File size: 6,040 Bytes
ef26f19
30a6c91
 
ef26f19
30a6c91
 
ef26f19
30a6c91
7b21eaf
efe7098
7b21eaf
 
 
ef26f19
 
7b21eaf
18303b2
30a6c91
 
 
 
 
 
 
 
 
 
 
 
ef26f19
 
30a6c91
 
 
819893b
 
 
 
 
7b21eaf
9827d13
6667798
 
 
18303b2
7b21eaf
 
 
6667798
 
30a6c91
6667798
 
 
 
 
 
 
 
 
 
23c88e8
18303b2
30a6c91
ef26f19
7c79f21
30a6c91
 
 
 
 
 
ef26f19
 
30a6c91
ef26f19
 
 
 
 
30a6c91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b21eaf
 
9d6a813
 
ef26f19
 
9d6a813
 
30a6c91
7c79f21
30a6c91
 
 
 
 
 
 
 
ef26f19
 
 
 
6667798
3ef03bc
aff946c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import datasets
from Bio import SeqIO
from Bio.SeqUtils import gc_fraction
from typing import Any, Dict, List, Tuple
import os
import gzip
import re

class GenomeDatasetConfig(datasets.BuilderConfig):
    def __init__(self,*args, num_urls: int, **kwargs):
        super(GenomeDatasetConfig, self).__init__(**kwargs)
        self.num_urls = num_urls

class GenomeDataset(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIG_CLASS = GenomeDatasetConfig

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features({
                "DNA_id": datasets.Value("string"),
                "organism": datasets.Value("string"),
                "year": datasets.Value("string"),
                "region_type": datasets.Value("string"),
                "specific_class": datasets.Value("string"),
                "product": datasets.Value("string"),
                "sequence": datasets.Value("string"),
                "gc_content": datasets.Value("float"),
                "translation_code": datasets.Value("string"),
                "start_postion": datasets.Value("int32"),
                "end_position": datasets.Value("int32"),
            })
        )

#    def load_genome_dataset(num_urls=None):
#    builder_kwargs = {}
#    if num_urls is not None:
#        builder_kwargs['config'] = GenomeDatasetConfig(num_urls=num_urls)
#    return load_dataset("GenomeDataset", builder_kwargs=builder_kwargs)
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
      urls_filepath = dl_manager.download_and_extract('urlfile.txt')
      with open(urls_filepath) as urls_file:
        downloaded_files = [line.rstrip() for line in urls_file]

      num_urls = self.config.num_urls or len(downloaded_files)
      downloaded_files = downloaded_files[:num_urls]

      train_files = downloaded_files[:int(len(downloaded_files) * 0.8)] # first 80% for training
      test_files = downloaded_files[int(len(downloaded_files) * 0.8):]  # last 20% for testing

      return [
          datasets.SplitGenerator(
              name=datasets.Split.TRAIN,
              gen_kwargs={"filepaths": train_files}
          ),
          datasets.SplitGenerator(
              name=datasets.Split.TEST,
              gen_kwargs={"filepaths": test_files}
          )
      ]


    def _generate_examples(self, filepaths: List[str]) -> Tuple[str, Dict[str, Any]]:
        split_regex = re.compile('-')
        id_ = 0  
        for filepath in filepaths:
            if filepath.endswith(".seq.gz"):
                with gzip.open(filepath, 'rt') as handle:
                    for record in SeqIO.parse(handle, "genbank"):
                        if 'molecule_type' in record.annotations and record.annotations['molecule_type'] == 'DNA':
                            organism = record.annotations.get('organism', 'unknown')
                            collection_date = record.annotations.get('date', 'unknown')
                            year = split_regex.split(collection_date)[-1] if '-' in collection_date else collection_date
                            for feature in record.features:
                                seq = feature.extract(record.seq)
                                gc_content = gc_fraction(seq)
                                start_position = int(feature.location.start)
                                end_position = int(feature.location.end)
                                if feature.type in ['rRNA', 'tRNA','CDS','tmRNA','mRNA','mat_peptide','sig_peptide','propeptide']:
                                    region_type = 'coding'
                                    product = feature.qualifiers.get('product', ['Unknown'])[0]
                                    if feature.type == 'CDS':
                                        translation = feature.qualifiers.get('translation', [''])[0]
                                        specific_class = 'Protein'
                                    else:
                                        translation = 'NA'
                                        specific_class = feature.type
                                elif feature.type == 'regulatory':
                                    region_type = feature.type
                                    specific_class = feature.qualifiers.get('regulatory_class', ['regulatory'])[0]
                                    translation = 'NA'
                                    product = 'NA'
                                elif feature.type == 'gene':
                                    continue
                                else:
                                    if 'product' in feature.qualifiers:
                                        product = feature.qualifiers.get('product')[0]
                                        region_type = 'coding'
                                        specific_class = feature.type
                                    else:
                                        product = 'NA'
                                        region_type = feature.type
                                        specific_class = 'NA'
                                    translation = 'NA'
                                yield str(id_), {
                                    'DNA_id': record.id,
                                    'organism': organism, 
                                    'year': year, 
                                    'region_type': region_type, 
                                    'specific_class': specific_class, 
                                    'product': product, 
                                    'sequence': str(seq), 
                                    'gc_content': gc_content, 
                                    'translation_code': translation,
                                    'start_postion': start_position,
                                    'end_position': end_position
                                }
                                id_+= 1