.urlretrieve( "https://raw.githubusercontent.com/moses-smt/mosesdecoder/" "master/scripts/generic/multi-bleu.perl" ) os.chmod(multi_bleu_path, 0o755) except Exception: # pylint: disable=W0702 tl.logging.info("Unable to fetch multi-bleu.perl script, using local.") metrics_dir = os.path.dirname(os.path.realpath(__file__)) bin_dir = os.path.abspath(os.path.join(metrics_dir, "..", "..", "bin")) multi_bleu_path = os.path.join(bin_dir, "tools/multi-bleu.perl") # Dump hypotheses and references to tempfiles hypothesis_file = tempfile.NamedTemporaryFile() hypothesis_file.write("\n".join(hypotheses).encode("utf-8")) hypothesis_file.write(b"\n") hypothesis_file.flush() reference_file = tempfile.NamedTemporaryFile() reference_file.write("\n".join(references).encode("utf-8")) reference_file.write(b"\n") reference_file.flush() # Calculate BLEU using multi-bleu script with open(hypothesis_file.name, "r") as read_pred: bleu_cmd = [multi_bleu_path] if lowercase: bleu_cmd += ["-lc"] bleu_cmd += [reference_file.name] try: bleu_out = subprocess.check_output(bleu_cmd, stdin=read_pred, stderr=subprocess.STDOUT) bleu_out = bleu_out.decode("utf-8") bleu_score = re.search(r"BLEU = (.+?),", bleu_out).group(1) bleu_score = float(bleu_score) except subprocess.CalledProcessError as error: if error.output is not None: tl.logging.warning("multi-bleu.perl script returned non-zero exit code") tl.logging.warning(error.output) bleu_score = np.float32(0.0) # Close temp files hypothesis_file.close() reference_file.close() return np.float32(bleu_score)
python
def moses_multi_bleu(hypotheses, references, lowercase=False): """Calculate the bleu score for hypotheses and references using the MOSES ulti-bleu.perl script. Parameters ------------ hypotheses : numpy.array.string A numpy array of strings where each string is a single example. references : numpy.array.string A numpy array of strings where each string is a single example. lowercase : boolean If True, pass the "-lc" flag to the multi-bleu script Examples --------- >>> hypotheses = ["a bird is flying on the sky"] >>> references = ["two birds are flying on the sky", "a bird is on the top of the tree", "an airplane is on the sky",] >>> score = tl.nlp.moses_multi_bleu(hypotheses, references) Returns -------- float The BLEU score References ---------- - `Google/seq2seq/metric/bleu <https://github.com/google/seq2seq>`__ """ if np.size(hypotheses) == 0: return np.float32(0.0) # Get MOSES multi-bleu script try: multi_bleu_path, _ = urllib.request.urlretrieve( "https://raw.githubusercontent.com/moses-smt/mosesdecoder/" "master/scripts/generic/multi-bleu.perl" ) os.chmod(multi_bleu_path, 0o755) except Exception: # pylint: disable=W0702 tl.logging.info("Unable to fetch multi-bleu.perl script, using local.") metrics_dir = os.path.dirname(os.path.realpath(__file__)) bin_dir = os.path.abspath(os.path.join(metrics_dir, "..", "..", "bin")) multi_bleu_path = os.path.join(bin_dir, "tools/multi-bleu.perl") # Dump hypotheses and references to tempfiles hypothesis_file = tempfile.NamedTemporaryFile() hypothesis_file.write("\n".join(hypotheses).encode("utf-8")) hypothesis_file.write(b"\n") hypothesis_file.flush() reference_file = tempfile.NamedTemporaryFile() reference_file.write("\n".join(references).encode("utf-8")) reference_file.write(b"\n") reference_file.flush() # Calculate BLEU using multi-bleu script with open(hypothesis_file.name, "r") as read_pred: bleu_cmd = [multi_bleu_path] if lowercase: bleu_cmd += ["-lc"] bleu_cmd += [reference_file.name] try: bleu_out = subprocess.check_output(bleu_cmd, stdin=read_pred, stderr=subprocess.STDOUT) bleu_out = bleu_out.decode("utf-8") bleu_score = re.search(r"BLEU = (.+?),", bleu_out).group(1) bleu_score = float(bleu_score) except subprocess.CalledProcessError as error: if error.output is not None: tl.logging.warning("multi-bleu.perl script returned non-zero exit code") tl.logging.warning(error.output) bleu_score = np.float32(0.0) # Close temp files hypothesis_file.close() reference_file.close() return np.float32(bleu_score)
[ "def", "moses_multi_bleu", "(", "hypotheses", ",", "references", ",", "lowercase", "=", "False", ")", ":", "if", "np", ".", "size", "(", "hypotheses", ")", "==", "0", ":", "return", "np", ".", "float32", "(", "0.0", ")", "# Get MOSES multi-bleu script", "try", ":", "multi_bleu_path", ",", "_", "=", "urllib", ".", "request", ".", "urlretrieve", "(", "\"https://raw.githubusercontent.com/moses-smt/mosesdecoder/\"", "\"master/scripts/generic/multi-bleu.perl\"", ")", "os", ".", "chmod", "(", "multi_bleu_path", ",", "0o755", ")", "except", "Exception", ":", "# pylint: disable=W0702", "tl", ".", "logging", ".", "info", "(", "\"Unable to fetch multi-bleu.perl script, using local.\"", ")", "metrics_dir", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "realpath", "(", "__file__", ")", ")", "bin_dir", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "metrics_dir", ",", "\"..\"", ",", "\"..\"", ",", "\"bin\"", ")", ")", "multi_bleu_path", "=", "os", ".", "path", ".", "join", "(", "bin_dir", ",", "\"tools/multi-bleu.perl\"", ")", "# Dump hypotheses and references to tempfiles", "hypothesis_file", "=", "tempfile", ".", "NamedTemporaryFile", "(", ")", "hypothesis_file", ".", "write", "(", "\"\\n\"", ".", "join", "(", "hypotheses", ")", ".", "encode", "(", "\"utf-8\"", ")", ")", "hypothesis_file", ".", "write", "(", "b\"\\n\"", ")", "hypothesis_file", ".", "flush", "(", ")", "reference_file", "=", "tempfile", ".", "NamedTemporaryFile", "(", ")", "reference_file", ".", "write", "(", "\"\\n\"", ".", "join", "(", "references", ")", ".", "encode", "(", "\"utf-8\"", ")", ")", "reference_file", ".", "write", "(", "b\"\\n\"", ")", "reference_file", ".", "flush", "(", ")", "# Calculate BLEU using multi-bleu script", "with", "open", "(", "hypothesis_file", ".", "name", ",", "\"r\"", ")", "as", "read_pred", ":", "bleu_cmd", "=", "[", "multi_bleu_path", "]", "if", "lowercase", ":", "bleu_cmd", "+=", "[", "\"-lc\"", "]", "bleu_cmd", "+=", "[", "reference_file", ".", "name", "]", "try", ":", "bleu_out", "=", "subprocess", ".", "check_output", "(", "bleu_cmd", ",", "stdin", "=", "read_pred", ",", "stderr", "=", "subprocess", ".", "STDOUT", ")", "bleu_out", "=", "bleu_out", ".", "decode", "(", "\"utf-8\"", ")", "bleu_score", "=", "re", ".", "search", "(", "r\"BLEU = (.+?),\"", ",", "bleu_out", ")", ".", "group", "(", "1", ")", "bleu_score", "=", "float", "(", "bleu_score", ")", "except", "subprocess", ".", "CalledProcessError", "as", "error", ":", "if", "error", ".", "output", "is", "not", "None", ":", "tl", ".", "logging", ".", "warning", "(", "\"multi-bleu.perl script returned non-zero exit code\"", ")", "tl", ".", "logging", ".", "warning", "(", "error", ".", "output", ")", "bleu_score", "=", "np", ".", "float32", "(", "0.0", ")", "# Close temp files", "hypothesis_file", ".", "close", "(", ")", "reference_file", ".", "close", "(", ")", "return", "np", ".", "float32", "(", "bleu_score", ")" ]
Calculate the bleu score for hypotheses and references using the MOSES ulti-bleu.perl script. Parameters ------------ hypotheses : numpy.array.string A numpy array of strings where each string is a single example. references : numpy.array.string A numpy array of strings where each string is a single example. lowercase : boolean If True, pass the "-lc" flag to the multi-bleu script Examples --------- >>> hypotheses = ["a bird is flying on the sky"] >>> references = ["two birds are flying on the sky", "a bird is on the top of the tree", "an airplane is on the sky",] >>> score = tl.nlp.moses_multi_bleu(hypotheses, references) Returns -------- float The BLEU score References ---------- - `Google/seq2seq/metric/bleu <https://github.com/google/seq2seq>`__
[ "Calculate", "the", "bleu", "score", "for", "hypotheses", "and", "references", "using", "the", "MOSES", "ulti", "-", "bleu", ".", "perl", "script", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L1063-L1139
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
SimpleVocabulary.word_to_id
def word_to_id(self, word): """Returns the integer id of a word string.""" if word in self._vocab: return self._vocab[word] else: return self._unk_id
python
def word_to_id(self, word): """Returns the integer id of a word string.""" if word in self._vocab: return self._vocab[word] else: return self._unk_id
[ "def", "word_to_id", "(", "self", ",", "word", ")", ":", "if", "word", "in", "self", ".", "_vocab", ":", "return", "self", ".", "_vocab", "[", "word", "]", "else", ":", "return", "self", ".", "_unk_id" ]
Returns the integer id of a word string.
[ "Returns", "the", "integer", "id", "of", "a", "word", "string", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L226-L231
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
Vocabulary.word_to_id
def word_to_id(self, word): """Returns the integer word id of a word string.""" if word in self.vocab: return self.vocab[word] else: return self.unk_id
python
def word_to_id(self, word): """Returns the integer word id of a word string.""" if word in self.vocab: return self.vocab[word] else: return self.unk_id
[ "def", "word_to_id", "(", "self", ",", "word", ")", ":", "if", "word", "in", "self", ".", "vocab", ":", "return", "self", ".", "vocab", "[", "word", "]", "else", ":", "return", "self", ".", "unk_id" ]
Returns the integer word id of a word string.
[ "Returns", "the", "integer", "word", "id", "of", "a", "word", "string", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L320-L325
valid
tensorlayer/tensorlayer
tensorlayer/nlp.py
Vocabulary.id_to_word
def id_to_word(self, word_id): """Returns the word string of an integer word id.""" if word_id >= len(self.reverse_vocab): return self.reverse_vocab[self.unk_id] else: return self.reverse_vocab[word_id]
python
def id_to_word(self, word_id): """Returns the word string of an integer word id.""" if word_id >= len(self.reverse_vocab): return self.reverse_vocab[self.unk_id] else: return self.reverse_vocab[word_id]
[ "def", "id_to_word", "(", "self", ",", "word_id", ")", ":", "if", "word_id", ">=", "len", "(", "self", ".", "reverse_vocab", ")", ":", "return", "self", ".", "reverse_vocab", "[", "self", ".", "unk_id", "]", "else", ":", "return", "self", ".", "reverse_vocab", "[", "word_id", "]" ]
Returns the word string of an integer word id.
[ "Returns", "the", "word", "string", "of", "an", "integer", "word", "id", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/tensorlayer/nlp.py#L327-L332
valid
tensorlayer/tensorlayer
examples/text_generation/tutorial_generate_text.py
basic_clean_str
def basic_clean_str(string): """Tokenization/string cleaning for a datasets.""" string = re.sub(r"\n", " ", string) # '\n' --> ' ' string = re.sub(r"\'s", " \'s", string) # it's --> it 's string = re.sub(r"\’s", " \'s", string) string = re.sub(r"\'ve", " have", string) # they've --> they have string = re.sub(r"\’ve", " have", string) string = re.sub(r"\'t", " not", string) # can't --> can not string = re.sub(r"\’t", " not", string) string = re.sub(r"\'re", " are", string) # they're --> they are string = re.sub(r"\’re", " are", string) string = re.sub(r"\'d", "", string) # I'd (I had, I would) --> I string = re.sub(r"\’d", "", string) string = re.sub(r"\'ll", " will", string) # I'll --> I will string = re.sub(r"\’ll", " will", string) string = re.sub(r"\“", " ", string) # “a” --> “ a ” string = re.sub(r"\”", " ", string) string = re.sub(r"\"", " ", string) # "a" --> " a " string = re.sub(r"\'", " ", string) # they' --> they ' string = re.sub(r"\’", " ", string) # they’ --> they ’ string = re.sub(r"\.", " . ", string) # they. --> they . string = re.sub(r"\,", " , ", string) # they, --> they , string = re.sub(r"\!", " ! ", string) string = re.sub(r"\-", " ", string) # "low-cost"--> lost cost string = re.sub(r"\(", " ", string) # (they) --> ( they) string = re.sub(r"\)", " ", string) # ( they) --> ( they ) string = re.sub(r"\]", " ", string) # they] --> they ] string = re.sub(r"\[", " ", string) # they[ --> they [ string = re.sub(r"\?", " ", string) # they? --> they ? string = re.sub(r"\>", " ", string) # they> --> they > string = re.sub(r"\<", " ", string) # they< --> they < string = re.sub(r"\=", " ", string) # easier= --> easier = string = re.sub(r"\;", " ", string) # easier; --> easier ; string = re.sub(r"\;", " ", string) string = re.sub(r"\:", " ", string) # easier: --> easier : string = re.sub(r"\"", " ", string) # easier" --> easier " string = re.sub(r"\$", " ", string) # $380 --> $ 380 string = re.sub(r"\_", " ", string) # _100 --> _ 100 string = re.sub(r"\s{2,}", " ", string) # Akara is handsome --> Akara is handsome return string.strip().lower()
python
def basic_clean_str(string): """Tokenization/string cleaning for a datasets.""" string = re.sub(r"\n", " ", string) # '\n' --> ' ' string = re.sub(r"\'s", " \'s", string) # it's --> it 's string = re.sub(r"\’s", " \'s", string) string = re.sub(r"\'ve", " have", string) # they've --> they have string = re.sub(r"\’ve", " have", string) string = re.sub(r"\'t", " not", string) # can't --> can not string = re.sub(r"\’t", " not", string) string = re.sub(r"\'re", " are", string) # they're --> they are string = re.sub(r"\’re", " are", string) string = re.sub(r"\'d", "", string) # I'd (I had, I would) --> I string = re.sub(r"\’d", "", string) string = re.sub(r"\'ll", " will", string) # I'll --> I will string = re.sub(r"\’ll", " will", string) string = re.sub(r"\“", " ", string) # “a” --> “ a ” string = re.sub(r"\”", " ", string) string = re.sub(r"\"", " ", string) # "a" --> " a " string = re.sub(r"\'", " ", string) # they' --> they ' string = re.sub(r"\’", " ", string) # they’ --> they ’ string = re.sub(r"\.", " . ", string) # they. --> they . string = re.sub(r"\,", " , ", string) # they, --> they , string = re.sub(r"\!", " ! ", string) string = re.sub(r"\-", " ", string) # "low-cost"--> lost cost string = re.sub(r"\(", " ", string) # (they) --> ( they) string = re.sub(r"\)", " ", string) # ( they) --> ( they ) string = re.sub(r"\]", " ", string) # they] --> they ] string = re.sub(r"\[", " ", string) # they[ --> they [ string = re.sub(r"\?", " ", string) # they? --> they ? string = re.sub(r"\>", " ", string) # they> --> they > string = re.sub(r"\<", " ", string) # they< --> they < string = re.sub(r"\=", " ", string) # easier= --> easier = string = re.sub(r"\;", " ", string) # easier; --> easier ; string = re.sub(r"\;", " ", string) string = re.sub(r"\:", " ", string) # easier: --> easier : string = re.sub(r"\"", " ", string) # easier" --> easier " string = re.sub(r"\$", " ", string) # $380 --> $ 380 string = re.sub(r"\_", " ", string) # _100 --> _ 100 string = re.sub(r"\s{2,}", " ", string) # Akara is handsome --> Akara is handsome return string.strip().lower()
[ "def", "basic_clean_str", "(", "string", ")", ":", "string", "=", "re", ".", "sub", "(", "r\"\\n\"", ",", "\" \"", ",", "string", ")", "# '\\n' --> ' '", "string", "=", "re", ".", "sub", "(", "r\"\\'s\"", ",", "\" \\'s\"", ",", "string", ")", "# it's --> it 's", "string", "=", "re", ".", "sub", "(", "r\"\\’s\", ", "\"", "\\'s\", ", "s", "ring)", "", "string", "=", "re", ".", "sub", "(", "r\"\\'ve\"", ",", "\" have\"", ",", "string", ")", "# they've --> they have", "string", "=", "re", ".", "sub", "(", "r\"\\’ve\", ", "\"", "have\", ", "s", "ring)", "", "string", "=", "re", ".", "sub", "(", "r\"\\'t\"", ",", "\" not\"", ",", "string", ")", "# can't --> can not", "string", "=", "re", ".", "sub", "(", "r\"\\’t\", ", "\"", "not\", ", "s", "ring)", "", "string", "=", "re", ".", "sub", "(", "r\"\\'re\"", ",", "\" are\"", ",", "string", ")", "# they're --> they are", "string", "=", "re", ".", "sub", "(", "r\"\\’re\", ", "\"", "are\", ", "s", "ring)", "", "string", "=", "re", ".", "sub", "(", "r\"\\'d\"", ",", "\"\"", ",", "string", ")", "# I'd (I had, I would) --> I", "string", "=", "re", ".", "sub", "(", "r\"\\’d\", ", "\"", ", ", "s", "ring)", "", "string", "=", "re", ".", "sub", "(", "r\"\\'ll\"", ",", "\" will\"", ",", "string", ")", "# I'll --> I will", "string", "=", "re", ".", "sub", "(", "r\"\\’ll\", ", "\"", "will\", ", "s", "ring)", "", "string", "=", "re", ".", "sub", "(", "r\"\\“\", ", "\"", " \", ", "s", "ring) ", " ", "“a” --> “ a ”", "string", "=", "re", ".", "sub", "(", "r\"\\”\", ", "\"", " \", ", "s", "ring)", "", "string", "=", "re", ".", "sub", "(", "r\"\\\"\"", ",", "\" \"", ",", "string", ")", "# \"a\" --> \" a \"", "string", "=", "re", ".", "sub", "(", "r\"\\'\"", ",", "\" \"", ",", "string", ")", "# they' --> they '", "string", "=", "re", ".", "sub", "(", "r\"\\’\", ", "\"", " \", ", "s", "ring) ", " ", "they’ --> they ’", "string", "=", "re", ".", "sub", "(", "r\"\\.\"", ",", "\" . \"", ",", "string", ")", "# they. --> they .", "string", "=", "re", ".", "sub", "(", "r\"\\,\"", ",", "\" , \"", ",", "string", ")", "# they, --> they ,", "string", "=", "re", ".", "sub", "(", "r\"\\!\"", ",", "\" ! \"", ",", "string", ")", "string", "=", "re", ".", "sub", "(", "r\"\\-\"", ",", "\" \"", ",", "string", ")", "# \"low-cost\"--> lost cost", "string", "=", "re", ".", "sub", "(", "r\"\\(\"", ",", "\" \"", ",", "string", ")", "# (they) --> ( they)", "string", "=", "re", ".", "sub", "(", "r\"\\)\"", ",", "\" \"", ",", "string", ")", "# ( they) --> ( they )", "string", "=", "re", ".", "sub", "(", "r\"\\]\"", ",", "\" \"", ",", "string", ")", "# they] --> they ]", "string", "=", "re", ".", "sub", "(", "r\"\\[\"", ",", "\" \"", ",", "string", ")", "# they[ --> they [", "string", "=", "re", ".", "sub", "(", "r\"\\?\"", ",", "\" \"", ",", "string", ")", "# they? --> they ?", "string", "=", "re", ".", "sub", "(", "r\"\\>\"", ",", "\" \"", ",", "string", ")", "# they> --> they >", "string", "=", "re", ".", "sub", "(", "r\"\\<\"", ",", "\" \"", ",", "string", ")", "# they< --> they <", "string", "=", "re", ".", "sub", "(", "r\"\\=\"", ",", "\" \"", ",", "string", ")", "# easier= --> easier =", "string", "=", "re", ".", "sub", "(", "r\"\\;\"", ",", "\" \"", ",", "string", ")", "# easier; --> easier ;", "string", "=", "re", ".", "sub", "(", "r\"\\;\"", ",", "\" \"", ",", "string", ")", "string", "=", "re", ".", "sub", "(", "r\"\\:\"", ",", "\" \"", ",", "string", ")", "# easier: --> easier :", "string", "=", "re", ".", "sub", "(", "r\"\\\"\"", ",", "\" \"", ",", "string", ")", "# easier\" --> easier \"", "string", "=", "re", ".", "sub", "(", "r\"\\$\"", ",", "\" \"", ",", "string", ")", "# $380 --> $ 380", "string", "=", "re", ".", "sub", "(", "r\"\\_\"", ",", "\" \"", ",", "string", ")", "# _100 --> _ 100", "string", "=", "re", ".", "sub", "(", "r\"\\s{2,}\"", ",", "\" \"", ",", "string", ")", "# Akara is handsome --> Akara is handsome", "return", "string", ".", "strip", "(", ")", ".", "lower", "(", ")" ]
Tokenization/string cleaning for a datasets.
[ "Tokenization", "/", "string", "cleaning", "for", "a", "datasets", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/text_generation/tutorial_generate_text.py#L39-L78
valid
tensorlayer/tensorlayer
examples/text_generation/tutorial_generate_text.py
main_restore_embedding_layer
def main_restore_embedding_layer(): """How to use Embedding layer, and how to convert IDs to vector, IDs to words, etc. """ # Step 1: Build the embedding matrix and load the existing embedding matrix. vocabulary_size = 50000 embedding_size = 128 model_file_name = "model_word2vec_50k_128" batch_size = None print("Load existing embedding matrix and dictionaries") all_var = tl.files.load_npy_to_any(name=model_file_name + '.npy') data = all_var['data'] count = all_var['count'] dictionary = all_var['dictionary'] reverse_dictionary = all_var['reverse_dictionary'] tl.nlp.save_vocab(count, name='vocab_' + model_file_name + '.txt') del all_var, data, count load_params = tl.files.load_npz(name=model_file_name + '.npz') x = tf.placeholder(tf.int32, shape=[batch_size]) emb_net = tl.layers.EmbeddingInputlayer(x, vocabulary_size, embedding_size, name='emb') # sess.run(tf.global_variables_initializer()) sess.run(tf.global_variables_initializer()) tl.files.assign_params(sess, [load_params[0]], emb_net) emb_net.print_params() emb_net.print_layers() # Step 2: Input word(s), output the word vector(s). word = b'hello' word_id = dictionary[word] print('word_id:', word_id) words = [b'i', b'am', b'tensor', b'layer'] word_ids = tl.nlp.words_to_word_ids(words, dictionary, _UNK) context = tl.nlp.word_ids_to_words(word_ids, reverse_dictionary) print('word_ids:', word_ids) print('context:', context) vector = sess.run(emb_net.outputs, feed_dict={x: [word_id]}) print('vector:', vector.shape) vectors = sess.run(emb_net.outputs, feed_dict={x: word_ids}) print('vectors:', vectors.shape)
python
def main_restore_embedding_layer(): """How to use Embedding layer, and how to convert IDs to vector, IDs to words, etc. """ # Step 1: Build the embedding matrix and load the existing embedding matrix. vocabulary_size = 50000 embedding_size = 128 model_file_name = "model_word2vec_50k_128" batch_size = None print("Load existing embedding matrix and dictionaries") all_var = tl.files.load_npy_to_any(name=model_file_name + '.npy') data = all_var['data'] count = all_var['count'] dictionary = all_var['dictionary'] reverse_dictionary = all_var['reverse_dictionary'] tl.nlp.save_vocab(count, name='vocab_' + model_file_name + '.txt') del all_var, data, count load_params = tl.files.load_npz(name=model_file_name + '.npz') x = tf.placeholder(tf.int32, shape=[batch_size]) emb_net = tl.layers.EmbeddingInputlayer(x, vocabulary_size, embedding_size, name='emb') # sess.run(tf.global_variables_initializer()) sess.run(tf.global_variables_initializer()) tl.files.assign_params(sess, [load_params[0]], emb_net) emb_net.print_params() emb_net.print_layers() # Step 2: Input word(s), output the word vector(s). word = b'hello' word_id = dictionary[word] print('word_id:', word_id) words = [b'i', b'am', b'tensor', b'layer'] word_ids = tl.nlp.words_to_word_ids(words, dictionary, _UNK) context = tl.nlp.word_ids_to_words(word_ids, reverse_dictionary) print('word_ids:', word_ids) print('context:', context) vector = sess.run(emb_net.outputs, feed_dict={x: [word_id]}) print('vector:', vector.shape) vectors = sess.run(emb_net.outputs, feed_dict={x: word_ids}) print('vectors:', vectors.shape)
[ "def", "main_restore_embedding_layer", "(", ")", ":", "# Step 1: Build the embedding matrix and load the existing embedding matrix.", "vocabulary_size", "=", "50000", "embedding_size", "=", "128", "model_file_name", "=", "\"model_word2vec_50k_128\"", "batch_size", "=", "None", "print", "(", "\"Load existing embedding matrix and dictionaries\"", ")", "all_var", "=", "tl", ".", "files", ".", "load_npy_to_any", "(", "name", "=", "model_file_name", "+", "'.npy'", ")", "data", "=", "all_var", "[", "'data'", "]", "count", "=", "all_var", "[", "'count'", "]", "dictionary", "=", "all_var", "[", "'dictionary'", "]", "reverse_dictionary", "=", "all_var", "[", "'reverse_dictionary'", "]", "tl", ".", "nlp", ".", "save_vocab", "(", "count", ",", "name", "=", "'vocab_'", "+", "model_file_name", "+", "'.txt'", ")", "del", "all_var", ",", "data", ",", "count", "load_params", "=", "tl", ".", "files", ".", "load_npz", "(", "name", "=", "model_file_name", "+", "'.npz'", ")", "x", "=", "tf", ".", "placeholder", "(", "tf", ".", "int32", ",", "shape", "=", "[", "batch_size", "]", ")", "emb_net", "=", "tl", ".", "layers", ".", "EmbeddingInputlayer", "(", "x", ",", "vocabulary_size", ",", "embedding_size", ",", "name", "=", "'emb'", ")", "# sess.run(tf.global_variables_initializer())", "sess", ".", "run", "(", "tf", ".", "global_variables_initializer", "(", ")", ")", "tl", ".", "files", ".", "assign_params", "(", "sess", ",", "[", "load_params", "[", "0", "]", "]", ",", "emb_net", ")", "emb_net", ".", "print_params", "(", ")", "emb_net", ".", "print_layers", "(", ")", "# Step 2: Input word(s), output the word vector(s).", "word", "=", "b'hello'", "word_id", "=", "dictionary", "[", "word", "]", "print", "(", "'word_id:'", ",", "word_id", ")", "words", "=", "[", "b'i'", ",", "b'am'", ",", "b'tensor'", ",", "b'layer'", "]", "word_ids", "=", "tl", ".", "nlp", ".", "words_to_word_ids", "(", "words", ",", "dictionary", ",", "_UNK", ")", "context", "=", "tl", ".", "nlp", ".", "word_ids_to_words", "(", "word_ids", ",", "reverse_dictionary", ")", "print", "(", "'word_ids:'", ",", "word_ids", ")", "print", "(", "'context:'", ",", "context", ")", "vector", "=", "sess", ".", "run", "(", "emb_net", ".", "outputs", ",", "feed_dict", "=", "{", "x", ":", "[", "word_id", "]", "}", ")", "print", "(", "'vector:'", ",", "vector", ".", "shape", ")", "vectors", "=", "sess", ".", "run", "(", "emb_net", ".", "outputs", ",", "feed_dict", "=", "{", "x", ":", "word_ids", "}", ")", "print", "(", "'vectors:'", ",", "vectors", ".", "shape", ")" ]
How to use Embedding layer, and how to convert IDs to vector, IDs to words, etc.
[ "How", "to", "use", "Embedding", "layer", "and", "how", "to", "convert", "IDs", "to", "vector", "IDs", "to", "words", "etc", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/text_generation/tutorial_generate_text.py#L132-L182
valid
tensorlayer/tensorlayer
examples/text_generation/tutorial_generate_text.py
main_lstm_generate_text
def main_lstm_generate_text(): """Generate text by Synced sequence input and output.""" # rnn model and update (describtion: see tutorial_ptb_lstm.py) init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 5 sequence_length = 20 hidden_size = 200 max_epoch = 4 max_max_epoch = 100 lr_decay = 0.9 batch_size = 20 top_k_list = [1, 3, 5, 10] print_length = 30 model_file_name = "model_generate_text.npz" # ===== Prepare Data words = customized_read_words(input_fpath="data/trump/trump_text.txt") vocab = tl.nlp.create_vocab([words], word_counts_output_file='vocab.txt', min_word_count=1) vocab = tl.nlp.Vocabulary('vocab.txt', unk_word="<UNK>") vocab_size = vocab.unk_id + 1 train_data = [vocab.word_to_id(word) for word in words] # Set the seed to generate sentence. seed = "it is a" # seed = basic_clean_str(seed).split() seed = nltk.tokenize.word_tokenize(seed) print('seed : %s' % seed) sess = tf.InteractiveSession() # ===== Define model input_data = tf.placeholder(tf.int32, [batch_size, sequence_length]) targets = tf.placeholder(tf.int32, [batch_size, sequence_length]) # Testing (Evaluation), for generate text input_data_test = tf.placeholder(tf.int32, [1, 1]) def inference(x, is_train, sequence_length, reuse=None): """If reuse is True, the inferences use the existing parameters, then different inferences share the same parameters. """ print("\nsequence_length: %d, is_train: %s, reuse: %s" % (sequence_length, is_train, reuse)) rnn_init = tf.random_uniform_initializer(-init_scale, init_scale) with tf.variable_scope("model", reuse=reuse): network = EmbeddingInputlayer(x, vocab_size, hidden_size, rnn_init, name='embedding') network = RNNLayer( network, cell_fn=tf.contrib.rnn.BasicLSTMCell, cell_init_args={ 'forget_bias': 0.0, 'state_is_tuple': True }, n_hidden=hidden_size, initializer=rnn_init, n_steps=sequence_length, return_last=False, return_seq_2d=True, name='lstm1' ) lstm1 = network network = DenseLayer(network, vocab_size, W_init=rnn_init, b_init=rnn_init, act=None, name='output') return network, lstm1 # Inference for Training network, lstm1 = inference(input_data, is_train=True, sequence_length=sequence_length, reuse=None) # Inference for generate text, sequence_length=1 network_test, lstm1_test = inference(input_data_test, is_train=False, sequence_length=1, reuse=True) y_linear = network_test.outputs y_soft = tf.nn.softmax(y_linear) # y_id = tf.argmax(tf.nn.softmax(y), 1) # ===== Define train ops def loss_fn(outputs, targets, batch_size, sequence_length): # Returns the cost function of Cross-entropy of two sequences, implement # softmax internally. # outputs : 2D tensor [n_examples, n_outputs] # targets : 2D tensor [n_examples, n_outputs] # n_examples = batch_size * sequence_length # so # cost is the averaged cost of each mini-batch (concurrent process). loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [outputs], [tf.reshape(targets, [-1])], [tf.ones([batch_size * sequence_length])] ) cost = tf.reduce_sum(loss) / batch_size return cost # Cost for Training cost = loss_fn(network.outputs, targets, batch_size, sequence_length) # Truncated Backpropagation for training with tf.variable_scope('learning_rate'): lr = tf.Variable(0.0, trainable=False) # You can get all trainable parameters as follow. # tvars = tf.trainable_variables() # Alternatively, you can specify the parameters for training as follw. # tvars = network.all_params $ all parameters # tvars = network.all_params[1:] $ parameters except embedding matrix # Train the whole network. tvars = network.all_params grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(lr) train_op = optimizer.apply_gradients(zip(grads, tvars)) # ===== Training sess.run(tf.global_variables_initializer()) print("\nStart learning a model to generate text") for i in range(max_max_epoch): # decrease the learning_rate after ``max_epoch``, by multipling lr_decay. new_lr_decay = lr_decay**max(i - max_epoch, 0.0) sess.run(tf.assign(lr, learning_rate * new_lr_decay)) print("Epoch: %d/%d Learning rate: %.8f" % (i + 1, max_max_epoch, sess.run(lr))) epoch_size = ((len(train_data) // batch_size) - 1) // sequence_length start_time = time.time() costs = 0.0 iters = 0 # reset all states at the begining of every epoch state1 = tl.layers.initialize_rnn_state(lstm1.initial_state) for step, (x, y) in enumerate(tl.iterate.ptb_iterator(train_data, batch_size, sequence_length)): _cost, state1, _ = sess.run( [cost, lstm1.final_state, train_op], feed_dict={ input_data: x, targets: y, lstm1.initial_state: state1 } ) costs += _cost iters += sequence_length if step % (epoch_size // 10) == 1: print( "%.3f perplexity: %.3f speed: %.0f wps" % (step * 1.0 / epoch_size, np.exp(costs / iters), iters * batch_size / (time.time() - start_time)) ) train_perplexity = np.exp(costs / iters) # print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity)) print("Epoch: %d/%d Train Perplexity: %.3f" % (i + 1, max_max_epoch, train_perplexity)) # for diversity in diversity_list: # testing: sample from top k words for top_k in top_k_list: # Testing, generate some text from a given seed. state1 = tl.layers.initialize_rnn_state(lstm1_test.initial_state) # state2 = tl.layers.initialize_rnn_state(lstm2_test.initial_state) outs_id = [vocab.word_to_id(w) for w in seed] # feed the seed to initialize the state for generation. for ids in outs_id[:-1]: a_id = np.asarray(ids).reshape(1, 1) state1 = sess.run( [lstm1_test.final_state], feed_dict={ input_data_test: a_id, lstm1_test.initial_state: state1 } ) # feed the last word in seed, and start to generate sentence. a_id = outs_id[-1] for _ in range(print_length): a_id = np.asarray(a_id).reshape(1, 1) out, state1 = sess.run( [y_soft, lstm1_test.final_state], feed_dict={ input_data_test: a_id, lstm1_test.initial_state: state1 } ) # Without sampling # a_id = np.argmax(out[0]) # Sample from all words, if vocab_size is large, # this may have numeric error. # a_id = tl.nlp.sample(out[0], diversity) # Sample from the top k words. a_id = tl.nlp.sample_top(out[0], top_k=top_k) outs_id.append(a_id) sentence = [vocab.id_to_word(w) for w in outs_id] sentence = " ".join(sentence) # print(diversity, ':', sentence) print(top_k, ':', sentence) print("Save model") tl.files.save_npz(network_test.all_params, name=model_file_name)
python
def main_lstm_generate_text(): """Generate text by Synced sequence input and output.""" # rnn model and update (describtion: see tutorial_ptb_lstm.py) init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 5 sequence_length = 20 hidden_size = 200 max_epoch = 4 max_max_epoch = 100 lr_decay = 0.9 batch_size = 20 top_k_list = [1, 3, 5, 10] print_length = 30 model_file_name = "model_generate_text.npz" # ===== Prepare Data words = customized_read_words(input_fpath="data/trump/trump_text.txt") vocab = tl.nlp.create_vocab([words], word_counts_output_file='vocab.txt', min_word_count=1) vocab = tl.nlp.Vocabulary('vocab.txt', unk_word="<UNK>") vocab_size = vocab.unk_id + 1 train_data = [vocab.word_to_id(word) for word in words] # Set the seed to generate sentence. seed = "it is a" # seed = basic_clean_str(seed).split() seed = nltk.tokenize.word_tokenize(seed) print('seed : %s' % seed) sess = tf.InteractiveSession() # ===== Define model input_data = tf.placeholder(tf.int32, [batch_size, sequence_length]) targets = tf.placeholder(tf.int32, [batch_size, sequence_length]) # Testing (Evaluation), for generate text input_data_test = tf.placeholder(tf.int32, [1, 1]) def inference(x, is_train, sequence_length, reuse=None): """If reuse is True, the inferences use the existing parameters, then different inferences share the same parameters. """ print("\nsequence_length: %d, is_train: %s, reuse: %s" % (sequence_length, is_train, reuse)) rnn_init = tf.random_uniform_initializer(-init_scale, init_scale) with tf.variable_scope("model", reuse=reuse): network = EmbeddingInputlayer(x, vocab_size, hidden_size, rnn_init, name='embedding') network = RNNLayer( network, cell_fn=tf.contrib.rnn.BasicLSTMCell, cell_init_args={ 'forget_bias': 0.0, 'state_is_tuple': True }, n_hidden=hidden_size, initializer=rnn_init, n_steps=sequence_length, return_last=False, return_seq_2d=True, name='lstm1' ) lstm1 = network network = DenseLayer(network, vocab_size, W_init=rnn_init, b_init=rnn_init, act=None, name='output') return network, lstm1 # Inference for Training network, lstm1 = inference(input_data, is_train=True, sequence_length=sequence_length, reuse=None) # Inference for generate text, sequence_length=1 network_test, lstm1_test = inference(input_data_test, is_train=False, sequence_length=1, reuse=True) y_linear = network_test.outputs y_soft = tf.nn.softmax(y_linear) # y_id = tf.argmax(tf.nn.softmax(y), 1) # ===== Define train ops def loss_fn(outputs, targets, batch_size, sequence_length): # Returns the cost function of Cross-entropy of two sequences, implement # softmax internally. # outputs : 2D tensor [n_examples, n_outputs] # targets : 2D tensor [n_examples, n_outputs] # n_examples = batch_size * sequence_length # so # cost is the averaged cost of each mini-batch (concurrent process). loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [outputs], [tf.reshape(targets, [-1])], [tf.ones([batch_size * sequence_length])] ) cost = tf.reduce_sum(loss) / batch_size return cost # Cost for Training cost = loss_fn(network.outputs, targets, batch_size, sequence_length) # Truncated Backpropagation for training with tf.variable_scope('learning_rate'): lr = tf.Variable(0.0, trainable=False) # You can get all trainable parameters as follow. # tvars = tf.trainable_variables() # Alternatively, you can specify the parameters for training as follw. # tvars = network.all_params $ all parameters # tvars = network.all_params[1:] $ parameters except embedding matrix # Train the whole network. tvars = network.all_params grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(lr) train_op = optimizer.apply_gradients(zip(grads, tvars)) # ===== Training sess.run(tf.global_variables_initializer()) print("\nStart learning a model to generate text") for i in range(max_max_epoch): # decrease the learning_rate after ``max_epoch``, by multipling lr_decay. new_lr_decay = lr_decay**max(i - max_epoch, 0.0) sess.run(tf.assign(lr, learning_rate * new_lr_decay)) print("Epoch: %d/%d Learning rate: %.8f" % (i + 1, max_max_epoch, sess.run(lr))) epoch_size = ((len(train_data) // batch_size) - 1) // sequence_length start_time = time.time() costs = 0.0 iters = 0 # reset all states at the begining of every epoch state1 = tl.layers.initialize_rnn_state(lstm1.initial_state) for step, (x, y) in enumerate(tl.iterate.ptb_iterator(train_data, batch_size, sequence_length)): _cost, state1, _ = sess.run( [cost, lstm1.final_state, train_op], feed_dict={ input_data: x, targets: y, lstm1.initial_state: state1 } ) costs += _cost iters += sequence_length if step % (epoch_size // 10) == 1: print( "%.3f perplexity: %.3f speed: %.0f wps" % (step * 1.0 / epoch_size, np.exp(costs / iters), iters * batch_size / (time.time() - start_time)) ) train_perplexity = np.exp(costs / iters) # print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity)) print("Epoch: %d/%d Train Perplexity: %.3f" % (i + 1, max_max_epoch, train_perplexity)) # for diversity in diversity_list: # testing: sample from top k words for top_k in top_k_list: # Testing, generate some text from a given seed. state1 = tl.layers.initialize_rnn_state(lstm1_test.initial_state) # state2 = tl.layers.initialize_rnn_state(lstm2_test.initial_state) outs_id = [vocab.word_to_id(w) for w in seed] # feed the seed to initialize the state for generation. for ids in outs_id[:-1]: a_id = np.asarray(ids).reshape(1, 1) state1 = sess.run( [lstm1_test.final_state], feed_dict={ input_data_test: a_id, lstm1_test.initial_state: state1 } ) # feed the last word in seed, and start to generate sentence. a_id = outs_id[-1] for _ in range(print_length): a_id = np.asarray(a_id).reshape(1, 1) out, state1 = sess.run( [y_soft, lstm1_test.final_state], feed_dict={ input_data_test: a_id, lstm1_test.initial_state: state1 } ) # Without sampling # a_id = np.argmax(out[0]) # Sample from all words, if vocab_size is large, # this may have numeric error. # a_id = tl.nlp.sample(out[0], diversity) # Sample from the top k words. a_id = tl.nlp.sample_top(out[0], top_k=top_k) outs_id.append(a_id) sentence = [vocab.id_to_word(w) for w in outs_id] sentence = " ".join(sentence) # print(diversity, ':', sentence) print(top_k, ':', sentence) print("Save model") tl.files.save_npz(network_test.all_params, name=model_file_name)
[ "def", "main_lstm_generate_text", "(", ")", ":", "# rnn model and update (describtion: see tutorial_ptb_lstm.py)", "init_scale", "=", "0.1", "learning_rate", "=", "1.0", "max_grad_norm", "=", "5", "sequence_length", "=", "20", "hidden_size", "=", "200", "max_epoch", "=", "4", "max_max_epoch", "=", "100", "lr_decay", "=", "0.9", "batch_size", "=", "20", "top_k_list", "=", "[", "1", ",", "3", ",", "5", ",", "10", "]", "print_length", "=", "30", "model_file_name", "=", "\"model_generate_text.npz\"", "# ===== Prepare Data", "words", "=", "customized_read_words", "(", "input_fpath", "=", "\"data/trump/trump_text.txt\"", ")", "vocab", "=", "tl", ".", "nlp", ".", "create_vocab", "(", "[", "words", "]", ",", "word_counts_output_file", "=", "'vocab.txt'", ",", "min_word_count", "=", "1", ")", "vocab", "=", "tl", ".", "nlp", ".", "Vocabulary", "(", "'vocab.txt'", ",", "unk_word", "=", "\"<UNK>\"", ")", "vocab_size", "=", "vocab", ".", "unk_id", "+", "1", "train_data", "=", "[", "vocab", ".", "word_to_id", "(", "word", ")", "for", "word", "in", "words", "]", "# Set the seed to generate sentence.", "seed", "=", "\"it is a\"", "# seed = basic_clean_str(seed).split()", "seed", "=", "nltk", ".", "tokenize", ".", "word_tokenize", "(", "seed", ")", "print", "(", "'seed : %s'", "%", "seed", ")", "sess", "=", "tf", ".", "InteractiveSession", "(", ")", "# ===== Define model", "input_data", "=", "tf", ".", "placeholder", "(", "tf", ".", "int32", ",", "[", "batch_size", ",", "sequence_length", "]", ")", "targets", "=", "tf", ".", "placeholder", "(", "tf", ".", "int32", ",", "[", "batch_size", ",", "sequence_length", "]", ")", "# Testing (Evaluation), for generate text", "input_data_test", "=", "tf", ".", "placeholder", "(", "tf", ".", "int32", ",", "[", "1", ",", "1", "]", ")", "def", "inference", "(", "x", ",", "is_train", ",", "sequence_length", ",", "reuse", "=", "None", ")", ":", "\"\"\"If reuse is True, the inferences use the existing parameters,\n then different inferences share the same parameters.\n \"\"\"", "print", "(", "\"\\nsequence_length: %d, is_train: %s, reuse: %s\"", "%", "(", "sequence_length", ",", "is_train", ",", "reuse", ")", ")", "rnn_init", "=", "tf", ".", "random_uniform_initializer", "(", "-", "init_scale", ",", "init_scale", ")", "with", "tf", ".", "variable_scope", "(", "\"model\"", ",", "reuse", "=", "reuse", ")", ":", "network", "=", "EmbeddingInputlayer", "(", "x", ",", "vocab_size", ",", "hidden_size", ",", "rnn_init", ",", "name", "=", "'embedding'", ")", "network", "=", "RNNLayer", "(", "network", ",", "cell_fn", "=", "tf", ".", "contrib", ".", "rnn", ".", "BasicLSTMCell", ",", "cell_init_args", "=", "{", "'forget_bias'", ":", "0.0", ",", "'state_is_tuple'", ":", "True", "}", ",", "n_hidden", "=", "hidden_size", ",", "initializer", "=", "rnn_init", ",", "n_steps", "=", "sequence_length", ",", "return_last", "=", "False", ",", "return_seq_2d", "=", "True", ",", "name", "=", "'lstm1'", ")", "lstm1", "=", "network", "network", "=", "DenseLayer", "(", "network", ",", "vocab_size", ",", "W_init", "=", "rnn_init", ",", "b_init", "=", "rnn_init", ",", "act", "=", "None", ",", "name", "=", "'output'", ")", "return", "network", ",", "lstm1", "# Inference for Training", "network", ",", "lstm1", "=", "inference", "(", "input_data", ",", "is_train", "=", "True", ",", "sequence_length", "=", "sequence_length", ",", "reuse", "=", "None", ")", "# Inference for generate text, sequence_length=1", "network_test", ",", "lstm1_test", "=", "inference", "(", "input_data_test", ",", "is_train", "=", "False", ",", "sequence_length", "=", "1", ",", "reuse", "=", "True", ")", "y_linear", "=", "network_test", ".", "outputs", "y_soft", "=", "tf", ".", "nn", ".", "softmax", "(", "y_linear", ")", "# y_id = tf.argmax(tf.nn.softmax(y), 1)", "# ===== Define train ops", "def", "loss_fn", "(", "outputs", ",", "targets", ",", "batch_size", ",", "sequence_length", ")", ":", "# Returns the cost function of Cross-entropy of two sequences, implement", "# softmax internally.", "# outputs : 2D tensor [n_examples, n_outputs]", "# targets : 2D tensor [n_examples, n_outputs]", "# n_examples = batch_size * sequence_length", "# so", "# cost is the averaged cost of each mini-batch (concurrent process).", "loss", "=", "tf", ".", "contrib", ".", "legacy_seq2seq", ".", "sequence_loss_by_example", "(", "[", "outputs", "]", ",", "[", "tf", ".", "reshape", "(", "targets", ",", "[", "-", "1", "]", ")", "]", ",", "[", "tf", ".", "ones", "(", "[", "batch_size", "*", "sequence_length", "]", ")", "]", ")", "cost", "=", "tf", ".", "reduce_sum", "(", "loss", ")", "/", "batch_size", "return", "cost", "# Cost for Training", "cost", "=", "loss_fn", "(", "network", ".", "outputs", ",", "targets", ",", "batch_size", ",", "sequence_length", ")", "# Truncated Backpropagation for training", "with", "tf", ".", "variable_scope", "(", "'learning_rate'", ")", ":", "lr", "=", "tf", ".", "Variable", "(", "0.0", ",", "trainable", "=", "False", ")", "# You can get all trainable parameters as follow.", "# tvars = tf.trainable_variables()", "# Alternatively, you can specify the parameters for training as follw.", "# tvars = network.all_params $ all parameters", "# tvars = network.all_params[1:] $ parameters except embedding matrix", "# Train the whole network.", "tvars", "=", "network", ".", "all_params", "grads", ",", "_", "=", "tf", ".", "clip_by_global_norm", "(", "tf", ".", "gradients", "(", "cost", ",", "tvars", ")", ",", "max_grad_norm", ")", "optimizer", "=", "tf", ".", "train", ".", "GradientDescentOptimizer", "(", "lr", ")", "train_op", "=", "optimizer", ".", "apply_gradients", "(", "zip", "(", "grads", ",", "tvars", ")", ")", "# ===== Training", "sess", ".", "run", "(", "tf", ".", "global_variables_initializer", "(", ")", ")", "print", "(", "\"\\nStart learning a model to generate text\"", ")", "for", "i", "in", "range", "(", "max_max_epoch", ")", ":", "# decrease the learning_rate after ``max_epoch``, by multipling lr_decay.", "new_lr_decay", "=", "lr_decay", "**", "max", "(", "i", "-", "max_epoch", ",", "0.0", ")", "sess", ".", "run", "(", "tf", ".", "assign", "(", "lr", ",", "learning_rate", "*", "new_lr_decay", ")", ")", "print", "(", "\"Epoch: %d/%d Learning rate: %.8f\"", "%", "(", "i", "+", "1", ",", "max_max_epoch", ",", "sess", ".", "run", "(", "lr", ")", ")", ")", "epoch_size", "=", "(", "(", "len", "(", "train_data", ")", "//", "batch_size", ")", "-", "1", ")", "//", "sequence_length", "start_time", "=", "time", ".", "time", "(", ")", "costs", "=", "0.0", "iters", "=", "0", "# reset all states at the begining of every epoch", "state1", "=", "tl", ".", "layers", ".", "initialize_rnn_state", "(", "lstm1", ".", "initial_state", ")", "for", "step", ",", "(", "x", ",", "y", ")", "in", "enumerate", "(", "tl", ".", "iterate", ".", "ptb_iterator", "(", "train_data", ",", "batch_size", ",", "sequence_length", ")", ")", ":", "_cost", ",", "state1", ",", "_", "=", "sess", ".", "run", "(", "[", "cost", ",", "lstm1", ".", "final_state", ",", "train_op", "]", ",", "feed_dict", "=", "{", "input_data", ":", "x", ",", "targets", ":", "y", ",", "lstm1", ".", "initial_state", ":", "state1", "}", ")", "costs", "+=", "_cost", "iters", "+=", "sequence_length", "if", "step", "%", "(", "epoch_size", "//", "10", ")", "==", "1", ":", "print", "(", "\"%.3f perplexity: %.3f speed: %.0f wps\"", "%", "(", "step", "*", "1.0", "/", "epoch_size", ",", "np", ".", "exp", "(", "costs", "/", "iters", ")", ",", "iters", "*", "batch_size", "/", "(", "time", ".", "time", "(", ")", "-", "start_time", ")", ")", ")", "train_perplexity", "=", "np", ".", "exp", "(", "costs", "/", "iters", ")", "# print(\"Epoch: %d Train Perplexity: %.3f\" % (i + 1, train_perplexity))", "print", "(", "\"Epoch: %d/%d Train Perplexity: %.3f\"", "%", "(", "i", "+", "1", ",", "max_max_epoch", ",", "train_perplexity", ")", ")", "# for diversity in diversity_list:", "# testing: sample from top k words", "for", "top_k", "in", "top_k_list", ":", "# Testing, generate some text from a given seed.", "state1", "=", "tl", ".", "layers", ".", "initialize_rnn_state", "(", "lstm1_test", ".", "initial_state", ")", "# state2 = tl.layers.initialize_rnn_state(lstm2_test.initial_state)", "outs_id", "=", "[", "vocab", ".", "word_to_id", "(", "w", ")", "for", "w", "in", "seed", "]", "# feed the seed to initialize the state for generation.", "for", "ids", "in", "outs_id", "[", ":", "-", "1", "]", ":", "a_id", "=", "np", ".", "asarray", "(", "ids", ")", ".", "reshape", "(", "1", ",", "1", ")", "state1", "=", "sess", ".", "run", "(", "[", "lstm1_test", ".", "final_state", "]", ",", "feed_dict", "=", "{", "input_data_test", ":", "a_id", ",", "lstm1_test", ".", "initial_state", ":", "state1", "}", ")", "# feed the last word in seed, and start to generate sentence.", "a_id", "=", "outs_id", "[", "-", "1", "]", "for", "_", "in", "range", "(", "print_length", ")", ":", "a_id", "=", "np", ".", "asarray", "(", "a_id", ")", ".", "reshape", "(", "1", ",", "1", ")", "out", ",", "state1", "=", "sess", ".", "run", "(", "[", "y_soft", ",", "lstm1_test", ".", "final_state", "]", ",", "feed_dict", "=", "{", "input_data_test", ":", "a_id", ",", "lstm1_test", ".", "initial_state", ":", "state1", "}", ")", "# Without sampling", "# a_id = np.argmax(out[0])", "# Sample from all words, if vocab_size is large,", "# this may have numeric error.", "# a_id = tl.nlp.sample(out[0], diversity)", "# Sample from the top k words.", "a_id", "=", "tl", ".", "nlp", ".", "sample_top", "(", "out", "[", "0", "]", ",", "top_k", "=", "top_k", ")", "outs_id", ".", "append", "(", "a_id", ")", "sentence", "=", "[", "vocab", ".", "id_to_word", "(", "w", ")", "for", "w", "in", "outs_id", "]", "sentence", "=", "\" \"", ".", "join", "(", "sentence", ")", "# print(diversity, ':', sentence)", "print", "(", "top_k", ",", "':'", ",", "sentence", ")", "print", "(", "\"Save model\"", ")", "tl", ".", "files", ".", "save_npz", "(", "network_test", ".", "all_params", ",", "name", "=", "model_file_name", ")" ]
Generate text by Synced sequence input and output.
[ "Generate", "text", "by", "Synced", "sequence", "input", "and", "output", "." ]
aa9e52e36c7058a7e6fd81d36563ca6850b21956
https://github.com/tensorlayer/tensorlayer/blob/aa9e52e36c7058a7e6fd81d36563ca6850b21956/examples/text_generation/tutorial_generate_text.py#L185-L362
valid
numenta/nupic
src/nupic/swarming/api.py
createAndStartSwarm
def createAndStartSwarm(client, clientInfo="", clientKey="", params="", minimumWorkers=None, maximumWorkers=None, alreadyRunning=False): """Create and start a swarm job. Args: client - A string identifying the calling client. There is a small limit for the length of the value. See ClientJobsDAO.CLIENT_MAX_LEN. clientInfo - JSON encoded dict of client specific information. clientKey - Foreign key. Limited in length, see ClientJobsDAO._initTables. params - JSON encoded dict of the parameters for the job. This can be fetched out of the database by the worker processes based on the jobID. minimumWorkers - The minimum workers to allocate to the swarm. Set to None to use the default. maximumWorkers - The maximum workers to allocate to the swarm. Set to None to use the swarm default. Set to 0 to use the maximum scheduler value. alreadyRunning - Insert a job record for an already running process. Used for testing. """ if minimumWorkers is None: minimumWorkers = Configuration.getInt( "nupic.hypersearch.minWorkersPerSwarm") if maximumWorkers is None: maximumWorkers = Configuration.getInt( "nupic.hypersearch.maxWorkersPerSwarm") return ClientJobsDAO.get().jobInsert( client=client, cmdLine="$HYPERSEARCH", clientInfo=clientInfo, clientKey=clientKey, alreadyRunning=alreadyRunning, params=params, minimumWorkers=minimumWorkers, maximumWorkers=maximumWorkers, jobType=ClientJobsDAO.JOB_TYPE_HS)
python
def createAndStartSwarm(client, clientInfo="", clientKey="", params="", minimumWorkers=None, maximumWorkers=None, alreadyRunning=False): """Create and start a swarm job. Args: client - A string identifying the calling client. There is a small limit for the length of the value. See ClientJobsDAO.CLIENT_MAX_LEN. clientInfo - JSON encoded dict of client specific information. clientKey - Foreign key. Limited in length, see ClientJobsDAO._initTables. params - JSON encoded dict of the parameters for the job. This can be fetched out of the database by the worker processes based on the jobID. minimumWorkers - The minimum workers to allocate to the swarm. Set to None to use the default. maximumWorkers - The maximum workers to allocate to the swarm. Set to None to use the swarm default. Set to 0 to use the maximum scheduler value. alreadyRunning - Insert a job record for an already running process. Used for testing. """ if minimumWorkers is None: minimumWorkers = Configuration.getInt( "nupic.hypersearch.minWorkersPerSwarm") if maximumWorkers is None: maximumWorkers = Configuration.getInt( "nupic.hypersearch.maxWorkersPerSwarm") return ClientJobsDAO.get().jobInsert( client=client, cmdLine="$HYPERSEARCH", clientInfo=clientInfo, clientKey=clientKey, alreadyRunning=alreadyRunning, params=params, minimumWorkers=minimumWorkers, maximumWorkers=maximumWorkers, jobType=ClientJobsDAO.JOB_TYPE_HS)
[ "def", "createAndStartSwarm", "(", "client", ",", "clientInfo", "=", "\"\"", ",", "clientKey", "=", "\"\"", ",", "params", "=", "\"\"", ",", "minimumWorkers", "=", "None", ",", "maximumWorkers", "=", "None", ",", "alreadyRunning", "=", "False", ")", ":", "if", "minimumWorkers", "is", "None", ":", "minimumWorkers", "=", "Configuration", ".", "getInt", "(", "\"nupic.hypersearch.minWorkersPerSwarm\"", ")", "if", "maximumWorkers", "is", "None", ":", "maximumWorkers", "=", "Configuration", ".", "getInt", "(", "\"nupic.hypersearch.maxWorkersPerSwarm\"", ")", "return", "ClientJobsDAO", ".", "get", "(", ")", ".", "jobInsert", "(", "client", "=", "client", ",", "cmdLine", "=", "\"$HYPERSEARCH\"", ",", "clientInfo", "=", "clientInfo", ",", "clientKey", "=", "clientKey", ",", "alreadyRunning", "=", "alreadyRunning", ",", "params", "=", "params", ",", "minimumWorkers", "=", "minimumWorkers", ",", "maximumWorkers", "=", "maximumWorkers", ",", "jobType", "=", "ClientJobsDAO", ".", "JOB_TYPE_HS", ")" ]
Create and start a swarm job. Args: client - A string identifying the calling client. There is a small limit for the length of the value. See ClientJobsDAO.CLIENT_MAX_LEN. clientInfo - JSON encoded dict of client specific information. clientKey - Foreign key. Limited in length, see ClientJobsDAO._initTables. params - JSON encoded dict of the parameters for the job. This can be fetched out of the database by the worker processes based on the jobID. minimumWorkers - The minimum workers to allocate to the swarm. Set to None to use the default. maximumWorkers - The maximum workers to allocate to the swarm. Set to None to use the swarm default. Set to 0 to use the maximum scheduler value. alreadyRunning - Insert a job record for an already running process. Used for testing.
[ "Create", "and", "start", "a", "swarm", "job", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/swarming/api.py#L34-L69
valid
numenta/nupic
src/nupic/swarming/api.py
getSwarmModelParams
def getSwarmModelParams(modelID): """Retrieve the Engine-level model params from a Swarm model Args: modelID - Engine-level model ID of the Swarm model Returns: JSON-encoded string containing Model Params """ # TODO: the use of nupic.frameworks.opf.helpers.loadExperimentDescriptionScriptFromDir when # retrieving module params results in a leakage of pf_base_descriptionNN and # pf_descriptionNN module imports for every call to getSwarmModelParams, so # the leakage is unlimited when getSwarmModelParams is called by a # long-running process. An alternate solution is to execute the guts of # this function's logic in a seprate process (via multiprocessing module). cjDAO = ClientJobsDAO.get() (jobID, description) = cjDAO.modelsGetFields( modelID, ["jobId", "genDescription"]) (baseDescription,) = cjDAO.jobGetFields(jobID, ["genBaseDescription"]) # Construct a directory with base.py and description.py for loading model # params, and use nupic.frameworks.opf.helpers to extract model params from # those files descriptionDirectory = tempfile.mkdtemp() try: baseDescriptionFilePath = os.path.join(descriptionDirectory, "base.py") with open(baseDescriptionFilePath, mode="wb") as f: f.write(baseDescription) descriptionFilePath = os.path.join(descriptionDirectory, "description.py") with open(descriptionFilePath, mode="wb") as f: f.write(description) expIface = helpers.getExperimentDescriptionInterfaceFromModule( helpers.loadExperimentDescriptionScriptFromDir(descriptionDirectory)) return json.dumps( dict( modelConfig=expIface.getModelDescription(), inferenceArgs=expIface.getModelControl().get("inferenceArgs", None))) finally: shutil.rmtree(descriptionDirectory, ignore_errors=True)
python
def getSwarmModelParams(modelID): """Retrieve the Engine-level model params from a Swarm model Args: modelID - Engine-level model ID of the Swarm model Returns: JSON-encoded string containing Model Params """ # TODO: the use of nupic.frameworks.opf.helpers.loadExperimentDescriptionScriptFromDir when # retrieving module params results in a leakage of pf_base_descriptionNN and # pf_descriptionNN module imports for every call to getSwarmModelParams, so # the leakage is unlimited when getSwarmModelParams is called by a # long-running process. An alternate solution is to execute the guts of # this function's logic in a seprate process (via multiprocessing module). cjDAO = ClientJobsDAO.get() (jobID, description) = cjDAO.modelsGetFields( modelID, ["jobId", "genDescription"]) (baseDescription,) = cjDAO.jobGetFields(jobID, ["genBaseDescription"]) # Construct a directory with base.py and description.py for loading model # params, and use nupic.frameworks.opf.helpers to extract model params from # those files descriptionDirectory = tempfile.mkdtemp() try: baseDescriptionFilePath = os.path.join(descriptionDirectory, "base.py") with open(baseDescriptionFilePath, mode="wb") as f: f.write(baseDescription) descriptionFilePath = os.path.join(descriptionDirectory, "description.py") with open(descriptionFilePath, mode="wb") as f: f.write(description) expIface = helpers.getExperimentDescriptionInterfaceFromModule( helpers.loadExperimentDescriptionScriptFromDir(descriptionDirectory)) return json.dumps( dict( modelConfig=expIface.getModelDescription(), inferenceArgs=expIface.getModelControl().get("inferenceArgs", None))) finally: shutil.rmtree(descriptionDirectory, ignore_errors=True)
[ "def", "getSwarmModelParams", "(", "modelID", ")", ":", "# TODO: the use of nupic.frameworks.opf.helpers.loadExperimentDescriptionScriptFromDir when", "# retrieving module params results in a leakage of pf_base_descriptionNN and", "# pf_descriptionNN module imports for every call to getSwarmModelParams, so", "# the leakage is unlimited when getSwarmModelParams is called by a", "# long-running process. An alternate solution is to execute the guts of", "# this function's logic in a seprate process (via multiprocessing module).", "cjDAO", "=", "ClientJobsDAO", ".", "get", "(", ")", "(", "jobID", ",", "description", ")", "=", "cjDAO", ".", "modelsGetFields", "(", "modelID", ",", "[", "\"jobId\"", ",", "\"genDescription\"", "]", ")", "(", "baseDescription", ",", ")", "=", "cjDAO", ".", "jobGetFields", "(", "jobID", ",", "[", "\"genBaseDescription\"", "]", ")", "# Construct a directory with base.py and description.py for loading model", "# params, and use nupic.frameworks.opf.helpers to extract model params from", "# those files", "descriptionDirectory", "=", "tempfile", ".", "mkdtemp", "(", ")", "try", ":", "baseDescriptionFilePath", "=", "os", ".", "path", ".", "join", "(", "descriptionDirectory", ",", "\"base.py\"", ")", "with", "open", "(", "baseDescriptionFilePath", ",", "mode", "=", "\"wb\"", ")", "as", "f", ":", "f", ".", "write", "(", "baseDescription", ")", "descriptionFilePath", "=", "os", ".", "path", ".", "join", "(", "descriptionDirectory", ",", "\"description.py\"", ")", "with", "open", "(", "descriptionFilePath", ",", "mode", "=", "\"wb\"", ")", "as", "f", ":", "f", ".", "write", "(", "description", ")", "expIface", "=", "helpers", ".", "getExperimentDescriptionInterfaceFromModule", "(", "helpers", ".", "loadExperimentDescriptionScriptFromDir", "(", "descriptionDirectory", ")", ")", "return", "json", ".", "dumps", "(", "dict", "(", "modelConfig", "=", "expIface", ".", "getModelDescription", "(", ")", ",", "inferenceArgs", "=", "expIface", ".", "getModelControl", "(", ")", ".", "get", "(", "\"inferenceArgs\"", ",", "None", ")", ")", ")", "finally", ":", "shutil", ".", "rmtree", "(", "descriptionDirectory", ",", "ignore_errors", "=", "True", ")" ]
Retrieve the Engine-level model params from a Swarm model Args: modelID - Engine-level model ID of the Swarm model Returns: JSON-encoded string containing Model Params
[ "Retrieve", "the", "Engine", "-", "level", "model", "params", "from", "a", "Swarm", "model" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/swarming/api.py#L73-L119
valid
numenta/nupic
src/nupic/database/connection.py
enableConcurrencyChecks
def enableConcurrencyChecks(maxConcurrency, raiseException=True): """ Enable the diagnostic feature for debugging unexpected concurrency in acquiring ConnectionWrapper instances. NOTE: This MUST be done early in your application's execution, BEFORE any accesses to ConnectionFactory or connection policies from your application (including imports and sub-imports of your app). Parameters: ---------------------------------------------------------------- maxConcurrency: A non-negative integer that represents the maximum expected number of outstanding connections. When this value is exceeded, useful information will be logged and, depending on the value of the raiseException arg, ConcurrencyExceededError may be raised. raiseException: If true, ConcurrencyExceededError will be raised when maxConcurrency is exceeded. """ global g_max_concurrency, g_max_concurrency_raise_exception assert maxConcurrency >= 0 g_max_concurrency = maxConcurrency g_max_concurrency_raise_exception = raiseException return
python
def enableConcurrencyChecks(maxConcurrency, raiseException=True): """ Enable the diagnostic feature for debugging unexpected concurrency in acquiring ConnectionWrapper instances. NOTE: This MUST be done early in your application's execution, BEFORE any accesses to ConnectionFactory or connection policies from your application (including imports and sub-imports of your app). Parameters: ---------------------------------------------------------------- maxConcurrency: A non-negative integer that represents the maximum expected number of outstanding connections. When this value is exceeded, useful information will be logged and, depending on the value of the raiseException arg, ConcurrencyExceededError may be raised. raiseException: If true, ConcurrencyExceededError will be raised when maxConcurrency is exceeded. """ global g_max_concurrency, g_max_concurrency_raise_exception assert maxConcurrency >= 0 g_max_concurrency = maxConcurrency g_max_concurrency_raise_exception = raiseException return
[ "def", "enableConcurrencyChecks", "(", "maxConcurrency", ",", "raiseException", "=", "True", ")", ":", "global", "g_max_concurrency", ",", "g_max_concurrency_raise_exception", "assert", "maxConcurrency", ">=", "0", "g_max_concurrency", "=", "maxConcurrency", "g_max_concurrency_raise_exception", "=", "raiseException", "return" ]
Enable the diagnostic feature for debugging unexpected concurrency in acquiring ConnectionWrapper instances. NOTE: This MUST be done early in your application's execution, BEFORE any accesses to ConnectionFactory or connection policies from your application (including imports and sub-imports of your app). Parameters: ---------------------------------------------------------------- maxConcurrency: A non-negative integer that represents the maximum expected number of outstanding connections. When this value is exceeded, useful information will be logged and, depending on the value of the raiseException arg, ConcurrencyExceededError may be raised. raiseException: If true, ConcurrencyExceededError will be raised when maxConcurrency is exceeded.
[ "Enable", "the", "diagnostic", "feature", "for", "debugging", "unexpected", "concurrency", "in", "acquiring", "ConnectionWrapper", "instances", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L59-L83
valid
numenta/nupic
src/nupic/database/connection.py
_getCommonSteadyDBArgsDict
def _getCommonSteadyDBArgsDict(): """ Returns a dictionary of arguments for DBUtils.SteadyDB.SteadyDBConnection constructor. """ return dict( creator = pymysql, host = Configuration.get('nupic.cluster.database.host'), port = int(Configuration.get('nupic.cluster.database.port')), user = Configuration.get('nupic.cluster.database.user'), passwd = Configuration.get('nupic.cluster.database.passwd'), charset = 'utf8', use_unicode = True, setsession = ['SET AUTOCOMMIT = 1'])
python
def _getCommonSteadyDBArgsDict(): """ Returns a dictionary of arguments for DBUtils.SteadyDB.SteadyDBConnection constructor. """ return dict( creator = pymysql, host = Configuration.get('nupic.cluster.database.host'), port = int(Configuration.get('nupic.cluster.database.port')), user = Configuration.get('nupic.cluster.database.user'), passwd = Configuration.get('nupic.cluster.database.passwd'), charset = 'utf8', use_unicode = True, setsession = ['SET AUTOCOMMIT = 1'])
[ "def", "_getCommonSteadyDBArgsDict", "(", ")", ":", "return", "dict", "(", "creator", "=", "pymysql", ",", "host", "=", "Configuration", ".", "get", "(", "'nupic.cluster.database.host'", ")", ",", "port", "=", "int", "(", "Configuration", ".", "get", "(", "'nupic.cluster.database.port'", ")", ")", ",", "user", "=", "Configuration", ".", "get", "(", "'nupic.cluster.database.user'", ")", ",", "passwd", "=", "Configuration", ".", "get", "(", "'nupic.cluster.database.passwd'", ")", ",", "charset", "=", "'utf8'", ",", "use_unicode", "=", "True", ",", "setsession", "=", "[", "'SET AUTOCOMMIT = 1'", "]", ")" ]
Returns a dictionary of arguments for DBUtils.SteadyDB.SteadyDBConnection constructor.
[ "Returns", "a", "dictionary", "of", "arguments", "for", "DBUtils", ".", "SteadyDB", ".", "SteadyDBConnection", "constructor", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L643-L656
valid
numenta/nupic
src/nupic/database/connection.py
_getLogger
def _getLogger(cls, logLevel=None): """ Gets a logger for the given class in this module """ logger = logging.getLogger( ".".join(['com.numenta', _MODULE_NAME, cls.__name__])) if logLevel is not None: logger.setLevel(logLevel) return logger
python
def _getLogger(cls, logLevel=None): """ Gets a logger for the given class in this module """ logger = logging.getLogger( ".".join(['com.numenta', _MODULE_NAME, cls.__name__])) if logLevel is not None: logger.setLevel(logLevel) return logger
[ "def", "_getLogger", "(", "cls", ",", "logLevel", "=", "None", ")", ":", "logger", "=", "logging", ".", "getLogger", "(", "\".\"", ".", "join", "(", "[", "'com.numenta'", ",", "_MODULE_NAME", ",", "cls", ".", "__name__", "]", ")", ")", "if", "logLevel", "is", "not", "None", ":", "logger", ".", "setLevel", "(", "logLevel", ")", "return", "logger" ]
Gets a logger for the given class in this module
[ "Gets", "a", "logger", "for", "the", "given", "class", "in", "this", "module" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L660-L669
valid
numenta/nupic
src/nupic/database/connection.py
ConnectionFactory.get
def get(cls): """ Acquire a ConnectionWrapper instance that represents a connection to the SQL server per nupic.cluster.database.* configuration settings. NOTE: caller is responsible for calling the ConnectionWrapper instance's release() method after using the connection in order to release resources. Better yet, use the returned ConnectionWrapper instance in a Context Manager statement for automatic invocation of release(): Example: # If using Jython 2.5.x, first import with_statement at the very top of your script (don't need this import for Jython/Python 2.6.x and later): from __future__ import with_statement # Then: from nupic.database.Connection import ConnectionFactory # Then use it like this with ConnectionFactory.get() as conn: conn.cursor.execute("SELECT ...") conn.cursor.fetchall() conn.cursor.execute("INSERT ...") WARNING: DO NOT close the underlying connection or cursor as it may be shared by other modules in your process. ConnectionWrapper's release() method will do the right thing. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for releasing resources as described above. """ if cls._connectionPolicy is None: logger = _getLogger(cls) logger.info("Creating db connection policy via provider %r", cls._connectionPolicyInstanceProvider) cls._connectionPolicy = cls._connectionPolicyInstanceProvider() logger.debug("Created connection policy: %r", cls._connectionPolicy) return cls._connectionPolicy.acquireConnection()
python
def get(cls): """ Acquire a ConnectionWrapper instance that represents a connection to the SQL server per nupic.cluster.database.* configuration settings. NOTE: caller is responsible for calling the ConnectionWrapper instance's release() method after using the connection in order to release resources. Better yet, use the returned ConnectionWrapper instance in a Context Manager statement for automatic invocation of release(): Example: # If using Jython 2.5.x, first import with_statement at the very top of your script (don't need this import for Jython/Python 2.6.x and later): from __future__ import with_statement # Then: from nupic.database.Connection import ConnectionFactory # Then use it like this with ConnectionFactory.get() as conn: conn.cursor.execute("SELECT ...") conn.cursor.fetchall() conn.cursor.execute("INSERT ...") WARNING: DO NOT close the underlying connection or cursor as it may be shared by other modules in your process. ConnectionWrapper's release() method will do the right thing. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for releasing resources as described above. """ if cls._connectionPolicy is None: logger = _getLogger(cls) logger.info("Creating db connection policy via provider %r", cls._connectionPolicyInstanceProvider) cls._connectionPolicy = cls._connectionPolicyInstanceProvider() logger.debug("Created connection policy: %r", cls._connectionPolicy) return cls._connectionPolicy.acquireConnection()
[ "def", "get", "(", "cls", ")", ":", "if", "cls", ".", "_connectionPolicy", "is", "None", ":", "logger", "=", "_getLogger", "(", "cls", ")", "logger", ".", "info", "(", "\"Creating db connection policy via provider %r\"", ",", "cls", ".", "_connectionPolicyInstanceProvider", ")", "cls", ".", "_connectionPolicy", "=", "cls", ".", "_connectionPolicyInstanceProvider", "(", ")", "logger", ".", "debug", "(", "\"Created connection policy: %r\"", ",", "cls", ".", "_connectionPolicy", ")", "return", "cls", ".", "_connectionPolicy", ".", "acquireConnection", "(", ")" ]
Acquire a ConnectionWrapper instance that represents a connection to the SQL server per nupic.cluster.database.* configuration settings. NOTE: caller is responsible for calling the ConnectionWrapper instance's release() method after using the connection in order to release resources. Better yet, use the returned ConnectionWrapper instance in a Context Manager statement for automatic invocation of release(): Example: # If using Jython 2.5.x, first import with_statement at the very top of your script (don't need this import for Jython/Python 2.6.x and later): from __future__ import with_statement # Then: from nupic.database.Connection import ConnectionFactory # Then use it like this with ConnectionFactory.get() as conn: conn.cursor.execute("SELECT ...") conn.cursor.fetchall() conn.cursor.execute("INSERT ...") WARNING: DO NOT close the underlying connection or cursor as it may be shared by other modules in your process. ConnectionWrapper's release() method will do the right thing. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for releasing resources as described above.
[ "Acquire", "a", "ConnectionWrapper", "instance", "that", "represents", "a", "connection", "to", "the", "SQL", "server", "per", "nupic", ".", "cluster", ".", "database", ".", "*", "configuration", "settings", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L130-L167
valid
numenta/nupic
src/nupic/database/connection.py
ConnectionFactory._createDefaultPolicy
def _createDefaultPolicy(cls): """ [private] Create the default database connection policy instance Parameters: ---------------------------------------------------------------- retval: The default database connection policy instance """ logger = _getLogger(cls) logger.debug( "Creating database connection policy: platform=%r; pymysql.VERSION=%r", platform.system(), pymysql.VERSION) if platform.system() == "Java": # NOTE: PooledDB doesn't seem to work under Jython # NOTE: not appropriate for multi-threaded applications. # TODO: this was fixed in Webware DBUtils r8228, so once # we pick up a realease with this fix, we should use # PooledConnectionPolicy for both Jython and Python. policy = SingleSharedConnectionPolicy() else: policy = PooledConnectionPolicy() return policy
python
def _createDefaultPolicy(cls): """ [private] Create the default database connection policy instance Parameters: ---------------------------------------------------------------- retval: The default database connection policy instance """ logger = _getLogger(cls) logger.debug( "Creating database connection policy: platform=%r; pymysql.VERSION=%r", platform.system(), pymysql.VERSION) if platform.system() == "Java": # NOTE: PooledDB doesn't seem to work under Jython # NOTE: not appropriate for multi-threaded applications. # TODO: this was fixed in Webware DBUtils r8228, so once # we pick up a realease with this fix, we should use # PooledConnectionPolicy for both Jython and Python. policy = SingleSharedConnectionPolicy() else: policy = PooledConnectionPolicy() return policy
[ "def", "_createDefaultPolicy", "(", "cls", ")", ":", "logger", "=", "_getLogger", "(", "cls", ")", "logger", ".", "debug", "(", "\"Creating database connection policy: platform=%r; pymysql.VERSION=%r\"", ",", "platform", ".", "system", "(", ")", ",", "pymysql", ".", "VERSION", ")", "if", "platform", ".", "system", "(", ")", "==", "\"Java\"", ":", "# NOTE: PooledDB doesn't seem to work under Jython", "# NOTE: not appropriate for multi-threaded applications.", "# TODO: this was fixed in Webware DBUtils r8228, so once", "# we pick up a realease with this fix, we should use", "# PooledConnectionPolicy for both Jython and Python.", "policy", "=", "SingleSharedConnectionPolicy", "(", ")", "else", ":", "policy", "=", "PooledConnectionPolicy", "(", ")", "return", "policy" ]
[private] Create the default database connection policy instance Parameters: ---------------------------------------------------------------- retval: The default database connection policy instance
[ "[", "private", "]", "Create", "the", "default", "database", "connection", "policy", "instance" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L212-L235
valid
numenta/nupic
src/nupic/database/connection.py
ConnectionWrapper.release
def release(self): """ Release the database connection and cursor The receiver of the Connection instance MUST call this method in order to reclaim resources """ self._logger.debug("Releasing: %r", self) # Discard self from set of outstanding instances if self._addedToInstanceSet: try: self._clsOutstandingInstances.remove(self) except: self._logger.exception( "Failed to remove self from _clsOutstandingInstances: %r;", self) raise self._releaser(dbConn=self.dbConn, cursor=self.cursor) self.__class__._clsNumOutstanding -= 1 assert self._clsNumOutstanding >= 0, \ "_clsNumOutstanding=%r" % (self._clsNumOutstanding,) self._releaser = None self.cursor = None self.dbConn = None self._creationTracebackString = None self._addedToInstanceSet = False self._logger = None return
python
def release(self): """ Release the database connection and cursor The receiver of the Connection instance MUST call this method in order to reclaim resources """ self._logger.debug("Releasing: %r", self) # Discard self from set of outstanding instances if self._addedToInstanceSet: try: self._clsOutstandingInstances.remove(self) except: self._logger.exception( "Failed to remove self from _clsOutstandingInstances: %r;", self) raise self._releaser(dbConn=self.dbConn, cursor=self.cursor) self.__class__._clsNumOutstanding -= 1 assert self._clsNumOutstanding >= 0, \ "_clsNumOutstanding=%r" % (self._clsNumOutstanding,) self._releaser = None self.cursor = None self.dbConn = None self._creationTracebackString = None self._addedToInstanceSet = False self._logger = None return
[ "def", "release", "(", "self", ")", ":", "self", ".", "_logger", ".", "debug", "(", "\"Releasing: %r\"", ",", "self", ")", "# Discard self from set of outstanding instances", "if", "self", ".", "_addedToInstanceSet", ":", "try", ":", "self", ".", "_clsOutstandingInstances", ".", "remove", "(", "self", ")", "except", ":", "self", ".", "_logger", ".", "exception", "(", "\"Failed to remove self from _clsOutstandingInstances: %r;\"", ",", "self", ")", "raise", "self", ".", "_releaser", "(", "dbConn", "=", "self", ".", "dbConn", ",", "cursor", "=", "self", ".", "cursor", ")", "self", ".", "__class__", ".", "_clsNumOutstanding", "-=", "1", "assert", "self", ".", "_clsNumOutstanding", ">=", "0", ",", "\"_clsNumOutstanding=%r\"", "%", "(", "self", ".", "_clsNumOutstanding", ",", ")", "self", ".", "_releaser", "=", "None", "self", ".", "cursor", "=", "None", "self", ".", "dbConn", "=", "None", "self", ".", "_creationTracebackString", "=", "None", "self", ".", "_addedToInstanceSet", "=", "False", "self", ".", "_logger", "=", "None", "return" ]
Release the database connection and cursor The receiver of the Connection instance MUST call this method in order to reclaim resources
[ "Release", "the", "database", "connection", "and", "cursor" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L340-L370
valid
numenta/nupic
src/nupic/database/connection.py
ConnectionWrapper._trackInstanceAndCheckForConcurrencyViolation
def _trackInstanceAndCheckForConcurrencyViolation(self): """ Check for concurrency violation and add self to _clsOutstandingInstances. ASSUMPTION: Called from constructor BEFORE _clsNumOutstanding is incremented """ global g_max_concurrency, g_max_concurrency_raise_exception assert g_max_concurrency is not None assert self not in self._clsOutstandingInstances, repr(self) # Populate diagnostic info self._creationTracebackString = traceback.format_stack() # Check for concurrency violation if self._clsNumOutstanding >= g_max_concurrency: # NOTE: It's possible for _clsNumOutstanding to be greater than # len(_clsOutstandingInstances) if concurrency check was enabled after # unrelease allocations. errorMsg = ("With numOutstanding=%r, exceeded concurrency limit=%r " "when requesting %r. OTHER TRACKED UNRELEASED " "INSTANCES (%s): %r") % ( self._clsNumOutstanding, g_max_concurrency, self, len(self._clsOutstandingInstances), self._clsOutstandingInstances,) self._logger.error(errorMsg) if g_max_concurrency_raise_exception: raise ConcurrencyExceededError(errorMsg) # Add self to tracked instance set self._clsOutstandingInstances.add(self) self._addedToInstanceSet = True return
python
def _trackInstanceAndCheckForConcurrencyViolation(self): """ Check for concurrency violation and add self to _clsOutstandingInstances. ASSUMPTION: Called from constructor BEFORE _clsNumOutstanding is incremented """ global g_max_concurrency, g_max_concurrency_raise_exception assert g_max_concurrency is not None assert self not in self._clsOutstandingInstances, repr(self) # Populate diagnostic info self._creationTracebackString = traceback.format_stack() # Check for concurrency violation if self._clsNumOutstanding >= g_max_concurrency: # NOTE: It's possible for _clsNumOutstanding to be greater than # len(_clsOutstandingInstances) if concurrency check was enabled after # unrelease allocations. errorMsg = ("With numOutstanding=%r, exceeded concurrency limit=%r " "when requesting %r. OTHER TRACKED UNRELEASED " "INSTANCES (%s): %r") % ( self._clsNumOutstanding, g_max_concurrency, self, len(self._clsOutstandingInstances), self._clsOutstandingInstances,) self._logger.error(errorMsg) if g_max_concurrency_raise_exception: raise ConcurrencyExceededError(errorMsg) # Add self to tracked instance set self._clsOutstandingInstances.add(self) self._addedToInstanceSet = True return
[ "def", "_trackInstanceAndCheckForConcurrencyViolation", "(", "self", ")", ":", "global", "g_max_concurrency", ",", "g_max_concurrency_raise_exception", "assert", "g_max_concurrency", "is", "not", "None", "assert", "self", "not", "in", "self", ".", "_clsOutstandingInstances", ",", "repr", "(", "self", ")", "# Populate diagnostic info", "self", ".", "_creationTracebackString", "=", "traceback", ".", "format_stack", "(", ")", "# Check for concurrency violation", "if", "self", ".", "_clsNumOutstanding", ">=", "g_max_concurrency", ":", "# NOTE: It's possible for _clsNumOutstanding to be greater than", "# len(_clsOutstandingInstances) if concurrency check was enabled after", "# unrelease allocations.", "errorMsg", "=", "(", "\"With numOutstanding=%r, exceeded concurrency limit=%r \"", "\"when requesting %r. OTHER TRACKED UNRELEASED \"", "\"INSTANCES (%s): %r\"", ")", "%", "(", "self", ".", "_clsNumOutstanding", ",", "g_max_concurrency", ",", "self", ",", "len", "(", "self", ".", "_clsOutstandingInstances", ")", ",", "self", ".", "_clsOutstandingInstances", ",", ")", "self", ".", "_logger", ".", "error", "(", "errorMsg", ")", "if", "g_max_concurrency_raise_exception", ":", "raise", "ConcurrencyExceededError", "(", "errorMsg", ")", "# Add self to tracked instance set", "self", ".", "_clsOutstandingInstances", ".", "add", "(", "self", ")", "self", ".", "_addedToInstanceSet", "=", "True", "return" ]
Check for concurrency violation and add self to _clsOutstandingInstances. ASSUMPTION: Called from constructor BEFORE _clsNumOutstanding is incremented
[ "Check", "for", "concurrency", "violation", "and", "add", "self", "to", "_clsOutstandingInstances", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L373-L409
valid
numenta/nupic
src/nupic/database/connection.py
SingleSharedConnectionPolicy.close
def close(self): """ Close the policy instance and its shared database connection. """ self._logger.info("Closing") if self._conn is not None: self._conn.close() self._conn = None else: self._logger.warning( "close() called, but connection policy was alredy closed") return
python
def close(self): """ Close the policy instance and its shared database connection. """ self._logger.info("Closing") if self._conn is not None: self._conn.close() self._conn = None else: self._logger.warning( "close() called, but connection policy was alredy closed") return
[ "def", "close", "(", "self", ")", ":", "self", ".", "_logger", ".", "info", "(", "\"Closing\"", ")", "if", "self", ".", "_conn", "is", "not", "None", ":", "self", ".", "_conn", ".", "close", "(", ")", "self", ".", "_conn", "=", "None", "else", ":", "self", ".", "_logger", ".", "warning", "(", "\"close() called, but connection policy was alredy closed\"", ")", "return" ]
Close the policy instance and its shared database connection.
[ "Close", "the", "policy", "instance", "and", "its", "shared", "database", "connection", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L458-L467
valid
numenta/nupic
src/nupic/database/connection.py
SingleSharedConnectionPolicy.acquireConnection
def acquireConnection(self): """ Get a Connection instance. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for calling the ConnectionWrapper instance's release() method or use it in a context manager expression (with ... as:) to release resources. """ self._logger.debug("Acquiring connection") # Check connection and attempt to re-establish it if it died (this is # what PooledDB does) self._conn._ping_check() connWrap = ConnectionWrapper(dbConn=self._conn, cursor=self._conn.cursor(), releaser=self._releaseConnection, logger=self._logger) return connWrap
python
def acquireConnection(self): """ Get a Connection instance. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for calling the ConnectionWrapper instance's release() method or use it in a context manager expression (with ... as:) to release resources. """ self._logger.debug("Acquiring connection") # Check connection and attempt to re-establish it if it died (this is # what PooledDB does) self._conn._ping_check() connWrap = ConnectionWrapper(dbConn=self._conn, cursor=self._conn.cursor(), releaser=self._releaseConnection, logger=self._logger) return connWrap
[ "def", "acquireConnection", "(", "self", ")", ":", "self", ".", "_logger", ".", "debug", "(", "\"Acquiring connection\"", ")", "# Check connection and attempt to re-establish it if it died (this is", "# what PooledDB does)", "self", ".", "_conn", ".", "_ping_check", "(", ")", "connWrap", "=", "ConnectionWrapper", "(", "dbConn", "=", "self", ".", "_conn", ",", "cursor", "=", "self", ".", "_conn", ".", "cursor", "(", ")", ",", "releaser", "=", "self", ".", "_releaseConnection", ",", "logger", "=", "self", ".", "_logger", ")", "return", "connWrap" ]
Get a Connection instance. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for calling the ConnectionWrapper instance's release() method or use it in a context manager expression (with ... as:) to release resources.
[ "Get", "a", "Connection", "instance", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L470-L489
valid
numenta/nupic
src/nupic/database/connection.py
PooledConnectionPolicy.close
def close(self): """ Close the policy instance and its database connection pool. """ self._logger.info("Closing") if self._pool is not None: self._pool.close() self._pool = None else: self._logger.warning( "close() called, but connection policy was alredy closed") return
python
def close(self): """ Close the policy instance and its database connection pool. """ self._logger.info("Closing") if self._pool is not None: self._pool.close() self._pool = None else: self._logger.warning( "close() called, but connection policy was alredy closed") return
[ "def", "close", "(", "self", ")", ":", "self", ".", "_logger", ".", "info", "(", "\"Closing\"", ")", "if", "self", ".", "_pool", "is", "not", "None", ":", "self", ".", "_pool", ".", "close", "(", ")", "self", ".", "_pool", "=", "None", "else", ":", "self", ".", "_logger", ".", "warning", "(", "\"close() called, but connection policy was alredy closed\"", ")", "return" ]
Close the policy instance and its database connection pool.
[ "Close", "the", "policy", "instance", "and", "its", "database", "connection", "pool", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L528-L538
valid
numenta/nupic
src/nupic/database/connection.py
PooledConnectionPolicy.acquireConnection
def acquireConnection(self): """ Get a connection from the pool. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for calling the ConnectionWrapper instance's release() method or use it in a context manager expression (with ... as:) to release resources. """ self._logger.debug("Acquiring connection") dbConn = self._pool.connection(shareable=False) connWrap = ConnectionWrapper(dbConn=dbConn, cursor=dbConn.cursor(), releaser=self._releaseConnection, logger=self._logger) return connWrap
python
def acquireConnection(self): """ Get a connection from the pool. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for calling the ConnectionWrapper instance's release() method or use it in a context manager expression (with ... as:) to release resources. """ self._logger.debug("Acquiring connection") dbConn = self._pool.connection(shareable=False) connWrap = ConnectionWrapper(dbConn=dbConn, cursor=dbConn.cursor(), releaser=self._releaseConnection, logger=self._logger) return connWrap
[ "def", "acquireConnection", "(", "self", ")", ":", "self", ".", "_logger", ".", "debug", "(", "\"Acquiring connection\"", ")", "dbConn", "=", "self", ".", "_pool", ".", "connection", "(", "shareable", "=", "False", ")", "connWrap", "=", "ConnectionWrapper", "(", "dbConn", "=", "dbConn", ",", "cursor", "=", "dbConn", ".", "cursor", "(", ")", ",", "releaser", "=", "self", ".", "_releaseConnection", ",", "logger", "=", "self", ".", "_logger", ")", "return", "connWrap" ]
Get a connection from the pool. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for calling the ConnectionWrapper instance's release() method or use it in a context manager expression (with ... as:) to release resources.
[ "Get", "a", "connection", "from", "the", "pool", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L541-L558
valid
numenta/nupic
src/nupic/database/connection.py
PerTransactionConnectionPolicy.close
def close(self): """ Close the policy instance. """ self._logger.info("Closing") if self._opened: self._opened = False else: self._logger.warning( "close() called, but connection policy was alredy closed") return
python
def close(self): """ Close the policy instance. """ self._logger.info("Closing") if self._opened: self._opened = False else: self._logger.warning( "close() called, but connection policy was alredy closed") return
[ "def", "close", "(", "self", ")", ":", "self", ".", "_logger", ".", "info", "(", "\"Closing\"", ")", "if", "self", ".", "_opened", ":", "self", ".", "_opened", "=", "False", "else", ":", "self", ".", "_logger", ".", "warning", "(", "\"close() called, but connection policy was alredy closed\"", ")", "return" ]
Close the policy instance.
[ "Close", "the", "policy", "instance", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L595-L605
valid
numenta/nupic
src/nupic/database/connection.py
PerTransactionConnectionPolicy.acquireConnection
def acquireConnection(self): """ Create a Connection instance. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for calling the ConnectionWrapper instance's release() method or use it in a context manager expression (with ... as:) to release resources. """ self._logger.debug("Acquiring connection") dbConn = SteadyDB.connect(** _getCommonSteadyDBArgsDict()) connWrap = ConnectionWrapper(dbConn=dbConn, cursor=dbConn.cursor(), releaser=self._releaseConnection, logger=self._logger) return connWrap
python
def acquireConnection(self): """ Create a Connection instance. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for calling the ConnectionWrapper instance's release() method or use it in a context manager expression (with ... as:) to release resources. """ self._logger.debug("Acquiring connection") dbConn = SteadyDB.connect(** _getCommonSteadyDBArgsDict()) connWrap = ConnectionWrapper(dbConn=dbConn, cursor=dbConn.cursor(), releaser=self._releaseConnection, logger=self._logger) return connWrap
[ "def", "acquireConnection", "(", "self", ")", ":", "self", ".", "_logger", ".", "debug", "(", "\"Acquiring connection\"", ")", "dbConn", "=", "SteadyDB", ".", "connect", "(", "*", "*", "_getCommonSteadyDBArgsDict", "(", ")", ")", "connWrap", "=", "ConnectionWrapper", "(", "dbConn", "=", "dbConn", ",", "cursor", "=", "dbConn", ".", "cursor", "(", ")", ",", "releaser", "=", "self", ".", "_releaseConnection", ",", "logger", "=", "self", ".", "_logger", ")", "return", "connWrap" ]
Create a Connection instance. Parameters: ---------------------------------------------------------------- retval: A ConnectionWrapper instance. NOTE: Caller is responsible for calling the ConnectionWrapper instance's release() method or use it in a context manager expression (with ... as:) to release resources.
[ "Create", "a", "Connection", "instance", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L608-L625
valid
numenta/nupic
src/nupic/database/connection.py
PerTransactionConnectionPolicy._releaseConnection
def _releaseConnection(self, dbConn, cursor): """ Release database connection and cursor; passed as a callback to ConnectionWrapper """ self._logger.debug("Releasing connection") # Close the cursor cursor.close() # ... then close the database connection dbConn.close() return
python
def _releaseConnection(self, dbConn, cursor): """ Release database connection and cursor; passed as a callback to ConnectionWrapper """ self._logger.debug("Releasing connection") # Close the cursor cursor.close() # ... then close the database connection dbConn.close() return
[ "def", "_releaseConnection", "(", "self", ",", "dbConn", ",", "cursor", ")", ":", "self", ".", "_logger", ".", "debug", "(", "\"Releasing connection\"", ")", "# Close the cursor", "cursor", ".", "close", "(", ")", "# ... then close the database connection", "dbConn", ".", "close", "(", ")", "return" ]
Release database connection and cursor; passed as a callback to ConnectionWrapper
[ "Release", "database", "connection", "and", "cursor", ";", "passed", "as", "a", "callback", "to", "ConnectionWrapper" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/database/connection.py#L628-L639
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion.getSpec
def getSpec(cls): """ Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.getSpec`. """ ns = dict( description=KNNAnomalyClassifierRegion.__doc__, singleNodeOnly=True, inputs=dict( spBottomUpOut=dict( description="""The output signal generated from the bottom-up inputs from lower levels.""", dataType='Real32', count=0, required=True, regionLevel=False, isDefaultInput=True, requireSplitterMap=False), tpTopDownOut=dict( description="""The top-down inputsignal, generated from feedback from upper levels""", dataType='Real32', count=0, required=True, regionLevel=False, isDefaultInput=True, requireSplitterMap=False), tpLrnActiveStateT=dict( description="""Active cells in the learn state at time T from TM. This is used to classify on.""", dataType='Real32', count=0, required=True, regionLevel=False, isDefaultInput=True, requireSplitterMap=False), sequenceIdIn=dict( description="Sequence ID", dataType='UInt64', count=1, required=False, regionLevel=True, isDefaultInput=False, requireSplitterMap=False), ), outputs=dict( ), parameters=dict( trainRecords=dict( description='Number of records to wait for training', dataType='UInt32', count=1, constraints='', defaultValue=0, accessMode='Create'), anomalyThreshold=dict( description='Threshold used to classify anomalies.', dataType='Real32', count=1, constraints='', defaultValue=0, accessMode='Create'), cacheSize=dict( description='Number of records to store in cache.', dataType='UInt32', count=1, constraints='', defaultValue=0, accessMode='Create'), classificationVectorType=dict( description="""Vector type to use when classifying. 1 - Vector Column with Difference (TM and SP) """, dataType='UInt32', count=1, constraints='', defaultValue=1, accessMode='ReadWrite'), activeColumnCount=dict( description="""Number of active columns in a given step. Typically equivalent to SP.numActiveColumnsPerInhArea""", dataType='UInt32', count=1, constraints='', defaultValue=40, accessMode='ReadWrite'), classificationMaxDist=dict( description="""Maximum distance a sample can be from an anomaly in the classifier to be labeled as an anomaly. Ex: With rawOverlap distance, a value of 0.65 means that the points must be at most a distance 0.65 apart from each other. This translates to they must be at least 35% similar.""", dataType='Real32', count=1, constraints='', defaultValue=0.65, accessMode='Create' ) ), commands=dict( getLabels=dict(description= "Returns a list of label dicts with properties ROWID and labels." "ROWID corresponds to the records id and labels is a list of " "strings representing the records labels. Takes additional " "integer properties start and end representing the range that " "will be returned."), addLabel=dict(description= "Takes parameters start, end and labelName. Adds the label " "labelName to the records from start to end. This will recalculate " "labels from end to the most recent record."), removeLabels=dict(description= "Takes additional parameters start, end, labelFilter. Start and " "end correspond to range to remove the label. Remove labels from " "each record with record ROWID in range from start to end, " "noninclusive of end. Removes all records if labelFilter is None, " "otherwise only removes the labels eqaul to labelFilter.") ) ) ns['parameters'].update(KNNClassifierRegion.getSpec()['parameters']) return ns
python
def getSpec(cls): """ Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.getSpec`. """ ns = dict( description=KNNAnomalyClassifierRegion.__doc__, singleNodeOnly=True, inputs=dict( spBottomUpOut=dict( description="""The output signal generated from the bottom-up inputs from lower levels.""", dataType='Real32', count=0, required=True, regionLevel=False, isDefaultInput=True, requireSplitterMap=False), tpTopDownOut=dict( description="""The top-down inputsignal, generated from feedback from upper levels""", dataType='Real32', count=0, required=True, regionLevel=False, isDefaultInput=True, requireSplitterMap=False), tpLrnActiveStateT=dict( description="""Active cells in the learn state at time T from TM. This is used to classify on.""", dataType='Real32', count=0, required=True, regionLevel=False, isDefaultInput=True, requireSplitterMap=False), sequenceIdIn=dict( description="Sequence ID", dataType='UInt64', count=1, required=False, regionLevel=True, isDefaultInput=False, requireSplitterMap=False), ), outputs=dict( ), parameters=dict( trainRecords=dict( description='Number of records to wait for training', dataType='UInt32', count=1, constraints='', defaultValue=0, accessMode='Create'), anomalyThreshold=dict( description='Threshold used to classify anomalies.', dataType='Real32', count=1, constraints='', defaultValue=0, accessMode='Create'), cacheSize=dict( description='Number of records to store in cache.', dataType='UInt32', count=1, constraints='', defaultValue=0, accessMode='Create'), classificationVectorType=dict( description="""Vector type to use when classifying. 1 - Vector Column with Difference (TM and SP) """, dataType='UInt32', count=1, constraints='', defaultValue=1, accessMode='ReadWrite'), activeColumnCount=dict( description="""Number of active columns in a given step. Typically equivalent to SP.numActiveColumnsPerInhArea""", dataType='UInt32', count=1, constraints='', defaultValue=40, accessMode='ReadWrite'), classificationMaxDist=dict( description="""Maximum distance a sample can be from an anomaly in the classifier to be labeled as an anomaly. Ex: With rawOverlap distance, a value of 0.65 means that the points must be at most a distance 0.65 apart from each other. This translates to they must be at least 35% similar.""", dataType='Real32', count=1, constraints='', defaultValue=0.65, accessMode='Create' ) ), commands=dict( getLabels=dict(description= "Returns a list of label dicts with properties ROWID and labels." "ROWID corresponds to the records id and labels is a list of " "strings representing the records labels. Takes additional " "integer properties start and end representing the range that " "will be returned."), addLabel=dict(description= "Takes parameters start, end and labelName. Adds the label " "labelName to the records from start to end. This will recalculate " "labels from end to the most recent record."), removeLabels=dict(description= "Takes additional parameters start, end, labelFilter. Start and " "end correspond to range to remove the label. Remove labels from " "each record with record ROWID in range from start to end, " "noninclusive of end. Removes all records if labelFilter is None, " "otherwise only removes the labels eqaul to labelFilter.") ) ) ns['parameters'].update(KNNClassifierRegion.getSpec()['parameters']) return ns
[ "def", "getSpec", "(", "cls", ")", ":", "ns", "=", "dict", "(", "description", "=", "KNNAnomalyClassifierRegion", ".", "__doc__", ",", "singleNodeOnly", "=", "True", ",", "inputs", "=", "dict", "(", "spBottomUpOut", "=", "dict", "(", "description", "=", "\"\"\"The output signal generated from the bottom-up inputs\n from lower levels.\"\"\"", ",", "dataType", "=", "'Real32'", ",", "count", "=", "0", ",", "required", "=", "True", ",", "regionLevel", "=", "False", ",", "isDefaultInput", "=", "True", ",", "requireSplitterMap", "=", "False", ")", ",", "tpTopDownOut", "=", "dict", "(", "description", "=", "\"\"\"The top-down inputsignal, generated from\n feedback from upper levels\"\"\"", ",", "dataType", "=", "'Real32'", ",", "count", "=", "0", ",", "required", "=", "True", ",", "regionLevel", "=", "False", ",", "isDefaultInput", "=", "True", ",", "requireSplitterMap", "=", "False", ")", ",", "tpLrnActiveStateT", "=", "dict", "(", "description", "=", "\"\"\"Active cells in the learn state at time T from TM.\n This is used to classify on.\"\"\"", ",", "dataType", "=", "'Real32'", ",", "count", "=", "0", ",", "required", "=", "True", ",", "regionLevel", "=", "False", ",", "isDefaultInput", "=", "True", ",", "requireSplitterMap", "=", "False", ")", ",", "sequenceIdIn", "=", "dict", "(", "description", "=", "\"Sequence ID\"", ",", "dataType", "=", "'UInt64'", ",", "count", "=", "1", ",", "required", "=", "False", ",", "regionLevel", "=", "True", ",", "isDefaultInput", "=", "False", ",", "requireSplitterMap", "=", "False", ")", ",", ")", ",", "outputs", "=", "dict", "(", ")", ",", "parameters", "=", "dict", "(", "trainRecords", "=", "dict", "(", "description", "=", "'Number of records to wait for training'", ",", "dataType", "=", "'UInt32'", ",", "count", "=", "1", ",", "constraints", "=", "''", ",", "defaultValue", "=", "0", ",", "accessMode", "=", "'Create'", ")", ",", "anomalyThreshold", "=", "dict", "(", "description", "=", "'Threshold used to classify anomalies.'", ",", "dataType", "=", "'Real32'", ",", "count", "=", "1", ",", "constraints", "=", "''", ",", "defaultValue", "=", "0", ",", "accessMode", "=", "'Create'", ")", ",", "cacheSize", "=", "dict", "(", "description", "=", "'Number of records to store in cache.'", ",", "dataType", "=", "'UInt32'", ",", "count", "=", "1", ",", "constraints", "=", "''", ",", "defaultValue", "=", "0", ",", "accessMode", "=", "'Create'", ")", ",", "classificationVectorType", "=", "dict", "(", "description", "=", "\"\"\"Vector type to use when classifying.\n 1 - Vector Column with Difference (TM and SP)\n \"\"\"", ",", "dataType", "=", "'UInt32'", ",", "count", "=", "1", ",", "constraints", "=", "''", ",", "defaultValue", "=", "1", ",", "accessMode", "=", "'ReadWrite'", ")", ",", "activeColumnCount", "=", "dict", "(", "description", "=", "\"\"\"Number of active columns in a given step. Typically\n equivalent to SP.numActiveColumnsPerInhArea\"\"\"", ",", "dataType", "=", "'UInt32'", ",", "count", "=", "1", ",", "constraints", "=", "''", ",", "defaultValue", "=", "40", ",", "accessMode", "=", "'ReadWrite'", ")", ",", "classificationMaxDist", "=", "dict", "(", "description", "=", "\"\"\"Maximum distance a sample can be from an anomaly\n in the classifier to be labeled as an anomaly.\n\n Ex: With rawOverlap distance, a value of 0.65 means that the points\n must be at most a distance 0.65 apart from each other. This\n translates to they must be at least 35% similar.\"\"\"", ",", "dataType", "=", "'Real32'", ",", "count", "=", "1", ",", "constraints", "=", "''", ",", "defaultValue", "=", "0.65", ",", "accessMode", "=", "'Create'", ")", ")", ",", "commands", "=", "dict", "(", "getLabels", "=", "dict", "(", "description", "=", "\"Returns a list of label dicts with properties ROWID and labels.\"", "\"ROWID corresponds to the records id and labels is a list of \"", "\"strings representing the records labels. Takes additional \"", "\"integer properties start and end representing the range that \"", "\"will be returned.\"", ")", ",", "addLabel", "=", "dict", "(", "description", "=", "\"Takes parameters start, end and labelName. Adds the label \"", "\"labelName to the records from start to end. This will recalculate \"", "\"labels from end to the most recent record.\"", ")", ",", "removeLabels", "=", "dict", "(", "description", "=", "\"Takes additional parameters start, end, labelFilter. Start and \"", "\"end correspond to range to remove the label. Remove labels from \"", "\"each record with record ROWID in range from start to end, \"", "\"noninclusive of end. Removes all records if labelFilter is None, \"", "\"otherwise only removes the labels eqaul to labelFilter.\"", ")", ")", ")", "ns", "[", "'parameters'", "]", ".", "update", "(", "KNNClassifierRegion", ".", "getSpec", "(", ")", "[", "'parameters'", "]", ")", "return", "ns" ]
Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.getSpec`.
[ "Overrides", ":", "meth", ":", "nupic", ".", "bindings", ".", "regions", ".", "PyRegion", ".", "PyRegion", ".", "getSpec", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L79-L213
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion.getParameter
def getParameter(self, name, index=-1): """ Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.getParameter`. """ if name == "trainRecords": return self.trainRecords elif name == "anomalyThreshold": return self.anomalyThreshold elif name == "activeColumnCount": return self._activeColumnCount elif name == "classificationMaxDist": return self._classificationMaxDist else: # If any spec parameter name is the same as an attribute, this call # will get it automatically, e.g. self.learningMode return PyRegion.getParameter(self, name, index)
python
def getParameter(self, name, index=-1): """ Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.getParameter`. """ if name == "trainRecords": return self.trainRecords elif name == "anomalyThreshold": return self.anomalyThreshold elif name == "activeColumnCount": return self._activeColumnCount elif name == "classificationMaxDist": return self._classificationMaxDist else: # If any spec parameter name is the same as an attribute, this call # will get it automatically, e.g. self.learningMode return PyRegion.getParameter(self, name, index)
[ "def", "getParameter", "(", "self", ",", "name", ",", "index", "=", "-", "1", ")", ":", "if", "name", "==", "\"trainRecords\"", ":", "return", "self", ".", "trainRecords", "elif", "name", "==", "\"anomalyThreshold\"", ":", "return", "self", ".", "anomalyThreshold", "elif", "name", "==", "\"activeColumnCount\"", ":", "return", "self", ".", "_activeColumnCount", "elif", "name", "==", "\"classificationMaxDist\"", ":", "return", "self", ".", "_classificationMaxDist", "else", ":", "# If any spec parameter name is the same as an attribute, this call", "# will get it automatically, e.g. self.learningMode", "return", "PyRegion", ".", "getParameter", "(", "self", ",", "name", ",", "index", ")" ]
Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.getParameter`.
[ "Overrides", ":", "meth", ":", "nupic", ".", "bindings", ".", "regions", ".", "PyRegion", ".", "PyRegion", ".", "getParameter", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L260-L275
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion.setParameter
def setParameter(self, name, index, value): """ Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.setParameter`. """ if name == "trainRecords": # Ensure that the trainRecords can only be set to minimum of the ROWID in # the saved states if not (isinstance(value, float) or isinstance(value, int)): raise HTMPredictionModelInvalidArgument("Invalid argument type \'%s\'. threshold " "must be a number." % (type(value))) if len(self._recordsCache) > 0 and value < self._recordsCache[0].ROWID: raise HTMPredictionModelInvalidArgument("Invalid value. autoDetectWaitRecord " "value must be valid record within output stream. Current minimum " " ROWID in output stream is %d." % (self._recordsCache[0].ROWID)) self.trainRecords = value # Remove any labels before the first cached record (wont be used anymore) self._deleteRangeFromKNN(0, self._recordsCache[0].ROWID) # Reclassify all states self._classifyStates() elif name == "anomalyThreshold": if not (isinstance(value, float) or isinstance(value, int)): raise HTMPredictionModelInvalidArgument("Invalid argument type \'%s\'. threshold " "must be a number." % (type(value))) self.anomalyThreshold = value self._classifyStates() elif name == "classificationMaxDist": if not (isinstance(value, float) or isinstance(value, int)): raise HTMPredictionModelInvalidArgument("Invalid argument type \'%s\'. " "classificationMaxDist must be a number." % (type(value))) self._classificationMaxDist = value self._classifyStates() elif name == "activeColumnCount": self._activeColumnCount = value else: return PyRegion.setParameter(self, name, index, value)
python
def setParameter(self, name, index, value): """ Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.setParameter`. """ if name == "trainRecords": # Ensure that the trainRecords can only be set to minimum of the ROWID in # the saved states if not (isinstance(value, float) or isinstance(value, int)): raise HTMPredictionModelInvalidArgument("Invalid argument type \'%s\'. threshold " "must be a number." % (type(value))) if len(self._recordsCache) > 0 and value < self._recordsCache[0].ROWID: raise HTMPredictionModelInvalidArgument("Invalid value. autoDetectWaitRecord " "value must be valid record within output stream. Current minimum " " ROWID in output stream is %d." % (self._recordsCache[0].ROWID)) self.trainRecords = value # Remove any labels before the first cached record (wont be used anymore) self._deleteRangeFromKNN(0, self._recordsCache[0].ROWID) # Reclassify all states self._classifyStates() elif name == "anomalyThreshold": if not (isinstance(value, float) or isinstance(value, int)): raise HTMPredictionModelInvalidArgument("Invalid argument type \'%s\'. threshold " "must be a number." % (type(value))) self.anomalyThreshold = value self._classifyStates() elif name == "classificationMaxDist": if not (isinstance(value, float) or isinstance(value, int)): raise HTMPredictionModelInvalidArgument("Invalid argument type \'%s\'. " "classificationMaxDist must be a number." % (type(value))) self._classificationMaxDist = value self._classifyStates() elif name == "activeColumnCount": self._activeColumnCount = value else: return PyRegion.setParameter(self, name, index, value)
[ "def", "setParameter", "(", "self", ",", "name", ",", "index", ",", "value", ")", ":", "if", "name", "==", "\"trainRecords\"", ":", "# Ensure that the trainRecords can only be set to minimum of the ROWID in", "# the saved states", "if", "not", "(", "isinstance", "(", "value", ",", "float", ")", "or", "isinstance", "(", "value", ",", "int", ")", ")", ":", "raise", "HTMPredictionModelInvalidArgument", "(", "\"Invalid argument type \\'%s\\'. threshold \"", "\"must be a number.\"", "%", "(", "type", "(", "value", ")", ")", ")", "if", "len", "(", "self", ".", "_recordsCache", ")", ">", "0", "and", "value", "<", "self", ".", "_recordsCache", "[", "0", "]", ".", "ROWID", ":", "raise", "HTMPredictionModelInvalidArgument", "(", "\"Invalid value. autoDetectWaitRecord \"", "\"value must be valid record within output stream. Current minimum \"", "\" ROWID in output stream is %d.\"", "%", "(", "self", ".", "_recordsCache", "[", "0", "]", ".", "ROWID", ")", ")", "self", ".", "trainRecords", "=", "value", "# Remove any labels before the first cached record (wont be used anymore)", "self", ".", "_deleteRangeFromKNN", "(", "0", ",", "self", ".", "_recordsCache", "[", "0", "]", ".", "ROWID", ")", "# Reclassify all states", "self", ".", "_classifyStates", "(", ")", "elif", "name", "==", "\"anomalyThreshold\"", ":", "if", "not", "(", "isinstance", "(", "value", ",", "float", ")", "or", "isinstance", "(", "value", ",", "int", ")", ")", ":", "raise", "HTMPredictionModelInvalidArgument", "(", "\"Invalid argument type \\'%s\\'. threshold \"", "\"must be a number.\"", "%", "(", "type", "(", "value", ")", ")", ")", "self", ".", "anomalyThreshold", "=", "value", "self", ".", "_classifyStates", "(", ")", "elif", "name", "==", "\"classificationMaxDist\"", ":", "if", "not", "(", "isinstance", "(", "value", ",", "float", ")", "or", "isinstance", "(", "value", ",", "int", ")", ")", ":", "raise", "HTMPredictionModelInvalidArgument", "(", "\"Invalid argument type \\'%s\\'. \"", "\"classificationMaxDist must be a number.\"", "%", "(", "type", "(", "value", ")", ")", ")", "self", ".", "_classificationMaxDist", "=", "value", "self", ".", "_classifyStates", "(", ")", "elif", "name", "==", "\"activeColumnCount\"", ":", "self", ".", "_activeColumnCount", "=", "value", "else", ":", "return", "PyRegion", ".", "setParameter", "(", "self", ",", "name", ",", "index", ",", "value", ")" ]
Overrides :meth:`nupic.bindings.regions.PyRegion.PyRegion.setParameter`.
[ "Overrides", ":", "meth", ":", "nupic", ".", "bindings", ".", "regions", ".", "PyRegion", ".", "PyRegion", ".", "setParameter", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L278-L314
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion.compute
def compute(self, inputs, outputs): """ Process one input sample. This method is called by the runtime engine. """ record = self._constructClassificationRecord(inputs) #Classify this point after waiting the classification delay if record.ROWID >= self.getParameter('trainRecords'): self._classifyState(record) #Save new classification record and keep history as moving window self._recordsCache.append(record) while len(self._recordsCache) > self.cacheSize: self._recordsCache.pop(0) self.labelResults = record.anomalyLabel self._iteration += 1
python
def compute(self, inputs, outputs): """ Process one input sample. This method is called by the runtime engine. """ record = self._constructClassificationRecord(inputs) #Classify this point after waiting the classification delay if record.ROWID >= self.getParameter('trainRecords'): self._classifyState(record) #Save new classification record and keep history as moving window self._recordsCache.append(record) while len(self._recordsCache) > self.cacheSize: self._recordsCache.pop(0) self.labelResults = record.anomalyLabel self._iteration += 1
[ "def", "compute", "(", "self", ",", "inputs", ",", "outputs", ")", ":", "record", "=", "self", ".", "_constructClassificationRecord", "(", "inputs", ")", "#Classify this point after waiting the classification delay", "if", "record", ".", "ROWID", ">=", "self", ".", "getParameter", "(", "'trainRecords'", ")", ":", "self", ".", "_classifyState", "(", "record", ")", "#Save new classification record and keep history as moving window", "self", ".", "_recordsCache", ".", "append", "(", "record", ")", "while", "len", "(", "self", ".", "_recordsCache", ")", ">", "self", ".", "cacheSize", ":", "self", ".", "_recordsCache", ".", "pop", "(", "0", ")", "self", ".", "labelResults", "=", "record", ".", "anomalyLabel", "self", ".", "_iteration", "+=", "1" ]
Process one input sample. This method is called by the runtime engine.
[ "Process", "one", "input", "sample", ".", "This", "method", "is", "called", "by", "the", "runtime", "engine", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L317-L335
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion._classifyState
def _classifyState(self, state): """ Reclassifies given state. """ # Record is before wait period do not classifiy if state.ROWID < self.getParameter('trainRecords'): if not state.setByUser: state.anomalyLabel = [] self._deleteRecordsFromKNN([state]) return label = KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL autoLabel = label + KNNAnomalyClassifierRegion.AUTO_TAG # Update the label based on classifications newCategory = self._recomputeRecordFromKNN(state) labelList = self._categoryToLabelList(newCategory) if state.setByUser: if label in state.anomalyLabel: state.anomalyLabel.remove(label) if autoLabel in state.anomalyLabel: state.anomalyLabel.remove(autoLabel) labelList.extend(state.anomalyLabel) # Add threshold classification label if above threshold, else if # classified to add the auto threshold classification. if state.anomalyScore >= self.getParameter('anomalyThreshold'): labelList.append(label) elif label in labelList: ind = labelList.index(label) labelList[ind] = autoLabel # Make all entries unique labelList = list(set(labelList)) # If both above threshold and auto classified above - remove auto label if label in labelList and autoLabel in labelList: labelList.remove(autoLabel) if state.anomalyLabel == labelList: return # Update state's labeling state.anomalyLabel = labelList # Update KNN Classifier with new labeling if state.anomalyLabel == []: self._deleteRecordsFromKNN([state]) else: self._addRecordToKNN(state)
python
def _classifyState(self, state): """ Reclassifies given state. """ # Record is before wait period do not classifiy if state.ROWID < self.getParameter('trainRecords'): if not state.setByUser: state.anomalyLabel = [] self._deleteRecordsFromKNN([state]) return label = KNNAnomalyClassifierRegion.AUTO_THRESHOLD_CLASSIFIED_LABEL autoLabel = label + KNNAnomalyClassifierRegion.AUTO_TAG # Update the label based on classifications newCategory = self._recomputeRecordFromKNN(state) labelList = self._categoryToLabelList(newCategory) if state.setByUser: if label in state.anomalyLabel: state.anomalyLabel.remove(label) if autoLabel in state.anomalyLabel: state.anomalyLabel.remove(autoLabel) labelList.extend(state.anomalyLabel) # Add threshold classification label if above threshold, else if # classified to add the auto threshold classification. if state.anomalyScore >= self.getParameter('anomalyThreshold'): labelList.append(label) elif label in labelList: ind = labelList.index(label) labelList[ind] = autoLabel # Make all entries unique labelList = list(set(labelList)) # If both above threshold and auto classified above - remove auto label if label in labelList and autoLabel in labelList: labelList.remove(autoLabel) if state.anomalyLabel == labelList: return # Update state's labeling state.anomalyLabel = labelList # Update KNN Classifier with new labeling if state.anomalyLabel == []: self._deleteRecordsFromKNN([state]) else: self._addRecordToKNN(state)
[ "def", "_classifyState", "(", "self", ",", "state", ")", ":", "# Record is before wait period do not classifiy", "if", "state", ".", "ROWID", "<", "self", ".", "getParameter", "(", "'trainRecords'", ")", ":", "if", "not", "state", ".", "setByUser", ":", "state", ".", "anomalyLabel", "=", "[", "]", "self", ".", "_deleteRecordsFromKNN", "(", "[", "state", "]", ")", "return", "label", "=", "KNNAnomalyClassifierRegion", ".", "AUTO_THRESHOLD_CLASSIFIED_LABEL", "autoLabel", "=", "label", "+", "KNNAnomalyClassifierRegion", ".", "AUTO_TAG", "# Update the label based on classifications", "newCategory", "=", "self", ".", "_recomputeRecordFromKNN", "(", "state", ")", "labelList", "=", "self", ".", "_categoryToLabelList", "(", "newCategory", ")", "if", "state", ".", "setByUser", ":", "if", "label", "in", "state", ".", "anomalyLabel", ":", "state", ".", "anomalyLabel", ".", "remove", "(", "label", ")", "if", "autoLabel", "in", "state", ".", "anomalyLabel", ":", "state", ".", "anomalyLabel", ".", "remove", "(", "autoLabel", ")", "labelList", ".", "extend", "(", "state", ".", "anomalyLabel", ")", "# Add threshold classification label if above threshold, else if", "# classified to add the auto threshold classification.", "if", "state", ".", "anomalyScore", ">=", "self", ".", "getParameter", "(", "'anomalyThreshold'", ")", ":", "labelList", ".", "append", "(", "label", ")", "elif", "label", "in", "labelList", ":", "ind", "=", "labelList", ".", "index", "(", "label", ")", "labelList", "[", "ind", "]", "=", "autoLabel", "# Make all entries unique", "labelList", "=", "list", "(", "set", "(", "labelList", ")", ")", "# If both above threshold and auto classified above - remove auto label", "if", "label", "in", "labelList", "and", "autoLabel", "in", "labelList", ":", "labelList", ".", "remove", "(", "autoLabel", ")", "if", "state", ".", "anomalyLabel", "==", "labelList", ":", "return", "# Update state's labeling", "state", ".", "anomalyLabel", "=", "labelList", "# Update KNN Classifier with new labeling", "if", "state", ".", "anomalyLabel", "==", "[", "]", ":", "self", ".", "_deleteRecordsFromKNN", "(", "[", "state", "]", ")", "else", ":", "self", ".", "_addRecordToKNN", "(", "state", ")" ]
Reclassifies given state.
[ "Reclassifies", "given", "state", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L355-L405
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion._constructClassificationRecord
def _constructClassificationRecord(self, inputs): """ Construct a _HTMClassificationRecord based on the state of the model passed in through the inputs. Types for self.classificationVectorType: 1 - TM active cells in learn state 2 - SP columns concatenated with error from TM column predictions and SP """ # Count the number of unpredicted columns allSPColumns = inputs["spBottomUpOut"] activeSPColumns = allSPColumns.nonzero()[0] score = anomaly.computeRawAnomalyScore(activeSPColumns, self._prevPredictedColumns) spSize = len(allSPColumns) allTPCells = inputs['tpTopDownOut'] tpSize = len(inputs['tpLrnActiveStateT']) classificationVector = numpy.array([]) if self.classificationVectorType == 1: # Classification Vector: [---TM Cells---] classificationVector = numpy.zeros(tpSize) activeCellMatrix = inputs["tpLrnActiveStateT"].reshape(tpSize, 1) activeCellIdx = numpy.where(activeCellMatrix > 0)[0] if activeCellIdx.shape[0] > 0: classificationVector[numpy.array(activeCellIdx, dtype=numpy.uint16)] = 1 elif self.classificationVectorType == 2: # Classification Vecotr: [---SP---|---(TM-SP)----] classificationVector = numpy.zeros(spSize+spSize) if activeSPColumns.shape[0] > 0: classificationVector[activeSPColumns] = 1.0 errorColumns = numpy.setdiff1d(self._prevPredictedColumns, activeSPColumns) if errorColumns.shape[0] > 0: errorColumnIndexes = ( numpy.array(errorColumns, dtype=numpy.uint16) + spSize ) classificationVector[errorColumnIndexes] = 1.0 else: raise TypeError("Classification vector type must be either 'tpc' or" " 'sp_tpe', current value is %s" % (self.classificationVectorType)) # Store the state for next time step numPredictedCols = len(self._prevPredictedColumns) predictedColumns = allTPCells.nonzero()[0] self._prevPredictedColumns = copy.deepcopy(predictedColumns) if self._anomalyVectorLength is None: self._anomalyVectorLength = len(classificationVector) result = _CLAClassificationRecord( ROWID=self._iteration, #__numRunCalls called #at beginning of model.run anomalyScore=score, anomalyVector=classificationVector.nonzero()[0].tolist(), anomalyLabel=[] ) return result
python
def _constructClassificationRecord(self, inputs): """ Construct a _HTMClassificationRecord based on the state of the model passed in through the inputs. Types for self.classificationVectorType: 1 - TM active cells in learn state 2 - SP columns concatenated with error from TM column predictions and SP """ # Count the number of unpredicted columns allSPColumns = inputs["spBottomUpOut"] activeSPColumns = allSPColumns.nonzero()[0] score = anomaly.computeRawAnomalyScore(activeSPColumns, self._prevPredictedColumns) spSize = len(allSPColumns) allTPCells = inputs['tpTopDownOut'] tpSize = len(inputs['tpLrnActiveStateT']) classificationVector = numpy.array([]) if self.classificationVectorType == 1: # Classification Vector: [---TM Cells---] classificationVector = numpy.zeros(tpSize) activeCellMatrix = inputs["tpLrnActiveStateT"].reshape(tpSize, 1) activeCellIdx = numpy.where(activeCellMatrix > 0)[0] if activeCellIdx.shape[0] > 0: classificationVector[numpy.array(activeCellIdx, dtype=numpy.uint16)] = 1 elif self.classificationVectorType == 2: # Classification Vecotr: [---SP---|---(TM-SP)----] classificationVector = numpy.zeros(spSize+spSize) if activeSPColumns.shape[0] > 0: classificationVector[activeSPColumns] = 1.0 errorColumns = numpy.setdiff1d(self._prevPredictedColumns, activeSPColumns) if errorColumns.shape[0] > 0: errorColumnIndexes = ( numpy.array(errorColumns, dtype=numpy.uint16) + spSize ) classificationVector[errorColumnIndexes] = 1.0 else: raise TypeError("Classification vector type must be either 'tpc' or" " 'sp_tpe', current value is %s" % (self.classificationVectorType)) # Store the state for next time step numPredictedCols = len(self._prevPredictedColumns) predictedColumns = allTPCells.nonzero()[0] self._prevPredictedColumns = copy.deepcopy(predictedColumns) if self._anomalyVectorLength is None: self._anomalyVectorLength = len(classificationVector) result = _CLAClassificationRecord( ROWID=self._iteration, #__numRunCalls called #at beginning of model.run anomalyScore=score, anomalyVector=classificationVector.nonzero()[0].tolist(), anomalyLabel=[] ) return result
[ "def", "_constructClassificationRecord", "(", "self", ",", "inputs", ")", ":", "# Count the number of unpredicted columns", "allSPColumns", "=", "inputs", "[", "\"spBottomUpOut\"", "]", "activeSPColumns", "=", "allSPColumns", ".", "nonzero", "(", ")", "[", "0", "]", "score", "=", "anomaly", ".", "computeRawAnomalyScore", "(", "activeSPColumns", ",", "self", ".", "_prevPredictedColumns", ")", "spSize", "=", "len", "(", "allSPColumns", ")", "allTPCells", "=", "inputs", "[", "'tpTopDownOut'", "]", "tpSize", "=", "len", "(", "inputs", "[", "'tpLrnActiveStateT'", "]", ")", "classificationVector", "=", "numpy", ".", "array", "(", "[", "]", ")", "if", "self", ".", "classificationVectorType", "==", "1", ":", "# Classification Vector: [---TM Cells---]", "classificationVector", "=", "numpy", ".", "zeros", "(", "tpSize", ")", "activeCellMatrix", "=", "inputs", "[", "\"tpLrnActiveStateT\"", "]", ".", "reshape", "(", "tpSize", ",", "1", ")", "activeCellIdx", "=", "numpy", ".", "where", "(", "activeCellMatrix", ">", "0", ")", "[", "0", "]", "if", "activeCellIdx", ".", "shape", "[", "0", "]", ">", "0", ":", "classificationVector", "[", "numpy", ".", "array", "(", "activeCellIdx", ",", "dtype", "=", "numpy", ".", "uint16", ")", "]", "=", "1", "elif", "self", ".", "classificationVectorType", "==", "2", ":", "# Classification Vecotr: [---SP---|---(TM-SP)----]", "classificationVector", "=", "numpy", ".", "zeros", "(", "spSize", "+", "spSize", ")", "if", "activeSPColumns", ".", "shape", "[", "0", "]", ">", "0", ":", "classificationVector", "[", "activeSPColumns", "]", "=", "1.0", "errorColumns", "=", "numpy", ".", "setdiff1d", "(", "self", ".", "_prevPredictedColumns", ",", "activeSPColumns", ")", "if", "errorColumns", ".", "shape", "[", "0", "]", ">", "0", ":", "errorColumnIndexes", "=", "(", "numpy", ".", "array", "(", "errorColumns", ",", "dtype", "=", "numpy", ".", "uint16", ")", "+", "spSize", ")", "classificationVector", "[", "errorColumnIndexes", "]", "=", "1.0", "else", ":", "raise", "TypeError", "(", "\"Classification vector type must be either 'tpc' or\"", "\" 'sp_tpe', current value is %s\"", "%", "(", "self", ".", "classificationVectorType", ")", ")", "# Store the state for next time step", "numPredictedCols", "=", "len", "(", "self", ".", "_prevPredictedColumns", ")", "predictedColumns", "=", "allTPCells", ".", "nonzero", "(", ")", "[", "0", "]", "self", ".", "_prevPredictedColumns", "=", "copy", ".", "deepcopy", "(", "predictedColumns", ")", "if", "self", ".", "_anomalyVectorLength", "is", "None", ":", "self", ".", "_anomalyVectorLength", "=", "len", "(", "classificationVector", ")", "result", "=", "_CLAClassificationRecord", "(", "ROWID", "=", "self", ".", "_iteration", ",", "#__numRunCalls called", "#at beginning of model.run", "anomalyScore", "=", "score", ",", "anomalyVector", "=", "classificationVector", ".", "nonzero", "(", ")", "[", "0", "]", ".", "tolist", "(", ")", ",", "anomalyLabel", "=", "[", "]", ")", "return", "result" ]
Construct a _HTMClassificationRecord based on the state of the model passed in through the inputs. Types for self.classificationVectorType: 1 - TM active cells in learn state 2 - SP columns concatenated with error from TM column predictions and SP
[ "Construct", "a", "_HTMClassificationRecord", "based", "on", "the", "state", "of", "the", "model", "passed", "in", "through", "the", "inputs", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L408-L470
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion._addRecordToKNN
def _addRecordToKNN(self, record): """ Adds the record to the KNN classifier. """ knn = self._knnclassifier._knn prototype_idx = self._knnclassifier.getParameter('categoryRecencyList') category = self._labelListToCategoryNumber(record.anomalyLabel) # If record is already in the classifier, overwrite its labeling if record.ROWID in prototype_idx: knn.prototypeSetCategory(record.ROWID, category) return # Learn this pattern in the knn pattern = self._getStateAnomalyVector(record) rowID = record.ROWID knn.learn(pattern, category, rowID=rowID)
python
def _addRecordToKNN(self, record): """ Adds the record to the KNN classifier. """ knn = self._knnclassifier._knn prototype_idx = self._knnclassifier.getParameter('categoryRecencyList') category = self._labelListToCategoryNumber(record.anomalyLabel) # If record is already in the classifier, overwrite its labeling if record.ROWID in prototype_idx: knn.prototypeSetCategory(record.ROWID, category) return # Learn this pattern in the knn pattern = self._getStateAnomalyVector(record) rowID = record.ROWID knn.learn(pattern, category, rowID=rowID)
[ "def", "_addRecordToKNN", "(", "self", ",", "record", ")", ":", "knn", "=", "self", ".", "_knnclassifier", ".", "_knn", "prototype_idx", "=", "self", ".", "_knnclassifier", ".", "getParameter", "(", "'categoryRecencyList'", ")", "category", "=", "self", ".", "_labelListToCategoryNumber", "(", "record", ".", "anomalyLabel", ")", "# If record is already in the classifier, overwrite its labeling", "if", "record", ".", "ROWID", "in", "prototype_idx", ":", "knn", ".", "prototypeSetCategory", "(", "record", ".", "ROWID", ",", "category", ")", "return", "# Learn this pattern in the knn", "pattern", "=", "self", ".", "_getStateAnomalyVector", "(", "record", ")", "rowID", "=", "record", ".", "ROWID", "knn", ".", "learn", "(", "pattern", ",", "category", ",", "rowID", "=", "rowID", ")" ]
Adds the record to the KNN classifier.
[ "Adds", "the", "record", "to", "the", "KNN", "classifier", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L473-L490
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion._deleteRecordsFromKNN
def _deleteRecordsFromKNN(self, recordsToDelete): """ Removes the given records from the classifier. parameters ------------ recordsToDelete - list of records to delete from the classififier """ prototype_idx = self._knnclassifier.getParameter('categoryRecencyList') idsToDelete = ([r.ROWID for r in recordsToDelete if not r.setByUser and r.ROWID in prototype_idx]) nProtos = self._knnclassifier._knn._numPatterns self._knnclassifier._knn.removeIds(idsToDelete) assert self._knnclassifier._knn._numPatterns == nProtos - len(idsToDelete)
python
def _deleteRecordsFromKNN(self, recordsToDelete): """ Removes the given records from the classifier. parameters ------------ recordsToDelete - list of records to delete from the classififier """ prototype_idx = self._knnclassifier.getParameter('categoryRecencyList') idsToDelete = ([r.ROWID for r in recordsToDelete if not r.setByUser and r.ROWID in prototype_idx]) nProtos = self._knnclassifier._knn._numPatterns self._knnclassifier._knn.removeIds(idsToDelete) assert self._knnclassifier._knn._numPatterns == nProtos - len(idsToDelete)
[ "def", "_deleteRecordsFromKNN", "(", "self", ",", "recordsToDelete", ")", ":", "prototype_idx", "=", "self", ".", "_knnclassifier", ".", "getParameter", "(", "'categoryRecencyList'", ")", "idsToDelete", "=", "(", "[", "r", ".", "ROWID", "for", "r", "in", "recordsToDelete", "if", "not", "r", ".", "setByUser", "and", "r", ".", "ROWID", "in", "prototype_idx", "]", ")", "nProtos", "=", "self", ".", "_knnclassifier", ".", "_knn", ".", "_numPatterns", "self", ".", "_knnclassifier", ".", "_knn", ".", "removeIds", "(", "idsToDelete", ")", "assert", "self", ".", "_knnclassifier", ".", "_knn", ".", "_numPatterns", "==", "nProtos", "-", "len", "(", "idsToDelete", ")" ]
Removes the given records from the classifier. parameters ------------ recordsToDelete - list of records to delete from the classififier
[ "Removes", "the", "given", "records", "from", "the", "classifier", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L494-L509
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion._deleteRangeFromKNN
def _deleteRangeFromKNN(self, start=0, end=None): """ Removes any stored records within the range from start to end. Noninclusive of end. parameters ------------ start - integer representing the ROWID of the start of the deletion range, end - integer representing the ROWID of the end of the deletion range, if None, it will default to end. """ prototype_idx = numpy.array( self._knnclassifier.getParameter('categoryRecencyList')) if end is None: end = prototype_idx.max() + 1 idsIdxToDelete = numpy.logical_and(prototype_idx >= start, prototype_idx < end) idsToDelete = prototype_idx[idsIdxToDelete] nProtos = self._knnclassifier._knn._numPatterns self._knnclassifier._knn.removeIds(idsToDelete.tolist()) assert self._knnclassifier._knn._numPatterns == nProtos - len(idsToDelete)
python
def _deleteRangeFromKNN(self, start=0, end=None): """ Removes any stored records within the range from start to end. Noninclusive of end. parameters ------------ start - integer representing the ROWID of the start of the deletion range, end - integer representing the ROWID of the end of the deletion range, if None, it will default to end. """ prototype_idx = numpy.array( self._knnclassifier.getParameter('categoryRecencyList')) if end is None: end = prototype_idx.max() + 1 idsIdxToDelete = numpy.logical_and(prototype_idx >= start, prototype_idx < end) idsToDelete = prototype_idx[idsIdxToDelete] nProtos = self._knnclassifier._knn._numPatterns self._knnclassifier._knn.removeIds(idsToDelete.tolist()) assert self._knnclassifier._knn._numPatterns == nProtos - len(idsToDelete)
[ "def", "_deleteRangeFromKNN", "(", "self", ",", "start", "=", "0", ",", "end", "=", "None", ")", ":", "prototype_idx", "=", "numpy", ".", "array", "(", "self", ".", "_knnclassifier", ".", "getParameter", "(", "'categoryRecencyList'", ")", ")", "if", "end", "is", "None", ":", "end", "=", "prototype_idx", ".", "max", "(", ")", "+", "1", "idsIdxToDelete", "=", "numpy", ".", "logical_and", "(", "prototype_idx", ">=", "start", ",", "prototype_idx", "<", "end", ")", "idsToDelete", "=", "prototype_idx", "[", "idsIdxToDelete", "]", "nProtos", "=", "self", ".", "_knnclassifier", ".", "_knn", ".", "_numPatterns", "self", ".", "_knnclassifier", ".", "_knn", ".", "removeIds", "(", "idsToDelete", ".", "tolist", "(", ")", ")", "assert", "self", ".", "_knnclassifier", ".", "_knn", ".", "_numPatterns", "==", "nProtos", "-", "len", "(", "idsToDelete", ")" ]
Removes any stored records within the range from start to end. Noninclusive of end. parameters ------------ start - integer representing the ROWID of the start of the deletion range, end - integer representing the ROWID of the end of the deletion range, if None, it will default to end.
[ "Removes", "any", "stored", "records", "within", "the", "range", "from", "start", "to", "end", ".", "Noninclusive", "of", "end", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L512-L535
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion._recomputeRecordFromKNN
def _recomputeRecordFromKNN(self, record): """ returns the classified labeling of record """ inputs = { "categoryIn": [None], "bottomUpIn": self._getStateAnomalyVector(record), } outputs = {"categoriesOut": numpy.zeros((1,)), "bestPrototypeIndices":numpy.zeros((1,)), "categoryProbabilitiesOut":numpy.zeros((1,))} # Only use points before record to classify and after the wait period. classifier_indexes = numpy.array( self._knnclassifier.getParameter('categoryRecencyList')) valid_idx = numpy.where( (classifier_indexes >= self.getParameter('trainRecords')) & (classifier_indexes < record.ROWID) )[0].tolist() if len(valid_idx) == 0: return None self._knnclassifier.setParameter('inferenceMode', None, True) self._knnclassifier.setParameter('learningMode', None, False) self._knnclassifier.compute(inputs, outputs) self._knnclassifier.setParameter('learningMode', None, True) classifier_distances = self._knnclassifier.getLatestDistances() valid_distances = classifier_distances[valid_idx] if valid_distances.min() <= self._classificationMaxDist: classifier_indexes_prev = classifier_indexes[valid_idx] rowID = classifier_indexes_prev[valid_distances.argmin()] indexID = numpy.where(classifier_indexes == rowID)[0][0] category = self._knnclassifier.getCategoryList()[indexID] return category return None
python
def _recomputeRecordFromKNN(self, record): """ returns the classified labeling of record """ inputs = { "categoryIn": [None], "bottomUpIn": self._getStateAnomalyVector(record), } outputs = {"categoriesOut": numpy.zeros((1,)), "bestPrototypeIndices":numpy.zeros((1,)), "categoryProbabilitiesOut":numpy.zeros((1,))} # Only use points before record to classify and after the wait period. classifier_indexes = numpy.array( self._knnclassifier.getParameter('categoryRecencyList')) valid_idx = numpy.where( (classifier_indexes >= self.getParameter('trainRecords')) & (classifier_indexes < record.ROWID) )[0].tolist() if len(valid_idx) == 0: return None self._knnclassifier.setParameter('inferenceMode', None, True) self._knnclassifier.setParameter('learningMode', None, False) self._knnclassifier.compute(inputs, outputs) self._knnclassifier.setParameter('learningMode', None, True) classifier_distances = self._knnclassifier.getLatestDistances() valid_distances = classifier_distances[valid_idx] if valid_distances.min() <= self._classificationMaxDist: classifier_indexes_prev = classifier_indexes[valid_idx] rowID = classifier_indexes_prev[valid_distances.argmin()] indexID = numpy.where(classifier_indexes == rowID)[0][0] category = self._knnclassifier.getCategoryList()[indexID] return category return None
[ "def", "_recomputeRecordFromKNN", "(", "self", ",", "record", ")", ":", "inputs", "=", "{", "\"categoryIn\"", ":", "[", "None", "]", ",", "\"bottomUpIn\"", ":", "self", ".", "_getStateAnomalyVector", "(", "record", ")", ",", "}", "outputs", "=", "{", "\"categoriesOut\"", ":", "numpy", ".", "zeros", "(", "(", "1", ",", ")", ")", ",", "\"bestPrototypeIndices\"", ":", "numpy", ".", "zeros", "(", "(", "1", ",", ")", ")", ",", "\"categoryProbabilitiesOut\"", ":", "numpy", ".", "zeros", "(", "(", "1", ",", ")", ")", "}", "# Only use points before record to classify and after the wait period.", "classifier_indexes", "=", "numpy", ".", "array", "(", "self", ".", "_knnclassifier", ".", "getParameter", "(", "'categoryRecencyList'", ")", ")", "valid_idx", "=", "numpy", ".", "where", "(", "(", "classifier_indexes", ">=", "self", ".", "getParameter", "(", "'trainRecords'", ")", ")", "&", "(", "classifier_indexes", "<", "record", ".", "ROWID", ")", ")", "[", "0", "]", ".", "tolist", "(", ")", "if", "len", "(", "valid_idx", ")", "==", "0", ":", "return", "None", "self", ".", "_knnclassifier", ".", "setParameter", "(", "'inferenceMode'", ",", "None", ",", "True", ")", "self", ".", "_knnclassifier", ".", "setParameter", "(", "'learningMode'", ",", "None", ",", "False", ")", "self", ".", "_knnclassifier", ".", "compute", "(", "inputs", ",", "outputs", ")", "self", ".", "_knnclassifier", ".", "setParameter", "(", "'learningMode'", ",", "None", ",", "True", ")", "classifier_distances", "=", "self", ".", "_knnclassifier", ".", "getLatestDistances", "(", ")", "valid_distances", "=", "classifier_distances", "[", "valid_idx", "]", "if", "valid_distances", ".", "min", "(", ")", "<=", "self", ".", "_classificationMaxDist", ":", "classifier_indexes_prev", "=", "classifier_indexes", "[", "valid_idx", "]", "rowID", "=", "classifier_indexes_prev", "[", "valid_distances", ".", "argmin", "(", ")", "]", "indexID", "=", "numpy", ".", "where", "(", "classifier_indexes", "==", "rowID", ")", "[", "0", "]", "[", "0", "]", "category", "=", "self", ".", "_knnclassifier", ".", "getCategoryList", "(", ")", "[", "indexID", "]", "return", "category", "return", "None" ]
returns the classified labeling of record
[ "returns", "the", "classified", "labeling", "of", "record" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L538-L575
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion._labelToCategoryNumber
def _labelToCategoryNumber(self, label): """ Since the KNN Classifier stores categories as numbers, we must store each label as a number. This method converts from a label to a unique number. Each label is assigned a unique bit so multiple labels may be assigned to a single record. """ if label not in self.saved_categories: self.saved_categories.append(label) return pow(2, self.saved_categories.index(label))
python
def _labelToCategoryNumber(self, label): """ Since the KNN Classifier stores categories as numbers, we must store each label as a number. This method converts from a label to a unique number. Each label is assigned a unique bit so multiple labels may be assigned to a single record. """ if label not in self.saved_categories: self.saved_categories.append(label) return pow(2, self.saved_categories.index(label))
[ "def", "_labelToCategoryNumber", "(", "self", ",", "label", ")", ":", "if", "label", "not", "in", "self", ".", "saved_categories", ":", "self", ".", "saved_categories", ".", "append", "(", "label", ")", "return", "pow", "(", "2", ",", "self", ".", "saved_categories", ".", "index", "(", "label", ")", ")" ]
Since the KNN Classifier stores categories as numbers, we must store each label as a number. This method converts from a label to a unique number. Each label is assigned a unique bit so multiple labels may be assigned to a single record.
[ "Since", "the", "KNN", "Classifier", "stores", "categories", "as", "numbers", "we", "must", "store", "each", "label", "as", "a", "number", ".", "This", "method", "converts", "from", "a", "label", "to", "a", "unique", "number", ".", "Each", "label", "is", "assigned", "a", "unique", "bit", "so", "multiple", "labels", "may", "be", "assigned", "to", "a", "single", "record", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L578-L587
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion._labelListToCategoryNumber
def _labelListToCategoryNumber(self, labelList): """ This method takes a list of labels and returns a unique category number. This enables this class to store a list of categories for each point since the KNN classifier only stores a single number category for each record. """ categoryNumber = 0 for label in labelList: categoryNumber += self._labelToCategoryNumber(label) return categoryNumber
python
def _labelListToCategoryNumber(self, labelList): """ This method takes a list of labels and returns a unique category number. This enables this class to store a list of categories for each point since the KNN classifier only stores a single number category for each record. """ categoryNumber = 0 for label in labelList: categoryNumber += self._labelToCategoryNumber(label) return categoryNumber
[ "def", "_labelListToCategoryNumber", "(", "self", ",", "labelList", ")", ":", "categoryNumber", "=", "0", "for", "label", "in", "labelList", ":", "categoryNumber", "+=", "self", ".", "_labelToCategoryNumber", "(", "label", ")", "return", "categoryNumber" ]
This method takes a list of labels and returns a unique category number. This enables this class to store a list of categories for each point since the KNN classifier only stores a single number category for each record.
[ "This", "method", "takes", "a", "list", "of", "labels", "and", "returns", "a", "unique", "category", "number", ".", "This", "enables", "this", "class", "to", "store", "a", "list", "of", "categories", "for", "each", "point", "since", "the", "KNN", "classifier", "only", "stores", "a", "single", "number", "category", "for", "each", "record", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L589-L598
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion._categoryToLabelList
def _categoryToLabelList(self, category): """ Converts a category number into a list of labels """ if category is None: return [] labelList = [] labelNum = 0 while category > 0: if category % 2 == 1: labelList.append(self.saved_categories[labelNum]) labelNum += 1 category = category >> 1 return labelList
python
def _categoryToLabelList(self, category): """ Converts a category number into a list of labels """ if category is None: return [] labelList = [] labelNum = 0 while category > 0: if category % 2 == 1: labelList.append(self.saved_categories[labelNum]) labelNum += 1 category = category >> 1 return labelList
[ "def", "_categoryToLabelList", "(", "self", ",", "category", ")", ":", "if", "category", "is", "None", ":", "return", "[", "]", "labelList", "=", "[", "]", "labelNum", "=", "0", "while", "category", ">", "0", ":", "if", "category", "%", "2", "==", "1", ":", "labelList", ".", "append", "(", "self", ".", "saved_categories", "[", "labelNum", "]", ")", "labelNum", "+=", "1", "category", "=", "category", ">>", "1", "return", "labelList" ]
Converts a category number into a list of labels
[ "Converts", "a", "category", "number", "into", "a", "list", "of", "labels" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L601-L615
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion._getStateAnomalyVector
def _getStateAnomalyVector(self, state): """ Returns a state's anomaly vertor converting it from spare to dense """ vector = numpy.zeros(self._anomalyVectorLength) vector[state.anomalyVector] = 1 return vector
python
def _getStateAnomalyVector(self, state): """ Returns a state's anomaly vertor converting it from spare to dense """ vector = numpy.zeros(self._anomalyVectorLength) vector[state.anomalyVector] = 1 return vector
[ "def", "_getStateAnomalyVector", "(", "self", ",", "state", ")", ":", "vector", "=", "numpy", ".", "zeros", "(", "self", ".", "_anomalyVectorLength", ")", "vector", "[", "state", ".", "anomalyVector", "]", "=", "1", "return", "vector" ]
Returns a state's anomaly vertor converting it from spare to dense
[ "Returns", "a", "state", "s", "anomaly", "vertor", "converting", "it", "from", "spare", "to", "dense" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L618-L624
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion.getLabels
def getLabels(self, start=None, end=None): """ Get the labels on classified points within range start to end. Not inclusive of end. :returns: (dict) with format: :: { 'isProcessing': boolean, 'recordLabels': list of results } ``isProcessing`` - currently always false as recalculation blocks; used if reprocessing of records is still being performed; Each item in ``recordLabels`` is of format: :: { 'ROWID': id of the row, 'labels': list of strings } """ if len(self._recordsCache) == 0: return { 'isProcessing': False, 'recordLabels': [] } try: start = int(start) except Exception: start = 0 try: end = int(end) except Exception: end = self._recordsCache[-1].ROWID if end <= start: raise HTMPredictionModelInvalidRangeError("Invalid supplied range for 'getLabels'.", debugInfo={ 'requestRange': { 'startRecordID': start, 'endRecordID': end }, 'numRecordsStored': len(self._recordsCache) }) results = { 'isProcessing': False, 'recordLabels': [] } ROWIDX = numpy.array( self._knnclassifier.getParameter('categoryRecencyList')) validIdx = numpy.where((ROWIDX >= start) & (ROWIDX < end))[0].tolist() categories = self._knnclassifier.getCategoryList() for idx in validIdx: row = dict( ROWID=int(ROWIDX[idx]), labels=self._categoryToLabelList(categories[idx])) results['recordLabels'].append(row) return results
python
def getLabels(self, start=None, end=None): """ Get the labels on classified points within range start to end. Not inclusive of end. :returns: (dict) with format: :: { 'isProcessing': boolean, 'recordLabels': list of results } ``isProcessing`` - currently always false as recalculation blocks; used if reprocessing of records is still being performed; Each item in ``recordLabels`` is of format: :: { 'ROWID': id of the row, 'labels': list of strings } """ if len(self._recordsCache) == 0: return { 'isProcessing': False, 'recordLabels': [] } try: start = int(start) except Exception: start = 0 try: end = int(end) except Exception: end = self._recordsCache[-1].ROWID if end <= start: raise HTMPredictionModelInvalidRangeError("Invalid supplied range for 'getLabels'.", debugInfo={ 'requestRange': { 'startRecordID': start, 'endRecordID': end }, 'numRecordsStored': len(self._recordsCache) }) results = { 'isProcessing': False, 'recordLabels': [] } ROWIDX = numpy.array( self._knnclassifier.getParameter('categoryRecencyList')) validIdx = numpy.where((ROWIDX >= start) & (ROWIDX < end))[0].tolist() categories = self._knnclassifier.getCategoryList() for idx in validIdx: row = dict( ROWID=int(ROWIDX[idx]), labels=self._categoryToLabelList(categories[idx])) results['recordLabels'].append(row) return results
[ "def", "getLabels", "(", "self", ",", "start", "=", "None", ",", "end", "=", "None", ")", ":", "if", "len", "(", "self", ".", "_recordsCache", ")", "==", "0", ":", "return", "{", "'isProcessing'", ":", "False", ",", "'recordLabels'", ":", "[", "]", "}", "try", ":", "start", "=", "int", "(", "start", ")", "except", "Exception", ":", "start", "=", "0", "try", ":", "end", "=", "int", "(", "end", ")", "except", "Exception", ":", "end", "=", "self", ".", "_recordsCache", "[", "-", "1", "]", ".", "ROWID", "if", "end", "<=", "start", ":", "raise", "HTMPredictionModelInvalidRangeError", "(", "\"Invalid supplied range for 'getLabels'.\"", ",", "debugInfo", "=", "{", "'requestRange'", ":", "{", "'startRecordID'", ":", "start", ",", "'endRecordID'", ":", "end", "}", ",", "'numRecordsStored'", ":", "len", "(", "self", ".", "_recordsCache", ")", "}", ")", "results", "=", "{", "'isProcessing'", ":", "False", ",", "'recordLabels'", ":", "[", "]", "}", "ROWIDX", "=", "numpy", ".", "array", "(", "self", ".", "_knnclassifier", ".", "getParameter", "(", "'categoryRecencyList'", ")", ")", "validIdx", "=", "numpy", ".", "where", "(", "(", "ROWIDX", ">=", "start", ")", "&", "(", "ROWIDX", "<", "end", ")", ")", "[", "0", "]", ".", "tolist", "(", ")", "categories", "=", "self", ".", "_knnclassifier", ".", "getCategoryList", "(", ")", "for", "idx", "in", "validIdx", ":", "row", "=", "dict", "(", "ROWID", "=", "int", "(", "ROWIDX", "[", "idx", "]", ")", ",", "labels", "=", "self", ".", "_categoryToLabelList", "(", "categories", "[", "idx", "]", ")", ")", "results", "[", "'recordLabels'", "]", ".", "append", "(", "row", ")", "return", "results" ]
Get the labels on classified points within range start to end. Not inclusive of end. :returns: (dict) with format: :: { 'isProcessing': boolean, 'recordLabels': list of results } ``isProcessing`` - currently always false as recalculation blocks; used if reprocessing of records is still being performed; Each item in ``recordLabels`` is of format: :: { 'ROWID': id of the row, 'labels': list of strings }
[ "Get", "the", "labels", "on", "classified", "points", "within", "range", "start", "to", "end", ".", "Not", "inclusive", "of", "end", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L627-L694
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion.addLabel
def addLabel(self, start, end, labelName): """ Add the label labelName to each record with record ROWID in range from ``start`` to ``end``, noninclusive of end. This will recalculate all points from end to the last record stored in the internal cache of this classifier. :param start: (int) start index :param end: (int) end index (noninclusive) :param labelName: (string) label name """ if len(self._recordsCache) == 0: raise HTMPredictionModelInvalidRangeError("Invalid supplied range for 'addLabel'. " "Model has no saved records.") try: start = int(start) except Exception: start = 0 try: end = int(end) except Exception: end = int(self._recordsCache[-1].ROWID) startID = self._recordsCache[0].ROWID clippedStart = max(0, start - startID) clippedEnd = max(0, min( len( self._recordsCache) , end - startID)) if clippedEnd <= clippedStart: raise HTMPredictionModelInvalidRangeError("Invalid supplied range for 'addLabel'.", debugInfo={ 'requestRange': { 'startRecordID': start, 'endRecordID': end }, 'clippedRequestRange': { 'startRecordID': clippedStart, 'endRecordID': clippedEnd }, 'validRange': { 'startRecordID': startID, 'endRecordID': self._recordsCache[len(self._recordsCache)-1].ROWID }, 'numRecordsStored': len(self._recordsCache) }) # Add label to range [clippedStart, clippedEnd) for state in self._recordsCache[clippedStart:clippedEnd]: if labelName not in state.anomalyLabel: state.anomalyLabel.append(labelName) state.setByUser = True self._addRecordToKNN(state) assert len(self.saved_categories) > 0 # Recompute [end, ...) for state in self._recordsCache[clippedEnd:]: self._classifyState(state)
python
def addLabel(self, start, end, labelName): """ Add the label labelName to each record with record ROWID in range from ``start`` to ``end``, noninclusive of end. This will recalculate all points from end to the last record stored in the internal cache of this classifier. :param start: (int) start index :param end: (int) end index (noninclusive) :param labelName: (string) label name """ if len(self._recordsCache) == 0: raise HTMPredictionModelInvalidRangeError("Invalid supplied range for 'addLabel'. " "Model has no saved records.") try: start = int(start) except Exception: start = 0 try: end = int(end) except Exception: end = int(self._recordsCache[-1].ROWID) startID = self._recordsCache[0].ROWID clippedStart = max(0, start - startID) clippedEnd = max(0, min( len( self._recordsCache) , end - startID)) if clippedEnd <= clippedStart: raise HTMPredictionModelInvalidRangeError("Invalid supplied range for 'addLabel'.", debugInfo={ 'requestRange': { 'startRecordID': start, 'endRecordID': end }, 'clippedRequestRange': { 'startRecordID': clippedStart, 'endRecordID': clippedEnd }, 'validRange': { 'startRecordID': startID, 'endRecordID': self._recordsCache[len(self._recordsCache)-1].ROWID }, 'numRecordsStored': len(self._recordsCache) }) # Add label to range [clippedStart, clippedEnd) for state in self._recordsCache[clippedStart:clippedEnd]: if labelName not in state.anomalyLabel: state.anomalyLabel.append(labelName) state.setByUser = True self._addRecordToKNN(state) assert len(self.saved_categories) > 0 # Recompute [end, ...) for state in self._recordsCache[clippedEnd:]: self._classifyState(state)
[ "def", "addLabel", "(", "self", ",", "start", ",", "end", ",", "labelName", ")", ":", "if", "len", "(", "self", ".", "_recordsCache", ")", "==", "0", ":", "raise", "HTMPredictionModelInvalidRangeError", "(", "\"Invalid supplied range for 'addLabel'. \"", "\"Model has no saved records.\"", ")", "try", ":", "start", "=", "int", "(", "start", ")", "except", "Exception", ":", "start", "=", "0", "try", ":", "end", "=", "int", "(", "end", ")", "except", "Exception", ":", "end", "=", "int", "(", "self", ".", "_recordsCache", "[", "-", "1", "]", ".", "ROWID", ")", "startID", "=", "self", ".", "_recordsCache", "[", "0", "]", ".", "ROWID", "clippedStart", "=", "max", "(", "0", ",", "start", "-", "startID", ")", "clippedEnd", "=", "max", "(", "0", ",", "min", "(", "len", "(", "self", ".", "_recordsCache", ")", ",", "end", "-", "startID", ")", ")", "if", "clippedEnd", "<=", "clippedStart", ":", "raise", "HTMPredictionModelInvalidRangeError", "(", "\"Invalid supplied range for 'addLabel'.\"", ",", "debugInfo", "=", "{", "'requestRange'", ":", "{", "'startRecordID'", ":", "start", ",", "'endRecordID'", ":", "end", "}", ",", "'clippedRequestRange'", ":", "{", "'startRecordID'", ":", "clippedStart", ",", "'endRecordID'", ":", "clippedEnd", "}", ",", "'validRange'", ":", "{", "'startRecordID'", ":", "startID", ",", "'endRecordID'", ":", "self", ".", "_recordsCache", "[", "len", "(", "self", ".", "_recordsCache", ")", "-", "1", "]", ".", "ROWID", "}", ",", "'numRecordsStored'", ":", "len", "(", "self", ".", "_recordsCache", ")", "}", ")", "# Add label to range [clippedStart, clippedEnd)", "for", "state", "in", "self", ".", "_recordsCache", "[", "clippedStart", ":", "clippedEnd", "]", ":", "if", "labelName", "not", "in", "state", ".", "anomalyLabel", ":", "state", ".", "anomalyLabel", ".", "append", "(", "labelName", ")", "state", ".", "setByUser", "=", "True", "self", ".", "_addRecordToKNN", "(", "state", ")", "assert", "len", "(", "self", ".", "saved_categories", ")", ">", "0", "# Recompute [end, ...)", "for", "state", "in", "self", ".", "_recordsCache", "[", "clippedEnd", ":", "]", ":", "self", ".", "_classifyState", "(", "state", ")" ]
Add the label labelName to each record with record ROWID in range from ``start`` to ``end``, noninclusive of end. This will recalculate all points from end to the last record stored in the internal cache of this classifier. :param start: (int) start index :param end: (int) end index (noninclusive) :param labelName: (string) label name
[ "Add", "the", "label", "labelName", "to", "each", "record", "with", "record", "ROWID", "in", "range", "from", "start", "to", "end", "noninclusive", "of", "end", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L697-L757
valid
numenta/nupic
src/nupic/regions/knn_anomaly_classifier_region.py
KNNAnomalyClassifierRegion.removeLabels
def removeLabels(self, start=None, end=None, labelFilter=None): """ Remove labels from each record with record ROWID in range from ``start`` to ``end``, noninclusive of end. Removes all records if ``labelFilter`` is None, otherwise only removes the labels equal to ``labelFilter``. This will recalculate all points from end to the last record stored in the internal cache of this classifier. :param start: (int) start index :param end: (int) end index (noninclusive) :param labelFilter: (string) label filter """ if len(self._recordsCache) == 0: raise HTMPredictionModelInvalidRangeError("Invalid supplied range for " "'removeLabels'. Model has no saved records.") try: start = int(start) except Exception: start = 0 try: end = int(end) except Exception: end = self._recordsCache[-1].ROWID startID = self._recordsCache[0].ROWID clippedStart = 0 if start is None else max(0, start - startID) clippedEnd = len(self._recordsCache) if end is None else \ max(0, min( len( self._recordsCache) , end - startID)) if clippedEnd <= clippedStart: raise HTMPredictionModelInvalidRangeError("Invalid supplied range for " "'removeLabels'.", debugInfo={ 'requestRange': { 'startRecordID': start, 'endRecordID': end }, 'clippedRequestRange': { 'startRecordID': clippedStart, 'endRecordID': clippedEnd }, 'validRange': { 'startRecordID': startID, 'endRecordID': self._recordsCache[len(self._recordsCache)-1].ROWID }, 'numRecordsStored': len(self._recordsCache) }) # Remove records within the cache recordsToDelete = [] for state in self._recordsCache[clippedStart:clippedEnd]: if labelFilter is not None: if labelFilter in state.anomalyLabel: state.anomalyLabel.remove(labelFilter) else: state.anomalyLabel = [] state.setByUser = False recordsToDelete.append(state) self._deleteRecordsFromKNN(recordsToDelete) # Remove records not in cache self._deleteRangeFromKNN(start, end) # Recompute [clippedEnd, ...) for state in self._recordsCache[clippedEnd:]: self._classifyState(state)
python
def removeLabels(self, start=None, end=None, labelFilter=None): """ Remove labels from each record with record ROWID in range from ``start`` to ``end``, noninclusive of end. Removes all records if ``labelFilter`` is None, otherwise only removes the labels equal to ``labelFilter``. This will recalculate all points from end to the last record stored in the internal cache of this classifier. :param start: (int) start index :param end: (int) end index (noninclusive) :param labelFilter: (string) label filter """ if len(self._recordsCache) == 0: raise HTMPredictionModelInvalidRangeError("Invalid supplied range for " "'removeLabels'. Model has no saved records.") try: start = int(start) except Exception: start = 0 try: end = int(end) except Exception: end = self._recordsCache[-1].ROWID startID = self._recordsCache[0].ROWID clippedStart = 0 if start is None else max(0, start - startID) clippedEnd = len(self._recordsCache) if end is None else \ max(0, min( len( self._recordsCache) , end - startID)) if clippedEnd <= clippedStart: raise HTMPredictionModelInvalidRangeError("Invalid supplied range for " "'removeLabels'.", debugInfo={ 'requestRange': { 'startRecordID': start, 'endRecordID': end }, 'clippedRequestRange': { 'startRecordID': clippedStart, 'endRecordID': clippedEnd }, 'validRange': { 'startRecordID': startID, 'endRecordID': self._recordsCache[len(self._recordsCache)-1].ROWID }, 'numRecordsStored': len(self._recordsCache) }) # Remove records within the cache recordsToDelete = [] for state in self._recordsCache[clippedStart:clippedEnd]: if labelFilter is not None: if labelFilter in state.anomalyLabel: state.anomalyLabel.remove(labelFilter) else: state.anomalyLabel = [] state.setByUser = False recordsToDelete.append(state) self._deleteRecordsFromKNN(recordsToDelete) # Remove records not in cache self._deleteRangeFromKNN(start, end) # Recompute [clippedEnd, ...) for state in self._recordsCache[clippedEnd:]: self._classifyState(state)
[ "def", "removeLabels", "(", "self", ",", "start", "=", "None", ",", "end", "=", "None", ",", "labelFilter", "=", "None", ")", ":", "if", "len", "(", "self", ".", "_recordsCache", ")", "==", "0", ":", "raise", "HTMPredictionModelInvalidRangeError", "(", "\"Invalid supplied range for \"", "\"'removeLabels'. Model has no saved records.\"", ")", "try", ":", "start", "=", "int", "(", "start", ")", "except", "Exception", ":", "start", "=", "0", "try", ":", "end", "=", "int", "(", "end", ")", "except", "Exception", ":", "end", "=", "self", ".", "_recordsCache", "[", "-", "1", "]", ".", "ROWID", "startID", "=", "self", ".", "_recordsCache", "[", "0", "]", ".", "ROWID", "clippedStart", "=", "0", "if", "start", "is", "None", "else", "max", "(", "0", ",", "start", "-", "startID", ")", "clippedEnd", "=", "len", "(", "self", ".", "_recordsCache", ")", "if", "end", "is", "None", "else", "max", "(", "0", ",", "min", "(", "len", "(", "self", ".", "_recordsCache", ")", ",", "end", "-", "startID", ")", ")", "if", "clippedEnd", "<=", "clippedStart", ":", "raise", "HTMPredictionModelInvalidRangeError", "(", "\"Invalid supplied range for \"", "\"'removeLabels'.\"", ",", "debugInfo", "=", "{", "'requestRange'", ":", "{", "'startRecordID'", ":", "start", ",", "'endRecordID'", ":", "end", "}", ",", "'clippedRequestRange'", ":", "{", "'startRecordID'", ":", "clippedStart", ",", "'endRecordID'", ":", "clippedEnd", "}", ",", "'validRange'", ":", "{", "'startRecordID'", ":", "startID", ",", "'endRecordID'", ":", "self", ".", "_recordsCache", "[", "len", "(", "self", ".", "_recordsCache", ")", "-", "1", "]", ".", "ROWID", "}", ",", "'numRecordsStored'", ":", "len", "(", "self", ".", "_recordsCache", ")", "}", ")", "# Remove records within the cache", "recordsToDelete", "=", "[", "]", "for", "state", "in", "self", ".", "_recordsCache", "[", "clippedStart", ":", "clippedEnd", "]", ":", "if", "labelFilter", "is", "not", "None", ":", "if", "labelFilter", "in", "state", ".", "anomalyLabel", ":", "state", ".", "anomalyLabel", ".", "remove", "(", "labelFilter", ")", "else", ":", "state", ".", "anomalyLabel", "=", "[", "]", "state", ".", "setByUser", "=", "False", "recordsToDelete", ".", "append", "(", "state", ")", "self", ".", "_deleteRecordsFromKNN", "(", "recordsToDelete", ")", "# Remove records not in cache", "self", ".", "_deleteRangeFromKNN", "(", "start", ",", "end", ")", "# Recompute [clippedEnd, ...)", "for", "state", "in", "self", ".", "_recordsCache", "[", "clippedEnd", ":", "]", ":", "self", ".", "_classifyState", "(", "state", ")" ]
Remove labels from each record with record ROWID in range from ``start`` to ``end``, noninclusive of end. Removes all records if ``labelFilter`` is None, otherwise only removes the labels equal to ``labelFilter``. This will recalculate all points from end to the last record stored in the internal cache of this classifier. :param start: (int) start index :param end: (int) end index (noninclusive) :param labelFilter: (string) label filter
[ "Remove", "labels", "from", "each", "record", "with", "record", "ROWID", "in", "range", "from", "start", "to", "end", "noninclusive", "of", "end", ".", "Removes", "all", "records", "if", "labelFilter", "is", "None", "otherwise", "only", "removes", "the", "labels", "equal", "to", "labelFilter", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/regions/knn_anomaly_classifier_region.py#L760-L829
valid
numenta/nupic
src/nupic/data/category_filter.py
CategoryFilter.match
def match(self, record): ''' Returns True if the record matches any of the provided filters ''' for field, meta in self.filterDict.iteritems(): index = meta['index'] categories = meta['categories'] for category in categories: # Record might be blank, handle this if not record: continue if record[index].find(category) != -1: ''' This field contains the string we're searching for so we'll keep the records ''' return True # None of the categories were found in this record return False
python
def match(self, record): ''' Returns True if the record matches any of the provided filters ''' for field, meta in self.filterDict.iteritems(): index = meta['index'] categories = meta['categories'] for category in categories: # Record might be blank, handle this if not record: continue if record[index].find(category) != -1: ''' This field contains the string we're searching for so we'll keep the records ''' return True # None of the categories were found in this record return False
[ "def", "match", "(", "self", ",", "record", ")", ":", "for", "field", ",", "meta", "in", "self", ".", "filterDict", ".", "iteritems", "(", ")", ":", "index", "=", "meta", "[", "'index'", "]", "categories", "=", "meta", "[", "'categories'", "]", "for", "category", "in", "categories", ":", "# Record might be blank, handle this", "if", "not", "record", ":", "continue", "if", "record", "[", "index", "]", ".", "find", "(", "category", ")", "!=", "-", "1", ":", "'''\n This field contains the string we're searching for\n so we'll keep the records\n '''", "return", "True", "# None of the categories were found in this record", "return", "False" ]
Returns True if the record matches any of the provided filters
[ "Returns", "True", "if", "the", "record", "matches", "any", "of", "the", "provided", "filters" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/data/category_filter.py#L58-L78
valid
numenta/nupic
src/nupic/algorithms/spatial_pooler.py
_SparseMatrixCorticalColumnAdapter.replace
def replace(self, columnIndex, bitmap): """ Wraps replaceSparseRow()""" return super(_SparseMatrixCorticalColumnAdapter, self).replaceSparseRow( columnIndex, bitmap )
python
def replace(self, columnIndex, bitmap): """ Wraps replaceSparseRow()""" return super(_SparseMatrixCorticalColumnAdapter, self).replaceSparseRow( columnIndex, bitmap )
[ "def", "replace", "(", "self", ",", "columnIndex", ",", "bitmap", ")", ":", "return", "super", "(", "_SparseMatrixCorticalColumnAdapter", ",", "self", ")", ".", "replaceSparseRow", "(", "columnIndex", ",", "bitmap", ")" ]
Wraps replaceSparseRow()
[ "Wraps", "replaceSparseRow", "()" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/algorithms/spatial_pooler.py#L67-L71
valid
numenta/nupic
src/nupic/algorithms/spatial_pooler.py
_SparseMatrixCorticalColumnAdapter.update
def update(self, columnIndex, vector): """ Wraps setRowFromDense()""" return super(_SparseMatrixCorticalColumnAdapter, self).setRowFromDense( columnIndex, vector )
python
def update(self, columnIndex, vector): """ Wraps setRowFromDense()""" return super(_SparseMatrixCorticalColumnAdapter, self).setRowFromDense( columnIndex, vector )
[ "def", "update", "(", "self", ",", "columnIndex", ",", "vector", ")", ":", "return", "super", "(", "_SparseMatrixCorticalColumnAdapter", ",", "self", ")", ".", "setRowFromDense", "(", "columnIndex", ",", "vector", ")" ]
Wraps setRowFromDense()
[ "Wraps", "setRowFromDense", "()" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/algorithms/spatial_pooler.py#L74-L78
valid
numenta/nupic
src/nupic/algorithms/spatial_pooler.py
SpatialPooler.setLocalAreaDensity
def setLocalAreaDensity(self, localAreaDensity): """ Sets the local area density. Invalidates the 'numActiveColumnsPerInhArea' parameter :param localAreaDensity: (float) value to set """ assert(localAreaDensity > 0 and localAreaDensity <= 1) self._localAreaDensity = localAreaDensity self._numActiveColumnsPerInhArea = 0
python
def setLocalAreaDensity(self, localAreaDensity): """ Sets the local area density. Invalidates the 'numActiveColumnsPerInhArea' parameter :param localAreaDensity: (float) value to set """ assert(localAreaDensity > 0 and localAreaDensity <= 1) self._localAreaDensity = localAreaDensity self._numActiveColumnsPerInhArea = 0
[ "def", "setLocalAreaDensity", "(", "self", ",", "localAreaDensity", ")", ":", "assert", "(", "localAreaDensity", ">", "0", "and", "localAreaDensity", "<=", "1", ")", "self", ".", "_localAreaDensity", "=", "localAreaDensity", "self", ".", "_numActiveColumnsPerInhArea", "=", "0" ]
Sets the local area density. Invalidates the 'numActiveColumnsPerInhArea' parameter :param localAreaDensity: (float) value to set
[ "Sets", "the", "local", "area", "density", ".", "Invalidates", "the", "numActiveColumnsPerInhArea", "parameter", ":", "param", "localAreaDensity", ":", "(", "float", ")", "value", "to", "set" ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/algorithms/spatial_pooler.py#L487-L496
valid
numenta/nupic
src/nupic/algorithms/spatial_pooler.py
SpatialPooler.getPotential
def getPotential(self, columnIndex, potential): """ :param columnIndex: (int) column index to get potential for. :param potential: (list) will be overwritten with column potentials. Must match the number of inputs. """ assert(columnIndex < self._numColumns) potential[:] = self._potentialPools[columnIndex]
python
def getPotential(self, columnIndex, potential): """ :param columnIndex: (int) column index to get potential for. :param potential: (list) will be overwritten with column potentials. Must match the number of inputs. """ assert(columnIndex < self._numColumns) potential[:] = self._potentialPools[columnIndex]
[ "def", "getPotential", "(", "self", ",", "columnIndex", ",", "potential", ")", ":", "assert", "(", "columnIndex", "<", "self", ".", "_numColumns", ")", "potential", "[", ":", "]", "=", "self", ".", "_potentialPools", "[", "columnIndex", "]" ]
:param columnIndex: (int) column index to get potential for. :param potential: (list) will be overwritten with column potentials. Must match the number of inputs.
[ ":", "param", "columnIndex", ":", "(", "int", ")", "column", "index", "to", "get", "potential", "for", ".", ":", "param", "potential", ":", "(", "list", ")", "will", "be", "overwritten", "with", "column", "potentials", ".", "Must", "match", "the", "number", "of", "inputs", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/algorithms/spatial_pooler.py#L792-L799
valid
numenta/nupic
src/nupic/algorithms/spatial_pooler.py
SpatialPooler.setPotential
def setPotential(self, columnIndex, potential): """ Sets the potential mapping for a given column. ``potential`` size must match the number of inputs, and must be greater than ``stimulusThreshold``. :param columnIndex: (int) column index to set potential for. :param potential: (list) value to set. """ assert(columnIndex < self._numColumns) potentialSparse = numpy.where(potential > 0)[0] if len(potentialSparse) < self._stimulusThreshold: raise Exception("This is likely due to a " + "value of stimulusThreshold that is too large relative " + "to the input size.") self._potentialPools.replace(columnIndex, potentialSparse)
python
def setPotential(self, columnIndex, potential): """ Sets the potential mapping for a given column. ``potential`` size must match the number of inputs, and must be greater than ``stimulusThreshold``. :param columnIndex: (int) column index to set potential for. :param potential: (list) value to set. """ assert(columnIndex < self._numColumns) potentialSparse = numpy.where(potential > 0)[0] if len(potentialSparse) < self._stimulusThreshold: raise Exception("This is likely due to a " + "value of stimulusThreshold that is too large relative " + "to the input size.") self._potentialPools.replace(columnIndex, potentialSparse)
[ "def", "setPotential", "(", "self", ",", "columnIndex", ",", "potential", ")", ":", "assert", "(", "columnIndex", "<", "self", ".", "_numColumns", ")", "potentialSparse", "=", "numpy", ".", "where", "(", "potential", ">", "0", ")", "[", "0", "]", "if", "len", "(", "potentialSparse", ")", "<", "self", ".", "_stimulusThreshold", ":", "raise", "Exception", "(", "\"This is likely due to a \"", "+", "\"value of stimulusThreshold that is too large relative \"", "+", "\"to the input size.\"", ")", "self", ".", "_potentialPools", ".", "replace", "(", "columnIndex", ",", "potentialSparse", ")" ]
Sets the potential mapping for a given column. ``potential`` size must match the number of inputs, and must be greater than ``stimulusThreshold``. :param columnIndex: (int) column index to set potential for. :param potential: (list) value to set.
[ "Sets", "the", "potential", "mapping", "for", "a", "given", "column", ".", "potential", "size", "must", "match", "the", "number", "of", "inputs", "and", "must", "be", "greater", "than", "stimulusThreshold", ".", ":", "param", "columnIndex", ":", "(", "int", ")", "column", "index", "to", "set", "potential", "for", ".", ":", "param", "potential", ":", "(", "list", ")", "value", "to", "set", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/algorithms/spatial_pooler.py#L802-L818
valid
numenta/nupic
src/nupic/algorithms/spatial_pooler.py
SpatialPooler.getPermanence
def getPermanence(self, columnIndex, permanence): """ Returns the permanence values for a given column. ``permanence`` size must match the number of inputs. :param columnIndex: (int) column index to get permanence for. :param permanence: (list) will be overwritten with permanences. """ assert(columnIndex < self._numColumns) permanence[:] = self._permanences[columnIndex]
python
def getPermanence(self, columnIndex, permanence): """ Returns the permanence values for a given column. ``permanence`` size must match the number of inputs. :param columnIndex: (int) column index to get permanence for. :param permanence: (list) will be overwritten with permanences. """ assert(columnIndex < self._numColumns) permanence[:] = self._permanences[columnIndex]
[ "def", "getPermanence", "(", "self", ",", "columnIndex", ",", "permanence", ")", ":", "assert", "(", "columnIndex", "<", "self", ".", "_numColumns", ")", "permanence", "[", ":", "]", "=", "self", ".", "_permanences", "[", "columnIndex", "]" ]
Returns the permanence values for a given column. ``permanence`` size must match the number of inputs. :param columnIndex: (int) column index to get permanence for. :param permanence: (list) will be overwritten with permanences.
[ "Returns", "the", "permanence", "values", "for", "a", "given", "column", ".", "permanence", "size", "must", "match", "the", "number", "of", "inputs", ".", ":", "param", "columnIndex", ":", "(", "int", ")", "column", "index", "to", "get", "permanence", "for", ".", ":", "param", "permanence", ":", "(", "list", ")", "will", "be", "overwritten", "with", "permanences", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/algorithms/spatial_pooler.py#L821-L830
valid
numenta/nupic
src/nupic/algorithms/spatial_pooler.py
SpatialPooler.setPermanence
def setPermanence(self, columnIndex, permanence): """ Sets the permanence values for a given column. ``permanence`` size must match the number of inputs. :param columnIndex: (int) column index to set permanence for. :param permanence: (list) value to set. """ assert(columnIndex < self._numColumns) self._updatePermanencesForColumn(permanence, columnIndex, raisePerm=False)
python
def setPermanence(self, columnIndex, permanence): """ Sets the permanence values for a given column. ``permanence`` size must match the number of inputs. :param columnIndex: (int) column index to set permanence for. :param permanence: (list) value to set. """ assert(columnIndex < self._numColumns) self._updatePermanencesForColumn(permanence, columnIndex, raisePerm=False)
[ "def", "setPermanence", "(", "self", ",", "columnIndex", ",", "permanence", ")", ":", "assert", "(", "columnIndex", "<", "self", ".", "_numColumns", ")", "self", ".", "_updatePermanencesForColumn", "(", "permanence", ",", "columnIndex", ",", "raisePerm", "=", "False", ")" ]
Sets the permanence values for a given column. ``permanence`` size must match the number of inputs. :param columnIndex: (int) column index to set permanence for. :param permanence: (list) value to set.
[ "Sets", "the", "permanence", "values", "for", "a", "given", "column", ".", "permanence", "size", "must", "match", "the", "number", "of", "inputs", ".", ":", "param", "columnIndex", ":", "(", "int", ")", "column", "index", "to", "set", "permanence", "for", ".", ":", "param", "permanence", ":", "(", "list", ")", "value", "to", "set", "." ]
5922fafffdccc8812e72b3324965ad2f7d4bbdad
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/algorithms/spatial_pooler.py#L833-L842
valid