text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
[GOAL]
f : Type u₀ → Type u₁
inst✝ : EquivFunctor f
α β : Type u₀
e : α ≃ β
x : f α
⊢ map e.symm (map e x) = x
[PROOFSTEP]
convert (congr_fun (EquivFunctor.map_trans' e e.symm) x).symm
[GOAL]
case h.e'_3
f : Type u₀ → Type u₁
inst✝ : EquivFunctor f
α β : Type u₀
e : α ≃ β
x : f α
⊢ x = map (e.trans e.symm) x
[PROOFSTEP]
simp
[GOAL]
f : Type u₀ → Type u₁
inst✝ : EquivFunctor f
α β : Type u₀
e : α ≃ β
y : f β
⊢ map e (map e.symm y) = y
[PROOFSTEP]
convert (congr_fun (EquivFunctor.map_trans' e.symm e) y).symm
[GOAL]
case h.e'_3
f : Type u₀ → Type u₁
inst✝ : EquivFunctor f
α β : Type u₀
e : α ≃ β
y : f β
⊢ y = map (e.symm.trans e) y
[PROOFSTEP]
simp
[GOAL]
f : Type u₀ → Type u₁
inst✝ : EquivFunctor f
α✝ β : Type u₀
e : α✝ ≃ β
α : Type u₀
⊢ mapEquiv f (Equiv.refl α) = Equiv.refl (f α)
[PROOFSTEP]
simp [EquivFunctor.mapEquiv]
[GOAL]
f : Type u₀ → Type u₁
inst✝ : EquivFunctor f
α✝ β : Type u₀
e : α✝ ≃ β
α : Type u₀
⊢ { toFun := id, invFun := id, left_inv := (_ : LeftInverse id id), right_inv := (_ : Function.RightInverse id id) } =
Equiv.refl (f α)
[PROOFSTEP]
rfl
[GOAL]
f : Type u₀ → Type u₁
inst✝ : EquivFunctor f
α β : Type u₀
e : α ≃ β
γ : Type u₀
ab : α ≃ β
bc : β ≃ γ
x : f α
⊢ ↑((mapEquiv f ab).trans (mapEquiv f bc)) x = ↑(mapEquiv f (ab.trans bc)) x
[PROOFSTEP]
simp [mapEquiv, map_trans']
[GOAL]
f : Type u₀ → Type u₁
inst✝¹ : Functor f
inst✝ : LawfulFunctor f
α : Type u₀
⊢ (fun {α β} e => Functor.map ↑e) (Equiv.refl α) = id
[PROOFSTEP]
ext
[GOAL]
case h
f : Type u₀ → Type u₁
inst✝¹ : Functor f
inst✝ : LawfulFunctor f
α : Type u₀
x✝ : f α
⊢ (fun {α β} e => Functor.map ↑e) (Equiv.refl α) x✝ = id x✝
[PROOFSTEP]
apply LawfulFunctor.id_map
[GOAL]
f : Type u₀ → Type u₁
inst✝¹ : Functor f
inst✝ : LawfulFunctor f
α β γ : Type u₀
k : α ≃ β
h : β ≃ γ
⊢ (fun {α β} e => Functor.map ↑e) (k.trans h) = (fun {α β} e => Functor.map ↑e) h ∘ (fun {α β} e => Functor.map ↑e) k
[PROOFSTEP]
ext x
[GOAL]
case h
f : Type u₀ → Type u₁
inst✝¹ : Functor f
inst✝ : LawfulFunctor f
α β γ : Type u₀
k : α ≃ β
h : β ≃ γ
x : f α
⊢ (fun {α β} e => Functor.map ↑e) (k.trans h) x =
((fun {α β} e => Functor.map ↑e) h ∘ (fun {α β} e => Functor.map ↑e) k) x
[PROOFSTEP]
apply LawfulFunctor.comp_map k h x
[GOAL]
f : Type u₀ → Type u₁
inst✝¹ : Applicative f
inst✝ : LawfulApplicative f
α β : Type u₀
h : ∀ (γ : Type u₀), Injective pure
e₁ e₂ : α ≃ β
H : mapEquiv f e₁ = mapEquiv f e₂
x : α
⊢ pure (↑e₁ x) = pure (↑e₂ x)
[PROOFSTEP]
simpa [EquivFunctor.map] using Equiv.congr_fun H (pure x)
| {"mathlib_filename": "Mathlib.Control.EquivFunctor", "llama_tokens": 1311} |
[GOAL]
ι : Type u_1
I J : Box ι
x y : ι → ℝ
⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper]
[PROOFSTEP]
tfae_have 1 ↔ 2
[GOAL]
case tfae_1_iff_2
ι : Type u_1
I J : Box ι
x y : ι → ℝ
⊢ I ≤ J ↔ ↑I ⊆ ↑J
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper]
[PROOFSTEP]
exact Iff.rfl
[GOAL]
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper]
[PROOFSTEP]
tfae_have 2 → 3
[GOAL]
case tfae_2_to_3
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
⊢ ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper
[PROOFSTEP]
intro h
[GOAL]
case tfae_2_to_3
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
h : ↑I ⊆ ↑J
⊢ Icc I.lower I.upper ⊆ Icc J.lower J.upper
[PROOFSTEP]
simpa [coe_eq_pi, closure_pi_set, lower_ne_upper] using closure_mono h
[GOAL]
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper
⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper]
[PROOFSTEP]
tfae_have 3 ↔ 4
[GOAL]
case tfae_3_iff_4
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper
⊢ Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper
tfae_3_iff_4 : Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper
⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper]
[PROOFSTEP]
exact Icc_subset_Icc_iff I.lower_le_upper
[GOAL]
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper
tfae_3_iff_4 : Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper
⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper]
[PROOFSTEP]
tfae_have 4 → 2
[GOAL]
case tfae_4_to_2
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper
tfae_3_iff_4 : Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper
⊢ J.lower ≤ I.lower ∧ I.upper ≤ J.upper → ↑I ⊆ ↑J
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper
tfae_3_iff_4 : Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper
tfae_4_to_2 : J.lower ≤ I.lower ∧ I.upper ≤ J.upper → ↑I ⊆ ↑J
⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper]
[PROOFSTEP]
exact fun h x hx i ↦ Ioc_subset_Ioc (h.1 i) (h.2 i) (hx i)
[GOAL]
ι : Type u_1
I J : Box ι
x y : ι → ℝ
tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J
tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper
tfae_3_iff_4 : Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper
tfae_4_to_2 : J.lower ≤ I.lower ∧ I.upper ≤ J.upper → ↑I ⊆ ↑J
⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper]
[PROOFSTEP]
tfae_finish
[GOAL]
ι : Type u_1
I J : Box ι
x y : ι → ℝ
⊢ Injective toSet
[PROOFSTEP]
rintro ⟨l₁, u₁, h₁⟩ ⟨l₂, u₂, h₂⟩ h
[GOAL]
case mk.mk
ι : Type u_1
I J : Box ι
x y l₁ u₁ : ι → ℝ
h₁ : ∀ (i : ι), l₁ i < u₁ i
l₂ u₂ : ι → ℝ
h₂ : ∀ (i : ι), l₂ i < u₂ i
h : ↑{ lower := l₁, upper := u₁, lower_lt_upper := h₁ } = ↑{ lower := l₂, upper := u₂, lower_lt_upper := h₂ }
⊢ { lower := l₁, upper := u₁, lower_lt_upper := h₁ } = { lower := l₂, upper := u₂, lower_lt_upper := h₂ }
[PROOFSTEP]
simp only [Subset.antisymm_iff, coe_subset_coe, le_iff_bounds] at h
[GOAL]
case mk.mk
ι : Type u_1
I J : Box ι
x y l₁ u₁ : ι → ℝ
h₁ : ∀ (i : ι), l₁ i < u₁ i
l₂ u₂ : ι → ℝ
h₂ : ∀ (i : ι), l₂ i < u₂ i
h : (l₂ ≤ l₁ ∧ u₁ ≤ u₂) ∧ l₁ ≤ l₂ ∧ u₂ ≤ u₁
⊢ { lower := l₁, upper := u₁, lower_lt_upper := h₁ } = { lower := l₂, upper := u₂, lower_lt_upper := h₂ }
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_lower
ι : Type u_1
I J : Box ι
x y l₁ u₁ : ι → ℝ
h₁ : ∀ (i : ι), l₁ i < u₁ i
l₂ u₂ : ι → ℝ
h₂ : ∀ (i : ι), l₂ i < u₂ i
h : (l₂ ≤ l₁ ∧ u₁ ≤ u₂) ∧ l₁ ≤ l₂ ∧ u₂ ≤ u₁
⊢ l₁ = l₂
case mk.mk.e_upper
ι : Type u_1
I J : Box ι
x y l₁ u₁ : ι → ℝ
h₁ : ∀ (i : ι), l₁ i < u₁ i
l₂ u₂ : ι → ℝ
h₂ : ∀ (i : ι), l₂ i < u₂ i
h : (l₂ ≤ l₁ ∧ u₁ ≤ u₂) ∧ l₁ ≤ l₂ ∧ u₂ ≤ u₁
⊢ u₁ = u₂
[PROOFSTEP]
exacts [le_antisymm h.2.1 h.1.1, le_antisymm h.1.2 h.2.2]
[GOAL]
ι : Type u_1
I J : Box ι
x y : ι → ℝ
⊢ Option.isSome ⊥ = true ↔ Set.Nonempty ↑⊥
[PROOFSTEP]
erw [Option.isSome]
[GOAL]
ι : Type u_1
I J : Box ι
x y : ι → ℝ
⊢ (match ⊥ with
| some val => true
| none => false) =
true ↔
Set.Nonempty ↑⊥
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
I : Box ι
⊢ Option.isSome ↑I = true ↔ Set.Nonempty ↑↑I
[PROOFSTEP]
erw [Option.isSome]
[GOAL]
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
I : Box ι
⊢ (match ↑I with
| some val => true
| none => false) =
true ↔
Set.Nonempty ↑↑I
[PROOFSTEP]
simp [I.nonempty_coe]
[GOAL]
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
I : WithBot (Box ι)
⊢ ⋃ (J : Box ι) (_ : ↑J = I), ↑J = ↑I
[PROOFSTEP]
induction I using WithBot.recBotCoe
[GOAL]
case bot
ι : Type u_1
I J : Box ι
x y : ι → ℝ
⊢ ⋃ (J : Box ι) (_ : ↑J = ⊥), ↑J = ↑⊥
[PROOFSTEP]
simp [WithBot.coe_eq_coe]
[GOAL]
case coe
ι : Type u_1
I J : Box ι
x y : ι → ℝ
a✝ : Box ι
⊢ ⋃ (J : Box ι) (_ : ↑J = ↑a✝), ↑J = ↑↑a✝
[PROOFSTEP]
simp [WithBot.coe_eq_coe]
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
I J : WithBot (Box ι)
⊢ ↑I ⊆ ↑J ↔ I ≤ J
[PROOFSTEP]
induction I using WithBot.recBotCoe
[GOAL]
case bot
ι : Type u_1
I J✝ : Box ι
x y : ι → ℝ
J : WithBot (Box ι)
⊢ ↑⊥ ⊆ ↑J ↔ ⊥ ≤ J
[PROOFSTEP]
simp
[GOAL]
case coe
ι : Type u_1
I J✝ : Box ι
x y : ι → ℝ
J : WithBot (Box ι)
a✝ : Box ι
⊢ ↑↑a✝ ⊆ ↑J ↔ ↑a✝ ≤ J
[PROOFSTEP]
induction J using WithBot.recBotCoe
[GOAL]
case coe.bot
ι : Type u_1
I J : Box ι
x y : ι → ℝ
a✝ : Box ι
⊢ ↑↑a✝ ⊆ ↑⊥ ↔ ↑a✝ ≤ ⊥
[PROOFSTEP]
simp [subset_empty_iff]
[GOAL]
case coe.coe
ι : Type u_1
I J : Box ι
x y : ι → ℝ
a✝¹ a✝ : Box ι
⊢ ↑↑a✝¹ ⊆ ↑↑a✝ ↔ ↑a✝¹ ≤ ↑a✝
[PROOFSTEP]
simp [le_def]
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
I J : WithBot (Box ι)
⊢ ↑I = ↑J ↔ I = J
[PROOFSTEP]
simp only [Subset.antisymm_iff, ← le_antisymm_iff, withBotCoe_subset_iff]
[GOAL]
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
⊢ mk' l u = ⊥ ↔ ∃ i, u i ≤ l i
[PROOFSTEP]
rw [mk']
[GOAL]
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
⊢ (if h : ∀ (i : ι), l i < u i then ↑{ lower := l, upper := u, lower_lt_upper := h } else ⊥) = ⊥ ↔ ∃ i, u i ≤ l i
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
h : ∀ (i : ι), l i < u i
⊢ ↑{ lower := l, upper := u, lower_lt_upper := h } = ⊥ ↔ ∃ i, u i ≤ l i
[PROOFSTEP]
simpa using h
[GOAL]
case neg
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
h : ¬∀ (i : ι), l i < u i
⊢ ⊥ = ⊥ ↔ ∃ i, u i ≤ l i
[PROOFSTEP]
simpa using h
[GOAL]
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
⊢ mk' l u = ↑I ↔ l = I.lower ∧ u = I.upper
[PROOFSTEP]
cases' I with lI uI hI
[GOAL]
case mk
ι : Type u_1
J : Box ι
x y l u lI uI : ι → ℝ
hI : ∀ (i : ι), lI i < uI i
⊢ mk' l u = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔
l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧
u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper
[PROOFSTEP]
rw [mk']
[GOAL]
case mk
ι : Type u_1
J : Box ι
x y l u lI uI : ι → ℝ
hI : ∀ (i : ι), lI i < uI i
⊢ (if h : ∀ (i : ι), l i < u i then ↑{ lower := l, upper := u, lower_lt_upper := h } else ⊥) =
↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔
l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧
u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
J : Box ι
x y l u lI uI : ι → ℝ
hI : ∀ (i : ι), lI i < uI i
h : ∀ (i : ι), l i < u i
⊢ ↑{ lower := l, upper := u, lower_lt_upper := h } = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔
l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧
u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper
[PROOFSTEP]
simp [WithBot.coe_eq_coe]
[GOAL]
case neg
ι : Type u_1
J : Box ι
x y l u lI uI : ι → ℝ
hI : ∀ (i : ι), lI i < uI i
h : ¬∀ (i : ι), l i < u i
⊢ ⊥ = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔
l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧
u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper
[PROOFSTEP]
suffices l = lI → u ≠ uI by simpa
[GOAL]
ι : Type u_1
J : Box ι
x y l u lI uI : ι → ℝ
hI : ∀ (i : ι), lI i < uI i
h : ¬∀ (i : ι), l i < u i
this : l = lI → u ≠ uI
⊢ ⊥ = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔
l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧
u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper
[PROOFSTEP]
simpa
[GOAL]
case neg
ι : Type u_1
J : Box ι
x y l u lI uI : ι → ℝ
hI : ∀ (i : ι), lI i < uI i
h : ¬∀ (i : ι), l i < u i
⊢ l = lI → u ≠ uI
[PROOFSTEP]
rintro rfl rfl
[GOAL]
case neg
ι : Type u_1
J : Box ι
x y l u : ι → ℝ
h : ¬∀ (i : ι), l i < u i
hI : ∀ (i : ι), l i < u i
⊢ False
[PROOFSTEP]
exact h hI
[GOAL]
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
⊢ ↑(mk' l u) = Set.pi univ fun i => Ioc (l i) (u i)
[PROOFSTEP]
rw [mk']
[GOAL]
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
⊢ ↑(if h : ∀ (i : ι), l i < u i then ↑{ lower := l, upper := u, lower_lt_upper := h } else ⊥) =
Set.pi univ fun i => Ioc (l i) (u i)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
h : ∀ (i : ι), l i < u i
⊢ ↑↑{ lower := l, upper := u, lower_lt_upper := h } = Set.pi univ fun i => Ioc (l i) (u i)
[PROOFSTEP]
exact coe_eq_pi _
[GOAL]
case neg
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
h : ¬∀ (i : ι), l i < u i
⊢ ↑⊥ = Set.pi univ fun i => Ioc (l i) (u i)
[PROOFSTEP]
rcases not_forall.mp h with ⟨i, hi⟩
[GOAL]
case neg.intro
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
h : ¬∀ (i : ι), l i < u i
i : ι
hi : ¬l i < u i
⊢ ↑⊥ = Set.pi univ fun i => Ioc (l i) (u i)
[PROOFSTEP]
rw [coe_bot, univ_pi_eq_empty]
[GOAL]
case neg.intro
ι : Type u_1
I J : Box ι
x y l u : ι → ℝ
h : ¬∀ (i : ι), l i < u i
i : ι
hi : ¬l i < u i
⊢ Ioc (l ?m.301759) (u ?m.301759) = ∅
ι : Type u_1 I J : Box ι x y l u : ι → ℝ h : ¬∀ (i : ι), l i < u i i : ι hi : ¬l i < u i ⊢ ι
[PROOFSTEP]
exact Ioc_eq_empty hi
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
I J : WithBot (Box ι)
⊢ ↑(I ⊓ J) = ↑I ∩ ↑J
[PROOFSTEP]
induction I using WithBot.recBotCoe
[GOAL]
case bot
ι : Type u_1
I J✝ : Box ι
x y : ι → ℝ
J : WithBot (Box ι)
⊢ ↑(⊥ ⊓ J) = ↑⊥ ∩ ↑J
[PROOFSTEP]
change ∅ = _
[GOAL]
case bot
ι : Type u_1
I J✝ : Box ι
x y : ι → ℝ
J : WithBot (Box ι)
⊢ ∅ = ↑⊥ ∩ ↑J
[PROOFSTEP]
simp
[GOAL]
case coe
ι : Type u_1
I J✝ : Box ι
x y : ι → ℝ
J : WithBot (Box ι)
a✝ : Box ι
⊢ ↑(↑a✝ ⊓ J) = ↑↑a✝ ∩ ↑J
[PROOFSTEP]
induction J using WithBot.recBotCoe
[GOAL]
case coe.bot
ι : Type u_1
I J : Box ι
x y : ι → ℝ
a✝ : Box ι
⊢ ↑(↑a✝ ⊓ ⊥) = ↑↑a✝ ∩ ↑⊥
[PROOFSTEP]
change ∅ = _
[GOAL]
case coe.bot
ι : Type u_1
I J : Box ι
x y : ι → ℝ
a✝ : Box ι
⊢ ∅ = ↑↑a✝ ∩ ↑⊥
[PROOFSTEP]
simp
[GOAL]
case coe.coe
ι : Type u_1
I J : Box ι
x y : ι → ℝ
a✝¹ a✝ : Box ι
⊢ ↑(↑a✝¹ ⊓ ↑a✝) = ↑↑a✝¹ ∩ ↑↑a✝
[PROOFSTEP]
change ((mk' _ _ : WithBot (Box ι)) : Set (ι → ℝ)) = _
[GOAL]
case coe.coe
ι : Type u_1
I J : Box ι
x y : ι → ℝ
a✝¹ a✝ : Box ι
⊢ ↑(mk' (fun i => (a✝¹.lower ⊔ a✝.lower) i) fun i => (a✝¹.upper ⊓ a✝.upper) i) = ↑↑a✝¹ ∩ ↑↑a✝
[PROOFSTEP]
simp only [coe_eq_pi, ← pi_inter_distrib, Ioc_inter_Ioc, Pi.sup_apply, Pi.inf_apply, coe_mk', coe_coe]
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup
src✝ : Inf (WithBot (Box ι)) := WithBot.inf
I J : WithBot (Box ι)
⊢ I ⊓ J ≤ I
[PROOFSTEP]
rw [← withBotCoe_subset_iff, coe_inf]
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup
src✝ : Inf (WithBot (Box ι)) := WithBot.inf
I J : WithBot (Box ι)
⊢ ↑I ∩ ↑J ⊆ ↑I
[PROOFSTEP]
exact inter_subset_left _ _
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup
src✝ : Inf (WithBot (Box ι)) := WithBot.inf
I J : WithBot (Box ι)
⊢ I ⊓ J ≤ J
[PROOFSTEP]
rw [← withBotCoe_subset_iff, coe_inf]
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup
src✝ : Inf (WithBot (Box ι)) := WithBot.inf
I J : WithBot (Box ι)
⊢ ↑I ∩ ↑J ⊆ ↑J
[PROOFSTEP]
exact inter_subset_right _ _
[GOAL]
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup
src✝ : Inf (WithBot (Box ι)) := WithBot.inf
I J₁ J₂ : WithBot (Box ι)
h₁ : I ≤ J₁
h₂ : I ≤ J₂
⊢ I ≤ J₁ ⊓ J₂
[PROOFSTEP]
simp only [← withBotCoe_subset_iff, coe_inf] at *
[GOAL]
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup
src✝ : Inf (WithBot (Box ι)) := WithBot.inf
I J₁ J₂ : WithBot (Box ι)
h₁ : ↑I ⊆ ↑J₁
h₂ : ↑I ⊆ ↑J₂
⊢ ↑I ⊆ ↑J₁ ∩ ↑J₂
[PROOFSTEP]
exact subset_inter h₁ h₂
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
I J : WithBot (Box ι)
⊢ Disjoint ↑I ↑J ↔ Disjoint I J
[PROOFSTEP]
simp only [disjoint_iff_inf_le, ← withBotCoe_subset_iff, coe_inf]
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
I J : WithBot (Box ι)
⊢ ↑I ⊓ ↑J ≤ ⊥ ↔ ↑I ∩ ↑J ⊆ ↑⊥
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
I J : Box ι
x y : ι → ℝ
⊢ ¬Disjoint ↑I ↑J ↔ Set.Nonempty (↑I ∩ ↑J)
[PROOFSTEP]
rw [disjoint_coe, Set.not_disjoint_iff_nonempty_inter]
[GOAL]
ι : Type u_1
I✝ J : Box ι
x✝ y : ι → ℝ
n : ℕ
I : Box (Fin (n + 1))
i : Fin (n + 1)
x : ℝ
hx : x ∈ Ioc (lower I i) (upper I i)
⊢ MapsTo (Fin.insertNth i x) ↑(face I i) ↑I
[PROOFSTEP]
intro y hy
[GOAL]
ι : Type u_1
I✝ J : Box ι
x✝ y✝ : ι → ℝ
n : ℕ
I : Box (Fin (n + 1))
i : Fin (n + 1)
x : ℝ
hx : x ∈ Ioc (lower I i) (upper I i)
y : Fin n → ℝ
hy : y ∈ ↑(face I i)
⊢ Fin.insertNth i x y ∈ ↑I
[PROOFSTEP]
simp_rw [mem_coe, mem_def, i.forall_iff_succAbove, Fin.insertNth_apply_same, Fin.insertNth_apply_succAbove]
[GOAL]
ι : Type u_1
I✝ J : Box ι
x✝ y✝ : ι → ℝ
n : ℕ
I : Box (Fin (n + 1))
i : Fin (n + 1)
x : ℝ
hx : x ∈ Ioc (lower I i) (upper I i)
y : Fin n → ℝ
hy : y ∈ ↑(face I i)
⊢ x ∈ Ioc (lower I i) (upper I i) ∧ ∀ (j : Fin n), y j ∈ Ioc (lower I (Fin.succAbove i j)) (upper I (Fin.succAbove i j))
[PROOFSTEP]
exact ⟨hx, hy⟩
[GOAL]
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
I : Box ι
⊢ ∃ J,
(∀ (n : ℕ), ↑Box.Icc (↑J n) ⊆ ↑Box.Ioo I) ∧
Tendsto (lower ∘ ↑J) atTop (𝓝 I.lower) ∧ Tendsto (upper ∘ ↑J) atTop (𝓝 I.upper)
[PROOFSTEP]
choose a b ha_anti hb_mono ha_mem hb_mem hab ha_tendsto hb_tendsto using fun i ↦
exists_seq_strictAnti_strictMono_tendsto (I.lower_lt_upper i)
[GOAL]
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
I : Box ι
a b : ι → ℕ → ℝ
ha_anti : ∀ (i : ι), StrictAnti (a i)
hb_mono : ∀ (i : ι), StrictMono (b i)
ha_mem : ∀ (i : ι) (k : ℕ), a i k ∈ Ioo (lower I i) (upper I i)
hb_mem : ∀ (i : ι) (l : ℕ), b i l ∈ Ioo (lower I i) (upper I i)
hab : ∀ (i : ι) (k l : ℕ), a i k < b i l
ha_tendsto : ∀ (i : ι), Tendsto (a i) atTop (𝓝 (lower I i))
hb_tendsto : ∀ (i : ι), Tendsto (b i) atTop (𝓝 (upper I i))
⊢ ∃ J,
(∀ (n : ℕ), ↑Box.Icc (↑J n) ⊆ ↑Box.Ioo I) ∧
Tendsto (lower ∘ ↑J) atTop (𝓝 I.lower) ∧ Tendsto (upper ∘ ↑J) atTop (𝓝 I.upper)
[PROOFSTEP]
exact
⟨⟨fun k ↦ ⟨flip a k, flip b k, fun i ↦ hab _ _ _⟩, fun k l hkl ↦
le_iff_bounds.2 ⟨fun i ↦ (ha_anti i).antitone hkl, fun i ↦ (hb_mono i).monotone hkl⟩⟩,
fun n x hx i _ ↦ ⟨(ha_mem _ _).1.trans_le (hx.1 _), (hx.2 _).trans_lt (hb_mem _ _).2⟩, tendsto_pi_nhds.2 ha_tendsto,
tendsto_pi_nhds.2 hb_tendsto⟩
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I J : Box ι
r : ℝ
h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r
⊢ distortion I = distortion J
[PROOFSTEP]
simp only [distortion, nndist_pi_def, Real.nndist_eq', h, map_div₀]
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I J : Box ι
r : ℝ
h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r
⊢ (Finset.sup Finset.univ fun i =>
(Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b) / ↑Real.nnabs r) /
(↑Real.nnabs (upper J i - lower J i) / ↑Real.nnabs r)) =
Finset.sup Finset.univ fun i =>
(Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b)) / ↑Real.nnabs (upper J i - lower J i)
[PROOFSTEP]
congr 1 with i
[GOAL]
case e_f.h.a
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I J : Box ι
r : ℝ
h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r
i : ι
⊢ ↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b) / ↑Real.nnabs r) /
(↑Real.nnabs (upper J i - lower J i) / ↑Real.nnabs r)) =
↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b)) / ↑Real.nnabs (upper J i - lower J i))
[PROOFSTEP]
have : 0 < r := by
by_contra hr
have := div_nonpos_of_nonneg_of_nonpos (sub_nonneg.2 <| J.lower_le_upper i) (not_lt.1 hr)
rw [← h] at this
exact this.not_lt (sub_pos.2 <| I.lower_lt_upper i)
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I J : Box ι
r : ℝ
h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r
i : ι
⊢ 0 < r
[PROOFSTEP]
by_contra hr
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I J : Box ι
r : ℝ
h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r
i : ι
hr : ¬0 < r
⊢ False
[PROOFSTEP]
have := div_nonpos_of_nonneg_of_nonpos (sub_nonneg.2 <| J.lower_le_upper i) (not_lt.1 hr)
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I J : Box ι
r : ℝ
h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r
i : ι
hr : ¬0 < r
this : (upper J i - lower J i) / r ≤ 0
⊢ False
[PROOFSTEP]
rw [← h] at this
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I J : Box ι
r : ℝ
h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r
i : ι
hr : ¬0 < r
this : upper I i - lower I i ≤ 0
⊢ False
[PROOFSTEP]
exact this.not_lt (sub_pos.2 <| I.lower_lt_upper i)
[GOAL]
case e_f.h.a
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I J : Box ι
r : ℝ
h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r
i : ι
this : 0 < r
⊢ ↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b) / ↑Real.nnabs r) /
(↑Real.nnabs (upper J i - lower J i) / ↑Real.nnabs r)) =
↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b)) / ↑Real.nnabs (upper J i - lower J i))
[PROOFSTEP]
have hn0 := (map_ne_zero Real.nnabs).2 this.ne'
[GOAL]
case e_f.h.a
ι : Type u_1
I✝ J✝ : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I J : Box ι
r : ℝ
h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r
i : ι
this : 0 < r
hn0 : ↑Real.nnabs r ≠ 0
⊢ ↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b) / ↑Real.nnabs r) /
(↑Real.nnabs (upper J i - lower J i) / ↑Real.nnabs r)) =
↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b)) / ↑Real.nnabs (upper J i - lower J i))
[PROOFSTEP]
simp_rw [NNReal.finset_sup_div, div_div_div_cancel_right _ hn0]
[GOAL]
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I : Box ι
i : ι
⊢ nndist I.lower I.upper / nndist (lower I i) (upper I i) * nndist (lower I i) (upper I i) ≤
distortion I * nndist (lower I i) (upper I i)
[PROOFSTEP]
apply mul_le_mul_right'
[GOAL]
case bc
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I : Box ι
i : ι
⊢ nndist I.lower I.upper / nndist (lower I i) (upper I i) ≤ distortion I
[PROOFSTEP]
apply Finset.le_sup (Finset.mem_univ i)
[GOAL]
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I : Box ι
i : ι
⊢ dist I.lower I.upper ≤ ↑(distortion I) * (upper I i - lower I i)
[PROOFSTEP]
have A : I.lower i - I.upper i < 0 := sub_neg.2 (I.lower_lt_upper i)
[GOAL]
ι : Type u_1
I✝ J : Box ι
x y : ι → ℝ
inst✝ : Fintype ι
I : Box ι
i : ι
A : lower I i - upper I i < 0
⊢ dist I.lower I.upper ≤ ↑(distortion I) * (upper I i - lower I i)
[PROOFSTEP]
simpa only [← NNReal.coe_le_coe, ← dist_nndist, NNReal.coe_mul, Real.dist_eq, abs_of_neg A, neg_sub] using
I.nndist_le_distortion_mul i
[GOAL]
ι : Type u_1
I✝ J : Box ι
x✝ y✝ : ι → ℝ
inst✝ : Fintype ι
I : Box ι
i : ι
c : ℝ≥0
h : distortion I ≤ c
this : 0 ≤ ↑c * (upper I i - lower I i)
x : ι → ℝ
hx : x ∈ ↑Box.Icc I
y : ι → ℝ
hy : y ∈ ↑Box.Icc I
⊢ ↑(distortion I) * (upper I i - lower I i) ≤ ↑c * (upper I i - lower I i)
[PROOFSTEP]
gcongr
[GOAL]
case a0
ι : Type u_1
I✝ J : Box ι
x✝ y✝ : ι → ℝ
inst✝ : Fintype ι
I : Box ι
i : ι
c : ℝ≥0
h : distortion I ≤ c
this : 0 ≤ ↑c * (upper I i - lower I i)
x : ι → ℝ
hx : x ∈ ↑Box.Icc I
y : ι → ℝ
hy : y ∈ ↑Box.Icc I
⊢ 0 ≤ upper I i - lower I i
[PROOFSTEP]
exact sub_nonneg.2 (I.lower_le_upper i)
| {"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Box.Basic", "llama_tokens": 11914} |
[GOAL]
𝕜 : Type u_1
inst✝⁷ : CommRing 𝕜
V : Type u_2
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module 𝕜 V
inst✝⁴ : MeasurableSpace V
W : Type u_3
inst✝³ : AddCommGroup W
inst✝² : Module 𝕜 W
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
r : ℂ
⊢ fourierIntegral e μ L (r • f) = r • fourierIntegral e μ L f
[PROOFSTEP]
ext1 w
[GOAL]
case h
𝕜 : Type u_1
inst✝⁷ : CommRing 𝕜
V : Type u_2
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module 𝕜 V
inst✝⁴ : MeasurableSpace V
W : Type u_3
inst✝³ : AddCommGroup W
inst✝² : Module 𝕜 W
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
r : ℂ
w : W
⊢ fourierIntegral e μ L (r • f) w = (r • fourierIntegral e μ L f) w
[PROOFSTEP]
simp only [Pi.smul_apply, fourierIntegral, ← integral_smul]
[GOAL]
case h
𝕜 : Type u_1
inst✝⁷ : CommRing 𝕜
V : Type u_2
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module 𝕜 V
inst✝⁴ : MeasurableSpace V
W : Type u_3
inst✝³ : AddCommGroup W
inst✝² : Module 𝕜 W
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
r : ℂ
w : W
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • r • f v ∂μ =
∫ (a : V), r • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) w))) • f a ∂μ
[PROOFSTEP]
congr
[GOAL]
case h.e_f
𝕜 : Type u_1
inst✝⁷ : CommRing 𝕜
V : Type u_2
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module 𝕜 V
inst✝⁴ : MeasurableSpace V
W : Type u_3
inst✝³ : AddCommGroup W
inst✝² : Module 𝕜 W
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
r : ℂ
w : W
⊢ (fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • r • f v) = fun a =>
r • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) w))) • f a
[PROOFSTEP]
funext
[GOAL]
case h.e_f.h
𝕜 : Type u_1
inst✝⁷ : CommRing 𝕜
V : Type u_2
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module 𝕜 V
inst✝⁴ : MeasurableSpace V
W : Type u_3
inst✝³ : AddCommGroup W
inst✝² : Module 𝕜 W
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
r : ℂ
w : W
x✝ : V
⊢ ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L x✝) w))) • r • f x✝ = r • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L x✝) w))) • f x✝
[PROOFSTEP]
rw [smul_comm]
[GOAL]
𝕜 : Type u_1
inst✝⁷ : CommRing 𝕜
V : Type u_2
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module 𝕜 V
inst✝⁴ : MeasurableSpace V
W : Type u_3
inst✝³ : AddCommGroup W
inst✝² : Module 𝕜 W
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
w : W
⊢ ‖fourierIntegral e μ L f w‖ ≤ ∫ (v : V), ‖f v‖ ∂μ
[PROOFSTEP]
refine' (norm_integral_le_integral_norm _).trans (le_of_eq _)
[GOAL]
𝕜 : Type u_1
inst✝⁷ : CommRing 𝕜
V : Type u_2
inst✝⁶ : AddCommGroup V
inst✝⁵ : Module 𝕜 V
inst✝⁴ : MeasurableSpace V
W : Type u_3
inst✝³ : AddCommGroup W
inst✝² : Module 𝕜 W
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
w : W
⊢ ∫ (a : V), ‖↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) w))) • f a‖ ∂μ = ∫ (v : V), ‖f v‖ ∂μ
[PROOFSTEP]
simp_rw [norm_smul, Complex.norm_eq_abs, abs_coe_circle, one_mul]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
⊢ fourierIntegral e μ L (f ∘ fun v => v + v₀) = fun w =>
↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • fourierIntegral e μ L f w
[PROOFSTEP]
ext1 w
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
w : W
⊢ fourierIntegral e μ L (f ∘ fun v => v + v₀) w = ↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • fourierIntegral e μ L f w
[PROOFSTEP]
dsimp only [fourierIntegral, Function.comp_apply]
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
w : W
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f (v + v₀) ∂μ =
↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ
[PROOFSTEP]
conv in L _ => rw [← add_sub_cancel v v₀]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
w : W
v : V
| ↑L v
[PROOFSTEP]
rw [← add_sub_cancel v v₀]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
w : W
v : V
| ↑L v
[PROOFSTEP]
rw [← add_sub_cancel v v₀]
[GOAL]
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
w : W
v : V
| ↑L v
[PROOFSTEP]
rw [← add_sub_cancel v v₀]
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
w : W
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L (v + v₀ - v₀)) w))) • f (v + v₀) ∂μ =
↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ
[PROOFSTEP]
rw [integral_add_right_eq_self fun v : V => e[-L (v - v₀) w] • f v]
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
w : W
⊢ ∫ (x : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L (x - v₀)) w))) • f x ∂μ =
↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ
[PROOFSTEP]
dsimp only
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
w : W
⊢ ∫ (x : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L (x - v₀)) w))) • f x ∂μ =
↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ
[PROOFSTEP]
rw [← integral_smul]
[GOAL]
case h
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
w : W
⊢ ∫ (x : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L (x - v₀)) w))) • f x ∂μ =
∫ (a : V), ↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) w))) • f a ∂μ
[PROOFSTEP]
congr 1 with v
[GOAL]
case h.e_f.h
𝕜 : Type u_1
inst✝⁹ : CommRing 𝕜
V : Type u_2
inst✝⁸ : AddCommGroup V
inst✝⁷ : Module 𝕜 V
inst✝⁶ : MeasurableSpace V
W : Type u_3
inst✝⁵ : AddCommGroup W
inst✝⁴ : Module 𝕜 W
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℂ E
inst✝¹ : MeasurableAdd V
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
inst✝ : Measure.IsAddRightInvariant μ
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
f : V → E
v₀ : V
w : W
v : V
⊢ ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L (v - v₀)) w))) • f v =
↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v
[PROOFSTEP]
rw [← smul_assoc, smul_eq_mul, ← Submonoid.coe_mul, ← e.map_mul, ← ofAdd_add, ← LinearMap.neg_apply, ← sub_eq_add_neg, ←
LinearMap.sub_apply, LinearMap.map_sub, neg_sub]
[GOAL]
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
⊢ Integrable f ↔ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v
[PROOFSTEP]
have aux : ∀ {g : V → E} (_ : Integrable g μ) (x : W), Integrable (fun v : V => e[-L v x] • g v) μ :=
by
intro g hg x
have c : Continuous fun v => e[-L v x] :=
by
refine' (continuous_induced_rng.mp he).comp (continuous_ofAdd.comp (Continuous.neg _))
exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩)
rw [← integrable_norm_iff (c.aestronglyMeasurable.smul hg.1)]
convert hg.norm using 2
rw [norm_smul, Complex.norm_eq_abs, abs_coe_circle, one_mul]
-- then use it for both directions
[GOAL]
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
⊢ ∀ {g : V → E}, Integrable g → ∀ (x : W), Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v
[PROOFSTEP]
intro g hg x
[GOAL]
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
g : V → E
hg : Integrable g
x : W
⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v
[PROOFSTEP]
have c : Continuous fun v => e[-L v x] :=
by
refine' (continuous_induced_rng.mp he).comp (continuous_ofAdd.comp (Continuous.neg _))
exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩)
[GOAL]
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
g : V → E
hg : Integrable g
x : W
⊢ Continuous fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x)))
[PROOFSTEP]
refine' (continuous_induced_rng.mp he).comp (continuous_ofAdd.comp (Continuous.neg _))
[GOAL]
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
g : V → E
hg : Integrable g
x : W
⊢ Continuous fun v => ↑(↑L v) x
[PROOFSTEP]
exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩)
[GOAL]
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
g : V → E
hg : Integrable g
x : W
c : Continuous fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x)))
⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v
[PROOFSTEP]
rw [← integrable_norm_iff (c.aestronglyMeasurable.smul hg.1)]
[GOAL]
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
g : V → E
hg : Integrable g
x : W
c : Continuous fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x)))
⊢ Integrable fun a => ‖↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) x))) • g a‖
[PROOFSTEP]
convert hg.norm using 2
[GOAL]
case h.e'_5.h
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
g : V → E
hg : Integrable g
x : W
c : Continuous fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x)))
x✝ : V
⊢ ‖↑(↑e (↑Multiplicative.ofAdd (-↑(↑L x✝) x))) • g x✝‖ = ‖g x✝‖
[PROOFSTEP]
rw [norm_smul, Complex.norm_eq_abs, abs_coe_circle, one_mul]
-- then use it for both directions
[GOAL]
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
aux : ∀ {g : V → E}, Integrable g → ∀ (x : W), Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v
⊢ Integrable f ↔ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v
[PROOFSTEP]
refine' ⟨fun hf => aux hf w, fun hf => _⟩
[GOAL]
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
aux : ∀ {g : V → E}, Integrable g → ∀ (x : W), Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v
hf : Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v
⊢ Integrable f
[PROOFSTEP]
convert aux hf (-w)
[GOAL]
case h.e'_5.h
𝕜 : Type u_1
inst✝¹² : CommRing 𝕜
V : Type u_2
inst✝¹¹ : AddCommGroup V
inst✝¹⁰ : Module 𝕜 V
inst✝⁹ : MeasurableSpace V
W : Type u_3
inst✝⁸ : AddCommGroup W
inst✝⁷ : Module 𝕜 W
E : Type u_4
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
inst✝⁴ : TopologicalSpace 𝕜
inst✝³ : TopologicalRing 𝕜
inst✝² : TopologicalSpace V
inst✝¹ : BorelSpace V
inst✝ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
w : W
aux : ∀ {g : V → E}, Integrable g → ∀ (x : W), Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v
hf : Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v
x✝ : V
⊢ f x✝ = ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L x✝) (-w)))) • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L x✝) w))) • f x✝
[PROOFSTEP]
rw [← smul_assoc, smul_eq_mul, ← Submonoid.coe_mul, ← MonoidHom.map_mul, ← ofAdd_add, LinearMap.map_neg, neg_neg, ←
sub_eq_add_neg, sub_self, ofAdd_zero, MonoidHom.map_one, Submonoid.coe_one, one_smul]
[GOAL]
𝕜 : Type u_1
inst✝¹³ : CommRing 𝕜
V : Type u_2
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module 𝕜 V
inst✝¹⁰ : MeasurableSpace V
W : Type u_3
inst✝⁹ : AddCommGroup W
inst✝⁸ : Module 𝕜 W
E : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : TopologicalRing 𝕜
inst✝³ : TopologicalSpace V
inst✝² : BorelSpace V
inst✝¹ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝ : CompleteSpace E
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f g : V → E
hf : Integrable f
hg : Integrable g
⊢ fourierIntegral e μ L f + fourierIntegral e μ L g = fourierIntegral e μ L (f + g)
[PROOFSTEP]
ext1 w
[GOAL]
case h
𝕜 : Type u_1
inst✝¹³ : CommRing 𝕜
V : Type u_2
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module 𝕜 V
inst✝¹⁰ : MeasurableSpace V
W : Type u_3
inst✝⁹ : AddCommGroup W
inst✝⁸ : Module 𝕜 W
E : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : TopologicalRing 𝕜
inst✝³ : TopologicalSpace V
inst✝² : BorelSpace V
inst✝¹ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝ : CompleteSpace E
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f g : V → E
hf : Integrable f
hg : Integrable g
w : W
⊢ (fourierIntegral e μ L f + fourierIntegral e μ L g) w = fourierIntegral e μ L (f + g) w
[PROOFSTEP]
dsimp only [Pi.add_apply, fourierIntegral]
[GOAL]
case h
𝕜 : Type u_1
inst✝¹³ : CommRing 𝕜
V : Type u_2
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module 𝕜 V
inst✝¹⁰ : MeasurableSpace V
W : Type u_3
inst✝⁹ : AddCommGroup W
inst✝⁸ : Module 𝕜 W
E : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : TopologicalRing 𝕜
inst✝³ : TopologicalSpace V
inst✝² : BorelSpace V
inst✝¹ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝ : CompleteSpace E
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f g : V → E
hf : Integrable f
hg : Integrable g
w : W
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ +
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • g v ∂μ =
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • (f v + g v) ∂μ
[PROOFSTEP]
simp_rw [smul_add]
[GOAL]
case h
𝕜 : Type u_1
inst✝¹³ : CommRing 𝕜
V : Type u_2
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module 𝕜 V
inst✝¹⁰ : MeasurableSpace V
W : Type u_3
inst✝⁹ : AddCommGroup W
inst✝⁸ : Module 𝕜 W
E : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : TopologicalRing 𝕜
inst✝³ : TopologicalSpace V
inst✝² : BorelSpace V
inst✝¹ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝ : CompleteSpace E
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f g : V → E
hf : Integrable f
hg : Integrable g
w : W
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ +
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • g v ∂μ =
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v + ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • g v ∂μ
[PROOFSTEP]
rw [integral_add]
[GOAL]
case h.hf
𝕜 : Type u_1
inst✝¹³ : CommRing 𝕜
V : Type u_2
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module 𝕜 V
inst✝¹⁰ : MeasurableSpace V
W : Type u_3
inst✝⁹ : AddCommGroup W
inst✝⁸ : Module 𝕜 W
E : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : TopologicalRing 𝕜
inst✝³ : TopologicalSpace V
inst✝² : BorelSpace V
inst✝¹ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝ : CompleteSpace E
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f g : V → E
hf : Integrable f
hg : Integrable g
w : W
⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v
[PROOFSTEP]
exact (fourier_integral_convergent_iff he hL w).mp hf
[GOAL]
case h.hg
𝕜 : Type u_1
inst✝¹³ : CommRing 𝕜
V : Type u_2
inst✝¹² : AddCommGroup V
inst✝¹¹ : Module 𝕜 V
inst✝¹⁰ : MeasurableSpace V
W : Type u_3
inst✝⁹ : AddCommGroup W
inst✝⁸ : Module 𝕜 W
E : Type u_4
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
inst✝⁵ : TopologicalSpace 𝕜
inst✝⁴ : TopologicalRing 𝕜
inst✝³ : TopologicalSpace V
inst✝² : BorelSpace V
inst✝¹ : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝ : CompleteSpace E
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f g : V → E
hf : Integrable f
hg : Integrable g
w : W
⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • g v
[PROOFSTEP]
exact (fourier_integral_convergent_iff he hL w).mp hg
[GOAL]
𝕜 : Type u_1
inst✝¹⁴ : CommRing 𝕜
V : Type u_2
inst✝¹³ : AddCommGroup V
inst✝¹² : Module 𝕜 V
inst✝¹¹ : MeasurableSpace V
W : Type u_3
inst✝¹⁰ : AddCommGroup W
inst✝⁹ : Module 𝕜 W
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : TopologicalRing 𝕜
inst✝⁴ : TopologicalSpace V
inst✝³ : BorelSpace V
inst✝² : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝¹ : CompleteSpace E
inst✝ : TopologicalSpace.FirstCountableTopology W
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
hf : Integrable f
⊢ Continuous (fourierIntegral e μ L f)
[PROOFSTEP]
apply continuous_of_dominated
[GOAL]
case hF_meas
𝕜 : Type u_1
inst✝¹⁴ : CommRing 𝕜
V : Type u_2
inst✝¹³ : AddCommGroup V
inst✝¹² : Module 𝕜 V
inst✝¹¹ : MeasurableSpace V
W : Type u_3
inst✝¹⁰ : AddCommGroup W
inst✝⁹ : Module 𝕜 W
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : TopologicalRing 𝕜
inst✝⁴ : TopologicalSpace V
inst✝³ : BorelSpace V
inst✝² : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝¹ : CompleteSpace E
inst✝ : TopologicalSpace.FirstCountableTopology W
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
hf : Integrable f
⊢ ∀ (x : W), AEStronglyMeasurable (fun a => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) x))) • f a) μ
[PROOFSTEP]
exact fun w => ((fourier_integral_convergent_iff he hL w).mp hf).1
[GOAL]
case h_bound
𝕜 : Type u_1
inst✝¹⁴ : CommRing 𝕜
V : Type u_2
inst✝¹³ : AddCommGroup V
inst✝¹² : Module 𝕜 V
inst✝¹¹ : MeasurableSpace V
W : Type u_3
inst✝¹⁰ : AddCommGroup W
inst✝⁹ : Module 𝕜 W
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : TopologicalRing 𝕜
inst✝⁴ : TopologicalSpace V
inst✝³ : BorelSpace V
inst✝² : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝¹ : CompleteSpace E
inst✝ : TopologicalSpace.FirstCountableTopology W
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
hf : Integrable f
⊢ ∀ (x : W), ∀ᵐ (a : V) ∂μ, ‖↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) x))) • f a‖ ≤ ?bound a
[PROOFSTEP]
refine' fun w => ae_of_all _ fun v => _
[GOAL]
case bound
𝕜 : Type u_1
inst✝¹⁴ : CommRing 𝕜
V : Type u_2
inst✝¹³ : AddCommGroup V
inst✝¹² : Module 𝕜 V
inst✝¹¹ : MeasurableSpace V
W : Type u_3
inst✝¹⁰ : AddCommGroup W
inst✝⁹ : Module 𝕜 W
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : TopologicalRing 𝕜
inst✝⁴ : TopologicalSpace V
inst✝³ : BorelSpace V
inst✝² : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝¹ : CompleteSpace E
inst✝ : TopologicalSpace.FirstCountableTopology W
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
hf : Integrable f
⊢ V → ℝ
[PROOFSTEP]
exact fun v => ‖f v‖
[GOAL]
case h_bound
𝕜 : Type u_1
inst✝¹⁴ : CommRing 𝕜
V : Type u_2
inst✝¹³ : AddCommGroup V
inst✝¹² : Module 𝕜 V
inst✝¹¹ : MeasurableSpace V
W : Type u_3
inst✝¹⁰ : AddCommGroup W
inst✝⁹ : Module 𝕜 W
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : TopologicalRing 𝕜
inst✝⁴ : TopologicalSpace V
inst✝³ : BorelSpace V
inst✝² : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝¹ : CompleteSpace E
inst✝ : TopologicalSpace.FirstCountableTopology W
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
hf : Integrable f
w : W
v : V
⊢ ‖↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v‖ ≤ ‖f v‖
[PROOFSTEP]
rw [norm_smul, Complex.norm_eq_abs, abs_coe_circle, one_mul]
[GOAL]
case bound_integrable
𝕜 : Type u_1
inst✝¹⁴ : CommRing 𝕜
V : Type u_2
inst✝¹³ : AddCommGroup V
inst✝¹² : Module 𝕜 V
inst✝¹¹ : MeasurableSpace V
W : Type u_3
inst✝¹⁰ : AddCommGroup W
inst✝⁹ : Module 𝕜 W
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : TopologicalRing 𝕜
inst✝⁴ : TopologicalSpace V
inst✝³ : BorelSpace V
inst✝² : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝¹ : CompleteSpace E
inst✝ : TopologicalSpace.FirstCountableTopology W
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
hf : Integrable f
⊢ Integrable fun v => ‖f v‖
[PROOFSTEP]
exact hf.norm
[GOAL]
case h_cont
𝕜 : Type u_1
inst✝¹⁴ : CommRing 𝕜
V : Type u_2
inst✝¹³ : AddCommGroup V
inst✝¹² : Module 𝕜 V
inst✝¹¹ : MeasurableSpace V
W : Type u_3
inst✝¹⁰ : AddCommGroup W
inst✝⁹ : Module 𝕜 W
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : TopologicalRing 𝕜
inst✝⁴ : TopologicalSpace V
inst✝³ : BorelSpace V
inst✝² : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝¹ : CompleteSpace E
inst✝ : TopologicalSpace.FirstCountableTopology W
he : Continuous ↑e
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
hf : Integrable f
⊢ ∀ᵐ (a : V) ∂μ, Continuous fun x => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) x))) • f a
[PROOFSTEP]
rw [continuous_induced_rng] at he
[GOAL]
case h_cont
𝕜 : Type u_1
inst✝¹⁴ : CommRing 𝕜
V : Type u_2
inst✝¹³ : AddCommGroup V
inst✝¹² : Module 𝕜 V
inst✝¹¹ : MeasurableSpace V
W : Type u_3
inst✝¹⁰ : AddCommGroup W
inst✝⁹ : Module 𝕜 W
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : TopologicalRing 𝕜
inst✝⁴ : TopologicalSpace V
inst✝³ : BorelSpace V
inst✝² : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝¹ : CompleteSpace E
inst✝ : TopologicalSpace.FirstCountableTopology W
he : Continuous (Subtype.val ∘ ↑e)
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
hf : Integrable f
⊢ ∀ᵐ (a : V) ∂μ, Continuous fun x => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) x))) • f a
[PROOFSTEP]
refine' ae_of_all _ fun v => (he.comp (continuous_ofAdd.comp _)).smul continuous_const
[GOAL]
case h_cont
𝕜 : Type u_1
inst✝¹⁴ : CommRing 𝕜
V : Type u_2
inst✝¹³ : AddCommGroup V
inst✝¹² : Module 𝕜 V
inst✝¹¹ : MeasurableSpace V
W : Type u_3
inst✝¹⁰ : AddCommGroup W
inst✝⁹ : Module 𝕜 W
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
inst✝⁶ : TopologicalSpace 𝕜
inst✝⁵ : TopologicalRing 𝕜
inst✝⁴ : TopologicalSpace V
inst✝³ : BorelSpace V
inst✝² : TopologicalSpace W
e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 }
μ : Measure V
L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜
inst✝¹ : CompleteSpace E
inst✝ : TopologicalSpace.FirstCountableTopology W
he : Continuous (Subtype.val ∘ ↑e)
hL : Continuous fun p => ↑(↑L p.fst) p.snd
f : V → E
hf : Integrable f
v : V
⊢ Continuous fun x => -↑(↑L v) x
[PROOFSTEP]
refine' (hL.comp (continuous_prod_mk.mpr ⟨continuous_const, continuous_id⟩)).neg
[GOAL]
⊢ (fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z)) 1 = 1
[PROOFSTEP]
simp only
[GOAL]
⊢ ↑expMapCircle (2 * π * ↑Multiplicative.toAdd 1) = 1
[PROOFSTEP]
rw [toAdd_one, mul_zero, expMapCircle_zero]
[GOAL]
x y : Multiplicative ℝ
⊢ OneHom.toFun
{ toFun := fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z),
map_one' := (_ : (fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z)) 1 = 1) }
(x * y) =
OneHom.toFun
{ toFun := fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z),
map_one' := (_ : (fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z)) 1 = 1) }
x *
OneHom.toFun
{ toFun := fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z),
map_one' := (_ : (fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z)) 1 = 1) }
y
[PROOFSTEP]
simp only
[GOAL]
x y : Multiplicative ℝ
⊢ ↑expMapCircle (2 * π * ↑Multiplicative.toAdd (x * y)) =
↑expMapCircle (2 * π * ↑Multiplicative.toAdd x) * ↑expMapCircle (2 * π * ↑Multiplicative.toAdd y)
[PROOFSTEP]
rw [toAdd_mul, mul_add, expMapCircle_add]
[GOAL]
x : ℝ
⊢ ↑(↑fourierChar (↑Multiplicative.ofAdd x)) = Complex.exp (↑(2 * π * x) * Complex.I)
[PROOFSTEP]
rfl
[GOAL]
E : Type u_1
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
V : Type u_2
inst✝⁴ : AddCommGroup V
inst✝³ : Module ℝ V
inst✝² : MeasurableSpace V
W : Type u_3
inst✝¹ : AddCommGroup W
inst✝ : Module ℝ W
L : V →ₗ[ℝ] W →ₗ[ℝ] ℝ
μ : Measure V
f : V → E
w : W
⊢ VectorFourier.fourierIntegral fourierChar μ L f w =
∫ (v : V), Complex.exp (↑(-2 * π * ↑(↑L v) w) * Complex.I) • f v ∂μ
[PROOFSTEP]
simp_rw [VectorFourier.fourierIntegral, Real.fourierChar_apply, mul_neg, neg_mul]
[GOAL]
E✝ : Type u_1
inst✝³ : NormedAddCommGroup E✝
inst✝² : NormedSpace ℂ E✝
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℂ E
f : ℝ → E
w : ℝ
⊢ 𝓕 f w = ∫ (v : ℝ), Complex.exp (↑(-2 * π * v * w) * Complex.I) • f v
[PROOFSTEP]
simp_rw [fourierIntegral_def, Real.fourierChar_apply, mul_neg, neg_mul, mul_assoc]
| {"mathlib_filename": "Mathlib.Analysis.Fourier.FourierTransform", "llama_tokens": 16666} |
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π : TaggedPrepartition I
x : ι → ℝ
⊢ x ∈ iUnion π ↔ ∃ J, J ∈ π ∧ x ∈ J
[PROOFSTEP]
convert Set.mem_iUnion₂
[GOAL]
case h.e'_2.h.e'_2.h.a
ι : Type u_1
I J J₁ J₂ : Box ι
π : TaggedPrepartition I
x : ι → ℝ
x✝ : Box ι
⊢ x✝ ∈ π ∧ x ∈ x✝ ↔ ∃ j, x ∈ ↑x✝
[PROOFSTEP]
rw [Box.mem_coe, mem_toPrepartition, exists_prop]
[GOAL]
ι : Type u_1
I J : Box ι
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
hJ : J ∈ π
J' : Box ι
hJ' : J' ∈ πi J
⊢ TaggedPrepartition.tag (biUnionTagged π πi) J' = TaggedPrepartition.tag (πi J) J'
[PROOFSTEP]
rw [← π.biUnionIndex_of_mem (πi := fun J => (πi J).toPrepartition) hJ hJ']
[GOAL]
ι : Type u_1
I J : Box ι
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
hJ : J ∈ π
J' : Box ι
hJ' : J' ∈ πi J
⊢ TaggedPrepartition.tag (biUnionTagged π πi) J' =
TaggedPrepartition.tag (πi (biUnionIndex π (fun J => (πi J).toPrepartition) J')) J'
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
I J : Box ι
p : (ι → ℝ) → Box ι → Prop
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
⊢ (∀ (J : Box ι), J ∈ biUnionTagged π πi → p (TaggedPrepartition.tag (biUnionTagged π πi) J) J) ↔
∀ (J : Box ι), J ∈ π → ∀ (J' : Box ι), J' ∈ πi J → p (TaggedPrepartition.tag (πi J) J') J'
[PROOFSTEP]
simp only [mem_biUnionTagged]
[GOAL]
ι : Type u_1
I J : Box ι
p : (ι → ℝ) → Box ι → Prop
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
⊢ (∀ (J : Box ι), (∃ J', J' ∈ π ∧ J ∈ πi J') → p (TaggedPrepartition.tag (biUnionTagged π πi) J) J) ↔
∀ (J : Box ι), J ∈ π → ∀ (J' : Box ι), J' ∈ πi J → p (TaggedPrepartition.tag (πi J) J') J'
[PROOFSTEP]
refine' ⟨fun H J hJ J' hJ' => _, fun H J' ⟨J, hJ, hJ'⟩ => _⟩
[GOAL]
case refine'_1
ι : Type u_1
I J✝ : Box ι
p : (ι → ℝ) → Box ι → Prop
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
H : ∀ (J : Box ι), (∃ J', J' ∈ π ∧ J ∈ πi J') → p (TaggedPrepartition.tag (biUnionTagged π πi) J) J
J : Box ι
hJ : J ∈ π
J' : Box ι
hJ' : J' ∈ πi J
⊢ p (TaggedPrepartition.tag (πi J) J') J'
[PROOFSTEP]
rw [← π.tag_biUnionTagged hJ hJ']
[GOAL]
case refine'_1
ι : Type u_1
I J✝ : Box ι
p : (ι → ℝ) → Box ι → Prop
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
H : ∀ (J : Box ι), (∃ J', J' ∈ π ∧ J ∈ πi J') → p (TaggedPrepartition.tag (biUnionTagged π πi) J) J
J : Box ι
hJ : J ∈ π
J' : Box ι
hJ' : J' ∈ πi J
⊢ p (TaggedPrepartition.tag (biUnionTagged π πi) J') J'
[PROOFSTEP]
exact H J' ⟨J, hJ, hJ'⟩
[GOAL]
case refine'_2
ι : Type u_1
I J✝ : Box ι
p : (ι → ℝ) → Box ι → Prop
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
H : ∀ (J : Box ι), J ∈ π → ∀ (J' : Box ι), J' ∈ πi J → p (TaggedPrepartition.tag (πi J) J') J'
J' : Box ι
x✝ : ∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1
J : Box ι
hJ : J ∈ π
hJ' : J' ∈ πi J
⊢ p (TaggedPrepartition.tag (biUnionTagged π πi) J') J'
[PROOFSTEP]
rw [π.tag_biUnionTagged hJ hJ']
[GOAL]
case refine'_2
ι : Type u_1
I J✝ : Box ι
p : (ι → ℝ) → Box ι → Prop
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
H : ∀ (J : Box ι), J ∈ π → ∀ (J' : Box ι), J' ∈ πi J → p (TaggedPrepartition.tag (πi J) J') J'
J' : Box ι
x✝ : ∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1
J : Box ι
hJ : J ∈ π
hJ' : J' ∈ πi J
⊢ p (TaggedPrepartition.tag (πi J) J') J'
[PROOFSTEP]
exact H J hJ J' hJ'
[GOAL]
ι : Type u_1
I J : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
⊢ J ∈ infPrepartition π₁ π₂.toPrepartition ↔ J ∈ infPrepartition π₂ π₁.toPrepartition
[PROOFSTEP]
simp only [← mem_toPrepartition, infPrepartition_toPrepartition, inf_comm]
[GOAL]
ι : Type u_1
I J : Box ι
π π₁ π₂ : TaggedPrepartition I
x✝ : ι → ℝ
inst✝ : Fintype ι
h : IsHenstock π
x : ι → ℝ
⊢ Finset.card (Finset.filter (fun J => tag π J = x) π.boxes) ≤
Finset.card (Finset.filter (fun J => x ∈ ↑Box.Icc J) π.boxes)
[PROOFSTEP]
refine' Finset.card_le_of_subset fun J hJ => _
[GOAL]
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x✝ : ι → ℝ
inst✝ : Fintype ι
h : IsHenstock π
x : ι → ℝ
J : Box ι
hJ : J ∈ Finset.filter (fun J => tag π J = x) π.boxes
⊢ J ∈ Finset.filter (fun J => x ∈ ↑Box.Icc J) π.boxes
[PROOFSTEP]
rw [Finset.mem_filter] at hJ ⊢
[GOAL]
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x✝ : ι → ℝ
inst✝ : Fintype ι
h : IsHenstock π
x : ι → ℝ
J : Box ι
hJ : J ∈ π.boxes ∧ tag π J = x
⊢ J ∈ π.boxes ∧ x ∈ ↑Box.Icc J
[PROOFSTEP]
rcases hJ with ⟨hJ, rfl⟩
[GOAL]
case intro
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
inst✝ : Fintype ι
h : IsHenstock π
J : Box ι
hJ : J ∈ π.boxes
⊢ J ∈ π.boxes ∧ tag π J ∈ ↑Box.Icc J
[PROOFSTEP]
exact ⟨hJ, h J hJ⟩
[GOAL]
ι : Type u_1
I J : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
p : (ι → ℝ) → Box ι → Prop
hJ : J ≤ I
h : x ∈ ↑Box.Icc I
⊢ (∀ (J' : Box ι), J' ∈ single I J hJ x h → p (tag (single I J hJ x h) J') J') ↔ p x J
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
I J✝ : Box ι
π π₁✝ π₂✝ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
π₁ π₂ : TaggedPrepartition I
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
⊢ Finset.piecewise π₁.boxes π₁.tag π₂.tag J ∈ ↑Box.Icc I
[PROOFSTEP]
dsimp only [Finset.piecewise]
[GOAL]
ι : Type u_1
I J✝ : Box ι
π π₁✝ π₂✝ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
π₁ π₂ : TaggedPrepartition I
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
⊢ (if J ∈ π₁.boxes then tag π₁ J else tag π₂ J) ∈ ↑Box.Icc I
[PROOFSTEP]
split_ifs
[GOAL]
case pos
ι : Type u_1
I J✝ : Box ι
π π₁✝ π₂✝ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
π₁ π₂ : TaggedPrepartition I
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
h✝ : J ∈ π₁.boxes
⊢ tag π₁ J ∈ ↑Box.Icc I
case neg
ι : Type u_1
I J✝ : Box ι
π π₁✝ π₂✝ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
π₁ π₂ : TaggedPrepartition I
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
h✝ : ¬J ∈ π₁.boxes
⊢ tag π₂ J ∈ ↑Box.Icc I
[PROOFSTEP]
exacts [π₁.tag_mem_Icc J, π₂.tag_mem_Icc J]
[GOAL]
ι : Type u_1
I J : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
inst✝ : Fintype ι
h₁ : IsSubordinate π₁ r
h₂ : IsSubordinate π₂ r
h : Disjoint (iUnion π₁) (iUnion π₂)
⊢ IsSubordinate (TaggedPrepartition.disjUnion π₁ π₂ h) r
[PROOFSTEP]
refine' fun J hJ => (Finset.mem_union.1 hJ).elim (fun hJ => _) fun hJ => _
[GOAL]
case refine'_1
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
inst✝ : Fintype ι
h₁ : IsSubordinate π₁ r
h₂ : IsSubordinate π₂ r
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h
hJ : J ∈ π₁.boxes
⊢ ↑Box.Icc J ⊆
closedBall (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J) ↑(r (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J))
[PROOFSTEP]
rw [disjUnion_tag_of_mem_left _ hJ]
[GOAL]
case refine'_1
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
inst✝ : Fintype ι
h₁ : IsSubordinate π₁ r
h₂ : IsSubordinate π₂ r
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h
hJ : J ∈ π₁.boxes
⊢ ↑Box.Icc J ⊆ closedBall (tag π₁ J) ↑(r (tag π₁ J))
[PROOFSTEP]
exact h₁ _ hJ
[GOAL]
case refine'_2
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
inst✝ : Fintype ι
h₁ : IsSubordinate π₁ r
h₂ : IsSubordinate π₂ r
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h
hJ : J ∈ π₂.boxes
⊢ ↑Box.Icc J ⊆
closedBall (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J) ↑(r (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J))
[PROOFSTEP]
rw [disjUnion_tag_of_mem_right _ hJ]
[GOAL]
case refine'_2
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
inst✝ : Fintype ι
h₁ : IsSubordinate π₁ r
h₂ : IsSubordinate π₂ r
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h
hJ : J ∈ π₂.boxes
⊢ ↑Box.Icc J ⊆ closedBall (tag π₂ J) ↑(r (tag π₂ J))
[PROOFSTEP]
exact h₂ _ hJ
[GOAL]
ι : Type u_1
I J : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
h₁ : IsHenstock π₁
h₂ : IsHenstock π₂
h : Disjoint (iUnion π₁) (iUnion π₂)
⊢ IsHenstock (TaggedPrepartition.disjUnion π₁ π₂ h)
[PROOFSTEP]
refine' fun J hJ => (Finset.mem_union.1 hJ).elim (fun hJ => _) fun hJ => _
[GOAL]
case refine'_1
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
h₁ : IsHenstock π₁
h₂ : IsHenstock π₂
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h
hJ : J ∈ π₁.boxes
⊢ tag (TaggedPrepartition.disjUnion π₁ π₂ h) J ∈ ↑Box.Icc J
[PROOFSTEP]
rw [disjUnion_tag_of_mem_left _ hJ]
[GOAL]
case refine'_1
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
h₁ : IsHenstock π₁
h₂ : IsHenstock π₂
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h
hJ : J ∈ π₁.boxes
⊢ tag π₁ J ∈ ↑Box.Icc J
[PROOFSTEP]
exact h₁ _ hJ
[GOAL]
case refine'_2
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
h₁ : IsHenstock π₁
h₂ : IsHenstock π₂
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h
hJ : J ∈ π₂.boxes
⊢ tag (TaggedPrepartition.disjUnion π₁ π₂ h) J ∈ ↑Box.Icc J
[PROOFSTEP]
rw [disjUnion_tag_of_mem_right _ hJ]
[GOAL]
case refine'_2
ι : Type u_1
I J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
h₁ : IsHenstock π₁
h₂ : IsHenstock π₂
h : Disjoint (iUnion π₁) (iUnion π₂)
J : Box ι
hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h
hJ : J ∈ π₂.boxes
⊢ tag π₂ J ∈ ↑Box.Icc J
[PROOFSTEP]
exact h₂ _ hJ
[GOAL]
ι : Type u_1
I✝ J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I✝
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
I J : Box ι
h : I ≤ J
⊢ Injective fun π =>
{
toPrepartition :=
{ boxes := π.boxes, le_of_mem' := (_ : ∀ (J' : Box ι), J' ∈ π.boxes → J' ≤ J),
pairwiseDisjoint := (_ : Set.Pairwise (↑π.boxes) (Disjoint on Box.toSet)) },
tag := π.tag, tag_mem_Icc := (_ : ∀ (J_1 : Box ι), tag π J_1 ∈ ↑Box.Icc J) }
[PROOFSTEP]
rintro ⟨⟨b₁, h₁le, h₁d⟩, t₁, ht₁⟩ ⟨⟨b₂, h₂le, h₂d⟩, t₂, ht₂⟩ H
[GOAL]
case mk.mk.mk.mk
ι : Type u_1
I✝ J✝ : Box ι
π π₁ π₂ : TaggedPrepartition I✝
x : ι → ℝ
r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0)
I J : Box ι
h : I ≤ J
t₁ : Box ι → ι → ℝ
ht₁ : ∀ (J : Box ι), t₁ J ∈ ↑Box.Icc I
b₁ : Finset (Box ι)
h₁le : ∀ (J : Box ι), J ∈ b₁ → J ≤ I
h₁d : Set.Pairwise (↑b₁) (Disjoint on Box.toSet)
t₂ : Box ι → ι → ℝ
ht₂ : ∀ (J : Box ι), t₂ J ∈ ↑Box.Icc I
b₂ : Finset (Box ι)
h₂le : ∀ (J : Box ι), J ∈ b₂ → J ≤ I
h₂d : Set.Pairwise (↑b₂) (Disjoint on Box.toSet)
H :
(fun π =>
{
toPrepartition :=
{ boxes := π.boxes, le_of_mem' := (_ : ∀ (J' : Box ι), J' ∈ π.boxes → J' ≤ J),
pairwiseDisjoint := (_ : Set.Pairwise (↑π.boxes) (Disjoint on Box.toSet)) },
tag := π.tag, tag_mem_Icc := (_ : ∀ (J_1 : Box ι), tag π J_1 ∈ ↑Box.Icc J) })
{ toPrepartition := { boxes := b₁, le_of_mem' := h₁le, pairwiseDisjoint := h₁d }, tag := t₁,
tag_mem_Icc := ht₁ } =
(fun π =>
{
toPrepartition :=
{ boxes := π.boxes, le_of_mem' := (_ : ∀ (J' : Box ι), J' ∈ π.boxes → J' ≤ J),
pairwiseDisjoint := (_ : Set.Pairwise (↑π.boxes) (Disjoint on Box.toSet)) },
tag := π.tag, tag_mem_Icc := (_ : ∀ (J_1 : Box ι), tag π J_1 ∈ ↑Box.Icc J) })
{ toPrepartition := { boxes := b₂, le_of_mem' := h₂le, pairwiseDisjoint := h₂d }, tag := t₂, tag_mem_Icc := ht₂ }
⊢ { toPrepartition := { boxes := b₁, le_of_mem' := h₁le, pairwiseDisjoint := h₁d }, tag := t₁, tag_mem_Icc := ht₁ } =
{ toPrepartition := { boxes := b₂, le_of_mem' := h₂le, pairwiseDisjoint := h₂d }, tag := t₂, tag_mem_Icc := ht₂ }
[PROOFSTEP]
simpa using H
| {"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Partition.Tagged", "llama_tokens": 6359} |
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
⊢ Henstock ≤ Riemann
[PROOFSTEP]
trivial
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
⊢ Henstock ≤ McShane
[PROOFSTEP]
trivial
[GOAL]
ι✝ : Type u_1
inst✝ : Fintype ι✝
I J : Box ι✝
c c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι✝ → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ : IntegrationParams
ι : Type u_2
l : IntegrationParams
hl : l.bRiemann = false
r : (ι → ℝ) → ↑(Set.Ioi 0)
⊢ RCond l r
[PROOFSTEP]
simp [RCond, hl]
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
h₁ : MemBaseSet l I c₁ r₁ π₁
h₂ : MemBaseSet l I c₂ r₂ π₂
hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
⊢ ∃ π,
Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧
(l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂)
[PROOFSTEP]
wlog hc : c₁ ≤ c₂ with H
[GOAL]
case inr
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
h₁ : MemBaseSet l I c₁ r₁ π₁
h₂ : MemBaseSet l I c₂ r₂ π₂
hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
H :
∀ {ι : Type u_1} [inst : Fintype ι] {I : Box ι} {J : Box ι} {c : ℝ≥0} {c₁ c₂ : ℝ≥0} {r : (ι → ℝ) → ↑(Set.Ioi 0)}
{r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)} {π : TaggedPrepartition I} {π₁ π₂ : TaggedPrepartition I} {l : IntegrationParams}
{l₁ l₂ : IntegrationParams},
MemBaseSet l I c₁ r₁ π₁ →
MemBaseSet l I c₂ r₂ π₂ →
TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ →
c₁ ≤ c₂ →
∃ π,
Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧
(l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧
(l.bDistortion = true → Prepartition.distortion π ≤ c₂)
hc : ¬c₁ ≤ c₂
⊢ ∃ π,
Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧
(l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂)
[PROOFSTEP]
simpa [hU, _root_.and_comm] using @H _ _ I J c c₂ c₁ r r₂ r₁ π π₂ π₁ _ l₂ l₁ h₂ h₁ hU.symm (le_of_not_le hc)
[GOAL]
ι✝ : Type u_1
inst✝¹ : Fintype ι✝
I✝ : Box ι✝
c₁✝ c₂✝ : ℝ≥0
r₁✝ r₂✝ : (ι✝ → ℝ) → ↑(Set.Ioi 0)
π₁✝ π₂✝ : TaggedPrepartition I✝
l✝ : IntegrationParams
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
h₁ : MemBaseSet l I c₁ r₁ π₁
h₂ : MemBaseSet l I c₂ r₂ π₂
hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
hc : c₁ ≤ c₂
⊢ ∃ π,
Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧
(l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂)
[PROOFSTEP]
by_cases hD : (l.bDistortion : Prop)
[GOAL]
case pos
ι✝ : Type u_1
inst✝¹ : Fintype ι✝
I✝ : Box ι✝
c₁✝ c₂✝ : ℝ≥0
r₁✝ r₂✝ : (ι✝ → ℝ) → ↑(Set.Ioi 0)
π₁✝ π₂✝ : TaggedPrepartition I✝
l✝ : IntegrationParams
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
h₁ : MemBaseSet l I c₁ r₁ π₁
h₂ : MemBaseSet l I c₂ r₂ π₂
hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
hc : c₁ ≤ c₂
hD : l.bDistortion = true
⊢ ∃ π,
Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧
(l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂)
[PROOFSTEP]
rcases h₁.4 hD with ⟨π, hπU, hπc⟩
[GOAL]
case pos.intro.intro
ι✝ : Type u_1
inst✝¹ : Fintype ι✝
I✝ : Box ι✝
c₁✝ c₂✝ : ℝ≥0
r₁✝ r₂✝ : (ι✝ → ℝ) → ↑(Set.Ioi 0)
π₁✝ π₂✝ : TaggedPrepartition I✝
l✝ : IntegrationParams
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
h₁ : MemBaseSet l I c₁ r₁ π₁
h₂ : MemBaseSet l I c₂ r₂ π₂
hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
hc : c₁ ≤ c₂
hD : l.bDistortion = true
π : Prepartition I
hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁
hπc : Prepartition.distortion π ≤ c₁
⊢ ∃ π,
Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧
(l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂)
[PROOFSTEP]
exact ⟨π, hπU, fun _ => hπc, fun _ => hπc.trans hc⟩
[GOAL]
case neg
ι✝ : Type u_1
inst✝¹ : Fintype ι✝
I✝ : Box ι✝
c₁✝ c₂✝ : ℝ≥0
r₁✝ r₂✝ : (ι✝ → ℝ) → ↑(Set.Ioi 0)
π₁✝ π₂✝ : TaggedPrepartition I✝
l✝ : IntegrationParams
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
h₁ : MemBaseSet l I c₁ r₁ π₁
h₂ : MemBaseSet l I c₂ r₂ π₂
hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
hc : c₁ ≤ c₂
hD : ¬l.bDistortion = true
⊢ ∃ π,
Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧
(l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂)
[PROOFSTEP]
exact ⟨π₁.toPrepartition.compl, π₁.toPrepartition.iUnion_compl, fun h => (hD h).elim, fun h => (hD h).elim⟩
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ₁ : MemBaseSet l I c r₁ π₁
hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → r₂ x ≤ r₁ x
π₂ : Prepartition I
hU : Prepartition.iUnion π₂ = ↑I \ TaggedPrepartition.iUnion π₁
hc : l.bDistortion = true → Prepartition.distortion π₂ ≤ c
x✝ : l.bDistortion = true
⊢ Prepartition.iUnion ⊥ = ↑I \ TaggedPrepartition.iUnion (unionComplToSubordinate π₁ π₂ hU r₂) ∧
Prepartition.distortion ⊥ ≤ c
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
⊢ MemBaseSet l I c r (TaggedPrepartition.filter π p)
[PROOFSTEP]
refine'
⟨fun J hJ => hπ.1 J (π.mem_filter.1 hJ).1, fun hH J hJ => hπ.2 hH J (π.mem_filter.1 hJ).1, fun hD =>
(distortion_filter_le _ _).trans (hπ.3 hD), fun hD => _⟩
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
⊢ ∃ π',
Prepartition.iUnion π' = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ∧
Prepartition.distortion π' ≤ c
[PROOFSTEP]
rcases hπ.4 hD with ⟨π₁, hπ₁U, hc⟩
[GOAL]
case intro.intro
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
⊢ ∃ π',
Prepartition.iUnion π' = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ∧
Prepartition.distortion π' ≤ c
[PROOFSTEP]
set π₂ := π.filter fun J => ¬p J
[GOAL]
case intro.intro
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
⊢ ∃ π',
Prepartition.iUnion π' = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ∧
Prepartition.distortion π' ≤ c
[PROOFSTEP]
have : Disjoint π₁.iUnion π₂.iUnion := by simpa [hπ₁U] using disjoint_sdiff_self_left.mono_right sdiff_le
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
⊢ Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
[PROOFSTEP]
simpa [hπ₁U] using disjoint_sdiff_self_left.mono_right sdiff_le
[GOAL]
case intro.intro
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
⊢ ∃ π',
Prepartition.iUnion π' = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ∧
Prepartition.distortion π' ≤ c
[PROOFSTEP]
refine' ⟨π₁.disjUnion π₂.toPrepartition this, _, _⟩
[GOAL]
case intro.intro.refine'_1
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
⊢ Prepartition.iUnion (Prepartition.disjUnion π₁ π₂.toPrepartition this) =
↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
[PROOFSTEP]
suffices ↑I \ π.iUnion ∪ π.iUnion \ (π.filter p).iUnion = ↑I \ (π.filter p).iUnion by simp [*]
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this✝ : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
this :
↑I \ TaggedPrepartition.iUnion π ∪
TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) =
↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
⊢ Prepartition.iUnion (Prepartition.disjUnion π₁ π₂.toPrepartition this✝) =
↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
[PROOFSTEP]
simp [*]
[GOAL]
case intro.intro.refine'_1
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
⊢ ↑I \ TaggedPrepartition.iUnion π ∪
TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) =
↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
[PROOFSTEP]
have h : (π.filter p).iUnion ⊆ π.iUnion := biUnion_subset_biUnion_left (Finset.filter_subset _ _)
[GOAL]
case intro.intro.refine'_1
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π
⊢ ↑I \ TaggedPrepartition.iUnion π ∪
TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) =
↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
[PROOFSTEP]
ext x
[GOAL]
case intro.intro.refine'_1.h
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π
x : ι → ℝ
⊢ x ∈
↑I \ TaggedPrepartition.iUnion π ∪
TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ↔
x ∈ ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
[PROOFSTEP]
fconstructor
[GOAL]
case intro.intro.refine'_1.h.mp
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π
x : ι → ℝ
⊢ x ∈
↑I \ TaggedPrepartition.iUnion π ∪
TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) →
x ∈ ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
[PROOFSTEP]
rintro (⟨hxI, hxπ⟩ | ⟨hxπ, hxp⟩)
[GOAL]
case intro.intro.refine'_1.h.mp.inl.intro
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π
x : ι → ℝ
hxI : x ∈ ↑I
hxπ : ¬x ∈ TaggedPrepartition.iUnion π
⊢ x ∈ ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
case intro.intro.refine'_1.h.mp.inr.intro
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π
x : ι → ℝ
hxπ : x ∈ TaggedPrepartition.iUnion π
hxp : ¬x ∈ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
⊢ x ∈ ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
[PROOFSTEP]
exacts [⟨hxI, mt (@h x) hxπ⟩, ⟨π.iUnion_subset hxπ, hxp⟩]
[GOAL]
case intro.intro.refine'_1.h.mpr
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π
x : ι → ℝ
⊢ x ∈ ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) →
x ∈
↑I \ TaggedPrepartition.iUnion π ∪
TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
[PROOFSTEP]
rintro ⟨hxI, hxp⟩
[GOAL]
case intro.intro.refine'_1.h.mpr.intro
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π
x : ι → ℝ
hxI : x ∈ ↑I
hxp : ¬x ∈ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
⊢ x ∈
↑I \ TaggedPrepartition.iUnion π ∪
TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
[PROOFSTEP]
by_cases hxπ : x ∈ π.iUnion
[GOAL]
case pos
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π
x : ι → ℝ
hxI : x ∈ ↑I
hxp : ¬x ∈ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
hxπ : x ∈ TaggedPrepartition.iUnion π
⊢ x ∈
↑I \ TaggedPrepartition.iUnion π ∪
TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
case neg
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π
x : ι → ℝ
hxI : x ∈ ↑I
hxp : ¬x ∈ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
hxπ : ¬x ∈ TaggedPrepartition.iUnion π
⊢ x ∈
↑I \ TaggedPrepartition.iUnion π ∪
TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p)
[PROOFSTEP]
exacts [Or.inr ⟨hxπ, hxp⟩, Or.inl ⟨hxI, hxπ⟩]
[GOAL]
case intro.intro.refine'_2
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
⊢ Prepartition.distortion (Prepartition.disjUnion π₁ π₂.toPrepartition this) ≤ c
[PROOFSTEP]
have : (π.filter fun J => ¬p J).distortion ≤ c := (distortion_filter_le _ _).trans (hπ.3 hD)
[GOAL]
case intro.intro.refine'_2
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
hπ : MemBaseSet l I c r π
p : Box ι → Prop
hD : l.bDistortion = true
π₁ : Prepartition I
hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π
hc : Prepartition.distortion π₁ ≤ c
π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J
this✝ : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
this : distortion (TaggedPrepartition.filter π fun J => ¬p J) ≤ c
⊢ Prepartition.distortion (Prepartition.disjUnion π₁ π₂.toPrepartition this✝) ≤ c
[PROOFSTEP]
simpa [hc]
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J)
hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J)
hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c
⊢ MemBaseSet l I c r (Prepartition.biUnionTagged π πi)
[PROOFSTEP]
refine'
⟨TaggedPrepartition.isSubordinate_biUnionTagged.2 fun J hJ => (h J hJ).1, fun hH =>
TaggedPrepartition.isHenstock_biUnionTagged.2 fun J hJ => (h J hJ).2 hH, fun hD => _, fun hD => _⟩
[GOAL]
case refine'_1
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J)
hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J)
hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c
hD : l.bDistortion = true
⊢ distortion (Prepartition.biUnionTagged π πi) ≤ c
[PROOFSTEP]
rw [Prepartition.distortion_biUnionTagged, Finset.sup_le_iff]
[GOAL]
case refine'_1
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J)
hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J)
hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c
hD : l.bDistortion = true
⊢ ∀ (b : Box ι), b ∈ π.boxes → distortion (πi b) ≤ c
[PROOFSTEP]
exact fun J hJ => (h J hJ).3 hD
[GOAL]
case refine'_2
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J)
hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J)
hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c
hD : l.bDistortion = true
⊢ ∃ π',
Prepartition.iUnion π' = ↑I \ TaggedPrepartition.iUnion (Prepartition.biUnionTagged π πi) ∧
Prepartition.distortion π' ≤ c
[PROOFSTEP]
refine' ⟨_, _, hc hD⟩
[GOAL]
case refine'_2
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J)
hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J)
hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c
hD : l.bDistortion = true
⊢ Prepartition.iUnion (Prepartition.compl π) = ↑I \ TaggedPrepartition.iUnion (Prepartition.biUnionTagged π πi)
[PROOFSTEP]
rw [π.iUnion_compl, ← π.iUnion_biUnion_partition hp]
[GOAL]
case refine'_2
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l l₁ l₂ : IntegrationParams
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J)
hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J)
hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c
hD : l.bDistortion = true
⊢ ↑I \ Prepartition.iUnion (Prepartition.biUnion π fun J => (πi J).toPrepartition) =
↑I \ TaggedPrepartition.iUnion (Prepartition.biUnionTagged π πi)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I✝ J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁✝ π₂✝ : TaggedPrepartition I✝
l✝ l₁ l₂ : IntegrationParams
I : Box ι
l : IntegrationParams
π₁ π₂ : Prepartition I
h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
⊢ toFilteriUnion l I π₁ = toFilteriUnion l I π₂
[PROOFSTEP]
simp only [toFilteriUnion, toFilterDistortioniUnion, h]
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I✝ J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I✝
l✝ l₁ l₂ l : IntegrationParams
I : Box ι
π₀ : Prepartition I
⊢ HasBasis (toFilteriUnion l I π₀) (fun r => ∀ (c : ℝ≥0), RCond l (r c)) fun r =>
{π | ∃ c, MemBaseSet l I c (r c) π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀}
[PROOFSTEP]
have := fun c => l.hasBasis_toFilterDistortioniUnion I c π₀
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I✝ J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I✝
l✝ l₁ l₂ l : IntegrationParams
I : Box ι
π₀ : Prepartition I
this :
∀ (c : ℝ≥0),
HasBasis (toFilterDistortioniUnion l I c π₀) (RCond l) fun r =>
{π | MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀}
⊢ HasBasis (toFilteriUnion l I π₀) (fun r => ∀ (c : ℝ≥0), RCond l (r c)) fun r =>
{π | ∃ c, MemBaseSet l I c (r c) π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀}
[PROOFSTEP]
simpa only [setOf_and, setOf_exists] using hasBasis_iSup this
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I✝ J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I✝
l✝ l₁ l₂ l : IntegrationParams
I : Box ι
⊢ HasBasis (toFilteriUnion l I ⊤) (fun r => ∀ (c : ℝ≥0), RCond l (r c)) fun r =>
{π | ∃ c, MemBaseSet l I c (r c) π ∧ IsPartition π}
[PROOFSTEP]
simpa only [TaggedPrepartition.isPartition_iff_iUnion_eq, Prepartition.iUnion_top] using l.hasBasis_toFilteriUnion I ⊤
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I✝ J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I✝
l✝ l₁ l₂ l : IntegrationParams
I : Box ι
⊢ HasBasis (toFilter l I) (fun r => ∀ (c : ℝ≥0), RCond l (r c)) fun r => {π | ∃ c, MemBaseSet l I c (r c) π}
[PROOFSTEP]
simpa only [setOf_exists] using hasBasis_iSup (l.hasBasis_toFilterDistortion I)
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
⊢ Tendsto (↑(embedBox I J h)) (toFilteriUnion l I ⊤) (toFilteriUnion l J (Prepartition.single J I h))
[PROOFSTEP]
simp only [toFilteriUnion, tendsto_iSup]
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
⊢ ∀ (i : ℝ≥0),
Tendsto (↑(embedBox I J h)) (toFilterDistortioniUnion l I i ⊤)
(⨆ (c : ℝ≥0), toFilterDistortioniUnion l J c (Prepartition.single J I h))
[PROOFSTEP]
intro c
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c✝ c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
c : ℝ≥0
⊢ Tendsto (↑(embedBox I J h)) (toFilterDistortioniUnion l I c ⊤)
(⨆ (c : ℝ≥0), toFilterDistortioniUnion l J c (Prepartition.single J I h))
[PROOFSTEP]
set π₀ := Prepartition.single J I h
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c✝ c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
c : ℝ≥0
π₀ : Prepartition J := Prepartition.single J I h
⊢ Tendsto (↑(embedBox I J h)) (toFilterDistortioniUnion l I c ⊤) (⨆ (c : ℝ≥0), toFilterDistortioniUnion l J c π₀)
[PROOFSTEP]
refine' le_iSup_of_le (max c π₀.compl.distortion) _
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c✝ c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
c : ℝ≥0
π₀ : Prepartition J := Prepartition.single J I h
⊢ Filter.map (↑(embedBox I J h)) (toFilterDistortioniUnion l I c ⊤) ≤
toFilterDistortioniUnion l J (max c (Prepartition.distortion (Prepartition.compl π₀))) π₀
[PROOFSTEP]
refine'
((l.hasBasis_toFilterDistortioniUnion I c ⊤).tendsto_iff (l.hasBasis_toFilterDistortioniUnion J _ _)).2 fun r hr => _
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c✝ c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
c : ℝ≥0
π₀ : Prepartition J := Prepartition.single J I h
r : (ι → ℝ) → ↑(Set.Ioi 0)
hr : RCond l r
⊢ ∃ ia,
RCond l ia ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | MemBaseSet l I c ia π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion ⊤} →
↑(embedBox I J h) x ∈
{π |
MemBaseSet l J (max c (Prepartition.distortion (Prepartition.compl π₀))) r π ∧
TaggedPrepartition.iUnion π = Prepartition.iUnion π₀}
[PROOFSTEP]
refine' ⟨r, hr, fun π hπ => _⟩
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c✝ c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
c : ℝ≥0
π₀ : Prepartition J := Prepartition.single J I h
r : (ι → ℝ) → ↑(Set.Ioi 0)
hr : RCond l r
π : TaggedPrepartition I
hπ : π ∈ {π | MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion ⊤}
⊢ ↑(embedBox I J h) π ∈
{π |
MemBaseSet l J (max c (Prepartition.distortion (Prepartition.compl π₀))) r π ∧
TaggedPrepartition.iUnion π = Prepartition.iUnion π₀}
[PROOFSTEP]
rw [mem_setOf_eq, Prepartition.iUnion_top] at hπ
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c✝ c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
c : ℝ≥0
π₀ : Prepartition J := Prepartition.single J I h
r : (ι → ℝ) → ↑(Set.Ioi 0)
hr : RCond l r
π : TaggedPrepartition I
hπ : MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = ↑I
⊢ ↑(embedBox I J h) π ∈
{π |
MemBaseSet l J (max c (Prepartition.distortion (Prepartition.compl π₀))) r π ∧
TaggedPrepartition.iUnion π = Prepartition.iUnion π₀}
[PROOFSTEP]
refine' ⟨⟨hπ.1.1, hπ.1.2, fun hD => le_trans (hπ.1.3 hD) (le_max_left _ _), fun _ => _⟩, _⟩
[GOAL]
case refine'_1
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c✝ c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
c : ℝ≥0
π₀ : Prepartition J := Prepartition.single J I h
r : (ι → ℝ) → ↑(Set.Ioi 0)
hr : RCond l r
π : TaggedPrepartition I
hπ : MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = ↑I
x✝ : l.bDistortion = true
⊢ ∃ π',
Prepartition.iUnion π' = ↑J \ TaggedPrepartition.iUnion (↑(embedBox I J h) π) ∧
Prepartition.distortion π' ≤ max c (Prepartition.distortion (Prepartition.compl π₀))
[PROOFSTEP]
refine' ⟨_, π₀.iUnion_compl.trans _, le_max_right _ _⟩
[GOAL]
case refine'_1
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c✝ c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
c : ℝ≥0
π₀ : Prepartition J := Prepartition.single J I h
r : (ι → ℝ) → ↑(Set.Ioi 0)
hr : RCond l r
π : TaggedPrepartition I
hπ : MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = ↑I
x✝ : l.bDistortion = true
⊢ ↑J \ Prepartition.iUnion π₀ = ↑J \ TaggedPrepartition.iUnion (↑(embedBox I J h) π)
[PROOFSTEP]
congr 1
[GOAL]
case refine'_1.e_a
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c✝ c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
c : ℝ≥0
π₀ : Prepartition J := Prepartition.single J I h
r : (ι → ℝ) → ↑(Set.Ioi 0)
hr : RCond l r
π : TaggedPrepartition I
hπ : MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = ↑I
x✝ : l.bDistortion = true
⊢ Prepartition.iUnion π₀ = TaggedPrepartition.iUnion (↑(embedBox I J h) π)
[PROOFSTEP]
exact (Prepartition.iUnion_single h).trans hπ.2.symm
[GOAL]
case refine'_2
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c✝ c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
h : I ≤ J
c : ℝ≥0
π₀ : Prepartition J := Prepartition.single J I h
r : (ι → ℝ) → ↑(Set.Ioi 0)
hr : RCond l r
π : TaggedPrepartition I
hπ : MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = ↑I
⊢ TaggedPrepartition.iUnion (↑(embedBox I J h) π) = Prepartition.iUnion π₀
[PROOFSTEP]
exact hπ.2.trans (Prepartition.iUnion_single _).symm
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
π₀ : Prepartition I
hc₁ : Prepartition.distortion π₀ ≤ c
hc₂ : Prepartition.distortion (Prepartition.compl π₀) ≤ c
r : (ι → ℝ) → ↑(Set.Ioi 0)
⊢ ∃ π, MemBaseSet l I c r π ∧ π.toPrepartition ≤ π₀ ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
[PROOFSTEP]
rcases π₀.exists_tagged_le_isHenstock_isSubordinate_iUnion_eq r with ⟨π, hle, hH, hr, hd, hU⟩
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
π₀ : Prepartition I
hc₁ : Prepartition.distortion π₀ ≤ c
hc₂ : Prepartition.distortion (Prepartition.compl π₀) ≤ c
r : (ι → ℝ) → ↑(Set.Ioi 0)
π : TaggedPrepartition I
hle : π.toPrepartition ≤ π₀
hH : IsHenstock π
hr : IsSubordinate π r
hd : distortion π = Prepartition.distortion π₀
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
⊢ ∃ π, MemBaseSet l I c r π ∧ π.toPrepartition ≤ π₀ ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
[PROOFSTEP]
refine' ⟨π, ⟨hr, fun _ => hH, fun _ => hd.trans_le hc₁, fun _ => ⟨π₀.compl, _, hc₂⟩⟩, ⟨hle, hU⟩⟩
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u_1
inst✝ : Fintype ι
I J : Box ι
c c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π✝ π₁ π₂ : TaggedPrepartition I
l✝ l₁ l₂ l : IntegrationParams
π₀ : Prepartition I
hc₁ : Prepartition.distortion π₀ ≤ c
hc₂ : Prepartition.distortion (Prepartition.compl π₀) ≤ c
r : (ι → ℝ) → ↑(Set.Ioi 0)
π : TaggedPrepartition I
hle : π.toPrepartition ≤ π₀
hH : IsHenstock π
hr : IsSubordinate π r
hd : distortion π = Prepartition.distortion π₀
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
x✝ : l.bDistortion = true
⊢ Prepartition.iUnion (Prepartition.compl π₀) = ↑I \ TaggedPrepartition.iUnion π
[PROOFSTEP]
exact Prepartition.compl_congr hU ▸ π.toPrepartition.iUnion_compl
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I✝ J : Box ι
c c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I✝
l✝ l₁ l₂ l : IntegrationParams
I : Box ι
hc : Box.distortion I ≤ c
r : (ι → ℝ) → ↑(Set.Ioi 0)
⊢ ∃ π, MemBaseSet l I c r π ∧ IsPartition π
[PROOFSTEP]
rw [← Prepartition.distortion_top] at hc
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I✝ J : Box ι
c c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I✝
l✝ l₁ l₂ l : IntegrationParams
I : Box ι
hc : Prepartition.distortion ⊤ ≤ c
r : (ι → ℝ) → ↑(Set.Ioi 0)
⊢ ∃ π, MemBaseSet l I c r π ∧ IsPartition π
[PROOFSTEP]
have hc' : (⊤ : Prepartition I).compl.distortion ≤ c := by simp
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I✝ J : Box ι
c c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I✝
l✝ l₁ l₂ l : IntegrationParams
I : Box ι
hc : Prepartition.distortion ⊤ ≤ c
r : (ι → ℝ) → ↑(Set.Ioi 0)
⊢ Prepartition.distortion (Prepartition.compl ⊤) ≤ c
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I✝ J : Box ι
c c₁ c₂ : ℝ≥0
r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I✝
l✝ l₁ l₂ l : IntegrationParams
I : Box ι
hc : Prepartition.distortion ⊤ ≤ c
r : (ι → ℝ) → ↑(Set.Ioi 0)
hc' : Prepartition.distortion (Prepartition.compl ⊤) ≤ c
⊢ ∃ π, MemBaseSet l I c r π ∧ IsPartition π
[PROOFSTEP]
simpa [isPartition_iff_iUnion_eq] using l.exists_memBaseSet_le_iUnion_eq ⊤ hc hc' r
[GOAL]
ι : Type u_1
inst✝ : Fintype ι
I✝ J : Box ι
c c₁ c₂ : ℝ≥0
r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)
π π₁ π₂ : TaggedPrepartition I✝
l✝ l₁ l₂ l : IntegrationParams
I : Box ι
⊢ NeBot (toFilterDistortion l I (Box.distortion I))
[PROOFSTEP]
simpa using (l.toFilterDistortioniUnion_neBot' I ⊤).mono inf_le_left
| {"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Partition.Filter", "llama_tokens": 17831} |
[GOAL]
m : Type u → Type u
inst✝ : Monad m
α β : Type u
f : β → α → β
⊢ ∀ (x y : FreeMonoid α),
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) }
(x * y) =
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) }
x *
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) }
y
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type u
inst✝ : Monad m
α β : Type u
f : β → α → β
x✝ y✝ : FreeMonoid α
⊢ OneHom.toFun
{ toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) }
(x✝ * y✝) =
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) }
x✝ *
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) }
y✝
[PROOFSTEP]
simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj]
[GOAL]
m : Type u → Type u
inst✝ : Monad m
α β : Type u
f : β → α → β
x✝ y✝ : FreeMonoid α
⊢ (op fun a => List.foldl f (List.foldl f a (↑FreeMonoid.toList x✝)) (↑FreeMonoid.toList y✝)) =
(op fun a => List.foldl f a (↑FreeMonoid.toList x✝)) * op fun a => List.foldl f a (↑FreeMonoid.toList y✝)
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type u
inst✝¹ : Monad m
α β : Type u
inst✝ : LawfulMonad m
f : β → α → m β
⊢ ∀ (x y : FreeMonoid α),
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
(x * y) =
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
x *
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
y
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type u
inst✝¹ : Monad m
α β : Type u
inst✝ : LawfulMonad m
f : β → α → m β
x✝ y✝ : FreeMonoid α
⊢ OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
(x✝ * y✝) =
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
x✝ *
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
y✝
[PROOFSTEP]
apply unop_injective
[GOAL]
case a
m : Type u → Type u
inst✝¹ : Monad m
α β : Type u
inst✝ : LawfulMonad m
f : β → α → m β
x✝ y✝ : FreeMonoid α
⊢ unop
(OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
(x✝ * y✝)) =
unop
(OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
x✝ *
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
y✝)
[PROOFSTEP]
funext
[GOAL]
case a.h
m : Type u → Type u
inst✝¹ : Monad m
α β : Type u
inst✝ : LawfulMonad m
f : β → α → m β
x✝¹ y✝ : FreeMonoid α
x✝ : KleisliCat.mk m β
⊢ unop
(OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
(x✝¹ * y✝))
x✝ =
unop
(OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
x✝¹ *
OneHom.toFun
{ toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)),
map_one' :=
(_ :
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 =
(fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) }
y✝)
x✝
[PROOFSTEP]
apply List.foldlM_append
[GOAL]
m : Type u → Type u
inst✝¹ : Monad m
α β : Type u
inst✝ : LawfulMonad m
f : α → β → m β
⊢ ∀ (x y : FreeMonoid α),
OneHom.toFun
{ toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs),
map_one' :=
(_ :
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 =
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) }
(x * y) =
OneHom.toFun
{ toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs),
map_one' :=
(_ :
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 =
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) }
x *
OneHom.toFun
{ toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs),
map_one' :=
(_ :
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 =
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) }
y
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type u
inst✝¹ : Monad m
α β : Type u
inst✝ : LawfulMonad m
f : α → β → m β
x✝ y✝ : FreeMonoid α
⊢ OneHom.toFun
{ toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs),
map_one' :=
(_ :
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 =
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) }
(x✝ * y✝) =
OneHom.toFun
{ toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs),
map_one' :=
(_ :
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 =
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) }
x✝ *
OneHom.toFun
{ toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs),
map_one' :=
(_ :
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 =
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) }
y✝
[PROOFSTEP]
funext
[GOAL]
case h
m : Type u → Type u
inst✝¹ : Monad m
α β : Type u
inst✝ : LawfulMonad m
f : α → β → m β
x✝¹ y✝ : FreeMonoid α
x✝ : KleisliCat.mk m β
⊢ OneHom.toFun
{ toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs),
map_one' :=
(_ :
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 =
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) }
(x✝¹ * y✝) x✝ =
(OneHom.toFun
{ toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs),
map_one' :=
(_ :
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 =
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) }
x✝¹ *
OneHom.toFun
{ toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs),
map_one' :=
(_ :
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 =
(fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) }
y✝)
x✝
[PROOFSTEP]
apply List.foldrM_append
[GOAL]
α β γ : Type u
inst✝¹ : Monoid α
inst✝ : Monoid β
f : α →* β
⊢ ∀ {α_1 : Type ?u.11080} (x : α_1), (fun x => ↑f) α_1 (pure x) = pure x
[PROOFSTEP]
intros
[GOAL]
α β γ : Type u
inst✝¹ : Monoid α
inst✝ : Monoid β
f : α →* β
α✝ : Type ?u.11080
x✝ : α✝
⊢ (fun x => ↑f) α✝ (pure x✝) = pure x✝
[PROOFSTEP]
simp only [map_one, pure]
[GOAL]
α β γ : Type u
inst✝¹ : Monoid α
inst✝ : Monoid β
f : α →* β
⊢ ∀ {α_1 β_1 : Type ?u.11080} (x : Const α (α_1 → β_1)) (y : Const α α_1),
(fun x => ↑f) β_1 (Seq.seq x fun x => y) = Seq.seq ((fun x => ↑f) (α_1 → β_1) x) fun x => (fun x => ↑f) α_1 y
[PROOFSTEP]
intros
[GOAL]
α β γ : Type u
inst✝¹ : Monoid α
inst✝ : Monoid β
f : α →* β
α✝ β✝ : Type ?u.11080
x✝ : Const α (α✝ → β✝)
y✝ : Const α α✝
⊢ (fun x => ↑f) β✝ (Seq.seq x✝ fun x => y✝) = Seq.seq ((fun x => ↑f) (α✝ → β✝) x✝) fun x => (fun x => ↑f) α✝ y✝
[PROOFSTEP]
simp only [Seq.seq, map_mul]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : α → β → m α
⊢ ↑(foldlM.ofFreeMonoid f) ∘ FreeMonoid.of = foldlM.mk ∘ flip f
[PROOFSTEP]
ext1 x
[GOAL]
case h
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : α → β → m α
x : β
⊢ (↑(foldlM.ofFreeMonoid f) ∘ FreeMonoid.of) x = (foldlM.mk ∘ flip f) x
[PROOFSTEP]
simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : β → α → m α
⊢ ↑(foldrM.ofFreeMonoid f) ∘ FreeMonoid.of = foldrM.mk ∘ f
[PROOFSTEP]
ext
[GOAL]
case h
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : β → α → m α
x✝ : β
⊢ (↑(foldrM.ofFreeMonoid f) ∘ FreeMonoid.of) x✝ = (foldrM.mk ∘ f) x✝
[PROOFSTEP]
simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ ↑FreeMonoid.toList (foldMap FreeMonoid.of xs) =
↑FreeMonoid.toList (List.reverse (List.reverse (foldMap FreeMonoid.of xs)))
[PROOFSTEP]
simp only [List.reverse_reverse]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ ↑FreeMonoid.toList (List.reverse (List.reverse (foldMap FreeMonoid.of xs))) =
↑FreeMonoid.toList (List.reverse (List.foldr cons [] (List.reverse (foldMap FreeMonoid.of xs))))
[PROOFSTEP]
simp only [List.foldr_eta]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ ↑FreeMonoid.toList (List.reverse (List.foldr cons [] (List.reverse (foldMap FreeMonoid.of xs)))) =
List.reverse (unop (↑(Foldl.ofFreeMonoid (flip cons)) (foldMap FreeMonoid.of xs)) [])
[PROOFSTEP]
simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ List.reverse (unop (↑(Foldl.ofFreeMonoid (flip cons)) (foldMap FreeMonoid.of xs)) []) = toList xs
[PROOFSTEP]
rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ List.reverse (unop (foldMap (↑(Foldl.ofFreeMonoid (flip cons)) ∘ FreeMonoid.of) xs) []) = toList xs
[PROOFSTEP]
simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝² : Traversable t
inst✝¹ : LawfulTraversable t
inst✝ : Monoid γ
f : α → β
g : β → γ
xs : t α
⊢ foldMap g (f <$> xs) = foldMap (g ∘ f) xs
[PROOFSTEP]
simp only [foldMap, traverse_map, Function.comp]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
f : α → β → α
xs : t β
x : α
⊢ foldl f x xs = List.foldl f x (toList xs)
[PROOFSTEP]
rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
f : α → β → α
xs : t β
x : α
⊢ foldl f x xs = unop (↑(Foldl.ofFreeMonoid f) (↑FreeMonoid.ofList (toList xs))) x
[PROOFSTEP]
simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
f : α → β → β
xs : t α
x : β
⊢ foldr f x xs = List.foldr f x (toList xs)
[PROOFSTEP]
change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
f : α → β → β
xs : t α
x : β
⊢ foldr f x xs = ↑(Foldr.ofFreeMonoid f) (↑FreeMonoid.ofList (toList xs)) x
[PROOFSTEP]
rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
f : α → β
xs : t α
⊢ toList (f <$> xs) = f <$> toList xs
[PROOFSTEP]
simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
g : β → γ
f : α → γ → α
a : α
l : t β
⊢ foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l
[PROOFSTEP]
simp only [foldl, foldMap_map, (· ∘ ·), flip]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
g : β → γ
f : γ → α → α
a : α
l : t β
⊢ foldr f a (g <$> l) = foldr (f ∘ g) a l
[PROOFSTEP]
simp only [foldr, foldMap_map, (· ∘ ·), flip]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : List α
⊢ toList xs = xs
[PROOFSTEP]
simp only [toList_spec, foldMap, traverse]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : List α
⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) xs) = xs
[PROOFSTEP]
induction xs
[GOAL]
case nil
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) []) = []
case cons
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
tail_ih✝ : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝
[PROOFSTEP]
case nil => rfl
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) []) = []
[PROOFSTEP]
case nil => rfl
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) []) = []
[PROOFSTEP]
rfl
[GOAL]
case cons
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
tail_ih✝ : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝
[PROOFSTEP]
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝
[PROOFSTEP]
case cons _ _ ih => conv_rhs => rw [← ih]; rfl
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝
[PROOFSTEP]
conv_rhs => rw [← ih]; rfl
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
| head✝ :: tail✝
[PROOFSTEP]
rw [← ih]; rfl
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
| head✝ :: tail✝
[PROOFSTEP]
rw [← ih]; rfl
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
| head✝ :: tail✝
[PROOFSTEP]
rw [← ih]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
head✝ : α
tail✝ : List α
ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝
| head✝ :: ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝)
[PROOFSTEP]
rfl
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ length xs = List.length (toList xs)
[PROOFSTEP]
unfold length
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ (foldl (fun l x => { down := l.down + 1 }) { down := 0 } xs).down = List.length (toList xs)
[PROOFSTEP]
rw [foldl_toList]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := 0 } (toList xs)).down = List.length (toList xs)
[PROOFSTEP]
generalize toList xs = ys
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
ys : List α
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := 0 } ys).down = List.length ys
[PROOFSTEP]
rw [← Nat.add_zero ys.length]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
ys : List α
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := 0 } ys).down = List.length ys + 0
[PROOFSTEP]
generalize 0 = n
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
ys : List α
n : ℕ
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := n } ys).down = List.length ys + n
[PROOFSTEP]
induction' ys with _ _ ih generalizing n
[GOAL]
case nil
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
n✝ n : ℕ
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := n } []).down = List.length [] + n
[PROOFSTEP]
simp
[GOAL]
case cons
α β γ : Type u
t : Type u → Type u
inst✝¹ : Traversable t
inst✝ : LawfulTraversable t
xs : t α
n✝ : ℕ
head✝ : α
tail✝ : List α
ih : ∀ (n : ℕ), (List.foldl (fun l x => { down := l.down + 1 }) { down := n } tail✝).down = List.length tail✝ + n
n : ℕ
⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := n } (head✝ :: tail✝)).down =
List.length (head✝ :: tail✝) + n
[PROOFSTEP]
simp_arith [ih]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : α → β → m α
x : α
xs : t β
⊢ foldlm f x xs = unop (↑(foldlM.ofFreeMonoid f) (↑FreeMonoid.ofList (toList xs))) x
[PROOFSTEP]
simp only [foldlm, toList_spec, foldMap_hom_free (foldlM.ofFreeMonoid f), foldlm.ofFreeMonoid_comp_of, foldlM.get,
FreeMonoid.ofList_toList]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : α → β → m α
x : α
xs : t β
⊢ unop (↑(foldlM.ofFreeMonoid f) (↑FreeMonoid.ofList (toList xs))) x = List.foldlM f x (toList xs)
[PROOFSTEP]
simp [foldlM.ofFreeMonoid, unop_op, flip]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : α → β → m β
x : β
xs : t α
⊢ foldrm f x xs = List.foldrM f x (toList xs)
[PROOFSTEP]
change _ = foldrM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs) x
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
f : α → β → m β
x : β
xs : t α
⊢ foldrm f x xs = ↑(foldrM.ofFreeMonoid f) (↑FreeMonoid.ofList (toList xs)) x
[PROOFSTEP]
simp only [foldrm, toList_spec, foldMap_hom_free (foldrM.ofFreeMonoid f), foldrm.ofFreeMonoid_comp_of, foldrM.get,
FreeMonoid.ofList_toList]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
g : β → γ
f : α → γ → m α
a : α
l : t β
⊢ foldlm f a (g <$> l) = foldlm (fun x y => f x (g y)) a l
[PROOFSTEP]
simp only [foldlm, foldMap_map, (· ∘ ·), flip]
[GOAL]
α β γ : Type u
t : Type u → Type u
inst✝³ : Traversable t
inst✝² : LawfulTraversable t
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
g : β → γ
f : γ → α → m α
a : α
l : t β
⊢ foldrm f a (g <$> l) = foldrm (f ∘ g) a l
[PROOFSTEP]
simp only [foldrm, foldMap_map, (· ∘ ·), flip]
| {"mathlib_filename": "Mathlib.Control.Fold", "llama_tokens": 10815} |
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
⊢ Part.fix f x = Fix.approx f (Nat.succ (Nat.find h')) x
[PROOFSTEP]
let p := fun i : ℕ => (Fix.approx f i x).Dom
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
⊢ Part.fix f x = Fix.approx f (Nat.succ (Nat.find h')) x
[PROOFSTEP]
have : p (Nat.find h') := Nat.find_spec h'
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
this : p (Nat.find h')
⊢ Part.fix f x = Fix.approx f (Nat.succ (Nat.find h')) x
[PROOFSTEP]
generalize hk : Nat.find h' = k
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
this : p (Nat.find h')
k : ℕ
hk : Nat.find h' = k
⊢ Part.fix f x = Fix.approx f (Nat.succ k) x
[PROOFSTEP]
replace hk : Nat.find h' = k + (@Upto.zero p).val := hk
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
this : p (Nat.find h')
k : ℕ
hk : Nat.find h' = k + ↑Upto.zero
⊢ Part.fix f x = Fix.approx f (Nat.succ k) x
[PROOFSTEP]
rw [hk] at this
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
this : p (k + ↑Upto.zero)
hk : Nat.find h' = k + ↑Upto.zero
⊢ Part.fix f x = Fix.approx f (Nat.succ k) x
[PROOFSTEP]
revert hk
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
this : p (k + ↑Upto.zero)
⊢ Nat.find h' = k + ↑Upto.zero → Part.fix f x = Fix.approx f (Nat.succ k) x
[PROOFSTEP]
dsimp [Part.fix]
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
this : p (k + ↑Upto.zero)
⊢ Nat.find h' = k + ↑Upto.zero →
(assert (∃ i, (Fix.approx f i x).Dom) fun h =>
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) Upto.zero x) =
Fix.approx f (Nat.succ k) x
[PROOFSTEP]
rw [assert_pos h']
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
this : p (k + ↑Upto.zero)
⊢ Nat.find h' = k + ↑Upto.zero →
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) Upto.zero x =
Fix.approx f (Nat.succ k) x
[PROOFSTEP]
revert this
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
⊢ p (k + ↑Upto.zero) →
Nat.find h' = k + ↑Upto.zero →
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) Upto.zero x =
Fix.approx f (Nat.succ k) x
[PROOFSTEP]
generalize Upto.zero = z
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
z : Upto p
⊢ p (k + ↑z) →
Nat.find h' = k + ↑z →
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x =
Fix.approx f (Nat.succ k) x
[PROOFSTEP]
intro _this hk
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
z : Upto p
_this : p (k + ↑z)
hk : Nat.find h' = k + ↑z
⊢ WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x =
Fix.approx f (Nat.succ k) x
[PROOFSTEP]
suffices : ∀ x', WellFounded.fix (Part.fix.proof_1 f x h') (fixAux f) z x' = Fix.approx f (succ k) x'
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
z : Upto p
_this : p (k + ↑z)
hk : Nat.find h' = k + ↑z
this :
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ k) x'
⊢ WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x =
Fix.approx f (Nat.succ k) x
case this
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
z : Upto p
_this : p (k + ↑z)
hk : Nat.find h' = k + ↑z
⊢ ∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ k) x'
[PROOFSTEP]
exact this _
[GOAL]
case this
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
z : Upto p
_this : p (k + ↑z)
hk : Nat.find h' = k + ↑z
⊢ ∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ k) x'
[PROOFSTEP]
induction k generalizing z with
| zero =>
intro x'
rw [Fix.approx, WellFounded.fix_eq, fixAux]
congr
ext x : 1
rw [assert_neg]
rfl
rw [Nat.zero_add] at _this
simpa only [not_not, Coe]
| succ n n_ih =>
intro x'
rw [Fix.approx, WellFounded.fix_eq, fixAux]
congr
ext : 1
have hh : ¬(Fix.approx f z.val x).Dom := by
apply Nat.find_min h'
rw [hk, Nat.succ_add, ← Nat.add_succ]
apply Nat.lt_of_succ_le
apply Nat.le_add_left
rw [succ_add_eq_succ_add] at _this hk
rw [assert_pos hh, n_ih (Upto.succ z hh) _this hk]
[GOAL]
case this
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
k : ℕ
z : Upto p
_this : p (k + ↑z)
hk : Nat.find h' = k + ↑z
⊢ ∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ k) x'
[PROOFSTEP]
induction k generalizing z with
| zero =>
intro x'
rw [Fix.approx, WellFounded.fix_eq, fixAux]
congr
ext x : 1
rw [assert_neg]
rfl
rw [Nat.zero_add] at _this
simpa only [not_not, Coe]
| succ n n_ih =>
intro x'
rw [Fix.approx, WellFounded.fix_eq, fixAux]
congr
ext : 1
have hh : ¬(Fix.approx f z.val x).Dom := by
apply Nat.find_min h'
rw [hk, Nat.succ_add, ← Nat.add_succ]
apply Nat.lt_of_succ_le
apply Nat.le_add_left
rw [succ_add_eq_succ_add] at _this hk
rw [assert_pos hh, n_ih (Upto.succ z hh) _this hk]
[GOAL]
case this.zero
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
z : Upto p
_this : p (Nat.zero + ↑z)
hk : Nat.find h' = Nat.zero + ↑z
⊢ ∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ Nat.zero) x'
[PROOFSTEP]
| zero =>
intro x'
rw [Fix.approx, WellFounded.fix_eq, fixAux]
congr
ext x : 1
rw [assert_neg]
rfl
rw [Nat.zero_add] at _this
simpa only [not_not, Coe]
[GOAL]
case this.zero
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
z : Upto p
_this : p (Nat.zero + ↑z)
hk : Nat.find h' = Nat.zero + ↑z
⊢ ∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ Nat.zero) x'
[PROOFSTEP]
intro x'
[GOAL]
case this.zero
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
z : Upto p
_this : p (Nat.zero + ↑z)
hk : Nat.find h' = Nat.zero + ↑z
x' : α
⊢ WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ Nat.zero) x'
[PROOFSTEP]
rw [Fix.approx, WellFounded.fix_eq, fixAux]
[GOAL]
case this.zero
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
z : Upto p
_this : p (Nat.zero + ↑z)
hk : Nat.find h' = Nat.zero + ↑z
x' : α
⊢ f
(fun x_1 =>
assert (¬(Fix.approx f (↑z) x).Dom) fun h =>
WellFounded.fix (_ : WellFounded (Upto.GT fun x_2 => (Fix.approx f x_2 x).Dom)) (fixAux f) (Upto.succ z h)
x_1)
x' =
f (Fix.approx f Nat.zero) x'
[PROOFSTEP]
congr
[GOAL]
case this.zero.e_a
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
z : Upto p
_this : p (Nat.zero + ↑z)
hk : Nat.find h' = Nat.zero + ↑z
x' : α
⊢ (fun x_1 =>
assert (¬(Fix.approx f (↑z) x).Dom) fun h =>
WellFounded.fix (_ : WellFounded (Upto.GT fun x_2 => (Fix.approx f x_2 x).Dom)) (fixAux f) (Upto.succ z h)
x_1) =
Fix.approx f Nat.zero
[PROOFSTEP]
ext x : 1
[GOAL]
case this.zero.e_a.h
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x✝ : α
h' : ∃ i, (Fix.approx f i x✝).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x✝).Dom
z : Upto p
_this : p (Nat.zero + ↑z)
hk : Nat.find h' = Nat.zero + ↑z
x' x : α
⊢ (assert (¬(Fix.approx f (↑z) x✝).Dom) fun h =>
WellFounded.fix (_ : WellFounded (Upto.GT fun x => (Fix.approx f x x✝).Dom)) (fixAux f) (Upto.succ z h) x) =
Fix.approx f Nat.zero x
[PROOFSTEP]
rw [assert_neg]
[GOAL]
case this.zero.e_a.h
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x✝ : α
h' : ∃ i, (Fix.approx f i x✝).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x✝).Dom
z : Upto p
_this : p (Nat.zero + ↑z)
hk : Nat.find h' = Nat.zero + ↑z
x' x : α
⊢ none = Fix.approx f Nat.zero x
case this.zero.e_a.h
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x✝ : α
h' : ∃ i, (Fix.approx f i x✝).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x✝).Dom
z : Upto p
_this : p (Nat.zero + ↑z)
hk : Nat.find h' = Nat.zero + ↑z
x' x : α
⊢ ¬¬(Fix.approx f (↑z) x✝).Dom
[PROOFSTEP]
rfl
[GOAL]
case this.zero.e_a.h
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x✝ : α
h' : ∃ i, (Fix.approx f i x✝).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x✝).Dom
z : Upto p
_this : p (Nat.zero + ↑z)
hk : Nat.find h' = Nat.zero + ↑z
x' x : α
⊢ ¬¬(Fix.approx f (↑z) x✝).Dom
[PROOFSTEP]
rw [Nat.zero_add] at _this
[GOAL]
case this.zero.e_a.h
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x✝ : α
h' : ∃ i, (Fix.approx f i x✝).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x✝).Dom
z : Upto p
_this : p ↑z
hk : Nat.find h' = Nat.zero + ↑z
x' x : α
⊢ ¬¬(Fix.approx f (↑z) x✝).Dom
[PROOFSTEP]
simpa only [not_not, Coe]
[GOAL]
case this.succ
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
⊢ ∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ (Nat.succ n)) x'
[PROOFSTEP]
| succ n n_ih =>
intro x'
rw [Fix.approx, WellFounded.fix_eq, fixAux]
congr
ext : 1
have hh : ¬(Fix.approx f z.val x).Dom := by
apply Nat.find_min h'
rw [hk, Nat.succ_add, ← Nat.add_succ]
apply Nat.lt_of_succ_le
apply Nat.le_add_left
rw [succ_add_eq_succ_add] at _this hk
rw [assert_pos hh, n_ih (Upto.succ z hh) _this hk]
[GOAL]
case this.succ
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
⊢ ∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ (Nat.succ n)) x'
[PROOFSTEP]
intro x'
[GOAL]
case this.succ
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
x' : α
⊢ WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ (Nat.succ n)) x'
[PROOFSTEP]
rw [Fix.approx, WellFounded.fix_eq, fixAux]
[GOAL]
case this.succ
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
x' : α
⊢ f
(fun x_1 =>
assert (¬(Fix.approx f (↑z) x).Dom) fun h =>
WellFounded.fix (_ : WellFounded (Upto.GT fun x_2 => (Fix.approx f x_2 x).Dom)) (fixAux f) (Upto.succ z h)
x_1)
x' =
f (Fix.approx f (n + 1)) x'
[PROOFSTEP]
congr
[GOAL]
case this.succ.e_a
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
x' : α
⊢ (fun x_1 =>
assert (¬(Fix.approx f (↑z) x).Dom) fun h =>
WellFounded.fix (_ : WellFounded (Upto.GT fun x_2 => (Fix.approx f x_2 x).Dom)) (fixAux f) (Upto.succ z h)
x_1) =
Fix.approx f (n + 1)
[PROOFSTEP]
ext : 1
[GOAL]
case this.succ.e_a.h
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
x' x✝ : α
⊢ (assert (¬(Fix.approx f (↑z) x).Dom) fun h =>
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) (Upto.succ z h) x✝) =
Fix.approx f (n + 1) x✝
[PROOFSTEP]
have hh : ¬(Fix.approx f z.val x).Dom := by
apply Nat.find_min h'
rw [hk, Nat.succ_add, ← Nat.add_succ]
apply Nat.lt_of_succ_le
apply Nat.le_add_left
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
x' x✝ : α
⊢ ¬(Fix.approx f (↑z) x).Dom
[PROOFSTEP]
apply Nat.find_min h'
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
x' x✝ : α
⊢ ↑z < Nat.find h'
[PROOFSTEP]
rw [hk, Nat.succ_add, ← Nat.add_succ]
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
x' x✝ : α
⊢ ↑z < n + Nat.succ ↑z
[PROOFSTEP]
apply Nat.lt_of_succ_le
[GOAL]
case h
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
x' x✝ : α
⊢ Nat.succ ↑z ≤ n + Nat.succ ↑z
[PROOFSTEP]
apply Nat.le_add_left
[GOAL]
case this.succ.e_a.h
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (Nat.succ n + ↑z)
hk : Nat.find h' = Nat.succ n + ↑z
x' x✝ : α
hh : ¬(Fix.approx f (↑z) x).Dom
⊢ (assert (¬(Fix.approx f (↑z) x).Dom) fun h =>
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) (Upto.succ z h) x✝) =
Fix.approx f (n + 1) x✝
[PROOFSTEP]
rw [succ_add_eq_succ_add] at _this hk
[GOAL]
case this.succ.e_a.h
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ∃ i, (Fix.approx f i x).Dom
p : ℕ → Prop := fun i => (Fix.approx f i x).Dom
n : ℕ
n_ih :
∀ (z : Upto p),
p (n + ↑z) →
Nat.find h' = n + ↑z →
∀ (x' : α),
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' =
Fix.approx f (Nat.succ n) x'
z : Upto p
_this : p (n + Nat.succ ↑z)
hk : Nat.find h' = n + Nat.succ ↑z
x' x✝ : α
hh : ¬(Fix.approx f (↑z) x).Dom
⊢ (assert (¬(Fix.approx f (↑z) x).Dom) fun h =>
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) (Upto.succ z h) x✝) =
Fix.approx f (n + 1) x✝
[PROOFSTEP]
rw [assert_pos hh, n_ih (Upto.succ z hh) _this hk]
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ¬∃ i, (Fix.approx f i x).Dom
⊢ Part.fix f x = none
[PROOFSTEP]
dsimp [Part.fix]
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) → (a : α) → Part (β a)
x : α
h' : ¬∃ i, (Fix.approx f i x).Dom
⊢ (assert (∃ i, (Fix.approx f i x).Dom) fun h =>
WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) Upto.zero x) =
none
[PROOFSTEP]
rw [assert_neg h']
| {"mathlib_filename": "Mathlib.Control.Fix", "llama_tokens": 10440} |
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
⊢ InnerProductSpaceable.innerProp' E ↑(-1)
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
⊢ inner_ 𝕜 (↑(-1) • x) y = ↑(starRingEnd 𝕜) ↑(-1) * inner_ 𝕜 x y
[PROOFSTEP]
simp only [inner_, neg_mul_eq_neg_mul, one_mul, Int.cast_one, one_smul, RingHom.map_one, map_neg, Int.cast_neg,
neg_smul, neg_one_mul]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
⊢ 4⁻¹ *
(↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ -
I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖) =
-4⁻¹ *
(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
rw [neg_mul_comm]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
⊢ 4⁻¹ *
(↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ -
I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖) =
4⁻¹ *
-(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
⊢ ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ -
I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖ =
-(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
have h₁ : ‖-x - y‖ = ‖x + y‖ := by rw [← neg_add', norm_neg]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
⊢ ‖-x - y‖ = ‖x + y‖
[PROOFSTEP]
rw [← neg_add', norm_neg]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h₁ : ‖-x - y‖ = ‖x + y‖
⊢ ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ -
I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖ =
-(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
have h₂ : ‖-x + y‖ = ‖x - y‖ := by rw [← neg_sub, norm_neg, sub_eq_neg_add]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h₁ : ‖-x - y‖ = ‖x + y‖
⊢ ‖-x + y‖ = ‖x - y‖
[PROOFSTEP]
rw [← neg_sub, norm_neg, sub_eq_neg_add]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
⊢ ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ -
I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖ =
-(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
have h₃ : ‖(I : 𝕜) • -x + y‖ = ‖(I : 𝕜) • x - y‖ := by rw [← neg_sub, norm_neg, sub_eq_neg_add, ← smul_neg]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
⊢ ‖I • -x + y‖ = ‖I • x - y‖
[PROOFSTEP]
rw [← neg_sub, norm_neg, sub_eq_neg_add, ← smul_neg]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
h₃ : ‖I • -x + y‖ = ‖I • x - y‖
⊢ ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ -
I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖ =
-(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
have h₄ : ‖(I : 𝕜) • -x - y‖ = ‖(I : 𝕜) • x + y‖ := by rw [smul_neg, ← neg_add', norm_neg]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
h₃ : ‖I • -x + y‖ = ‖I • x - y‖
⊢ ‖I • -x - y‖ = ‖I • x + y‖
[PROOFSTEP]
rw [smul_neg, ← neg_add', norm_neg]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
h₃ : ‖I • -x + y‖ = ‖I • x - y‖
h₄ : ‖I • -x - y‖ = ‖I • x + y‖
⊢ ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ -
I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖ =
-(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
rw [h₁, h₂, h₃, h₄]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
h₃ : ‖I • -x + y‖ = ‖I • x - y‖
h₄ : ‖I • -x - y‖ = ‖I • x + y‖
⊢ ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ - ↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ + I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ -
I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ =
-(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f g : ℝ → E
hf : Continuous f
hg : Continuous g
⊢ Continuous fun x => _root_.inner_ 𝕜 (f x) (g x)
[PROOFSTEP]
unfold inner_
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f g : ℝ → E
hf : Continuous f
hg : Continuous g
⊢ Continuous fun x =>
4⁻¹ *
(↑𝓚 ‖f x + g x‖ * ↑𝓚 ‖f x + g x‖ - ↑𝓚 ‖f x - g x‖ * ↑𝓚 ‖f x - g x‖ + I * ↑𝓚 ‖I • f x + g x‖ * ↑𝓚 ‖I • f x + g x‖ -
I * ↑𝓚 ‖I • f x - g x‖ * ↑𝓚 ‖I • f x - g x‖)
[PROOFSTEP]
have := Continuous.const_smul (M := 𝕜) hf I
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
f g : ℝ → E
hf : Continuous f
hg : Continuous g
this : Continuous fun x => I • f x
⊢ Continuous fun x =>
4⁻¹ *
(↑𝓚 ‖f x + g x‖ * ↑𝓚 ‖f x + g x‖ - ↑𝓚 ‖f x - g x‖ * ↑𝓚 ‖f x - g x‖ + I * ↑𝓚 ‖I • f x + g x‖ * ↑𝓚 ‖I • f x + g x‖ -
I * ↑𝓚 ‖I • f x - g x‖ * ↑𝓚 ‖I • f x - g x‖)
[PROOFSTEP]
continuity
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
⊢ ‖x‖ ^ 2 = ↑re (inner_ 𝕜 x x)
[PROOFSTEP]
simp only [inner_]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
⊢ ‖x‖ ^ 2 =
↑re
(4⁻¹ *
(↑𝓚 ‖x + x‖ * ↑𝓚 ‖x + x‖ - ↑𝓚 ‖x - x‖ * ↑𝓚 ‖x - x‖ + I * ↑𝓚 ‖I • x + x‖ * ↑𝓚 ‖I • x + x‖ -
I * ↑𝓚 ‖I • x - x‖ * ↑𝓚 ‖I • x - x‖))
[PROOFSTEP]
have h₁ : IsROrC.normSq (4 : 𝕜) = 16 :=
by
have : ((4 : ℝ) : 𝕜) = (4 : 𝕜) := by norm_cast
rw [← this, normSq_eq_def', IsROrC.norm_of_nonneg (by norm_num : (0 : ℝ) ≤ 4)]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
⊢ ↑normSq 4 = 16
[PROOFSTEP]
have : ((4 : ℝ) : 𝕜) = (4 : 𝕜) := by norm_cast
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
⊢ ↑4 = 4
[PROOFSTEP]
norm_cast
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
this : ↑4 = 4
⊢ ↑normSq 4 = 16
[PROOFSTEP]
rw [← this, normSq_eq_def', IsROrC.norm_of_nonneg (by norm_num : (0 : ℝ) ≤ 4)]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
this : ↑4 = 4
⊢ 0 ≤ 4
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
this : ↑4 = 4
⊢ 4 ^ 2 = 16
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
h₁ : ↑normSq 4 = 16
⊢ ‖x‖ ^ 2 =
↑re
(4⁻¹ *
(↑𝓚 ‖x + x‖ * ↑𝓚 ‖x + x‖ - ↑𝓚 ‖x - x‖ * ↑𝓚 ‖x - x‖ + I * ↑𝓚 ‖I • x + x‖ * ↑𝓚 ‖I • x + x‖ -
I * ↑𝓚 ‖I • x - x‖ * ↑𝓚 ‖I • x - x‖))
[PROOFSTEP]
have h₂ : ‖x + x‖ = 2 * ‖x‖ := by rw [← two_smul 𝕜, norm_smul, IsROrC.norm_two]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
h₁ : ↑normSq 4 = 16
⊢ ‖x + x‖ = 2 * ‖x‖
[PROOFSTEP]
rw [← two_smul 𝕜, norm_smul, IsROrC.norm_two]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
h₁ : ↑normSq 4 = 16
h₂ : ‖x + x‖ = 2 * ‖x‖
⊢ ‖x‖ ^ 2 =
↑re
(4⁻¹ *
(↑𝓚 ‖x + x‖ * ↑𝓚 ‖x + x‖ - ↑𝓚 ‖x - x‖ * ↑𝓚 ‖x - x‖ + I * ↑𝓚 ‖I • x + x‖ * ↑𝓚 ‖I • x + x‖ -
I * ↑𝓚 ‖I • x - x‖ * ↑𝓚 ‖I • x - x‖))
[PROOFSTEP]
simp only [h₁, h₂, algebraMap_eq_ofReal, sub_self, norm_zero, mul_re, inv_re, ofNat_re, map_sub, map_add, ofReal_re,
ofNat_im, ofReal_im, mul_im, I_re, inv_im]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x : E
h₁ : ↑normSq 4 = 16
h₂ : ‖x + x‖ = 2 * ‖x‖
⊢ ‖x‖ ^ 2 =
4 / 16 *
(2 * ‖x‖ * (2 * ‖x‖) - 0 * 0 - 0 +
((0 * ‖I • x + x‖ - ↑im I * 0) * ‖I • x + x‖ - (0 * 0 + ↑im I * ‖I • x + x‖) * 0) -
((0 * ‖I • x - x‖ - ↑im I * 0) * ‖I • x - x‖ - (0 * 0 + ↑im I * ‖I • x - x‖) * 0)) -
-0 / 16 *
(2 * ‖x‖ * 0 + 0 * (2 * ‖x‖) - (0 * 0 + 0 * 0) +
((0 * ‖I • x + x‖ - ↑im I * 0) * 0 + (0 * 0 + ↑im I * ‖I • x + x‖) * ‖I • x + x‖) -
((0 * ‖I • x - x‖ - ↑im I * 0) * 0 + (0 * 0 + ↑im I * ‖I • x - x‖) * ‖I • x - x‖))
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
⊢ ↑(starRingEnd 𝕜) (inner_ 𝕜 y x) = inner_ 𝕜 x y
[PROOFSTEP]
simp only [inner_]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
⊢ ↑(starRingEnd 𝕜)
(4⁻¹ *
(↑𝓚 ‖y + x‖ * ↑𝓚 ‖y + x‖ - ↑𝓚 ‖y - x‖ * ↑𝓚 ‖y - x‖ + I * ↑𝓚 ‖I • y + x‖ * ↑𝓚 ‖I • y + x‖ -
I * ↑𝓚 ‖I • y - x‖ * ↑𝓚 ‖I • y - x‖)) =
4⁻¹ *
(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
have h4 : conj (4⁻¹ : 𝕜) = 4⁻¹ := by norm_num
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
⊢ ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
[PROOFSTEP]
norm_num
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
⊢ ↑(starRingEnd 𝕜)
(4⁻¹ *
(↑𝓚 ‖y + x‖ * ↑𝓚 ‖y + x‖ - ↑𝓚 ‖y - x‖ * ↑𝓚 ‖y - x‖ + I * ↑𝓚 ‖I • y + x‖ * ↑𝓚 ‖I • y + x‖ -
I * ↑𝓚 ‖I • y - x‖ * ↑𝓚 ‖I • y - x‖)) =
4⁻¹ *
(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
rw [map_mul, h4]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
⊢ 4⁻¹ *
↑(starRingEnd 𝕜)
(↑𝓚 ‖y + x‖ * ↑𝓚 ‖y + x‖ - ↑𝓚 ‖y - x‖ * ↑𝓚 ‖y - x‖ + I * ↑𝓚 ‖I • y + x‖ * ↑𝓚 ‖I • y + x‖ -
I * ↑𝓚 ‖I • y - x‖ * ↑𝓚 ‖I • y - x‖) =
4⁻¹ *
(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
⊢ ↑(starRingEnd 𝕜)
(↑𝓚 ‖y + x‖ * ↑𝓚 ‖y + x‖ - ↑𝓚 ‖y - x‖ * ↑𝓚 ‖y - x‖ + I * ↑𝓚 ‖I • y + x‖ * ↑𝓚 ‖I • y + x‖ -
I * ↑𝓚 ‖I • y - x‖ * ↑𝓚 ‖I • y - x‖) =
↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖
[PROOFSTEP]
simp only [map_sub, map_add, algebraMap_eq_ofReal, ← ofReal_mul, conj_ofReal, map_mul, conj_I]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
⊢ ↑(‖y + x‖ * ‖y + x‖) - ↑(‖y - x‖ * ‖y - x‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ =
↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖
[PROOFSTEP]
rw [add_comm y x, norm_sub_rev]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ =
↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖
[PROOFSTEP]
by_cases hI : (I : 𝕜) = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : I = 0
⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ =
↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖
[PROOFSTEP]
simp only [hI, neg_zero, zero_mul]
-- Porting note: this replaces `norm_I_of_ne_zero` which does not exist in Lean 4
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ =
↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖
[PROOFSTEP]
have : ‖(I : 𝕜)‖ = 1 := by
rw [← mul_self_inj_of_nonneg (norm_nonneg I) zero_le_one, one_mul, ← norm_mul, I_mul_I_of_nonzero hI, norm_neg,
norm_one]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
⊢ ‖I‖ = 1
[PROOFSTEP]
rw [← mul_self_inj_of_nonneg (norm_nonneg I) zero_le_one, one_mul, ← norm_mul, I_mul_I_of_nonzero hI, norm_neg,
norm_one]
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
this : ‖I‖ = 1
⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ =
↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖
[PROOFSTEP]
have h₁ : ‖(I : 𝕜) • y - x‖ = ‖(I : 𝕜) • x + y‖ :=
by
trans ‖(I : 𝕜) • ((I : 𝕜) • y - x)‖
· rw [norm_smul, this, one_mul]
· rw [smul_sub, smul_smul, I_mul_I_of_nonzero hI, neg_one_smul, ← neg_add', add_comm, norm_neg]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
this : ‖I‖ = 1
⊢ ‖I • y - x‖ = ‖I • x + y‖
[PROOFSTEP]
trans ‖(I : 𝕜) • ((I : 𝕜) • y - x)‖
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
this : ‖I‖ = 1
⊢ ‖I • y - x‖ = ‖I • (I • y - x)‖
[PROOFSTEP]
rw [norm_smul, this, one_mul]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
this : ‖I‖ = 1
⊢ ‖I • (I • y - x)‖ = ‖I • x + y‖
[PROOFSTEP]
rw [smul_sub, smul_smul, I_mul_I_of_nonzero hI, neg_one_smul, ← neg_add', add_comm, norm_neg]
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
this : ‖I‖ = 1
h₁ : ‖I • y - x‖ = ‖I • x + y‖
⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ =
↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖
[PROOFSTEP]
have h₂ : ‖(I : 𝕜) • y + x‖ = ‖(I : 𝕜) • x - y‖ :=
by
trans ‖(I : 𝕜) • ((I : 𝕜) • y + x)‖
· rw [norm_smul, this, one_mul]
· rw [smul_add, smul_smul, I_mul_I_of_nonzero hI, neg_one_smul, ← neg_add_eq_sub]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
this : ‖I‖ = 1
h₁ : ‖I • y - x‖ = ‖I • x + y‖
⊢ ‖I • y + x‖ = ‖I • x - y‖
[PROOFSTEP]
trans ‖(I : 𝕜) • ((I : 𝕜) • y + x)‖
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
this : ‖I‖ = 1
h₁ : ‖I • y - x‖ = ‖I • x + y‖
⊢ ‖I • y + x‖ = ‖I • (I • y + x)‖
[PROOFSTEP]
rw [norm_smul, this, one_mul]
[GOAL]
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
this : ‖I‖ = 1
h₁ : ‖I • y - x‖ = ‖I • x + y‖
⊢ ‖I • (I • y + x)‖ = ‖I • x - y‖
[PROOFSTEP]
rw [smul_add, smul_smul, I_mul_I_of_nonzero hI, neg_one_smul, ← neg_add_eq_sub]
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
this : ‖I‖ = 1
h₁ : ‖I • y - x‖ = ‖I • x + y‖
h₂ : ‖I • y + x‖ = ‖I • x - y‖
⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ =
↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖
[PROOFSTEP]
rw [h₁, h₂, ← sub_add_eq_add_sub]
[GOAL]
case neg
𝕜 : Type u_1
inst✝² : IsROrC 𝕜
E : Type u_2
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace 𝕜 E
x y : E
h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹
hI : ¬I = 0
this : ‖I‖ = 1
h₁ : ‖I • y - x‖ = ‖I • x + y‖
h₂ : ‖I • y + x‖ = ‖I • x - y‖
⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) - -I * ↑‖I • x + y‖ * ↑‖I • x + y‖ + -I * ↑‖I • x - y‖ * ↑‖I • x - y‖ =
↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖
[PROOFSTEP]
simp only [neg_mul, sub_eq_add_neg, neg_neg]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖x + y + z‖ * ‖x + y + z‖ = (‖2 • x + y‖ * ‖2 • x + y‖ + ‖2 • z + y‖ * ‖2 • z + y‖) / 2 - ‖x - z‖ * ‖x - z‖
[PROOFSTEP]
rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖2 • x + y‖ * ‖2 • x + y‖ + ‖2 • z + y‖ * ‖2 • z + y‖ = 2 * (‖x + y + z‖ * ‖x + y + z‖ + ‖x - z‖ * ‖x - z‖)
[PROOFSTEP]
convert parallelogram_identity (x + y + z) (x - z) using 4
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ 2 • x + y = x + y + z + (x - z)
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ x + x + y = x + y + z + (x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ x + x + y = x + y + z + (x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ 2 • x + y = x + y + z + (x - z)
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ x + x + y = x + y + z + (x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ x + x + y = x + y + z + (x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ 2 • z + y = x + y + z - (x - z)
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ z + z + y = x + y + z - (x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ z + z + y = x + y + z - (x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ 2 • z + y = x + y + z - (x - z)
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ z + z + y = x + y + z - (x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ z + z + y = x + y + z - (x - z)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖x + y - z‖ * ‖x + y - z‖ = (‖2 • x + y‖ * ‖2 • x + y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 - ‖x + z‖ * ‖x + z‖
[PROOFSTEP]
rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖2 • x + y‖ * ‖2 • x + y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
[PROOFSTEP]
have h₀ := parallelogram_identity (x + y - z) (x + z)
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ ‖2 • x + y‖ * ‖2 • x + y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
[PROOFSTEP]
convert h₀ using 4
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ 2 • x + y = x + y - z + (x + z)
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ x + x + y = x + y - z + (x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ x + x + y = x + y - z + (x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ 2 • x + y = x + y - z + (x + z)
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ x + x + y = x + y - z + (x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ x + x + y = x + y - z + (x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ y - 2 • z = x + y - z - (x + z)
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ y - (z + z) = x + y - z - (x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ y - (z + z) = x + y - z - (x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ y - 2 • z = x + y - z - (x + z)
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ y - (z + z) = x + y - z - (x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ =
2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖)
⊢ y - (z + z) = x + y - z - (x + z)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖x + y + z‖ * ‖x + y + z‖ - ‖x + y - z‖ * ‖x + y - z‖ =
‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖ + (‖2 • z + y‖ * ‖2 • z + y‖ - ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2
[PROOFSTEP]
rw [add_left_aux1, add_left_aux2]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ (‖2 • x + y‖ * ‖2 • x + y‖ + ‖2 • z + y‖ * ‖2 • z + y‖) / 2 - ‖x - z‖ * ‖x - z‖ -
((‖2 • x + y‖ * ‖2 • x + y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 - ‖x + z‖ * ‖x + z‖) =
‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖ + (‖2 • z + y‖ * ‖2 • z + y‖ - ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ ‖2 • z + y‖ * ‖2 • z + y‖ = 2 * (‖y + z‖ * ‖y + z‖ + ‖z‖ * ‖z‖) - ‖y‖ * ‖y‖
[PROOFSTEP]
apply eq_sub_of_add_eq
[GOAL]
case h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ ‖2 • z + y‖ * ‖2 • z + y‖ + ‖y‖ * ‖y‖ = 2 * (‖y + z‖ * ‖y + z‖ + ‖z‖ * ‖z‖)
[PROOFSTEP]
convert parallelogram_identity (y + z) z using 4
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ 2 • z + y = y + z + z
[PROOFSTEP]
try rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ 2 • z + y = y + z + z
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ 2 • z + y = y + z + z
[PROOFSTEP]
try rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ 2 • z + y = y + z + z
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ y = y + z - z
[PROOFSTEP]
try rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ y = y + z - z
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ y = y + z - z
[PROOFSTEP]
try rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ y = y + z - z
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ z + z + y = y + z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ z + z + y = y + z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ z + z + y = y + z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ z + z + y = y + z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ y = y + z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ y = y + z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ y = y + z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ y = y + z - z
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) - ‖y‖ * ‖y‖
[PROOFSTEP]
apply eq_sub_of_add_eq'
[GOAL]
case h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ ‖y‖ * ‖y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
[PROOFSTEP]
have h₀ := parallelogram_identity (y - z) z
[GOAL]
case h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ ‖y‖ * ‖y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
[PROOFSTEP]
convert h₀ using 4
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y = y - z + z
[PROOFSTEP]
try rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y = y - z + z
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y = y - z + z
[PROOFSTEP]
try rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y = y - z + z
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y - 2 • z = y - z - z
[PROOFSTEP]
try rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y - 2 • z = y - z - z
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y - 2 • z = y - z - z
[PROOFSTEP]
try rw [two_smul]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y - 2 • z = y - z - z
[PROOFSTEP]
rw [two_smul]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y = y - z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y = y - z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y = y - z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y = y - z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y - (z + z) = y - z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y - (z + z) = y - z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y - (z + z) = y - z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖)
⊢ y - (z + z) = y - z - z
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ (‖2 • z + y‖ * ‖2 • z + y‖ - ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 = ‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖
[PROOFSTEP]
rw [add_left_aux3, add_left_aux4]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ (2 * (‖y + z‖ * ‖y + z‖ + ‖z‖ * ‖z‖) - ‖y‖ * ‖y‖ - (2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) - ‖y‖ * ‖y‖)) / 2 =
‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ =
(‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖) / 2 - ‖I • x - z‖ * ‖I • x - z‖
[PROOFSTEP]
rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
[PROOFSTEP]
have h₀ := parallelogram_identity ((I : 𝕜) • (x + y) + z) ((I : 𝕜) • x - z)
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ ‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
[PROOFSTEP]
convert h₀ using 4
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • (2 • x + y) = I • (x + y) + z + (I • x - z)
[PROOFSTEP]
try simp only [two_smul, smul_add]; abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • (2 • x + y) = I • (x + y) + z + (I • x - z)
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • x + I • x + I • y = I • x + I • y + z + (I • x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • x + I • x + I • y = I • x + I • y + z + (I • x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • (2 • x + y) = I • (x + y) + z + (I • x - z)
[PROOFSTEP]
try simp only [two_smul, smul_add]; abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • (2 • x + y) = I • (x + y) + z + (I • x - z)
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • x + I • x + I • y = I • x + I • y + z + (I • x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • x + I • x + I • y = I • x + I • y + z + (I • x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • y + 2 • z = I • (x + y) + z - (I • x - z)
[PROOFSTEP]
try simp only [two_smul, smul_add]; abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • y + 2 • z = I • (x + y) + z - (I • x - z)
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • y + (z + z) = I • x + I • y + z - (I • x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • y + (z + z) = I • x + I • y + z - (I • x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • y + 2 • z = I • (x + y) + z - (I • x - z)
[PROOFSTEP]
try simp only [two_smul, smul_add]; abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • y + 2 • z = I • (x + y) + z - (I • x - z)
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • y + (z + z) = I • x + I • y + z - (I • x - z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ +
‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ =
2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖)
⊢ I • y + (z + z) = I • x + I • y + z - (I • x - z)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ =
(‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖) / 2 - ‖I • x + z‖ * ‖I • x + z‖
[PROOFSTEP]
rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
[PROOFSTEP]
have h₀ := parallelogram_identity ((I : 𝕜) • (x + y) - z) ((I : 𝕜) • x + z)
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ ‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
[PROOFSTEP]
convert h₀ using 4
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • (2 • x + y) = I • (x + y) - z + (I • x + z)
[PROOFSTEP]
try simp only [two_smul, smul_add]; abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • (2 • x + y) = I • (x + y) - z + (I • x + z)
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • x + I • x + I • y = I • x + I • y - z + (I • x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • x + I • x + I • y = I • x + I • y - z + (I • x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • (2 • x + y) = I • (x + y) - z + (I • x + z)
[PROOFSTEP]
try simp only [two_smul, smul_add]; abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • (2 • x + y) = I • (x + y) - z + (I • x + z)
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • x + I • x + I • y = I • x + I • y - z + (I • x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • x + I • x + I • y = I • x + I • y - z + (I • x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • y - 2 • z = I • (x + y) - z - (I • x + z)
[PROOFSTEP]
try simp only [two_smul, smul_add]; abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • y - 2 • z = I • (x + y) - z - (I • x + z)
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • y - (z + z) = I • x + I • y - z - (I • x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • y - (z + z) = I • x + I • y - z - (I • x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • y - 2 • z = I • (x + y) - z - (I • x + z)
[PROOFSTEP]
try simp only [two_smul, smul_add]; abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • y - 2 • z = I • (x + y) - z - (I • x + z)
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • y - (z + z) = I • x + I • y - z - (I • x + z)
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
h₀ :
‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ +
‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ =
2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖)
⊢ I • y - (z + z) = I • x + I • y - z - (I • x + z)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖
[PROOFSTEP]
apply eq_sub_of_add_eq
[GOAL]
case h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖ + ‖I • y‖ * ‖I • y‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
[PROOFSTEP]
have h₀ := parallelogram_identity ((I : 𝕜) • y + z) z
[GOAL]
case h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖ + ‖I • y‖ * ‖I • y‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
[PROOFSTEP]
convert h₀ using 4
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y + 2 • z = I • y + z + z
[PROOFSTEP]
try simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y + 2 • z = I • y + z + z
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y + (z + z) = I • y + z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y + (z + z) = I • y + z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y + 2 • z = I • y + z + z
[PROOFSTEP]
try simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y + 2 • z = I • y + z + z
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y + (z + z) = I • y + z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y + (z + z) = I • y + z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y + z - z
[PROOFSTEP]
try simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y + z - z
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y + z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y + z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y + z - z
[PROOFSTEP]
try simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y + z - z
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y + z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y + z - z
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖
[PROOFSTEP]
apply eq_sub_of_add_eq'
[GOAL]
case h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
⊢ ‖I • y‖ * ‖I • y‖ + ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
[PROOFSTEP]
have h₀ := parallelogram_identity ((I : 𝕜) • y - z) z
[GOAL]
case h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ ‖I • y‖ * ‖I • y‖ + ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
[PROOFSTEP]
convert h₀ using 4
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y - z + z
[PROOFSTEP]
try simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y - z + z
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y - z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y - z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y - z + z
[PROOFSTEP]
try simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y - z + z
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y - z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_5.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y = I • y - z + z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y - 2 • z = I • y - z - z
[PROOFSTEP]
try simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y - 2 • z = I • y - z - z
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y - (z + z) = I • y - z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_5.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y - (z + z) = I • y - z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y - 2 • z = I • y - z - z
[PROOFSTEP]
try simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y - 2 • z = I • y - z - z
[PROOFSTEP]
simp only [two_smul, smul_add]
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y - (z + z) = I • y - z - z
[PROOFSTEP]
abel
[GOAL]
case h.e'_2.h.e'_6.h.e'_6.h.e'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
y z : E
h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖)
⊢ I • y - (z + z) = I • y - z - z
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ inner_ 𝕜 (x + y) z = inner_ 𝕜 x z + inner_ 𝕜 y z
[PROOFSTEP]
simp only [inner_, ← mul_add]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ 4⁻¹ *
(↑𝓚 ‖x + y + z‖ * ↑𝓚 ‖x + y + z‖ - ↑𝓚 ‖x + y - z‖ * ↑𝓚 ‖x + y - z‖ +
I * ↑𝓚 ‖I • (x + y) + z‖ * ↑𝓚 ‖I • (x + y) + z‖ -
I * ↑𝓚 ‖I • (x + y) - z‖ * ↑𝓚 ‖I • (x + y) - z‖) =
4⁻¹ *
(↑𝓚 ‖x + z‖ * ↑𝓚 ‖x + z‖ - ↑𝓚 ‖x - z‖ * ↑𝓚 ‖x - z‖ + I * ↑𝓚 ‖I • x + z‖ * ↑𝓚 ‖I • x + z‖ -
I * ↑𝓚 ‖I • x - z‖ * ↑𝓚 ‖I • x - z‖ +
(↑𝓚 ‖y + z‖ * ↑𝓚 ‖y + z‖ - ↑𝓚 ‖y - z‖ * ↑𝓚 ‖y - z‖ + I * ↑𝓚 ‖I • y + z‖ * ↑𝓚 ‖I • y + z‖ -
I * ↑𝓚 ‖I • y - z‖ * ↑𝓚 ‖I • y - z‖))
[PROOFSTEP]
congr
[GOAL]
case e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ↑𝓚 ‖x + y + z‖ * ↑𝓚 ‖x + y + z‖ - ↑𝓚 ‖x + y - z‖ * ↑𝓚 ‖x + y - z‖ + I * ↑𝓚 ‖I • (x + y) + z‖ * ↑𝓚 ‖I • (x + y) + z‖ -
I * ↑𝓚 ‖I • (x + y) - z‖ * ↑𝓚 ‖I • (x + y) - z‖ =
↑𝓚 ‖x + z‖ * ↑𝓚 ‖x + z‖ - ↑𝓚 ‖x - z‖ * ↑𝓚 ‖x - z‖ + I * ↑𝓚 ‖I • x + z‖ * ↑𝓚 ‖I • x + z‖ -
I * ↑𝓚 ‖I • x - z‖ * ↑𝓚 ‖I • x - z‖ +
(↑𝓚 ‖y + z‖ * ↑𝓚 ‖y + z‖ - ↑𝓚 ‖y - z‖ * ↑𝓚 ‖y - z‖ + I * ↑𝓚 ‖I • y + z‖ * ↑𝓚 ‖I • y + z‖ -
I * ↑𝓚 ‖I • y - z‖ * ↑𝓚 ‖I • y - z‖)
[PROOFSTEP]
simp only [mul_assoc, ← map_mul, add_sub_assoc, ← mul_sub, ← map_sub]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ↑𝓚 (‖x + y + z‖ * ‖x + y + z‖ - ‖x + (y - z)‖ * ‖x + (y - z)‖) +
I * ↑𝓚 (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ - ‖I • (x + y) - z‖ * ‖I • (x + y) - z‖) =
↑𝓚 (‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖) + I * ↑𝓚 (‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖) +
(↑𝓚 (‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖) + I * ↑𝓚 (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖))
[PROOFSTEP]
rw [add_add_add_comm]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ↑𝓚 (‖x + y + z‖ * ‖x + y + z‖ - ‖x + (y - z)‖ * ‖x + (y - z)‖) +
I * ↑𝓚 (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ - ‖I • (x + y) - z‖ * ‖I • (x + y) - z‖) =
↑𝓚 (‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖) + ↑𝓚 (‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖) +
(I * ↑𝓚 (‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖) +
I * ↑𝓚 (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖))
[PROOFSTEP]
simp only [← map_add, ← mul_add]
[GOAL]
case e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ↑𝓚 (‖x + y + z‖ * ‖x + y + z‖ - ‖x + (y - z)‖ * ‖x + (y - z)‖) +
I * ↑𝓚 (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ - ‖I • (x + y) - z‖ * ‖I • (x + y) - z‖) =
↑𝓚 (‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖ + (‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖)) +
I *
↑𝓚
(‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖ +
(‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖))
[PROOFSTEP]
congr
[GOAL]
case e_a.e_a.h.e_6.h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖x + y + z‖ * ‖x + y + z‖ - ‖x + (y - z)‖ * ‖x + (y - z)‖ =
‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖ + (‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖)
[PROOFSTEP]
rw [← add_sub_assoc, add_left_aux2', add_left_aux4']
[GOAL]
case e_a.e_a.e_a.h.e_6.h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ ‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ - ‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ =
‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖ + (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖)
[PROOFSTEP]
rw [add_left_aux5, add_left_aux6, add_left_aux7, add_left_aux8]
[GOAL]
case e_a.e_a.e_a.h.e_6.h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ (‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + (2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖)) / 2 -
‖I • x - z‖ * ‖I • x - z‖ -
((‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + (2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖)) / 2 -
‖I • x + z‖ * ‖I • x + z‖) =
‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖ + (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖)
[PROOFSTEP]
simp only [map_sub, map_mul, map_add, div_eq_mul_inv]
[GOAL]
case e_a.e_a.e_a.h.e_6.h
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y z : E
⊢ (‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + (2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖)) * 2⁻¹ -
‖I • x - z‖ * ‖I • x - z‖ -
((‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + (2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖)) *
2⁻¹ -
‖I • x + z‖ * ‖I • x + z‖) =
‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖ + (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖)
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
n : ℕ
x y : E
⊢ inner_ 𝕜 (↑n • x) y = ↑n * inner_ 𝕜 x y
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y : E
⊢ inner_ 𝕜 (↑Nat.zero • x) y = ↑Nat.zero * inner_ 𝕜 x y
[PROOFSTEP]
simp only [inner_, Nat.zero_eq, zero_sub, Nat.cast_zero, zero_mul, eq_self_iff_true, zero_smul, zero_add, mul_zero,
sub_self, norm_neg, smul_zero]
[GOAL]
case succ
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y : E
n : ℕ
ih : inner_ 𝕜 (↑n • x) y = ↑n * inner_ 𝕜 x y
⊢ inner_ 𝕜 (↑(Nat.succ n) • x) y = ↑(Nat.succ n) * inner_ 𝕜 x y
[PROOFSTEP]
simp only [Nat.cast_succ, add_smul, one_smul]
[GOAL]
case succ
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y : E
n : ℕ
ih : inner_ 𝕜 (↑n • x) y = ↑n * inner_ 𝕜 x y
⊢ inner_ 𝕜 (↑n • x + x) y = (↑n + 1) * inner_ 𝕜 x y
[PROOFSTEP]
rw [add_left, ih, add_mul, one_mul]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℕ
x y : E
⊢ inner_ 𝕜 (↑r • x) y = ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y
[PROOFSTEP]
simp only [map_natCast]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℕ
x y : E
⊢ inner_ 𝕜 (↑r • x) y = ↑r * inner_ 𝕜 x y
[PROOFSTEP]
exact nat r x y
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
n : ℤ
⊢ InnerProductSpaceable.innerProp' E ↑n
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
n : ℤ
x y : E
⊢ inner_ 𝕜 (↑n • x) y = ↑(starRingEnd 𝕜) ↑n * inner_ 𝕜 x y
[PROOFSTEP]
rw [← n.sign_mul_natAbs]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
n : ℤ
x y : E
⊢ inner_ 𝕜 (↑(Int.sign n * ↑(Int.natAbs n)) • x) y = ↑(starRingEnd 𝕜) ↑(Int.sign n * ↑(Int.natAbs n)) * inner_ 𝕜 x y
[PROOFSTEP]
simp only [Int.cast_ofNat, map_natCast, map_intCast, Int.cast_mul, map_mul, mul_smul]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
n : ℤ
x y : E
⊢ inner_ 𝕜 (↑(Int.sign n) • ↑(Int.natAbs n) • x) y = ↑(Int.sign n) * ↑(Int.natAbs n) * inner_ 𝕜 x y
[PROOFSTEP]
obtain hn | rfl | hn := lt_trichotomy n 0
[GOAL]
case inl
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
n : ℤ
x y : E
hn : n < 0
⊢ inner_ 𝕜 (↑(Int.sign n) • ↑(Int.natAbs n) • x) y = ↑(Int.sign n) * ↑(Int.natAbs n) * inner_ 𝕜 x y
[PROOFSTEP]
rw [Int.sign_eq_neg_one_of_neg hn, innerProp_neg_one ((n.natAbs : 𝕜) • x), nat]
[GOAL]
case inl
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
n : ℤ
x y : E
hn : n < 0
⊢ ↑(starRingEnd 𝕜) ↑(-1) * (↑(Int.natAbs n) * inner_ 𝕜 x y) = ↑(-1) * ↑(Int.natAbs n) * inner_ 𝕜 x y
[PROOFSTEP]
simp only [map_neg, neg_mul, one_mul, mul_eq_mul_left_iff, true_or_iff, Int.natAbs_eq_zero, eq_self_iff_true,
Int.cast_one, map_one, neg_inj, Nat.cast_eq_zero, Int.cast_neg]
[GOAL]
case inr.inl
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y : E
⊢ inner_ 𝕜 (↑(Int.sign 0) • ↑(Int.natAbs 0) • x) y = ↑(Int.sign 0) * ↑(Int.natAbs 0) * inner_ 𝕜 x y
[PROOFSTEP]
simp only [inner_, Int.cast_zero, zero_sub, Nat.cast_zero, zero_mul, eq_self_iff_true, Int.sign_zero, zero_smul,
zero_add, mul_zero, smul_zero, sub_self, norm_neg, Int.natAbs_zero]
[GOAL]
case inr.inr
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
n : ℤ
x y : E
hn : 0 < n
⊢ inner_ 𝕜 (↑(Int.sign n) • ↑(Int.natAbs n) • x) y = ↑(Int.sign n) * ↑(Int.natAbs n) * inner_ 𝕜 x y
[PROOFSTEP]
rw [Int.sign_eq_one_of_pos hn]
[GOAL]
case inr.inr
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
n : ℤ
x y : E
hn : 0 < n
⊢ inner_ 𝕜 (↑1 • ↑(Int.natAbs n) • x) y = ↑1 * ↑(Int.natAbs n) * inner_ 𝕜 x y
[PROOFSTEP]
simp only [one_mul, mul_eq_mul_left_iff, true_or_iff, Int.natAbs_eq_zero, eq_self_iff_true, Int.cast_one, one_smul,
Nat.cast_eq_zero, nat]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℚ
⊢ InnerProductSpaceable.innerProp' E ↑r
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℚ
x y : E
⊢ inner_ 𝕜 (↑r • x) y = ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y
[PROOFSTEP]
have : (r.den : 𝕜) ≠ 0 := by
haveI : CharZero 𝕜 := IsROrC.charZero_isROrC
exact_mod_cast r.pos.ne'
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℚ
x y : E
⊢ ↑r.den ≠ 0
[PROOFSTEP]
haveI : CharZero 𝕜 := IsROrC.charZero_isROrC
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℚ
x y : E
this : CharZero 𝕜
⊢ ↑r.den ≠ 0
[PROOFSTEP]
exact_mod_cast r.pos.ne'
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℚ
x y : E
this : ↑r.den ≠ 0
⊢ inner_ 𝕜 (↑r • x) y = ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y
[PROOFSTEP]
rw [← r.num_div_den, ← mul_right_inj' this, ← nat r.den _ y, smul_smul, Rat.cast_div]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℚ
x y : E
this : ↑r.den ≠ 0
⊢ inner_ 𝕜 ((↑r.den * (↑↑r.num / ↑↑r.den)) • x) y = ↑r.den * (↑(starRingEnd 𝕜) (↑↑r.num / ↑↑r.den) * inner_ 𝕜 x y)
[PROOFSTEP]
simp only [map_natCast, Rat.cast_coe_nat, map_intCast, Rat.cast_coe_int, map_div₀]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℚ
x y : E
this : ↑r.den ≠ 0
⊢ inner_ 𝕜 ((↑r.den * (↑r.num / ↑r.den)) • x) y = ↑r.den * (↑r.num / ↑r.den * inner_ 𝕜 x y)
[PROOFSTEP]
rw [← mul_assoc, mul_div_cancel' _ this, int_prop _ x, map_intCast]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℝ
⊢ InnerProductSpaceable.innerProp' E ↑r
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : ℝ
x y : E
⊢ inner_ 𝕜 (↑r • x) y = ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y
[PROOFSTEP]
revert r
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y : E
⊢ ∀ (r : ℝ), inner_ 𝕜 (↑r • x) y = ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y
[PROOFSTEP]
rw [← Function.funext_iff]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y : E
⊢ (fun r => inner_ 𝕜 (↑r • x) y) = fun r => ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y
[PROOFSTEP]
refine' Rat.denseEmbedding_coe_real.dense.equalizer _ _ (funext fun X => _)
[GOAL]
case refine'_1
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y : E
⊢ Continuous fun r => inner_ 𝕜 (↑r • x) y
[PROOFSTEP]
exact (continuous_ofReal.smul continuous_const).inner_ continuous_const
[GOAL]
case refine'_2
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y : E
⊢ Continuous fun r => ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y
[PROOFSTEP]
exact (continuous_conj.comp continuous_ofReal).mul continuous_const
[GOAL]
case refine'_3
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
x y : E
X : ℚ
⊢ ((fun r => inner_ 𝕜 (↑r • x) y) ∘ Rat.cast) X = ((fun r => ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y) ∘ Rat.cast) X
[PROOFSTEP]
simp only [Function.comp_apply, IsROrC.ofReal_ratCast, rat_prop _ _]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
⊢ InnerProductSpaceable.innerProp' E I
[PROOFSTEP]
by_cases hI : (I : 𝕜) = 0
[GOAL]
case pos
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : I = 0
⊢ InnerProductSpaceable.innerProp' E I
[PROOFSTEP]
rw [hI, ← Nat.cast_zero]
[GOAL]
case pos
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : I = 0
⊢ InnerProductSpaceable.innerProp' E ↑0
[PROOFSTEP]
exact nat_prop _
[GOAL]
case neg
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
⊢ InnerProductSpaceable.innerProp' E I
[PROOFSTEP]
intro x y
[GOAL]
case neg
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
⊢ inner_ 𝕜 (I • x) y = ↑(starRingEnd 𝕜) I * inner_ 𝕜 x y
[PROOFSTEP]
have hI' : (-I : 𝕜) * I = 1 := by rw [← inv_I, inv_mul_cancel hI]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
⊢ -I * I = 1
[PROOFSTEP]
rw [← inv_I, inv_mul_cancel hI]
[GOAL]
case neg
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
⊢ inner_ 𝕜 (I • x) y = ↑(starRingEnd 𝕜) I * inner_ 𝕜 x y
[PROOFSTEP]
rw [conj_I, inner_, inner_, mul_left_comm]
[GOAL]
case neg
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
⊢ 4⁻¹ *
(↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖I • I • x + y‖ * ↑𝓚 ‖I • I • x + y‖ -
I * ↑𝓚 ‖I • I • x - y‖ * ↑𝓚 ‖I • I • x - y‖) =
4⁻¹ *
(-I *
(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖))
[PROOFSTEP]
congr 1
[GOAL]
case neg.e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖I • I • x + y‖ * ↑𝓚 ‖I • I • x + y‖ -
I * ↑𝓚 ‖I • I • x - y‖ * ↑𝓚 ‖I • I • x - y‖ =
-I *
(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
rw [smul_smul, I_mul_I_of_nonzero hI, neg_one_smul]
[GOAL]
case neg.e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ -
I * ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ =
-I *
(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)
[PROOFSTEP]
rw [mul_sub, mul_add, mul_sub, mul_assoc I (𝓚 ‖I • x - y‖), ← mul_assoc (-I) I, hI', one_mul,
mul_assoc I (𝓚 ‖I • x + y‖), ← mul_assoc (-I) I, hI', one_mul]
[GOAL]
case neg.e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ -
I * ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ =
-I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖) - -I * (↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖
[PROOFSTEP]
have h₁ : ‖-x - y‖ = ‖x + y‖ := by rw [← neg_add', norm_neg]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
⊢ ‖-x - y‖ = ‖x + y‖
[PROOFSTEP]
rw [← neg_add', norm_neg]
[GOAL]
case neg.e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
h₁ : ‖-x - y‖ = ‖x + y‖
⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ -
I * ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ =
-I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖) - -I * (↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖
[PROOFSTEP]
have h₂ : ‖-x + y‖ = ‖x - y‖ := by rw [← neg_sub, norm_neg, sub_eq_neg_add]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
h₁ : ‖-x - y‖ = ‖x + y‖
⊢ ‖-x + y‖ = ‖x - y‖
[PROOFSTEP]
rw [← neg_sub, norm_neg, sub_eq_neg_add]
[GOAL]
case neg.e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ -
I * ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ =
-I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖) - -I * (↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖
[PROOFSTEP]
rw [h₁, h₂]
[GOAL]
case neg.e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ -
I * ↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ =
-I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖) - -I * (↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ -
↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖
[PROOFSTEP]
simp only [sub_eq_add_neg, mul_assoc]
[GOAL]
case neg.e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ + -(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖) + I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖) +
-(I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖)) =
-I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖) + -(-I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖)) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ +
-(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖)
[PROOFSTEP]
rw [← neg_mul_eq_neg_mul, ← neg_mul_eq_neg_mul]
[GOAL]
case neg.e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ + -(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖) + I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖) +
-(I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖)) =
-(I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖)) + - -(I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖)) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ +
-(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖)
[PROOFSTEP]
abel
[GOAL]
case neg.e_a
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
hI : ¬I = 0
x y : E
hI' : -I * I = 1
h₁ : ‖-x - y‖ = ‖x + y‖
h₂ : ‖-x + y‖ = ‖x - y‖
⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ + -(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖) + I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖) +
-(I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖)) =
-(I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖)) + - -(I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖)) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ +
-(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖)
[PROOFSTEP]
abel
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : 𝕜
⊢ InnerProductSpaceable.innerProp' E r
[PROOFSTEP]
intro x y
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : 𝕜
x y : E
⊢ inner_ 𝕜 (r • x) y = ↑(starRingEnd 𝕜) r * inner_ 𝕜 x y
[PROOFSTEP]
rw [← re_add_im r, add_smul, add_left, real_prop _ x, ← smul_smul, real_prop _ _ y, I_prop, map_add, map_mul,
conj_ofReal, conj_ofReal, conj_I]
[GOAL]
𝕜 : Type u_1
inst✝³ : IsROrC 𝕜
E : Type u_2
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace 𝕜 E
inst✝ : InnerProductSpaceable E
r : 𝕜
x y : E
⊢ ↑(↑re r) * inner_ 𝕜 x y + ↑(↑im r) * (-I * inner_ 𝕜 x y) = (↑(↑re r) + ↑(↑im r) * -I) * inner_ 𝕜 x y
[PROOFSTEP]
ring
[GOAL]
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : InnerProductSpaceable E
inst✝ : NormedSpace ℝ E
⊢ UniformConvexSpace E
[PROOFSTEP]
cases nonempty_innerProductSpace ℝ E
[GOAL]
case intro
𝕜 : Type u_1
inst✝⁴ : IsROrC 𝕜
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace 𝕜 E
inst✝¹ : InnerProductSpaceable E
inst✝ : NormedSpace ℝ E
val✝ : InnerProductSpace ℝ E
⊢ UniformConvexSpace E
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.OfNorm", "llama_tokens": 56486} |
{"mathlib_filename": "Mathlib.Control.ULiftable", "llama_tokens": 0} |
|
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
⊢ HasIntegral I l (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y)
[PROOFSTEP]
refine' HasIntegral.of_mul ‖y‖ fun ε ε0 => _
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ
ε0 : 0 < ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ε
[PROOFSTEP]
lift ε to ℝ≥0 using ε0.le
[GOAL]
case intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ↑ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
rw [NNReal.coe_pos] at ε0
[GOAL]
case intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
have A : μ (s ∩ Box.Icc I) ≠ ∞ := ((measure_mono <| Set.inter_subset_right _ _).trans_lt (I.measure_Icc_lt_top μ)).ne
[GOAL]
case intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
have B : μ (s ∩ I) ≠ ∞ := ((measure_mono <| Set.inter_subset_right _ _).trans_lt (I.measure_coe_lt_top μ)).ne
[GOAL]
case intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
obtain ⟨F, hFs, hFc, hμF⟩ : ∃ F, F ⊆ s ∩ Box.Icc I ∧ IsClosed F ∧ μ ((s ∩ Box.Icc I) \ F) < ε :=
(hs.inter I.measurableSet_Icc).exists_isClosed_diff_lt A (ENNReal.coe_pos.2 ε0).ne'
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
obtain ⟨U, hsU, hUo, hUt, hμU⟩ : ∃ U, s ∩ Box.Icc I ⊆ U ∧ IsOpen U ∧ μ U < ∞ ∧ μ (U \ (s ∩ Box.Icc I)) < ε :=
(hs.inter I.measurableSet_Icc).exists_isOpen_diff_lt A (ENNReal.coe_pos.2 ε0).ne'
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
have : ∀ x ∈ s ∩ Box.Icc I, ∃ r : Ioi (0 : ℝ), closedBall x r ⊆ U := fun x hx =>
by
rcases nhds_basis_closedBall.mem_iff.1 (hUo.mem_nhds <| hsU hx) with ⟨r, hr₀, hr⟩
exact ⟨⟨r, hr₀⟩, hr⟩
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
x : ι → ℝ
hx : x ∈ s ∩ ↑Box.Icc I
⊢ ∃ r, closedBall x ↑r ⊆ U
[PROOFSTEP]
rcases nhds_basis_closedBall.mem_iff.1 (hUo.mem_nhds <| hsU hx) with ⟨r, hr₀, hr⟩
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
x : ι → ℝ
hx : x ∈ s ∩ ↑Box.Icc I
r : ℝ
hr₀ : 0 < r
hr : closedBall x r ⊆ U
⊢ ∃ r, closedBall x ↑r ⊆ U
[PROOFSTEP]
exact ⟨⟨r, hr₀⟩, hr⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
this : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → ∃ r, closedBall x ↑r ⊆ U
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
choose! rs hrsU using this
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
have : ∀ x ∈ Box.Icc I \ s, ∃ r : Ioi (0 : ℝ), closedBall x r ⊆ Fᶜ := fun x hx =>
by
obtain ⟨r, hr₀, hr⟩ := nhds_basis_closedBall.mem_iff.1 (hFc.isOpen_compl.mem_nhds fun hx' => hx.2 (hFs hx').1)
exact ⟨⟨r, hr₀⟩, hr⟩
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
x : ι → ℝ
hx : x ∈ ↑Box.Icc I \ s
⊢ ∃ r, closedBall x ↑r ⊆ Fᶜ
[PROOFSTEP]
obtain ⟨r, hr₀, hr⟩ := nhds_basis_closedBall.mem_iff.1 (hFc.isOpen_compl.mem_nhds fun hx' => hx.2 (hFs hx').1)
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
x : ι → ℝ
hx : x ∈ ↑Box.Icc I \ s
r : ℝ
hr₀ : 0 < r
hr : closedBall x r ⊆ Fᶜ
⊢ ∃ r, closedBall x ↑r ⊆ Fᶜ
[PROOFSTEP]
exact ⟨⟨r, hr₀⟩, hr⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
this : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∃ r, closedBall x ↑r ⊆ Fᶜ
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
choose! rs' hrs'F using this
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
set r : (ι → ℝ) → Ioi (0 : ℝ) := s.piecewise rs rs'
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
refine' ⟨fun _ => r, fun c => l.rCond_of_bRiemann_eq_false hl, fun c π hπ hπp => _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
‖y‖ * ↑ε
[PROOFSTEP]
rw [mul_comm]
/- Then the union of boxes `J ∈ π` such that `π.tag ∈ s` includes `F` and is included by `U`,
hence its measure is `ε`-close to the measure of `s`. -/
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
↑ε * ‖y‖
[PROOFSTEP]
dsimp [integralSum]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • indicator s (fun x => y) (TaggedPrepartition.tag π J))
(ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤
↑ε * ‖y‖
[PROOFSTEP]
simp only [mem_closedBall, dist_eq_norm, ← indicator_const_smul_apply, sum_indicator_eq_sum_filter, ← sum_smul, ←
sub_smul, norm_smul, Real.norm_eq_abs, ← Prepartition.filter_boxes, ← Prepartition.measure_iUnion_toReal]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
⊢ |ENNReal.toReal
(↑↑μ (Prepartition.iUnion (Prepartition.filter π.toPrepartition fun i => TaggedPrepartition.tag π i ∈ s))) -
ENNReal.toReal (↑↑μ (s ∩ ↑I))| *
‖y‖ ≤
↑ε * ‖y‖
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_right _ (norm_nonneg y)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
⊢ |ENNReal.toReal
(↑↑μ (Prepartition.iUnion (Prepartition.filter π.toPrepartition fun i => TaggedPrepartition.tag π i ∈ s))) -
ENNReal.toReal (↑↑μ (s ∩ ↑I))| ≤
↑ε
[PROOFSTEP]
set t := (π.filter (π.tag · ∈ s)).iUnion
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
⊢ |ENNReal.toReal
(↑↑μ (Prepartition.iUnion (Prepartition.filter π.toPrepartition fun i => TaggedPrepartition.tag π i ∈ s))) -
ENNReal.toReal (↑↑μ (s ∩ ↑I))| ≤
↑ε
[PROOFSTEP]
change abs ((μ t).toReal - (μ (s ∩ I)).toReal) ≤ ε
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
⊢ |ENNReal.toReal (↑↑μ t) - ENNReal.toReal (↑↑μ (s ∩ ↑I))| ≤ ↑ε
[PROOFSTEP]
have htU : t ⊆ U ∩ I :=
by
simp only [TaggedPrepartition.iUnion_def, iUnion_subset_iff, TaggedPrepartition.mem_filter, and_imp]
refine' fun J hJ hJs x hx => ⟨hrsU _ ⟨hJs, π.tag_mem_Icc J⟩ _, π.le_of_mem' J hJ hx⟩
simpa only [s.piecewise_eq_of_mem _ _ hJs] using hπ.1 J hJ (Box.coe_subset_Icc hx)
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
⊢ t ⊆ U ∩ ↑I
[PROOFSTEP]
simp only [TaggedPrepartition.iUnion_def, iUnion_subset_iff, TaggedPrepartition.mem_filter, and_imp]
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
⊢ ∀ (i : Box ι), i ∈ π → TaggedPrepartition.tag π i ∈ s → ↑i ⊆ U ∩ ↑I
[PROOFSTEP]
refine' fun J hJ hJs x hx => ⟨hrsU _ ⟨hJs, π.tag_mem_Icc J⟩ _, π.le_of_mem' J hJ hx⟩
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
J : Box ι
hJ : J ∈ π
hJs : TaggedPrepartition.tag π J ∈ s
x : ι → ℝ
hx : x ∈ ↑J
⊢ x ∈ closedBall (TaggedPrepartition.tag π J) ↑(rs (TaggedPrepartition.tag π J))
[PROOFSTEP]
simpa only [s.piecewise_eq_of_mem _ _ hJs] using hπ.1 J hJ (Box.coe_subset_Icc hx)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
⊢ |ENNReal.toReal (↑↑μ t) - ENNReal.toReal (↑↑μ (s ∩ ↑I))| ≤ ↑ε
[PROOFSTEP]
refine' abs_sub_le_iff.2 ⟨_, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
⊢ ENNReal.toReal (↑↑μ t) - ENNReal.toReal (↑↑μ (s ∩ ↑I)) ≤ ↑ε
[PROOFSTEP]
refine' (ENNReal.le_toReal_sub B).trans (ENNReal.toReal_le_coe_of_le_coe _)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
⊢ ↑↑μ t - ↑↑μ (s ∩ ↑I) ≤ ↑ε
[PROOFSTEP]
refine' (tsub_le_tsub (measure_mono htU) le_rfl).trans (le_measure_diff.trans _)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
⊢ ↑↑μ ((U ∩ ↑I) \ (s ∩ ↑I)) ≤ ↑ε
[PROOFSTEP]
refine' (measure_mono fun x hx => _).trans hμU.le
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
x : ι → ℝ
hx : x ∈ (U ∩ ↑I) \ (s ∩ ↑I)
⊢ x ∈ U \ (s ∩ ↑Box.Icc I)
[PROOFSTEP]
exact ⟨hx.1.1, fun hx' => hx.2 ⟨hx'.1, hx.1.2⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
⊢ ENNReal.toReal (↑↑μ (s ∩ ↑I)) - ENNReal.toReal (↑↑μ t) ≤ ↑ε
[PROOFSTEP]
have hμt : μ t ≠ ∞ := ((measure_mono (htU.trans (inter_subset_left _ _))).trans_lt hUt).ne
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
hμt : ↑↑μ t ≠ ⊤
⊢ ENNReal.toReal (↑↑μ (s ∩ ↑I)) - ENNReal.toReal (↑↑μ t) ≤ ↑ε
[PROOFSTEP]
refine' (ENNReal.le_toReal_sub hμt).trans (ENNReal.toReal_le_coe_of_le_coe _)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
hμt : ↑↑μ t ≠ ⊤
⊢ ↑↑μ (s ∩ ↑I) - ↑↑μ t ≤ ↑ε
[PROOFSTEP]
refine' le_measure_diff.trans ((measure_mono _).trans hμF.le)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
hμt : ↑↑μ t ≠ ⊤
⊢ (s ∩ ↑I) \ t ⊆ (s ∩ ↑Box.Icc I) \ F
[PROOFSTEP]
rintro x ⟨⟨hxs, hxI⟩, hxt⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
hμt : ↑↑μ t ≠ ⊤
x : ι → ℝ
hxt : ¬x ∈ t
hxs : x ∈ s
hxI : x ∈ ↑I
⊢ x ∈ (s ∩ ↑Box.Icc I) \ F
[PROOFSTEP]
refine' ⟨⟨hxs, Box.coe_subset_Icc hxI⟩, fun hxF => hxt _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
hμt : ↑↑μ t ≠ ⊤
x : ι → ℝ
hxt : ¬x ∈ t
hxs : x ∈ s
hxI : x ∈ ↑I
hxF : x ∈ F
⊢ x ∈ t
[PROOFSTEP]
simp only [TaggedPrepartition.iUnion_def, TaggedPrepartition.mem_filter, Set.mem_iUnion, exists_prop]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
hμt : ↑↑μ t ≠ ⊤
x : ι → ℝ
hxt : ¬x ∈ t
hxs : x ∈ s
hxI : x ∈ ↑I
hxF : x ∈ F
⊢ ∃ i, (i ∈ π ∧ TaggedPrepartition.tag π i ∈ s) ∧ x ∈ ↑i
[PROOFSTEP]
rcases hπp x hxI with ⟨J, hJπ, hxJ⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
hμt : ↑↑μ t ≠ ⊤
x : ι → ℝ
hxt : ¬x ∈ t
hxs : x ∈ s
hxI : x ∈ ↑I
hxF : x ∈ F
J : Box ι
hJπ : J ∈ π.toPrepartition
hxJ : x ∈ J
⊢ ∃ i, (i ∈ π ∧ TaggedPrepartition.tag π i ∈ s) ∧ x ∈ ↑i
[PROOFSTEP]
refine' ⟨J, ⟨hJπ, _⟩, hxJ⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
hμt : ↑↑μ t ≠ ⊤
x : ι → ℝ
hxt : ¬x ∈ t
hxs : x ∈ s
hxI : x ∈ ↑I
hxF : x ∈ F
J : Box ι
hJπ : J ∈ π.toPrepartition
hxJ : x ∈ J
⊢ TaggedPrepartition.tag π J ∈ s
[PROOFSTEP]
contrapose hxF
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
hμt : ↑↑μ t ≠ ⊤
x : ι → ℝ
hxt : ¬x ∈ t
hxs : x ∈ s
hxI : x ∈ ↑I
J : Box ι
hJπ : J ∈ π.toPrepartition
hxJ : x ∈ J
hxF : ¬TaggedPrepartition.tag π J ∈ s
⊢ ¬x ∈ F
[PROOFSTEP]
refine' hrs'F _ ⟨π.tag_mem_Icc J, hxF⟩ _
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
hl : l.bRiemann = false
s : Set (ι → ℝ)
hs : MeasurableSet s
I : Box ι
y : E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
ε : ℝ≥0
ε0 : 0 < ε
A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤
B : ↑↑μ (s ∩ ↑I) ≠ ⊤
F : Set (ι → ℝ)
hFs : F ⊆ s ∩ ↑Box.Icc I
hFc : IsClosed F
hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε
U : Set (ι → ℝ)
hsU : s ∩ ↑Box.Icc I ⊆ U
hUo : IsOpen U
hUt : ↑↑μ U < ⊤
hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε
rs : (ι → ℝ) → ↑(Set.Ioi 0)
hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U
rs' : (ι → ℝ) → ↑(Set.Ioi 0)
hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ
r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs'
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
hπp : TaggedPrepartition.IsPartition π
t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s)
htU : t ⊆ U ∩ ↑I
hμt : ↑↑μ t ≠ ⊤
x : ι → ℝ
hxt : ¬x ∈ t
hxs : x ∈ s
hxI : x ∈ ↑I
J : Box ι
hJπ : J ∈ π.toPrepartition
hxJ : x ∈ J
hxF : ¬TaggedPrepartition.tag π J ∈ s
⊢ x ∈ closedBall (TaggedPrepartition.tag π J) ↑(rs' (TaggedPrepartition.tag π J))
[PROOFSTEP]
simpa only [s.piecewise_eq_of_not_mem _ _ hxF] using hπ.1 J hJπ (Box.coe_subset_Icc hxJ)
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hf : f =ᵐ[Measure.restrict μ ↑I] 0
hl : l.bRiemann = false
⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) 0
[PROOFSTEP]
refine' hasIntegral_iff.2 fun ε ε0 => _
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hf : f =ᵐ[Measure.restrict μ ↑I] 0
hl : l.bRiemann = false
ε : ℝ
ε0 : ε > 0
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ε
[PROOFSTEP]
lift ε to ℝ≥0 using ε0.lt.le
[GOAL]
case intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hf : f =ᵐ[Measure.restrict μ ↑I] 0
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : ↑ε > 0
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
rw [gt_iff_lt, NNReal.coe_pos] at ε0
[GOAL]
case intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hf : f =ᵐ[Measure.restrict μ ↑I] 0
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
rcases NNReal.exists_pos_sum_of_countable ε0.ne' ℕ with ⟨δ, δ0, c, hδc, hcε⟩
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hf : f =ᵐ[Measure.restrict μ ↑I] 0
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
haveI := Fact.mk (I.measure_coe_lt_top μ)
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hf : f =ᵐ[Measure.restrict μ ↑I] 0
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
change μ.restrict I {x | f x ≠ 0} = 0 at hf
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
set N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
have N0 : ∀ {x}, N x = 0 ↔ f x = 0 := by simp
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
⊢ ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
[PROOFSTEP]
simp
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
have : ∀ n, ∃ U, N ⁻¹' { n } ⊆ U ∧ IsOpen U ∧ μ.restrict I U < δ n / n :=
by
refine' fun n => (N ⁻¹' { n }).exists_isOpen_lt_of_lt _ _
cases' n with n
· simpa [ENNReal.div_zero (ENNReal.coe_pos.2 (δ0 _)).ne'] using measure_lt_top (μ.restrict I) _
· refine' (measure_mono_null _ hf).le.trans_lt _
· exact fun x hxN hxf => n.succ_ne_zero ((Eq.symm hxN).trans <| N0.2 hxf)
· simp [(δ0 _).ne']
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
⊢ ∀ (n : ℕ), ∃ U, N ⁻¹' {n} ⊆ U ∧ IsOpen U ∧ ↑↑(Measure.restrict μ ↑I) U < ↑(δ n) / ↑n
[PROOFSTEP]
refine' fun n => (N ⁻¹' { n }).exists_isOpen_lt_of_lt _ _
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
n : ℕ
⊢ ↑↑(Measure.restrict μ ↑I) (N ⁻¹' {n}) < ↑(δ n) / ↑n
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
⊢ ↑↑(Measure.restrict μ ↑I) (N ⁻¹' {Nat.zero}) < ↑(δ Nat.zero) / ↑Nat.zero
[PROOFSTEP]
simpa [ENNReal.div_zero (ENNReal.coe_pos.2 (δ0 _)).ne'] using measure_lt_top (μ.restrict I) _
[GOAL]
case succ
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
n : ℕ
⊢ ↑↑(Measure.restrict μ ↑I) (N ⁻¹' {Nat.succ n}) < ↑(δ (Nat.succ n)) / ↑(Nat.succ n)
[PROOFSTEP]
refine' (measure_mono_null _ hf).le.trans_lt _
[GOAL]
case succ.refine'_1
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
n : ℕ
⊢ N ⁻¹' {Nat.succ n} ⊆ {x | f x ≠ 0}
[PROOFSTEP]
exact fun x hxN hxf => n.succ_ne_zero ((Eq.symm hxN).trans <| N0.2 hxf)
[GOAL]
case succ.refine'_2
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
n : ℕ
⊢ 0 < ↑(δ (Nat.succ n)) / ↑(Nat.succ n)
[PROOFSTEP]
simp [(δ0 _).ne']
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this✝ : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
this : ∀ (n : ℕ), ∃ U, N ⁻¹' {n} ⊆ U ∧ IsOpen U ∧ ↑↑(Measure.restrict μ ↑I) U < ↑(δ n) / ↑n
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
choose U hNU hUo hμU using this
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
have : ∀ x, ∃ r : Ioi (0 : ℝ), closedBall x r ⊆ U (N x) := fun x =>
by
obtain ⟨r, hr₀, hr⟩ := nhds_basis_closedBall.mem_iff.1 ((hUo _).mem_nhds (hNU _ rfl))
exact ⟨⟨r, hr₀⟩, hr⟩
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
x : ι → ℝ
⊢ ∃ r, closedBall x ↑r ⊆ U (N x)
[PROOFSTEP]
obtain ⟨r, hr₀, hr⟩ := nhds_basis_closedBall.mem_iff.1 ((hUo _).mem_nhds (hNU _ rfl))
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
x : ι → ℝ
r : ℝ
hr₀ : 0 < r
hr : closedBall ?m.310267 r ⊆ U (N ?m.310267)
⊢ ∃ r, closedBall x ↑r ⊆ U (N x)
[PROOFSTEP]
exact ⟨⟨r, hr₀⟩, hr⟩
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this✝ : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
this : ∀ (x : ι → ℝ), ∃ r, closedBall x ↑r ⊆ U (N x)
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
choose r hrU using this
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
refine' ⟨fun _ => r, fun c => l.rCond_of_bRiemann_eq_false hl, fun c π hπ _ => _⟩
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
⊢ dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε
[PROOFSTEP]
rw [dist_eq_norm, sub_zero, ← integralSum_fiberwise fun J => N (π.tag J)]
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
⊢ ‖∑ y in Finset.image (fun J => N (TaggedPrepartition.tag π J)) π.boxes,
integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(TaggedPrepartition.filter π fun x => N (TaggedPrepartition.tag π x) = y)‖ ≤
↑ε
[PROOFSTEP]
refine' le_trans _ (NNReal.coe_lt_coe.2 hcε).le
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
⊢ ‖∑ y in Finset.image (fun J => N (TaggedPrepartition.tag π J)) π.boxes,
integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(TaggedPrepartition.filter π fun x => N (TaggedPrepartition.tag π x) = y)‖ ≤
↑c✝
[PROOFSTEP]
refine' (norm_sum_le_of_le _ _).trans (sum_le_hasSum _ (fun n _ => (δ n).2) (NNReal.hasSum_coe.2 hδc))
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
⊢ ∀ (b : ℕ),
b ∈ Finset.image (fun J => N (TaggedPrepartition.tag π J)) π.boxes →
‖integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(TaggedPrepartition.filter π fun x => N (TaggedPrepartition.tag π x) = b)‖ ≤
↑(δ b)
[PROOFSTEP]
rintro n -
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
⊢ ‖integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(TaggedPrepartition.filter π fun x => N (TaggedPrepartition.tag π x) = n)‖ ≤
↑(δ n)
[PROOFSTEP]
dsimp [integralSum]
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
⊢ ‖∑ J in (TaggedPrepartition.filter π fun x => ⌈‖f (TaggedPrepartition.tag π x)‖⌉₊ = n).toPrepartition.boxes,
ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤
↑(δ n)
[PROOFSTEP]
have : ∀ J ∈ π.filter fun J => N (π.tag J) = n, ‖(μ ↑J).toReal • f (π.tag J)‖ ≤ (μ J).toReal * n := fun J hJ ↦
by
rw [TaggedPrepartition.mem_filter] at hJ
rw [norm_smul, Real.norm_eq_abs, abs_of_nonneg ENNReal.toReal_nonneg]
exact mul_le_mul_of_nonneg_left (hJ.2 ▸ Nat.le_ceil _) ENNReal.toReal_nonneg
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
J : Box ι
hJ : J ∈ TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n
⊢ ‖ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑n
[PROOFSTEP]
rw [TaggedPrepartition.mem_filter] at hJ
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
J : Box ι
hJ : J ∈ π ∧ N (TaggedPrepartition.tag π J) = n
⊢ ‖ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑n
[PROOFSTEP]
rw [norm_smul, Real.norm_eq_abs, abs_of_nonneg ENNReal.toReal_nonneg]
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
J : Box ι
hJ : J ∈ π ∧ N (TaggedPrepartition.tag π J) = n
⊢ ENNReal.toReal (↑↑μ ↑J) * ‖f (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑n
[PROOFSTEP]
exact mul_le_mul_of_nonneg_left (hJ.2 ▸ Nat.le_ceil _) ENNReal.toReal_nonneg
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this✝ : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
this :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n) →
‖ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑n
⊢ ‖∑ J in (TaggedPrepartition.filter π fun x => ⌈‖f (TaggedPrepartition.tag π x)‖⌉₊ = n).toPrepartition.boxes,
ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤
↑(δ n)
[PROOFSTEP]
refine' (norm_sum_le_of_le _ this).trans _
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this✝ : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
this :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n) →
‖ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑n
⊢ ∑ b in (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n).toPrepartition.boxes,
ENNReal.toReal (↑↑μ ↑b) * ↑n ≤
↑(δ n)
[PROOFSTEP]
clear this
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
⊢ ∑ b in (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n).toPrepartition.boxes,
ENNReal.toReal (↑↑μ ↑b) * ↑n ≤
↑(δ n)
[PROOFSTEP]
rw [← sum_mul, ← Prepartition.measure_iUnion_toReal]
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
⊢ ENNReal.toReal
(↑↑μ
(Prepartition.iUnion
(TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n).toPrepartition)) *
↑n ≤
↑(δ n)
[PROOFSTEP]
generalize hm : μ (π.filter fun J => N (π.tag J) = n).iUnion = m
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
m : ℝ≥0∞
hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m
⊢ ENNReal.toReal m * ↑n ≤ ↑(δ n)
[PROOFSTEP]
have : m < δ n / n := by
simp only [Measure.restrict_apply (hUo _).measurableSet] at hμU
refine' hm ▸ (measure_mono _).trans_lt (hμU _)
simp only [Set.subset_def, TaggedPrepartition.mem_iUnion, TaggedPrepartition.mem_filter]
rintro x ⟨J, ⟨hJ, rfl⟩, hx⟩
exact ⟨hrU _ (hπ.1 _ hJ (Box.coe_subset_Icc hx)), π.le_of_mem' J hJ hx⟩
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
m : ℝ≥0∞
hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m
⊢ m < ↑(δ n) / ↑n
[PROOFSTEP]
simp only [Measure.restrict_apply (hUo _).measurableSet] at hμU
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
m : ℝ≥0∞
hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m
hμU : ∀ (n : ℕ), ↑↑μ (U n ∩ ↑I) < ↑(δ n) / ↑n
⊢ m < ↑(δ n) / ↑n
[PROOFSTEP]
refine' hm ▸ (measure_mono _).trans_lt (hμU _)
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
m : ℝ≥0∞
hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m
hμU : ∀ (n : ℕ), ↑↑μ (U n ∩ ↑I) < ↑(δ n) / ↑n
⊢ TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n) ⊆ U n ∩ ↑I
[PROOFSTEP]
simp only [Set.subset_def, TaggedPrepartition.mem_iUnion, TaggedPrepartition.mem_filter]
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
m : ℝ≥0∞
hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m
hμU : ∀ (n : ℕ), ↑↑μ (U n ∩ ↑I) < ↑(δ n) / ↑n
⊢ ∀ (x : ι → ℝ), (∃ J, (J ∈ π ∧ ⌈‖f (TaggedPrepartition.tag π J)‖⌉₊ = n) ∧ x ∈ J) → x ∈ U n ∩ ↑I
[PROOFSTEP]
rintro x ⟨J, ⟨hJ, rfl⟩, hx⟩
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
m : ℝ≥0∞
hμU : ∀ (n : ℕ), ↑↑μ (U n ∩ ↑I) < ↑(δ n) / ↑n
x : ι → ℝ
J : Box ι
hx : x ∈ J
hJ : J ∈ π
hm :
↑↑μ
(TaggedPrepartition.iUnion
(TaggedPrepartition.filter π fun J_1 =>
N (TaggedPrepartition.tag π J_1) = ⌈‖f (TaggedPrepartition.tag π J)‖⌉₊)) =
m
⊢ x ∈ U ⌈‖f (TaggedPrepartition.tag π J)‖⌉₊ ∩ ↑I
[PROOFSTEP]
exact ⟨hrU _ (hπ.1 _ hJ (Box.coe_subset_Icc hx)), π.le_of_mem' J hJ hx⟩
[GOAL]
case intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this✝ : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
m : ℝ≥0∞
hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m
this : m < ↑(δ n) / ↑n
⊢ ENNReal.toReal m * ↑n ≤ ↑(δ n)
[PROOFSTEP]
lift m to ℝ≥0 using ne_top_of_lt this
[GOAL]
case intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this✝ : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
m : ℝ≥0
hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = ↑m
this : ↑m < ↑(δ n) / ↑n
⊢ ENNReal.toReal ↑m * ↑n ≤ ↑(δ n)
[PROOFSTEP]
rw [ENNReal.coe_toReal, ← NNReal.coe_nat_cast, ← NNReal.coe_mul, NNReal.coe_le_coe, ← ENNReal.coe_le_coe,
ENNReal.coe_mul, ENNReal.coe_nat, mul_comm]
[GOAL]
case intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hl : l.bRiemann = false
ε : ℝ≥0
ε0 : 0 < ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
this✝ : Fact (↑↑μ ↑I < ⊤)
hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0
N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊
N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0
U : ℕ → Set (ι → ℝ)
hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n
hUo : ∀ (n : ℕ), IsOpen (U n)
hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n
r : (ι → ℝ) → ↑(Set.Ioi 0)
hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x)
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π
x✝ : TaggedPrepartition.IsPartition π
n : ℕ
m : ℝ≥0
hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = ↑m
this : ↑m < ↑(δ n) / ↑n
⊢ ↑n * ↑m ≤ ↑(δ n)
[PROOFSTEP]
exact (mul_le_mul_left' this.le _).trans ENNReal.mul_div_le
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
y : E
f g : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hf : HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) y
hfg : f =ᵐ[Measure.restrict μ ↑I] g
hl : l.bRiemann = false
⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) y
[PROOFSTEP]
have : g - f =ᵐ[μ.restrict I] 0 := hfg.mono fun x hx => sub_eq_zero.2 hx.symm
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
l : IntegrationParams
I : Box ι
y : E
f g : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hf : HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) y
hfg : f =ᵐ[Measure.restrict μ ↑I] g
hl : l.bRiemann = false
this : g - f =ᵐ[Measure.restrict μ ↑I] 0
⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) y
[PROOFSTEP]
simpa using hf.add (HasIntegral.of_aeEq_zero this hl)
[GOAL]
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
f : SimpleFunc (ι → ℝ) E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
⊢ HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f)
[PROOFSTEP]
induction' f using MeasureTheory.SimpleFunc.induction with y s hs f g _ hfi hgi
[GOAL]
case h_ind
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
y : E
s : Set (ι → ℝ)
hs : MeasurableSet s
⊢ HasIntegral I l (↑(piecewise s hs (const (ι → ℝ) y) (const (ι → ℝ) 0)))
(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(integral (Measure.restrict μ ↑I) (piecewise s hs (const (ι → ℝ) y) (const (ι → ℝ) 0)))
[PROOFSTEP]
simpa only [Measure.restrict_apply hs, const_zero, integral_piecewise_zero, integral_const, Measure.restrict_apply,
MeasurableSet.univ, Set.univ_inter] using BoxIntegral.hasIntegralIndicatorConst l hl hs I y μ
[GOAL]
case h_add
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
f g : SimpleFunc (ι → ℝ) E
a✝ : Disjoint (Function.support ↑f) (Function.support ↑g)
hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f)
hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g)
⊢ HasIntegral I l (↑(f + g)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(integral (Measure.restrict μ ↑I) (f + g))
[PROOFSTEP]
borelize E
[GOAL]
case h_add
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
f g : SimpleFunc (ι → ℝ) E
a✝ : Disjoint (Function.support ↑f) (Function.support ↑g)
hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f)
hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
⊢ HasIntegral I l (↑(f + g)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(integral (Measure.restrict μ ↑I) (f + g))
[PROOFSTEP]
haveI := Fact.mk (I.measure_coe_lt_top μ)
[GOAL]
case h_add
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
f g : SimpleFunc (ι → ℝ) E
a✝ : Disjoint (Function.support ↑f) (Function.support ↑g)
hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f)
hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : Fact (↑↑μ ↑I < ⊤)
⊢ HasIntegral I l (↑(f + g)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(integral (Measure.restrict μ ↑I) (f + g))
[PROOFSTEP]
rw [integral_add]
[GOAL]
case h_add
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
f g : SimpleFunc (ι → ℝ) E
a✝ : Disjoint (Function.support ↑f) (Function.support ↑g)
hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f)
hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : Fact (↑↑μ ↑I < ⊤)
⊢ HasIntegral I l (↑(f + g)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(integral (Measure.restrict μ ↑I) f + integral (Measure.restrict μ ↑I) g)
case h_add.hf
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
f g : SimpleFunc (ι → ℝ) E
a✝ : Disjoint (Function.support ↑f) (Function.support ↑g)
hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f)
hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : Fact (↑↑μ ↑I < ⊤)
⊢ Integrable ↑f
case h_add.hg
ι : Type u
E : Type v
inst✝³ : Fintype ι
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
f g : SimpleFunc (ι → ℝ) E
a✝ : Disjoint (Function.support ↑f) (Function.support ↑g)
hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f)
hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : Fact (↑↑μ ↑I < ⊤)
⊢ Integrable ↑g
[PROOFSTEP]
exacts [hfi.add hgi, integrable_iff.2 fun _ _ => measure_lt_top _ _, integrable_iff.2 fun _ _ => measure_lt_top _ _]
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
hf : IntegrableOn f ↑I
l : IntegrationParams
hl : l.bRiemann = false
⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (x : ι → ℝ) in ↑I, f x ∂μ)
[PROOFSTEP]
borelize E
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
hf : IntegrableOn f ↑I
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (x : ι → ℝ) in ↑I, f x ∂μ)
[PROOFSTEP]
rcases hf.aestronglyMeasurable with ⟨g, hg, hfg⟩
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
hf : IntegrableOn f ↑I
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
hfg : f =ᵐ[Measure.restrict μ ↑I] g
⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (x : ι → ℝ) in ↑I, f x ∂μ)
[PROOFSTEP]
haveI : SeparableSpace (range g ∪ {0} : Set E) := hg.separableSpace_range_union_singleton
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
hf : IntegrableOn f ↑I
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
hfg : f =ᵐ[Measure.restrict μ ↑I] g
this : SeparableSpace ↑(Set.range g ∪ {0})
⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (x : ι → ℝ) in ↑I, f x ∂μ)
[PROOFSTEP]
rw [integral_congr_ae hfg]
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
hf : IntegrableOn f ↑I
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
hfg : f =ᵐ[Measure.restrict μ ↑I] g
this : SeparableSpace ↑(Set.range g ∪ {0})
⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ)
[PROOFSTEP]
have hgi : IntegrableOn g I μ := (integrable_congr hfg).1 hf
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
hf : IntegrableOn f ↑I
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
hfg : f =ᵐ[Measure.restrict μ ↑I] g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ)
[PROOFSTEP]
refine' BoxIntegral.HasIntegral.congr_ae _ hfg.symm hl
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : (ι → ℝ) → E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
hf : IntegrableOn f ↑I
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
hfg : f =ᵐ[Measure.restrict μ ↑I] g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ)
[PROOFSTEP]
clear! f
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ)
[PROOFSTEP]
set f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g hg.measurable (range g ∪ {0}) 0 (by simp)
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
⊢ 0 ∈ Set.range g ∪ {0}
[PROOFSTEP]
simp
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ)
[PROOFSTEP]
have hfi : ∀ n, IntegrableOn (f n) I μ := SimpleFunc.integrable_approxOn_range hg.measurable hgi
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ)
[PROOFSTEP]
have hfi' := fun n => ((f n).hasBoxIntegral μ I l hl).integrable
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ)
[PROOFSTEP]
have hfg_mono : ∀ (x) {m n}, m ≤ n → ‖f n x - g x‖ ≤ ‖f m x - g x‖ :=
by
intro x m n hmn
rw [← dist_eq_norm, ← dist_eq_norm, dist_nndist, dist_nndist, NNReal.coe_le_coe, ← ENNReal.coe_le_coe, ← edist_nndist,
← edist_nndist]
exact SimpleFunc.edist_approxOn_mono hg.measurable _ x hmn
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
⊢ ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
[PROOFSTEP]
intro x m n hmn
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
x : ι → ℝ
m n : ℕ
hmn : m ≤ n
⊢ ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
[PROOFSTEP]
rw [← dist_eq_norm, ← dist_eq_norm, dist_nndist, dist_nndist, NNReal.coe_le_coe, ← ENNReal.coe_le_coe, ← edist_nndist, ←
edist_nndist]
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
x : ι → ℝ
m n : ℕ
hmn : m ≤ n
⊢ edist (↑(f n) x) (g x) ≤ edist (↑(f m) x) (g x)
[PROOFSTEP]
exact SimpleFunc.edist_approxOn_mono hg.measurable _ x hmn
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ)
[PROOFSTEP]
refine' HasIntegral.of_mul ((μ I).toReal + 1 + 1) fun ε ε0 => _
[GOAL]
case intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ
ε0 : 0 < ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ε
[PROOFSTEP]
lift ε to ℝ≥0 using ε0.le
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ↑ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε
[PROOFSTEP]
rw [NNReal.coe_pos] at ε0
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε
[PROOFSTEP]
have ε0' := ENNReal.coe_pos.2 ε0
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε
[PROOFSTEP]
obtain ⟨N₀, hN₀⟩ : ∃ N : ℕ, ∫ x in I, ‖f N x - g x‖ ∂μ ≤ ε :=
by
have : Tendsto (fun n => ∫⁻ x in I, ‖f n x - g x‖₊ ∂μ) atTop (𝓝 0) :=
SimpleFunc.tendsto_approxOn_range_L1_nnnorm hg.measurable hgi
refine' (this.eventually (ge_mem_nhds ε0')).exists.imp fun N hN => _
exact integral_coe_le_of_lintegral_coe_le hN
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
⊢ ∃ N, ∫ (x : ι → ℝ) in ↑I, ‖↑(f N) x - g x‖ ∂μ ≤ ↑ε
[PROOFSTEP]
have : Tendsto (fun n => ∫⁻ x in I, ‖f n x - g x‖₊ ∂μ) atTop (𝓝 0) :=
SimpleFunc.tendsto_approxOn_range_L1_nnnorm hg.measurable hgi
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this✝ : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
this : Tendsto (fun n => ∫⁻ (x : ι → ℝ) in ↑I, ↑‖↑(f n) x - g x‖₊ ∂μ) atTop (𝓝 0)
⊢ ∃ N, ∫ (x : ι → ℝ) in ↑I, ‖↑(f N) x - g x‖ ∂μ ≤ ↑ε
[PROOFSTEP]
refine' (this.eventually (ge_mem_nhds ε0')).exists.imp fun N hN => _
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this✝ : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
this : Tendsto (fun n => ∫⁻ (x : ι → ℝ) in ↑I, ↑‖↑(f n) x - g x‖₊ ∂μ) atTop (𝓝 0)
N : ℕ
hN : ∫⁻ (x : ι → ℝ) in ↑I, ↑‖↑(f N) x - g x‖₊ ∂μ ≤ ↑ε
⊢ ∫ (x : ι → ℝ) in ↑I, ‖↑(f N) x - g x‖ ∂μ ≤ ↑ε
[PROOFSTEP]
exact integral_coe_le_of_lintegral_coe_le hN
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε
[PROOFSTEP]
have : ∀ x, ∃ N₁, N₀ ≤ N₁ ∧ dist (f N₁ x) (g x) ≤ ε := fun x ↦
by
have : Tendsto (f · x) atTop (𝓝 <| g x) := SimpleFunc.tendsto_approxOn hg.measurable _ (subset_closure (by simp))
exact ((eventually_ge_atTop N₀).and <| this <| closedBall_mem_nhds _ ε0).exists
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
x : ι → ℝ
⊢ ∃ N₁, N₀ ≤ N₁ ∧ dist (↑(f N₁) x) (g x) ≤ ↑ε
[PROOFSTEP]
have : Tendsto (f · x) atTop (𝓝 <| g x) := SimpleFunc.tendsto_approxOn hg.measurable _ (subset_closure (by simp))
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
x : ι → ℝ
⊢ g x ∈ Set.range g ∪ {0}
[PROOFSTEP]
simp
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this✝ : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
x : ι → ℝ
this : Tendsto (fun x_1 => ↑(f x_1) x) atTop (𝓝 (g x))
⊢ ∃ N₁, N₀ ≤ N₁ ∧ dist (↑(f N₁) x) (g x) ≤ ↑ε
[PROOFSTEP]
exact ((eventually_ge_atTop N₀).and <| this <| closedBall_mem_nhds _ ε0).exists
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this✝ : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
this : ∀ (x : ι → ℝ), ∃ N₁, N₀ ≤ N₁ ∧ dist (↑(f N₁) x) (g x) ≤ ↑ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε
[PROOFSTEP]
choose Nx hNx hNxε using this
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε
[PROOFSTEP]
rcases NNReal.exists_pos_sum_of_countable ε0.ne' ℕ with
⟨δ, δ0, c, hδc, hcε⟩
/- Since each simple function `fᵢ` is integrable, there exists `rᵢ : ℝⁿ → (0, ∞)` such that
the integral sum of `f` over any tagged prepartition is `δᵢ`-close to the sum of integrals
of `fᵢ` over the boxes of this prepartition. For each `x`, we choose `r (Nx x)` as the radius
at `x`. -/
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε
[PROOFSTEP]
set r : ℝ≥0 → (ι → ℝ) → Ioi (0 : ℝ) := fun c x => (hfi' <| Nx x).convergenceR (δ <| Nx x) c x
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c : ℝ≥0
hδc : HasSum δ c
hcε : c < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
⊢ ∃ r,
(∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
IntegrationParams.MemBaseSet l I c (r c) π →
TaggedPrepartition.IsPartition π →
dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε
[PROOFSTEP]
refine'
⟨r, fun c => l.rCond_of_bRiemann_eq_false hl, fun c π hπ hπp => _⟩
/- Now we prove the estimate in 3 "jumps": first we replace `g x` in the formula for the
integral sum by `f (Nx x)`; then we replace each `μ J • f (Nx (π.tag J)) (π.tag J)`
by the Bochner integral of `f (Nx (π.tag J)) x` over `J`, then we jump to the Bochner
integral of `g`. -/
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε
[PROOFSTEP]
refine'
(dist_triangle4 _ (∑ J in π.boxes, (μ J).toReal • f (Nx <| π.tag J) (π.tag J))
(∑ J in π.boxes, ∫ x in J, f (Nx <| π.tag J) x ∂μ) _).trans
_
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(∑ J in π.boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) +
dist
(∑ J in π.boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J))
(∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) +
dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ)
(∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
(ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε
[PROOFSTEP]
rw [add_mul, add_mul, one_mul]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(∑ J in π.boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) +
dist
(∑ J in π.boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J))
(∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) +
dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ)
(∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
ENNReal.toReal (↑↑μ ↑I) * ↑ε + ↑ε + ↑ε
[PROOFSTEP]
refine' add_le_add_three _ _ _
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π)
(∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) ≤
ENNReal.toReal (↑↑μ ↑I) * ↑ε
[PROOFSTEP]
rw [← hπp.iUnion_eq, π.measure_iUnion_toReal, sum_mul, integralSum]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (∑ J in π.boxes, ↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (g (TaggedPrepartition.tag π J)))
(∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) ≤
∑ x in π.boxes, ENNReal.toReal (↑↑μ ↑x) * ↑ε
[PROOFSTEP]
refine' dist_sum_sum_le_of_le _ fun J _ => _
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
J : Box ι
x✝ : J ∈ π.boxes
⊢ dist (↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (g (TaggedPrepartition.tag π J)))
(ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) ≤
ENNReal.toReal (↑↑μ ↑J) * ↑ε
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
J : Box ι
x✝ : J ∈ π.boxes
⊢ dist (ENNReal.toReal (↑↑μ ↑J) • g (TaggedPrepartition.tag π J))
(ENNReal.toReal (↑↑μ ↑J) •
↑(SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
(Nx (TaggedPrepartition.tag π J)))
(TaggedPrepartition.tag π J)) ≤
ENNReal.toReal (↑↑μ ↑J) * ↑ε
[PROOFSTEP]
rw [dist_eq_norm, ← smul_sub, norm_smul, Real.norm_eq_abs, abs_of_nonneg ENNReal.toReal_nonneg]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
J : Box ι
x✝ : J ∈ π.boxes
⊢ ENNReal.toReal (↑↑μ ↑J) *
‖g (TaggedPrepartition.tag π J) -
↑(SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
(Nx (TaggedPrepartition.tag π J)))
(TaggedPrepartition.tag π J)‖ ≤
ENNReal.toReal (↑↑μ ↑J) * ↑ε
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left _ ENNReal.toReal_nonneg
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
J : Box ι
x✝ : J ∈ π.boxes
⊢ ‖g (TaggedPrepartition.tag π J) -
↑(SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
(Nx (TaggedPrepartition.tag π J)))
(TaggedPrepartition.tag π J)‖ ≤
↑ε
[PROOFSTEP]
rw [← dist_eq_norm']
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
J : Box ι
x✝ : J ∈ π.boxes
⊢ dist
(↑(SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
(Nx (TaggedPrepartition.tag π J)))
(TaggedPrepartition.tag π J))
(g (TaggedPrepartition.tag π J)) ≤
↑ε
[PROOFSTEP]
exact hNxε _
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J))
(∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤
↑ε
[PROOFSTEP]
rw [← π.sum_fiberwise fun J => Nx (π.tag J), ← π.sum_fiberwise fun J => Nx (π.tag J)]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist
(∑ y in Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes,
∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = y).boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J))
(∑ y in Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes,
∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = y).boxes,
∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤
↑ε
[PROOFSTEP]
refine' le_trans _ (NNReal.coe_lt_coe.2 hcε).le
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist
(∑ y in Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes,
∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = y).boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J))
(∑ y in Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes,
∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = y).boxes,
∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤
↑c✝
[PROOFSTEP]
refine' (dist_sum_sum_le_of_le _ fun n hn => _).trans (sum_le_hasSum _ (fun n _ => (δ n).2) (NNReal.hasSum_coe.2 hδc))
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
n : ℕ
hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
⊢ dist
(∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J))
(∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes,
∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤
↑(δ n)
[PROOFSTEP]
have hNxn : ∀ J ∈ π.filter fun J => Nx (π.tag J) = n, Nx (π.tag J) = n := fun J hJ => (π.mem_filter.1 hJ).2
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
n : ℕ
hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
hNxn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n
⊢ dist
(∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J))
(∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes,
∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤
↑(δ n)
[PROOFSTEP]
have hrn : ∀ J ∈ π.filter fun J => Nx (π.tag J) = n, r c (π.tag J) = (hfi' n).convergenceR (δ n) c (π.tag J) :=
fun J hJ ↦ by
obtain rfl := hNxn J hJ
rfl
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
n : ℕ
hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
hNxn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n
J : Box ι
hJ : J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n
⊢ r c (TaggedPrepartition.tag π J) =
Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)))
(↑(δ n)) c (TaggedPrepartition.tag π J)
[PROOFSTEP]
obtain rfl := hNxn J hJ
[GOAL]
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
J : Box ι
hn : Nx (TaggedPrepartition.tag π J) ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
hNxn :
∀ (J_1 : Box ι),
(J_1 ∈ TaggedPrepartition.filter π fun J_2 => Nx (TaggedPrepartition.tag π J_2) = Nx (TaggedPrepartition.tag π J)) →
Nx (TaggedPrepartition.tag π J_1) = Nx (TaggedPrepartition.tag π J)
hJ : J ∈ TaggedPrepartition.filter π fun J_1 => Nx (TaggedPrepartition.tag π J_1) = Nx (TaggedPrepartition.tag π J)
⊢ r c (TaggedPrepartition.tag π J) =
Integrable.convergenceR
(_ :
BoxIntegral.Integrable I l (↑(f (Nx (TaggedPrepartition.tag π J))))
(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)))
(↑(δ (Nx (TaggedPrepartition.tag π J)))) c (TaggedPrepartition.tag π J)
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
n : ℕ
hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
hNxn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n
hrn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) →
r c (TaggedPrepartition.tag π J) =
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c
(TaggedPrepartition.tag π J)
⊢ dist
(∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J))
(∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes,
∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤
↑(δ n)
[PROOFSTEP]
have : l.MemBaseSet I c ((hfi' n).convergenceR (δ n) c) (π.filter fun J => Nx (π.tag J) = n) :=
(hπ.filter _).mono' _ le_rfl le_rfl fun J hJ => (hrn J hJ).le
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this✝ : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
n : ℕ
hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
hNxn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n
hrn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) →
r c (TaggedPrepartition.tag π J) =
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c
(TaggedPrepartition.tag π J)
this :
IntegrationParams.MemBaseSet l I c
(Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)))
(↑(δ n)) c)
(TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n)
⊢ dist
(∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J))
(∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes,
∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤
↑(δ n)
[PROOFSTEP]
convert (hfi' n).dist_integralSum_sum_integral_le_of_memBaseSet (δ0 _) this using 2
[GOAL]
case h.e'_3.h.e'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this✝ : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
n : ℕ
hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
hNxn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n
hrn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) →
r c (TaggedPrepartition.tag π J) =
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c
(TaggedPrepartition.tag π J)
this :
IntegrationParams.MemBaseSet l I c
(Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)))
(↑(δ n)) c)
(TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n)
⊢ ∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes,
ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J) =
integralSum (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
(TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n)
[PROOFSTEP]
refine' sum_congr rfl fun J hJ => _
[GOAL]
case h.e'_3.h.e'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this✝ : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
n : ℕ
hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
hNxn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n
hrn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) →
r c (TaggedPrepartition.tag π J) =
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c
(TaggedPrepartition.tag π J)
this :
IntegrationParams.MemBaseSet l I c
(Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)))
(↑(δ n)) c)
(TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n)
J : Box ι
hJ : J ∈ (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n).toPrepartition.boxes
⊢ ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J) =
↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J)
(↑(f n) (TaggedPrepartition.tag (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) J))
[PROOFSTEP]
simp [hNxn J hJ]
[GOAL]
case h.e'_3.h.e'_4
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this✝ : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
n : ℕ
hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
hNxn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n
hrn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) →
r c (TaggedPrepartition.tag π J) =
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c
(TaggedPrepartition.tag π J)
this :
IntegrationParams.MemBaseSet l I c
(Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)))
(↑(δ n)) c)
(TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n)
⊢ ∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes,
∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ =
∑ J in (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n).toPrepartition.boxes,
BoxIntegral.integral J l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
refine' sum_congr rfl fun J hJ => _
[GOAL]
case h.e'_3.h.e'_4
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this✝ : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
n : ℕ
hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
hNxn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n
hrn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) →
r c (TaggedPrepartition.tag π J) =
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c
(TaggedPrepartition.tag π J)
this :
IntegrationParams.MemBaseSet l I c
(Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)))
(↑(δ n)) c)
(TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n)
J : Box ι
hJ : J ∈ (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n).toPrepartition.boxes
⊢ ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ =
BoxIntegral.integral J l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
rw [← SimpleFunc.integral_eq_integral, SimpleFunc.box_integral_eq_integral _ _ _ _ hl, hNxn J hJ]
[GOAL]
case h.e'_3.h.e'_4.hfi
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this✝ : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
n : ℕ
hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes
hNxn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n
hrn :
∀ (J : Box ι),
(J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) →
r c (TaggedPrepartition.tag π J) =
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c
(TaggedPrepartition.tag π J)
this :
IntegrationParams.MemBaseSet l I c
(Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)))
(↑(δ n)) c)
(TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n)
J : Box ι
hJ : J ∈ (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n).toPrepartition.boxes
⊢ Integrable ↑(f (Nx (TaggedPrepartition.tag π J)))
[PROOFSTEP]
exact (hfi _).mono_set (Prepartition.le_of_mem _ hJ)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ)
(∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
↑ε
[PROOFSTEP]
refine' le_trans _ hN₀
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ)
(∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ
[PROOFSTEP]
have hfi : ∀ (n), ∀ J ∈ π, IntegrableOn (f n) (↑J) μ := fun n J hJ => (hfi n).mono_set (π.le_of_mem' J hJ)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J
⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ)
(∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ
[PROOFSTEP]
have hgi : ∀ J ∈ π, IntegrableOn g (↑J) μ := fun J hJ => hgi.mono_set (π.le_of_mem' J hJ)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi✝ : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J
hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J
⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ)
(∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ
[PROOFSTEP]
have hfgi : ∀ (n), ∀ J ∈ π, IntegrableOn (fun x => ‖f n x - g x‖) J μ := fun n J hJ =>
((hfi n J hJ).sub (hgi J hJ)).norm
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi✝ : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J
hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J
hfgi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn (fun x => ‖↑(f n) x - g x‖) ↑J
⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ)
(∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤
∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ
[PROOFSTEP]
rw [← hπp.iUnion_eq, Prepartition.iUnion_def',
integral_finset_biUnion π.boxes (fun J _ => J.measurableSet_coe) π.pairwiseDisjoint hgi,
integral_finset_biUnion π.boxes (fun J _ => J.measurableSet_coe) π.pairwiseDisjoint (hfgi _)]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi✝ : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J
hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J
hfgi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn (fun x => ‖↑(f n) x - g x‖) ↑J
⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ)
(∑ i in π.boxes, ∫ (x : ι → ℝ) in ↑i, g x ∂μ) ≤
∑ i in π.boxes, ∫ (x : ι → ℝ) in ↑i, ‖↑(f N₀) x - g x‖ ∂μ
[PROOFSTEP]
refine' dist_sum_sum_le_of_le _ fun J hJ => _
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi✝ : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J
hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J
hfgi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn (fun x => ‖↑(f n) x - g x‖) ↑J
J : Box ι
hJ : J ∈ π.boxes
⊢ dist (∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) (∫ (x : ι → ℝ) in ↑J, g x ∂μ) ≤
∫ (x : ι → ℝ) in ↑J, ‖↑(f N₀) x - g x‖ ∂μ
[PROOFSTEP]
rw [dist_eq_norm, ← integral_sub (hfi _ J hJ) (hgi J hJ)]
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi✝ : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J
hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J
hfgi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn (fun x => ‖↑(f n) x - g x‖) ↑J
J : Box ι
hJ : J ∈ π.boxes
⊢ ‖∫ (a : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) a - g a ∂μ‖ ≤ ∫ (x : ι → ℝ) in ↑J, ‖↑(f N₀) x - g x‖ ∂μ
[PROOFSTEP]
refine' norm_integral_le_of_norm_le (hfgi _ J hJ) (eventually_of_forall fun x => _)
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3
ι : Type u
E : Type v
inst✝⁴ : Fintype ι
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
I : Box ι
l : IntegrationParams
hl : l.bRiemann = false
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
g : (ι → ℝ) → E
hg : StronglyMeasurable g
this : SeparableSpace ↑(Set.range g ∪ {0})
hgi✝ : IntegrableOn g ↑I
f : ℕ → SimpleFunc (ι → ℝ) E :=
SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0})
hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I
hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖
ε : ℝ≥0
ε0 : 0 < ε
ε0' : 0 < ↑ε
N₀ : ℕ
hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε
Nx : (ι → ℝ) → ℕ
hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x
hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε
δ : ℕ → ℝ≥0
δ0 : ∀ (i : ℕ), 0 < δ i
c✝ : ℝ≥0
hδc : HasSum δ c✝
hcε : c✝ < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) :=
fun c x =>
Integrable.convergenceR
(_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x
c : ℝ≥0
π : TaggedPrepartition I
hπ : IntegrationParams.MemBaseSet l I c (r c) π
hπp : TaggedPrepartition.IsPartition π
hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J
hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J
hfgi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn (fun x => ‖↑(f n) x - g x‖) ↑J
J : Box ι
hJ : J ∈ π.boxes
x : ι → ℝ
⊢ ‖↑(f (Nx (TaggedPrepartition.tag π J))) x - g x‖ ≤ ‖↑(f N₀) x - g x‖
[PROOFSTEP]
exact hfg_mono x (hNx (π.tag J))
| {"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Integrability", "llama_tokens": 103242} |
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝¹ : AddCommMonoid M
inst✝ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i : ι
f g : ι →ᵇᵃ[I₀] M
h : f.toFun = g.toFun
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝¹ : AddCommMonoid M
inst✝ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i : ι
g : ι →ᵇᵃ[I₀] M
toFun✝ : Box ι → M
sum_partition_boxes'✝ :
∀ (J : Box ι), ↑J ≤ I₀ → ∀ (π : Prepartition J), IsPartition π → ∑ Ji in π.boxes, toFun✝ Ji = toFun✝ J
h : { toFun := toFun✝, sum_partition_boxes' := sum_partition_boxes'✝ }.toFun = g.toFun
⊢ { toFun := toFun✝, sum_partition_boxes' := sum_partition_boxes'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝¹ : AddCommMonoid M
inst✝ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i : ι
toFun✝¹ : Box ι → M
sum_partition_boxes'✝¹ :
∀ (J : Box ι), ↑J ≤ I₀ → ∀ (π : Prepartition J), IsPartition π → ∑ Ji in π.boxes, toFun✝¹ Ji = toFun✝¹ J
toFun✝ : Box ι → M
sum_partition_boxes'✝ :
∀ (J : Box ι), ↑J ≤ I₀ → ∀ (π : Prepartition J), IsPartition π → ∑ Ji in π.boxes, toFun✝ Ji = toFun✝ J
h :
{ toFun := toFun✝¹, sum_partition_boxes' := sum_partition_boxes'✝¹ }.toFun =
{ toFun := toFun✝, sum_partition_boxes' := sum_partition_boxes'✝ }.toFun
⊢ { toFun := toFun✝¹, sum_partition_boxes' := sum_partition_boxes'✝¹ } =
{ toFun := toFun✝, sum_partition_boxes' := sum_partition_boxes'✝ }
[PROOFSTEP]
congr
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝¹ : AddCommMonoid M
inst✝ : AddCommMonoid N
I₀ : WithTop (Box ι)
I✝ J : Box ι
i : ι
f g : ι →ᵇᵃ[I₀] M
I : Box ι
hI : ↑I ≤ I₀
π : Prepartition I
hπ : IsPartition π
⊢ ∑ Ji in π.boxes, (↑f + ↑g) Ji = (↑f + ↑g) I
[PROOFSTEP]
simp only [Pi.add_apply, sum_add_distrib, sum_partition_boxes _ hI hπ]
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝³ : AddCommMonoid M
inst✝² : AddCommMonoid N
I₀ : WithTop (Box ι)
I✝ J : Box ι
i : ι
R : Type ?u.25829
inst✝¹ : Monoid R
inst✝ : DistribMulAction R M
r : R
f : ι →ᵇᵃ[I₀] M
I : Box ι
hI : ↑I ≤ I₀
π : Prepartition I
hπ : IsPartition π
⊢ ∑ Ji in π.boxes, (r • ↑f) Ji = (r • ↑f) I
[PROOFSTEP]
simp only [Pi.smul_apply, ← smul_sum, sum_partition_boxes _ hI hπ]
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝¹ : AddCommMonoid M
inst✝ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i✝ : ι
f : ι →ᵇᵃ[I₀] M
hI : ↑I ≤ I₀
i : ι
x : ℝ
⊢ Option.elim' 0 (↑f) (splitLower I i x) + Option.elim' 0 (↑f) (splitUpper I i x) = ↑f I
[PROOFSTEP]
rw [← f.sum_partition_boxes hI (isPartitionSplit I i x), sum_split_boxes]
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
⊢ ι →ᵇᵃ[I₀] M
[PROOFSTEP]
refine' ⟨f, _⟩
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
⊢ ∀ (J : Box ι), ↑J ≤ I₀ → ∀ (π : Prepartition J), IsPartition π → ∑ Ji in π.boxes, f Ji = f J
[PROOFSTEP]
replace hf : ∀ I : Box ι, ↑I ≤ I₀ → ∀ s, (∑ J in (splitMany I s).boxes, f J) = f I
[GOAL]
case hf
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
⊢ ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I
[PROOFSTEP]
intro I hI s
[GOAL]
case hf
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
I : Box ι
hI : ↑I ≤ I₀
s : Finset (ι × ℝ)
⊢ ∑ J in (splitMany I s).boxes, f J = f I
[PROOFSTEP]
induction' s using Finset.induction_on with a s _ ihs
[GOAL]
case hf.empty
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
I : Box ι
hI : ↑I ≤ I₀
⊢ ∑ J in (splitMany I ∅).boxes, f J = f I
[PROOFSTEP]
simp
[GOAL]
case hf.insert
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
I : Box ι
hI : ↑I ≤ I₀
a : ι × ℝ
s : Finset (ι × ℝ)
a✝ : ¬a ∈ s
ihs : ∑ J in (splitMany I s).boxes, f J = f I
⊢ ∑ J in (splitMany I (insert a s)).boxes, f J = f I
[PROOFSTEP]
rw [splitMany_insert, inf_split, ← ihs, biUnion_boxes, sum_biUnion_boxes]
[GOAL]
case hf.insert
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
I : Box ι
hI : ↑I ≤ I₀
a : ι × ℝ
s : Finset (ι × ℝ)
a✝ : ¬a ∈ s
ihs : ∑ J in (splitMany I s).boxes, f J = f I
⊢ ∑ J in (splitMany I s).boxes, ∑ J' in (split J a.fst a.snd).boxes, f J' = ∑ J in (splitMany I s).boxes, f J
[PROOFSTEP]
refine' Finset.sum_congr rfl fun J' hJ' => _
[GOAL]
case hf.insert
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
I : Box ι
hI : ↑I ≤ I₀
a : ι × ℝ
s : Finset (ι × ℝ)
a✝ : ¬a ∈ s
ihs : ∑ J in (splitMany I s).boxes, f J = f I
J' : Box ι
hJ' : J' ∈ (splitMany I s).boxes
⊢ ∑ J' in (split J' a.fst a.snd).boxes, f J' = f J'
[PROOFSTEP]
by_cases h : a.2 ∈ Ioo (J'.lower a.1) (J'.upper a.1)
[GOAL]
case pos
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
I : Box ι
hI : ↑I ≤ I₀
a : ι × ℝ
s : Finset (ι × ℝ)
a✝ : ¬a ∈ s
ihs : ∑ J in (splitMany I s).boxes, f J = f I
J' : Box ι
hJ' : J' ∈ (splitMany I s).boxes
h : a.snd ∈ Set.Ioo (lower J' a.fst) (upper J' a.fst)
⊢ ∑ J' in (split J' a.fst a.snd).boxes, f J' = f J'
[PROOFSTEP]
rw [sum_split_boxes]
[GOAL]
case pos
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
I : Box ι
hI : ↑I ≤ I₀
a : ι × ℝ
s : Finset (ι × ℝ)
a✝ : ¬a ∈ s
ihs : ∑ J in (splitMany I s).boxes, f J = f I
J' : Box ι
hJ' : J' ∈ (splitMany I s).boxes
h : a.snd ∈ Set.Ioo (lower J' a.fst) (upper J' a.fst)
⊢ Option.elim' 0 (fun J' => f J') (splitLower J' a.fst a.snd) +
Option.elim' 0 (fun J' => f J') (splitUpper J' a.fst a.snd) =
f J'
[PROOFSTEP]
exact hf _ ((WithTop.coe_le_coe.2 <| le_of_mem _ hJ').trans hI) h
[GOAL]
case neg
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf :
∀ (I : Box ι),
↑I ≤ I₀ →
∀ {i : ι} {x : ℝ},
x ∈ Set.Ioo (lower I i) (upper I i) →
Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I
I : Box ι
hI : ↑I ≤ I₀
a : ι × ℝ
s : Finset (ι × ℝ)
a✝ : ¬a ∈ s
ihs : ∑ J in (splitMany I s).boxes, f J = f I
J' : Box ι
hJ' : J' ∈ (splitMany I s).boxes
h : ¬a.snd ∈ Set.Ioo (lower J' a.fst) (upper J' a.fst)
⊢ ∑ J' in (split J' a.fst a.snd).boxes, f J' = f J'
[PROOFSTEP]
rw [split_of_not_mem_Ioo h, top_boxes, Finset.sum_singleton]
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I
⊢ ∀ (J : Box ι), ↑J ≤ I₀ → ∀ (π : Prepartition J), IsPartition π → ∑ Ji in π.boxes, f Ji = f J
[PROOFSTEP]
intro I hI π hπ
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I
I : Box ι
hI : ↑I ≤ I₀
π : Prepartition I
hπ : IsPartition π
⊢ ∑ Ji in π.boxes, f Ji = f I
[PROOFSTEP]
have Hle : ∀ J ∈ π, ↑J ≤ I₀ := fun J hJ => (WithTop.coe_le_coe.2 <| π.le_of_mem hJ).trans hI
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I
I : Box ι
hI : ↑I ≤ I₀
π : Prepartition I
hπ : IsPartition π
Hle : ∀ (J : Box ι), J ∈ π → ↑J ≤ I₀
⊢ ∑ Ji in π.boxes, f Ji = f I
[PROOFSTEP]
rcases hπ.exists_splitMany_le with ⟨s, hs⟩
[GOAL]
case intro
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I
I : Box ι
hI : ↑I ≤ I₀
π : Prepartition I
hπ : IsPartition π
Hle : ∀ (J : Box ι), J ∈ π → ↑J ≤ I₀
s : Finset (ι × ℝ)
hs : splitMany I s ≤ π
⊢ ∑ Ji in π.boxes, f Ji = f I
[PROOFSTEP]
rw [← hf _ hI, ← inf_of_le_right hs, inf_splitMany, biUnion_boxes, sum_biUnion_boxes]
[GOAL]
case intro
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I✝ J : Box ι
i : ι
inst✝ : Fintype ι
f : Box ι → M
I₀ : WithTop (Box ι)
hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I
I : Box ι
hI : ↑I ≤ I₀
π : Prepartition I
hπ : IsPartition π
Hle : ∀ (J : Box ι), J ∈ π → ↑J ≤ I₀
s : Finset (ι × ℝ)
hs : splitMany I s ≤ π
⊢ ∑ Ji in π.boxes, f Ji = ∑ J in π.boxes, ∑ J' in (splitMany J s).boxes, f J'
[PROOFSTEP]
exact Finset.sum_congr rfl fun J hJ => (hf _ (Hle _ hJ) _).symm
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝¹ : AddCommMonoid M
inst✝ : AddCommMonoid N
I₀ : WithTop (Box ι)
I✝ J : Box ι
i : ι
f : ι →ᵇᵃ[I₀] M
g : M →+ N
I : Box ι
hI : ↑I ≤ I₀
π : Prepartition I
hπ : IsPartition π
⊢ ∑ Ji in π.boxes, (↑g ∘ ↑f) Ji = (↑g ∘ ↑f) I
[PROOFSTEP]
simp_rw [comp, ← g.map_sum, f.sum_partition_boxes hI hπ]
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Finite ι
f : ι →ᵇᵃ[I₀] M
hI : ↑I ≤ I₀
π₁ π₂ : Prepartition I
h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J
[PROOFSTEP]
rcases exists_splitMany_inf_eq_filter_of_finite { π₁, π₂ } ((finite_singleton _).insert _) with ⟨s, hs⟩
[GOAL]
case intro
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Finite ι
f : ι →ᵇᵃ[I₀] M
hI : ↑I ≤ I₀
π₁ π₂ : Prepartition I
h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
s : Finset (ι × ℝ)
hs :
∀ (π : Prepartition I),
π ∈ {π₁, π₂} → π ⊓ splitMany I s = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π
⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J
[PROOFSTEP]
simp only [inf_splitMany] at hs
[GOAL]
case intro
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Finite ι
f : ι →ᵇᵃ[I₀] M
hI : ↑I ≤ I₀
π₁ π₂ : Prepartition I
h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
s : Finset (ι × ℝ)
hs :
∀ (π : Prepartition I),
π ∈ {π₁, π₂} →
(biUnion π fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π
⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J
[PROOFSTEP]
rcases hs _ (Or.inl rfl), hs _ (Or.inr rfl) with ⟨h₁, h₂⟩
[GOAL]
case intro
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Finite ι
f : ι →ᵇᵃ[I₀] M
hI : ↑I ≤ I₀
π₁ π₂ : Prepartition I
h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
s : Finset (ι × ℝ)
hs :
∀ (π : Prepartition I),
π ∈ {π₁, π₂} →
(biUnion π fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π
h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₁
h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂
⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J
[PROOFSTEP]
clear hs
[GOAL]
case intro
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Finite ι
f : ι →ᵇᵃ[I₀] M
hI : ↑I ≤ I₀
π₁ π₂ : Prepartition I
h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
s : Finset (ι × ℝ)
h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₁
h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂
⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J
[PROOFSTEP]
rw [h] at h₁
[GOAL]
case intro
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Finite ι
f : ι →ᵇᵃ[I₀] M
hI : ↑I ≤ I₀
π₁ π₂ : Prepartition I
h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
s : Finset (ι × ℝ)
h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂
h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂
⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J
[PROOFSTEP]
calc
∑ J in π₁.boxes, f J = ∑ J in π₁.boxes, ∑ J' in (splitMany J s).boxes, f J' :=
Finset.sum_congr rfl fun J hJ => (f.sum_partition_boxes ?_ (isPartition_splitMany _ _)).symm
_ = ∑ J in (π₁.biUnion fun J => splitMany J s).boxes, f J := (sum_biUnion_boxes _ _ _).symm
_ = ∑ J in (π₂.biUnion fun J => splitMany J s).boxes, f J := by rw [h₁, h₂]
_ = ∑ J in π₂.boxes, ∑ J' in (splitMany J s).boxes, f J' := (sum_biUnion_boxes _ _ _)
_ = ∑ J in π₂.boxes, f J := Finset.sum_congr rfl fun J hJ => f.sum_partition_boxes ?_ (isPartition_splitMany _ _)
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J : Box ι
i : ι
inst✝ : Finite ι
f : ι →ᵇᵃ[I₀] M
hI : ↑I ≤ I₀
π₁ π₂ : Prepartition I
h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
s : Finset (ι × ℝ)
h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂
h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂
⊢ ∑ J in (biUnion π₁ fun J => splitMany J s).boxes, ↑f J = ∑ J in (biUnion π₂ fun J => splitMany J s).boxes, ↑f J
[PROOFSTEP]
rw [h₁, h₂]
[GOAL]
case intro.calc_1
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J✝ : Box ι
i : ι
inst✝ : Finite ι
f : ι →ᵇᵃ[I₀] M
hI : ↑I ≤ I₀
π₁ π₂ : Prepartition I
h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
s : Finset (ι × ℝ)
h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂
h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂
J : Box ι
hJ : J ∈ π₁.boxes
⊢ ↑J ≤ I₀
case intro.calc_2
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀ : WithTop (Box ι)
I J✝ : Box ι
i : ι
inst✝ : Finite ι
f : ι →ᵇᵃ[I₀] M
hI : ↑I ≤ I₀
π₁ π₂ : Prepartition I
h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
s : Finset (ι × ℝ)
h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂
h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂
J : Box ι
hJ : J ∈ π₂.boxes
⊢ ↑J ≤ I₀
[PROOFSTEP]
exacts [(WithTop.coe_le_coe.2 <| π₁.le_of_mem hJ).trans hI, (WithTop.coe_le_coe.2 <| π₂.le_of_mem hJ).trans hI]
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
⊢ ∀ (I : Box (Fin (n + 1))),
↑I ≤ ↑I₀ →
∀ {i_1 : Fin (n + 1)} {x : ℝ},
x ∈ Set.Ioo (lower I i_1) (upper I i_1) →
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower I i_1 x) +
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper I i_1 x) =
(fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) I
[PROOFSTEP]
intro J hJ j x
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : ↑J ≤ ↑I₀
j : Fin (n + 1)
x : ℝ
⊢ x ∈ Set.Ioo (lower J j) (upper J j) →
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J j x) +
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J j x) =
(fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J
[PROOFSTEP]
rw [WithTop.coe_le_coe] at hJ
[GOAL]
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : J ≤ I₀
j : Fin (n + 1)
x : ℝ
⊢ x ∈ Set.Ioo (lower J j) (upper J j) →
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J j x) +
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J j x) =
(fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J
[PROOFSTEP]
refine' i.succAboveCases (fun hx => _) (fun j hx => _) j
[GOAL]
case refine'_1
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : J ≤ I₀
j : Fin (n + 1)
x : ℝ
hx : x ∈ Set.Ioo (lower J i) (upper J i)
⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J i x) +
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J i x) =
(fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J
[PROOFSTEP]
simp only [Box.splitLower_def hx, Box.splitUpper_def hx, update_same, ← WithBot.some_eq_coe, Option.elim', Box.face,
(· ∘ ·), update_noteq (Fin.succAbove_ne _ _)]
[GOAL]
case refine'_1
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : J ≤ I₀
j : Fin (n + 1)
x : ℝ
hx : x ∈ Set.Ioo (lower J i) (upper J i)
⊢ f x
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x_1 =>
lower
{ lower := J.lower, upper := update J.upper i x,
lower_lt_upper := (_ : ∀ (x_2 : Fin (n + 1)), lower J x_2 < update J.upper i x x_2) }
(Fin.succAbove i x_1))
i_1 <
(fun x => upper J (Fin.succAbove i x)) i_1) } -
f (lower J i)
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x_1 =>
lower
{ lower := J.lower, upper := update J.upper i x,
lower_lt_upper := (_ : ∀ (x_2 : Fin (n + 1)), lower J x_2 < update J.upper i x x_2) }
(Fin.succAbove i x_1))
i_1 <
(fun x => upper J (Fin.succAbove i x)) i_1) } +
(f (upper J i)
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } -
f x
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) }) =
f (upper J i)
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } -
f (lower J i)
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) }
[PROOFSTEP]
abel
[GOAL]
case refine'_1
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : J ≤ I₀
j : Fin (n + 1)
x : ℝ
hx : x ∈ Set.Ioo (lower J i) (upper J i)
⊢ f x
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x_1 =>
lower
{ lower := J.lower, upper := update J.upper i x,
lower_lt_upper := (_ : ∀ (x_2 : Fin (n + 1)), lower J x_2 < update J.upper i x x_2) }
(Fin.succAbove i x_1))
i_1 <
(fun x => upper J (Fin.succAbove i x)) i_1) } -
f (lower J i)
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x_1 =>
lower
{ lower := J.lower, upper := update J.upper i x,
lower_lt_upper := (_ : ∀ (x_2 : Fin (n + 1)), lower J x_2 < update J.upper i x x_2) }
(Fin.succAbove i x_1))
i_1 <
(fun x => upper J (Fin.succAbove i x)) i_1) } +
(f (upper J i)
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } -
f x
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) }) =
f (upper J i)
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } -
f (lower J i)
{ lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x),
lower_lt_upper :=
(_ :
∀ (i_1 : Fin n),
(fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) }
[PROOFSTEP]
abel
[GOAL]
case refine'_2
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : J ≤ I₀
j✝ : Fin (n + 1)
x : ℝ
j : Fin n
hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j))
⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) +
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i))
(splitUpper J (Fin.succAbove i j) x) =
(fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J
[PROOFSTEP]
have : (J.face i : WithTop (Box (Fin n))) ≤ I₀.face i := WithTop.coe_le_coe.2 (face_mono hJ i)
[GOAL]
case refine'_2
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : J ≤ I₀
j✝ : Fin (n + 1)
x : ℝ
j : Fin n
hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j))
this : ↑(face J i) ≤ ↑(face I₀ i)
⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) +
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i))
(splitUpper J (Fin.succAbove i j) x) =
(fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J
[PROOFSTEP]
rw [le_iff_Icc, @Box.Icc_eq_pi _ I₀] at hJ
[GOAL]
case refine'_2
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : ↑Box.Icc J ⊆ Set.pi Set.univ fun i => Set.Icc (lower I₀ i) (upper I₀ i)
j✝ : Fin (n + 1)
x : ℝ
j : Fin n
hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j))
this : ↑(face J i) ≤ ↑(face I₀ i)
⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) +
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i))
(splitUpper J (Fin.succAbove i j) x) =
(fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J
[PROOFSTEP]
simp only
[GOAL]
case refine'_2
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : ↑Box.Icc J ⊆ Set.pi Set.univ fun i => Set.Icc (lower I₀ i) (upper I₀ i)
j✝ : Fin (n + 1)
x : ℝ
j : Fin n
hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j))
this : ↑(face J i) ≤ ↑(face I₀ i)
⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) +
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i))
(splitUpper J (Fin.succAbove i j) x) =
f (upper J i) (face J i) - f (lower J i) (face J i)
[PROOFSTEP]
rw [hf _ (hJ J.upper_mem_Icc _ trivial), hf _ (hJ J.lower_mem_Icc _ trivial), ← (fb _).map_split_add this j x, ←
(fb _).map_split_add this j x]
[GOAL]
case refine'_2
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : ↑Box.Icc J ⊆ Set.pi Set.univ fun i => Set.Icc (lower I₀ i) (upper I₀ i)
j✝ : Fin (n + 1)
x : ℝ
j : Fin n
hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j))
this : ↑(face J i) ≤ ↑(face I₀ i)
⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) +
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i))
(splitUpper J (Fin.succAbove i j) x) =
Option.elim' 0
(↑(fb { val := upper J i, property := (_ : upper J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) }))
(splitLower (face J i) j x) +
Option.elim' 0
(↑(fb { val := upper J i, property := (_ : upper J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) }))
(splitUpper (face J i) j x) -
(Option.elim' 0
(↑(fb { val := lower J i, property := (_ : lower J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) }))
(splitLower (face J i) j x) +
Option.elim' 0
(↑(fb { val := lower J i, property := (_ : lower J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) }))
(splitUpper (face J i) j x))
[PROOFSTEP]
have hx' : x ∈ Ioo ((J.face i).lower j) ((J.face i).upper j) := hx
[GOAL]
case refine'_2
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : ↑Box.Icc J ⊆ Set.pi Set.univ fun i => Set.Icc (lower I₀ i) (upper I₀ i)
j✝ : Fin (n + 1)
x : ℝ
j : Fin n
hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j))
this : ↑(face J i) ≤ ↑(face I₀ i)
hx' : x ∈ Set.Ioo (lower (face J i) j) (upper (face J i) j)
⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) +
Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i))
(splitUpper J (Fin.succAbove i j) x) =
Option.elim' 0
(↑(fb { val := upper J i, property := (_ : upper J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) }))
(splitLower (face J i) j x) +
Option.elim' 0
(↑(fb { val := upper J i, property := (_ : upper J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) }))
(splitUpper (face J i) j x) -
(Option.elim' 0
(↑(fb { val := lower J i, property := (_ : lower J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) }))
(splitLower (face J i) j x) +
Option.elim' 0
(↑(fb { val := lower J i, property := (_ : lower J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) }))
(splitUpper (face J i) j x))
[PROOFSTEP]
simp only [Box.splitLower_def hx, Box.splitUpper_def hx, Box.splitLower_def hx', Box.splitUpper_def hx', ←
WithBot.some_eq_coe, Option.elim', Box.face_mk, update_noteq (Fin.succAbove_ne _ _).symm, sub_add_sub_comm,
update_comp_eq_of_injective _ (Fin.strictMono_succAbove i).injective j x, ← hf]
[GOAL]
case refine'_2
ι : Type u_1
M : Type u_2
n : ℕ
N : Type u_3
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
I₀✝ : WithTop (Box ι)
I J✝ : Box ι
i✝ : ι
G : Type u
inst✝ : AddCommGroup G
I₀ : Box (Fin (n + 1))
i : Fin (n + 1)
f : ℝ → Box (Fin n) → G
fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G
hf :
∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J
J : Box (Fin (n + 1))
hJ : ↑Box.Icc J ⊆ Set.pi Set.univ fun i => Set.Icc (lower I₀ i) (upper I₀ i)
j✝ : Fin (n + 1)
x : ℝ
j : Fin n
hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j))
this : ↑(face J i) ≤ ↑(face I₀ i)
hx' : x ∈ Set.Ioo (lower (face J i) j) (upper (face J i) j)
⊢ f (upper J i)
{ lower := J.lower ∘ Fin.succAbove i, upper := update (J.upper ∘ Fin.succAbove i) j x,
lower_lt_upper :=
(_ : ∀ (i_1 : Fin n), (J.lower ∘ Fin.succAbove i) i_1 < update (J.upper ∘ Fin.succAbove i) j x i_1) } +
f (upper J i)
{ lower := update (J.lower ∘ Fin.succAbove i) j x, upper := J.upper ∘ Fin.succAbove i,
lower_lt_upper :=
(_ : ∀ (i_1 : Fin n), update (J.lower ∘ Fin.succAbove i) j x i_1 < (J.upper ∘ Fin.succAbove i) i_1) } -
(f (lower J i)
{ lower := J.lower ∘ Fin.succAbove i, upper := update (J.upper ∘ Fin.succAbove i) j x,
lower_lt_upper :=
(_ : ∀ (i_1 : Fin n), (J.lower ∘ Fin.succAbove i) i_1 < update (J.upper ∘ Fin.succAbove i) j x i_1) } +
f (lower J i)
{ lower := update (J.lower ∘ Fin.succAbove i) j x, upper := J.upper ∘ Fin.succAbove i,
lower_lt_upper :=
(_ : ∀ (i_1 : Fin n), update (J.lower ∘ Fin.succAbove i) j x i_1 < (J.upper ∘ Fin.succAbove i) i_1) }) =
f (upper J i)
{ lower := (face J i).lower, upper := update (face J i).upper j x,
lower_lt_upper := (_ : ∀ (x_1 : Fin n), lower (face J i) x_1 < update (face J i).upper j x x_1) } +
f (upper J i)
{ lower := update (face J i).lower j x, upper := (face J i).upper,
lower_lt_upper := (_ : ∀ (x_1 : Fin n), update (face J i).lower j x x_1 < upper (face J i) x_1) } -
(f (lower J i)
{ lower := (face J i).lower, upper := update (face J i).upper j x,
lower_lt_upper := (_ : ∀ (x_1 : Fin n), lower (face J i) x_1 < update (face J i).upper j x x_1) } +
f (lower J i)
{ lower := update (face J i).lower j x, upper := (face J i).upper,
lower_lt_upper := (_ : ∀ (x_1 : Fin n), update (face J i).lower j x x_1 < upper (face J i) x_1) })
[PROOFSTEP]
simp only [Box.face]
| {"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Partition.Additive", "llama_tokens": 18940} |
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
i : ℕ
⊢ approx (↑f) i ≤ approx (↑f) (Nat.succ i)
[PROOFSTEP]
induction i with
| zero => dsimp [approx]; apply @bot_le _ _ _ (f ⊥)
| succ _ i_ih => intro; apply f.monotone; apply i_ih
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
i : ℕ
⊢ approx (↑f) i ≤ approx (↑f) (Nat.succ i)
[PROOFSTEP]
induction i with
| zero => dsimp [approx]; apply @bot_le _ _ _ (f ⊥)
| succ _ i_ih => intro; apply f.monotone; apply i_ih
[GOAL]
case zero
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
⊢ approx (↑f) Nat.zero ≤ approx (↑f) (Nat.succ Nat.zero)
[PROOFSTEP]
| zero => dsimp [approx]; apply @bot_le _ _ _ (f ⊥)
[GOAL]
case zero
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
⊢ approx (↑f) Nat.zero ≤ approx (↑f) (Nat.succ Nat.zero)
[PROOFSTEP]
dsimp [approx]
[GOAL]
case zero
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
⊢ ⊥ ≤ ↑f ⊥
[PROOFSTEP]
apply @bot_le _ _ _ (f ⊥)
[GOAL]
case succ
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
n✝ : ℕ
i_ih : approx (↑f) n✝ ≤ approx (↑f) (Nat.succ n✝)
⊢ approx (↑f) (Nat.succ n✝) ≤ approx (↑f) (Nat.succ (Nat.succ n✝))
[PROOFSTEP]
| succ _ i_ih => intro; apply f.monotone; apply i_ih
[GOAL]
case succ
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
n✝ : ℕ
i_ih : approx (↑f) n✝ ≤ approx (↑f) (Nat.succ n✝)
⊢ approx (↑f) (Nat.succ n✝) ≤ approx (↑f) (Nat.succ (Nat.succ n✝))
[PROOFSTEP]
intro
[GOAL]
case succ
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
n✝ : ℕ
i_ih : approx (↑f) n✝ ≤ approx (↑f) (Nat.succ n✝)
i✝ : α
⊢ approx (↑f) (Nat.succ n✝) i✝ ≤ approx (↑f) (Nat.succ (Nat.succ n✝)) i✝
[PROOFSTEP]
apply f.monotone
[GOAL]
case succ.a
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
n✝ : ℕ
i_ih : approx (↑f) n✝ ≤ approx (↑f) (Nat.succ n✝)
i✝ : α
⊢ approx (↑f) n✝ ≤ approx (↑f) (Nat.succ n✝)
[PROOFSTEP]
apply i_ih
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
i j : ℕ
hij : i ≤ j
⊢ approx (↑f) i ≤ approx (↑f) j
[PROOFSTEP]
induction' j with j ih
[GOAL]
case zero
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
i j : ℕ
hij✝ : i ≤ j
hij : i ≤ Nat.zero
⊢ approx (↑f) i ≤ approx (↑f) Nat.zero
[PROOFSTEP]
cases hij
[GOAL]
case zero.refl
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
j : ℕ
hij : Nat.zero ≤ j
⊢ approx (↑f) Nat.zero ≤ approx (↑f) Nat.zero
[PROOFSTEP]
exact le_rfl
[GOAL]
case succ
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
i j✝ : ℕ
hij✝ : i ≤ j✝
j : ℕ
ih : i ≤ j → approx (↑f) i ≤ approx (↑f) j
hij : i ≤ Nat.succ j
⊢ approx (↑f) i ≤ approx (↑f) (Nat.succ j)
[PROOFSTEP]
cases hij
[GOAL]
case succ.refl
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
j✝ j : ℕ
hij : Nat.succ j ≤ j✝
ih : Nat.succ j ≤ j → approx (↑f) (Nat.succ j) ≤ approx (↑f) j
⊢ approx (↑f) (Nat.succ j) ≤ approx (↑f) (Nat.succ j)
[PROOFSTEP]
exact le_rfl
[GOAL]
case succ.step
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
i j✝ : ℕ
hij : i ≤ j✝
j : ℕ
ih : i ≤ j → approx (↑f) i ≤ approx (↑f) j
a✝ : Nat.le i j
⊢ approx (↑f) i ≤ approx (↑f) (Nat.succ j)
[PROOFSTEP]
exact le_trans (ih ‹_›) (approx_mono' f)
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
⊢ b ∈ Part.fix (↑f) a ↔ ∃ i, b ∈ approx (↑f) i a
[PROOFSTEP]
by_cases h₀ : ∃ i : ℕ, (approx f i a).Dom
[GOAL]
case pos
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
⊢ b ∈ Part.fix (↑f) a ↔ ∃ i, b ∈ approx (↑f) i a
[PROOFSTEP]
simp only [Part.fix_def f h₀]
[GOAL]
case pos
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a ↔ ∃ i, b ∈ approx (↑f) i a
[PROOFSTEP]
constructor
[GOAL]
case pos.mp
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a → ∃ i, b ∈ approx (↑f) i a
[PROOFSTEP]
intro hh
[GOAL]
case pos.mpr
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
⊢ (∃ i, b ∈ approx (↑f) i a) → b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
[PROOFSTEP]
intro hh
[GOAL]
case pos.mp
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
hh : b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
⊢ ∃ i, b ∈ approx (↑f) i a
[PROOFSTEP]
exact ⟨_, hh⟩
[GOAL]
case pos.mpr
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
hh : ∃ i, b ∈ approx (↑f) i a
⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
[PROOFSTEP]
have h₁ := Nat.find_spec h₀
[GOAL]
case pos.mpr
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
hh : ∃ i, b ∈ approx (↑f) i a
h₁ : (approx (↑f) (Nat.find h₀) a).Dom
⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
[PROOFSTEP]
rw [dom_iff_mem] at h₁
[GOAL]
case pos.mpr
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
hh : ∃ i, b ∈ approx (↑f) i a
h₁ : ∃ y, y ∈ approx (↑f) (Nat.find h₀) a
⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
[PROOFSTEP]
cases' h₁ with y h₁
[GOAL]
case pos.mpr.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
hh : ∃ i, b ∈ approx (↑f) i a
y : β a
h₁ : y ∈ approx (↑f) (Nat.find h₀) a
⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
[PROOFSTEP]
replace h₁ := approx_mono' f _ _ h₁
[GOAL]
case pos.mpr.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
hh : ∃ i, b ∈ approx (↑f) i a
y : β a
h₁ : y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
[PROOFSTEP]
suffices : y = b
[GOAL]
case pos.mpr.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
hh : ∃ i, b ∈ approx (↑f) i a
y : β a
h₁ : y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
this : y = b
⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
[PROOFSTEP]
subst this
[GOAL]
case pos.mpr.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
h₁ : y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
hh : ∃ i, y ∈ approx (↑f) i a
⊢ y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
[PROOFSTEP]
exact h₁
[GOAL]
case this
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
hh : ∃ i, b ∈ approx (↑f) i a
y : β a
h₁ : y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
⊢ y = b
[PROOFSTEP]
cases' hh with i hh
[GOAL]
case this.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
h₁ : y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a
i : ℕ
hh : b ∈ approx (↑f) i a
⊢ y = b
[PROOFSTEP]
revert h₁
[GOAL]
case this.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
⊢ y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a → y = b
[PROOFSTEP]
generalize succ (Nat.find h₀) = j
[GOAL]
case this.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
⊢ y ∈ approx (↑f) j a → y = b
[PROOFSTEP]
intro h₁
[GOAL]
case this.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
⊢ y = b
[PROOFSTEP]
wlog case : i ≤ j
[GOAL]
case this.intro.inr
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
⊢ y = b
[PROOFSTEP]
cases' le_total i j with H H <;> [skip; symm]
[GOAL]
case this.intro.inr
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
⊢ y = b
[PROOFSTEP]
cases' le_total i j with H H
[GOAL]
case this.intro.inr.inl
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : i ≤ j
⊢ y = b
[PROOFSTEP]
skip
[GOAL]
case this.intro.inr.inr
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : j ≤ i
⊢ y = b
[PROOFSTEP]
symm
[GOAL]
case this.intro.inr.inl
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : i ≤ j
⊢ y = b
[PROOFSTEP]
apply_assumption
[GOAL]
case this.intro.inr.inr
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : j ≤ i
⊢ b = y
[PROOFSTEP]
apply_assumption
[GOAL]
case this.intro.inr.inl.h₀
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : i ≤ j
⊢ ∃ i, (approx (↑?this.intro.inr.inl.f) i a).Dom
[PROOFSTEP]
assumption
[GOAL]
case this.intro.inr.inl.hh
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : i ≤ j
⊢ b ∈ approx ↑f ?this.intro.inr.inl.i a
[PROOFSTEP]
assumption
[GOAL]
case this.intro.inr.inl.h₁
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : i ≤ j
⊢ y ∈ approx ↑f ?this.intro.inr.inl.j a
[PROOFSTEP]
assumption
[GOAL]
case this.intro.inr.inl.case
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : i ≤ j
⊢ i ≤ j
[PROOFSTEP]
assumption
[GOAL]
case this.intro.inr.inr.h₀
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : j ≤ i
⊢ ∃ i, (approx (↑?this.intro.inr.inr.f) i a).Dom
[PROOFSTEP]
assumption
[GOAL]
case this.intro.inr.inr.hh
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : j ≤ i
⊢ y ∈ approx ↑f ?this.intro.inr.inr.i a
[PROOFSTEP]
assumption
[GOAL]
case this.intro.inr.inr.h₁
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : j ≤ i
⊢ b ∈ approx ↑f ?this.intro.inr.inr.j a
[PROOFSTEP]
assumption
[GOAL]
case this.intro.inr.inr.case
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
this :
∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a),
(∃ i, (approx (↑f) i a).Dom) →
∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b
case : ¬i ≤ j
H : j ≤ i
⊢ j ≤ i
[PROOFSTEP]
assumption
[GOAL]
α✝ : Type u_1
β✝ : α✝ → Type u_2
f✝ : ((a : α✝) → Part (β✝ a)) →o (a : α✝) → Part (β✝ a)
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i : ℕ
hh : b ∈ approx (↑f) i a
j : ℕ
h₁ : y ∈ approx (↑f) j a
case : i ≤ j
⊢ y = b
[PROOFSTEP]
replace hh := approx_mono f case _ _ hh
[GOAL]
α✝ : Type u_1
β✝ : α✝ → Type u_2
f✝ : ((a : α✝) → Part (β✝ a)) →o (a : α✝) → Part (β✝ a)
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∃ i, (approx (↑f) i a).Dom
y : β a
i j : ℕ
h₁ : y ∈ approx (↑f) j a
case : i ≤ j
hh : b ∈ approx (↑f) j a
⊢ y = b
[PROOFSTEP]
apply Part.mem_unique h₁ hh
[GOAL]
case neg
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ¬∃ i, (approx (↑f) i a).Dom
⊢ b ∈ Part.fix (↑f) a ↔ ∃ i, b ∈ approx (↑f) i a
[PROOFSTEP]
simp only [fix_def' (⇑f) h₀, not_exists, false_iff_iff, not_mem_none]
[GOAL]
case neg
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ¬∃ i, (approx (↑f) i a).Dom
⊢ ∀ (x : ℕ), ¬b ∈ approx (↑f) x a
[PROOFSTEP]
simp only [dom_iff_mem, not_exists] at h₀
[GOAL]
case neg
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∀ (x : ℕ) (x_1 : β a), ¬x_1 ∈ approx (↑f) x a
⊢ ∀ (x : ℕ), ¬b ∈ approx (↑f) x a
[PROOFSTEP]
intro
[GOAL]
case neg
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
a : α
b : β a
h₀ : ∀ (x : ℕ) (x_1 : β a), ¬x_1 ∈ approx (↑f) x a
x✝ : ℕ
⊢ ¬b ∈ approx (↑f) x✝ a
[PROOFSTEP]
apply h₀
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
i : ℕ
a : α
b : β a
hh : b ∈ approx (↑f) i a
⊢ b ∈ Part.fix (↑f) a
[PROOFSTEP]
rw [mem_iff f]
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
i : ℕ
a : α
b : β a
hh : b ∈ approx (↑f) i a
⊢ ∃ i, b ∈ approx (↑f) i a
[PROOFSTEP]
exact ⟨_, hh⟩
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
⊢ ∃ i, Part.fix (↑f) x ≤ approx (↑f) i x
[PROOFSTEP]
by_cases hh : ∃ i b, b ∈ approx f i x
[GOAL]
case pos
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
hh : ∃ i b, b ∈ approx (↑f) i x
⊢ ∃ i, Part.fix (↑f) x ≤ approx (↑f) i x
[PROOFSTEP]
rcases hh with ⟨i, b, hb⟩
[GOAL]
case pos.intro.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
i : ℕ
b : β x
hb : b ∈ approx (↑f) i x
⊢ ∃ i, Part.fix (↑f) x ≤ approx (↑f) i x
[PROOFSTEP]
exists i
[GOAL]
case pos.intro.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
i : ℕ
b : β x
hb : b ∈ approx (↑f) i x
⊢ Part.fix (↑f) x ≤ approx (↑f) i x
[PROOFSTEP]
intro b' h'
[GOAL]
case pos.intro.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
i : ℕ
b : β x
hb : b ∈ approx (↑f) i x
b' : β x
h' : b' ∈ Part.fix (↑f) x
⊢ b' ∈ approx (↑f) i x
[PROOFSTEP]
have hb' := approx_le_fix f i _ _ hb
[GOAL]
case pos.intro.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
i : ℕ
b : β x
hb : b ∈ approx (↑f) i x
b' : β x
h' : b' ∈ Part.fix (↑f) x
hb' : b ∈ Part.fix (↑f) x
⊢ b' ∈ approx (↑f) i x
[PROOFSTEP]
obtain rfl := Part.mem_unique h' hb'
[GOAL]
case pos.intro.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
i : ℕ
b' : β x
h' : b' ∈ Part.fix (↑f) x
hb : b' ∈ approx (↑f) i x
hb' : b' ∈ Part.fix (↑f) x
⊢ b' ∈ approx (↑f) i x
[PROOFSTEP]
exact hb
[GOAL]
case neg
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
hh : ¬∃ i b, b ∈ approx (↑f) i x
⊢ ∃ i, Part.fix (↑f) x ≤ approx (↑f) i x
[PROOFSTEP]
simp only [not_exists] at hh
[GOAL]
case neg
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
hh : ∀ (x_1 : ℕ) (x_2 : β x), ¬x_2 ∈ approx (↑f) x_1 x
⊢ ∃ i, Part.fix (↑f) x ≤ approx (↑f) i x
[PROOFSTEP]
exists 0
[GOAL]
case neg
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
hh : ∀ (x_1 : ℕ) (x_2 : β x), ¬x_2 ∈ approx (↑f) x_1 x
⊢ Part.fix (↑f) x ≤ approx (↑f) 0 x
[PROOFSTEP]
intro b' h'
[GOAL]
case neg
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
hh : ∀ (x_1 : ℕ) (x_2 : β x), ¬x_2 ∈ approx (↑f) x_1 x
b' : β x
h' : b' ∈ Part.fix (↑f) x
⊢ b' ∈ approx (↑f) 0 x
[PROOFSTEP]
simp only [mem_iff f] at h'
[GOAL]
case neg
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
hh : ∀ (x_1 : ℕ) (x_2 : β x), ¬x_2 ∈ approx (↑f) x_1 x
b' : β x
h' : ∃ i, b' ∈ approx (↑f) i x
⊢ b' ∈ approx (↑f) 0 x
[PROOFSTEP]
cases' h' with i h'
[GOAL]
case neg.intro
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : α
hh : ∀ (x_1 : ℕ) (x_2 : β x), ¬x_2 ∈ approx (↑f) x_1 x
b' : β x
i : ℕ
h' : b' ∈ approx (↑f) i x
⊢ b' ∈ approx (↑f) 0 x
[PROOFSTEP]
cases hh _ _ h'
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : (a : α) → Part (β a)
⊢ x ∈ approxChain f → x ≤ ↑f x
[PROOFSTEP]
simp only [(· ∈ ·), forall_exists_index]
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
x : (a : α) → Part (β a)
⊢ ∀ (x_1 : ℕ), x = ↑(approxChain f) x_1 → x ≤ ↑f x
[PROOFSTEP]
rintro i rfl
[GOAL]
α : Type u_1
β : α → Type u_2
f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)
i : ℕ
⊢ ↑(approxChain f) i ≤ ↑f (↑(approxChain f) i)
[PROOFSTEP]
apply approx_mono'
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
⊢ Part.fix ↑f = ωSup (approxChain f)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
⊢ Part.fix ↑f ≤ ωSup (approxChain f)
[PROOFSTEP]
intro x
[GOAL]
case a
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
x : α✝
⊢ Part.fix (↑f) x ≤ ωSup (approxChain f) x
[PROOFSTEP]
cases' exists_fix_le_approx f x with i hx
[GOAL]
case a.intro
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
x : α✝
i : ℕ
hx : Part.fix (↑f) x ≤ approx (↑f) i x
⊢ Part.fix (↑f) x ≤ ωSup (approxChain f) x
[PROOFSTEP]
trans approx f i.succ x
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
x : α✝
i : ℕ
hx : Part.fix (↑f) x ≤ approx (↑f) i x
⊢ Part.fix (↑f) x ≤ approx (↑f) (Nat.succ i) x
[PROOFSTEP]
trans
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
x : α✝
i : ℕ
hx : Part.fix (↑f) x ≤ approx (↑f) i x
⊢ Part.fix (↑f) x ≤ ?m.11190
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
x : α✝
i : ℕ
hx : Part.fix (↑f) x ≤ approx (↑f) i x
⊢ ?m.11190 ≤ approx (↑f) (Nat.succ i) x
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
x : α✝
i : ℕ
hx : Part.fix (↑f) x ≤ approx (↑f) i x
⊢ Part (β x)
[PROOFSTEP]
apply hx
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
x : α✝
i : ℕ
hx : Part.fix (↑f) x ≤ approx (↑f) i x
⊢ approx (↑f) i x ≤ approx (↑f) (Nat.succ i) x
[PROOFSTEP]
apply approx_mono' f
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
x : α✝
i : ℕ
hx : Part.fix (↑f) x ≤ approx (↑f) i x
⊢ approx (↑f) (Nat.succ i) x ≤ ωSup (approxChain f) x
[PROOFSTEP]
apply le_ωSup_of_le i.succ
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
x : α✝
i : ℕ
hx : Part.fix (↑f) x ≤ approx (↑f) i x
⊢ approx (↑f) (Nat.succ i) x ≤ ↑(Chain.map (approxChain f) (Pi.evalOrderHom x)) (Nat.succ i)
[PROOFSTEP]
dsimp [approx]
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
x : α✝
i : ℕ
hx : Part.fix (↑f) x ≤ approx (↑f) i x
⊢ ↑f (approx (↑f) i) x ≤ ↑(approxChain f) (Nat.succ i) x
[PROOFSTEP]
rfl
[GOAL]
case a
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
⊢ ωSup (approxChain f) ≤ Part.fix ↑f
[PROOFSTEP]
apply ωSup_le _ _ _
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
⊢ ∀ (i : ℕ), ↑(approxChain f) i ≤ Part.fix ↑f
[PROOFSTEP]
simp only [Fix.approxChain, OrderHom.coe_mk]
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
⊢ ∀ (i : ℕ),
↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } i ≤ Part.fix ↑f
[PROOFSTEP]
intro y x
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
y : ℕ
x : α✝
⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } y x ≤ Part.fix (↑f) x
[PROOFSTEP]
apply approx_le_fix f
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
⊢ Part.fix ↑f ≤ X
[PROOFSTEP]
rw [fix_eq_ωSup f]
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
⊢ ωSup (approxChain f) ≤ X
[PROOFSTEP]
apply ωSup_le _ _ _
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
⊢ ∀ (i : ℕ), ↑(approxChain f) i ≤ X
[PROOFSTEP]
simp only [Fix.approxChain, OrderHom.coe_mk]
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
⊢ ∀ (i : ℕ), ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } i ≤ X
[PROOFSTEP]
intro i
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
i : ℕ
⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } i ≤ X
[PROOFSTEP]
induction i with
| zero => dsimp [Fix.approx]; apply bot_le
| succ _ i_ih => trans f X; apply f.monotone i_ih; apply hX
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
i : ℕ
⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } i ≤ X
[PROOFSTEP]
induction i with
| zero => dsimp [Fix.approx]; apply bot_le
| succ _ i_ih => trans f X; apply f.monotone i_ih; apply hX
[GOAL]
case zero
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } Nat.zero ≤ X
[PROOFSTEP]
| zero => dsimp [Fix.approx]; apply bot_le
[GOAL]
case zero
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } Nat.zero ≤ X
[PROOFSTEP]
dsimp [Fix.approx]
[GOAL]
case zero
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } 0 ≤ X
[PROOFSTEP]
apply bot_le
[GOAL]
case succ
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
n✝ : ℕ
i_ih : ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } n✝ ≤ X
⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } (Nat.succ n✝) ≤ X
[PROOFSTEP]
| succ _ i_ih => trans f X; apply f.monotone i_ih; apply hX
[GOAL]
case succ
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
n✝ : ℕ
i_ih : ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } n✝ ≤ X
⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } (Nat.succ n✝) ≤ X
[PROOFSTEP]
trans f X
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
n✝ : ℕ
i_ih : ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } n✝ ≤ X
⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } (Nat.succ n✝) ≤ ↑f X
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
n✝ : ℕ
i_ih : ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } n✝ ≤ X
⊢ ↑f X ≤ X
[PROOFSTEP]
apply f.monotone i_ih
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
X : (a : α✝) → Part (β a)
hX : ↑f X ≤ X
n✝ : ℕ
i_ih : ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } n✝ ≤ X
⊢ ↑f X ≤ X
[PROOFSTEP]
apply hX
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
hc : Continuous f
⊢ Part.fix ↑f = ↑f (Part.fix ↑f)
[PROOFSTEP]
rw [fix_eq_ωSup f, hc]
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
hc : Continuous f
⊢ ωSup (approxChain f) = ωSup (Chain.map (approxChain f) f)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
hc : Continuous f
⊢ ωSup (approxChain f) ≤ ωSup (Chain.map (approxChain f) f)
[PROOFSTEP]
apply ωSup_le_ωSup_of_le _
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
hc : Continuous f
⊢ approxChain f ≤ Chain.map (approxChain f) f
[PROOFSTEP]
intro i
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
hc : Continuous f
i : ℕ
⊢ ∃ j, ↑(approxChain f) i ≤ ↑(Chain.map (approxChain f) f) j
[PROOFSTEP]
exists i
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
hc : Continuous f
i : ℕ
⊢ ↑(approxChain f) i ≤ ↑(Chain.map (approxChain f) f) i
[PROOFSTEP]
intro x
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
hc : Continuous f
i : ℕ
x : α✝
⊢ ↑(approxChain f) i x ≤ ↑(Chain.map (approxChain f) f) i x
[PROOFSTEP]
apply le_f_of_mem_approx _ ⟨i, rfl⟩
[GOAL]
case a
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
hc : Continuous f
⊢ ωSup (Chain.map (approxChain f) f) ≤ ωSup (approxChain f)
[PROOFSTEP]
apply ωSup_le_ωSup_of_le _
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
hc : Continuous f
⊢ Chain.map (approxChain f) f ≤ approxChain f
[PROOFSTEP]
intro i
[GOAL]
α✝ : Type u_1
β : α✝ → Type u_2
α : Type u_3
f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a)
hc : Continuous f
i : ℕ
⊢ ∃ j, ↑(Chain.map (approxChain f) f) i ≤ ↑(approxChain f) j
[PROOFSTEP]
exists i.succ
[GOAL]
α : Type u_1
β : α → Type u_2
f : Part α →o Part α
hc : Continuous f
x✝ : Chain (Unit → Part α)
⊢ ↑(toUnitMono f) (ωSup x✝) = ωSup (Chain.map x✝ (toUnitMono f))
[PROOFSTEP]
ext ⟨⟩ : 1
[GOAL]
case h.unit
α : Type u_1
β : α → Type u_2
f : Part α →o Part α
hc : Continuous f
x✝ : Chain (Unit → Part α)
⊢ ↑(toUnitMono f) (ωSup x✝) PUnit.unit = ωSup (Chain.map x✝ (toUnitMono f)) PUnit.unit
[PROOFSTEP]
dsimp [OmegaCompletePartialOrder.ωSup]
[GOAL]
case h.unit
α : Type u_1
β : α → Type u_2
f : Part α →o Part α
hc : Continuous f
x✝ : Chain (Unit → Part α)
⊢ ↑f (Part.ωSup (Chain.map x✝ (Pi.evalOrderHom PUnit.unit))) =
Part.ωSup (Chain.map (Chain.map x✝ (toUnitMono f)) (Pi.evalOrderHom PUnit.unit))
[PROOFSTEP]
erw [hc, Chain.map_comp]
[GOAL]
case h.unit
α : Type u_1
β : α → Type u_2
f : Part α →o Part α
hc : Continuous f
x✝ : Chain (Unit → Part α)
⊢ ωSup (Chain.map x✝ (OrderHom.comp f (Pi.evalOrderHom PUnit.unit))) =
Part.ωSup (Chain.map x✝ (OrderHom.comp f (Pi.evalOrderHom PUnit.unit)))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : α → Type u_2
f : Part α →o Part α
hc : Continuous f
⊢ Part.fix ↑(toUnitMono f) () = ↑f (Fix.fix ↑f)
[PROOFSTEP]
rw [Part.fix_eq (to_unit_cont f hc)]
[GOAL]
α : Type u_1
β : α → Type u_2
f : Part α →o Part α
hc : Continuous f
⊢ ↑(toUnitMono f) (Part.fix ↑(toUnitMono f)) () = ↑f (Fix.fix ↑f)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
c : Chain ((x : (a : α) × β a) → γ x.fst x.snd)
⊢ ↑(monotoneCurry α β γ) (ωSup c) = ωSup (Chain.map c (monotoneCurry α β γ))
[PROOFSTEP]
ext x y
[GOAL]
case h.h
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
c : Chain ((x : (a : α) × β a) → γ x.fst x.snd)
x : α
y : β x
⊢ ↑(monotoneCurry α β γ) (ωSup c) x y = ωSup (Chain.map c (monotoneCurry α β γ)) x y
[PROOFSTEP]
dsimp [curry, ωSup]
[GOAL]
case h.h
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
c : Chain ((x : (a : α) × β a) → γ x.fst x.snd)
x : α
y : β x
⊢ ωSup (Chain.map c (evalOrderHom { fst := x, snd := y })) =
ωSup (Chain.map (Chain.map (Chain.map c (monotoneCurry α β γ)) (evalOrderHom x)) (evalOrderHom y))
[PROOFSTEP]
rw [map_comp, map_comp]
[GOAL]
case h.h
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
c : Chain ((x : (a : α) × β a) → γ x.fst x.snd)
x : α
y : β x
⊢ ωSup (Chain.map c (evalOrderHom { fst := x, snd := y })) =
ωSup (Chain.map c (OrderHom.comp (OrderHom.comp (evalOrderHom y) (evalOrderHom x)) (monotoneCurry α β γ)))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
c : Chain ((a : α) → (b : β a) → γ a b)
⊢ ↑(monotoneUncurry α β γ) (ωSup c) = ωSup (Chain.map c (monotoneUncurry α β γ))
[PROOFSTEP]
ext ⟨x, y⟩
[GOAL]
case h.mk
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
c : Chain ((a : α) → (b : β a) → γ a b)
x : α
y : β x
⊢ ↑(monotoneUncurry α β γ) (ωSup c) { fst := x, snd := y } =
ωSup (Chain.map c (monotoneUncurry α β γ)) { fst := x, snd := y }
[PROOFSTEP]
dsimp [uncurry, ωSup]
[GOAL]
case h.mk
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
c : Chain ((a : α) → (b : β a) → γ a b)
x : α
y : β x
⊢ ωSup (Chain.map (Chain.map c (evalOrderHom x)) (evalOrderHom y)) =
ωSup (Chain.map (Chain.map c (monotoneUncurry α β γ)) (evalOrderHom { fst := x, snd := y }))
[PROOFSTEP]
rw [map_comp, map_comp]
[GOAL]
case h.mk
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
c : Chain ((a : α) → (b : β a) → γ a b)
x : α
y : β x
⊢ ωSup (Chain.map c (OrderHom.comp (evalOrderHom y) (evalOrderHom x))) =
ωSup (Chain.map c (OrderHom.comp (evalOrderHom { fst := x, snd := y }) (monotoneUncurry α β γ)))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd)
_f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y
hc : Continuous _f
⊢ fix ↑_f = ↑_f (fix ↑_f)
[PROOFSTEP]
dsimp [fix]
[GOAL]
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd)
_f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y
hc : Continuous _f
⊢ curry (fix (uncurry ∘ ↑_f ∘ curry)) = ↑_f (curry (fix (uncurry ∘ ↑_f ∘ curry)))
[PROOFSTEP]
conv =>
lhs
erw [LawfulFix.fix_eq (uncurry_curry_continuous hc)]
[GOAL]
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd)
_f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y
hc : Continuous _f
| curry (fix (uncurry ∘ ↑_f ∘ curry)) = ↑_f (curry (fix (uncurry ∘ ↑_f ∘ curry)))
[PROOFSTEP]
lhs
erw [LawfulFix.fix_eq (uncurry_curry_continuous hc)]
[GOAL]
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd)
_f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y
hc : Continuous _f
| curry (fix (uncurry ∘ ↑_f ∘ curry)) = ↑_f (curry (fix (uncurry ∘ ↑_f ∘ curry)))
[PROOFSTEP]
lhs
erw [LawfulFix.fix_eq (uncurry_curry_continuous hc)]
[GOAL]
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd)
_f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y
hc : Continuous _f
| curry (fix (uncurry ∘ ↑_f ∘ curry)) = ↑_f (curry (fix (uncurry ∘ ↑_f ∘ curry)))
[PROOFSTEP]
lhs
[GOAL]
α : Type u_1
β : α → Type u_2
γ : (a : α) → β a → Type u_3
inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y)
inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd)
_f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y
hc : Continuous _f
| curry (fix (uncurry ∘ ↑_f ∘ curry))
[PROOFSTEP]
erw [LawfulFix.fix_eq (uncurry_curry_continuous hc)]
| {"mathlib_filename": "Mathlib.Control.LawfulFix", "llama_tokens": 21727} |
[GOAL]
α β γ : Type u
F : Type u → Type v
inst✝¹ : Applicative F
inst✝ : LawfulApplicative F
x : F (α → β)
f : γ → α
y : F γ
⊢ (Seq.seq x fun x => f <$> y) = Seq.seq ((fun x => x ∘ f) <$> x) fun x => y
[PROOFSTEP]
simp [← pure_seq]
[GOAL]
α β γ : Type u
F : Type u → Type v
inst✝¹ : Applicative F
inst✝ : LawfulApplicative F
x : F (α → β)
f : γ → α
y : F γ
⊢ (Seq.seq x fun x => Seq.seq (pure f) fun x => y) = Seq.seq (Seq.seq (pure fun x => x ∘ f) fun x_1 => x) fun x => y
[PROOFSTEP]
simp [seq_assoc, ← comp_map, (· ∘ ·)]
[GOAL]
α β γ : Type u
F : Type u → Type v
inst✝¹ : Applicative F
inst✝ : LawfulApplicative F
x : F (α → β)
f : γ → α
y : F γ
⊢ (Seq.seq ((fun x x_1 => x (f x_1)) <$> x) fun x => y) =
Seq.seq (Seq.seq (pure fun x x_1 => x (f x_1)) fun x_1 => x) fun x => y
[PROOFSTEP]
simp [pure_seq]
[GOAL]
α β γ : Type u
F : Type u → Type v
inst✝¹ : Applicative F
inst✝ : LawfulApplicative F
f : β → γ
x : F (α → β)
y : F α
⊢ (f <$> Seq.seq x fun x => y) = Seq.seq ((fun x => f ∘ x) <$> x) fun x => y
[PROOFSTEP]
simp only [← pure_seq]
[GOAL]
α β γ : Type u
F : Type u → Type v
inst✝¹ : Applicative F
inst✝ : LawfulApplicative F
f : β → γ
x : F (α → β)
y : F α
⊢ (Seq.seq (pure f) fun x_1 => Seq.seq x fun x => y) = Seq.seq (Seq.seq (pure fun x => f ∘ x) fun x_1 => x) fun x => y
[PROOFSTEP]
simp [seq_assoc]
[GOAL]
α β γ : Type u
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
x : m α
g : α → m β
f : β → γ
⊢ f <$> (x >>= g) = do
let a ← x
f <$> g a
[PROOFSTEP]
rw [← bind_pure_comp, bind_assoc]
[GOAL]
α β γ : Type u
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
x : m α
g : α → m β
f : β → γ
⊢ (do
let x ← x
let a ← g x
pure (f a)) =
do
let a ← x
f <$> g a
[PROOFSTEP]
simp [bind_pure_comp]
[GOAL]
α β γ : Type u
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
x : m α
g : β → m γ
f : α → β
⊢ f <$> x >>= g = x >>= g ∘ f
[PROOFSTEP]
rw [← bind_pure_comp, bind_assoc]
[GOAL]
α β γ : Type u
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
x : m α
g : β → m γ
f : α → β
⊢ (x >>= fun x => pure (f x) >>= g) = x >>= g ∘ f
[PROOFSTEP]
simp [pure_bind, (· ∘ ·)]
[GOAL]
α✝ β✝ γ : Type u
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α : Type u_1
β : Type u
f : α → m β
⊢ f >=> pure = f
[PROOFSTEP]
simp only [(· >=> ·), functor_norm]
[GOAL]
α✝ β✝ γ : Type u
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α β : Type u
f : α → m β
⊢ pure >=> f = f
[PROOFSTEP]
simp only [(· >=> ·), functor_norm]
[GOAL]
α✝ β✝ γ✝ : Type u
m : Type u → Type v
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α : Type u_1
β γ φ : Type u
f : α → m β
g : β → m γ
h : γ → m φ
⊢ (f >=> g) >=> h = f >=> g >=> h
[PROOFSTEP]
simp only [(· >=> ·), functor_norm]
[GOAL]
α✝ β✝ γ : Type u
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α β : Type u
f : α → β
a : m (m α)
⊢ joinM (Functor.map f <$> a) = f <$> joinM a
[PROOFSTEP]
simp only [joinM, (· ∘ ·), id.def, ← bind_pure_comp, bind_assoc, map_bind, pure_bind]
[GOAL]
α✝ β γ : Type u
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α : Type u
a : m (m (m α))
⊢ joinM (joinM <$> a) = joinM (joinM a)
[PROOFSTEP]
simp only [joinM, (· ∘ ·), id.def, map_bind, ← bind_pure_comp, bind_assoc, pure_bind]
[GOAL]
α✝ β γ : Type u
m : Type u → Type u
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α : Type u
a : m α
⊢ joinM (pure <$> a) = a
[PROOFSTEP]
simp only [joinM, (· ∘ ·), id.def, map_bind, ← bind_pure_comp, bind_assoc, pure_bind, bind_pure]
[GOAL]
α β γ : Type u
F : Type → Type v
inst✝ : Alternative F
h : Decidable True
⊢ guard True = pure ()
[PROOFSTEP]
simp [guard, if_pos]
[GOAL]
α β γ : Type u
F : Type → Type v
inst✝ : Alternative F
h : Decidable False
⊢ guard False = failure
[PROOFSTEP]
simp [guard, if_neg not_false]
[GOAL]
α β γ : Type u
e : Type v
⊢ LawfulFunctor (Sum e)
[PROOFSTEP]
refine' { .. }
[GOAL]
case refine'_1
α β γ : Type u
e : Type v
⊢ ∀ {α β : Type u}, Functor.mapConst = Functor.map ∘ Function.const β
[PROOFSTEP]
intros
[GOAL]
case refine'_2
α β γ : Type u
e : Type v
⊢ ∀ {α : Type u} (x : e ⊕ α), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_3
α β γ : Type u
e : Type v
⊢ ∀ {α β γ : Type u} (g : α → β) (h : β → γ) (x : e ⊕ α), (h ∘ g) <$> x = h <$> g <$> x
[PROOFSTEP]
intros
[GOAL]
case refine'_1
α β γ : Type u
e : Type v
α✝ β✝ : Type u
⊢ Functor.mapConst = Functor.map ∘ Function.const β✝
[PROOFSTEP]
try casesm Sum _ _
[GOAL]
case refine'_1
α β γ : Type u
e : Type v
α✝ β✝ : Type u
⊢ Functor.mapConst = Functor.map ∘ Function.const β✝
[PROOFSTEP]
casesm Sum _ _
[GOAL]
case refine'_2
α β γ : Type u
e : Type v
α✝ : Type u
x✝ : e ⊕ α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
try casesm Sum _ _
[GOAL]
case refine'_2
α β γ : Type u
e : Type v
α✝ : Type u
x✝ : e ⊕ α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
casesm Sum _ _
[GOAL]
case refine'_3
α β γ : Type u
e : Type v
α✝ β✝ γ✝ : Type u
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
x✝ : e ⊕ α✝
⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝
[PROOFSTEP]
try casesm Sum _ _
[GOAL]
case refine'_3
α β γ : Type u
e : Type v
α✝ β✝ γ✝ : Type u
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
x✝ : e ⊕ α✝
⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝
[PROOFSTEP]
casesm Sum _ _
[GOAL]
case refine'_1
α β γ : Type u
e : Type v
α✝ β✝ : Type u
⊢ Functor.mapConst = Functor.map ∘ Function.const β✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_2.inl
α β γ : Type u
e : Type v
α✝ : Type u
val✝ : e
⊢ id <$> inl val✝ = inl val✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_2.inr
α β γ : Type u
e : Type v
α✝ : Type u
val✝ : α✝
⊢ id <$> inr val✝ = inr val✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_3.inl
α β γ : Type u
e : Type v
α✝ β✝ γ✝ : Type u
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
val✝ : e
⊢ (h✝ ∘ g✝) <$> inl val✝ = h✝ <$> g✝ <$> inl val✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_3.inr
α β γ : Type u
e : Type v
α✝ β✝ γ✝ : Type u
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
val✝ : α✝
⊢ (h✝ ∘ g✝) <$> inr val✝ = h✝ <$> g✝ <$> inr val✝
[PROOFSTEP]
rfl
[GOAL]
α β γ : Type u
e : Type v
⊢ ∀ {α β : Type u} (x : e ⊕ α) (y : e ⊕ β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
α β γ : Type u
e : Type v
α✝ β✝ : Type u
x✝ : e ⊕ α✝
y✝ : e ⊕ β✝
⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝
[PROOFSTEP]
casesm Sum _ _
[GOAL]
case inl
α β γ : Type u
e : Type v
α✝ β✝ : Type u
y✝ : e ⊕ β✝
val✝ : e
⊢ (SeqLeft.seqLeft (inl val✝) fun x => y✝) = Seq.seq (Function.const β✝ <$> inl val✝) fun x => y✝
[PROOFSTEP]
rfl
[GOAL]
case inr
α β γ : Type u
e : Type v
α✝ β✝ : Type u
y✝ : e ⊕ β✝
val✝ : α✝
⊢ (SeqLeft.seqLeft (inr val✝) fun x => y✝) = Seq.seq (Function.const β✝ <$> inr val✝) fun x => y✝
[PROOFSTEP]
rfl
[GOAL]
α β γ : Type u
e : Type v
⊢ ∀ {α β : Type u} (x : e ⊕ α) (y : e ⊕ β),
(SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α id <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
α β γ : Type u
e : Type v
α✝ β✝ : Type u
x✝ : e ⊕ α✝
y✝ : e ⊕ β✝
⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝
[PROOFSTEP]
casesm Sum _ _
[GOAL]
case inl
α β γ : Type u
e : Type v
α✝ β✝ : Type u
y✝ : e ⊕ β✝
val✝ : e
⊢ (SeqRight.seqRight (inl val✝) fun x => y✝) = Seq.seq (Function.const α✝ id <$> inl val✝) fun x => y✝
[PROOFSTEP]
casesm Sum _ _
[GOAL]
case inr
α β γ : Type u
e : Type v
α✝ β✝ : Type u
y✝ : e ⊕ β✝
val✝ : α✝
⊢ (SeqRight.seqRight (inr val✝) fun x => y✝) = Seq.seq (Function.const α✝ id <$> inr val✝) fun x => y✝
[PROOFSTEP]
casesm Sum _ _
[GOAL]
case inl.inl
α β γ : Type u
e : Type v
α✝ β✝ : Type u
val✝¹ val✝ : e
⊢ (SeqRight.seqRight (inl val✝¹) fun x => inl val✝) = Seq.seq (Function.const α✝ id <$> inl val✝¹) fun x => inl val✝
[PROOFSTEP]
rfl
[GOAL]
case inl.inr
α β γ : Type u
e : Type v
α✝ β✝ : Type u
val✝¹ : e
val✝ : β✝
⊢ (SeqRight.seqRight (inl val✝¹) fun x => inr val✝) = Seq.seq (Function.const α✝ id <$> inl val✝¹) fun x => inr val✝
[PROOFSTEP]
rfl
[GOAL]
case inr.inl
α β γ : Type u
e : Type v
α✝ β✝ : Type u
val✝¹ : α✝
val✝ : e
⊢ (SeqRight.seqRight (inr val✝¹) fun x => inl val✝) = Seq.seq (Function.const α✝ id <$> inr val✝¹) fun x => inl val✝
[PROOFSTEP]
rfl
[GOAL]
case inr.inr
α β γ : Type u
e : Type v
α✝ β✝ : Type u
val✝¹ : α✝
val✝ : β✝
⊢ (SeqRight.seqRight (inr val✝¹) fun x => inr val✝) = Seq.seq (Function.const α✝ id <$> inr val✝¹) fun x => inr val✝
[PROOFSTEP]
rfl
[GOAL]
α β γ : Type u
e : Type v
⊢ ∀ {α β : Type u} (g : α → β) (x : e ⊕ α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
[PROOFSTEP]
intros
[GOAL]
α β γ : Type u
e : Type v
α✝ β✝ : Type u
g✝ : α✝ → β✝
x✝ : e ⊕ α✝
⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝
[PROOFSTEP]
rfl
[GOAL]
α β γ : Type u
e : Type v
⊢ ∀ {α β : Type u} (f : α → β) (x : e ⊕ α),
(do
let a ← x
pure (f a)) =
f <$> x
[PROOFSTEP]
intros
[GOAL]
α β γ : Type u
e : Type v
α✝ β✝ : Type u
f✝ : α✝ → β✝
x✝ : e ⊕ α✝
⊢ (do
let a ← x✝
pure (f✝ a)) =
f✝ <$> x✝
[PROOFSTEP]
casesm Sum _ _
[GOAL]
case inl
α β γ : Type u
e : Type v
α✝ β✝ : Type u
f✝ : α✝ → β✝
val✝ : e
⊢ (do
let a ← inl val✝
pure (f✝ a)) =
f✝ <$> inl val✝
[PROOFSTEP]
rfl
[GOAL]
case inr
α β γ : Type u
e : Type v
α✝ β✝ : Type u
f✝ : α✝ → β✝
val✝ : α✝
⊢ (do
let a ← inr val✝
pure (f✝ a)) =
f✝ <$> inr val✝
[PROOFSTEP]
rfl
[GOAL]
α β γ : Type u
e : Type v
⊢ ∀ {α β : Type u} (f : e ⊕ (α → β)) (x : e ⊕ α),
(do
let x_1 ← f
x_1 <$> x) =
Seq.seq f fun x_1 => x
[PROOFSTEP]
intros
[GOAL]
α β γ : Type u
e : Type v
α✝ β✝ : Type u
f✝ : e ⊕ (α✝ → β✝)
x✝ : e ⊕ α✝
⊢ (do
let x ← f✝
x <$> x✝) =
Seq.seq f✝ fun x => x✝
[PROOFSTEP]
casesm Sum _ _
[GOAL]
case inl
α β γ : Type u
e : Type v
α✝ β✝ : Type u
x✝ : e ⊕ α✝
val✝ : e
⊢ (do
let x ← inl val✝
x <$> x✝) =
Seq.seq (inl val✝) fun x => x✝
[PROOFSTEP]
rfl
[GOAL]
case inr
α β γ : Type u
e : Type v
α✝ β✝ : Type u
x✝ : e ⊕ α✝
val✝ : α✝ → β✝
⊢ (do
let x ← inr val✝
x <$> x✝) =
Seq.seq (inr val✝) fun x => x✝
[PROOFSTEP]
rfl
[GOAL]
α β γ : Type u
e : Type v
⊢ ∀ {α β : Type u} (x : α) (f : α → e ⊕ β), pure x >>= f = f x
[PROOFSTEP]
intros
[GOAL]
α β γ : Type u
e : Type v
α✝ β✝ : Type u
x✝ : α✝
f✝ : α✝ → e ⊕ β✝
⊢ pure x✝ >>= f✝ = f✝ x✝
[PROOFSTEP]
rfl
[GOAL]
α β γ : Type u
e : Type v
⊢ ∀ {α β γ : Type u} (x : e ⊕ α) (f : α → e ⊕ β) (g : β → e ⊕ γ), x >>= f >>= g = x >>= fun x => f x >>= g
[PROOFSTEP]
intros
[GOAL]
α β γ : Type u
e : Type v
α✝ β✝ γ✝ : Type u
x✝ : e ⊕ α✝
f✝ : α✝ → e ⊕ β✝
g✝ : β✝ → e ⊕ γ✝
⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
casesm Sum _ _
[GOAL]
case inl
α β γ : Type u
e : Type v
α✝ β✝ γ✝ : Type u
f✝ : α✝ → e ⊕ β✝
g✝ : β✝ → e ⊕ γ✝
val✝ : e
⊢ inl val✝ >>= f✝ >>= g✝ = inl val✝ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rfl
[GOAL]
case inr
α β γ : Type u
e : Type v
α✝ β✝ γ✝ : Type u
f✝ : α✝ → e ⊕ β✝
g✝ : β✝ → e ⊕ γ✝
val✝ : α✝
⊢ inr val✝ >>= f✝ >>= g✝ = inr val✝ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
rfl
[GOAL]
α✝ β✝ γ✝ : Type u
m✝ : ?m.20624
m : Type u → Type v
h : Applicative m
inst✝ : CommApplicative m
α β γ : Type u
a : m α
b : m β
f : α → β → γ
⊢ (Seq.seq (f <$> a) fun x => b) = (fun p => f p.fst p.snd) <$> Seq.seq (Prod.mk <$> a) fun x => b
[PROOFSTEP]
simp [seq_map_assoc, map_seq, seq_assoc, seq_pure, map_map]
[GOAL]
α✝ β✝ γ✝ : Type u
m✝ : ?m.20624
m : Type u → Type v
h : Applicative m
inst✝ : CommApplicative m
α β γ : Type u
a : m α
b : m β
f : α → β → γ
⊢ (Seq.seq (f <$> a) fun x => b) = Seq.seq (((fun x => (fun p => f p.fst p.snd) ∘ x) ∘ Prod.mk) <$> a) fun x => b
[PROOFSTEP]
rfl
[GOAL]
α✝ β✝ γ✝ : Type u
m✝ : ?m.20624
m : Type u → Type v
h : Applicative m
inst✝ : CommApplicative m
α β γ : Type u
a : m α
b : m β
f : α → β → γ
⊢ ((fun p => f p.fst p.snd) <$> Seq.seq (Prod.mk <$> a) fun x => b) = Seq.seq ((fun b a => f a b) <$> b) fun x => a
[PROOFSTEP]
rw [@CommApplicative.commutative_prod m h]
[GOAL]
α✝ β✝ γ✝ : Type u
m✝ : ?m.20624
m : Type u → Type v
h : Applicative m
inst✝ : CommApplicative m
α β γ : Type u
a : m α
b : m β
f : α → β → γ
⊢ ((fun p => f p.fst p.snd) <$> Seq.seq ((fun b a => (a, b)) <$> b) fun x => a) =
Seq.seq ((fun b a => f a b) <$> b) fun x => a
[PROOFSTEP]
simp [seq_map_assoc, map_seq, seq_assoc, seq_pure, map_map, (· ∘ ·)]
| {"mathlib_filename": "Mathlib.Control.Basic", "llama_tokens": 7181} |
[GOAL]
F : Type u → Type v
inst✝¹ : Applicative F
inst✝ : LawfulApplicative F
α β γ σ : Type u
f : α → β → γ
g : σ → β
x : F α
y : F σ
⊢ (Seq.seq (f <$> x) fun x => g <$> y) = Seq.seq ((flip (fun x x_1 => x ∘ x_1) g ∘ f) <$> x) fun x => y
[PROOFSTEP]
simp [flip, functor_norm]
[GOAL]
F : Type u → Type v
inst✝¹ : Applicative F
inst✝ : LawfulApplicative F
α β γ σ : Type u
f : α → β
⊢ (fun x x_1 => Seq.seq x fun x => x_1) (pure f) = (fun x x_1 => x <$> x_1) f
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u → Type v
inst✝¹ : Applicative F
inst✝ : LawfulApplicative F
α β γ σ : Type u
f : α → β
x✝ : F α
⊢ (fun x x_1 => Seq.seq x fun x => x_1) (pure f) x✝ = (fun x x_1 => x <$> x_1) f x✝
[PROOFSTEP]
simp [functor_norm]
[GOAL]
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
p2 : {α : Type u} → α → F α
s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
L1 : LawfulApplicative F
L2 : LawfulApplicative F
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
⊢ mk = mk
[PROOFSTEP]
obtain rfl : @p1 = @p2 := by
funext α x
apply H1
[GOAL]
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
p2 : {α : Type u} → α → F α
s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
L1 : LawfulApplicative F
L2 : LawfulApplicative F
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
⊢ p1 = p2
[PROOFSTEP]
funext α x
[GOAL]
case h.h
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α✝ β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
p2 : {α : Type u} → α → F α
s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
L1 : LawfulApplicative F
L2 : LawfulApplicative F
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
α : Type u
x : α
⊢ p1 x = p2 x
[PROOFSTEP]
apply H1
[GOAL]
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
L1 : LawfulApplicative F
L2 : LawfulApplicative F
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
⊢ mk = mk
[PROOFSTEP]
obtain rfl : @s1 = @s2 := by
funext α β f x
exact H2 f (x Unit.unit)
[GOAL]
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
L1 : LawfulApplicative F
L2 : LawfulApplicative F
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
⊢ s1 = s2
[PROOFSTEP]
funext α β f x
[GOAL]
case h.h.h.h
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α✝ β✝ γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
L1 : LawfulApplicative F
L2 : LawfulApplicative F
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
α β : Type u
f : F (α → β)
x : Unit → F α
⊢ s1 f x = s2 f x
[PROOFSTEP]
exact H2 f (x Unit.unit)
[GOAL]
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
L1 : LawfulApplicative F
L2 : LawfulApplicative F
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
⊢ mk = mk
[PROOFSTEP]
obtain ⟨seqLeft_eq1, seqRight_eq1, pure_seq1, -⟩ := L1
[GOAL]
case mk
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
L2 : LawfulApplicative F
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
toLawfulFunctor✝ : LawfulFunctor F
seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq1 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
⊢ mk = mk
[PROOFSTEP]
obtain ⟨seqLeft_eq2, seqRight_eq2, pure_seq2, -⟩ := L2
[GOAL]
case mk.mk
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
toLawfulFunctor✝¹ : LawfulFunctor F
seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq1 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝¹ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
toLawfulFunctor✝ : LawfulFunctor F
seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq2 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
⊢ mk = mk
[PROOFSTEP]
obtain rfl : F1 = F2 := by
apply Functor.ext
intros
exact (pure_seq1 _ _).symm.trans (pure_seq2 _ _)
[GOAL]
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
toLawfulFunctor✝¹ : LawfulFunctor F
seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq1 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝¹ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
toLawfulFunctor✝ : LawfulFunctor F
seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq2 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
⊢ F1 = F2
[PROOFSTEP]
apply Functor.ext
[GOAL]
case a
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
toLawfulFunctor✝¹ : LawfulFunctor F
seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq1 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝¹ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
toLawfulFunctor✝ : LawfulFunctor F
seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq2 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
⊢ ∀ (α β : Type u) (f : α → β) (x : F α), f <$> x = f <$> x
[PROOFSTEP]
intros
[GOAL]
case a
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
F2 : Functor F
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
toLawfulFunctor✝¹ : LawfulFunctor F
seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq1 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝¹ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
toLawfulFunctor✝ : LawfulFunctor F
seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq2 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
α✝ β✝ : Type u
f✝ : α✝ → β✝
x✝ : F α✝
⊢ f✝ <$> x✝ = f✝ <$> x✝
[PROOFSTEP]
exact (pure_seq1 _ _).symm.trans (pure_seq2 _ _)
[GOAL]
case mk.mk
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
toLawfulFunctor✝¹ : LawfulFunctor F
seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq1 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝¹ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
toLawfulFunctor✝ : LawfulFunctor F
seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq2 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
⊢ mk = mk
[PROOFSTEP]
congr
[GOAL]
case mk.mk.e_toSeqLeft.e_seqLeft
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
toLawfulFunctor✝¹ : LawfulFunctor F
seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq1 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝¹ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
toLawfulFunctor✝ : LawfulFunctor F
seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq2 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
⊢ sl1 = sl2
[PROOFSTEP]
funext α β x y
[GOAL]
case mk.mk.e_toSeqRight.e_seqRight
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α β γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
toLawfulFunctor✝¹ : LawfulFunctor F
seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq1 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝¹ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
toLawfulFunctor✝ : LawfulFunctor F
seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq2 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
⊢ sr1 = sr2
[PROOFSTEP]
funext α β x y
[GOAL]
case mk.mk.e_toSeqLeft.e_seqLeft.h.h.h.h
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α✝ β✝ γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
toLawfulFunctor✝¹ : LawfulFunctor F
seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq1 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝¹ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
toLawfulFunctor✝ : LawfulFunctor F
seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq2 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
α β : Type u
x : F α
y : Unit → F β
⊢ sl1 x y = sl2 x y
[PROOFSTEP]
exact (seqLeft_eq1 _ (y Unit.unit)).trans (seqLeft_eq2 _ _).symm
[GOAL]
case mk.mk.e_toSeqRight.e_seqRight.h.h.h.h
F✝ : Type u → Type v
inst✝¹ : Applicative F✝
inst✝ : LawfulApplicative F✝
α✝ β✝ γ σ : Type u
F : Type u → Type u_1
F1 : Functor F
p1 : {α : Type u} → α → F α
s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β
sl1 : {α β : Type u} → F α → (Unit → F β) → F α
sr1 : {α β : Type u} → F α → (Unit → F β) → F β
sl2 : {α β : Type u} → F α → (Unit → F β) → F α
sr2 : {α β : Type u} → F α → (Unit → F β) → F β
toLawfulFunctor✝¹ : LawfulFunctor F
seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq1 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝¹ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
H1 : ∀ {α : Type u} (x : α), pure x = pure x
H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x
toLawfulFunctor✝ : LawfulFunctor F
seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
seqRight_eq2 :
∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
seq_assoc✝ :
∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x
α β : Type u
x : F α
y : Unit → F β
⊢ sr1 x y = sr2 x y
[PROOFSTEP]
exact (seqRight_eq1 _ (y Unit.unit)).trans (seqRight_eq2 _ (y Unit.unit)).symm
[GOAL]
⊢ CommApplicative Id
[PROOFSTEP]
refine' { .. }
[GOAL]
case refine'_1
⊢ ∀ {α β : Type ?u.6279}, Functor.mapConst = Functor.map ∘ Function.const β
[PROOFSTEP]
intros
[GOAL]
case refine'_2
⊢ ∀ {α : Type ?u.6279} (x : Id α), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_3
⊢ ∀ {α β γ : Type ?u.6279} (g : α → β) (h : β → γ) (x : Id α), (h ∘ g) <$> x = h <$> g <$> x
[PROOFSTEP]
intros
[GOAL]
case refine'_4
⊢ ∀ {α β : Type ?u.6279} (x : Id α) (y : Id β),
(SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
case refine'_5
⊢ ∀ {α β : Type ?u.6279} (x : Id α) (y : Id β),
(SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α id <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
case refine'_6
⊢ ∀ {α β : Type ?u.6279} (g : α → β) (x : Id α), (Seq.seq (pure g) fun x_1 => x) = g <$> x
[PROOFSTEP]
intros
[GOAL]
case refine'_7
⊢ ∀ {α β : Type ?u.6279} (g : α → β) (x : α), g <$> pure x = pure (g x)
[PROOFSTEP]
intros
[GOAL]
case refine'_8
⊢ ∀ {α β : Type ?u.6279} (g : Id (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
[PROOFSTEP]
intros
[GOAL]
case refine'_9
⊢ ∀ {α β γ : Type ?u.6279} (x : Id α) (g : Id (α → β)) (h : Id (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (Function.comp <$> h) fun x => g) fun x_1 => x
[PROOFSTEP]
intros
[GOAL]
case refine'_10
⊢ ∀ {α β : Type ?u.6279} (a : Id α) (b : Id β),
(Seq.seq (Prod.mk <$> a) fun x => b) = Seq.seq ((fun b a => (a, b)) <$> b) fun x => a
[PROOFSTEP]
intros
[GOAL]
case refine'_1
α✝ β✝ : Type ?u.6279
⊢ Functor.mapConst = Functor.map ∘ Function.const β✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
α✝ : Type ?u.6279
x✝ : Id α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_3
α✝ β✝ γ✝ : Type ?u.6279
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
x✝ : Id α✝
⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
α✝ β✝ : Type ?u.6279
x✝ : Id α✝
y✝ : Id β✝
⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_5
α✝ β✝ : Type ?u.6279
x✝ : Id α✝
y✝ : Id β✝
⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_6
α✝ β✝ : Type ?u.6279
g✝ : α✝ → β✝
x✝ : Id α✝
⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_7
α✝ β✝ : Type ?u.6279
g✝ : α✝ → β✝
x✝ : α✝
⊢ g✝ <$> pure x✝ = pure (g✝ x✝)
[PROOFSTEP]
rfl
[GOAL]
case refine'_8
α✝ β✝ : Type ?u.6279
g✝ : Id (α✝ → β✝)
x✝ : α✝
⊢ (Seq.seq g✝ fun x => pure x✝) = (fun h => h x✝) <$> g✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_9
α✝ β✝ γ✝ : Type ?u.6279
x✝ : Id α✝
g✝ : Id (α✝ → β✝)
h✝ : Id (β✝ → γ✝)
⊢ (Seq.seq h✝ fun x => Seq.seq g✝ fun x => x✝) = Seq.seq (Seq.seq (Function.comp <$> h✝) fun x => g✝) fun x => x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_10
α✝ β✝ : Type ?u.6279
a✝ : Id α✝
b✝ : Id β✝
⊢ (Seq.seq (Prod.mk <$> a✝) fun x => b✝) = Seq.seq ((fun b a => (a, b)) <$> b✝) fun x => a✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type v
f : α → β
x : α
⊢ run (f <$> pure x) = run (pure (f x))
[PROOFSTEP]
simp
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type v
f : Comp F G (α → β)
x : α
⊢ run (Seq.seq f fun x_1 => pure x) = run ((fun g => g x) <$> f)
[PROOFSTEP]
simp [(· ∘ ·), functor_norm]
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type v
x : Comp F G α
f : Comp F G (α → β)
g : Comp F G (β → γ)
⊢ run (Seq.seq g fun x_1 => Seq.seq f fun x_2 => x) =
run (Seq.seq (Seq.seq (Function.comp <$> g) fun x => f) fun x_1 => x)
[PROOFSTEP]
simp [(· ∘ ·), functor_norm]
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type v
f : α → β
x : Comp F G α
⊢ run (Seq.seq (pure f) fun x_1 => x) = run (f <$> x)
[PROOFSTEP]
simp [Applicative.pure_seq_eq_map', functor_norm]
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type v
⊢ ∀ {α β : Type v} (x : Comp F G α) (y : Comp F G β),
(SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ α✝ β✝ : Type v
x✝ : Comp F G α✝
y✝ : Comp F G β✝
⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (const β✝ <$> x✝) fun x => y✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type v
⊢ ∀ {α β : Type v} (x : Comp F G α) (y : Comp F G β),
(SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ α✝ β✝ : Type v
x✝ : Comp F G α✝
y✝ : Comp F G β✝
⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (const α✝ id <$> x✝) fun x => y✝
[PROOFSTEP]
rfl
[GOAL]
F✝ : Type u → Type w
G : Type v → Type u
inst✝⁴ : Applicative F✝
inst✝³ : Applicative G
inst✝² : LawfulApplicative F✝
inst✝¹ : LawfulApplicative G
α β γ : Type v
F : Type u_1 → Type u_2
AF : Applicative F
inst✝ : LawfulApplicative F
α✝ β✝ : Type u_1
f : F (α✝ → β✝)
x : F α✝
⊢ (Seq.seq (id <$> f) fun x_1 => x) = Seq.seq f fun x_1 => x
[PROOFSTEP]
rw [id_map]
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝⁷ : Applicative F
inst✝⁶ : Applicative G
inst✝⁵ : LawfulApplicative F
inst✝⁴ : LawfulApplicative G
α β γ : Type v
f : Type u → Type w
g : Type v → Type u
inst✝³ : Applicative f
inst✝² : Applicative g
inst✝¹ : CommApplicative f
inst✝ : CommApplicative g
⊢ CommApplicative (Comp f g)
[PROOFSTEP]
refine' { @instLawfulApplicativeComp f g _ _ _ _ with .. }
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝⁷ : Applicative F
inst✝⁶ : Applicative G
inst✝⁵ : LawfulApplicative F
inst✝⁴ : LawfulApplicative G
α β γ : Type v
f : Type u → Type w
g : Type v → Type u
inst✝³ : Applicative f
inst✝² : Applicative g
inst✝¹ : CommApplicative f
inst✝ : CommApplicative g
src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp
⊢ ∀ {α β : Type v} (a : Comp f g α) (b : Comp f g β),
(Seq.seq (Prod.mk <$> a) fun x => b) = Seq.seq ((fun b a => (a, b)) <$> b) fun x => a
[PROOFSTEP]
intros
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝⁷ : Applicative F
inst✝⁶ : Applicative G
inst✝⁵ : LawfulApplicative F
inst✝⁴ : LawfulApplicative G
α β γ : Type v
f : Type u → Type w
g : Type v → Type u
inst✝³ : Applicative f
inst✝² : Applicative g
inst✝¹ : CommApplicative f
inst✝ : CommApplicative g
src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp
α✝ β✝ : Type v
a✝ : Comp f g α✝
b✝ : Comp f g β✝
⊢ (Seq.seq (Prod.mk <$> a✝) fun x => b✝) = Seq.seq ((fun b a => (a, b)) <$> b✝) fun x => a✝
[PROOFSTEP]
simp! [map, Seq.seq, functor_norm]
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝⁷ : Applicative F
inst✝⁶ : Applicative G
inst✝⁵ : LawfulApplicative F
inst✝⁴ : LawfulApplicative G
α β γ : Type v
f : Type u → Type w
g : Type v → Type u
inst✝³ : Applicative f
inst✝² : Applicative g
inst✝¹ : CommApplicative f
inst✝ : CommApplicative g
src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp
α✝ β✝ : Type v
a✝ : Comp f g α✝
b✝ : Comp f g β✝
⊢ mk (Seq.seq ((fun x x_1 => Seq.seq x fun x => x_1) <$> mk ((fun x => Prod.mk <$> x) <$> a✝)) fun x => b✝) =
mk
(Seq.seq ((fun x x_1 => Seq.seq x fun x => x_1) <$> mk ((fun x => (fun b a => (a, b)) <$> x) <$> b✝)) fun x => a✝)
[PROOFSTEP]
rw [commutative_map]
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝⁷ : Applicative F
inst✝⁶ : Applicative G
inst✝⁵ : LawfulApplicative F
inst✝⁴ : LawfulApplicative G
α β γ : Type v
f : Type u → Type w
g : Type v → Type u
inst✝³ : Applicative f
inst✝² : Applicative g
inst✝¹ : CommApplicative f
inst✝ : CommApplicative g
src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp
α✝ β✝ : Type v
a✝ : Comp f g α✝
b✝ : Comp f g β✝
⊢ mk (Seq.seq ((flip fun x x_1 => Seq.seq x fun x => x_1) <$> b✝) fun x => mk ((fun x => Prod.mk <$> x) <$> a✝)) =
mk
(Seq.seq ((fun x x_1 => Seq.seq x fun x => x_1) <$> mk ((fun x => (fun b a => (a, b)) <$> x) <$> b✝)) fun x => a✝)
[PROOFSTEP]
simp [Comp.mk, flip, (· ∘ ·), functor_norm]
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝⁷ : Applicative F
inst✝⁶ : Applicative G
inst✝⁵ : LawfulApplicative F
inst✝⁴ : LawfulApplicative G
α β γ : Type v
f : Type u → Type w
g : Type v → Type u
inst✝³ : Applicative f
inst✝² : Applicative g
inst✝¹ : CommApplicative f
inst✝ : CommApplicative g
src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp
α✝ β✝ : Type v
a✝ : Comp f g α✝
b✝ : Comp f g β✝
⊢ (Seq.seq ((fun x x_1 => Seq.seq (Prod.mk <$> x_1) fun x_2 => x) <$> b✝) fun x => a✝) =
Seq.seq ((fun x x_1 => Seq.seq ((fun b a => (a, b)) <$> x) fun x => x_1) <$> b✝) fun x => a✝
[PROOFSTEP]
congr
[GOAL]
case e_a.e_a
F : Type u → Type w
G : Type v → Type u
inst✝⁷ : Applicative F
inst✝⁶ : Applicative G
inst✝⁵ : LawfulApplicative F
inst✝⁴ : LawfulApplicative G
α β γ : Type v
f : Type u → Type w
g : Type v → Type u
inst✝³ : Applicative f
inst✝² : Applicative g
inst✝¹ : CommApplicative f
inst✝ : CommApplicative g
src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp
α✝ β✝ : Type v
a✝ : Comp f g α✝
b✝ : Comp f g β✝
⊢ (fun x x_1 => Seq.seq (Prod.mk <$> x_1) fun x_2 => x) = fun x x_1 => Seq.seq ((fun b a => (a, b)) <$> x) fun x => x_1
[PROOFSTEP]
funext x y
[GOAL]
case e_a.e_a.h.h
F : Type u → Type w
G : Type v → Type u
inst✝⁷ : Applicative F
inst✝⁶ : Applicative G
inst✝⁵ : LawfulApplicative F
inst✝⁴ : LawfulApplicative G
α β γ : Type v
f : Type u → Type w
g : Type v → Type u
inst✝³ : Applicative f
inst✝² : Applicative g
inst✝¹ : CommApplicative f
inst✝ : CommApplicative g
src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp
α✝ β✝ : Type v
a✝ : Comp f g α✝
b✝ : Comp f g β✝
x : g β✝
y : g α✝
⊢ (Seq.seq (Prod.mk <$> y) fun x_1 => x) = Seq.seq ((fun b a => (a, b)) <$> x) fun x => y
[PROOFSTEP]
rw [commutative_map]
[GOAL]
case e_a.e_a.h.h
F : Type u → Type w
G : Type v → Type u
inst✝⁷ : Applicative F
inst✝⁶ : Applicative G
inst✝⁵ : LawfulApplicative F
inst✝⁴ : LawfulApplicative G
α β γ : Type v
f : Type u → Type w
g : Type v → Type u
inst✝³ : Applicative f
inst✝² : Applicative g
inst✝¹ : CommApplicative f
inst✝ : CommApplicative g
src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp
α✝ β✝ : Type v
a✝ : Comp f g α✝
b✝ : Comp f g β✝
x : g β✝
y : g α✝
⊢ (Seq.seq (flip Prod.mk <$> x) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> x) fun x => y
[PROOFSTEP]
congr
[GOAL]
α : Type ?u.61704
inst✝ : Monoid α
⊢ LawfulApplicative (Const α)
[PROOFSTEP]
refine' { .. }
[GOAL]
case refine'_1
α : Type ?u.61704
inst✝ : Monoid α
⊢ ∀ {α_1 β : Type ?u.61710}, mapConst = map ∘ Function.const β
[PROOFSTEP]
intros
[GOAL]
case refine'_2
α : Type ?u.61704
inst✝ : Monoid α
⊢ ∀ {α_1 : Type ?u.61710} (x : Const α α_1), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_3
α : Type ?u.61704
inst✝ : Monoid α
⊢ ∀ {α_1 β γ : Type ?u.61710} (g : α_1 → β) (h : β → γ) (x : Const α α_1), (h ∘ g) <$> x = h <$> g <$> x
[PROOFSTEP]
intros
[GOAL]
case refine'_4
α : Type ?u.61704
inst✝ : Monoid α
⊢ ∀ {α_1 β : Type ?u.61710} (x : Const α α_1) (y : Const α β),
(SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
case refine'_5
α : Type ?u.61704
inst✝ : Monoid α
⊢ ∀ {α_1 β : Type ?u.61710} (x : Const α α_1) (y : Const α β),
(SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α_1 id <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
case refine'_6
α : Type ?u.61704
inst✝ : Monoid α
⊢ ∀ {α_1 β : Type ?u.61710} (g : α_1 → β) (x : Const α α_1), (Seq.seq (pure g) fun x_1 => x) = g <$> x
[PROOFSTEP]
intros
[GOAL]
case refine'_7
α : Type ?u.61704
inst✝ : Monoid α
⊢ ∀ {α_1 β : Type ?u.61710} (g : α_1 → β) (x : α_1), g <$> pure x = pure (g x)
[PROOFSTEP]
intros
[GOAL]
case refine'_8
α : Type ?u.61704
inst✝ : Monoid α
⊢ ∀ {α_1 β : Type ?u.61710} (g : Const α (α_1 → β)) (x : α_1), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
[PROOFSTEP]
intros
[GOAL]
case refine'_9
α : Type ?u.61704
inst✝ : Monoid α
⊢ ∀ {α_1 β γ : Type ?u.61710} (x : Const α α_1) (g : Const α (α_1 → β)) (h : Const α (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (Function.comp <$> h) fun x => g) fun x_1 => x
[PROOFSTEP]
intros
[GOAL]
case refine'_1
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
⊢ mapConst = map ∘ Function.const β✝
[PROOFSTEP]
simp [mul_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_2
α : Type ?u.61704
inst✝ : Monoid α
α✝ : Type ?u.61710
x✝ : Const α α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
simp [mul_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_3
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ γ✝ : Type ?u.61710
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
x✝ : Const α α✝
⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝
[PROOFSTEP]
simp [mul_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_4
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
x✝ : Const α α✝
y✝ : Const α β✝
⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝
[PROOFSTEP]
simp [mul_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_5
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
x✝ : Const α α✝
y✝ : Const α β✝
⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝
[PROOFSTEP]
simp [mul_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_6
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
g✝ : α✝ → β✝
x✝ : Const α α✝
⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝
[PROOFSTEP]
simp [mul_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_7
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
g✝ : α✝ → β✝
x✝ : α✝
⊢ g✝ <$> pure x✝ = pure (g✝ x✝)
[PROOFSTEP]
simp [mul_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_8
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
g✝ : Const α (α✝ → β✝)
x✝ : α✝
⊢ (Seq.seq g✝ fun x => pure x✝) = (fun h => h x✝) <$> g✝
[PROOFSTEP]
simp [mul_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_9
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ γ✝ : Type ?u.61710
x✝ : Const α α✝
g✝ : Const α (α✝ → β✝)
h✝ : Const α (β✝ → γ✝)
⊢ (Seq.seq h✝ fun x => Seq.seq g✝ fun x => x✝) = Seq.seq (Seq.seq (Function.comp <$> h✝) fun x => g✝) fun x => x✝
[PROOFSTEP]
simp [mul_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_1
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
⊢ mapConst = Const.map ∘ Function.const β✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
α : Type ?u.61704
inst✝ : Monoid α
α✝ : Type ?u.61710
x✝ : Const α α✝
⊢ Const.map id x✝ = x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_3
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ γ✝ : Type ?u.61710
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
x✝ : Const α α✝
⊢ Const.map (h✝ ∘ g✝) x✝ = Const.map h✝ (Const.map g✝ x✝)
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
x✝ : Const α α✝
y✝ : Const α β✝
⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Const.map (Function.const β✝) x✝ * y✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_5
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
x✝ : Const α α✝
y✝ : Const α β✝
⊢ (SeqRight.seqRight x✝ fun x => y✝) = Const.map (Function.const α✝ id) x✝ * y✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_6
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
g✝ : α✝ → β✝
x✝ : Const α α✝
⊢ x✝ = Const.map g✝ x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_7
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
g✝ : α✝ → β✝
x✝ : α✝
⊢ Const.map g✝ 1 = 1
[PROOFSTEP]
rfl
[GOAL]
case refine'_8
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ : Type ?u.61710
g✝ : Const α (α✝ → β✝)
x✝ : α✝
⊢ g✝ = Const.map (fun h => h x✝) g✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_9
α : Type ?u.61704
inst✝ : Monoid α
α✝ β✝ γ✝ : Type ?u.61710
x✝ : Const α α✝
g✝ : Const α (α✝ → β✝)
h✝ : Const α (β✝ → γ✝)
⊢ h✝ * (g✝ * x✝) = Const.map Function.comp h✝ * (g✝ * x✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type ?u.64148
inst✝ : AddMonoid α
⊢ LawfulApplicative (AddConst α)
[PROOFSTEP]
refine' { .. }
[GOAL]
case refine'_1
α : Type ?u.64148
inst✝ : AddMonoid α
⊢ ∀ {α_1 β : Type ?u.64153}, mapConst = map ∘ Function.const β
[PROOFSTEP]
intros
[GOAL]
case refine'_2
α : Type ?u.64148
inst✝ : AddMonoid α
⊢ ∀ {α_1 : Type ?u.64153} (x : AddConst α α_1), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_3
α : Type ?u.64148
inst✝ : AddMonoid α
⊢ ∀ {α_1 β γ : Type ?u.64153} (g : α_1 → β) (h : β → γ) (x : AddConst α α_1), (h ∘ g) <$> x = h <$> g <$> x
[PROOFSTEP]
intros
[GOAL]
case refine'_4
α : Type ?u.64148
inst✝ : AddMonoid α
⊢ ∀ {α_1 β : Type ?u.64153} (x : AddConst α α_1) (y : AddConst α β),
(SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
case refine'_5
α : Type ?u.64148
inst✝ : AddMonoid α
⊢ ∀ {α_1 β : Type ?u.64153} (x : AddConst α α_1) (y : AddConst α β),
(SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α_1 id <$> x) fun x => y
[PROOFSTEP]
intros
[GOAL]
case refine'_6
α : Type ?u.64148
inst✝ : AddMonoid α
⊢ ∀ {α_1 β : Type ?u.64153} (g : α_1 → β) (x : AddConst α α_1), (Seq.seq (pure g) fun x_1 => x) = g <$> x
[PROOFSTEP]
intros
[GOAL]
case refine'_7
α : Type ?u.64148
inst✝ : AddMonoid α
⊢ ∀ {α_1 β : Type ?u.64153} (g : α_1 → β) (x : α_1), g <$> pure x = pure (g x)
[PROOFSTEP]
intros
[GOAL]
case refine'_8
α : Type ?u.64148
inst✝ : AddMonoid α
⊢ ∀ {α_1 β : Type ?u.64153} (g : AddConst α (α_1 → β)) (x : α_1), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g
[PROOFSTEP]
intros
[GOAL]
case refine'_9
α : Type ?u.64148
inst✝ : AddMonoid α
⊢ ∀ {α_1 β γ : Type ?u.64153} (x : AddConst α α_1) (g : AddConst α (α_1 → β)) (h : AddConst α (β → γ)),
(Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (Function.comp <$> h) fun x => g) fun x_1 => x
[PROOFSTEP]
intros
[GOAL]
case refine'_1
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
⊢ mapConst = map ∘ Function.const β✝
[PROOFSTEP]
simp [add_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_2
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ : Type ?u.64153
x✝ : AddConst α α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
simp [add_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_3
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ γ✝ : Type ?u.64153
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
x✝ : AddConst α α✝
⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝
[PROOFSTEP]
simp [add_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_4
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
x✝ : AddConst α α✝
y✝ : AddConst α β✝
⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝
[PROOFSTEP]
simp [add_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_5
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
x✝ : AddConst α α✝
y✝ : AddConst α β✝
⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝
[PROOFSTEP]
simp [add_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_6
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
g✝ : α✝ → β✝
x✝ : AddConst α α✝
⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝
[PROOFSTEP]
simp [add_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_7
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
g✝ : α✝ → β✝
x✝ : α✝
⊢ g✝ <$> pure x✝ = pure (g✝ x✝)
[PROOFSTEP]
simp [add_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_8
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
g✝ : AddConst α (α✝ → β✝)
x✝ : α✝
⊢ (Seq.seq g✝ fun x => pure x✝) = (fun h => h x✝) <$> g✝
[PROOFSTEP]
simp [add_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_9
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ γ✝ : Type ?u.64153
x✝ : AddConst α α✝
g✝ : AddConst α (α✝ → β✝)
h✝ : AddConst α (β✝ → γ✝)
⊢ (Seq.seq h✝ fun x => Seq.seq g✝ fun x => x✝) = Seq.seq (Seq.seq (Function.comp <$> h✝) fun x => g✝) fun x => x✝
[PROOFSTEP]
simp [add_assoc, (· <$> ·), Seq.seq, pure]
[GOAL]
case refine'_1
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
⊢ mapConst = Const.map ∘ Function.const β✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ : Type ?u.64153
x✝ : AddConst α α✝
⊢ Const.map id x✝ = x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_3
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ γ✝ : Type ?u.64153
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
x✝ : AddConst α α✝
⊢ Const.map (h✝ ∘ g✝) x✝ = Const.map h✝ (Const.map g✝ x✝)
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
x✝ : AddConst α α✝
y✝ : AddConst α β✝
⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Const.map (Function.const β✝) x✝ + y✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_5
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
x✝ : AddConst α α✝
y✝ : AddConst α β✝
⊢ (SeqRight.seqRight x✝ fun x => y✝) = Const.map (Function.const α✝ id) x✝ + y✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_6
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
g✝ : α✝ → β✝
x✝ : AddConst α α✝
⊢ x✝ = Const.map g✝ x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_7
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
g✝ : α✝ → β✝
x✝ : α✝
⊢ Const.map g✝ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
case refine'_8
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ : Type ?u.64153
g✝ : AddConst α (α✝ → β✝)
x✝ : α✝
⊢ g✝ = Const.map (fun h => h x✝) g✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_9
α : Type ?u.64148
inst✝ : AddMonoid α
α✝ β✝ γ✝ : Type ?u.64153
x✝ : AddConst α α✝
g✝ : AddConst α (α✝ → β✝)
h✝ : AddConst α (β✝ → γ✝)
⊢ h✝ + (g✝ + x✝) = Const.map Function.comp h✝ + (g✝ + x✝)
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Control.Applicative", "llama_tokens": 26015} |
[GOAL]
F✝ : Type u → Type v
α β γ : Type u
inst✝¹ : Functor F✝
inst✝ : LawfulFunctor F✝
F : Type u_1 → Type u_2
m : {α β : Type u_1} → (α → β) → F α → F β
mc : {α β : Type u_1} → α → F β → F α
m' : {α β : Type u_1} → (α → β) → F α → F β
mc' : {α β : Type u_1} → α → F β → F α
H1 : LawfulFunctor F
H2 : LawfulFunctor F
H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x
⊢ { map := m, mapConst := mc } = { map := m', mapConst := mc' }
[PROOFSTEP]
cases show @m = @m' by funext α β f x; apply H
[GOAL]
F✝ : Type u → Type v
α β γ : Type u
inst✝¹ : Functor F✝
inst✝ : LawfulFunctor F✝
F : Type u_1 → Type u_2
m : {α β : Type u_1} → (α → β) → F α → F β
mc : {α β : Type u_1} → α → F β → F α
m' : {α β : Type u_1} → (α → β) → F α → F β
mc' : {α β : Type u_1} → α → F β → F α
H1 : LawfulFunctor F
H2 : LawfulFunctor F
H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x
⊢ m = m'
[PROOFSTEP]
funext α β f x
[GOAL]
case h.h.h.h
F✝ : Type u → Type v
α✝ β✝ γ : Type u
inst✝¹ : Functor F✝
inst✝ : LawfulFunctor F✝
F : Type u_1 → Type u_2
m : {α β : Type u_1} → (α → β) → F α → F β
mc : {α β : Type u_1} → α → F β → F α
m' : {α β : Type u_1} → (α → β) → F α → F β
mc' : {α β : Type u_1} → α → F β → F α
H1 : LawfulFunctor F
H2 : LawfulFunctor F
H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x
α β : Type u_1
f : α → β
x : F α
⊢ m f x = m' f x
[PROOFSTEP]
apply H
[GOAL]
case refl
F✝ : Type u → Type v
α β γ : Type u
inst✝¹ : Functor F✝
inst✝ : LawfulFunctor F✝
F : Type u_1 → Type u_2
m : {α β : Type u_1} → (α → β) → F α → F β
mc mc' : {α β : Type u_1} → α → F β → F α
H1 : LawfulFunctor F
H2 : LawfulFunctor F
H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x
⊢ { map := m, mapConst := mc } = { map := m, mapConst := mc' }
[PROOFSTEP]
congr
[GOAL]
case refl.e_mapConst
F✝ : Type u → Type v
α β γ : Type u
inst✝¹ : Functor F✝
inst✝ : LawfulFunctor F✝
F : Type u_1 → Type u_2
m : {α β : Type u_1} → (α → β) → F α → F β
mc mc' : {α β : Type u_1} → α → F β → F α
H1 : LawfulFunctor F
H2 : LawfulFunctor F
H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x
⊢ mc = mc'
[PROOFSTEP]
funext α β
[GOAL]
case refl.e_mapConst.h.h
F✝ : Type u → Type v
α✝ β✝ γ : Type u
inst✝¹ : Functor F✝
inst✝ : LawfulFunctor F✝
F : Type u_1 → Type u_2
m : {α β : Type u_1} → (α → β) → F α → F β
mc mc' : {α β : Type u_1} → α → F β → F α
H1 : LawfulFunctor F
H2 : LawfulFunctor F
H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x
α β : Type u_1
⊢ mc = mc'
[PROOFSTEP]
have E1 := @map_const _ ⟨@m, @mc⟩ H1
[GOAL]
case refl.e_mapConst.h.h
F✝ : Type u → Type v
α✝ β✝ γ : Type u
inst✝¹ : Functor F✝
inst✝ : LawfulFunctor F✝
F : Type u_1 → Type u_2
m : {α β : Type u_1} → (α → β) → F α → F β
mc mc' : {α β : Type u_1} → α → F β → F α
H1 : LawfulFunctor F
H2 : LawfulFunctor F
H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x
α β : Type u_1
E1 : ∀ {α β : Type u_1}, mapConst = map ∘ Function.const β
⊢ mc = mc'
[PROOFSTEP]
have E2 := @map_const _ ⟨@m, @mc'⟩ H2
[GOAL]
case refl.e_mapConst.h.h
F✝ : Type u → Type v
α✝ β✝ γ : Type u
inst✝¹ : Functor F✝
inst✝ : LawfulFunctor F✝
F : Type u_1 → Type u_2
m : {α β : Type u_1} → (α → β) → F α → F β
mc mc' : {α β : Type u_1} → α → F β → F α
H1 : LawfulFunctor F
H2 : LawfulFunctor F
H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x
α β : Type u_1
E1 : ∀ {α β : Type u_1}, mapConst = map ∘ Function.const β
E2 : ∀ {α β : Type u_1}, mapConst = map ∘ Function.const β
⊢ mc = mc'
[PROOFSTEP]
exact E1.trans E2.symm
[GOAL]
γ : Type ?u.2497
⊢ LawfulFunctor (Const γ)
[PROOFSTEP]
constructor
[GOAL]
case map_const
γ : Type ?u.2497
⊢ ∀ {α β : Type ?u.2498}, mapConst = map ∘ Function.const β
[PROOFSTEP]
intros
[GOAL]
case id_map
γ : Type ?u.2497
⊢ ∀ {α : Type ?u.2498} (x : Const γ α), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
case comp_map
γ : Type ?u.2497
⊢ ∀ {α β γ_1 : Type ?u.2498} (g : α → β) (h : β → γ_1) (x : Const γ α), (h ∘ g) <$> x = h <$> g <$> x
[PROOFSTEP]
intros
[GOAL]
case map_const
γ : Type ?u.2497
α✝ β✝ : Type ?u.2498
⊢ mapConst = map ∘ Function.const β✝
[PROOFSTEP]
rfl
[GOAL]
case id_map
γ : Type ?u.2497
α✝ : Type ?u.2498
x✝ : Const γ α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
rfl
[GOAL]
case comp_map
γ : Type ?u.2497
α✝ β✝ γ✝ : Type ?u.2498
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
x✝ : Const γ α✝
⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Functor F
inst✝² : Functor G
inst✝¹ : LawfulFunctor F
inst✝ : LawfulFunctor G
α β γ : Type v
x : F (G α)
⊢ Comp.map id (mk x) = mk x
[PROOFSTEP]
simp [Comp.map, Functor.map_id]
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Functor F
inst✝² : Functor G
inst✝¹ : LawfulFunctor F
inst✝ : LawfulFunctor G
α β γ : Type v
x : F (G α)
⊢ mk (mk x) = mk x
[PROOFSTEP]
rfl
-- porting note: `rfl` wasn't needed in mathlib3
[GOAL]
F : Type u → Type w
G : Type v → Type u
inst✝³ : Functor F
inst✝² : Functor G
inst✝¹ : LawfulFunctor F
inst✝ : LawfulFunctor G
α β γ : Type v
g' : α → β
h : β → γ
x : F (G α)
⊢ Comp.map (h ∘ g') (mk x) = Comp.map h (Comp.map g' (mk x))
[PROOFSTEP]
simp [Comp.map, Comp.mk, Functor.map_comp_map, functor_norm]
-- porting note: `Comp.mk` wasn't needed in mathlib3
| {"mathlib_filename": "Mathlib.Control.Functor", "llama_tokens": 2951} |
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
⊢ Injective boxes
[PROOFSTEP]
rintro ⟨s₁, h₁, h₁'⟩ ⟨s₂, h₂, h₂'⟩ (rfl : s₁ = s₂)
[GOAL]
case mk.mk
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
s₁ : Finset (Box ι)
h₁ : ∀ (J : Box ι), J ∈ s₁ → J ≤ I
h₁' : Set.Pairwise (↑s₁) (Disjoint on Box.toSet)
h₂ : ∀ (J : Box ι), J ∈ s₁ → J ≤ I
h₂' : Set.Pairwise (↑s₁) (Disjoint on Box.toSet)
⊢ { boxes := s₁, le_of_mem' := h₁, pairwiseDisjoint := h₁' } =
{ boxes := s₁, le_of_mem' := h₂, pairwiseDisjoint := h₂' }
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
I✝ J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I✝
x : ι → ℝ
I J : Box ι
h : J ≤ I
⊢ ∀ (J_1 : Box ι), J_1 ∈ {J} → J_1 ≤ I
[PROOFSTEP]
simpa
[GOAL]
ι : Type u_1
I✝ J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I✝
x : ι → ℝ
I J : Box ι
h : J ≤ I
⊢ Set.Pairwise (↑{J}) (Disjoint on Box.toSet)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
⊢ ∀ (a b : Prepartition I), a ≤ b → b ≤ a → a = b
[PROOFSTEP]
suffices : ∀ {π₁ π₂ : Prepartition I}, π₁ ≤ π₂ → π₂ ≤ π₁ → π₁.boxes ⊆ π₂.boxes
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
this : ∀ {π₁ π₂ : Prepartition I}, π₁ ≤ π₂ → π₂ ≤ π₁ → π₁.boxes ⊆ π₂.boxes
⊢ ∀ (a b : Prepartition I), a ≤ b → b ≤ a → a = b
case this
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
⊢ ∀ {π₁ π₂ : Prepartition I}, π₁ ≤ π₂ → π₂ ≤ π₁ → π₁.boxes ⊆ π₂.boxes
[PROOFSTEP]
exact fun π₁ π₂ h₁ h₂ => injective_boxes (Subset.antisymm (this h₁ h₂) (this h₂ h₁))
[GOAL]
case this
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
⊢ ∀ {π₁ π₂ : Prepartition I}, π₁ ≤ π₂ → π₂ ≤ π₁ → π₁.boxes ⊆ π₂.boxes
[PROOFSTEP]
intro π₁ π₂ h₁ h₂ J hJ
[GOAL]
case this
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
π₁ π₂ : Prepartition I
h₁ : π₁ ≤ π₂
h₂ : π₂ ≤ π₁
J : Box ι
hJ : J ∈ π₁.boxes
⊢ J ∈ π₂.boxes
[PROOFSTEP]
rcases h₁ hJ with ⟨J', hJ', hle⟩
[GOAL]
case this.intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
π₁ π₂ : Prepartition I
h₁ : π₁ ≤ π₂
h₂ : π₂ ≤ π₁
J : Box ι
hJ : J ∈ π₁.boxes
J' : Box ι
hJ' : J' ∈ π₂
hle : J ≤ J'
⊢ J ∈ π₂.boxes
[PROOFSTEP]
rcases h₂ hJ' with ⟨J'', hJ'', hle'⟩
[GOAL]
case this.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
π₁ π₂ : Prepartition I
h₁ : π₁ ≤ π₂
h₂ : π₂ ≤ π₁
J : Box ι
hJ : J ∈ π₁.boxes
J' : Box ι
hJ' : J' ∈ π₂
hle : J ≤ J'
J'' : Box ι
hJ'' : J'' ∈ π₁
hle' : J' ≤ J''
⊢ J ∈ π₂.boxes
[PROOFSTEP]
obtain rfl : J = J''
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
π₁ π₂ : Prepartition I
h₁ : π₁ ≤ π₂
h₂ : π₂ ≤ π₁
J : Box ι
hJ : J ∈ π₁.boxes
J' : Box ι
hJ' : J' ∈ π₂
hle : J ≤ J'
J'' : Box ι
hJ'' : J'' ∈ π₁
hle' : J' ≤ J''
⊢ J = J''
case this.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
π₁ π₂ : Prepartition I
h₁ : π₁ ≤ π₂
h₂ : π₂ ≤ π₁
J : Box ι
hJ : J ∈ π₁.boxes
J' : Box ι
hJ' : J' ∈ π₂
hle : J ≤ J'
hJ'' : J ∈ π₁
hle' : J' ≤ J
⊢ J ∈ π₂.boxes
[PROOFSTEP]
exact π₁.eq_of_le hJ hJ'' (hle.trans hle')
[GOAL]
case this.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
π₁ π₂ : Prepartition I
h₁ : π₁ ≤ π₂
h₂ : π₂ ≤ π₁
J : Box ι
hJ : J ∈ π₁.boxes
J' : Box ι
hJ' : J' ∈ π₂
hle : J ≤ J'
hJ'' : J ∈ π₁
hle' : J' ≤ J
⊢ J ∈ π₂.boxes
[PROOFSTEP]
obtain rfl : J' = J
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
π₁ π₂ : Prepartition I
h₁ : π₁ ≤ π₂
h₂ : π₂ ≤ π₁
J : Box ι
hJ : J ∈ π₁.boxes
J' : Box ι
hJ' : J' ∈ π₂
hle : J ≤ J'
hJ'' : J ∈ π₁
hle' : J' ≤ J
⊢ J' = J
case this.intro.intro.intro.intro
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
π₁ π₂ : Prepartition I
h₁ : π₁ ≤ π₂
h₂ : π₂ ≤ π₁
J' : Box ι
hJ' : J' ∈ π₂
hJ : J' ∈ π₁.boxes
hle : J' ≤ J'
hJ'' : J' ∈ π₁
hle' : J' ≤ J'
⊢ J' ∈ π₂.boxes
[PROOFSTEP]
exact le_antisymm ‹_› ‹_›
[GOAL]
case this.intro.intro.intro.intro
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
π₁ π₂ : Prepartition I
h₁ : π₁ ≤ π₂
h₂ : π₂ ≤ π₁
J' : Box ι
hJ' : J' ∈ π₂
hJ : J' ∈ π₁.boxes
hle : J' ≤ J'
hJ'' : J' ∈ π₁
hle' : J' ≤ J'
⊢ J' ∈ π₂.boxes
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
π : Prepartition I
J : Box ι
hJ : J ∈ π
⊢ I ∈ ⊤
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
⊢ InjOn (fun J => {i | Box.lower J i = x i}) {J | J ∈ π ∧ x ∈ ↑Box.Icc J}
[PROOFSTEP]
rintro J₁ ⟨h₁, hx₁⟩ J₂ ⟨h₂, hx₂⟩ (H : {i | J₁.lower i = x i} = {i | J₂.lower i = x i})
[GOAL]
case intro.intro
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
H : {i | Box.lower J₁ i = x i} = {i | Box.lower J₂ i = x i}
⊢ J₁ = J₂
[PROOFSTEP]
suffices ∀ i, (Ioc (J₁.lower i) (J₁.upper i) ∩ Ioc (J₂.lower i) (J₂.upper i)).Nonempty
by
choose y hy₁ hy₂ using this
exact π.eq_of_mem_of_mem h₁ h₂ hy₁ hy₂
[GOAL]
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
H : {i | Box.lower J₁ i = x i} = {i | Box.lower J₂ i = x i}
this : ∀ (i : ι), Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i))
⊢ J₁ = J₂
[PROOFSTEP]
choose y hy₁ hy₂ using this
[GOAL]
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
H : {i | Box.lower J₁ i = x i} = {i | Box.lower J₂ i = x i}
y : ι → ℝ
hy₁ : ∀ (i : ι), y i ∈ Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i)
hy₂ : ∀ (i : ι), y i ∈ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)
⊢ J₁ = J₂
[PROOFSTEP]
exact π.eq_of_mem_of_mem h₁ h₂ hy₁ hy₂
[GOAL]
case intro.intro
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
H : {i | Box.lower J₁ i = x i} = {i | Box.lower J₂ i = x i}
⊢ ∀ (i : ι), Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i))
[PROOFSTEP]
intro i
[GOAL]
case intro.intro
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
H : {i | Box.lower J₁ i = x i} = {i | Box.lower J₂ i = x i}
i : ι
⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i))
[PROOFSTEP]
simp only [Set.ext_iff, mem_setOf] at H
[GOAL]
case intro.intro
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
i : ι
H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1
⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i))
[PROOFSTEP]
cases' (hx₁.1 i).eq_or_lt with hi₁ hi₁
[GOAL]
case intro.intro.inl
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
i : ι
H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1
hi₁ : Box.lower J₁ i = x i
⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i))
[PROOFSTEP]
have hi₂ : J₂.lower i = x i := (H _).1 hi₁
[GOAL]
case intro.intro.inl
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
i : ι
H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1
hi₁ : Box.lower J₁ i = x i
hi₂ : Box.lower J₂ i = x i
⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i))
[PROOFSTEP]
have H₁ : x i < J₁.upper i := by simpa only [hi₁] using J₁.lower_lt_upper i
[GOAL]
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
i : ι
H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1
hi₁ : Box.lower J₁ i = x i
hi₂ : Box.lower J₂ i = x i
⊢ x i < Box.upper J₁ i
[PROOFSTEP]
simpa only [hi₁] using J₁.lower_lt_upper i
[GOAL]
case intro.intro.inl
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
i : ι
H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1
hi₁ : Box.lower J₁ i = x i
hi₂ : Box.lower J₂ i = x i
H₁ : x i < Box.upper J₁ i
⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i))
[PROOFSTEP]
have H₂ : x i < J₂.upper i := by simpa only [hi₂] using J₂.lower_lt_upper i
[GOAL]
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
i : ι
H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1
hi₁ : Box.lower J₁ i = x i
hi₂ : Box.lower J₂ i = x i
H₁ : x i < Box.upper J₁ i
⊢ x i < Box.upper J₂ i
[PROOFSTEP]
simpa only [hi₂] using J₂.lower_lt_upper i
[GOAL]
case intro.intro.inl
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
i : ι
H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1
hi₁ : Box.lower J₁ i = x i
hi₂ : Box.lower J₂ i = x i
H₁ : x i < Box.upper J₁ i
H₂ : x i < Box.upper J₂ i
⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i))
[PROOFSTEP]
rw [Ioc_inter_Ioc, hi₁, hi₂, sup_idem, Set.nonempty_Ioc]
[GOAL]
case intro.intro.inl
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
i : ι
H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1
hi₁ : Box.lower J₁ i = x i
hi₂ : Box.lower J₂ i = x i
H₁ : x i < Box.upper J₁ i
H₂ : x i < Box.upper J₂ i
⊢ x i < Box.upper J₁ i ⊓ Box.upper J₂ i
[PROOFSTEP]
exact lt_min H₁ H₂
[GOAL]
case intro.intro.inr
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
i : ι
H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1
hi₁ : Box.lower J₁ i < x i
⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i))
[PROOFSTEP]
have hi₂ : J₂.lower i < x i := (hx₂.1 i).lt_of_ne (mt (H _).2 hi₁.ne)
[GOAL]
case intro.intro.inr
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ x : ι → ℝ
J₁ : Box ι
h₁ : J₁ ∈ π
hx₁ : x ∈ ↑Box.Icc J₁
J₂ : Box ι
h₂ : J₂ ∈ π
hx₂ : x ∈ ↑Box.Icc J₂
i : ι
H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1
hi₁ : Box.lower J₁ i < x i
hi₂ : Box.lower J₂ i < x i
⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i))
[PROOFSTEP]
exact ⟨x i, ⟨hi₁, hx₁.2 i⟩, ⟨hi₂, hx₂.2 i⟩⟩
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
inst✝ : Fintype ι
x : ι → ℝ
⊢ card (filter (fun J => x ∈ ↑Box.Icc J) π.boxes) ≤ 2 ^ Fintype.card ι
[PROOFSTEP]
rw [← Fintype.card_set]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
inst✝ : Fintype ι
x : ι → ℝ
⊢ card (filter (fun J => x ∈ ↑Box.Icc J) π.boxes) ≤ Fintype.card (Set ι)
[PROOFSTEP]
refine' Finset.card_le_card_of_inj_on (fun J : Box ι => {i | J.lower i = x i}) (fun _ _ => Finset.mem_univ _) _
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
inst✝ : Fintype ι
x : ι → ℝ
⊢ ∀ (a₁ : Box ι),
a₁ ∈ filter (fun J => x ∈ ↑Box.Icc J) π.boxes →
∀ (a₂ : Box ι),
a₂ ∈ filter (fun J => x ∈ ↑Box.Icc J) π.boxes →
(fun J => {i | Box.lower J i = x i}) a₁ = (fun J => {i | Box.lower J i = x i}) a₂ → a₁ = a₂
[PROOFSTEP]
simpa only [Finset.mem_filter] using π.injOn_setOf_mem_Icc_setOf_lower_eq x
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
⊢ x ∈ Prepartition.iUnion π ↔ ∃ J, J ∈ π ∧ x ∈ J
[PROOFSTEP]
convert Set.mem_iUnion₂
[GOAL]
case h.e'_2.h.e'_2.h.a
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
x✝ : Box ι
⊢ x✝ ∈ π ∧ x ∈ x✝ ↔ ∃ j, x ∈ ↑x✝
[PROOFSTEP]
rw [Box.mem_coe, exists_prop]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
h : J ≤ I
⊢ Prepartition.iUnion (single I J h) = ↑J
[PROOFSTEP]
simp [iUnion_def]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
⊢ Prepartition.iUnion ⊤ = ↑I
[PROOFSTEP]
simp [Prepartition.iUnion]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
⊢ Prepartition.iUnion π₁ = ∅ ↔ π₁ = ⊥
[PROOFSTEP]
simp [← injective_boxes.eq_iff, Finset.ext_iff, Prepartition.iUnion, imp_false]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
⊢ π₁ ≤ π₂ ↔
(∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J') ∧
Prepartition.iUnion π₁ ⊆ Prepartition.iUnion π₂
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
⊢ π₁ ≤ π₂ →
(∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J') ∧
Prepartition.iUnion π₁ ⊆ Prepartition.iUnion π₂
[PROOFSTEP]
refine' fun H => ⟨fun J hJ J' hJ' Hne => _, iUnion_mono H⟩
[GOAL]
case mp
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
H : π₁ ≤ π₂
J : Box ι
hJ : J ∈ π₁
J' : Box ι
hJ' : J' ∈ π₂
Hne : Set.Nonempty (↑J ∩ ↑J')
⊢ J ≤ J'
[PROOFSTEP]
rcases H hJ with ⟨J'', hJ'', Hle⟩
[GOAL]
case mp.intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
H : π₁ ≤ π₂
J : Box ι
hJ : J ∈ π₁
J' : Box ι
hJ' : J' ∈ π₂
Hne : Set.Nonempty (↑J ∩ ↑J')
J'' : Box ι
hJ'' : J'' ∈ π₂
Hle : J ≤ J''
⊢ J ≤ J'
[PROOFSTEP]
rcases Hne with ⟨x, hx, hx'⟩
[GOAL]
case mp.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
H : π₁ ≤ π₂
J : Box ι
hJ : J ∈ π₁
J' : Box ι
hJ' : J' ∈ π₂
J'' : Box ι
hJ'' : J'' ∈ π₂
Hle : J ≤ J''
x : ι → ℝ
hx : x ∈ ↑J
hx' : x ∈ ↑J'
⊢ J ≤ J'
[PROOFSTEP]
rwa [π₂.eq_of_mem_of_mem hJ' hJ'' hx' (Hle hx)]
[GOAL]
case mpr
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
⊢ (∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J') ∧
Prepartition.iUnion π₁ ⊆ Prepartition.iUnion π₂ →
π₁ ≤ π₂
[PROOFSTEP]
rintro ⟨H, HU⟩ J hJ
[GOAL]
case mpr.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
H : ∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J'
HU : Prepartition.iUnion π₁ ⊆ Prepartition.iUnion π₂
J : Box ι
hJ : J ∈ π₁
⊢ ∃ I', I' ∈ π₂ ∧ J ≤ I'
[PROOFSTEP]
simp only [Set.subset_def, mem_iUnion] at HU
[GOAL]
case mpr.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
H : ∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J'
J : Box ι
hJ : J ∈ π₁
HU : ∀ (x : ι → ℝ), (∃ J, J ∈ π₁ ∧ x ∈ J) → ∃ J, J ∈ π₂ ∧ x ∈ J
⊢ ∃ I', I' ∈ π₂ ∧ J ≤ I'
[PROOFSTEP]
rcases HU J.upper ⟨J, hJ, J.upper_mem⟩ with ⟨J₂, hJ₂, hx⟩
[GOAL]
case mpr.intro.intro.intro
ι : Type u_1
I J✝ J₁ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
H : ∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J'
J : Box ι
hJ : J ∈ π₁
HU : ∀ (x : ι → ℝ), (∃ J, J ∈ π₁ ∧ x ∈ J) → ∃ J, J ∈ π₂ ∧ x ∈ J
J₂ : Box ι
hJ₂ : J₂ ∈ π₂
hx : J.upper ∈ J₂
⊢ ∃ I', I' ∈ π₂ ∧ J ≤ I'
[PROOFSTEP]
exact ⟨J₂, hJ₂, H _ hJ _ hJ₂ ⟨_, J.upper_mem, hx⟩⟩
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi : (J : Box ι) → Prepartition J
J : Box ι
hJ : J ∈ Finset.biUnion π.boxes fun J => (πi J).boxes
⊢ J ≤ I
[PROOFSTEP]
simp only [Finset.mem_biUnion, exists_prop, mem_boxes] at hJ
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi : (J : Box ι) → Prepartition J
J : Box ι
hJ : ∃ a, a ∈ π ∧ J ∈ πi a
⊢ J ≤ I
[PROOFSTEP]
rcases hJ with ⟨J', hJ', hJ⟩
[GOAL]
case intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi : (J : Box ι) → Prepartition J
J J' : Box ι
hJ' : J' ∈ π
hJ : J ∈ πi J'
⊢ J ≤ I
[PROOFSTEP]
exact ((πi J').le_of_mem hJ).trans (π.le_of_mem hJ')
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi : (J : Box ι) → Prepartition J
⊢ Set.Pairwise (↑(Finset.biUnion π.boxes fun J => (πi J).boxes)) (Disjoint on Box.toSet)
[PROOFSTEP]
simp only [Set.Pairwise, Finset.mem_coe, Finset.mem_biUnion]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi : (J : Box ι) → Prepartition J
⊢ ∀ ⦃x : Box ι⦄,
(∃ a, a ∈ π.boxes ∧ x ∈ (πi a).boxes) →
∀ ⦃y : Box ι⦄, (∃ a, a ∈ π.boxes ∧ y ∈ (πi a).boxes) → x ≠ y → (Disjoint on Box.toSet) x y
[PROOFSTEP]
rintro J₁' ⟨J₁, hJ₁, hJ₁'⟩ J₂' ⟨J₂, hJ₂, hJ₂'⟩ Hne
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi : (J : Box ι) → Prepartition J
J₁' J₁ : Box ι
hJ₁ : J₁ ∈ π.boxes
hJ₁' : J₁' ∈ (πi J₁).boxes
J₂' J₂ : Box ι
hJ₂ : J₂ ∈ π.boxes
hJ₂' : J₂' ∈ (πi J₂).boxes
Hne : J₁' ≠ J₂'
⊢ (Disjoint on Box.toSet) J₁' J₂'
[PROOFSTEP]
rw [Function.onFun, Set.disjoint_left]
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi : (J : Box ι) → Prepartition J
J₁' J₁ : Box ι
hJ₁ : J₁ ∈ π.boxes
hJ₁' : J₁' ∈ (πi J₁).boxes
J₂' J₂ : Box ι
hJ₂ : J₂ ∈ π.boxes
hJ₂' : J₂' ∈ (πi J₂).boxes
Hne : J₁' ≠ J₂'
⊢ ∀ ⦃a : ι → ℝ⦄, a ∈ ↑J₁' → ¬a ∈ ↑J₂'
[PROOFSTEP]
rintro x hx₁ hx₂
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
πi : (J : Box ι) → Prepartition J
J₁' J₁ : Box ι
hJ₁ : J₁ ∈ π.boxes
hJ₁' : J₁' ∈ (πi J₁).boxes
J₂' J₂ : Box ι
hJ₂ : J₂ ∈ π.boxes
hJ₂' : J₂' ∈ (πi J₂).boxes
Hne : J₁' ≠ J₂'
x : ι → ℝ
hx₁ : x ∈ ↑J₁'
hx₂ : x ∈ ↑J₂'
⊢ False
[PROOFSTEP]
apply Hne
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
πi : (J : Box ι) → Prepartition J
J₁' J₁ : Box ι
hJ₁ : J₁ ∈ π.boxes
hJ₁' : J₁' ∈ (πi J₁).boxes
J₂' J₂ : Box ι
hJ₂ : J₂ ∈ π.boxes
hJ₂' : J₂' ∈ (πi J₂).boxes
Hne : J₁' ≠ J₂'
x : ι → ℝ
hx₁ : x ∈ ↑J₁'
hx₂ : x ∈ ↑J₂'
⊢ J₁' = J₂'
[PROOFSTEP]
obtain rfl : J₁ = J₂
[GOAL]
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
πi : (J : Box ι) → Prepartition J
J₁' J₁ : Box ι
hJ₁ : J₁ ∈ π.boxes
hJ₁' : J₁' ∈ (πi J₁).boxes
J₂' J₂ : Box ι
hJ₂ : J₂ ∈ π.boxes
hJ₂' : J₂' ∈ (πi J₂).boxes
Hne : J₁' ≠ J₂'
x : ι → ℝ
hx₁ : x ∈ ↑J₁'
hx₂ : x ∈ ↑J₂'
⊢ J₁ = J₂
case intro.intro.intro.intro
ι : Type u_1
I J J₁✝ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
πi : (J : Box ι) → Prepartition J
J₁' J₁ : Box ι
hJ₁ : J₁ ∈ π.boxes
hJ₁' : J₁' ∈ (πi J₁).boxes
J₂' : Box ι
Hne : J₁' ≠ J₂'
x : ι → ℝ
hx₁ : x ∈ ↑J₁'
hx₂ : x ∈ ↑J₂'
hJ₂ : J₁ ∈ π.boxes
hJ₂' : J₂' ∈ (πi J₁).boxes
⊢ J₁' = J₂'
[PROOFSTEP]
exact π.eq_of_mem_of_mem hJ₁ hJ₂ ((πi J₁).le_of_mem hJ₁' hx₁) ((πi J₂).le_of_mem hJ₂' hx₂)
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
I J J₁✝ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
πi : (J : Box ι) → Prepartition J
J₁' J₁ : Box ι
hJ₁ : J₁ ∈ π.boxes
hJ₁' : J₁' ∈ (πi J₁).boxes
J₂' : Box ι
Hne : J₁' ≠ J₂'
x : ι → ℝ
hx₁ : x ∈ ↑J₁'
hx₂ : x ∈ ↑J₂'
hJ₂ : J₁ ∈ π.boxes
hJ₂' : J₂' ∈ (πi J₁).boxes
⊢ J₁' = J₂'
[PROOFSTEP]
exact (πi J₁).eq_of_mem_of_mem hJ₁' hJ₂' hx₁ hx₂
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
⊢ J ∈ biUnion π πi ↔ ∃ J', J' ∈ π ∧ J ∈ πi J'
[PROOFSTEP]
simp [biUnion]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
⊢ (biUnion π fun x => ⊤) = π
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
J✝ : Box ι
⊢ (J✝ ∈ biUnion π fun x => ⊤) ↔ J✝ ∈ π
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
h : π₁ = π₂
hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J
⊢ biUnion π₁ πi₁ = biUnion π₂ πi₂
[PROOFSTEP]
subst π₂
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J
⊢ biUnion π₁ πi₁ = biUnion π₁ πi₂
[PROOFSTEP]
ext J
[GOAL]
case h
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J
J : Box ι
⊢ J ∈ biUnion π₁ πi₁ ↔ J ∈ biUnion π₁ πi₂
[PROOFSTEP]
simp only [mem_biUnion]
[GOAL]
case h
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J
J : Box ι
⊢ (∃ J', J' ∈ π₁ ∧ J ∈ πi₁ J') ↔ ∃ J', J' ∈ π₁ ∧ J ∈ πi₂ J'
[PROOFSTEP]
constructor
[GOAL]
case h.mp
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J
J : Box ι
⊢ (∃ J', J' ∈ π₁ ∧ J ∈ πi₁ J') → ∃ J', J' ∈ π₁ ∧ J ∈ πi₂ J'
[PROOFSTEP]
exact fun ⟨J', h₁, h₂⟩ => ⟨J', h₁, hi J' h₁ ▸ h₂⟩
[GOAL]
case h.mpr
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J
J : Box ι
⊢ (∃ J', J' ∈ π₁ ∧ J ∈ πi₂ J') → ∃ J', J' ∈ π₁ ∧ J ∈ πi₁ J'
[PROOFSTEP]
exact fun ⟨J', h₁, h₂⟩ => ⟨J', h₁, hi J' h₁ ▸ h₂⟩
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
⊢ Prepartition.iUnion (biUnion π πi) = ⋃ (J : Box ι) (_ : J ∈ π), Prepartition.iUnion (πi J)
[PROOFSTEP]
simp [Prepartition.iUnion]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ : (J : Box ι) → Prepartition J
M : Type u_2
inst✝ : AddCommMonoid M
π : Prepartition I
πi : (J : Box ι) → Prepartition J
f : Box ι → M
⊢ ∑ J in Finset.biUnion π.boxes fun J => (πi J).boxes, f J = ∑ J in π.boxes, ∑ J' in (πi J).boxes, f J'
[PROOFSTEP]
refine' Finset.sum_biUnion fun J₁ h₁ J₂ h₂ hne => Finset.disjoint_left.2 fun J' h₁' h₂' => _
[GOAL]
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ : (J : Box ι) → Prepartition J
M : Type u_2
inst✝ : AddCommMonoid M
π : Prepartition I
πi : (J : Box ι) → Prepartition J
f : Box ι → M
J₁ : Box ι
h₁ : J₁ ∈ ↑π.boxes
J₂ : Box ι
h₂ : J₂ ∈ ↑π.boxes
hne : J₁ ≠ J₂
J' : Box ι
h₁' : J' ∈ (fun J => (πi J).boxes) J₁
h₂' : J' ∈ (fun J => (πi J).boxes) J₂
⊢ False
[PROOFSTEP]
exact hne (π.eq_of_le_of_le h₁ h₂ ((πi J₁).le_of_mem h₁') ((πi J₂).le_of_mem h₂'))
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hJ : J ∈ biUnion π πi
⊢ biUnionIndex π πi J ∈ π
[PROOFSTEP]
rw [biUnionIndex, dif_pos hJ]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hJ : J ∈ biUnion π πi
⊢ Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J') ∈ π
[PROOFSTEP]
exact (π.mem_biUnion.1 hJ).choose_spec.1
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
J : Box ι
⊢ biUnionIndex π πi J ≤ I
[PROOFSTEP]
by_cases hJ : J ∈ π.biUnion πi
[GOAL]
case pos
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
J : Box ι
hJ : J ∈ biUnion π πi
⊢ biUnionIndex π πi J ≤ I
[PROOFSTEP]
exact π.le_of_mem (π.biUnionIndex_mem hJ)
[GOAL]
case neg
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
J : Box ι
hJ : ¬J ∈ biUnion π πi
⊢ biUnionIndex π πi J ≤ I
[PROOFSTEP]
rw [biUnionIndex, dif_neg hJ]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hJ : J ∈ biUnion π πi
⊢ J ∈ πi (biUnionIndex π πi J)
[PROOFSTEP]
convert (π.mem_biUnion.1 hJ).choose_spec.2
[GOAL]
case h.e'_2.h.e'_2
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hJ : J ∈ biUnion π πi
⊢ biUnionIndex π πi J = Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J')
[PROOFSTEP]
exact dif_pos hJ
[GOAL]
case h.e'_3.e'_2
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hJ : J ∈ biUnion π πi
e_2✝ : Prepartition (biUnionIndex π πi J) = Prepartition (Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J'))
⊢ biUnionIndex π πi J = Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J')
[PROOFSTEP]
exact dif_pos hJ
[GOAL]
case h.e'_5.e'_1
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
hJ : J ∈ biUnion π πi
e_2✝ : Prepartition (biUnionIndex π πi J) = Prepartition (Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J'))
⊢ biUnionIndex π πi J = Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J')
[PROOFSTEP]
exact dif_pos hJ
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
πi' : Box ι → (J : Box ι) → Prepartition J
⊢ (biUnion π fun J => biUnion (πi J) (πi' J)) = biUnion (biUnion π πi) fun J => πi' (biUnionIndex π πi J) J
[PROOFSTEP]
ext J
[GOAL]
case h
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
πi' : Box ι → (J : Box ι) → Prepartition J
J : Box ι
⊢ (J ∈ biUnion π fun J => biUnion (πi J) (πi' J)) ↔ J ∈ biUnion (biUnion π πi) fun J => πi' (biUnionIndex π πi J) J
[PROOFSTEP]
simp only [mem_biUnion, exists_prop]
[GOAL]
case h
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
πi' : Box ι → (J : Box ι) → Prepartition J
J : Box ι
⊢ (∃ J', J' ∈ π ∧ ∃ J'_1, J'_1 ∈ πi J' ∧ J ∈ πi' J' J'_1) ↔
∃ J', (∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1) ∧ J ∈ πi' (biUnionIndex π πi J') J'
[PROOFSTEP]
constructor
[GOAL]
case h.mp
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
πi' : Box ι → (J : Box ι) → Prepartition J
J : Box ι
⊢ (∃ J', J' ∈ π ∧ ∃ J'_1, J'_1 ∈ πi J' ∧ J ∈ πi' J' J'_1) →
∃ J', (∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1) ∧ J ∈ πi' (biUnionIndex π πi J') J'
[PROOFSTEP]
rintro ⟨J₁, hJ₁, J₂, hJ₂, hJ⟩
[GOAL]
case h.mp.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
πi' : Box ι → (J : Box ι) → Prepartition J
J J₁ : Box ι
hJ₁ : J₁ ∈ π
J₂ : Box ι
hJ₂ : J₂ ∈ πi J₁
hJ : J ∈ πi' J₁ J₂
⊢ ∃ J', (∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1) ∧ J ∈ πi' (biUnionIndex π πi J') J'
[PROOFSTEP]
refine' ⟨J₂, ⟨J₁, hJ₁, hJ₂⟩, _⟩
[GOAL]
case h.mp.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
πi' : Box ι → (J : Box ι) → Prepartition J
J J₁ : Box ι
hJ₁ : J₁ ∈ π
J₂ : Box ι
hJ₂ : J₂ ∈ πi J₁
hJ : J ∈ πi' J₁ J₂
⊢ J ∈ πi' (biUnionIndex π πi J₂) J₂
[PROOFSTEP]
rwa [π.biUnionIndex_of_mem hJ₁ hJ₂]
[GOAL]
case h.mpr
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
πi' : Box ι → (J : Box ι) → Prepartition J
J : Box ι
⊢ (∃ J', (∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1) ∧ J ∈ πi' (biUnionIndex π πi J') J') →
∃ J', J' ∈ π ∧ ∃ J'_1, J'_1 ∈ πi J' ∧ J ∈ πi' J' J'_1
[PROOFSTEP]
rintro ⟨J₁, ⟨J₂, hJ₂, hJ₁⟩, hJ⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
πi' : Box ι → (J : Box ι) → Prepartition J
J J₁ : Box ι
hJ : J ∈ πi' (biUnionIndex π πi J₁) J₁
J₂ : Box ι
hJ₂ : J₂ ∈ π
hJ₁ : J₁ ∈ πi J₂
⊢ ∃ J', J' ∈ π ∧ ∃ J'_1, J'_1 ∈ πi J' ∧ J ∈ πi' J' J'_1
[PROOFSTEP]
refine' ⟨J₂, hJ₂, J₁, hJ₁, _⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
πi' : Box ι → (J : Box ι) → Prepartition J
J J₁ : Box ι
hJ : J ∈ πi' (biUnionIndex π πi J₁) J₁
J₂ : Box ι
hJ₂ : J₂ ∈ π
hJ₁ : J₁ ∈ πi J₂
⊢ J ∈ πi' J₂ J₁
[PROOFSTEP]
rwa [π.biUnionIndex_of_mem hJ₂ hJ₁] at hJ
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
J : Box ι
hJ : J ∈ ↑eraseNone boxes
⊢ J ≤ I
[PROOFSTEP]
rw [mem_eraseNone] at hJ
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
J : Box ι
hJ : some J ∈ boxes
⊢ J ≤ I
[PROOFSTEP]
simpa only [WithBot.some_eq_coe, WithBot.coe_le_coe] using le_of_mem _ hJ
[GOAL]
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
J₁ : Box ι
h₁ : J₁ ∈ ↑(↑eraseNone boxes)
J₂ : Box ι
h₂ : J₂ ∈ ↑(↑eraseNone boxes)
hne : J₁ ≠ J₂
⊢ (Disjoint on Box.toSet) J₁ J₂
[PROOFSTEP]
simp only [mem_coe, mem_eraseNone] at h₁ h₂
[GOAL]
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
J₁ J₂ : Box ι
hne : J₁ ≠ J₂
h₁ : some J₁ ∈ boxes
h₂ : some J₂ ∈ boxes
⊢ (Disjoint on Box.toSet) J₁ J₂
[PROOFSTEP]
exact Box.disjoint_coe.1 (pairwise_disjoint h₁ h₂ (mt Option.some_inj.1 hne))
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
⊢ Prepartition.iUnion (ofWithBot boxes le_of_mem pairwise_disjoint) = ⋃ (J : WithBot (Box ι)) (_ : J ∈ boxes), ↑J
[PROOFSTEP]
suffices ⋃ (J : Box ι) (_ : ↑J ∈ boxes), ↑J = ⋃ J ∈ boxes, (J : Set (ι → ℝ)) by simpa [ofWithBot, Prepartition.iUnion]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
this : ⋃ (J : Box ι) (_ : ↑J ∈ boxes), ↑J = ⋃ (J : WithBot (Box ι)) (_ : J ∈ boxes), ↑J
⊢ Prepartition.iUnion (ofWithBot boxes le_of_mem pairwise_disjoint) = ⋃ (J : WithBot (Box ι)) (_ : J ∈ boxes), ↑J
[PROOFSTEP]
simpa [ofWithBot, Prepartition.iUnion]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
⊢ ⋃ (J : Box ι) (_ : ↑J ∈ boxes), ↑J = ⋃ (J : WithBot (Box ι)) (_ : J ∈ boxes), ↑J
[PROOFSTEP]
simp only [← Box.biUnion_coe_eq_coe, @iUnion_comm _ _ (Box ι), @iUnion_comm _ _ (@Eq _ _ _), iUnion_iUnion_eq_right]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
H : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≠ ⊥ → ∃ J', J' ∈ π ∧ J ≤ ↑J'
⊢ ofWithBot boxes le_of_mem pairwise_disjoint ≤ π
[PROOFSTEP]
have : ∀ J : Box ι, ↑J ∈ boxes → ∃ J' ∈ π, J ≤ J' := fun J hJ => by
simpa only [WithBot.coe_le_coe] using H J hJ WithBot.coe_ne_bot
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
H : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≠ ⊥ → ∃ J', J' ∈ π ∧ J ≤ ↑J'
J : Box ι
hJ : ↑J ∈ boxes
⊢ ∃ J', J' ∈ π ∧ J ≤ J'
[PROOFSTEP]
simpa only [WithBot.coe_le_coe] using H J hJ WithBot.coe_ne_bot
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
H : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≠ ⊥ → ∃ J', J' ∈ π ∧ J ≤ ↑J'
this : ∀ (J : Box ι), ↑J ∈ boxes → ∃ J', J' ∈ π ∧ J ≤ J'
⊢ ofWithBot boxes le_of_mem pairwise_disjoint ≤ π
[PROOFSTEP]
simpa [ofWithBot, le_def]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
H : ∀ (J : Box ι), J ∈ π → ∃ J', J' ∈ boxes ∧ ↑J ≤ J'
⊢ π ≤ ofWithBot boxes le_of_mem pairwise_disjoint
[PROOFSTEP]
intro J hJ
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
H : ∀ (J : Box ι), J ∈ π → ∃ J', J' ∈ boxes ∧ ↑J ≤ J'
J : Box ι
hJ : J ∈ π
⊢ ∃ I', I' ∈ ofWithBot boxes le_of_mem pairwise_disjoint ∧ J ≤ I'
[PROOFSTEP]
rcases H J hJ with ⟨J', J'mem, hle⟩
[GOAL]
case intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
H : ∀ (J : Box ι), J ∈ π → ∃ J', J' ∈ boxes ∧ ↑J ≤ J'
J : Box ι
hJ : J ∈ π
J' : WithBot (Box ι)
J'mem : J' ∈ boxes
hle : ↑J ≤ J'
⊢ ∃ I', I' ∈ ofWithBot boxes le_of_mem pairwise_disjoint ∧ J ≤ I'
[PROOFSTEP]
lift J' to Box ι using ne_bot_of_le_ne_bot WithBot.coe_ne_bot hle
[GOAL]
case intro.intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
boxes : Finset (WithBot (Box ι))
le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I
pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint
H : ∀ (J : Box ι), J ∈ π → ∃ J', J' ∈ boxes ∧ ↑J ≤ J'
J : Box ι
hJ : J ∈ π
J' : Box ι
J'mem : ↑J' ∈ boxes
hle : ↑J ≤ ↑J'
⊢ ∃ I', I' ∈ ofWithBot boxes le_of_mem pairwise_disjoint ∧ J ≤ I'
[PROOFSTEP]
exact ⟨J', mem_ofWithBot.2 J'mem, WithBot.coe_le_coe.1 hle⟩
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
J : Box ι
J' : WithBot (Box ι)
hJ' : J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π.boxes
⊢ J' ≤ ↑J
[PROOFSTEP]
rcases Finset.mem_image.1 hJ' with ⟨J', -, rfl⟩
[GOAL]
case intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
J J' : Box ι
hJ' : ↑J ⊓ ↑J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π.boxes
⊢ ↑J ⊓ ↑J' ≤ ↑J
[PROOFSTEP]
exact inf_le_left
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
J : Box ι
⊢ Set.Pairwise (↑(Finset.image (fun J' => ↑J ⊓ ↑J') π.boxes)) Disjoint
[PROOFSTEP]
simp only [Set.Pairwise, onFun, Finset.mem_coe, Finset.mem_image]
[GOAL]
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
J : Box ι
⊢ ∀ ⦃x : WithBot (Box ι)⦄,
(∃ a, a ∈ π.boxes ∧ ↑J ⊓ ↑a = x) → ∀ ⦃y : WithBot (Box ι)⦄, (∃ a, a ∈ π.boxes ∧ ↑J ⊓ ↑a = y) → x ≠ y → Disjoint x y
[PROOFSTEP]
rintro _ ⟨J₁, h₁, rfl⟩ _ ⟨J₂, h₂, rfl⟩ Hne
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
I J✝ J₁✝ J₂✝ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
J J₁ : Box ι
h₁ : J₁ ∈ π.boxes
J₂ : Box ι
h₂ : J₂ ∈ π.boxes
Hne : ↑J ⊓ ↑J₁ ≠ ↑J ⊓ ↑J₂
⊢ Disjoint (↑J ⊓ ↑J₁) (↑J ⊓ ↑J₂)
[PROOFSTEP]
have : J₁ ≠ J₂ := by
rintro rfl
exact Hne rfl
[GOAL]
ι : Type u_1
I J✝ J₁✝ J₂✝ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
J J₁ : Box ι
h₁ : J₁ ∈ π.boxes
J₂ : Box ι
h₂ : J₂ ∈ π.boxes
Hne : ↑J ⊓ ↑J₁ ≠ ↑J ⊓ ↑J₂
⊢ J₁ ≠ J₂
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
I J✝ J₁✝ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
J J₁ : Box ι
h₁ h₂ : J₁ ∈ π.boxes
Hne : ↑J ⊓ ↑J₁ ≠ ↑J ⊓ ↑J₁
⊢ False
[PROOFSTEP]
exact Hne rfl
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
I J✝ J₁✝ J₂✝ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
J J₁ : Box ι
h₁ : J₁ ∈ π.boxes
J₂ : Box ι
h₂ : J₂ ∈ π.boxes
Hne : ↑J ⊓ ↑J₁ ≠ ↑J ⊓ ↑J₂
this : J₁ ≠ J₂
⊢ Disjoint (↑J ⊓ ↑J₁) (↑J ⊓ ↑J₂)
[PROOFSTEP]
exact ((Box.disjoint_coe.2 <| π.disjoint_coe_of_mem h₁ h₂ this).inf_left' _).inf_right' _
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
⊢ J₁ ∈ restrict π J ↔ ∃ J', J' ∈ π ∧ ↑J₁ = ↑J ⊓ ↑J'
[PROOFSTEP]
simp [restrict, eq_comm]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
⊢ J₁ ∈ restrict π J ↔ ∃ J', J' ∈ π ∧ ↑J₁ = ↑J ∩ ↑J'
[PROOFSTEP]
simp only [mem_restrict, ← Box.withBotCoe_inj, Box.coe_inf, Box.coe_coe]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π₁ π₂ : Prepartition I
Hle : π₁ ≤ π₂
⊢ restrict π₁ J ≤ restrict π₂ J
[PROOFSTEP]
refine' ofWithBot_mono fun J₁ hJ₁ hne => _
[GOAL]
ι : Type u_1
I J J₁✝ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π₁ π₂ : Prepartition I
Hle : π₁ ≤ π₂
J₁ : WithBot (Box ι)
hJ₁ : J₁ ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π₁.boxes
hne : J₁ ≠ ⊥
⊢ ∃ J', J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π₂.boxes ∧ J₁ ≤ J'
[PROOFSTEP]
rw [Finset.mem_image] at hJ₁
[GOAL]
ι : Type u_1
I J J₁✝ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π₁ π₂ : Prepartition I
Hle : π₁ ≤ π₂
J₁ : WithBot (Box ι)
hJ₁ : ∃ a, a ∈ π₁.boxes ∧ ↑J ⊓ ↑a = J₁
hne : J₁ ≠ ⊥
⊢ ∃ J', J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π₂.boxes ∧ J₁ ≤ J'
[PROOFSTEP]
rcases hJ₁ with ⟨J₁, hJ₁, rfl⟩
[GOAL]
case intro.intro
ι : Type u_1
I J J₁✝ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π₁ π₂ : Prepartition I
Hle : π₁ ≤ π₂
J₁ : Box ι
hJ₁ : J₁ ∈ π₁.boxes
hne : ↑J ⊓ ↑J₁ ≠ ⊥
⊢ ∃ J', J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π₂.boxes ∧ ↑J ⊓ ↑J₁ ≤ J'
[PROOFSTEP]
rcases Hle hJ₁ with ⟨J₂, hJ₂, hle⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
I J J₁✝ J₂✝ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π₁ π₂ : Prepartition I
Hle : π₁ ≤ π₂
J₁ : Box ι
hJ₁ : J₁ ∈ π₁.boxes
hne : ↑J ⊓ ↑J₁ ≠ ⊥
J₂ : Box ι
hJ₂ : J₂ ∈ π₂
hle : J₁ ≤ J₂
⊢ ∃ J', J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π₂.boxes ∧ ↑J ⊓ ↑J₁ ≤ J'
[PROOFSTEP]
exact ⟨_, Finset.mem_image_of_mem _ hJ₂, inf_le_inf_left _ <| WithBot.coe_le_coe.2 hle⟩
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
h : I ≤ J
⊢ (restrict π J).boxes = π.boxes
[PROOFSTEP]
simp only [restrict, ofWithBot, eraseNone_eq_biUnion]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
h : I ≤ J
⊢ Finset.biUnion (Finset.image (fun J' => ↑J ⊓ ↑J') π.boxes) Option.toFinset = π.boxes
[PROOFSTEP]
refine' Finset.image_biUnion.trans _
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
h : I ≤ J
⊢ (Finset.biUnion π.boxes fun a => Option.toFinset (↑J ⊓ ↑a)) = π.boxes
[PROOFSTEP]
refine' (Finset.biUnion_congr rfl _).trans Finset.biUnion_singleton_eq_self
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
h : I ≤ J
⊢ ∀ (a : Box ι), a ∈ π.boxes → Option.toFinset (↑J ⊓ ↑a) = {a}
[PROOFSTEP]
intro J' hJ'
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
h : I ≤ J
J' : Box ι
hJ' : J' ∈ π.boxes
⊢ Option.toFinset (↑J ⊓ ↑J') = {J'}
[PROOFSTEP]
rw [inf_of_le_right, ← WithBot.some_eq_coe, Option.toFinset_some]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
h : I ≤ J
J' : Box ι
hJ' : J' ∈ π.boxes
⊢ ↑J' ≤ ↑J
[PROOFSTEP]
exact WithBot.coe_le_coe.2 ((π.le_of_mem hJ').trans h)
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
⊢ Prepartition.iUnion (restrict π J) = ↑J ∩ Prepartition.iUnion π
[PROOFSTEP]
simp [restrict, ← inter_iUnion, ← iUnion_def]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
hJ : J ∈ π
⊢ restrict (biUnion π πi) J = πi J
[PROOFSTEP]
refine' (eq_of_boxes_subset_iUnion_superset (fun J₁ h₁ => _) _).symm
[GOAL]
case refine'_1
ι : Type u_1
I J J₁✝ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
hJ : J ∈ π
J₁ : Box ι
h₁ : J₁ ∈ (πi J).boxes
⊢ J₁ ∈ (restrict (biUnion π πi) J).boxes
[PROOFSTEP]
refine' (mem_restrict _).2 ⟨J₁, π.mem_biUnion.2 ⟨J, hJ, h₁⟩, (inf_of_le_right _).symm⟩
[GOAL]
case refine'_1
ι : Type u_1
I J J₁✝ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
hJ : J ∈ π
J₁ : Box ι
h₁ : J₁ ∈ (πi J).boxes
⊢ ↑J₁ ≤ ↑J
[PROOFSTEP]
exact WithBot.coe_le_coe.2 (le_of_mem _ h₁)
[GOAL]
case refine'_2
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
hJ : J ∈ π
⊢ Prepartition.iUnion (restrict (biUnion π πi) J) ⊆ Prepartition.iUnion (πi J)
[PROOFSTEP]
simp only [iUnion_restrict, iUnion_biUnion, Set.subset_def, Set.mem_inter_iff, Set.mem_iUnion]
[GOAL]
case refine'_2
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
hJ : J ∈ π
⊢ ∀ (x : ι → ℝ), (x ∈ ↑J ∧ ∃ i i_1, x ∈ Prepartition.iUnion (πi i)) → x ∈ Prepartition.iUnion (πi J)
[PROOFSTEP]
rintro x ⟨hxJ, J₁, h₁, hx⟩
[GOAL]
case refine'_2.intro.intro.intro
ι : Type u_1
I J J₁✝ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
hJ : J ∈ π
x : ι → ℝ
hxJ : x ∈ ↑J
J₁ : Box ι
h₁ : J₁ ∈ π
hx : x ∈ Prepartition.iUnion (πi J₁)
⊢ x ∈ Prepartition.iUnion (πi J)
[PROOFSTEP]
obtain rfl : J = J₁
[GOAL]
ι : Type u_1
I J J₁✝ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
hJ : J ∈ π
x : ι → ℝ
hxJ : x ∈ ↑J
J₁ : Box ι
h₁ : J₁ ∈ π
hx : x ∈ Prepartition.iUnion (πi J₁)
⊢ J = J₁
case refine'_2.intro.intro.intro
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
hJ : J ∈ π
x : ι → ℝ
hxJ : x ∈ ↑J
h₁ : J ∈ π
hx : x ∈ Prepartition.iUnion (πi J)
⊢ x ∈ Prepartition.iUnion (πi J)
[PROOFSTEP]
exact π.eq_of_mem_of_mem hJ h₁ hxJ (iUnion_subset _ hx)
[GOAL]
case refine'_2.intro.intro.intro
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x✝ : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
hJ : J ∈ π
x : ι → ℝ
hxJ : x ∈ ↑J
h₁ : J ∈ π
hx : x ∈ Prepartition.iUnion (πi J)
⊢ x ∈ Prepartition.iUnion (πi J)
[PROOFSTEP]
exact hx
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
⊢ biUnion π πi ≤ π' ↔ ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
⊢ biUnion π πi ≤ π' → ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J
[PROOFSTEP]
intro H J hJ
[GOAL]
case mpr
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
⊢ (∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J) → biUnion π πi ≤ π'
[PROOFSTEP]
intro H J hJ
[GOAL]
case mp
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : biUnion π πi ≤ π'
J : Box ι
hJ : J ∈ π
⊢ πi J ≤ restrict π' J
[PROOFSTEP]
rw [← π.restrict_biUnion πi hJ]
[GOAL]
case mp
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : biUnion π πi ≤ π'
J : Box ι
hJ : J ∈ π
⊢ restrict (biUnion π πi) J ≤ restrict π' J
[PROOFSTEP]
exact restrict_mono H
[GOAL]
case mpr
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J
J : Box ι
hJ : J ∈ biUnion π πi
⊢ ∃ I', I' ∈ π' ∧ J ≤ I'
[PROOFSTEP]
rw [mem_biUnion] at hJ
[GOAL]
case mpr
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J
J : Box ι
hJ : ∃ J', J' ∈ π ∧ J ∈ πi J'
⊢ ∃ I', I' ∈ π' ∧ J ≤ I'
[PROOFSTEP]
rcases hJ with ⟨J₁, h₁, hJ⟩
[GOAL]
case mpr.intro.intro
ι : Type u_1
I J✝ J₁✝ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J
J J₁ : Box ι
h₁ : J₁ ∈ π
hJ : J ∈ πi J₁
⊢ ∃ I', I' ∈ π' ∧ J ≤ I'
[PROOFSTEP]
rcases H J₁ h₁ hJ with ⟨J₂, h₂, Hle⟩
[GOAL]
case mpr.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J
J J₁ : Box ι
h₁ : J₁ ∈ π
hJ : J ∈ πi J₁
J₂ : Box ι
h₂ : J₂ ∈ restrict π' J₁
Hle : J ≤ J₂
⊢ ∃ I', I' ∈ π' ∧ J ≤ I'
[PROOFSTEP]
rcases π'.mem_restrict.mp h₂ with ⟨J₃, h₃, H⟩
[GOAL]
case mpr.intro.intro.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁✝ J₂✝ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H✝ : ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J
J J₁ : Box ι
h₁ : J₁ ∈ π
hJ : J ∈ πi J₁
J₂ : Box ι
h₂ : J₂ ∈ restrict π' J₁
Hle : J ≤ J₂
J₃ : Box ι
h₃ : J₃ ∈ π'
H : ↑J₂ = ↑J₁ ⊓ ↑J₃
⊢ ∃ I', I' ∈ π' ∧ J ≤ I'
[PROOFSTEP]
exact ⟨J₃, h₃, Hle.trans <| WithBot.coe_le_coe.1 <| H.trans_le inf_le_right⟩
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
⊢ π' ≤ biUnion π πi ↔ π' ≤ π ∧ ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J
[PROOFSTEP]
refine' ⟨fun H => ⟨H.trans (π.biUnion_le πi), fun J hJ => _⟩, _⟩
[GOAL]
case refine'_1
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : π' ≤ biUnion π πi
J : Box ι
hJ : J ∈ π
⊢ restrict π' J ≤ πi J
[PROOFSTEP]
rw [← π.restrict_biUnion πi hJ]
[GOAL]
case refine'_1
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : π' ≤ biUnion π πi
J : Box ι
hJ : J ∈ π
⊢ restrict π' J ≤ restrict (biUnion π πi) J
[PROOFSTEP]
exact restrict_mono H
[GOAL]
case refine'_2
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
⊢ (π' ≤ π ∧ ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J) → π' ≤ biUnion π πi
[PROOFSTEP]
rintro ⟨H, Hi⟩ J' hJ'
[GOAL]
case refine'_2.intro
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : π' ≤ π
Hi : ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J
J' : Box ι
hJ' : J' ∈ π'
⊢ ∃ I', I' ∈ biUnion π πi ∧ J' ≤ I'
[PROOFSTEP]
rcases H hJ' with ⟨J, hJ, hle⟩
[GOAL]
case refine'_2.intro.intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : π' ≤ π
Hi : ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J
J' : Box ι
hJ' : J' ∈ π'
J : Box ι
hJ : J ∈ π
hle : J' ≤ J
⊢ ∃ I', I' ∈ biUnion π πi ∧ J' ≤ I'
[PROOFSTEP]
have : J' ∈ π'.restrict J := π'.mem_restrict.2 ⟨J', hJ', (inf_of_le_right <| WithBot.coe_le_coe.2 hle).symm⟩
[GOAL]
case refine'_2.intro.intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : π' ≤ π
Hi : ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J
J' : Box ι
hJ' : J' ∈ π'
J : Box ι
hJ : J ∈ π
hle : J' ≤ J
this : J' ∈ restrict π' J
⊢ ∃ I', I' ∈ biUnion π πi ∧ J' ≤ I'
[PROOFSTEP]
rcases Hi J hJ this with ⟨Ji, hJi, hlei⟩
[GOAL]
case refine'_2.intro.intro.intro.intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J
π' : Prepartition I
H : π' ≤ π
Hi : ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J
J' : Box ι
hJ' : J' ∈ π'
J : Box ι
hJ : J ∈ π
hle : J' ≤ J
this : J' ∈ restrict π' J
Ji : Box ι
hJi : Ji ∈ πi J
hlei : J' ≤ Ji
⊢ ∃ I', I' ∈ biUnion π πi ∧ J' ≤ I'
[PROOFSTEP]
exact ⟨Ji, π.mem_biUnion.2 ⟨J, hJ, hJi⟩, hlei⟩
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π₁ π₂ : Prepartition I
⊢ J ∈ π₁ ⊓ π₂ ↔ ∃ J₁, J₁ ∈ π₁ ∧ ∃ J₂, J₂ ∈ π₂ ∧ ↑J = ↑J₁ ⊓ ↑J₂
[PROOFSTEP]
simp only [inf_def, mem_biUnion, mem_restrict]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π₁ π₂ : Prepartition I
⊢ Prepartition.iUnion (π₁ ⊓ π₂) = Prepartition.iUnion π₁ ∩ Prepartition.iUnion π₂
[PROOFSTEP]
simp only [inf_def, iUnion_biUnion, iUnion_restrict, ← iUnion_inter, ← iUnion_def]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
p : Box ι → Prop
hp : ∀ (J : Box ι), J ∈ π → p J
⊢ filter π p = π
[PROOFSTEP]
ext J
[GOAL]
case h
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
p : Box ι → Prop
hp : ∀ (J : Box ι), J ∈ π → p J
J : Box ι
⊢ J ∈ filter π p ↔ J ∈ π
[PROOFSTEP]
simpa using hp J
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
p : Box ι → Prop
⊢ Prepartition.iUnion (filter π fun J => ¬p J) = Prepartition.iUnion π \ Prepartition.iUnion (filter π p)
[PROOFSTEP]
simp only [Prepartition.iUnion]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
p : Box ι → Prop
⊢ ⋃ (J : Box ι) (_ : J ∈ filter π fun J => ¬p J), ↑J =
(⋃ (J : Box ι) (_ : J ∈ π), ↑J) \ ⋃ (J : Box ι) (_ : J ∈ filter π p), ↑J
[PROOFSTEP]
convert (@Set.biUnion_diff_biUnion_eq _ (Box ι) π.boxes (π.filter p).boxes (↑) _).symm
[GOAL]
case h.e'_2.h.e'_3.h.pq.a.a
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
p : Box ι → Prop
x✝ : Box ι
⊢ (x✝ ∈ filter π fun J => ¬p J) ↔ x✝ ∈ ↑π.boxes \ ↑(filter π p).boxes
[PROOFSTEP]
simp (config := { contextual := true })
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
p : Box ι → Prop
⊢ PairwiseDisjoint (↑π.boxes ∪ ↑(filter π p).boxes) Box.toSet
[PROOFSTEP]
rw [Set.PairwiseDisjoint]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
p : Box ι → Prop
⊢ Set.Pairwise (↑π.boxes ∪ ↑(filter π p).boxes) (Disjoint on Box.toSet)
[PROOFSTEP]
convert π.pairwiseDisjoint
[GOAL]
case h.e'_2
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
p : Box ι → Prop
⊢ ↑π.boxes ∪ ↑(filter π p).boxes = ↑π.boxes
[PROOFSTEP]
rw [Set.union_eq_left_iff_subset, filter_boxes, coe_filter]
[GOAL]
case h.e'_2
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
p : Box ι → Prop
⊢ {x | x ∈ π.boxes ∧ p x} ⊆ ↑π.boxes
[PROOFSTEP]
exact fun _ ⟨h, _⟩ => h
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
α : Type u_2
M : Type u_3
inst✝ : AddCommMonoid M
π : Prepartition I
f : Box ι → α
g : Box ι → M
⊢ ∑ y in Finset.image f π.boxes, ∑ J in (filter π fun J => f J = y).boxes, g J = ∑ J in π.boxes, g J
[PROOFSTEP]
convert sum_fiberwise_of_maps_to (fun _ => Finset.mem_image_of_mem f) g
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁✝ π₂✝ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π₁ π₂ : Prepartition I
h : Disjoint (Prepartition.iUnion π₁) (Prepartition.iUnion π₂)
this : ∀ (J₁ : Box ι), J₁ ∈ π₁ → ∀ (J₂ : Box ι), J₂ ∈ π₂ → J₁ ≠ J₂ → Disjoint ↑J₁ ↑J₂
⊢ Set.Pairwise (↑(π₁.boxes ∪ π₂.boxes)) (Disjoint on Box.toSet)
[PROOFSTEP]
simpa [pairwise_union_of_symmetric (symmetric_disjoint.comap _), pairwiseDisjoint]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
h : Disjoint (Prepartition.iUnion π₁) (Prepartition.iUnion π₂)
⊢ Prepartition.iUnion (disjUnion π₁ π₂ h) = Prepartition.iUnion π₁ ∪ Prepartition.iUnion π₂
[PROOFSTEP]
simp [disjUnion, Prepartition.iUnion, iUnion_or, iUnion_union_distrib]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π✝ π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
π : Prepartition I
⊢ IsPartition π ↔ Prepartition.iUnion π = ↑I
[PROOFSTEP]
simp_rw [IsPartition, Set.Subset.antisymm_iff, π.iUnion_subset, true_and_iff, Set.subset_def, mem_iUnion, Box.mem_coe]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
h : J ≤ I
⊢ IsPartition (single I J h) ↔ J = I
[PROOFSTEP]
simp [isPartition_iff_iUnion_eq]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
h : IsPartition π
hx : x ∈ I
⊢ ∃! J x_1, x ∈ J
[PROOFSTEP]
rcases h x hx with ⟨J, h, hx⟩
[GOAL]
case intro.intro
ι : Type u_1
I J✝ J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
h✝ : IsPartition π
hx✝ : x ∈ I
J : Box ι
h : J ∈ π
hx : x ∈ J
⊢ ∃! J x_1, x ∈ J
[PROOFSTEP]
exact ExistsUnique.intro₂ J h hx fun J' h' hx' => π.eq_of_mem_of_mem h' h hx' hx
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
h : IsPartition π
hJ : J ≤ I
⊢ Prepartition.iUnion (restrict π J) = ↑J
[PROOFSTEP]
simp [h.iUnion_eq, hJ]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
h₁ : IsPartition π₁
h₂ : IsPartition π₂
⊢ Prepartition.iUnion (π₁ ⊓ π₂) = ↑I
[PROOFSTEP]
simp [h₁.iUnion_eq, h₂.iUnion_eq]
[GOAL]
ι : Type u_1
I J J₁ J₂ : Box ι
π π₁ π₂ : Prepartition I
x : ι → ℝ
πi πi₁ πi₂ : (J : Box ι) → Prepartition J
h : Prepartition.iUnion π₂ = ↑I \ Prepartition.iUnion π₁
⊢ Prepartition.iUnion π₁ ∪ Prepartition.iUnion π₂ = ↑I
[PROOFSTEP]
simp [h, π₁.iUnion_subset]
| {"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Partition.Basic", "llama_tokens": 32436} |
{"mathlib_filename": "Mathlib.Control.ULift", "llama_tokens": 0} |
|
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
m =
𝓕 ↑f ↑m
[PROOFSTEP]
let e : C(ℝ, ℂ) := (fourier (-m)).comp ⟨((↑) : ℝ → UnitAddCircle), continuous_quotient_mk'⟩
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
m =
𝓕 ↑f ↑m
[PROOFSTEP]
have neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖(e * g).restrict K‖ = ‖g.restrict K‖ :=
by
have : ∀ x : ℝ, ‖e x‖ = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m • x))
intro K g
simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul]
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
⊢ ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
[PROOFSTEP]
have : ∀ x : ℝ, ‖e x‖ = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m • x))
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
this : ∀ (x : ℝ), ‖↑e x‖ = 1
⊢ ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
[PROOFSTEP]
intro K g
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
this : ∀ (x : ℝ), ‖↑e x‖ = 1
K : Compacts ℝ
g : C(ℝ, ℂ)
⊢ ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
[PROOFSTEP]
simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul]
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
m =
𝓕 ↑f ↑m
[PROOFSTEP]
have eadd : ∀ (n : ℤ), e.comp (ContinuousMap.addRight n) = e :=
by
intro n; ext1 x
have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m))
simpa only [mul_one] using this.int_mul n x
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
⊢ ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
[PROOFSTEP]
intro n
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
n : ℤ
⊢ ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
[PROOFSTEP]
ext1 x
[GOAL]
case h
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
n : ℤ
x : ℝ
⊢ ↑(ContinuousMap.comp e (ContinuousMap.addRight ↑n)) x = ↑e x
[PROOFSTEP]
have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m))
[GOAL]
case h
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
n : ℤ
x : ℝ
this : Periodic (↑e) 1
⊢ ↑(ContinuousMap.comp e (ContinuousMap.addRight ↑n)) x = ↑e x
[PROOFSTEP]
simpa only [mul_one] using this.int_mul n x
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
m =
𝓕 ↑f ↑m
[PROOFSTEP]
calc
fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m =
∫ x in (0 : ℝ)..1, e x * (∑' n : ℤ, f.comp (ContinuousMap.addRight n)) x :=
by
simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe,
zsmul_one, smul_eq_mul]
-- Transform sum in C(ℝ, ℂ) evaluated at x into pointwise sum of values.
_ = ∫ x in (0 : ℝ)..1, ∑' n : ℤ, (e * f.comp (ContinuousMap.addRight n)) x := by
simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left]
-- Swap sum and integral.
_ = ∑' n : ℤ, ∫ x in (0 : ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x :=
by
refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm
convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1
exact funext fun n => neK _ _
_ = ∑' n : ℤ, ∫ x in (0 : ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x :=
by
simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊢
simp_rw [eadd]
-- Rearrange sum of interval integrals into an integral over `ℝ`.
_ = ∫ x, e x * f x :=
by
suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq
apply integrable_of_summable_norm_Icc
convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1
simp_rw [mul_comp] at eadd ⊢
simp_rw [eadd]
exact
funext fun n =>
neK ⟨Icc 0 1, isCompact_Icc⟩
_
-- Minor tidying to finish
_ = 𝓕 f m := by
rw [fourierIntegral_eq_integral_exp_smul]
congr 1 with x : 1
rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply]
congr 2
push_cast
ring
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
m =
∫ (x : ℝ) in 0 ..1, ↑e x * ↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x
[PROOFSTEP]
simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe,
zsmul_one, smul_eq_mul]
-- Transform sum in C(ℝ, ℂ) evaluated at x into pointwise sum of values.
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ ∫ (x : ℝ) in 0 ..1, ↑e x * ↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x =
∫ (x : ℝ) in 0 ..1, ∑' (n : ℤ), ↑(e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x
[PROOFSTEP]
simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left]
-- Swap sum and integral.
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ ∫ (x : ℝ) in 0 ..1, ∑' (n : ℤ), ↑(e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x =
∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, ↑(e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x
[PROOFSTEP]
refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ Summable fun i =>
‖ContinuousMap.restrict (↑{ carrier := uIcc 0 1, isCompact' := (_ : IsCompact (uIcc 0 1)) })
(e * ContinuousMap.comp f (ContinuousMap.addRight ↑i))‖
[PROOFSTEP]
convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1
[GOAL]
case h.e'_5
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ (fun i =>
‖ContinuousMap.restrict (↑{ carrier := uIcc 0 1, isCompact' := (_ : IsCompact (uIcc 0 1)) })
(e * ContinuousMap.comp f (ContinuousMap.addRight ↑i))‖) =
fun n =>
‖ContinuousMap.restrict (↑{ carrier := uIcc 0 1, isCompact' := (_ : IsCompact (uIcc 0 1)) })
(ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
[PROOFSTEP]
exact funext fun n => neK _ _
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ ∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, ↑(e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x =
∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, ↑(ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n)) x
[PROOFSTEP]
simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊢
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd :
∀ (n : ℤ),
ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk))
(ContinuousMap.addRight ↑n) =
ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
⊢ ∑' (n : ℤ),
∫ (x : ℝ) in 0 ..1,
↑(ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) *
ContinuousMap.comp f (ContinuousMap.addRight ↑n))
x =
∑' (n : ℤ),
∫ (x : ℝ) in 0 ..1,
↑(ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk))
(ContinuousMap.addRight ↑n) *
ContinuousMap.comp f (ContinuousMap.addRight ↑n))
x
[PROOFSTEP]
simp_rw [eadd]
-- Rearrange sum of interval integrals into an integral over `ℝ`.
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ ∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, ↑(ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n)) x = ∫ (x : ℝ), ↑e x * ↑f x
[PROOFSTEP]
suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ Integrable ↑(e * f)
[PROOFSTEP]
apply integrable_of_summable_norm_Icc
[GOAL]
case hf
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n))‖
[PROOFSTEP]
convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1
[GOAL]
case h.e'_5
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ (fun n => ‖ContinuousMap.restrict (Icc 0 1) (ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n))‖) = fun n =>
‖ContinuousMap.restrict (↑{ carrier := Icc 0 1, isCompact' := (_ : IsCompact (Icc 0 1)) })
(ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
[PROOFSTEP]
simp_rw [mul_comp] at eadd ⊢
[GOAL]
case h.e'_5
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd :
∀ (n : ℤ),
ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk))
(ContinuousMap.addRight ↑n) =
ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
⊢ (fun n =>
‖ContinuousMap.restrict (Icc 0 1)
(ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk))
(ContinuousMap.addRight ↑n) *
ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖) =
fun n =>
‖ContinuousMap.restrict (↑{ carrier := Icc 0 1, isCompact' := (_ : IsCompact (Icc 0 1)) })
(ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
[PROOFSTEP]
simp_rw [eadd]
[GOAL]
case h.e'_5
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd :
∀ (n : ℤ),
ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk))
(ContinuousMap.addRight ↑n) =
ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
⊢ (fun n =>
‖ContinuousMap.restrict (Icc 0 1)
(ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) *
ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖) =
fun n =>
‖ContinuousMap.restrict (↑{ carrier := Icc 0 1, isCompact' := (_ : IsCompact (Icc 0 1)) })
(ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
[PROOFSTEP]
exact
funext fun n =>
neK ⟨Icc 0 1, isCompact_Icc⟩
_
-- Minor tidying to finish
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ ∫ (x : ℝ), ↑e x * ↑f x = 𝓕 ↑f ↑m
[PROOFSTEP]
rw [fourierIntegral_eq_integral_exp_smul]
[GOAL]
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
⊢ ∫ (x : ℝ), ↑e x * ↑f x = ∫ (v : ℝ), Complex.exp (↑(-2 * π * v * ↑m) * I) • ↑f v
[PROOFSTEP]
congr 1 with x : 1
[GOAL]
case e_f.h
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
x : ℝ
⊢ ↑e x * ↑f x = Complex.exp (↑(-2 * π * x * ↑m) * I) • ↑f x
[PROOFSTEP]
rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply]
[GOAL]
case e_f.h
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
x : ℝ
⊢ Complex.exp (2 * ↑π * I * ↑(-m) * ↑x / ↑1) * ↑f x = Complex.exp (↑(-2 * π * x * ↑m) * I) * ↑f x
[PROOFSTEP]
congr 2
[GOAL]
case e_f.h.e_a.e_z
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
x : ℝ
⊢ 2 * ↑π * I * ↑(-m) * ↑x / ↑1 = ↑(-2 * π * x * ↑m) * I
[PROOFSTEP]
push_cast
[GOAL]
case e_f.h.e_a.e_z
f : C(ℝ, ℂ)
hf :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
m : ℤ
e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)
neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖
eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
x : ℝ
⊢ 2 * ↑π * I * -↑m * ↑x / 1 = -2 * ↑π * ↑x * ↑m * I
[PROOFSTEP]
ring
[GOAL]
f : C(ℝ, ℂ)
h_norm :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
h_sum : Summable fun n => 𝓕 ↑f ↑n
⊢ ∑' (n : ℤ), ↑f ↑n = ∑' (n : ℤ), 𝓕 ↑f ↑n
[PROOFSTEP]
let F : C(UnitAddCircle, ℂ) :=
⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩
[GOAL]
f : C(ℝ, ℂ)
h_norm :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
h_sum : Summable fun n => 𝓕 ↑f ↑n
F : C(UnitAddCircle, ℂ) :=
ContinuousMap.mk
(Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
⊢ ∑' (n : ℤ), ↑f ↑n = ∑' (n : ℤ), 𝓕 ↑f ↑n
[PROOFSTEP]
have : Summable (fourierCoeff F) := by
convert h_sum
exact Real.fourierCoeff_tsum_comp_add h_norm _
[GOAL]
f : C(ℝ, ℂ)
h_norm :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
h_sum : Summable fun n => 𝓕 ↑f ↑n
F : C(UnitAddCircle, ℂ) :=
ContinuousMap.mk
(Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
⊢ Summable (fourierCoeff ↑F)
[PROOFSTEP]
convert h_sum
[GOAL]
case h.e'_5.h
f : C(ℝ, ℂ)
h_norm :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
h_sum : Summable fun n => 𝓕 ↑f ↑n
F : C(UnitAddCircle, ℂ) :=
ContinuousMap.mk
(Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
x✝ : ℤ
⊢ fourierCoeff (↑F) x✝ = 𝓕 ↑f ↑x✝
[PROOFSTEP]
exact Real.fourierCoeff_tsum_comp_add h_norm _
[GOAL]
f : C(ℝ, ℂ)
h_norm :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
h_sum : Summable fun n => 𝓕 ↑f ↑n
F : C(UnitAddCircle, ℂ) :=
ContinuousMap.mk
(Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
this : Summable (fourierCoeff ↑F)
⊢ ∑' (n : ℤ), ↑f ↑n = ∑' (n : ℤ), 𝓕 ↑f ↑n
[PROOFSTEP]
convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1
[GOAL]
case h.e'_2
f : C(ℝ, ℂ)
h_norm :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
h_sum : Summable fun n => 𝓕 ↑f ↑n
F : C(UnitAddCircle, ℂ) :=
ContinuousMap.mk
(Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
this : Summable (fourierCoeff ↑F)
⊢ ∑' (n : ℤ), ↑f ↑n = ↑F 0
[PROOFSTEP]
have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq
[GOAL]
case h.e'_2
f : C(ℝ, ℂ)
h_norm :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
h_sum : Summable fun n => 𝓕 ↑f ↑n
F : C(UnitAddCircle, ℂ) :=
ContinuousMap.mk
(Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
this✝ : Summable (fourierCoeff ↑F)
this :
∑' (b : ℤ), ↑(ContinuousMap.comp f (ContinuousMap.addRight ↑b)) 0 =
↑(∑' (b : ℤ), ContinuousMap.comp f (ContinuousMap.addRight ↑b)) 0
⊢ ∑' (n : ℤ), ↑f ↑n = ↑F 0
[PROOFSTEP]
simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using
this
[GOAL]
case h.e'_3
f : C(ℝ, ℂ)
h_norm :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
h_sum : Summable fun n => 𝓕 ↑f ↑n
F : C(UnitAddCircle, ℂ) :=
ContinuousMap.mk
(Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
this : Summable (fourierCoeff ↑F)
⊢ ∑' (n : ℤ), 𝓕 ↑f ↑n = ∑' (b : ℤ), fourierCoeff (↑F) b • ↑(fourier b) 0
[PROOFSTEP]
congr 1 with n : 1
[GOAL]
case h.e'_3.e_f.h
f : C(ℝ, ℂ)
h_norm :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
h_sum : Summable fun n => 𝓕 ↑f ↑n
F : C(UnitAddCircle, ℂ) :=
ContinuousMap.mk
(Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
this : Summable (fourierCoeff ↑F)
n : ℤ
⊢ 𝓕 ↑f ↑n = fourierCoeff (↑F) n • ↑(fourier n) 0
[PROOFSTEP]
rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one]
[GOAL]
case h.e'_3.e_f.h
f : C(ℝ, ℂ)
h_norm :
∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖
h_sum : Summable fun n => 𝓕 ↑f ↑n
F : C(UnitAddCircle, ℂ) :=
ContinuousMap.mk
(Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
this : Summable (fourierCoeff ↑F)
n : ℤ
⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1))
n =
fourierCoeff (↑F) n
[PROOFSTEP]
rfl
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atTop] fun x => |x| ^ (-b)
[PROOFSTEP]
have claim : ∀ x : ℝ, max 0 (-2 * R) < x → ∀ y : ℝ, x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) :=
by
intro x hx y hy
rw [max_lt_iff] at hx
have hxR : 0 < x + R := by
rcases le_or_lt 0 R with (h | h)
· exact add_pos_of_pos_of_nonneg hx.1 h
· rw [← sub_lt_iff_lt_add, zero_sub]
refine' lt_trans _ hx.2
rwa [neg_mul, neg_lt_neg_iff, two_mul, add_lt_iff_neg_left]
have hy' : 0 < y := hxR.trans_le hy
have : y ^ (-b) ≤ (x + R) ^ (-b) :=
by
rw [rpow_neg hy'.le, rpow_neg hxR.le, inv_le_inv (rpow_pos_of_pos hy' _) (rpow_pos_of_pos hxR _)]
exact rpow_le_rpow hxR.le hy hb.le
refine' this.trans _
rw [← mul_rpow one_half_pos.le hx.1.le, rpow_neg (mul_pos one_half_pos hx.1).le, rpow_neg hxR.le]
refine' inv_le_inv_of_le (rpow_pos_of_pos (mul_pos one_half_pos hx.1) _) _
exact rpow_le_rpow (mul_pos one_half_pos hx.1).le (by linarith) hb.le
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
⊢ ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
[PROOFSTEP]
intro x hx y hy
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : max 0 (-2 * R) < x
y : ℝ
hy : x + R ≤ y
⊢ y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
[PROOFSTEP]
rw [max_lt_iff] at hx
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
⊢ y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
[PROOFSTEP]
have hxR : 0 < x + R := by
rcases le_or_lt 0 R with (h | h)
· exact add_pos_of_pos_of_nonneg hx.1 h
· rw [← sub_lt_iff_lt_add, zero_sub]
refine' lt_trans _ hx.2
rwa [neg_mul, neg_lt_neg_iff, two_mul, add_lt_iff_neg_left]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
⊢ 0 < x + R
[PROOFSTEP]
rcases le_or_lt 0 R with (h | h)
[GOAL]
case inl
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
h : 0 ≤ R
⊢ 0 < x + R
[PROOFSTEP]
exact add_pos_of_pos_of_nonneg hx.1 h
[GOAL]
case inr
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
h : R < 0
⊢ 0 < x + R
[PROOFSTEP]
rw [← sub_lt_iff_lt_add, zero_sub]
[GOAL]
case inr
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
h : R < 0
⊢ -R < x
[PROOFSTEP]
refine' lt_trans _ hx.2
[GOAL]
case inr
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
h : R < 0
⊢ -R < -2 * R
[PROOFSTEP]
rwa [neg_mul, neg_lt_neg_iff, two_mul, add_lt_iff_neg_left]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
hxR : 0 < x + R
⊢ y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
[PROOFSTEP]
have hy' : 0 < y := hxR.trans_le hy
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
hxR : 0 < x + R
hy' : 0 < y
⊢ y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
[PROOFSTEP]
have : y ^ (-b) ≤ (x + R) ^ (-b) :=
by
rw [rpow_neg hy'.le, rpow_neg hxR.le, inv_le_inv (rpow_pos_of_pos hy' _) (rpow_pos_of_pos hxR _)]
exact rpow_le_rpow hxR.le hy hb.le
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
hxR : 0 < x + R
hy' : 0 < y
⊢ y ^ (-b) ≤ (x + R) ^ (-b)
[PROOFSTEP]
rw [rpow_neg hy'.le, rpow_neg hxR.le, inv_le_inv (rpow_pos_of_pos hy' _) (rpow_pos_of_pos hxR _)]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
hxR : 0 < x + R
hy' : 0 < y
⊢ (x + R) ^ b ≤ y ^ b
[PROOFSTEP]
exact rpow_le_rpow hxR.le hy hb.le
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
hxR : 0 < x + R
hy' : 0 < y
this : y ^ (-b) ≤ (x + R) ^ (-b)
⊢ y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
[PROOFSTEP]
refine' this.trans _
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
hxR : 0 < x + R
hy' : 0 < y
this : y ^ (-b) ≤ (x + R) ^ (-b)
⊢ (x + R) ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
[PROOFSTEP]
rw [← mul_rpow one_half_pos.le hx.1.le, rpow_neg (mul_pos one_half_pos hx.1).le, rpow_neg hxR.le]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
hxR : 0 < x + R
hy' : 0 < y
this : y ^ (-b) ≤ (x + R) ^ (-b)
⊢ ((x + R) ^ b)⁻¹ ≤ ((1 / 2 * x) ^ b)⁻¹
[PROOFSTEP]
refine' inv_le_inv_of_le (rpow_pos_of_pos (mul_pos one_half_pos hx.1) _) _
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
hxR : 0 < x + R
hy' : 0 < y
this : y ^ (-b) ≤ (x + R) ^ (-b)
⊢ (1 / 2 * x) ^ b ≤ (x + R) ^ b
[PROOFSTEP]
exact rpow_le_rpow (mul_pos one_half_pos hx.1).le (by linarith) hb.le
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S x : ℝ
hx : 0 < x ∧ -2 * R < x
y : ℝ
hy : x + R ≤ y
hxR : 0 < x + R
hy' : 0 < y
this : y ^ (-b) ≤ (x + R) ^ (-b)
⊢ 1 / 2 * x ≤ x + R
[PROOFSTEP]
linarith
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atTop] fun x => |x| ^ (-b)
[PROOFSTEP]
obtain ⟨c, hc, hc'⟩ := hf.exists_pos
[GOAL]
case intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
hc' : IsBigOWith c atTop ↑f fun x => |x| ^ (-b)
⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atTop] fun x => |x| ^ (-b)
[PROOFSTEP]
simp only [IsBigO, IsBigOWith, eventually_atTop] at hc' ⊢
[GOAL]
case intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
hc' : ∃ a, ∀ (b_1 : ℝ), b_1 ≥ a → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
⊢ ∃ c a, ∀ (b_1 : ℝ), b_1 ≥ a → ‖‖ContinuousMap.restrict (Icc (b_1 + R) (b_1 + S)) f‖‖ ≤ c * ‖|b_1| ^ (-b)‖
[PROOFSTEP]
obtain ⟨d, hd⟩ := hc'
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
⊢ ∃ c a, ∀ (b_1 : ℝ), b_1 ≥ a → ‖‖ContinuousMap.restrict (Icc (b_1 + R) (b_1 + S)) f‖‖ ≤ c * ‖|b_1| ^ (-b)‖
[PROOFSTEP]
refine' ⟨c * (1 / 2) ^ (-b), ⟨max (1 + max 0 (-2 * R)) (d - R), fun x hx => _⟩⟩
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : x ≥ max (1 + max 0 (-2 * R)) (d - R)
⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖
[PROOFSTEP]
rw [ge_iff_le, max_le_iff] at hx
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖
[PROOFSTEP]
have hx' : max 0 (-2 * R) < x := by linarith
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
⊢ max 0 (-2 * R) < x
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : max 0 (-2 * R) < x
⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖
[PROOFSTEP]
rw [max_lt_iff] at hx'
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : 0 < x ∧ -2 * R < x
⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖
[PROOFSTEP]
rw [norm_norm,
ContinuousMap.norm_le _ (mul_nonneg (mul_nonneg hc.le <| rpow_nonneg_of_nonneg one_half_pos.le _) (norm_nonneg _))]
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : 0 < x ∧ -2 * R < x
⊢ ∀ (x_1 : ↑(Icc (x + R) (x + S))),
‖↑(ContinuousMap.restrict (Icc (x + R) (x + S)) f) x_1‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖
[PROOFSTEP]
refine' fun y => (hd y.1 (by linarith [hx.1, y.2.1])).trans _
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : 0 < x ∧ -2 * R < x
y : ↑(Icc (x + R) (x + S))
⊢ ↑y ≥ d
[PROOFSTEP]
linarith [hx.1, y.2.1]
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : 0 < x ∧ -2 * R < x
y : ↑(Icc (x + R) (x + S))
⊢ c * ‖|↑y| ^ (-b)‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖
[PROOFSTEP]
have A : ∀ x : ℝ, 0 ≤ |x| ^ (-b) := fun x => by positivity
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x✝ : ℝ
hx : 1 + max 0 (-2 * R) ≤ x✝ ∧ d - R ≤ x✝
hx' : 0 < x✝ ∧ -2 * R < x✝
y : ↑(Icc (x✝ + R) (x✝ + S))
x : ℝ
⊢ 0 ≤ |x| ^ (-b)
[PROOFSTEP]
positivity
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : 0 < x ∧ -2 * R < x
y : ↑(Icc (x + R) (x + S))
A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b)
⊢ c * ‖|↑y| ^ (-b)‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖
[PROOFSTEP]
rw [mul_assoc, mul_le_mul_left hc, norm_of_nonneg (A _), norm_of_nonneg (A _)]
[GOAL]
case intro.intro.intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : 0 < x ∧ -2 * R < x
y : ↑(Icc (x + R) (x + S))
A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b)
⊢ |↑y| ^ (-b) ≤ (1 / 2) ^ (-b) * |x| ^ (-b)
[PROOFSTEP]
convert claim x (by linarith only [hx.1]) y.1 y.2.1
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : 0 < x ∧ -2 * R < x
y : ↑(Icc (x + R) (x + S))
A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b)
⊢ max 0 (-2 * R) < x
[PROOFSTEP]
linarith only [hx.1]
[GOAL]
case h.e'_3.h.e'_5
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : 0 < x ∧ -2 * R < x
y : ↑(Icc (x + R) (x + S))
A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b)
⊢ |↑y| = ↑y
[PROOFSTEP]
apply abs_of_nonneg
[GOAL]
case h.e'_3.h.e'_5.h
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : 0 < x ∧ -2 * R < x
y : ↑(Icc (x + R) (x + S))
A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b)
⊢ 0 ≤ ↑y
[PROOFSTEP]
linarith [y.2.1]
[GOAL]
case h.e'_4.h.e'_6.h.e'_5
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atTop] fun x => |x| ^ (-b)
R S : ℝ
claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b)
c : ℝ
hc : 0 < c
d : ℝ
hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖
x : ℝ
hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x
hx' : 0 < x ∧ -2 * R < x
y : ↑(Icc (x + R) (x + S))
A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b)
⊢ |x| = x
[PROOFSTEP]
exact abs_of_pos hx'.1
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)
[PROOFSTEP]
have h1 : IsBigO atTop (f.comp (ContinuousMap.mk _ continuous_neg)) fun x : ℝ => |x| ^ (-b) :=
by
convert hf.comp_tendsto tendsto_neg_atTop_atBot using 1
ext1 x; simp only [Function.comp_apply, abs_neg]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
⊢ ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
[PROOFSTEP]
convert hf.comp_tendsto tendsto_neg_atTop_atBot using 1
[GOAL]
case h.e'_8
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
⊢ (fun x => |x| ^ (-b)) = (fun x => |x| ^ (-b)) ∘ Neg.neg
[PROOFSTEP]
ext1 x
[GOAL]
case h.e'_8.h
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S x : ℝ
⊢ |x| ^ (-b) = ((fun x => |x| ^ (-b)) ∘ Neg.neg) x
[PROOFSTEP]
simp only [Function.comp_apply, abs_neg]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)
[PROOFSTEP]
have h2 := (isBigO_norm_Icc_restrict_atTop hb h1 (-S) (-R)).comp_tendsto tendsto_neg_atBot_atTop
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
((fun x => |x| ^ (-b)) ∘ Neg.neg)
⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)
[PROOFSTEP]
have : (fun x : ℝ => |x| ^ (-b)) ∘ Neg.neg = fun x : ℝ => |x| ^ (-b) := by ext1 x;
simp only [Function.comp_apply, abs_neg]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
((fun x => |x| ^ (-b)) ∘ Neg.neg)
⊢ (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
[PROOFSTEP]
ext1 x
[GOAL]
case h
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
((fun x => |x| ^ (-b)) ∘ Neg.neg)
x : ℝ
⊢ ((fun x => |x| ^ (-b)) ∘ Neg.neg) x = |x| ^ (-b)
[PROOFSTEP]
simp only [Function.comp_apply, abs_neg]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
((fun x => |x| ^ (-b)) ∘ Neg.neg)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)
[PROOFSTEP]
rw [this] at h2
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b)
[PROOFSTEP]
refine' (isBigO_of_le _ fun x => _).trans h2
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x : ℝ
⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤
‖((fun x =>
‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg)
x‖
[PROOFSTEP]
rw [norm_norm, Function.comp_apply, norm_norm, ContinuousMap.norm_le _ (norm_nonneg _)]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x : ℝ
⊢ ∀ (x_1 : ↑(Icc (x + R) (x + S))),
‖↑(ContinuousMap.restrict (Icc (x + R) (x + S)) f) x_1‖ ≤
‖ContinuousMap.restrict (Icc (-x + -S) (-x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖
[PROOFSTEP]
rintro ⟨x, hx⟩
[GOAL]
case mk
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ ‖↑(ContinuousMap.restrict (Icc (x✝ + R) (x✝ + S)) f) { val := x, property := hx }‖ ≤
‖ContinuousMap.restrict (Icc (-x✝ + -S) (-x✝ + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖
[PROOFSTEP]
rw [ContinuousMap.restrict_apply_mk]
[GOAL]
case mk
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ ‖↑f x‖ ≤ ‖ContinuousMap.restrict (Icc (-x✝ + -S) (-x✝ + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖
[PROOFSTEP]
refine' (le_of_eq _).trans (ContinuousMap.norm_coe_le_norm _ ⟨-x, _⟩)
[GOAL]
case mk.refine'_1
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ ‖↑f x‖ =
‖↑(ContinuousMap.restrict (Icc (-x✝ + -S) (-x✝ + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a)))
{ val := -x, property := ?mk.refine'_2 }‖
case mk.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R)
[PROOFSTEP]
rw [ContinuousMap.restrict_apply_mk, ContinuousMap.comp_apply, ContinuousMap.coe_mk, ContinuousMap.coe_mk, neg_neg]
[GOAL]
case mk.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R)
case mk.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R)
case mk.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R)
case mk.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R)
case mk.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R)
case mk.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R)
[PROOFSTEP]
exact ⟨by linarith [hx.2], by linarith [hx.1]⟩
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ -x✝ + -S ≤ -x
[PROOFSTEP]
linarith [hx.2]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[atBot] fun x => |x| ^ (-b)
R S : ℝ
h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b)
h2 :
((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘
Neg.neg) =O[atBot]
fun x => |x| ^ (-b)
this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b)
x✝ x : ℝ
hx : x ∈ Icc (x✝ + R) (x✝ + S)
⊢ -x ≤ -x✝ + -R
[PROOFSTEP]
linarith [hx.1]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[cocompact ℝ] fun x =>
|x| ^ (-b)
[PROOFSTEP]
obtain ⟨r, hr⟩ := K.isCompact.bounded.subset_ball 0
[GOAL]
case intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Metric.closedBall 0 r
⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[cocompact ℝ] fun x =>
|x| ^ (-b)
[PROOFSTEP]
rw [closedBall_eq_Icc, zero_add, zero_sub] at hr
[GOAL]
case intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[cocompact ℝ] fun x =>
|x| ^ (-b)
[PROOFSTEP]
have : ∀ x : ℝ, ‖(f.comp (ContinuousMap.addRight x)).restrict K‖ ≤ ‖f.restrict (Icc (x - r) (x + r))‖ :=
by
intro x
rw [ContinuousMap.norm_le _ (norm_nonneg _)]
rintro ⟨y, hy⟩
refine' (le_of_eq _).trans (ContinuousMap.norm_coe_le_norm _ ⟨y + x, _⟩)
· simp_rw [ContinuousMap.restrict_apply, ContinuousMap.comp_apply, ContinuousMap.coe_addRight]
· exact ⟨by linarith [(hr hy).1], by linarith [(hr hy).2]⟩
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
⊢ ∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
[PROOFSTEP]
intro x
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
x : ℝ
⊢ ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
[PROOFSTEP]
rw [ContinuousMap.norm_le _ (norm_nonneg _)]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
x : ℝ
⊢ ∀ (x_1 : ↑↑K),
‖↑(ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))) x_1‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
[PROOFSTEP]
rintro ⟨y, hy⟩
[GOAL]
case mk
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
x y : ℝ
hy : y ∈ ↑K
⊢ ‖↑(ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))) { val := y, property := hy }‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
[PROOFSTEP]
refine' (le_of_eq _).trans (ContinuousMap.norm_coe_le_norm _ ⟨y + x, _⟩)
[GOAL]
case mk.refine'_1
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
x y : ℝ
hy : y ∈ ↑K
⊢ ‖↑(ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))) { val := y, property := hy }‖ =
‖↑(ContinuousMap.restrict (Icc (x - r) (x + r)) f) { val := y + x, property := ?mk.refine'_2 }‖
[PROOFSTEP]
simp_rw [ContinuousMap.restrict_apply, ContinuousMap.comp_apply, ContinuousMap.coe_addRight]
[GOAL]
case mk.refine'_2
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
x y : ℝ
hy : y ∈ ↑K
⊢ y + x ∈ Icc (x - r) (x + r)
[PROOFSTEP]
exact ⟨by linarith [(hr hy).1], by linarith [(hr hy).2]⟩
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
x y : ℝ
hy : y ∈ ↑K
⊢ x - r ≤ y + x
[PROOFSTEP]
linarith [(hr hy).1]
[GOAL]
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
x y : ℝ
hy : y ∈ ↑K
⊢ y + x ≤ x + r
[PROOFSTEP]
linarith [(hr hy).2]
[GOAL]
case intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b)
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
this :
∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[cocompact ℝ] fun x =>
|x| ^ (-b)
[PROOFSTEP]
simp_rw [cocompact_eq, isBigO_sup] at hf ⊢
[GOAL]
case intro
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
this :
∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b)
⊢ ((fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[atBot] fun x =>
|x| ^ (-b)) ∧
(fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[atTop] fun x =>
|x| ^ (-b)
[PROOFSTEP]
constructor
[GOAL]
case intro.left
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
this :
∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b)
⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[atBot] fun x =>
|x| ^ (-b)
[PROOFSTEP]
refine' (isBigO_of_le atBot _).trans (isBigO_norm_Icc_restrict_atBot hb hf.1 (-r) r)
[GOAL]
case intro.left
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
this :
∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b)
⊢ ∀ (x : ℝ),
‖‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖‖ ≤
‖‖ContinuousMap.restrict (Icc (x + -r) (x + r)) f‖‖
[PROOFSTEP]
simp_rw [norm_norm]
[GOAL]
case intro.left
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
this :
∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b)
⊢ ∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x + -r) (x + r)) f‖
[PROOFSTEP]
exact this
[GOAL]
case intro.right
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
this :
∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b)
⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[atTop] fun x =>
|x| ^ (-b)
[PROOFSTEP]
refine' (isBigO_of_le atTop _).trans (isBigO_norm_Icc_restrict_atTop hb hf.2 (-r) r)
[GOAL]
case intro.right
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
this :
∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b)
⊢ ∀ (x : ℝ),
‖‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖‖ ≤
‖‖ContinuousMap.restrict (Icc (x + -r) (x + r)) f‖‖
[PROOFSTEP]
simp_rw [norm_norm]
[GOAL]
case intro.right
E : Type u_1
inst✝ : NormedAddCommGroup E
f : C(ℝ, E)
b : ℝ
hb : 0 < b
K : Compacts ℝ
r : ℝ
hr : ↑K ⊆ Icc (-r) r
this :
∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖
hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b)
⊢ ∀ (x : ℝ),
‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤
‖ContinuousMap.restrict (Icc (x + -r) (x + r)) f‖
[PROOFSTEP]
exact this
[GOAL]
f g : SchwartzMap ℝ ℂ
hfg : 𝓕 ↑f = ↑g
⊢ ∑' (n : ℤ), ↑f ↑n = ∑' (n : ℤ), ↑g ↑n
[PROOFSTEP]
simp_rw [← hfg]
[GOAL]
f g : SchwartzMap ℝ ℂ
hfg : 𝓕 ↑f = ↑g
⊢ ∑' (n : ℤ), ↑f ↑n = ∑' (n : ℤ), 𝓕 ↑f ↑n
[PROOFSTEP]
rw [Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay f.continuous one_lt_two (f.isBigO_cocompact_rpow (-2))]
[GOAL]
f g : SchwartzMap ℝ ℂ
hfg : 𝓕 ↑f = ↑g
⊢ 𝓕 ↑f =O[cocompact ℝ] fun x => |x| ^ (-2)
[PROOFSTEP]
rw [hfg]
[GOAL]
f g : SchwartzMap ℝ ℂ
hfg : 𝓕 ↑f = ↑g
⊢ ↑g =O[cocompact ℝ] fun x => |x| ^ (-2)
[PROOFSTEP]
exact g.isBigO_cocompact_rpow (-2)
| {"mathlib_filename": "Mathlib.Analysis.Fourier.PoissonSummation", "llama_tokens": 34100} |
{"mathlib_filename": "Mathlib.Control.Random", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Control.Bitraversable.Basic", "llama_tokens": 0} |
|
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β✝ : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α₀ α₁ α₂ β : Type u
f : α₀ → F α₁
f' : α₁ → G α₂
x : t α₀ β
⊢ Comp.mk (tfst f' <$> tfst f x) = tfst (Comp.mk ∘ map f' ∘ f) x
[PROOFSTEP]
rw [← comp_bitraverse]
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β✝ : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α₀ α₁ α₂ β : Type u
f : α₀ → F α₁
f' : α₁ → G α₂
x : t α₀ β
⊢ bitraverse (Comp.mk ∘ map f' ∘ f) (Comp.mk ∘ map pure ∘ pure) x = tfst (Comp.mk ∘ map f' ∘ f) x
[PROOFSTEP]
simp only [Function.comp, tfst, map_pure, Pure.pure]
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α₀ α₁ β₀ β₁ : Type u
f : α₀ → F α₁
f' : β₀ → G β₁
x : t α₀ β₀
⊢ Comp.mk (tfst f <$> tsnd f' x) = bitraverse (Comp.mk ∘ pure ∘ f) (Comp.mk ∘ map pure ∘ f') x
[PROOFSTEP]
rw [← comp_bitraverse]
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α₀ α₁ β₀ β₁ : Type u
f : α₀ → F α₁
f' : β₀ → G β₁
x : t α₀ β₀
⊢ bitraverse (Comp.mk ∘ map f ∘ pure) (Comp.mk ∘ map pure ∘ f') x =
bitraverse (Comp.mk ∘ pure ∘ f) (Comp.mk ∘ map pure ∘ f') x
[PROOFSTEP]
simp only [Function.comp, map_pure]
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α₀ α₁ β₀ β₁ : Type u
f : α₀ → F α₁
f' : β₀ → G β₁
x : t α₀ β₀
⊢ Comp.mk (tsnd f' <$> tfst f x) = bitraverse (Comp.mk ∘ map pure ∘ f) (Comp.mk ∘ pure ∘ f') x
[PROOFSTEP]
rw [← comp_bitraverse]
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α₀ α₁ β₀ β₁ : Type u
f : α₀ → F α₁
f' : β₀ → G β₁
x : t α₀ β₀
⊢ bitraverse (Comp.mk ∘ map pure ∘ f) (Comp.mk ∘ map f' ∘ pure) x =
bitraverse (Comp.mk ∘ map pure ∘ f) (Comp.mk ∘ pure ∘ f') x
[PROOFSTEP]
simp only [Function.comp, map_pure]
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β₀ β₁ β₂ : Type u
g : β₀ → F β₁
g' : β₁ → G β₂
x : t α β₀
⊢ Comp.mk (tsnd g' <$> tsnd g x) = tsnd (Comp.mk ∘ map g' ∘ g) x
[PROOFSTEP]
rw [← comp_bitraverse]
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β₀ β₁ β₂ : Type u
g : β₀ → F β₁
g' : β₁ → G β₂
x : t α β₀
⊢ bitraverse (Comp.mk ∘ map pure ∘ pure) (Comp.mk ∘ map g' ∘ g) x = tsnd (Comp.mk ∘ map g' ∘ g) x
[PROOFSTEP]
simp only [Function.comp, map_pure]
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β₀ β₁ β₂ : Type u
g : β₀ → F β₁
g' : β₁ → G β₂
x : t α β₀
⊢ bitraverse (fun x => Comp.mk (pure (pure x))) (fun x => Comp.mk (g' <$> g x)) x =
tsnd (fun x => Comp.mk (g' <$> g x)) x
[PROOFSTEP]
rfl
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β✝ : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α α' β : Type u
f : α → α'
x : t α β
⊢ tfst (pure ∘ f) x = pure (fst f x)
[PROOFSTEP]
apply bitraverse_eq_bimap_id
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
β✝ : Type u
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulBitraversable t
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β β' : Type u
f : β → β'
x : t α β
⊢ tsnd (pure ∘ f) x = pure (snd f x)
[PROOFSTEP]
apply bitraverse_eq_bimap_id
| {"mathlib_filename": "Mathlib.Control.Bitraversable.Lemmas", "llama_tokens": 2268} |
[GOAL]
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
η η' : ApplicativeTransformation F G
h : (fun {α} => app η α) = fun {α} => app η' α
⊢ η = η'
[PROOFSTEP]
cases η
[GOAL]
case mk
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
η' : ApplicativeTransformation F G
app✝ : (α : Type u) → F α → G α
preserves_pure'✝ : ∀ {α : Type u} (x : α), app✝ α (pure x) = pure x
preserves_seq'✝ :
∀ {α β : Type u} (x : F (α → β)) (y : F α), app✝ β (Seq.seq x fun x => y) = Seq.seq (app✝ (α → β) x) fun x => app✝ α y
h :
(fun {α} => app { app := app✝, preserves_pure' := preserves_pure'✝, preserves_seq' := preserves_seq'✝ } α) =
fun {α} => app η' α
⊢ { app := app✝, preserves_pure' := preserves_pure'✝, preserves_seq' := preserves_seq'✝ } = η'
[PROOFSTEP]
cases η'
[GOAL]
case mk.mk
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
app✝¹ : (α : Type u) → F α → G α
preserves_pure'✝¹ : ∀ {α : Type u} (x : α), app✝¹ α (pure x) = pure x
preserves_seq'✝¹ :
∀ {α β : Type u} (x : F (α → β)) (y : F α),
app✝¹ β (Seq.seq x fun x => y) = Seq.seq (app✝¹ (α → β) x) fun x => app✝¹ α y
app✝ : (α : Type u) → F α → G α
preserves_pure'✝ : ∀ {α : Type u} (x : α), app✝ α (pure x) = pure x
preserves_seq'✝ :
∀ {α β : Type u} (x : F (α → β)) (y : F α), app✝ β (Seq.seq x fun x => y) = Seq.seq (app✝ (α → β) x) fun x => app✝ α y
h :
(fun {α} => app { app := app✝¹, preserves_pure' := preserves_pure'✝¹, preserves_seq' := preserves_seq'✝¹ } α) =
fun {α} => app { app := app✝, preserves_pure' := preserves_pure'✝, preserves_seq' := preserves_seq'✝ } α
⊢ { app := app✝¹, preserves_pure' := preserves_pure'✝¹, preserves_seq' := preserves_seq'✝¹ } =
{ app := app✝, preserves_pure' := preserves_pure'✝, preserves_seq' := preserves_seq'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
η η' : ApplicativeTransformation F G
h : ∀ (α : Type u) (x : F α), (fun {α} => app η α) x = (fun {α} => app η' α) x
⊢ η = η'
[PROOFSTEP]
apply coe_inj
[GOAL]
case h
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
η η' : ApplicativeTransformation F G
h : ∀ (α : Type u) (x : F α), (fun {α} => app η α) x = (fun {α} => app η' α) x
⊢ (fun {α} => app η α) = fun {α} => app η' α
[PROOFSTEP]
ext1 α
[GOAL]
case h.h
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
η η' : ApplicativeTransformation F G
h : ∀ (α : Type u) (x : F α), (fun {α} => app η α) x = (fun {α} => app η' α) x
α : Type u
⊢ app η α = app η' α
[PROOFSTEP]
exact funext (h α)
[GOAL]
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β : Type u
x : α → β
y : F α
⊢ (fun {α} => app η α) (x <$> y) = x <$> (fun {α} => app η α) y
[PROOFSTEP]
rw [← pure_seq, η.preserves_seq, preserves_pure, pure_seq]
[GOAL]
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β : Type u
x : α → β
⊢ (fun {α} => app η α) ∘ Functor.map x = Functor.map x ∘ fun {α} => app η α
[PROOFSTEP]
ext y
[GOAL]
case h
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β : Type u
x : α → β
y : F α
⊢ ((fun {α} => app η α) ∘ Functor.map x) y = (Functor.map x ∘ fun {α} => app η α) y
[PROOFSTEP]
exact preserves_map η x y
[GOAL]
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
⊢ ∀ {α : Type u} (x : α), (fun α => id) α (pure x) = pure x
[PROOFSTEP]
simp
[GOAL]
F : Type u → Type v
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
G : Type u → Type w
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α✝ β✝ : Type u
x : F (α✝ → β✝)
y : F α✝
⊢ (fun α => id) β✝ (Seq.seq x fun x => y) = Seq.seq ((fun α => id) (α✝ → β✝) x) fun x => (fun α => id) α✝ y
[PROOFSTEP]
simp
[GOAL]
F : Type u → Type v
inst✝⁵ : Applicative F
inst✝⁴ : LawfulApplicative F
G : Type u → Type w
inst✝³ : Applicative G
inst✝² : LawfulApplicative G
H : Type u → Type s
inst✝¹ : Applicative H
inst✝ : LawfulApplicative H
η' : ApplicativeTransformation G H
η : ApplicativeTransformation F G
α✝ : Type u
x : α✝
⊢ (fun α x => (fun {α} => app η' α) ((fun {α} => app η α) x)) α✝ (pure x) = pure x
[PROOFSTEP]
simp only [preserves_pure]
[GOAL]
F : Type u → Type v
inst✝⁵ : Applicative F
inst✝⁴ : LawfulApplicative F
G : Type u → Type w
inst✝³ : Applicative G
inst✝² : LawfulApplicative G
H : Type u → Type s
inst✝¹ : Applicative H
inst✝ : LawfulApplicative H
η' : ApplicativeTransformation G H
η : ApplicativeTransformation F G
α✝ β✝ : Type u
x : F (α✝ → β✝)
y : F α✝
⊢ (fun α x => (fun {α} => app η' α) ((fun {α} => app η α) x)) β✝ (Seq.seq x fun x => y) =
Seq.seq ((fun α x => (fun {α} => app η' α) ((fun {α} => app η α) x)) (α✝ → β✝) x) fun x =>
(fun α x => (fun {α} => app η' α) ((fun {α} => app η α) x)) α✝ y
[PROOFSTEP]
simp only [preserves_seq]
[GOAL]
⊢ LawfulTraversable Id
[PROOFSTEP]
refine' { .. }
[GOAL]
case refine'_1
⊢ ∀ {α β : Type ?u.11560}, mapConst = map ∘ const β
[PROOFSTEP]
intros
[GOAL]
case refine'_2
⊢ ∀ {α : Type ?u.11560} (x : Id α), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_3
⊢ ∀ {α β γ : Type ?u.11560} (g : α → β) (h : β → γ) (x : Id α), (h ∘ g) <$> x = h <$> g <$> x
[PROOFSTEP]
intros
[GOAL]
case refine'_4
⊢ ∀ {α : Type ?u.11560} (x : Id α), traverse pure x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_5
⊢ ∀ {F G : Type ?u.11560 → Type ?u.11560} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α β γ : Type ?u.11560} (f : β → F γ) (g : α → G β) (x : Id α),
traverse (Comp.mk ∘ map f ∘ g) x = Comp.mk (traverse f <$> traverse g x)
[PROOFSTEP]
intros
[GOAL]
case refine'_6
⊢ ∀ {α β : Type ?u.11560} (f : α → β) (x : Id α), traverse (pure ∘ f) x = id.mk (f <$> x)
[PROOFSTEP]
intros
[GOAL]
case refine'_7
⊢ ∀ {F G : Type ?u.11560 → Type ?u.11560} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α β : Type ?u.11560} (f : α → F β) (x : Id α),
(fun {α} => ApplicativeTransformation.app η α) (traverse f x) =
traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x
[PROOFSTEP]
intros
[GOAL]
case refine'_1
α✝ β✝ : Type ?u.11560
⊢ mapConst = map ∘ const β✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
α✝ : Type ?u.11560
x✝ : Id α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_3
α✝ β✝ γ✝ : Type ?u.11560
g✝ : α✝ → β✝
h✝ : β✝ → γ✝
x✝ : Id α✝
⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
α✝ : Type ?u.11560
x✝ : Id α✝
⊢ traverse pure x✝ = x✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_5
F✝ G✝ : Type ?u.11560 → Type ?u.11560
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ β✝ γ✝ : Type ?u.11560
f✝ : β✝ → F✝ γ✝
g✝ : α✝ → G✝ β✝
x✝ : Id α✝
⊢ traverse (Comp.mk ∘ map f✝ ∘ g✝) x✝ = Comp.mk (traverse f✝ <$> traverse g✝ x✝)
[PROOFSTEP]
rfl
[GOAL]
case refine'_6
α✝ β✝ : Type ?u.11560
f✝ : α✝ → β✝
x✝ : Id α✝
⊢ traverse (pure ∘ f✝) x✝ = id.mk (f✝ <$> x✝)
[PROOFSTEP]
rfl
[GOAL]
case refine'_7
F✝ G✝ : Type ?u.11560 → Type ?u.11560
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ β✝ : Type ?u.11560
f✝ : α✝ → F✝ β✝
x✝ : Id α✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (traverse f✝ x✝) =
traverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) x✝
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Control.Traversable.Basic", "llama_tokens": 4325} |
[GOAL]
α : Type ?u.3
⊢ (fun {α β} e => ↑(uniqueCongr e)) (Equiv.refl α) = id
[PROOFSTEP]
simp
[GOAL]
⊢ ∀ {α β γ : Type ?u.3} (k : α ≃ β) (h : β ≃ γ),
(fun {α β} e => ↑(uniqueCongr e)) (k.trans h) =
(fun {α β} e => ↑(uniqueCongr e)) h ∘ (fun {α β} e => ↑(uniqueCongr e)) k
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.3738
⊢ (fun {α β} e p => (e.symm.trans p).trans e) (Equiv.refl α) = id
[PROOFSTEP]
ext
[GOAL]
case h.H
α : Type ?u.3738
x✝¹ : Perm α
x✝ : α
⊢ ↑((fun {α β} e p => (e.symm.trans p).trans e) (Equiv.refl α) x✝¹) x✝ = ↑(id x✝¹) x✝
[PROOFSTEP]
simp
[GOAL]
α✝ β✝ γ✝ : Type ?u.3738
x✝¹ : α✝ ≃ β✝
x✝ : β✝ ≃ γ✝
⊢ (fun {α β} e p => (e.symm.trans p).trans e) (x✝¹.trans x✝) =
(fun {α β} e p => (e.symm.trans p).trans e) x✝ ∘ (fun {α β} e p => (e.symm.trans p).trans e) x✝¹
[PROOFSTEP]
ext
[GOAL]
case h.H
α✝ β✝ γ✝ : Type ?u.3738
x✝³ : α✝ ≃ β✝
x✝² : β✝ ≃ γ✝
x✝¹ : Perm α✝
x✝ : γ✝
⊢ ↑((fun {α β} e p => (e.symm.trans p).trans e) (x✝³.trans x✝²) x✝¹) x✝ =
↑(((fun {α β} e p => (e.symm.trans p).trans e) x✝² ∘ (fun {α β} e p => (e.symm.trans p).trans e) x✝³) x✝¹) x✝
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.6374
⊢ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) (Equiv.refl α) = id
[PROOFSTEP]
ext
[GOAL]
case h.a
α : Type ?u.6374
x✝ : Finset α
a✝ : α
⊢ a✝ ∈ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) (Equiv.refl α) x✝ ↔ a✝ ∈ id x✝
[PROOFSTEP]
simp
[GOAL]
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
⊢ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) (k.trans h) =
(fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) h ∘ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) k
[PROOFSTEP]
ext _ a
[GOAL]
case h.a
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
x✝ : Finset α✝
a : γ✝
⊢ a ∈ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) (k.trans h) x✝ ↔
a ∈
((fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) h ∘
(fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) k)
x✝
[PROOFSTEP]
simp
[GOAL]
case h.a
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
x✝ : Finset α✝
a : γ✝
⊢ (∃ a_1, a_1 ∈ x✝ ∧ ↑h (↑k a_1) = a) ↔ ↑k.symm (↑h.symm a) ∈ x✝
[PROOFSTEP]
constructor
[GOAL]
case h.a.mp
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
x✝ : Finset α✝
a : γ✝
⊢ (∃ a_1, a_1 ∈ x✝ ∧ ↑h (↑k a_1) = a) → ↑k.symm (↑h.symm a) ∈ x✝
[PROOFSTEP]
intro h'
[GOAL]
case h.a.mpr
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
x✝ : Finset α✝
a : γ✝
⊢ ↑k.symm (↑h.symm a) ∈ x✝ → ∃ a_2, a_2 ∈ x✝ ∧ ↑h (↑k a_2) = a
[PROOFSTEP]
intro h'
[GOAL]
case h.a.mp
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
x✝ : Finset α✝
a : γ✝
h' : ∃ a_1, a_1 ∈ x✝ ∧ ↑h (↑k a_1) = a
⊢ ↑k.symm (↑h.symm a) ∈ x✝
[PROOFSTEP]
let ⟨a, ha₁, ha₂⟩ := h'
[GOAL]
case h.a.mp
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
x✝ : Finset α✝
a✝ : γ✝
h' : ∃ a, a ∈ x✝ ∧ ↑h (↑k a) = a✝
a : α✝
ha₁ : a ∈ x✝
ha₂ : ↑h (↑k a) = a✝
⊢ ↑k.symm (↑h.symm a✝) ∈ x✝
[PROOFSTEP]
rw [← ha₂]
[GOAL]
case h.a.mp
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
x✝ : Finset α✝
a✝ : γ✝
h' : ∃ a, a ∈ x✝ ∧ ↑h (↑k a) = a✝
a : α✝
ha₁ : a ∈ x✝
ha₂ : ↑h (↑k a) = a✝
⊢ ↑k.symm (↑h.symm (↑h (↑k a))) ∈ x✝
[PROOFSTEP]
simp
[GOAL]
case h.a.mp
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
x✝ : Finset α✝
a✝ : γ✝
h' : ∃ a, a ∈ x✝ ∧ ↑h (↑k a) = a✝
a : α✝
ha₁ : a ∈ x✝
ha₂ : ↑h (↑k a) = a✝
⊢ a ∈ x✝
[PROOFSTEP]
apply ha₁
[GOAL]
case h.a.mpr
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
x✝ : Finset α✝
a : γ✝
h' : ↑k.symm (↑h.symm a) ∈ x✝
⊢ ∃ a_1, a_1 ∈ x✝ ∧ ↑h (↑k a_1) = a
[PROOFSTEP]
exists (Equiv.symm k) ((Equiv.symm h) a)
[GOAL]
case h.a.mpr
α✝ β✝ γ✝ : Type ?u.6374
k : α✝ ≃ β✝
h : β✝ ≃ γ✝
x✝ : Finset α✝
a : γ✝
h' : ↑k.symm (↑h.symm a) ∈ x✝
⊢ ↑k.symm (↑h.symm a) ∈ x✝ ∧ ↑h (↑k (↑k.symm (↑h.symm a))) = a
[PROOFSTEP]
simp [h']
[GOAL]
α : Type ?u.9577
⊢ (fun {α β} e s => Fintype.ofBijective ↑e (_ : Function.Bijective ↑e)) (Equiv.refl α) = id
[PROOFSTEP]
ext
[GOAL]
case h
α : Type ?u.9577
x✝ : Fintype α
⊢ (fun {α β} e s => Fintype.ofBijective ↑e (_ : Function.Bijective ↑e)) (Equiv.refl α) x✝ = id x✝
[PROOFSTEP]
simp
[GOAL]
⊢ ∀ {α β γ : Type ?u.9577} (k : α ≃ β) (h : β ≃ γ),
(fun {α β} e s => Fintype.ofBijective ↑e (_ : Function.Bijective ↑e)) (k.trans h) =
(fun {α β} e s => Fintype.ofBijective ↑e (_ : Function.Bijective ↑e)) h ∘
(fun {α β} e s => Fintype.ofBijective ↑e (_ : Function.Bijective ↑e)) k
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Control.EquivFunctor.Instances", "llama_tokens": 3078} |
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f✝ : β → γ
α✝ β✝ : Type u
f : Id (α✝ → β✝)
x : Id α✝
⊢ pure (Seq.seq f fun x_1 => x) = Seq.seq (pure f) fun x_1 => pure x
[PROOFSTEP]
simp only [map_pure, seq_pure]
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f✝ : β → γ
α✝ β✝ : Type u
f : Id (α✝ → β✝)
x : Id α✝
⊢ pure (Seq.seq f fun x_1 => x) = pure (f x)
[PROOFSTEP]
rfl
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
x : t α
⊢ map f <$> traverse g x = traverse (map f ∘ g) x
[PROOFSTEP]
rw [map_eq_traverse_id f]
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
x : t α
⊢ traverse (pure ∘ f) <$> traverse g x = traverse (map f ∘ g) x
[PROOFSTEP]
refine' (comp_traverse (pure ∘ f) g x).symm.trans _
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
x : t α
⊢ traverse (Comp.mk ∘ map (pure ∘ f) ∘ g) x = traverse (map f ∘ g) x
[PROOFSTEP]
congr
[GOAL]
case h.e_4.h
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
x : t α
⊢ Comp.instApplicativeComp = inst✝³
[PROOFSTEP]
apply Comp.applicative_comp_id
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g✝ : α → F β
h : β → G γ
f✝ : β → γ
x✝ : t β
f : β → F γ
g : α → β
x : t α
⊢ traverse f (g <$> x) = traverse (f ∘ g) x
[PROOFSTEP]
rw [@map_eq_traverse_id t _ _ _ _ g]
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g✝ : α → F β
h : β → G γ
f✝ : β → γ
x✝ : t β
f : β → F γ
g : α → β
x : t α
⊢ traverse f (traverse (pure ∘ g) x) = traverse (f ∘ g) x
[PROOFSTEP]
refine' (comp_traverse (G := Id) f (pure ∘ g) x).symm.trans _
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g✝ : α → F β
h : β → G γ
f✝ : β → γ
x✝ : t β
f : β → F γ
g : α → β
x : t α
⊢ traverse (Comp.mk ∘ map f ∘ pure ∘ g) x = traverse (f ∘ g) x
[PROOFSTEP]
congr
[GOAL]
case h.e_4.h
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g✝ : α → F β
h : β → G γ
f✝ : β → γ
x✝ : t β
f : β → F γ
g : α → β
x : t α
⊢ Comp.instApplicativeComp = inst✝³
[PROOFSTEP]
apply Comp.applicative_id_comp
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
x : t α
⊢ traverse pure x = pure x
[PROOFSTEP]
have : traverse pure x = pure (traverse (m := Id) pure x) := (naturality (PureTransformation F) pure x).symm
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
x : t α
this : traverse pure x = pure (traverse pure x)
⊢ traverse pure x = pure x
[PROOFSTEP]
rwa [id_traverse] at this
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
x : t α
⊢ sequence (pure <$> x) = pure x
[PROOFSTEP]
simp [sequence, traverse_map, id_traverse]
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
x : t (F (G α))
⊢ sequence (Comp.mk <$> x) = Comp.mk (sequence <$> sequence x)
[PROOFSTEP]
simp [sequence, traverse_map]
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
x : t (F (G α))
⊢ traverse Comp.mk x = Comp.mk (traverse id <$> traverse id x)
[PROOFSTEP]
rw [← comp_traverse]
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
x : t (F (G α))
⊢ traverse Comp.mk x = traverse (Comp.mk ∘ map id ∘ id) x
[PROOFSTEP]
simp [map_id]
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x✝ : t β
η : ApplicativeTransformation F G
x : t (F α)
⊢ (fun {α} => ApplicativeTransformation.app η α) (sequence x) =
sequence ((fun {α} => ApplicativeTransformation.app η α) <$> x)
[PROOFSTEP]
simp [sequence, naturality, traverse_map]
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x : t β
⊢ traverse pure = pure
[PROOFSTEP]
ext
[GOAL]
case h
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f : β → γ
x : t β
x✝ : t α
⊢ traverse pure x✝ = pure x✝
[PROOFSTEP]
exact id_traverse _
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g✝ : α → F β
h✝ : β → G γ
f : β → γ
x : t β
g : α → F β
h : β → G γ
⊢ traverse (Comp.mk ∘ map h ∘ g) = Comp.mk ∘ map (traverse h) ∘ traverse g
[PROOFSTEP]
ext
[GOAL]
case h
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g✝ : α → F β
h✝ : β → G γ
f : β → γ
x : t β
g : α → F β
h : β → G γ
x✝ : t α
⊢ traverse (Comp.mk ∘ map h ∘ g) x✝ = (Comp.mk ∘ map (traverse h) ∘ traverse g) x✝
[PROOFSTEP]
exact comp_traverse _ _ _
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f✝ : β → γ
x : t β
f : β → γ
⊢ traverse (pure ∘ f) = pure ∘ map f
[PROOFSTEP]
ext
[GOAL]
case h
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f✝ : β → γ
x : t β
f : β → γ
x✝ : t β
⊢ traverse (pure ∘ f) x✝ = (pure ∘ map f) x✝
[PROOFSTEP]
exact traverse_eq_map_id _ _
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g✝ : α → F β
h✝ : β → G γ
f : β → γ
x : t β
g : α → β
h : β → G γ
⊢ traverse (h ∘ g) = traverse h ∘ map g
[PROOFSTEP]
ext
[GOAL]
case h
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g✝ : α → F β
h✝ : β → G γ
f : β → γ
x : t β
g : α → β
h : β → G γ
x✝ : t α
⊢ traverse (h ∘ g) x✝ = (traverse h ∘ map g) x✝
[PROOFSTEP]
rw [comp_apply, traverse_map]
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g✝ : α → F β
h✝ : β → G γ
f : β → γ
x : t β
g : α → G β
h : β → γ
⊢ traverse (map h ∘ g) = map (map h) ∘ traverse g
[PROOFSTEP]
ext
[GOAL]
case h
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g✝ : α → F β
h✝ : β → G γ
f : β → γ
x : t β
g : α → G β
h : β → γ
x✝ : t α
⊢ traverse (map h ∘ g) x✝ = (map (map h) ∘ traverse g) x✝
[PROOFSTEP]
rw [comp_apply, map_traverse]
[GOAL]
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f✝ : β → γ
x : t β
η : ApplicativeTransformation F G
f : α → F β
⊢ traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) =
(fun {α} => ApplicativeTransformation.app η α) ∘ traverse f
[PROOFSTEP]
ext
[GOAL]
case h
t : Type u → Type u
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : LawfulApplicative F
inst✝¹ : Applicative G
inst✝ : LawfulApplicative G
α β γ : Type u
g : α → F β
h : β → G γ
f✝ : β → γ
x : t β
η : ApplicativeTransformation F G
f : α → F β
x✝ : t α
⊢ traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x✝ =
((fun {α} => ApplicativeTransformation.app η α) ∘ traverse f) x✝
[PROOFSTEP]
rw [comp_apply, naturality]
| {"mathlib_filename": "Mathlib.Control.Traversable.Lemmas", "llama_tokens": 5678} |
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) -
(integral (Box.face I i) ⊥ (f ∘ Fin.insertNth i (Box.upper I i)) BoxAdditiveMap.volume -
integral (Box.face I i) ⊥ (f ∘ Fin.insertNth i (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤
2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)
[PROOFSTEP]
set e : ℝ → (Fin n → ℝ) → (Fin (n + 1) → ℝ) :=
i.insertNth (α := fun _ ↦ ℝ)
/- **Plan of the proof**. The difference of the integrals of the affine function
`fun y ↦ a + f' (y - x)` over the faces `x i = I.upper i` and `x i = I.lower i` is equal to the
volume of `I` multiplied by `f' (Pi.single i 1)`, so it suffices to show that the integral of
`f y - a - f' (y - x)` over each of these faces is less than or equal to `ε * c * vol I`. We
integrate a function of the norm `≤ ε * diam I.Icc` over a box of volume
`∏ j ≠ i, (I.upper j - I.lower j)`. Since `diam I.Icc ≤ c * (I.upper i - I.lower i)`, we get the
required estimate. -/
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) -
(integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume -
integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤
2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)
[PROOFSTEP]
have Hl : I.lower i ∈ Icc (I.lower i) (I.upper i) := Set.left_mem_Icc.2 (I.lower_le_upper i)
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) -
(integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume -
integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤
2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)
[PROOFSTEP]
have Hu : I.upper i ∈ Icc (I.lower i) (I.upper i) := Set.right_mem_Icc.2 (I.lower_le_upper i)
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) -
(integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume -
integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤
2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)
[PROOFSTEP]
have Hi : ∀ x ∈ Icc (I.lower i) (I.upper i), Integrable.{0, u, u} (I.face i) ⊥ (f ∘ e x) BoxAdditiveMap.volume :=
fun x hx => integrable_of_continuousOn _ (Box.continuousOn_face_Icc hfc hx) volume
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) -
(integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume -
integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤
2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)
[PROOFSTEP]
have :
∀ y ∈ Box.Icc (I.face i),
‖f' (Pi.single i (I.upper i - I.lower i)) - (f (e (I.upper i) y) - f (e (I.lower i) y))‖ ≤
2 * ε * diam (Box.Icc I) :=
fun y hy ↦ by
set g := fun y => f y - a - f' (y - x) with hg
change ∀ y ∈ (Box.Icc I), ‖g y‖ ≤ ε * ‖y - x‖ at hε
clear_value g; obtain rfl : f = fun y => a + f' (y - x) + g y := by simp [hg]
convert_to ‖g (e (I.lower i) y) - g (e (I.upper i) y)‖ ≤ _
· congr 1
have := Fin.insertNth_sub_same (α := fun _ ↦ ℝ) i (I.upper i) (I.lower i) y
simp only [← this, f'.map_sub]; abel
· have : ∀ z ∈ Icc (I.lower i) (I.upper i), e z y ∈ (Box.Icc I) := fun z hz => I.mapsTo_insertNth_face_Icc hz hy
replace hε : ∀ y ∈ (Box.Icc I), ‖g y‖ ≤ ε * diam (Box.Icc I)
· intro y hy
refine' (hε y hy).trans (mul_le_mul_of_nonneg_left _ h0.le)
rw [← dist_eq_norm]
exact dist_le_diam_of_mem I.isCompact_Icc.bounded hy hxI
rw [two_mul, add_mul]
exact norm_sub_le_of_le (hε _ (this _ Hl)) (hε _ (this _ Hu))
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
[PROOFSTEP]
set g := fun y => f y - a - f' (y - x) with hg
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E := fun y => f y - a - ↑f' (y - x)
hg : g = fun y => f y - a - ↑f' (y - x)
⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
[PROOFSTEP]
change ∀ y ∈ (Box.Icc I), ‖g y‖ ≤ ε * ‖y - x‖ at hε
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E := fun y => f y - a - ↑f' (y - x)
hg : g = fun y => f y - a - ↑f' (y - x)
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
[PROOFSTEP]
clear_value g
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hg : g = fun y => f y - a - ↑f' (y - x)
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
[PROOFSTEP]
obtain rfl : f = fun y => a + f' (y - x) + g y := by simp [hg]
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hg : g = fun y => f y - a - ↑f' (y - x)
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
⊢ f = fun y => a + ↑f' (y - x) + g y
[PROOFSTEP]
simp [hg]
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) -
((fun y => a + ↑f' (y - x) + g y) (e (Box.upper I i) y) -
(fun y => a + ↑f' (y - x) + g y) (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
[PROOFSTEP]
convert_to ‖g (e (I.lower i) y) - g (e (I.upper i) y)‖ ≤ _
[GOAL]
case h.e'_3
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) -
((fun y => a + ↑f' (y - x) + g y) (e (Box.upper I i) y) -
(fun y => a + ↑f' (y - x) + g y) (e (Box.lower I i) y))‖ =
‖g (e (Box.lower I i) y) - g (e (Box.upper I i) y)‖
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_3.e_a
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
⊢ ↑f' (Pi.single i (Box.upper I i - Box.lower I i)) -
((fun y => a + ↑f' (y - x) + g y) (e (Box.upper I i) y) -
(fun y => a + ↑f' (y - x) + g y) (e (Box.lower I i) y)) =
g (e (Box.lower I i) y) - g (e (Box.upper I i) y)
[PROOFSTEP]
have := Fin.insertNth_sub_same (α := fun _ ↦ ℝ) i (I.upper i) (I.lower i) y
[GOAL]
case h.e'_3.e_a
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
this :
Fin.insertNth i (Box.upper I i) y - Fin.insertNth i (Box.lower I i) y = Pi.single i (Box.upper I i - Box.lower I i)
⊢ ↑f' (Pi.single i (Box.upper I i - Box.lower I i)) -
((fun y => a + ↑f' (y - x) + g y) (e (Box.upper I i) y) -
(fun y => a + ↑f' (y - x) + g y) (e (Box.lower I i) y)) =
g (e (Box.lower I i) y) - g (e (Box.upper I i) y)
[PROOFSTEP]
simp only [← this, f'.map_sub]
[GOAL]
case h.e'_3.e_a
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
this :
Fin.insertNth i (Box.upper I i) y - Fin.insertNth i (Box.lower I i) y = Pi.single i (Box.upper I i - Box.lower I i)
⊢ ↑f' (Fin.insertNth i (Box.upper I i) y) - ↑f' (Fin.insertNth i (Box.lower I i) y) -
(a + (↑f' (Fin.insertNth i (Box.upper I i) y) - ↑f' x) + g (Fin.insertNth i (Box.upper I i) y) -
(a + (↑f' (Fin.insertNth i (Box.lower I i) y) - ↑f' x) + g (Fin.insertNth i (Box.lower I i) y))) =
g (Fin.insertNth i (Box.lower I i) y) - g (Fin.insertNth i (Box.upper I i) y)
[PROOFSTEP]
abel
[GOAL]
case h.e'_3.e_a
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
this :
Fin.insertNth i (Box.upper I i) y - Fin.insertNth i (Box.lower I i) y = Pi.single i (Box.upper I i - Box.lower I i)
⊢ ↑f' (Fin.insertNth i (Box.upper I i) y) - ↑f' (Fin.insertNth i (Box.lower I i) y) -
(a + (↑f' (Fin.insertNth i (Box.upper I i) y) - ↑f' x) + g (Fin.insertNth i (Box.upper I i) y) -
(a + (↑f' (Fin.insertNth i (Box.lower I i) y) - ↑f' x) + g (Fin.insertNth i (Box.lower I i) y))) =
g (Fin.insertNth i (Box.lower I i) y) - g (Fin.insertNth i (Box.upper I i) y)
[PROOFSTEP]
abel
[GOAL]
case convert_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
⊢ ‖g (e (Box.lower I i) y) - g (e (Box.upper I i) y)‖ ≤ 2 * ε * diam (↑Box.Icc I)
[PROOFSTEP]
have : ∀ z ∈ Icc (I.lower i) (I.upper i), e z y ∈ (Box.Icc I) := fun z hz => I.mapsTo_insertNth_face_Icc hz hy
[GOAL]
case convert_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y ∈ ↑Box.Icc I
⊢ ‖g (e (Box.lower I i) y) - g (e (Box.upper I i) y)‖ ≤ 2 * ε * diam (↑Box.Icc I)
[PROOFSTEP]
replace hε : ∀ y ∈ (Box.Icc I), ‖g y‖ ≤ ε * diam (Box.Icc I)
[GOAL]
case hε
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y ∈ ↑Box.Icc I
⊢ ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * diam (↑Box.Icc I)
[PROOFSTEP]
intro y hy
[GOAL]
case hε
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y✝ : Fin n → ℝ
hy✝ : y✝ ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y✝ ∈ ↑Box.Icc I
y : Fin (n + 1) → ℝ
hy : y ∈ ↑Box.Icc I
⊢ ‖g y‖ ≤ ε * diam (↑Box.Icc I)
[PROOFSTEP]
refine' (hε y hy).trans (mul_le_mul_of_nonneg_left _ h0.le)
[GOAL]
case hε
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y✝ : Fin n → ℝ
hy✝ : y✝ ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y✝ ∈ ↑Box.Icc I
y : Fin (n + 1) → ℝ
hy : y ∈ ↑Box.Icc I
⊢ ‖y - x‖ ≤ diam (↑Box.Icc I)
[PROOFSTEP]
rw [← dist_eq_norm]
[GOAL]
case hε
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y✝ : Fin n → ℝ
hy✝ : y✝ ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y✝ ∈ ↑Box.Icc I
y : Fin (n + 1) → ℝ
hy : y ∈ ↑Box.Icc I
⊢ dist y x ≤ diam (↑Box.Icc I)
[PROOFSTEP]
exact dist_le_diam_of_mem I.isCompact_Icc.bounded hy hxI
[GOAL]
case convert_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y ∈ ↑Box.Icc I
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * diam (↑Box.Icc I)
⊢ ‖g (e (Box.lower I i) y) - g (e (Box.upper I i) y)‖ ≤ 2 * ε * diam (↑Box.Icc I)
[PROOFSTEP]
rw [two_mul, add_mul]
[GOAL]
case convert_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
g : (Fin (n + 1) → ℝ) → E
hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I)
Hi :
∀ (x_1 : ℝ),
x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) →
Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume
hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x)
this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y ∈ ↑Box.Icc I
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * diam (↑Box.Icc I)
⊢ ‖g (e (Box.lower I i) y) - g (e (Box.upper I i) y)‖ ≤ ε * diam (↑Box.Icc I) + ε * diam (↑Box.Icc I)
[PROOFSTEP]
exact norm_sub_le_of_le (hε _ (this _ Hl)) (hε _ (this _ Hu))
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
this :
∀ (y : Fin n → ℝ),
y ∈ ↑Box.Icc (Box.face I i) →
‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) -
(integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume -
integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤
2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)
[PROOFSTEP]
calc
‖(∏ j, (I.upper j - I.lower j)) • f' (Pi.single i 1) -
(integral (I.face i) ⊥ (f ∘ e (I.upper i)) BoxAdditiveMap.volume -
integral (I.face i) ⊥ (f ∘ e (I.lower i)) BoxAdditiveMap.volume)‖ =
‖integral.{0, u, u} (I.face i) ⊥
(fun x : Fin n → ℝ => f' (Pi.single i (I.upper i - I.lower i)) - (f (e (I.upper i) x) - f (e (I.lower i) x)))
BoxAdditiveMap.volume‖ :=
by
rw [← integral_sub (Hi _ Hu) (Hi _ Hl), ← Box.volume_face_mul i, mul_smul, ← Box.volume_apply, ←
BoxAdditiveMap.toSMul_apply, ← integral_const, ← BoxAdditiveMap.volume, ←
integral_sub (integrable_const _) ((Hi _ Hu).sub (Hi _ Hl))]
simp only [(· ∘ ·), Pi.sub_def, ← f'.map_smul, ← Pi.single_smul', smul_eq_mul, mul_one]
_ ≤ (volume (I.face i : Set (Fin n → ℝ))).toReal * (2 * ε * c * (I.upper i - I.lower i)) := by
-- The hard part of the estimate was done above, here we just replace `diam I.Icc`
-- with `c * (I.upper i - I.lower i)`
refine' norm_integral_le_of_le_const (fun y hy => (this y hy).trans _) volume
rw [mul_assoc (2 * ε)]
exact mul_le_mul_of_nonneg_left (I.diam_Icc_le_of_distortion_le i hc) (mul_nonneg zero_le_two h0.le)
_ = 2 * ε * c * ∏ j, (I.upper j - I.lower j) :=
by
rw [← Measure.toBoxAdditive_apply, Box.volume_apply, ← I.volume_face_mul i]
ac_rfl
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
this :
∀ (y : Fin n → ℝ),
y ∈ ↑Box.Icc (Box.face I i) →
‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) -
(integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume -
integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ =
‖integral (Box.face I i) ⊥
(fun x =>
↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) x) - f (e (Box.lower I i) x)))
BoxAdditiveMap.volume‖
[PROOFSTEP]
rw [← integral_sub (Hi _ Hu) (Hi _ Hl), ← Box.volume_face_mul i, mul_smul, ← Box.volume_apply, ←
BoxAdditiveMap.toSMul_apply, ← integral_const, ← BoxAdditiveMap.volume, ←
integral_sub (integrable_const _) ((Hi _ Hu).sub (Hi _ Hl))]
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
this :
∀ (y : Fin n → ℝ),
y ∈ ↑Box.Icc (Box.face I i) →
‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
⊢ ‖integral (Box.face I i) ⊥
((fun x => (Box.upper I i - Box.lower I i) • ↑f' (Pi.single i 1)) -
(f ∘ e (Box.upper I i) - f ∘ e (Box.lower I i)))
BoxAdditiveMap.volume‖ =
‖integral (Box.face I i) ⊥
(fun x =>
↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) x) - f (e (Box.lower I i) x)))
BoxAdditiveMap.volume‖
[PROOFSTEP]
simp only [(· ∘ ·), Pi.sub_def, ← f'.map_smul, ← Pi.single_smul', smul_eq_mul, mul_one]
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
this :
∀ (y : Fin n → ℝ),
y ∈ ↑Box.Icc (Box.face I i) →
‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
⊢ ‖integral (Box.face I i) ⊥
(fun x =>
↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) x) - f (e (Box.lower I i) x)))
BoxAdditiveMap.volume‖ ≤
ENNReal.toReal (↑↑volume ↑(Box.face I i)) * (2 * ε * ↑c * (Box.upper I i - Box.lower I i))
[PROOFSTEP]
refine' norm_integral_le_of_le_const (fun y hy => (this y hy).trans _) volume
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
this :
∀ (y : Fin n → ℝ),
y ∈ ↑Box.Icc (Box.face I i) →
‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
⊢ 2 * ε * diam (↑Box.Icc I) ≤ 2 * ε * ↑c * (Box.upper I i - Box.lower I i)
[PROOFSTEP]
rw [mul_assoc (2 * ε)]
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
this :
∀ (y : Fin n → ℝ),
y ∈ ↑Box.Icc (Box.face I i) →
‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
y : Fin n → ℝ
hy : y ∈ ↑Box.Icc (Box.face I i)
⊢ 2 * ε * diam (↑Box.Icc I) ≤ 2 * ε * (↑c * (Box.upper I i - Box.lower I i))
[PROOFSTEP]
exact mul_le_mul_of_nonneg_left (I.diam_Icc_le_of_distortion_le i hc) (mul_nonneg zero_le_two h0.le)
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
this :
∀ (y : Fin n → ℝ),
y ∈ ↑Box.Icc (Box.face I i) →
‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
⊢ ENNReal.toReal (↑↑volume ↑(Box.face I i)) * (2 * ε * ↑c * (Box.upper I i - Box.lower I i)) =
2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)
[PROOFSTEP]
rw [← Measure.toBoxAdditive_apply, Box.volume_apply, ← I.volume_face_mul i]
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) →L[ℝ] E
hfc : ContinuousOn f (↑Box.Icc I)
x : Fin (n + 1) → ℝ
hxI : x ∈ ↑Box.Icc I
a : E
ε : ℝ
h0 : 0 < ε
hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖
c : ℝ≥0
hc : Box.distortion I ≤ c
e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i
Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i)
Hi :
∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume
this :
∀ (y : Fin n → ℝ),
y ∈ ↑Box.Icc (Box.face I i) →
‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤
2 * ε * diam (↑Box.Icc I)
⊢ (∏ i_1 : Fin n, (Box.upper (Box.face I i) i_1 - Box.lower (Box.face I i) i_1)) *
(2 * ε * ↑c * (Box.upper I i - Box.lower I i)) =
2 * ε * ↑c *
((∏ j : Fin n, (Box.upper (Box.face I i) j - Box.lower (Box.face I i) j)) * (Box.upper I i - Box.lower I i))
[PROOFSTEP]
ac_rfl
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume
(integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x)) BoxAdditiveMap.volume -
integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x)) BoxAdditiveMap.volume)
[PROOFSTEP]
have Hc : ContinuousOn f (Box.Icc I) := fun x hx ↦
by
by_cases hxs : x ∈ s
exacts [Hs x hxs, (Hd x ⟨hx, hxs⟩).continuousWithinAt]
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I
⊢ ContinuousWithinAt f (↑Box.Icc I) x
[PROOFSTEP]
by_cases hxs : x ∈ s
[GOAL]
case pos
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I
hxs : x ∈ s
⊢ ContinuousWithinAt f (↑Box.Icc I) x
case neg
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I
hxs : ¬x ∈ s
⊢ ContinuousWithinAt f (↑Box.Icc I) x
[PROOFSTEP]
exacts [Hs x hxs, (Hd x ⟨hx, hxs⟩).continuousWithinAt]
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume
(integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x)) BoxAdditiveMap.volume -
integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x)) BoxAdditiveMap.volume)
[PROOFSTEP]
set fI : ℝ → Box (Fin n) → E := fun y J => integral.{0, u, u} J GP (fun x => f (i.insertNth y x)) BoxAdditiveMap.volume
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume
(integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x)) BoxAdditiveMap.volume -
integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x)) BoxAdditiveMap.volume)
[PROOFSTEP]
set fb : Icc (I.lower i) (I.upper i) → Fin n →ᵇᵃ[↑(I.face i)] E := fun x =>
(integrable_of_continuousOn GP (Box.continuousOn_face_Icc Hc x.2) volume).toBoxAdditive
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume
(integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x)) BoxAdditiveMap.volume -
integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x)) BoxAdditiveMap.volume)
[PROOFSTEP]
set F : Fin (n + 1) →ᵇᵃ[I] E := BoxAdditiveMap.upperSubLower I i fI fb fun x _ J => rfl
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume
(integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x)) BoxAdditiveMap.volume -
integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x)) BoxAdditiveMap.volume)
[PROOFSTEP]
change HasIntegral I GP (fun x => f' x (Pi.single i 1)) _ (F I)
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume (↑F I)
[PROOFSTEP]
refine' HasIntegral.of_le_Henstock_of_forall_isLittleO gp_le _ _ _ s hs _ _
[GOAL]
case refine'_1
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
⊢ Fin (n + 1) →ᵇᵃ[↑I] ℝ
[PROOFSTEP]
exact (volume : Measure (Fin (n + 1) → ℝ)).toBoxAdditive.restrict _ le_top
[GOAL]
case refine'_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
⊢ ∀ (J : Box (Fin (n + 1))), 0 ≤ ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J
[PROOFSTEP]
exact fun J => ENNReal.toReal_nonneg
[GOAL]
case refine'_3
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
⊢ ∀ (c : ℝ≥0) (x : Fin (n + 1) → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box (Fin (n + 1))),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(GP.bDistortion = true → Box.distortion J ≤ c) →
dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε
[PROOFSTEP]
intro c x hx ε ε0
[GOAL]
case refine'_3
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
⊢ ∃ δ,
δ > 0 ∧
∀ (J : Box (Fin (n + 1))),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(GP.bDistortion = true → Box.distortion J ≤ c) →
dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε
[PROOFSTEP]
have :
∀ᶠ δ in 𝓝[>] (0 : ℝ),
δ ∈ Ioc (0 : ℝ) (1 / 2) ∧
(∀ᵉ (y₁ ∈ closedBall x δ ∩ (Box.Icc I)) (y₂ ∈ closedBall x δ ∩ (Box.Icc I)), ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖f' x (Pi.single i 1)‖ ≤ ε / 2 :=
by
refine' .and _ (.and _ _)
· exact Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, one_half_pos⟩
· rcases((nhdsWithin_hasBasis nhds_basis_closedBall _).tendsto_iff nhds_basis_closedBall).1 (Hs x hx.2) _
(half_pos <| half_pos ε0) with ⟨δ₁, δ₁0, hδ₁⟩
filter_upwards [Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, δ₁0⟩] with δ hδ y₁ hy₁ y₂ hy₂
have : closedBall x δ ∩ (Box.Icc I) ⊆ closedBall x δ₁ ∩ (Box.Icc I) :=
inter_subset_inter_left _ (closedBall_subset_closedBall hδ.2)
rw [← dist_eq_norm]
calc
dist (f y₁) (f y₂) ≤ dist (f y₁) (f x) + dist (f y₂) (f x) := dist_triangle_right _ _ _
_ ≤ ε / 2 / 2 + ε / 2 / 2 := (add_le_add (hδ₁ _ <| this hy₁) (hδ₁ _ <| this hy₂))
_ = ε / 2 := add_halves _
· have : ContinuousWithinAt (fun δ : ℝ => (2 * δ) ^ (n + 1) * ‖f' x (Pi.single i 1)‖) (Ioi 0) 0 :=
((continuousWithinAt_id.const_mul _).pow _).mul_const _
refine' this.eventually (ge_mem_nhds _)
simpa using half_pos ε0
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
[PROOFSTEP]
refine' .and _ (.and _ _)
[GOAL]
case refine'_1
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2)
[PROOFSTEP]
exact Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, one_half_pos⟩
[GOAL]
case refine'_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
[PROOFSTEP]
rcases((nhdsWithin_hasBasis nhds_basis_closedBall _).tendsto_iff nhds_basis_closedBall).1 (Hs x hx.2) _
(half_pos <| half_pos ε0) with
⟨δ₁, δ₁0, hδ₁⟩
[GOAL]
case refine'_2.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
δ₁ : ℝ
δ₁0 : 0 < δ₁
hδ₁ : ∀ (x_1 : Fin (n + 1) → ℝ), x_1 ∈ closedBall x δ₁ ∩ ↑Box.Icc I → f x_1 ∈ closedBall (f x) (ε / 2 / 2)
⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
[PROOFSTEP]
filter_upwards [Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, δ₁0⟩] with δ hδ y₁ hy₁ y₂ hy₂
[GOAL]
case h
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
δ₁ : ℝ
δ₁0 : 0 < δ₁
hδ₁ : ∀ (x_1 : Fin (n + 1) → ℝ), x_1 ∈ closedBall x δ₁ ∩ ↑Box.Icc I → f x_1 ∈ closedBall (f x) (ε / 2 / 2)
δ : ℝ
hδ : δ ∈ Set.Ioc 0 δ₁
y₁ : Fin (n + 1) → ℝ
hy₁ : y₁ ∈ closedBall x δ ∩ ↑Box.Icc I
y₂ : Fin (n + 1) → ℝ
hy₂ : y₂ ∈ closedBall x δ ∩ ↑Box.Icc I
⊢ ‖f y₁ - f y₂‖ ≤ ε / 2
[PROOFSTEP]
have : closedBall x δ ∩ (Box.Icc I) ⊆ closedBall x δ₁ ∩ (Box.Icc I) :=
inter_subset_inter_left _ (closedBall_subset_closedBall hδ.2)
[GOAL]
case h
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
δ₁ : ℝ
δ₁0 : 0 < δ₁
hδ₁ : ∀ (x_1 : Fin (n + 1) → ℝ), x_1 ∈ closedBall x δ₁ ∩ ↑Box.Icc I → f x_1 ∈ closedBall (f x) (ε / 2 / 2)
δ : ℝ
hδ : δ ∈ Set.Ioc 0 δ₁
y₁ : Fin (n + 1) → ℝ
hy₁ : y₁ ∈ closedBall x δ ∩ ↑Box.Icc I
y₂ : Fin (n + 1) → ℝ
hy₂ : y₂ ∈ closedBall x δ ∩ ↑Box.Icc I
this : closedBall x δ ∩ ↑Box.Icc I ⊆ closedBall x δ₁ ∩ ↑Box.Icc I
⊢ ‖f y₁ - f y₂‖ ≤ ε / 2
[PROOFSTEP]
rw [← dist_eq_norm]
[GOAL]
case h
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
δ₁ : ℝ
δ₁0 : 0 < δ₁
hδ₁ : ∀ (x_1 : Fin (n + 1) → ℝ), x_1 ∈ closedBall x δ₁ ∩ ↑Box.Icc I → f x_1 ∈ closedBall (f x) (ε / 2 / 2)
δ : ℝ
hδ : δ ∈ Set.Ioc 0 δ₁
y₁ : Fin (n + 1) → ℝ
hy₁ : y₁ ∈ closedBall x δ ∩ ↑Box.Icc I
y₂ : Fin (n + 1) → ℝ
hy₂ : y₂ ∈ closedBall x δ ∩ ↑Box.Icc I
this : closedBall x δ ∩ ↑Box.Icc I ⊆ closedBall x δ₁ ∩ ↑Box.Icc I
⊢ dist (f y₁) (f y₂) ≤ ε / 2
[PROOFSTEP]
calc
dist (f y₁) (f y₂) ≤ dist (f y₁) (f x) + dist (f y₂) (f x) := dist_triangle_right _ _ _
_ ≤ ε / 2 / 2 + ε / 2 / 2 := (add_le_add (hδ₁ _ <| this hy₁) (hδ₁ _ <| this hy₂))
_ = ε / 2 := add_halves _
[GOAL]
case refine'_3
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
[PROOFSTEP]
have : ContinuousWithinAt (fun δ : ℝ => (2 * δ) ^ (n + 1) * ‖f' x (Pi.single i 1)‖) (Ioi 0) 0 :=
((continuousWithinAt_id.const_mul _).pow _).mul_const _
[GOAL]
case refine'_3
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this : ContinuousWithinAt (fun δ => (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖) (Set.Ioi 0) 0
⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
[PROOFSTEP]
refine' this.eventually (ge_mem_nhds _)
[GOAL]
case refine'_3
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this : ContinuousWithinAt (fun δ => (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖) (Set.Ioi 0) 0
⊢ (fun δ => (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖) 0 < ε / 2
[PROOFSTEP]
simpa using half_pos ε0
[GOAL]
case refine'_3
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
⊢ ∃ δ,
δ > 0 ∧
∀ (J : Box (Fin (n + 1))),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(GP.bDistortion = true → Box.distortion J ≤ c) →
dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε
[PROOFSTEP]
rcases this.exists with ⟨δ, ⟨hδ0, hδ12⟩, hdfδ, hδ⟩
[GOAL]
case refine'_3.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
⊢ ∃ δ,
δ > 0 ∧
∀ (J : Box (Fin (n + 1))),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(GP.bDistortion = true → Box.distortion J ≤ c) →
dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε
[PROOFSTEP]
refine' ⟨δ, hδ0, fun J hJI hJδ _ _ => add_halves ε ▸ _⟩
[GOAL]
case refine'_3.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2
[PROOFSTEP]
have Hl : J.lower i ∈ Icc (J.lower i) (J.upper i) := Set.left_mem_Icc.2 (J.lower_le_upper i)
[GOAL]
case refine'_3.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2
[PROOFSTEP]
have Hu : J.upper i ∈ Icc (J.lower i) (J.upper i) := Set.right_mem_Icc.2 (J.lower_le_upper i)
[GOAL]
case refine'_3.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2
[PROOFSTEP]
have Hi :
∀ x ∈ Icc (J.lower i) (J.upper i),
Integrable.{0, u, u} (J.face i) GP (fun y => f (i.insertNth x y)) BoxAdditiveMap.volume :=
fun x hx => integrable_of_continuousOn _ (Box.continuousOn_face_Icc (Hc.mono <| Box.le_iff_Icc.1 hJI) hx) volume
[GOAL]
case refine'_3.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2
[PROOFSTEP]
have hJδ' : Box.Icc J ⊆ closedBall x δ ∩ (Box.Icc I) := subset_inter hJδ (Box.le_iff_Icc.1 hJI)
[GOAL]
case refine'_3.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2
[PROOFSTEP]
have Hmaps :
∀ z ∈ Icc (J.lower i) (J.upper i), MapsTo (i.insertNth z) (Box.Icc (J.face i)) (closedBall x δ ∩ (Box.Icc I)) :=
fun z hz => (J.mapsTo_insertNth_face_Icc hz).mono Subset.rfl hJδ'
[GOAL]
case refine'_3.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2
[PROOFSTEP]
simp only [dist_eq_norm]
[GOAL]
case refine'_3.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ ‖↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1)) -
↑(BoxAdditiveMap.upperSubLower I i
(fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume)
(fun x =>
Integrable.toBoxAdditive
(_ :
Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x)
(BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))))
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J))
J‖ ≤
ε / 2 + ε / 2
[PROOFSTEP]
dsimp
[GOAL]
case refine'_3.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ ‖↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1)) -
(integral (Box.face J i) GP (fun x => f (Fin.insertNth i (Box.upper J i) x)) BoxAdditiveMap.volume -
integral (Box.face J i) GP (fun x => f (Fin.insertNth i (Box.lower J i) x)) BoxAdditiveMap.volume)‖ ≤
ε / 2 + ε / 2
[PROOFSTEP]
rw [← integral_sub (Hi _ Hu) (Hi _ Hl)]
[GOAL]
case refine'_3.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ ‖↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1)) -
integral (Box.face J i) GP
((fun y => f (Fin.insertNth i (Box.upper J i) y)) - fun y => f (Fin.insertNth i (Box.lower J i) y))
BoxAdditiveMap.volume‖ ≤
ε / 2 + ε / 2
[PROOFSTEP]
refine' (norm_sub_le _ _).trans (add_le_add _ _)
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_1
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ ‖↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))‖ ≤ ε / 2
[PROOFSTEP]
simp_rw [BoxAdditiveMap.volume_apply, norm_smul, Real.norm_eq_abs, abs_prod]
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_1
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ (∏ x : Fin (n + 1), |Box.upper J x - Box.lower J x|) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
[PROOFSTEP]
refine' (mul_le_mul_of_nonneg_right _ <| norm_nonneg _).trans hδ
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_1
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ ∏ x : Fin (n + 1), |Box.upper J x - Box.lower J x| ≤ (2 * δ) ^ (n + 1)
[PROOFSTEP]
have : ∀ j, |J.upper j - J.lower j| ≤ 2 * δ := fun j ↦
calc
dist (J.upper j) (J.lower j) ≤ dist J.upper J.lower := dist_le_pi_dist _ _ _
_ ≤ dist J.upper x + dist J.lower x := (dist_triangle_right _ _ _)
_ ≤ δ + δ := (add_le_add (hJδ J.upper_mem_Icc) (hJδ J.lower_mem_Icc))
_ = 2 * δ := (two_mul δ).symm
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_1
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this✝ :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
this : ∀ (j : Fin (n + 1)), |Box.upper J j - Box.lower J j| ≤ 2 * δ
⊢ ∏ x : Fin (n + 1), |Box.upper J x - Box.lower J x| ≤ (2 * δ) ^ (n + 1)
[PROOFSTEP]
calc
∏ j, |J.upper j - J.lower j| ≤ ∏ j : Fin (n + 1), 2 * δ := prod_le_prod (fun _ _ => abs_nonneg _) fun j _ => this j
_ = (2 * δ) ^ (n + 1) := by simp
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this✝ :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
this : ∀ (j : Fin (n + 1)), |Box.upper J j - Box.lower J j| ≤ 2 * δ
⊢ ∏ j : Fin (n + 1), 2 * δ = (2 * δ) ^ (n + 1)
[PROOFSTEP]
simp
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ ‖integral (Box.face J i) GP
((fun y => f (Fin.insertNth i (Box.upper J i) y)) - fun y => f (Fin.insertNth i (Box.lower J i) y))
BoxAdditiveMap.volume‖ ≤
ε / 2
[PROOFSTEP]
refine' (norm_integral_le_of_le_const (fun y hy => hdfδ _ (Hmaps _ Hu hy) _ (Hmaps _ Hl hy)) volume).trans _
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ ENNReal.toReal (↑↑volume ↑(Box.face J i)) * (ε / 2) ≤ ε / 2
[PROOFSTEP]
refine' (mul_le_mul_of_nonneg_right _ (half_pos ε0).le).trans_eq (one_mul _)
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ ENNReal.toReal (↑↑volume ↑(Box.face J i)) ≤ 1
[PROOFSTEP]
rw [Box.coe_eq_pi, Real.volume_pi_Ioc_toReal (Box.lower_le_upper _)]
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝¹ : x ∈ ↑Box.Icc J
x✝ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
⊢ ∏ i_1 : Fin n, (Box.upper (Box.face J i) i_1 - Box.lower (Box.face J i) i_1) ≤ 1
[PROOFSTEP]
refine' prod_le_one (fun _ _ => sub_nonneg.2 <| Box.lower_le_upper _ _) fun j _ => _
[GOAL]
case refine'_3.intro.intro.intro.intro.refine'_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I ∩ s
ε : ℝ
ε0 : ε > 0
this :
∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0,
δ ∈ Set.Ioc 0 (1 / 2) ∧
(∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧
(2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
δ : ℝ
hδ0 : 0 < δ
hδ12 : δ ≤ 1 / 2
hdfδ :
∀ (y₁ : Fin (n + 1) → ℝ),
y₁ ∈ closedBall x δ ∩ ↑Box.Icc I →
∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2
hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2
J : Box (Fin (n + 1))
hJI : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
x✝² : x ∈ ↑Box.Icc J
x✝¹ : GP.bDistortion = true → Box.distortion J ≤ c
Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i)
Hi :
∀ (x : ℝ),
x ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume
hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I
Hmaps :
∀ (z : ℝ),
z ∈ Set.Icc (Box.lower J i) (Box.upper J i) →
MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I)
j : Fin n
x✝ : j ∈ Finset.univ
⊢ Box.upper (Box.face J i) j - Box.lower (Box.face J i) j ≤ 1
[PROOFSTEP]
calc
J.upper (i.succAbove j) - J.lower (i.succAbove j) ≤ dist (J.upper (i.succAbove j)) (J.lower (i.succAbove j)) :=
le_abs_self _
_ ≤ dist J.upper J.lower := (dist_le_pi_dist J.upper J.lower (i.succAbove j))
_ ≤ dist J.upper x + dist J.lower x := (dist_triangle_right _ _ _)
_ ≤ δ + δ := (add_le_add (hJδ J.upper_mem_Icc) (hJδ J.lower_mem_Icc))
_ ≤ 1 / 2 + 1 / 2 := (add_le_add hδ12 hδ12)
_ = 1 := add_halves 1
[GOAL]
case refine'_4
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
⊢ ∀ (c : ℝ≥0) (x : Fin (n + 1) → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box (Fin (n + 1))),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(GP.bDistortion = true → Box.distortion J ≤ c) →
dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤
ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J
[PROOFSTEP]
intro c x hx ε ε0
[GOAL]
case refine'_4
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I \ s
ε : ℝ
ε0 : ε > 0
⊢ ∃ δ,
δ > 0 ∧
∀ (J : Box (Fin (n + 1))),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(GP.bDistortion = true → Box.distortion J ≤ c) →
dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤
ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J
[PROOFSTEP]
rcases exists_pos_mul_lt ε0 (2 * c) with ⟨ε', ε'0, hlt⟩
[GOAL]
case refine'_4.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I \ s
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε'0 : 0 < ε'
hlt : 2 * ↑c * ε' < ε
⊢ ∃ δ,
δ > 0 ∧
∀ (J : Box (Fin (n + 1))),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(GP.bDistortion = true → Box.distortion J ≤ c) →
dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤
ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J
[PROOFSTEP]
rcases(nhdsWithin_hasBasis nhds_basis_closedBall _).mem_iff.1 ((Hd x hx).def ε'0) with ⟨δ, δ0, Hδ⟩
[GOAL]
case refine'_4.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I \ s
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε'0 : 0 < ε'
hlt : 2 * ↑c * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1}
⊢ ∃ δ,
δ > 0 ∧
∀ (J : Box (Fin (n + 1))),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(GP.bDistortion = true → Box.distortion J ≤ c) →
dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤
ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J
[PROOFSTEP]
refine' ⟨δ, δ0, fun J hle hJδ hxJ hJc => _⟩
[GOAL]
case refine'_4.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I \ s
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε'0 : 0 < ε'
hlt : 2 * ↑c * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1}
J : Box (Fin (n + 1))
hle : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
hxJ : x ∈ ↑Box.Icc J
hJc : GP.bDistortion = true → Box.distortion J ≤ c
⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤
ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J
[PROOFSTEP]
simp only [BoxAdditiveMap.volume_apply, Box.volume_apply, dist_eq_norm]
[GOAL]
case refine'_4.intro.intro.intro.intro
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I \ s
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε'0 : 0 < ε'
hlt : 2 * ↑c * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1}
J : Box (Fin (n + 1))
hle : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
hxJ : x ∈ ↑Box.Icc J
hJc : GP.bDistortion = true → Box.distortion J ≤ c
⊢ ‖(∏ j : Fin (n + 1), (Box.upper J j - Box.lower J j)) • ↑(f' x) (Pi.single i 1) -
↑(BoxAdditiveMap.upperSubLower I i
(fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume)
(fun x =>
Integrable.toBoxAdditive
(_ :
Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x)
(BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))))
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J))
J‖ ≤
ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J
[PROOFSTEP]
refine'
(norm_volume_sub_integral_face_upper_sub_lower_smul_le _ (Hc.mono <| Box.le_iff_Icc.1 hle) hxJ ε'0 (fun y hy => Hδ _)
(hJc rfl)).trans
_
[GOAL]
case refine'_4.intro.intro.intro.intro.refine'_1
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I \ s
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε'0 : 0 < ε'
hlt : 2 * ↑c * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1}
J : Box (Fin (n + 1))
hle : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
hxJ : x ∈ ↑Box.Icc J
hJc : GP.bDistortion = true → Box.distortion J ≤ c
y : Fin (n + 1) → ℝ
hy : y ∈ ↑Box.Icc J
⊢ y ∈ closedBall x δ ∩ ↑Box.Icc I
[PROOFSTEP]
exact ⟨hJδ hy, Box.le_iff_Icc.1 hle hy⟩
[GOAL]
case refine'_4.intro.intro.intro.intro.refine'_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I \ s
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε'0 : 0 < ε'
hlt : 2 * ↑c * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1}
J : Box (Fin (n + 1))
hle : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
hxJ : x ∈ ↑Box.Icc J
hJc : GP.bDistortion = true → Box.distortion J ≤ c
⊢ 2 * ε' * ↑c * ∏ j : Fin (n + 1), (Box.upper J j - Box.lower J j) ≤
ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J
[PROOFSTEP]
rw [mul_right_comm (2 : ℝ), ← Box.volume_apply]
[GOAL]
case refine'_4.intro.intro.intro.intro.refine'_2
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
Hc : ContinuousOn f (↑Box.Icc I)
fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume
fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E :=
fun x =>
Integrable.toBoxAdditive
(_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))
F : Fin (n + 1) →ᵇᵃ[↑I] E :=
BoxAdditiveMap.upperSubLower I i fI fb
(_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)
c : ℝ≥0
x : Fin (n + 1) → ℝ
hx : x ∈ ↑Box.Icc I \ s
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε'0 : 0 < ε'
hlt : 2 * ↑c * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1}
J : Box (Fin (n + 1))
hle : J ≤ I
hJδ : ↑Box.Icc J ⊆ closedBall x δ
hxJ : x ∈ ↑Box.Icc J
hJc : GP.bDistortion = true → Box.distortion J ≤ c
⊢ 2 * ↑c * ε' * ↑(Measure.toBoxAdditive volume) J ≤
ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J
[PROOFSTEP]
exact mul_le_mul_of_nonneg_right hlt.le ENNReal.toReal_nonneg
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
⊢ HasIntegral I GP (fun x => ∑ i : Fin (n + 1), ↑(f' x) (Pi.single i 1) i) BoxAdditiveMap.volume
(∑ i : Fin (n + 1),
(integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x) i) BoxAdditiveMap.volume -
integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x) i) BoxAdditiveMap.volume))
[PROOFSTEP]
refine HasIntegral.sum fun i _ => ?_
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x
Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x
i : Fin (n + 1)
x✝ : i ∈ Finset.univ
⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1) i) BoxAdditiveMap.volume
(integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x) i) BoxAdditiveMap.volume -
integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x) i) BoxAdditiveMap.volume)
[PROOFSTEP]
simp only [hasFDerivWithinAt_pi', continuousWithinAt_pi] at Hd Hs
[GOAL]
E : Type u
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
n : ℕ
inst✝ : CompleteSpace E
I : Box (Fin (n + 1))
i✝ : Fin (n + 1)
f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E
f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E
s : Set (Fin (n + 1) → ℝ)
hs : Set.Countable s
i : Fin (n + 1)
x✝ : i ∈ Finset.univ
Hd :
∀ (x : Fin (n + 1) → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (i : Fin (n + 1)),
HasFDerivWithinAt (fun x => f x i) (ContinuousLinearMap.comp (ContinuousLinearMap.proj i) (f' x)) (↑Box.Icc I) x
Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ∀ (i : Fin (n + 1)), ContinuousWithinAt (fun y => f y i) (↑Box.Icc I) x
⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1) i) BoxAdditiveMap.volume
(integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x) i) BoxAdditiveMap.volume -
integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x) i) BoxAdditiveMap.volume)
[PROOFSTEP]
exact hasIntegral_GP_pderiv I _ _ s hs (fun x hx => Hs x hx i) (fun x hx => Hd x hx i) i
| {"mathlib_filename": "Mathlib.Analysis.BoxIntegral.DivergenceTheorem", "llama_tokens": 73705} |
{"mathlib_filename": "Mathlib.Control.Monad.Basic", "llama_tokens": 0} |
|
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
α : Type u
x : t' α
⊢ Equiv.map eqv id x = x
[PROOFSTEP]
simp [Equiv.map, id_map]
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
α β γ : Type u
g : α → β
h : β → γ
x : t' α
⊢ Equiv.map eqv (h ∘ g) x = Equiv.map eqv h (Equiv.map eqv g x)
[PROOFSTEP]
simp [Equiv.map]
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
α β γ : Type u
g : α → β
h : β → γ
x : t' α
⊢ (h ∘ g) <$> ↑(eqv α).symm x = h <$> g <$> ↑(eqv α).symm x
[PROOFSTEP]
apply comp_map
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
F : Functor t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
⊢ LawfulFunctor t'
[PROOFSTEP]
have : F = Equiv.functor eqv := by
cases F
dsimp [Equiv.functor]
congr <;> ext <;> dsimp only <;> [rw [← h₀]; rw [← h₁]] <;> rfl
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
F : Functor t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
⊢ F = Equiv.functor eqv
[PROOFSTEP]
cases F
[GOAL]
case mk
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
⊢ { map := map✝, mapConst := mapConst✝ } = Equiv.functor eqv
[PROOFSTEP]
dsimp [Equiv.functor]
[GOAL]
case mk
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
⊢ { map := map✝, mapConst := mapConst✝ } =
{ map := fun {α β} => Equiv.map eqv, mapConst := fun {α β} => Equiv.map eqv ∘ Function.const β }
[PROOFSTEP]
congr <;> ext <;> dsimp only <;> [rw [← h₀]; rw [← h₁]]
[GOAL]
case mk
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
⊢ { map := map✝, mapConst := mapConst✝ } =
{ map := fun {α β} => Equiv.map eqv, mapConst := fun {α β} => Equiv.map eqv ∘ Function.const β }
[PROOFSTEP]
congr
[GOAL]
case mk.e_map
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
⊢ map✝ = fun {α β} => Equiv.map eqv
[PROOFSTEP]
ext
[GOAL]
case mk.e_mapConst
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
⊢ mapConst✝ = fun {α β} => Equiv.map eqv ∘ Function.const β
[PROOFSTEP]
ext
[GOAL]
case mk.e_map.h.h.h.h
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
x✝³ x✝² : Type u
x✝¹ : x✝³ → x✝²
x✝ : t' x✝³
⊢ map✝ x✝¹ x✝ = Equiv.map eqv x✝¹ x✝
[PROOFSTEP]
dsimp only
[GOAL]
case mk.e_mapConst.h.h.h.h
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
x✝³ x✝² : Type u
x✝¹ : x✝³
x✝ : t' x✝²
⊢ mapConst✝ x✝¹ x✝ = (fun {α β} => Equiv.map eqv ∘ Function.const β) x✝¹ x✝
[PROOFSTEP]
dsimp only
[GOAL]
case mk.e_map.h.h.h.h
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
x✝³ x✝² : Type u
x✝¹ : x✝³ → x✝²
x✝ : t' x✝³
⊢ map✝ x✝¹ x✝ = Equiv.map eqv x✝¹ x✝
[PROOFSTEP]
rw [← h₀]
[GOAL]
case mk.e_mapConst.h.h.h.h
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
x✝³ x✝² : Type u
x✝¹ : x✝³
x✝ : t' x✝²
⊢ mapConst✝ x✝¹ x✝ = (Equiv.map eqv ∘ Function.const x✝²) x✝¹ x✝
[PROOFSTEP]
rw [← h₁]
[GOAL]
case mk.e_map.h.h.h.h
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
x✝³ x✝² : Type u
x✝¹ : x✝³ → x✝²
x✝ : t' x✝³
⊢ map✝ x✝¹ x✝ = x✝¹ <$> x✝
[PROOFSTEP]
rfl
[GOAL]
case mk.e_mapConst.h.h.h.h
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
map✝ : {α β : Type u} → (α → β) → t' α → t' β
mapConst✝ : {α β : Type u} → α → t' β → t' α
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
x✝³ x✝² : Type u
x✝¹ : x✝³
x✝ : t' x✝²
⊢ mapConst✝ x✝¹ x✝ = mapConst x✝¹ x✝
[PROOFSTEP]
rfl
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
F : Functor t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
this : F = Equiv.functor eqv
⊢ LawfulFunctor t'
[PROOFSTEP]
subst this
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹ : Functor t
inst✝ : LawfulFunctor t
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
⊢ LawfulFunctor t'
[PROOFSTEP]
exact Equiv.lawfulFunctor eqv
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
x : t' α
⊢ Equiv.traverse eqv pure x = x
[PROOFSTEP]
simp [Equiv.traverse]
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
f : α → β
x : t' α
⊢ Equiv.traverse eqv (pure ∘ f) x = pure (Equiv.map eqv f x)
[PROOFSTEP]
simp [Equiv.traverse, traverse_eq_map_id, functor_norm]
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
f : α → β
x : t' α
⊢ ↑(eqv β) (id.mk (f <$> ↑(eqv α).symm x)) = Equiv.map eqv f x
[PROOFSTEP]
rfl
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
f : β → F γ
g : α → G β
x : t' α
⊢ Equiv.traverse eqv (Comp.mk ∘ map f ∘ g) x = Comp.mk (Equiv.traverse eqv f <$> Equiv.traverse eqv g x)
[PROOFSTEP]
simp [Equiv.traverse, comp_traverse, functor_norm]
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
f : β → F γ
g : α → G β
x : t' α
⊢ Comp.mk (((fun x => ↑(eqv γ) <$> x) ∘ traverse f) <$> traverse g (↑(eqv α).symm x)) =
Comp.mk (((fun x => ↑(eqv γ) <$> traverse f (↑(eqv β).symm x)) ∘ ↑(eqv β)) <$> traverse g (↑(eqv α).symm x))
[PROOFSTEP]
congr
[GOAL]
case e_x.e_a
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
f : β → F γ
g : α → G β
x : t' α
⊢ (fun x => ↑(eqv γ) <$> x) ∘ traverse f = (fun x => ↑(eqv γ) <$> traverse f (↑(eqv β).symm x)) ∘ ↑(eqv β)
[PROOFSTEP]
ext
[GOAL]
case e_x.e_a.h
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
f : β → F γ
g : α → G β
x : t' α
x✝ : t β
⊢ ((fun x => ↑(eqv γ) <$> x) ∘ traverse f) x✝ = ((fun x => ↑(eqv γ) <$> traverse f (↑(eqv β).symm x)) ∘ ↑(eqv β)) x✝
[PROOFSTEP]
simp
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁵ : Traversable t
inst✝⁴ : LawfulTraversable t
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
f : α → F β
x : t' α
⊢ (fun {α} => ApplicativeTransformation.app η α) (Equiv.traverse eqv f x) =
Equiv.traverse eqv ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x
[PROOFSTEP]
simp only [Equiv.traverse, functor_norm]
[GOAL]
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁶ : Traversable t
inst✝⁵ : LawfulTraversable t
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulApplicative F
inst✝¹ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
⊢ LawfulTraversable t'
[PROOFSTEP]
refine' { toLawfulFunctor := Equiv.lawfulFunctor' eqv @h₀ @h₁ .. }
[GOAL]
case refine'_1
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁶ : Traversable t
inst✝⁵ : LawfulTraversable t
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulApplicative F
inst✝¹ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
⊢ ∀ {α : Type u} (x : t' α), traverse pure x = x
[PROOFSTEP]
intros
[GOAL]
case refine'_2
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁶ : Traversable t
inst✝⁵ : LawfulTraversable t
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulApplicative F
inst✝¹ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α β γ : Type u} (f : β → F γ) (g : α → G β) (x : t' α),
traverse (Comp.mk ∘ map f ∘ g) x = Comp.mk (traverse f <$> traverse g x)
[PROOFSTEP]
intros
[GOAL]
case refine'_3
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁶ : Traversable t
inst✝⁵ : LawfulTraversable t
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulApplicative F
inst✝¹ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
⊢ ∀ {α β : Type u} (f : α → β) (x : t' α), traverse (pure ∘ f) x = id.mk (f <$> x)
[PROOFSTEP]
intros
[GOAL]
case refine'_4
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁶ : Traversable t
inst✝⁵ : LawfulTraversable t
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulApplicative F
inst✝¹ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α β : Type u} (f : α → F β) (x : t' α),
(fun {α} => ApplicativeTransformation.app η α) (traverse f x) =
traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x
[PROOFSTEP]
intros
[GOAL]
case refine'_1
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁶ : Traversable t
inst✝⁵ : LawfulTraversable t
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulApplicative F
inst✝¹ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
α✝ : Type u
x✝ : t' α✝
⊢ traverse pure x✝ = x✝
[PROOFSTEP]
rw [h₂, Equiv.id_traverse]
[GOAL]
case refine'_2
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹⁰ : Traversable t
inst✝⁹ : LawfulTraversable t
F G : Type u → Type u
inst✝⁸ : Applicative F
inst✝⁷ : Applicative G
inst✝⁶ : LawfulApplicative F
inst✝⁵ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝⁴ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ β✝ γ✝ : Type u
f✝ : β✝ → F✝ γ✝
g✝ : α✝ → G✝ β✝
x✝ : t' α✝
⊢ traverse (Comp.mk ∘ map f✝ ∘ g✝) x✝ = Comp.mk (traverse f✝ <$> traverse g✝ x✝)
[PROOFSTEP]
rw [h₂, Equiv.comp_traverse, h₂]
[GOAL]
case refine'_2
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹⁰ : Traversable t
inst✝⁹ : LawfulTraversable t
F G : Type u → Type u
inst✝⁸ : Applicative F
inst✝⁷ : Applicative G
inst✝⁶ : LawfulApplicative F
inst✝⁵ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝⁴ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ β✝ γ✝ : Type u
f✝ : β✝ → F✝ γ✝
g✝ : α✝ → G✝ β✝
x✝ : t' α✝
⊢ Comp.mk (Equiv.traverse eqv f✝ <$> Equiv.traverse eqv g✝ x✝) = Comp.mk (Equiv.traverse eqv f✝ <$> traverse g✝ x✝)
[PROOFSTEP]
congr
[GOAL]
case refine'_2.e_x.e_a
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹⁰ : Traversable t
inst✝⁹ : LawfulTraversable t
F G : Type u → Type u
inst✝⁸ : Applicative F
inst✝⁷ : Applicative G
inst✝⁶ : LawfulApplicative F
inst✝⁵ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝⁴ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ β✝ γ✝ : Type u
f✝ : β✝ → F✝ γ✝
g✝ : α✝ → G✝ β✝
x✝ : t' α✝
⊢ Equiv.traverse eqv g✝ x✝ = traverse g✝ x✝
[PROOFSTEP]
rw [h₂]
[GOAL]
case refine'_3
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁶ : Traversable t
inst✝⁵ : LawfulTraversable t
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulApplicative F
inst✝¹ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
α✝ β✝ : Type u
f✝ : α✝ → β✝
x✝ : t' α✝
⊢ traverse (pure ∘ f✝) x✝ = id.mk (f✝ <$> x✝)
[PROOFSTEP]
rw [h₂, Equiv.traverse_eq_map_id, h₀]
[GOAL]
case refine'_3
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝⁶ : Traversable t
inst✝⁵ : LawfulTraversable t
F G : Type u → Type u
inst✝⁴ : Applicative F
inst✝³ : Applicative G
inst✝² : LawfulApplicative F
inst✝¹ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
α✝ β✝ : Type u
f✝ : α✝ → β✝
x✝ : t' α✝
⊢ pure (Equiv.map eqv f✝ x✝) = id.mk (Equiv.map eqv f✝ x✝)
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
t t' : Type u → Type u
eqv : (α : Type u) → t α ≃ t' α
inst✝¹⁰ : Traversable t
inst✝⁹ : LawfulTraversable t
F G : Type u → Type u
inst✝⁸ : Applicative F
inst✝⁷ : Applicative G
inst✝⁶ : LawfulApplicative F
inst✝⁵ : LawfulApplicative G
η : ApplicativeTransformation F G
α β γ : Type u
inst✝⁴ : Traversable t'
h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f
h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f
h₂ :
∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β),
traverse f = Equiv.traverse eqv f
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ β✝ : Type u
f✝ : α✝ → F✝ β✝
x✝ : t' α✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (traverse f✝ x✝) =
traverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) x✝
[PROOFSTEP]
rw [h₂, Equiv.naturality, h₂]
| {"mathlib_filename": "Mathlib.Control.Traversable.Equiv", "llama_tokens": 10730} |
[GOAL]
τ : Type u_1
α : Type u_2
ϕ : τ → α → α
s : Set α
⊢ IsInvariant ϕ s ↔ ∀ (t : τ), ϕ t '' s ⊆ s
[PROOFSTEP]
simp_rw [IsInvariant, mapsTo']
[GOAL]
τ : Type u_1
inst✝³ : AddMonoid τ
inst✝² : TopologicalSpace τ
inst✝¹ : ContinuousAdd τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
f₁ : τ → α → α
cont'✝¹ : Continuous (uncurry f₁)
map_add'✝¹ : ∀ (t₁ t₂ : τ) (x : α), f₁ (t₁ + t₂) x = f₁ t₁ (f₁ t₂ x)
map_zero'✝¹ : ∀ (x : α), f₁ 0 x = x
f₂ : τ → α → α
cont'✝ : Continuous (uncurry f₂)
map_add'✝ : ∀ (t₁ t₂ : τ) (x : α), f₂ (t₁ + t₂) x = f₂ t₁ (f₂ t₂ x)
map_zero'✝ : ∀ (x : α), f₂ 0 x = x
h :
∀ (t : τ) (x : α),
toFun { toFun := f₁, cont' := cont'✝¹, map_add' := map_add'✝¹, map_zero' := map_zero'✝¹ } t x =
toFun { toFun := f₂, cont' := cont'✝, map_add' := map_add'✝, map_zero' := map_zero'✝ } t x
⊢ { toFun := f₁, cont' := cont'✝¹, map_add' := map_add'✝¹, map_zero' := map_zero'✝¹ } =
{ toFun := f₂, cont' := cont'✝, map_add' := map_add'✝, map_zero' := map_zero'✝ }
[PROOFSTEP]
congr
[GOAL]
case e_toFun
τ : Type u_1
inst✝³ : AddMonoid τ
inst✝² : TopologicalSpace τ
inst✝¹ : ContinuousAdd τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
f₁ : τ → α → α
cont'✝¹ : Continuous (uncurry f₁)
map_add'✝¹ : ∀ (t₁ t₂ : τ) (x : α), f₁ (t₁ + t₂) x = f₁ t₁ (f₁ t₂ x)
map_zero'✝¹ : ∀ (x : α), f₁ 0 x = x
f₂ : τ → α → α
cont'✝ : Continuous (uncurry f₂)
map_add'✝ : ∀ (t₁ t₂ : τ) (x : α), f₂ (t₁ + t₂) x = f₂ t₁ (f₂ t₂ x)
map_zero'✝ : ∀ (x : α), f₂ 0 x = x
h :
∀ (t : τ) (x : α),
toFun { toFun := f₁, cont' := cont'✝¹, map_add' := map_add'✝¹, map_zero' := map_zero'✝¹ } t x =
toFun { toFun := f₂, cont' := cont'✝, map_add' := map_add'✝, map_zero' := map_zero'✝ } t x
⊢ f₁ = f₂
[PROOFSTEP]
funext
[GOAL]
case e_toFun.h.h
τ : Type u_1
inst✝³ : AddMonoid τ
inst✝² : TopologicalSpace τ
inst✝¹ : ContinuousAdd τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
f₁ : τ → α → α
cont'✝¹ : Continuous (uncurry f₁)
map_add'✝¹ : ∀ (t₁ t₂ : τ) (x : α), f₁ (t₁ + t₂) x = f₁ t₁ (f₁ t₂ x)
map_zero'✝¹ : ∀ (x : α), f₁ 0 x = x
f₂ : τ → α → α
cont'✝ : Continuous (uncurry f₂)
map_add'✝ : ∀ (t₁ t₂ : τ) (x : α), f₂ (t₁ + t₂) x = f₂ t₁ (f₂ t₂ x)
map_zero'✝ : ∀ (x : α), f₂ 0 x = x
h :
∀ (t : τ) (x : α),
toFun { toFun := f₁, cont' := cont'✝¹, map_add' := map_add'✝¹, map_zero' := map_zero'✝¹ } t x =
toFun { toFun := f₂, cont' := cont'✝, map_add' := map_add'✝, map_zero' := map_zero'✝ } t x
x✝¹ : τ
x✝ : α
⊢ f₁ x✝¹ x✝ = f₂ x✝¹ x✝
[PROOFSTEP]
exact h _ _
[GOAL]
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
s : Set α
h : ∀ (t : τ), toFun ϕ t '' s ⊆ s
t : τ
x✝ : α
hx : x✝ ∈ s
⊢ toFun ϕ t (toFun ϕ (-t) x✝) = x✝
[PROOFSTEP]
simp [← map_add]
[GOAL]
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
s : Set α
h : ∀ (t : τ), toFun ϕ t '' s = s
t : τ
⊢ toFun ϕ t '' s ⊆ s
[PROOFSTEP]
rw [h t]
[GOAL]
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
x✝² x✝¹ : τ
x✝ : α
⊢ (fun t => toFun ϕ (-t)) (x✝² + x✝¹) x✝ = (fun t => toFun ϕ (-t)) x✝² ((fun t => toFun ϕ (-t)) x✝¹ x✝)
[PROOFSTEP]
dsimp
[GOAL]
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
x✝² x✝¹ : τ
x✝ : α
⊢ toFun ϕ (-(x✝² + x✝¹)) x✝ = toFun ϕ (-x✝²) (toFun ϕ (-x✝¹) x✝)
[PROOFSTEP]
rw [neg_add, map_add]
[GOAL]
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
x✝ : α
⊢ (fun t => toFun ϕ (-t)) 0 x✝ = x✝
[PROOFSTEP]
dsimp
[GOAL]
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
x✝ : α
⊢ toFun ϕ (-0) x✝ = x✝
[PROOFSTEP]
rw [neg_zero, map_zero_apply]
[GOAL]
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
t : τ
⊢ Continuous (toFun ϕ t)
[PROOFSTEP]
rw [← curry_uncurry ϕ.toFun]
[GOAL]
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
t : τ
⊢ Continuous (curry (uncurry ϕ.toFun) t)
[PROOFSTEP]
apply continuous_curry
[GOAL]
case h
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
t : τ
⊢ Continuous (uncurry ϕ.toFun)
[PROOFSTEP]
exact ϕ.cont'
[GOAL]
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
t : τ
x : α
⊢ toFun ϕ (-t) (toFun ϕ t x) = x
[PROOFSTEP]
rw [← map_add, neg_add_self, map_zero_apply]
[GOAL]
τ : Type u_1
inst✝³ : AddCommGroup τ
inst✝² : TopologicalSpace τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
ϕ : Flow τ α
t : τ
x : α
⊢ toFun ϕ t (toFun ϕ (-t) x) = x
[PROOFSTEP]
rw [← map_add, add_neg_self, map_zero_apply]
| {"mathlib_filename": "Mathlib.Dynamics.Flow", "llama_tokens": 2881} |
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ sinh (dist z w / 2) = dist ↑z ↑w / (2 * sqrt (im z * im w))
[PROOFSTEP]
rw [dist_eq, mul_div_cancel_left (arsinh _) two_ne_zero, sinh_arsinh]
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ cosh (dist z w / 2) = dist (↑z) (↑(starRingEnd ℂ) ↑w) / (2 * sqrt (im z * im w))
[PROOFSTEP]
have H₁ : (2 ^ 2 : ℝ) = 4 := by norm_num1
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ 2 ^ 2 = 4
[PROOFSTEP]
norm_num1
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
H₁ : 2 ^ 2 = 4
⊢ cosh (dist z w / 2) = dist (↑z) (↑(starRingEnd ℂ) ↑w) / (2 * sqrt (im z * im w))
[PROOFSTEP]
have H₂ : 0 < z.im * w.im := mul_pos z.im_pos w.im_pos
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
H₁ : 2 ^ 2 = 4
H₂ : 0 < im z * im w
⊢ cosh (dist z w / 2) = dist (↑z) (↑(starRingEnd ℂ) ↑w) / (2 * sqrt (im z * im w))
[PROOFSTEP]
have H₃ : 0 < 2 * sqrt (z.im * w.im) := mul_pos two_pos (sqrt_pos.2 H₂)
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
H₁ : 2 ^ 2 = 4
H₂ : 0 < im z * im w
H₃ : 0 < 2 * sqrt (im z * im w)
⊢ cosh (dist z w / 2) = dist (↑z) (↑(starRingEnd ℂ) ↑w) / (2 * sqrt (im z * im w))
[PROOFSTEP]
rw [← sq_eq_sq (cosh_pos _).le (div_nonneg dist_nonneg H₃.le), cosh_sq', sinh_half_dist, div_pow, div_pow,
one_add_div (pow_ne_zero 2 H₃.ne'), mul_pow, sq_sqrt H₂.le, H₁]
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
H₁ : 2 ^ 2 = 4
H₂ : 0 < im z * im w
H₃ : 0 < 2 * sqrt (im z * im w)
⊢ (4 * (im z * im w) + dist ↑z ↑w ^ 2) / (4 * (im z * im w)) = dist (↑z) (↑(starRingEnd ℂ) ↑w) ^ 2 / (4 * (im z * im w))
[PROOFSTEP]
congr 1
[GOAL]
case e_a
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
H₁ : 2 ^ 2 = 4
H₂ : 0 < im z * im w
H₃ : 0 < 2 * sqrt (im z * im w)
⊢ 4 * (im z * im w) + dist ↑z ↑w ^ 2 = dist (↑z) (↑(starRingEnd ℂ) ↑w) ^ 2
[PROOFSTEP]
simp only [Complex.dist_eq, Complex.sq_abs, Complex.normSq_sub, Complex.normSq_conj, Complex.conj_conj, Complex.mul_re,
Complex.conj_re, Complex.conj_im, coe_im]
[GOAL]
case e_a
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
H₁ : 2 ^ 2 = 4
H₂ : 0 < im z * im w
H₃ : 0 < 2 * sqrt (im z * im w)
⊢ 4 * (im z * im w) + (↑Complex.normSq ↑z + ↑Complex.normSq ↑w - 2 * ((↑z).re * (↑w).re - im z * -im w)) =
↑Complex.normSq ↑z + ↑Complex.normSq ↑w - 2 * ((↑z).re * (↑w).re - im z * im w)
[PROOFSTEP]
ring
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ tanh (dist z w / 2) = dist ↑z ↑w / dist (↑z) (↑(starRingEnd ℂ) ↑w)
[PROOFSTEP]
rw [tanh_eq_sinh_div_cosh, sinh_half_dist, cosh_half_dist, div_div_div_comm, div_self, div_one]
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ 2 * sqrt (im z * im w) ≠ 0
[PROOFSTEP]
exact (mul_pos (zero_lt_two' ℝ) (sqrt_pos.2 <| mul_pos z.im_pos w.im_pos)).ne'
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ exp (dist z w / 2) = (dist ↑z ↑w + dist (↑z) (↑(starRingEnd ℂ) ↑w)) / (2 * sqrt (im z * im w))
[PROOFSTEP]
rw [← sinh_add_cosh, sinh_half_dist, cosh_half_dist, add_div]
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ cosh (dist z w) = 1 + dist ↑z ↑w ^ 2 / (2 * im z * im w)
[PROOFSTEP]
rw [dist_eq, cosh_two_mul, cosh_sq', add_assoc, ← two_mul, sinh_arsinh, div_pow, mul_pow,
sq_sqrt (mul_pos z.im_pos w.im_pos).le, sq (2 : ℝ), mul_assoc, ← mul_div_assoc, mul_assoc,
mul_div_mul_left _ _ (two_ne_zero' ℝ)]
[GOAL]
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ sinh ((dist a b + dist b c) / 2) =
(dist ↑a ↑b * dist (↑c) (↑(starRingEnd ℂ) ↑b) + dist ↑b ↑c * dist (↑a) (↑(starRingEnd ℂ) ↑b)) /
(2 * sqrt (im a * im c) * dist (↑b) (↑(starRingEnd ℂ) ↑b))
[PROOFSTEP]
simp only [add_div _ _ (2 : ℝ), sinh_add, sinh_half_dist, cosh_half_dist, div_mul_div_comm]
[GOAL]
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ dist ↑a ↑b * dist (↑b) (↑(starRingEnd ℂ) ↑c) / (2 * sqrt (im a * im b) * (2 * sqrt (im b * im c))) +
dist (↑a) (↑(starRingEnd ℂ) ↑b) * dist ↑b ↑c / (2 * sqrt (im a * im b) * (2 * sqrt (im b * im c))) =
(dist ↑a ↑b * dist (↑c) (↑(starRingEnd ℂ) ↑b) + dist ↑b ↑c * dist (↑a) (↑(starRingEnd ℂ) ↑b)) /
(2 * sqrt (im a * im c) * dist (↑b) (↑(starRingEnd ℂ) ↑b))
[PROOFSTEP]
rw [← add_div, Complex.dist_self_conj, coe_im, abs_of_pos b.im_pos, mul_comm (dist (b : ℂ) _), dist_comm (b : ℂ),
Complex.dist_conj_comm, mul_mul_mul_comm, mul_mul_mul_comm _ _ _ b.im]
[GOAL]
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ (dist ↑a ↑b * dist (↑c) (↑(starRingEnd ℂ) ↑b) + dist (↑a) (↑(starRingEnd ℂ) ↑b) * dist ↑b ↑c) /
(2 * 2 * (sqrt (im a * im b) * sqrt (im b * im c))) =
(dist ↑a ↑b * dist (↑c) (↑(starRingEnd ℂ) ↑b) + dist (↑a) (↑(starRingEnd ℂ) ↑b) * dist ↑b ↑c) /
(2 * 2 * (sqrt (im a * im c) * im b))
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_a
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ sqrt (im a * im b) * sqrt (im b * im c) = sqrt (im a * im c) * im b
[PROOFSTEP]
rw [sqrt_mul, sqrt_mul, sqrt_mul, mul_comm (sqrt a.im), mul_mul_mul_comm, mul_self_sqrt, mul_comm]
[GOAL]
case e_a.e_a
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ 0 ≤ im b
[PROOFSTEP]
exact (im_pos _).le
[GOAL]
case e_a.e_a.hx
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ 0 ≤ im a
[PROOFSTEP]
exact (im_pos _).le
[GOAL]
case e_a.e_a.hx
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ 0 ≤ im b
[PROOFSTEP]
exact (im_pos _).le
[GOAL]
case e_a.e_a.hx
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ 0 ≤ im a
[PROOFSTEP]
exact (im_pos _).le
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ dist z w = dist w z
[PROOFSTEP]
simp only [dist_eq, dist_comm (z : ℂ), mul_comm]
[GOAL]
z w : ℍ
r R : ℝ
⊢ dist z w ≤ r ↔ dist ↑z ↑w / (2 * sqrt (im z * im w)) ≤ sinh (r / 2)
[PROOFSTEP]
rw [← div_le_div_right (zero_lt_two' ℝ), ← sinh_le_sinh, sinh_half_dist]
[GOAL]
z w : ℍ
r R : ℝ
⊢ dist z w = r ↔ dist ↑z ↑w / (2 * sqrt (im z * im w)) = sinh (r / 2)
[PROOFSTEP]
rw [← div_left_inj' (two_ne_zero' ℝ), ← sinh_inj, sinh_half_dist]
[GOAL]
z w : ℍ
r R : ℝ
hr : 0 ≤ r
⊢ dist z w = r ↔ dist ↑z ↑w ^ 2 / (4 * im z * im w) = sinh (r / 2) ^ 2
[PROOFSTEP]
rw [dist_eq_iff_eq_sinh, ← sq_eq_sq, div_pow, mul_pow, sq_sqrt, mul_assoc]
[GOAL]
z w : ℍ
r R : ℝ
hr : 0 ≤ r
⊢ dist ↑z ↑w ^ 2 / (2 ^ 2 * (im z * im w)) = sinh (r / 2) ^ 2 ↔ dist ↑z ↑w ^ 2 / (4 * (im z * im w)) = sinh (r / 2) ^ 2
[PROOFSTEP]
norm_num
[GOAL]
z w : ℍ
r R : ℝ
hr : 0 ≤ r
⊢ 0 ≤ im z * im w
[PROOFSTEP]
exact (mul_pos z.im_pos w.im_pos).le
[GOAL]
case ha
z w : ℍ
r R : ℝ
hr : 0 ≤ r
⊢ 0 ≤ dist ↑z ↑w / (2 * sqrt (im z * im w))
[PROOFSTEP]
exact div_nonneg dist_nonneg (mul_nonneg zero_le_two <| sqrt_nonneg _)
[GOAL]
case hb
z w : ℍ
r R : ℝ
hr : 0 ≤ r
⊢ 0 ≤ sinh (r / 2)
[PROOFSTEP]
exact sinh_nonneg_iff.2 (div_nonneg hr zero_le_two)
[GOAL]
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ dist a c ≤ dist a b + dist b c
[PROOFSTEP]
rw [dist_le_iff_le_sinh, sinh_half_dist_add_dist, div_mul_eq_div_div _ _ (dist _ _), le_div_iff, div_mul_eq_mul_div]
[GOAL]
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ dist ↑a ↑c * dist (↑b) (↑(starRingEnd ℂ) ↑b) / (2 * sqrt (im a * im c)) ≤
(dist ↑a ↑b * dist (↑c) (↑(starRingEnd ℂ) ↑b) + dist ↑b ↑c * dist (↑a) (↑(starRingEnd ℂ) ↑b)) /
(2 * sqrt (im a * im c))
[PROOFSTEP]
exact
div_le_div_of_le (mul_nonneg zero_le_two (sqrt_nonneg _))
(EuclideanGeometry.mul_dist_le_mul_dist_add_mul_dist (a : ℂ) b c (conj (b : ℂ)))
[GOAL]
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ 0 < dist (↑b) (↑(starRingEnd ℂ) ↑b)
[PROOFSTEP]
rw [dist_comm, dist_pos, Ne.def, Complex.conj_eq_iff_im]
[GOAL]
z w : ℍ
r R : ℝ
a b c : ℍ
⊢ ¬(↑b).im = 0
[PROOFSTEP]
exact b.im_ne_zero
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ dist z w ≤ dist ↑z ↑w / sqrt (im z * im w)
[PROOFSTEP]
rw [dist_le_iff_le_sinh, ← div_mul_eq_div_div_swap, self_le_sinh_iff]
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ 0 ≤ dist ↑z ↑w / (2 * sqrt (im z * im w))
[PROOFSTEP]
exact div_nonneg dist_nonneg (mul_nonneg zero_le_two (sqrt_nonneg _))
[GOAL]
z✝ w : ℍ
r R : ℝ
z : ℍ
⊢ dist z z = 0
[PROOFSTEP]
rw [dist_eq, dist_self, zero_div, arsinh_zero, mul_zero]
[GOAL]
z w : ℍ
r R : ℝ
x✝¹ x✝ : ℍ
⊢ (fun x y =>
↑{
val :=
2 *
arsinh
(↑(let src := Complex.abs;
{
toAddGroupSeminorm :=
{ toFun := src.toFun, map_zero' := Complex.instNormedAddCommGroupComplex.proof_1,
add_le' :=
(_ :
∀ (x y : ℂ),
MulHom.toFun src.toMulHom (x + y) ≤
MulHom.toFun src.toMulHom x + MulHom.toFun src.toMulHom y),
neg' := Complex.instNormedAddCommGroupComplex.proof_2 },
eq_zero_of_map_eq_zero' :=
Complex.instNormedAddCommGroupComplex.proof_3 }).toAddGroupSeminorm
(↑x - ↑y) /
(2 * sqrt (im x * im y))),
property :=
(_ :
0 ≤
2 *
arsinh
(↑(let src := Complex.abs;
{
toAddGroupSeminorm :=
{ toFun := src.toFun, map_zero' := Complex.instNormedAddCommGroupComplex.proof_1,
add_le' :=
(_ :
∀ (x y : ℂ),
MulHom.toFun src.toMulHom (x + y) ≤
MulHom.toFun src.toMulHom x + MulHom.toFun src.toMulHom y),
neg' := Complex.instNormedAddCommGroupComplex.proof_2 },
eq_zero_of_map_eq_zero' :=
Complex.instNormedAddCommGroupComplex.proof_3 }).toAddGroupSeminorm
(↑x - ↑y) /
(2 * sqrt (im x * im y)))) })
x✝¹ x✝ =
ENNReal.ofReal (dist x✝¹ x✝)
[PROOFSTEP]
exact ENNReal.coe_nnreal_eq _
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
h : dist z w = 0
⊢ z = w
[PROOFSTEP]
simpa [dist_eq, Real.sqrt_eq_zero', (mul_pos z.im_pos w.im_pos).not_le, ext_iff] using h
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ Real.cosh (dist z w) = ((re z - re w) ^ 2 + im z ^ 2 + im w ^ 2) / (2 * im z * im w)
[PROOFSTEP]
have H : 0 < 2 * z.im * w.im := mul_pos (mul_pos two_pos z.im_pos) w.im_pos
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
H : 0 < 2 * im z * im w
⊢ Real.cosh (dist z w) = ((re z - re w) ^ 2 + im z ^ 2 + im w ^ 2) / (2 * im z * im w)
[PROOFSTEP]
field_simp [cosh_dist, Complex.dist_eq, Complex.sq_abs, normSq_apply, H, H.ne']
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
H : 0 < 2 * im z * im w
⊢ 2 * im z * im w + ((re z - re w) * (re z - re w) + (im z - im w) * (im z - im w)) =
(re z - re w) ^ 2 + im z ^ 2 + im w ^ 2
[PROOFSTEP]
ring
[GOAL]
z✝ w : ℍ
r R : ℝ
z : ℍ
⊢ im (center z 0) = im z
[PROOFSTEP]
rw [center_im, Real.cosh_zero, mul_one]
[GOAL]
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
⊢ dist ↑z ↑(center w r) ^ 2 = 2 * im z * im w * (Real.cosh (dist z w) - Real.cosh r) + (im w * Real.sinh r) ^ 2
[PROOFSTEP]
have H : 2 * z.im * w.im ≠ 0 := by apply_rules [mul_ne_zero, two_ne_zero, im_ne_zero]
[GOAL]
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
⊢ 2 * im z * im w ≠ 0
[PROOFSTEP]
apply_rules [mul_ne_zero, two_ne_zero, im_ne_zero]
[GOAL]
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
H : 2 * im z * im w ≠ 0
⊢ dist ↑z ↑(center w r) ^ 2 = 2 * im z * im w * (Real.cosh (dist z w) - Real.cosh r) + (im w * Real.sinh r) ^ 2
[PROOFSTEP]
simp only [Complex.dist_eq, Complex.sq_abs, normSq_apply, coe_re, coe_im, center_re, center_im, cosh_dist',
mul_div_cancel' _ H, sub_sq z.im, mul_pow, Real.cosh_sq, sub_re, sub_im, mul_sub, ← sq]
[GOAL]
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
H : 2 * im z * im w ≠ 0
⊢ (re z - re w) ^ 2 + (im z ^ 2 - 2 * im z * (im w * Real.cosh r) + im w ^ 2 * (Real.sinh r ^ 2 + 1)) =
(re z - re w) ^ 2 + im z ^ 2 + im w ^ 2 - 2 * im z * im w * Real.cosh r + im w ^ 2 * Real.sinh r ^ 2
[PROOFSTEP]
ring
[GOAL]
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
⊢ dist ↑z ↑(center w r) = sqrt (2 * im z * im w * (Real.cosh (dist z w) - Real.cosh r) + (im w * Real.sinh r) ^ 2)
[PROOFSTEP]
rw [← sqrt_sq dist_nonneg, dist_coe_center_sq]
[GOAL]
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r)
[PROOFSTEP]
letI := metricSpaceAux
[GOAL]
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
this : MetricSpace ℍ := metricSpaceAux
⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r)
[PROOFSTEP]
cases' lt_or_le r 0 with hr₀ hr₀
[GOAL]
case inl
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
this : MetricSpace ℍ := metricSpaceAux
hr₀ : r < 0
⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r)
[PROOFSTEP]
trans Ordering.gt
[GOAL]
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
this : MetricSpace ℍ := metricSpaceAux
hr₀ : r < 0
⊢ cmp (dist z w) r = Ordering.gt
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
this : MetricSpace ℍ := metricSpaceAux
hr₀ : r < 0
⊢ Ordering.gt = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r)
[PROOFSTEP]
exacts [(hr₀.trans_le dist_nonneg).cmp_eq_gt,
((mul_neg_of_pos_of_neg w.im_pos (sinh_neg_iff.2 hr₀)).trans_le dist_nonneg).cmp_eq_gt.symm]
[GOAL]
case inr
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
this : MetricSpace ℍ := metricSpaceAux
hr₀ : 0 ≤ r
⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r)
[PROOFSTEP]
have hr₀' : 0 ≤ w.im * Real.sinh r := mul_nonneg w.im_pos.le (sinh_nonneg_iff.2 hr₀)
[GOAL]
case inr
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
this : MetricSpace ℍ := metricSpaceAux
hr₀ : 0 ≤ r
hr₀' : 0 ≤ im w * Real.sinh r
⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r)
[PROOFSTEP]
have hzw₀ : 0 < 2 * z.im * w.im := mul_pos (mul_pos two_pos z.im_pos) w.im_pos
[GOAL]
case inr
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
this : MetricSpace ℍ := metricSpaceAux
hr₀ : 0 ≤ r
hr₀' : 0 ≤ im w * Real.sinh r
hzw₀ : 0 < 2 * im z * im w
⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r)
[PROOFSTEP]
simp only [← cosh_strictMonoOn.cmp_map_eq dist_nonneg hr₀, ←
(@strictMonoOn_pow ℝ _ _ two_pos).cmp_map_eq dist_nonneg hr₀', dist_coe_center_sq]
[GOAL]
case inr
z✝ w✝ : ℍ
r✝ R : ℝ
z w : ℍ
r : ℝ
this : MetricSpace ℍ := metricSpaceAux
hr₀ : 0 ≤ r
hr₀' : 0 ≤ im w * Real.sinh r
hzw₀ : 0 < 2 * im z * im w
⊢ cmp (Real.cosh (dist z w)) (Real.cosh r) =
cmp (2 * im z * im w * (Real.cosh (dist z w) - Real.cosh r) + (im w * Real.sinh r) ^ 2) ((im w * Real.sinh r) ^ 2)
[PROOFSTEP]
rw [← cmp_mul_pos_left hzw₀, ← cmp_sub_zero, ← mul_sub, ← cmp_add_right, zero_add]
[GOAL]
z✝ w : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
⊢ dist ↑z ↑(center z r) = im z * (Real.cosh r - 1)
[PROOFSTEP]
rw [dist_of_re_eq (z.center_re r).symm, dist_comm, Real.dist_eq, mul_sub, mul_one]
[GOAL]
z✝ w : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
⊢ |(↑(center z r)).im - (↑z).im| = im z * Real.cosh r - im z
[PROOFSTEP]
exact abs_of_nonneg (sub_nonneg.2 <| le_mul_of_one_le_right z.im_pos.le (one_le_cosh _))
[GOAL]
z w : ℍ
r R : ℝ
h : re z = re w
⊢ dist z w = dist (log (im z)) (log (im w))
[PROOFSTEP]
have h₀ : 0 < z.im / w.im := div_pos z.im_pos w.im_pos
[GOAL]
z w : ℍ
r R : ℝ
h : re z = re w
h₀ : 0 < im z / im w
⊢ dist z w = dist (log (im z)) (log (im w))
[PROOFSTEP]
rw [dist_eq_iff_dist_coe_center_eq, Real.dist_eq, ← abs_sinh, ← log_div z.im_ne_zero w.im_ne_zero, sinh_log h₀,
dist_of_re_eq, coe_im, coe_im, center_im, cosh_abs, cosh_log h₀, inv_div] <;>
[skip; exact h]
[GOAL]
z w : ℍ
r R : ℝ
h : re z = re w
h₀ : 0 < im z / im w
⊢ dist z w = dist (log (im z)) (log (im w))
[PROOFSTEP]
rw [dist_eq_iff_dist_coe_center_eq, Real.dist_eq, ← abs_sinh, ← log_div z.im_ne_zero w.im_ne_zero, sinh_log h₀,
dist_of_re_eq, coe_im, coe_im, center_im, cosh_abs, cosh_log h₀, inv_div]
[GOAL]
z w : ℍ
r R : ℝ
h : re z = re w
h₀ : 0 < im z / im w
⊢ dist (im z) (im w * ((im z / im w + im w / im z) / 2)) = im w * |(im z / im w - im w / im z) / 2|
[PROOFSTEP]
skip
[GOAL]
z w : ℍ
r R : ℝ
h : re z = re w
h₀ : 0 < im z / im w
⊢ (↑z).re = (↑(center w |log (im z / im w)|)).re
[PROOFSTEP]
exact h
[GOAL]
z w : ℍ
r R : ℝ
h : re z = re w
h₀ : 0 < im z / im w
⊢ dist (im z) (im w * ((im z / im w + im w / im z) / 2)) = im w * |(im z / im w - im w / im z) / 2|
[PROOFSTEP]
nth_rw 4 [← abs_of_pos w.im_pos]
[GOAL]
z w : ℍ
r R : ℝ
h : re z = re w
h₀ : 0 < im z / im w
⊢ dist (im z) (im w * ((im z / im w + im w / im z) / 2)) = |im w| * |(im z / im w - im w / im z) / 2|
[PROOFSTEP]
simp only [← _root_.abs_mul, coe_im, Real.dist_eq]
[GOAL]
z w : ℍ
r R : ℝ
h : re z = re w
h₀ : 0 < im z / im w
⊢ |im z - im w * ((im z / im w + im w / im z) / 2)| = |im w * ((im z / im w - im w / im z) / 2)|
[PROOFSTEP]
congr 1
[GOAL]
case e_a
z w : ℍ
r R : ℝ
h : re z = re w
h₀ : 0 < im z / im w
⊢ im z - im w * ((im z / im w + im w / im z) / 2) = im w * ((im z / im w - im w / im z) / 2)
[PROOFSTEP]
field_simp [z.im_pos, w.im_pos, z.im_ne_zero, w.im_ne_zero]
[GOAL]
case e_a
z w : ℍ
r R : ℝ
h : re z = re w
h₀ : 0 < im z / im w
⊢ im z * (im w * im z * 2) - im w * (im z * im z + im w * im w) = im w * (im z * im z - im w * im w)
[PROOFSTEP]
ring
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ dist ↑(mk { re := 0, im := im z } (_ : 0 < im z)) ↑(mk { re := 0, im := im w } (_ : 0 < im w)) ≤ dist ↑z ↑w
[PROOFSTEP]
simpa [sqrt_sq_eq_abs] using Complex.abs_im_le_abs (z - w)
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ im z ≤ im w * Real.exp (dist z w)
[PROOFSTEP]
rw [← div_le_iff' w.im_pos, ← exp_log z.im_pos, ← exp_log w.im_pos, ← Real.exp_sub, exp_le_exp]
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ log (im z) - log (im w) ≤ dist z w
[PROOFSTEP]
exact (le_abs_self _).trans (dist_log_im_le z w)
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ dist ↑z ↑(center w (dist z w)) + dist ↑w ↑(center w (dist z w)) = im w * (Real.exp (dist z w) - 1)
[PROOFSTEP]
rw [dist_center_dist, dist_self_center, ← mul_add, ← add_sub_assoc, Real.sinh_add_cosh]
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ im w * (1 - Real.exp (-dist z w)) = dist ↑z ↑(center w (dist z w)) - dist ↑w ↑(center w (dist z w))
[PROOFSTEP]
rw [dist_center_dist, dist_self_center, ← Real.cosh_sub_sinh]
[GOAL]
z✝ w✝ : ℍ
r R : ℝ
z w : ℍ
⊢ im w * (1 - (Real.cosh (dist z w) - Real.sinh (dist z w))) =
im w * Real.sinh (dist z w) - im w * (Real.cosh (dist z w) - 1)
[PROOFSTEP]
ring
[GOAL]
z w : ℍ
r R : ℝ
⊢ instTopologicalSpaceUpperHalfPlane = UniformSpace.toTopologicalSpace
[PROOFSTEP]
refine' le_antisymm (continuous_id_iff_le.1 _) _
[GOAL]
case refine'_1
z w : ℍ
r R : ℝ
⊢ Continuous id
[PROOFSTEP]
refine' (@continuous_iff_continuous_dist ℍ ℍ metricSpaceAux.toPseudoMetricSpace _ _).2 _
[GOAL]
case refine'_1
z w : ℍ
r R : ℝ
⊢ Continuous fun x => dist (id x.fst) (id x.snd)
[PROOFSTEP]
have : ∀ x : ℍ × ℍ, 2 * Real.sqrt (x.1.im * x.2.im) ≠ 0 := fun x =>
mul_ne_zero two_ne_zero (Real.sqrt_pos.2 <| mul_pos x.1.im_pos x.2.im_pos).ne'
[GOAL]
case refine'_1
z w : ℍ
r R : ℝ
this : ∀ (x : ℍ × ℍ), 2 * sqrt (im x.fst * im x.snd) ≠ 0
⊢ Continuous fun x => dist (id x.fst) (id x.snd)
[PROOFSTEP]
apply_rules [Continuous.div, Continuous.mul, continuous_const, Continuous.arsinh, Continuous.dist, continuous_coe.comp,
continuous_fst, continuous_snd, Real.continuous_sqrt.comp, continuous_im.comp]
[GOAL]
case refine'_2
z w : ℍ
r R : ℝ
⊢ UniformSpace.toTopologicalSpace ≤ instTopologicalSpaceUpperHalfPlane
[PROOFSTEP]
letI : MetricSpace ℍ := metricSpaceAux
[GOAL]
case refine'_2
z w : ℍ
r R : ℝ
this : MetricSpace ℍ := metricSpaceAux
⊢ UniformSpace.toTopologicalSpace ≤ instTopologicalSpaceUpperHalfPlane
[PROOFSTEP]
refine' le_of_nhds_le_nhds fun z => _
[GOAL]
case refine'_2
z✝ w : ℍ
r R : ℝ
this : MetricSpace ℍ := metricSpaceAux
z : ℍ
⊢ 𝓝 z ≤ 𝓝 z
[PROOFSTEP]
rw [nhds_induced]
[GOAL]
case refine'_2
z✝ w : ℍ
r R : ℝ
this : MetricSpace ℍ := metricSpaceAux
z : ℍ
⊢ 𝓝 z ≤ comap Subtype.val (𝓝 ↑z)
[PROOFSTEP]
refine' (nhds_basis_ball.le_basis_iff (nhds_basis_ball.comap _)).2 fun R hR => _
[GOAL]
case refine'_2
z✝ w : ℍ
r R✝ : ℝ
this : MetricSpace ℍ := metricSpaceAux
z : ℍ
R : ℝ
hR : 0 < R
⊢ ∃ i, 0 < i ∧ ball z i ⊆ Subtype.val ⁻¹' ball (↑z) R
[PROOFSTEP]
have h₁ : 1 < R / im z + 1 := lt_add_of_pos_left _ (div_pos hR z.im_pos)
[GOAL]
case refine'_2
z✝ w : ℍ
r R✝ : ℝ
this : MetricSpace ℍ := metricSpaceAux
z : ℍ
R : ℝ
hR : 0 < R
h₁ : 1 < R / im z + 1
⊢ ∃ i, 0 < i ∧ ball z i ⊆ Subtype.val ⁻¹' ball (↑z) R
[PROOFSTEP]
have h₀ : 0 < R / im z + 1 := one_pos.trans h₁
[GOAL]
case refine'_2
z✝ w : ℍ
r R✝ : ℝ
this : MetricSpace ℍ := metricSpaceAux
z : ℍ
R : ℝ
hR : 0 < R
h₁ : 1 < R / im z + 1
h₀ : 0 < R / im z + 1
⊢ ∃ i, 0 < i ∧ ball z i ⊆ Subtype.val ⁻¹' ball (↑z) R
[PROOFSTEP]
refine' ⟨log (R / im z + 1), Real.log_pos h₁, _⟩
[GOAL]
case refine'_2
z✝ w : ℍ
r R✝ : ℝ
this : MetricSpace ℍ := metricSpaceAux
z : ℍ
R : ℝ
hR : 0 < R
h₁ : 1 < R / im z + 1
h₀ : 0 < R / im z + 1
⊢ ball z (log (R / im z + 1)) ⊆ Subtype.val ⁻¹' ball (↑z) R
[PROOFSTEP]
refine' fun w hw => (dist_coe_le w z).trans_lt _
[GOAL]
case refine'_2
z✝ w✝ : ℍ
r R✝ : ℝ
this : MetricSpace ℍ := metricSpaceAux
z : ℍ
R : ℝ
hR : 0 < R
h₁ : 1 < R / im z + 1
h₀ : 0 < R / im z + 1
w : ℍ
hw : w ∈ ball z (log (R / im z + 1))
⊢ im z * (Real.exp (dist w z) - 1) < R
[PROOFSTEP]
rwa [← lt_div_iff' z.im_pos, sub_lt_iff_lt_add, ← Real.lt_log_iff_exp_lt h₀]
[GOAL]
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
h : dist w ↑(center z r) ≤ im z * Real.sinh r
⊢ dist (↑(center z r)) w ≤ im z * Real.sinh r
[PROOFSTEP]
rwa [dist_comm]
[GOAL]
z✝ w : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
⊢ UpperHalfPlane.coe '' closedBall z r = closedBall (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
ext w
[GOAL]
case h
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
⊢ w ∈ UpperHalfPlane.coe '' closedBall z r ↔ w ∈ closedBall (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
constructor
[GOAL]
case h.mp
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
⊢ w ∈ UpperHalfPlane.coe '' closedBall z r → w ∈ closedBall (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
rintro ⟨w, hw, rfl⟩
[GOAL]
case h.mp.intro.intro
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℍ
hw : w ∈ closedBall z r
⊢ ↑w ∈ closedBall (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
exact dist_le_iff_dist_coe_center_le.1 hw
[GOAL]
case h.mpr
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
⊢ w ∈ closedBall (↑(center z r)) (im z * Real.sinh r) → w ∈ UpperHalfPlane.coe '' closedBall z r
[PROOFSTEP]
intro hw
[GOAL]
case h.mpr
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
hw : w ∈ closedBall (↑(center z r)) (im z * Real.sinh r)
⊢ w ∈ UpperHalfPlane.coe '' closedBall z r
[PROOFSTEP]
lift w to ℍ using im_pos_of_dist_center_le hw
[GOAL]
case h.mpr.intro
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℍ
hw : ↑w ∈ closedBall (↑(center z r)) (im z * Real.sinh r)
⊢ ↑w ∈ UpperHalfPlane.coe '' closedBall z r
[PROOFSTEP]
exact mem_image_of_mem _ (dist_le_iff_dist_coe_center_le.2 hw)
[GOAL]
z✝ w : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
⊢ UpperHalfPlane.coe '' ball z r = ball (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
ext w
[GOAL]
case h
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
⊢ w ∈ UpperHalfPlane.coe '' ball z r ↔ w ∈ ball (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
constructor
[GOAL]
case h.mp
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
⊢ w ∈ UpperHalfPlane.coe '' ball z r → w ∈ ball (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
rintro ⟨w, hw, rfl⟩
[GOAL]
case h.mp.intro.intro
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℍ
hw : w ∈ ball z r
⊢ ↑w ∈ ball (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
exact dist_lt_iff_dist_coe_center_lt.1 hw
[GOAL]
case h.mpr
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
⊢ w ∈ ball (↑(center z r)) (im z * Real.sinh r) → w ∈ UpperHalfPlane.coe '' ball z r
[PROOFSTEP]
intro hw
[GOAL]
case h.mpr
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
hw : w ∈ ball (↑(center z r)) (im z * Real.sinh r)
⊢ w ∈ UpperHalfPlane.coe '' ball z r
[PROOFSTEP]
lift w to ℍ using im_pos_of_dist_center_le (ball_subset_closedBall hw)
[GOAL]
case h.mpr.intro
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℍ
hw : ↑w ∈ ball (↑(center z r)) (im z * Real.sinh r)
⊢ ↑w ∈ UpperHalfPlane.coe '' ball z r
[PROOFSTEP]
exact mem_image_of_mem _ (dist_lt_iff_dist_coe_center_lt.2 hw)
[GOAL]
z✝ w : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
⊢ UpperHalfPlane.coe '' sphere z r = sphere (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
ext w
[GOAL]
case h
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
⊢ w ∈ UpperHalfPlane.coe '' sphere z r ↔ w ∈ sphere (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
constructor
[GOAL]
case h.mp
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
⊢ w ∈ UpperHalfPlane.coe '' sphere z r → w ∈ sphere (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
rintro ⟨w, hw, rfl⟩
[GOAL]
case h.mp.intro.intro
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℍ
hw : w ∈ sphere z r
⊢ ↑w ∈ sphere (↑(center z r)) (im z * Real.sinh r)
[PROOFSTEP]
exact dist_eq_iff_dist_coe_center_eq.1 hw
[GOAL]
case h.mpr
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
⊢ w ∈ sphere (↑(center z r)) (im z * Real.sinh r) → w ∈ UpperHalfPlane.coe '' sphere z r
[PROOFSTEP]
intro hw
[GOAL]
case h.mpr
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℂ
hw : w ∈ sphere (↑(center z r)) (im z * Real.sinh r)
⊢ w ∈ UpperHalfPlane.coe '' sphere z r
[PROOFSTEP]
lift w to ℍ using im_pos_of_dist_center_le (sphere_subset_closedBall hw)
[GOAL]
case h.mpr.intro
z✝ w✝ : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
w : ℍ
hw : ↑w ∈ sphere (↑(center z r)) (im z * Real.sinh r)
⊢ ↑w ∈ UpperHalfPlane.coe '' sphere z r
[PROOFSTEP]
exact mem_image_of_mem _ (dist_eq_iff_dist_coe_center_eq.2 hw)
[GOAL]
z w : ℍ
r R : ℝ
⊢ ProperSpace ℍ
[PROOFSTEP]
refine' ⟨fun z r => _⟩
[GOAL]
z✝ w : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
⊢ IsCompact (closedBall z r)
[PROOFSTEP]
rw [← inducing_subtype_val.isCompact_iff (f := ((↑) : ℍ → ℂ)), image_coe_closedBall]
[GOAL]
z✝ w : ℍ
r✝ R : ℝ
z : ℍ
r : ℝ
⊢ IsCompact (closedBall (↑(center z r)) (im z * Real.sinh r))
[PROOFSTEP]
apply isCompact_closedBall
[GOAL]
z w : ℍ
r R a : ℝ
⊢ Isometry fun y => mk { re := a, im := Real.exp y } (_ : 0 < Real.exp y)
[PROOFSTEP]
refine' Isometry.of_dist_eq fun y₁ y₂ => _
[GOAL]
z w : ℍ
r R a y₁ y₂ : ℝ
⊢ dist (mk { re := a, im := Real.exp y₁ } (_ : 0 < Real.exp y₁))
(mk { re := a, im := Real.exp y₂ } (_ : 0 < Real.exp y₂)) =
dist y₁ y₂
[PROOFSTEP]
rw [dist_of_re_eq]
[GOAL]
z w : ℍ
r R a y₁ y₂ : ℝ
⊢ dist (log (im (mk { re := a, im := Real.exp y₁ } (_ : 0 < Real.exp y₁))))
(log (im (mk { re := a, im := Real.exp y₂ } (_ : 0 < Real.exp y₂)))) =
dist y₁ y₂
z w : ℍ
r R a y₁ y₂ : ℝ
⊢ re (mk { re := a, im := Real.exp y₁ } (_ : 0 < Real.exp y₁)) =
re (mk { re := a, im := Real.exp y₂ } (_ : 0 < Real.exp y₂))
[PROOFSTEP]
exacts [congr_arg₂ _ (log_exp _) (log_exp _), rfl]
[GOAL]
z w : ℍ
r R a : ℝ
y₁ y₂ : ℍ
⊢ dist ((fun x x_1 => x +ᵥ x_1) a y₁) ((fun x x_1 => x +ᵥ x_1) a y₂) = dist y₁ y₂
[PROOFSTEP]
simp only [dist_eq, coe_vadd, vadd_im, dist_add_left]
[GOAL]
z w : ℍ
r R : ℝ
a : { x // 0 < x }
⊢ Isometry ((fun x x_1 => x • x_1) a)
[PROOFSTEP]
refine' Isometry.of_dist_eq fun y₁ y₂ => _
[GOAL]
z w : ℍ
r R : ℝ
a : { x // 0 < x }
y₁ y₂ : ℍ
⊢ dist ((fun x x_1 => x • x_1) a y₁) ((fun x x_1 => x • x_1) a y₂) = dist y₁ y₂
[PROOFSTEP]
simp only [dist_eq, coe_pos_real_smul, pos_real_im]
[GOAL]
z w : ℍ
r R : ℝ
a : { x // 0 < x }
y₁ y₂ : ℍ
⊢ 2 * arsinh (dist (↑a • ↑y₁) (↑a • ↑y₂) / (2 * sqrt (↑a * im y₁ * (↑a * im y₂)))) =
2 * arsinh (dist ↑y₁ ↑y₂ / (2 * sqrt (im y₁ * im y₂)))
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_x
z w : ℍ
r R : ℝ
a : { x // 0 < x }
y₁ y₂ : ℍ
⊢ dist (↑a • ↑y₁) (↑a • ↑y₂) / (2 * sqrt (↑a * im y₁ * (↑a * im y₂))) = dist ↑y₁ ↑y₂ / (2 * sqrt (im y₁ * im y₂))
[PROOFSTEP]
rw [dist_smul₀, mul_mul_mul_comm, Real.sqrt_mul (mul_self_nonneg _), Real.sqrt_mul_self_eq_abs, Real.norm_eq_abs,
mul_left_comm]
[GOAL]
case e_a.e_x
z w : ℍ
r R : ℝ
a : { x // 0 < x }
y₁ y₂ : ℍ
⊢ |↑a| * dist ↑y₁ ↑y₂ / (|↑a| * (2 * sqrt (im y₁ * im y₂))) = dist ↑y₁ ↑y₂ / (2 * sqrt (im y₁ * im y₂))
[PROOFSTEP]
exact mul_div_mul_left _ _ (mt _root_.abs_eq_zero.1 a.2.ne')
[GOAL]
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
⊢ Isometry fun x => g • x
[PROOFSTEP]
have h₀ : Isometry (fun z => ModularGroup.S • z : ℍ → ℍ) :=
Isometry.of_dist_eq fun y₁ y₂ =>
by
have h₁ : 0 ≤ im y₁ * im y₂ := mul_nonneg y₁.property.le y₂.property.le
have h₂ : Complex.abs (y₁ * y₂) ≠ 0 := by simp [y₁.ne_zero, y₂.ne_zero]
simp only [dist_eq, modular_S_smul, inv_neg, neg_div, div_mul_div_comm, coe_mk, mk_im, div_one, Complex.inv_im,
Complex.neg_im, coe_im, neg_neg, Complex.normSq_neg, mul_eq_mul_left_iff, Real.arsinh_inj, bit0_eq_zero,
one_ne_zero, or_false_iff, dist_neg_neg, mul_neg, neg_mul, dist_inv_inv₀ y₁.ne_zero y₂.ne_zero, ←
AbsoluteValue.map_mul, ← Complex.normSq_mul, Real.sqrt_div h₁, ← Complex.abs_apply, mul_div (2 : ℝ),
div_div_div_comm, div_self h₂, Complex.norm_eq_abs]
[GOAL]
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
y₁ y₂ : ℍ
⊢ dist (ModularGroup.S • y₁) (ModularGroup.S • y₂) = dist y₁ y₂
[PROOFSTEP]
have h₁ : 0 ≤ im y₁ * im y₂ := mul_nonneg y₁.property.le y₂.property.le
[GOAL]
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
y₁ y₂ : ℍ
h₁ : 0 ≤ im y₁ * im y₂
⊢ dist (ModularGroup.S • y₁) (ModularGroup.S • y₂) = dist y₁ y₂
[PROOFSTEP]
have h₂ : Complex.abs (y₁ * y₂) ≠ 0 := by simp [y₁.ne_zero, y₂.ne_zero]
[GOAL]
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
y₁ y₂ : ℍ
h₁ : 0 ≤ im y₁ * im y₂
⊢ ↑Complex.abs (↑y₁ * ↑y₂) ≠ 0
[PROOFSTEP]
simp [y₁.ne_zero, y₂.ne_zero]
[GOAL]
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
y₁ y₂ : ℍ
h₁ : 0 ≤ im y₁ * im y₂
h₂ : ↑Complex.abs (↑y₁ * ↑y₂) ≠ 0
⊢ dist (ModularGroup.S • y₁) (ModularGroup.S • y₂) = dist y₁ y₂
[PROOFSTEP]
simp only [dist_eq, modular_S_smul, inv_neg, neg_div, div_mul_div_comm, coe_mk, mk_im, div_one, Complex.inv_im,
Complex.neg_im, coe_im, neg_neg, Complex.normSq_neg, mul_eq_mul_left_iff, Real.arsinh_inj, bit0_eq_zero, one_ne_zero,
or_false_iff, dist_neg_neg, mul_neg, neg_mul, dist_inv_inv₀ y₁.ne_zero y₂.ne_zero, ← AbsoluteValue.map_mul, ←
Complex.normSq_mul, Real.sqrt_div h₁, ← Complex.abs_apply, mul_div (2 : ℝ), div_div_div_comm, div_self h₂,
Complex.norm_eq_abs]
[GOAL]
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
h₀ : Isometry fun z => ModularGroup.S • z
⊢ Isometry fun x => g • x
[PROOFSTEP]
by_cases hc : g 1 0 = 0
[GOAL]
case pos
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
h₀ : Isometry fun z => ModularGroup.S • z
hc : ↑g 1 0 = 0
⊢ Isometry fun x => g • x
[PROOFSTEP]
obtain ⟨u, v, h⟩ := exists_SL2_smul_eq_of_apply_zero_one_eq_zero g hc
[GOAL]
case pos.intro.intro
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
h₀ : Isometry fun z => ModularGroup.S • z
hc : ↑g 1 0 = 0
u : { x // 0 < x }
v : ℝ
h : (fun x x_1 => x • x_1) g = (fun z => v +ᵥ z) ∘ fun z => u • z
⊢ Isometry fun x => g • x
[PROOFSTEP]
dsimp only at h
[GOAL]
case pos.intro.intro
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
h₀ : Isometry fun z => ModularGroup.S • z
hc : ↑g 1 0 = 0
u : { x // 0 < x }
v : ℝ
h : (fun x => g • x) = (fun z => v +ᵥ z) ∘ fun z => u • z
⊢ Isometry fun x => g • x
[PROOFSTEP]
rw [h]
[GOAL]
case pos.intro.intro
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
h₀ : Isometry fun z => ModularGroup.S • z
hc : ↑g 1 0 = 0
u : { x // 0 < x }
v : ℝ
h : (fun x => g • x) = (fun z => v +ᵥ z) ∘ fun z => u • z
⊢ Isometry ((fun z => v +ᵥ z) ∘ fun z => u • z)
[PROOFSTEP]
exact (isometry_real_vadd v).comp (isometry_pos_mul u)
[GOAL]
case neg
z w : ℍ
r R : ℝ
g : SL(2, ℝ)
h₀ : Isometry fun z => ModularGroup.S • z
hc : ¬↑g 1 0 = 0
⊢ Isometry fun x => g • x
[PROOFSTEP]
obtain ⟨u, v, w, h⟩ := exists_SL2_smul_eq_of_apply_zero_one_ne_zero g hc
[GOAL]
case neg.intro.intro.intro
z w✝ : ℍ
r R : ℝ
g : SL(2, ℝ)
h₀ : Isometry fun z => ModularGroup.S • z
hc : ¬↑g 1 0 = 0
u : { x // 0 < x }
v w : ℝ
h :
(fun x x_1 => x • x_1) g =
(fun x x_1 => x +ᵥ x_1) w ∘
(fun x x_1 => x • x_1) ModularGroup.S ∘ (fun x x_1 => x +ᵥ x_1) v ∘ (fun x x_1 => x • x_1) u
⊢ Isometry fun x => g • x
[PROOFSTEP]
dsimp only at h
[GOAL]
case neg.intro.intro.intro
z w✝ : ℍ
r R : ℝ
g : SL(2, ℝ)
h₀ : Isometry fun z => ModularGroup.S • z
hc : ¬↑g 1 0 = 0
u : { x // 0 < x }
v w : ℝ
h : (fun x => g • x) = (fun x => w +ᵥ x) ∘ (fun x => ModularGroup.S • x) ∘ (fun x => v +ᵥ x) ∘ fun x => u • x
⊢ Isometry fun x => g • x
[PROOFSTEP]
rw [h]
[GOAL]
case neg.intro.intro.intro
z w✝ : ℍ
r R : ℝ
g : SL(2, ℝ)
h₀ : Isometry fun z => ModularGroup.S • z
hc : ¬↑g 1 0 = 0
u : { x // 0 < x }
v w : ℝ
h : (fun x => g • x) = (fun x => w +ᵥ x) ∘ (fun x => ModularGroup.S • x) ∘ (fun x => v +ᵥ x) ∘ fun x => u • x
⊢ Isometry ((fun x => w +ᵥ x) ∘ (fun x => ModularGroup.S • x) ∘ (fun x => v +ᵥ x) ∘ fun x => u • x)
[PROOFSTEP]
exact (isometry_real_vadd w).comp (h₀.comp <| (isometry_real_vadd v).comp <| isometry_pos_mul u)
| {"mathlib_filename": "Mathlib.Analysis.Complex.UpperHalfPlane.Metric", "llama_tokens": 17559} |
[GOAL]
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ LawfulBitraversable Prod
[PROOFSTEP]
constructor
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {α β : Type ?u.941} (x : α × β), bitraverse pure pure x = pure x
[PROOFSTEP]
intros
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {F G : Type ?u.941 → Type ?u.941} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type ?u.941} (f : β → F γ) (f' : β' → F γ') (g : α → G β)
(g' : α' → G β') (x : α × α'),
bitraverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (Functor.Comp.mk ∘ Functor.map f' ∘ g') x =
Functor.Comp.mk (bitraverse f f' <$> bitraverse g g' x)
[PROOFSTEP]
intros
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {α α' β β' : Type ?u.941} (f : α → β) (f' : α' → β') (x : α × α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
[PROOFSTEP]
intros
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {F G : Type ?u.941 → Type ?u.941} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type ?u.941} (f : α → F β)
(f' : α' → F β') (x : α × α'),
(fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) =
bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f)
((fun {α} => ApplicativeTransformation.app η α) ∘ f') x
[PROOFSTEP]
intros
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ β✝ : Type ?u.941
x✝ : α✝ × β✝
⊢ bitraverse pure pure x✝ = pure x✝
[PROOFSTEP]
casesm _ × _
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.941 → Type ?u.941
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.941
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
x✝ : α✝ × α'✝
⊢ bitraverse (Functor.Comp.mk ∘ Functor.map f✝ ∘ g✝) (Functor.Comp.mk ∘ Functor.map f'✝ ∘ g'✝) x✝ =
Functor.Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝)
[PROOFSTEP]
casesm _ × _
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type ?u.941
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : α✝ × α'✝
⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝)
[PROOFSTEP]
casesm _ × _
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.941 → Type ?u.941
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type ?u.941
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : α✝ × α'✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) =
bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝)
((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝
[PROOFSTEP]
casesm _ × _
[GOAL]
case id_bitraverse.mk
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ β✝ : Type ?u.941
fst✝ : α✝
snd✝ : β✝
⊢ bitraverse pure pure (fst✝, snd✝) = pure (fst✝, snd✝)
[PROOFSTEP]
simp [bitraverse, Prod.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case comp_bitraverse.mk
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.941 → Type ?u.941
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.941
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
fst✝ : α✝
snd✝ : α'✝
⊢ bitraverse (Functor.Comp.mk ∘ Functor.map f✝ ∘ g✝) (Functor.Comp.mk ∘ Functor.map f'✝ ∘ g'✝) (fst✝, snd✝) =
Functor.Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ (fst✝, snd✝))
[PROOFSTEP]
simp [bitraverse, Prod.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case bitraverse_eq_bimap_id.mk
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type ?u.941
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
fst✝ : α✝
snd✝ : α'✝
⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) (fst✝, snd✝) = pure (bimap f✝ f'✝ (fst✝, snd✝))
[PROOFSTEP]
simp [bitraverse, Prod.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case binaturality.mk
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.941 → Type ?u.941
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type ?u.941
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
fst✝ : α✝
snd✝ : α'✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ (fst✝, snd✝)) =
bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝)
((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) (fst✝, snd✝)
[PROOFSTEP]
simp [bitraverse, Prod.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case id_bitraverse.mk
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ β✝ : Type ?u.941
fst✝ : α✝
snd✝ : β✝
⊢ (Seq.seq (Prod.mk fst✝) fun x => snd✝) = (fst✝, snd✝)
[PROOFSTEP]
rfl
[GOAL]
case comp_bitraverse.mk
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.941 → Type ?u.941
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.941
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
fst✝ : α✝
snd✝ : α'✝
⊢ Functor.Comp.mk
(Seq.seq
(((fun x => x ∘ f'✝) ∘ (fun x x_1 => Seq.seq x fun x => x_1) ∘ (fun x => Prod.mk <$> x) ∘ f✝) <$> g✝ fst✝)
fun x => g'✝ snd✝) =
Functor.Comp.mk
(Seq.seq (((fun x => (fun x => Seq.seq (Prod.mk <$> f✝ x.fst) fun x_1 => f'✝ x.snd) ∘ x) ∘ Prod.mk) <$> g✝ fst✝)
fun x => g'✝ snd✝)
[PROOFSTEP]
rfl
[GOAL]
case bitraverse_eq_bimap_id.mk
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type ?u.941
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
fst✝ : α✝
snd✝ : α'✝
⊢ (Seq.seq (Prod.mk (f✝ fst✝)) fun x => f'✝ snd✝) = bimap f✝ f'✝ (fst✝, snd✝)
[PROOFSTEP]
rfl
[GOAL]
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ LawfulBitraversable Sum
[PROOFSTEP]
constructor
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {α β : Type ?u.14627} (x : α ⊕ β), bitraverse pure pure x = pure x
[PROOFSTEP]
intros
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {F G : Type ?u.14627 → Type ?u.14627} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type ?u.14627} (f : β → F γ) (f' : β' → F γ') (g : α → G β)
(g' : α' → G β') (x : α ⊕ α'),
bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x)
[PROOFSTEP]
intros
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {α α' β β' : Type ?u.14627} (f : α → β) (f' : α' → β') (x : α ⊕ α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
[PROOFSTEP]
intros
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {F G : Type ?u.14627 → Type ?u.14627} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type ?u.14627} (f : α → F β)
(f' : α' → F β') (x : α ⊕ α'),
(fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) =
bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f)
((fun {α} => ApplicativeTransformation.app η α) ∘ f') x
[PROOFSTEP]
intros
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ β✝ : Type ?u.14627
x✝ : α✝ ⊕ β✝
⊢ bitraverse pure pure x✝ = pure x✝
[PROOFSTEP]
casesm _ ⊕ _
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.14627 → Type ?u.14627
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.14627
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
x✝ : α✝ ⊕ α'✝
⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) x✝ = Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝)
[PROOFSTEP]
casesm _ ⊕ _
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type ?u.14627
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : α✝ ⊕ α'✝
⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝)
[PROOFSTEP]
casesm _ ⊕ _
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.14627 → Type ?u.14627
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type ?u.14627
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : α✝ ⊕ α'✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) =
bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝)
((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝
[PROOFSTEP]
casesm _ ⊕ _
[GOAL]
case id_bitraverse.inl
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ β✝ : Type ?u.14627
val✝ : α✝
⊢ bitraverse pure pure (Sum.inl val✝) = pure (Sum.inl val✝)
[PROOFSTEP]
simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case id_bitraverse.inr
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ β✝ : Type ?u.14627
val✝ : β✝
⊢ bitraverse pure pure (Sum.inr val✝) = pure (Sum.inr val✝)
[PROOFSTEP]
simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case comp_bitraverse.inl
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.14627 → Type ?u.14627
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.14627
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
val✝ : α✝
⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) (Sum.inl val✝) =
Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ (Sum.inl val✝))
[PROOFSTEP]
simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case comp_bitraverse.inr
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.14627 → Type ?u.14627
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.14627
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
val✝ : α'✝
⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) (Sum.inr val✝) =
Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ (Sum.inr val✝))
[PROOFSTEP]
simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case bitraverse_eq_bimap_id.inl
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type ?u.14627
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
val✝ : α✝
⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) (Sum.inl val✝) = pure (bimap f✝ f'✝ (Sum.inl val✝))
[PROOFSTEP]
simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case bitraverse_eq_bimap_id.inr
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type ?u.14627
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
val✝ : α'✝
⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) (Sum.inr val✝) = pure (bimap f✝ f'✝ (Sum.inr val✝))
[PROOFSTEP]
simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case binaturality.inl
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.14627 → Type ?u.14627
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type ?u.14627
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
val✝ : α✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ (Sum.inl val✝)) =
bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝)
((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) (Sum.inl val✝)
[PROOFSTEP]
simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case binaturality.inr
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.14627 → Type ?u.14627
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type ?u.14627
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
val✝ : α'✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ (Sum.inr val✝)) =
bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝)
((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) (Sum.inr val✝)
[PROOFSTEP]
simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case comp_bitraverse.inl
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.14627 → Type ?u.14627
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.14627
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
val✝ : α✝
⊢ Comp.mk (((fun x => Sum.inl <$> x) ∘ f✝) <$> g✝ val✝) =
Comp.mk
(((fun x =>
match x with
| Sum.inl x => Sum.inl <$> f✝ x
| Sum.inr x => Sum.inr <$> f'✝ x) ∘
Sum.inl) <$>
g✝ val✝)
[PROOFSTEP]
rfl
[GOAL]
case comp_bitraverse.inr
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.14627 → Type ?u.14627
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.14627
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
val✝ : α'✝
⊢ Comp.mk (((fun x => Sum.inr <$> x) ∘ f'✝) <$> g'✝ val✝) =
Comp.mk
(((fun x =>
match x with
| Sum.inl x => Sum.inl <$> f✝ x
| Sum.inr x => Sum.inr <$> f'✝ x) ∘
Sum.inr) <$>
g'✝ val✝)
[PROOFSTEP]
rfl
[GOAL]
case bitraverse_eq_bimap_id.inl
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type ?u.14627
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
val✝ : α✝
⊢ Sum.inl (f✝ val✝) = bimap f✝ f'✝ (Sum.inl val✝)
[PROOFSTEP]
rfl
[GOAL]
case bitraverse_eq_bimap_id.inr
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type ?u.14627
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
val✝ : α'✝
⊢ Sum.inr (f'✝ val✝) = bimap f✝ f'✝ (Sum.inr val✝)
[PROOFSTEP]
rfl
[GOAL]
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ LawfulBitraversable Const
[PROOFSTEP]
constructor
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {α β : Type ?u.21603} (x : Const α β), bitraverse pure pure x = pure x
[PROOFSTEP]
intros
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {F G : Type ?u.21603 → Type ?u.21603} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type ?u.21603} (f : β → F γ) (f' : β' → F γ') (g : α → G β)
(g' : α' → G β') (x : Const α α'),
bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x)
[PROOFSTEP]
intros
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {α α' β β' : Type ?u.21603} (f : α → β) (f' : α' → β') (x : Const α α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
[PROOFSTEP]
intros
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
⊢ ∀ {F G : Type ?u.21603 → Type ?u.21603} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type ?u.21603} (f : α → F β)
(f' : α' → F β') (x : Const α α'),
(fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) =
bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f)
((fun {α} => ApplicativeTransformation.app η α) ∘ f') x
[PROOFSTEP]
intros
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ β✝ : Type ?u.21603
x✝ : Const α✝ β✝
⊢ bitraverse pure pure x✝ = pure x✝
[PROOFSTEP]
simp [bitraverse, Const.bitraverse, functor_norm]
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.21603 → Type ?u.21603
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.21603
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
x✝ : Const α✝ α'✝
⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) x✝ = Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝)
[PROOFSTEP]
simp [bitraverse, Const.bitraverse, functor_norm]
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type ?u.21603
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : Const α✝ α'✝
⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝)
[PROOFSTEP]
simp [bitraverse, Const.bitraverse, functor_norm]
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.21603 → Type ?u.21603
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type ?u.21603
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : Const α✝ α'✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) =
bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝)
((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝
[PROOFSTEP]
simp [bitraverse, Const.bitraverse, functor_norm]
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type ?u.21603
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : Const α✝ α'✝
⊢ f✝ x✝ = bimap f✝ f'✝ x✝
[PROOFSTEP]
rfl
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type ?u.21603 → Type ?u.21603
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type ?u.21603
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : Const α✝ α'✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (f✝ x✝) = (fun {α} => ApplicativeTransformation.app η✝ α) (f✝ x✝)
[PROOFSTEP]
rfl
[GOAL]
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
⊢ LawfulBitraversable (_root_.flip t)
[PROOFSTEP]
constructor
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
⊢ ∀ {α β : Type u} (x : _root_.flip t α β), bitraverse pure pure x = pure x
[PROOFSTEP]
intros
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β)
(g' : α' → G β') (x : _root_.flip t α α'),
bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x)
[PROOFSTEP]
intros
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
⊢ ∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : _root_.flip t α α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
[PROOFSTEP]
intros
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β)
(f' : α' → F β') (x : _root_.flip t α α'),
(fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) =
bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f)
((fun {α} => ApplicativeTransformation.app η α) ∘ f') x
[PROOFSTEP]
intros
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α✝ β✝ : Type u
x✝ : _root_.flip t α✝ β✝
⊢ bitraverse pure pure x✝ = pure x✝
[PROOFSTEP]
casesm LawfulBitraversable t
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝⁶ : Bitraversable t
F : Type u → Type u
inst✝⁵ : Applicative F
inst✝⁴ : LawfulBitraversable t
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type u
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
x✝ : _root_.flip t α✝ α'✝
⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) x✝ = Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝)
[PROOFSTEP]
casesm LawfulBitraversable t
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : _root_.flip t α✝ α'✝
⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝)
[PROOFSTEP]
casesm LawfulBitraversable t
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁶ : Bitraversable t
F : Type u → Type u
inst✝⁵ : Applicative F
inst✝⁴ : LawfulBitraversable t
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : _root_.flip t α✝ α'✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) =
bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝)
((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝
[PROOFSTEP]
casesm LawfulBitraversable t
[GOAL]
case id_bitraverse.mk
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ β✝ : Type u
x✝ : _root_.flip t α✝ β✝
toLawfulBifunctor✝ : LawfulBifunctor t
id_bitraverse✝ : ∀ {α β : Type u} (x : t α β), bitraverse pure pure x = pure x
comp_bitraverse✝ :
∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β)
(g' : α' → G β') (x : t α α'),
bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x)
bitraverse_eq_bimap_id✝ :
∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : t α α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
binaturality✝ :
∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β)
(f' : α' → F β') (x : t α α'),
(fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) =
bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f)
((fun {α} => ApplicativeTransformation.app η α) ∘ f') x
⊢ bitraverse pure pure x✝ = pure x✝
[PROOFSTEP]
apply_assumption only [*]
[GOAL]
case comp_bitraverse.mk
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type u
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
x✝ : _root_.flip t α✝ α'✝
toLawfulBifunctor✝ : LawfulBifunctor t
id_bitraverse✝ : ∀ {α β : Type u} (x : t α β), bitraverse pure pure x = pure x
comp_bitraverse✝ :
∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β)
(g' : α' → G β') (x : t α α'),
bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x)
bitraverse_eq_bimap_id✝ :
∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : t α α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
binaturality✝ :
∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β)
(f' : α' → F β') (x : t α α'),
(fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) =
bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f)
((fun {α} => ApplicativeTransformation.app η α) ∘ f') x
⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) x✝ = Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝)
[PROOFSTEP]
apply_assumption only [*]
[GOAL]
case bitraverse_eq_bimap_id.mk
t : Type u → Type u → Type u
inst✝¹ : Bitraversable t
F : Type u → Type u
inst✝ : Applicative F
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : _root_.flip t α✝ α'✝
toLawfulBifunctor✝ : LawfulBifunctor t
id_bitraverse✝ : ∀ {α β : Type u} (x : t α β), bitraverse pure pure x = pure x
comp_bitraverse✝ :
∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β)
(g' : α' → G β') (x : t α α'),
bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x)
bitraverse_eq_bimap_id✝ :
∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : t α α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
binaturality✝ :
∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β)
(f' : α' → F β') (x : t α α'),
(fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) =
bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f)
((fun {α} => ApplicativeTransformation.app η α) ∘ f') x
⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝)
[PROOFSTEP]
apply_assumption only [*]
[GOAL]
case binaturality.mk
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F : Type u → Type u
inst✝⁴ : Applicative F
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : _root_.flip t α✝ α'✝
toLawfulBifunctor✝ : LawfulBifunctor t
id_bitraverse✝ : ∀ {α β : Type u} (x : t α β), bitraverse pure pure x = pure x
comp_bitraverse✝ :
∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β)
(g' : α' → G β') (x : t α α'),
bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x)
bitraverse_eq_bimap_id✝ :
∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : t α α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
binaturality✝ :
∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β)
(f' : α' → F β') (x : t α α'),
(fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) =
bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f)
((fun {α} => ApplicativeTransformation.app η α) ∘ f') x
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) =
bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝)
((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝
[PROOFSTEP]
apply_assumption only [*]
[GOAL]
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α : Type u
⊢ LawfulTraversable (t α)
[PROOFSTEP]
constructor
[GOAL]
case id_traverse
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α : Type u
⊢ ∀ {α_1 : Type u} (x : t α α_1), traverse pure x = x
[PROOFSTEP]
intros
[GOAL]
case comp_traverse
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α : Type u
⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] {α_1 β γ : Type u} (f : β → F γ) (g : α_1 → G β) (x : t α α_1),
traverse (Comp.mk ∘ map f ∘ g) x = Comp.mk (traverse f <$> traverse g x)
[PROOFSTEP]
intros
[GOAL]
case traverse_eq_map_id
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α : Type u
⊢ ∀ {α_1 β : Type u} (f : α_1 → β) (x : t α α_1), traverse (pure ∘ f) x = id.mk (f <$> x)
[PROOFSTEP]
intros
[GOAL]
case naturality
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α : Type u
⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α_1 β : Type u} (f : α_1 → F β) (x : t α α_1),
(fun {α} => ApplicativeTransformation.app η α) (traverse f x) =
traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x
[PROOFSTEP]
intros
[GOAL]
case id_traverse
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α α✝ : Type u
x✝ : t α α✝
⊢ traverse pure x✝ = x✝
[PROOFSTEP]
simp [traverse, comp_tsnd, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case comp_traverse
t : Type u → Type u → Type u
inst✝⁶ : Bitraversable t
F : Type u → Type u
inst✝⁵ : Applicative F
inst✝⁴ : LawfulBitraversable t
α : Type u
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ β✝ γ✝ : Type u
f✝ : β✝ → F✝ γ✝
g✝ : α✝ → G✝ β✝
x✝ : t α α✝
⊢ traverse (Comp.mk ∘ map f✝ ∘ g✝) x✝ = Comp.mk (traverse f✝ <$> traverse g✝ x✝)
[PROOFSTEP]
simp [traverse, comp_tsnd, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case traverse_eq_map_id
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α α✝ β✝ : Type u
f✝ : α✝ → β✝
x✝ : t α α✝
⊢ traverse (pure ∘ f✝) x✝ = id.mk (f✝ <$> x✝)
[PROOFSTEP]
simp [traverse, comp_tsnd, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case naturality
t : Type u → Type u → Type u
inst✝⁶ : Bitraversable t
F : Type u → Type u
inst✝⁵ : Applicative F
inst✝⁴ : LawfulBitraversable t
α : Type u
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ β✝ : Type u
f✝ : α✝ → F✝ β✝
x✝ : t α α✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (traverse f✝ x✝) =
traverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) x✝
[PROOFSTEP]
simp [traverse, comp_tsnd, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case traverse_eq_map_id
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α α✝ β✝ : Type u
f✝ : α✝ → β✝
x✝ : t α α✝
⊢ tsnd (pure ∘ f✝) x✝ = id.mk (f✝ <$> x✝)
[PROOFSTEP]
simp [tsnd_eq_snd_id]
[GOAL]
case traverse_eq_map_id
t : Type u → Type u → Type u
inst✝² : Bitraversable t
F : Type u → Type u
inst✝¹ : Applicative F
inst✝ : LawfulBitraversable t
α α✝ β✝ : Type u
f✝ : α✝ → β✝
x✝ : t α α✝
⊢ Bifunctor.snd f✝ x✝ = id.mk (f✝ <$> x✝)
[PROOFSTEP]
rfl
[GOAL]
case naturality
t : Type u → Type u → Type u
inst✝⁶ : Bitraversable t
F : Type u → Type u
inst✝⁵ : Applicative F
inst✝⁴ : LawfulBitraversable t
α : Type u
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ β✝ : Type u
f✝ : α✝ → F✝ β✝
x✝ : t α α✝
⊢ ApplicativeTransformation.app η✝ (t α β✝) (tsnd f✝ x✝) = tsnd (ApplicativeTransformation.app η✝ β✝ ∘ f✝) x✝
[PROOFSTEP]
simp [tsnd, binaturality, Function.comp, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F G : Type u → Type u
inst✝⁴ : Traversable F
inst✝³ : Traversable G
inst✝² : LawfulTraversable F
inst✝¹ : LawfulTraversable G
inst✝ : LawfulBitraversable t
⊢ LawfulBitraversable (bicompl t F G)
[PROOFSTEP]
constructor
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F G : Type u → Type u
inst✝⁴ : Traversable F
inst✝³ : Traversable G
inst✝² : LawfulTraversable F
inst✝¹ : LawfulTraversable G
inst✝ : LawfulBitraversable t
⊢ ∀ {α β : Type u} (x : bicompl t F G α β), bitraverse pure pure x = pure x
[PROOFSTEP]
intros
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F G : Type u → Type u
inst✝⁴ : Traversable F
inst✝³ : Traversable G
inst✝² : LawfulTraversable F
inst✝¹ : LawfulTraversable G
inst✝ : LawfulBitraversable t
⊢ ∀ {F_1 G_1 : Type u → Type u} [inst : Applicative F_1] [inst_1 : Applicative G_1] [inst_2 : LawfulApplicative F_1]
[inst_3 : LawfulApplicative G_1] {α α' β β' γ γ' : Type u} (f : β → F_1 γ) (f' : β' → F_1 γ') (g : α → G_1 β)
(g' : α' → G_1 β') (x : bicompl t F G α α'),
bitraverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (Functor.Comp.mk ∘ Functor.map f' ∘ g') x =
Functor.Comp.mk (bitraverse f f' <$> bitraverse g g' x)
[PROOFSTEP]
intros
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F G : Type u → Type u
inst✝⁴ : Traversable F
inst✝³ : Traversable G
inst✝² : LawfulTraversable F
inst✝¹ : LawfulTraversable G
inst✝ : LawfulBitraversable t
⊢ ∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : bicompl t F G α α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
[PROOFSTEP]
intros
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F G : Type u → Type u
inst✝⁴ : Traversable F
inst✝³ : Traversable G
inst✝² : LawfulTraversable F
inst✝¹ : LawfulTraversable G
inst✝ : LawfulBitraversable t
⊢ ∀ {F_1 G_1 : Type u → Type u} [inst : Applicative F_1] [inst_1 : Applicative G_1] [inst_2 : LawfulApplicative F_1]
[inst_3 : LawfulApplicative G_1] (η : ApplicativeTransformation F_1 G_1) {α α' β β' : Type u} (f : α → F_1 β)
(f' : α' → F_1 β') (x : bicompl t F G α α'),
(fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) =
bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f)
((fun {α} => ApplicativeTransformation.app η α) ∘ f') x
[PROOFSTEP]
intros
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F G : Type u → Type u
inst✝⁴ : Traversable F
inst✝³ : Traversable G
inst✝² : LawfulTraversable F
inst✝¹ : LawfulTraversable G
inst✝ : LawfulBitraversable t
α✝ β✝ : Type u
x✝ : bicompl t F G α✝ β✝
⊢ bitraverse pure pure x✝ = pure x✝
[PROOFSTEP]
simp [bitraverse, Bicompl.bitraverse, bimap, traverse_id, bitraverse_id_id, comp_bitraverse, functor_norm,
-ApplicativeTransformation.app_eq_coe]
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝⁹ : Bitraversable t
F G : Type u → Type u
inst✝⁸ : Traversable F
inst✝⁷ : Traversable G
inst✝⁶ : LawfulTraversable F
inst✝⁵ : LawfulTraversable G
inst✝⁴ : LawfulBitraversable t
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type u
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
x✝ : bicompl t F G α✝ α'✝
⊢ bitraverse (Functor.Comp.mk ∘ Functor.map f✝ ∘ g✝) (Functor.Comp.mk ∘ Functor.map f'✝ ∘ g'✝) x✝ =
Functor.Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝)
[PROOFSTEP]
simp [bitraverse, Bicompl.bitraverse, bimap, traverse_id, bitraverse_id_id, comp_bitraverse, functor_norm,
-ApplicativeTransformation.app_eq_coe]
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F G : Type u → Type u
inst✝⁴ : Traversable F
inst✝³ : Traversable G
inst✝² : LawfulTraversable F
inst✝¹ : LawfulTraversable G
inst✝ : LawfulBitraversable t
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : bicompl t F G α✝ α'✝
⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝)
[PROOFSTEP]
simp [bitraverse, Bicompl.bitraverse, bimap, traverse_id, bitraverse_id_id, comp_bitraverse, functor_norm,
-ApplicativeTransformation.app_eq_coe]
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁹ : Bitraversable t
F G : Type u → Type u
inst✝⁸ : Traversable F
inst✝⁷ : Traversable G
inst✝⁶ : LawfulTraversable F
inst✝⁵ : LawfulTraversable G
inst✝⁴ : LawfulBitraversable t
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : bicompl t F G α✝ α'✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) =
bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝)
((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝
[PROOFSTEP]
simp [bitraverse, Bicompl.bitraverse, bimap, traverse_id, bitraverse_id_id, comp_bitraverse, functor_norm,
-ApplicativeTransformation.app_eq_coe]
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝⁵ : Bitraversable t
F G : Type u → Type u
inst✝⁴ : Traversable F
inst✝³ : Traversable G
inst✝² : LawfulTraversable F
inst✝¹ : LawfulTraversable G
inst✝ : LawfulBitraversable t
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : bicompl t F G α✝ α'✝
⊢ bitraverse (traverse (pure ∘ f✝)) (traverse (pure ∘ f'✝)) x✝ = bimap (Functor.map f✝) (Functor.map f'✝) x✝
[PROOFSTEP]
simp [traverse_eq_map_id', bitraverse_eq_bimap_id]
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁹ : Bitraversable t
F G : Type u → Type u
inst✝⁸ : Traversable F
inst✝⁷ : Traversable G
inst✝⁶ : LawfulTraversable F
inst✝⁵ : LawfulTraversable G
inst✝⁴ : LawfulBitraversable t
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : bicompl t F G α✝ α'✝
⊢ ApplicativeTransformation.app η✝ (bicompl t F G β✝ β'✝) (bitraverse (traverse f✝) (traverse f'✝) x✝) =
bitraverse (traverse (ApplicativeTransformation.app η✝ β✝ ∘ f✝))
(traverse (ApplicativeTransformation.app η✝ β'✝ ∘ f'✝)) x✝
[PROOFSTEP]
dsimp only [bicompl]
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁹ : Bitraversable t
F G : Type u → Type u
inst✝⁸ : Traversable F
inst✝⁷ : Traversable G
inst✝⁶ : LawfulTraversable F
inst✝⁵ : LawfulTraversable G
inst✝⁴ : LawfulBitraversable t
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : bicompl t F G α✝ α'✝
⊢ ApplicativeTransformation.app η✝ (t (F β✝) (G β'✝)) (bitraverse (traverse f✝) (traverse f'✝) x✝) =
bitraverse (traverse (ApplicativeTransformation.app η✝ β✝ ∘ f✝))
(traverse (ApplicativeTransformation.app η✝ β'✝ ∘ f'✝)) x✝
[PROOFSTEP]
simp [binaturality, naturality_pf]
[GOAL]
t : Type u → Type u → Type u
inst✝³ : Bitraversable t
F : Type u → Type u
inst✝² : Traversable F
inst✝¹ : LawfulTraversable F
inst✝ : LawfulBitraversable t
⊢ LawfulBitraversable (bicompr F t)
[PROOFSTEP]
constructor
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝³ : Bitraversable t
F : Type u → Type u
inst✝² : Traversable F
inst✝¹ : LawfulTraversable F
inst✝ : LawfulBitraversable t
⊢ ∀ {α β : Type u} (x : bicompr F t α β), bitraverse pure pure x = pure x
[PROOFSTEP]
intros
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝³ : Bitraversable t
F : Type u → Type u
inst✝² : Traversable F
inst✝¹ : LawfulTraversable F
inst✝ : LawfulBitraversable t
⊢ ∀ {F_1 G : Type u → Type u} [inst : Applicative F_1] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F_1]
[inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F_1 γ) (f' : β' → F_1 γ') (g : α → G β)
(g' : α' → G β') (x : bicompr F t α α'),
bitraverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (Functor.Comp.mk ∘ Functor.map f' ∘ g') x =
Functor.Comp.mk (bitraverse f f' <$> bitraverse g g' x)
[PROOFSTEP]
intros
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝³ : Bitraversable t
F : Type u → Type u
inst✝² : Traversable F
inst✝¹ : LawfulTraversable F
inst✝ : LawfulBitraversable t
⊢ ∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : bicompr F t α α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
[PROOFSTEP]
intros
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝³ : Bitraversable t
F : Type u → Type u
inst✝² : Traversable F
inst✝¹ : LawfulTraversable F
inst✝ : LawfulBitraversable t
⊢ ∀ {F_1 G : Type u → Type u} [inst : Applicative F_1] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F_1]
[inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F_1 G) {α α' β β' : Type u} (f : α → F_1 β)
(f' : α' → F_1 β') (x : bicompr F t α α'),
(fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) =
bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f)
((fun {α} => ApplicativeTransformation.app η α) ∘ f') x
[PROOFSTEP]
intros
[GOAL]
case id_bitraverse
t : Type u → Type u → Type u
inst✝³ : Bitraversable t
F : Type u → Type u
inst✝² : Traversable F
inst✝¹ : LawfulTraversable F
inst✝ : LawfulBitraversable t
α✝ β✝ : Type u
x✝ : bicompr F t α✝ β✝
⊢ bitraverse pure pure x✝ = pure x✝
[PROOFSTEP]
simp [bitraverse, Bicompr.bitraverse, bitraverse_id_id, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case comp_bitraverse
t : Type u → Type u → Type u
inst✝⁷ : Bitraversable t
F : Type u → Type u
inst✝⁶ : Traversable F
inst✝⁵ : LawfulTraversable F
inst✝⁴ : LawfulBitraversable t
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type u
f✝ : β✝ → F✝ γ✝
f'✝ : β'✝ → F✝ γ'✝
g✝ : α✝ → G✝ β✝
g'✝ : α'✝ → G✝ β'✝
x✝ : bicompr F t α✝ α'✝
⊢ bitraverse (Functor.Comp.mk ∘ Functor.map f✝ ∘ g✝) (Functor.Comp.mk ∘ Functor.map f'✝ ∘ g'✝) x✝ =
Functor.Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝)
[PROOFSTEP]
simp [bitraverse, Bicompr.bitraverse, bitraverse_id_id, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝³ : Bitraversable t
F : Type u → Type u
inst✝² : Traversable F
inst✝¹ : LawfulTraversable F
inst✝ : LawfulBitraversable t
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : bicompr F t α✝ α'✝
⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝)
[PROOFSTEP]
simp [bitraverse, Bicompr.bitraverse, bitraverse_id_id, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁷ : Bitraversable t
F : Type u → Type u
inst✝⁶ : Traversable F
inst✝⁵ : LawfulTraversable F
inst✝⁴ : LawfulBitraversable t
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : bicompr F t α✝ α'✝
⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) =
bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝)
((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝
[PROOFSTEP]
simp [bitraverse, Bicompr.bitraverse, bitraverse_id_id, functor_norm, -ApplicativeTransformation.app_eq_coe]
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝³ : Bitraversable t
F : Type u → Type u
inst✝² : Traversable F
inst✝¹ : LawfulTraversable F
inst✝ : LawfulBitraversable t
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : bicompr F t α✝ α'✝
⊢ traverse (bitraverse (pure ∘ f✝) (pure ∘ f'✝)) x✝ = bimap f✝ f'✝ x✝
[PROOFSTEP]
simp [bitraverse_eq_bimap_id', traverse_eq_map_id']
[GOAL]
case bitraverse_eq_bimap_id
t : Type u → Type u → Type u
inst✝³ : Bitraversable t
F : Type u → Type u
inst✝² : Traversable F
inst✝¹ : LawfulTraversable F
inst✝ : LawfulBitraversable t
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → β✝
f'✝ : α'✝ → β'✝
x✝ : bicompr F t α✝ α'✝
⊢ bimap f✝ f'✝ <$> x✝ = bimap f✝ f'✝ x✝
[PROOFSTEP]
rfl
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁷ : Bitraversable t
F : Type u → Type u
inst✝⁶ : Traversable F
inst✝⁵ : LawfulTraversable F
inst✝⁴ : LawfulBitraversable t
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : bicompr F t α✝ α'✝
⊢ ApplicativeTransformation.app η✝ (bicompr F t β✝ β'✝) (traverse (bitraverse f✝ f'✝) x✝) =
traverse (bitraverse (ApplicativeTransformation.app η✝ β✝ ∘ f✝) (ApplicativeTransformation.app η✝ β'✝ ∘ f'✝)) x✝
[PROOFSTEP]
dsimp only [bicompr]
[GOAL]
case binaturality
t : Type u → Type u → Type u
inst✝⁷ : Bitraversable t
F : Type u → Type u
inst✝⁶ : Traversable F
inst✝⁵ : LawfulTraversable F
inst✝⁴ : LawfulBitraversable t
F✝ G✝ : Type u → Type u
inst✝³ : Applicative F✝
inst✝² : Applicative G✝
inst✝¹ : LawfulApplicative F✝
inst✝ : LawfulApplicative G✝
η✝ : ApplicativeTransformation F✝ G✝
α✝ α'✝ β✝ β'✝ : Type u
f✝ : α✝ → F✝ β✝
f'✝ : α'✝ → F✝ β'✝
x✝ : bicompr F t α✝ α'✝
⊢ ApplicativeTransformation.app η✝ (F (t β✝ β'✝)) (traverse (bitraverse f✝ f'✝) x✝) =
traverse (bitraverse (ApplicativeTransformation.app η✝ β✝ ∘ f✝) (ApplicativeTransformation.app η✝ β'✝ ∘ f'✝)) x✝
[PROOFSTEP]
simp [naturality, binaturality']
| {"mathlib_filename": "Mathlib.Control.Bitraversable.Instances", "llama_tokens": 27010} |
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f✝ g✝ : G → E
f'✝ g'✝ : G →L[ℝ] E
s✝ : Set G
x✝ : G
n : ℕ∞
f g : ℝ → E
f' g' : E
s : Set ℝ
x : ℝ
hf : HasDerivWithinAt f f' s x
hg : HasDerivWithinAt g g' s x
⊢ HasDerivWithinAt (fun t => Inner.inner (f t) (g t)) (Inner.inner (f x) g' + Inner.inner f' (g x)) s x
[PROOFSTEP]
simpa using (hf.hasFDerivWithinAt.inner 𝕜 hg.hasFDerivWithinAt).hasDerivWithinAt
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f✝ g✝ : G → E
f'✝ g'✝ : G →L[ℝ] E
s : Set G
x✝ : G
n : ℕ∞
f g : ℝ → E
f' g' : E
x : ℝ
⊢ HasDerivAt f f' x →
HasDerivAt g g' x → HasDerivAt (fun t => Inner.inner (f t) (g t)) (Inner.inner (f x) g' + Inner.inner f' (g x)) x
[PROOFSTEP]
simpa only [← hasDerivWithinAt_univ] using HasDerivWithinAt.inner 𝕜
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
hf : DifferentiableAt ℝ f x
hg : DifferentiableAt ℝ g x
y : G
⊢ ↑(fderiv ℝ (fun t => inner (f t) (g t)) x) y = inner (f x) (↑(fderiv ℝ g x) y) + inner (↑(fderiv ℝ f x) y) (g x)
[PROOFSTEP]
rw [(hf.hasFDerivAt.inner 𝕜 hg.hasFDerivAt).fderiv]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
hf : DifferentiableAt ℝ f x
hg : DifferentiableAt ℝ g x
y : G
⊢ ↑(ContinuousLinearMap.comp (fderivInnerClm 𝕜 (f x, g x)) (ContinuousLinearMap.prod (fderiv ℝ f x) (fderiv ℝ g x))) y =
inner (f x) (↑(fderiv ℝ g x) y) + inner (↑(fderiv ℝ f x) y) (g x)
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
⊢ ContDiff ℝ n fun x => ‖x‖ ^ 2
[PROOFSTEP]
convert (reClm : 𝕜 →L[ℝ] ℝ).contDiff.comp ((contDiff_id (E := E)).inner 𝕜 (contDiff_id (E := E)))
[GOAL]
case h.e'_10.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
x✝ : E
⊢ ‖x✝‖ ^ 2 = (↑reClm ∘ fun x => inner (id x) (id x)) x✝
[PROOFSTEP]
exact (inner_self_eq_norm_sq _).symm
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x✝ : G
n : ℕ∞
x : E
hx : x ≠ 0
⊢ ContDiffAt ℝ n Norm.norm x
[PROOFSTEP]
have : ‖id x‖ ^ 2 ≠ 0 := pow_ne_zero 2 (norm_pos_iff.2 hx).ne'
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x✝ : G
n : ℕ∞
x : E
hx : x ≠ 0
this : ‖id x‖ ^ 2 ≠ 0
⊢ ContDiffAt ℝ n Norm.norm x
[PROOFSTEP]
simpa only [id, sqrt_sq, norm_nonneg] using (contDiffAt_id.norm_sq 𝕜).sqrt this
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
hf : ContDiffAt ℝ n f x
hg : ContDiffAt ℝ n g x
hne : f x ≠ g x
⊢ ContDiffAt ℝ n (fun y => Dist.dist (f y) (g y)) x
[PROOFSTEP]
simp only [dist_eq_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
hf : ContDiffAt ℝ n f x
hg : ContDiffAt ℝ n g x
hne : f x ≠ g x
⊢ ContDiffAt ℝ n (fun y => ‖f y - g y‖) x
[PROOFSTEP]
exact (hf.sub hg).norm 𝕜 (sub_ne_zero.2 hne)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
hf : ContDiffWithinAt ℝ n f s x
hg : ContDiffWithinAt ℝ n g s x
hne : f x ≠ g x
⊢ ContDiffWithinAt ℝ n (fun y => Dist.dist (f y) (g y)) s x
[PROOFSTEP]
simp only [dist_eq_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
hf : ContDiffWithinAt ℝ n f s x
hg : ContDiffWithinAt ℝ n g s x
hne : f x ≠ g x
⊢ ContDiffWithinAt ℝ n (fun y => ‖f y - g y‖) s x
[PROOFSTEP]
exact (hf.sub hg).norm 𝕜 (sub_ne_zero.2 hne)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x✝ : G
n : ℕ∞
x : F
⊢ HasStrictFDerivAt (fun x => ‖x‖ ^ 2) (2 • ↑(innerSL ℝ) x) x
[PROOFSTEP]
simp only [sq, ← @inner_self_eq_norm_mul_norm ℝ]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x✝ : G
n : ℕ∞
x : F
⊢ HasStrictFDerivAt (fun x => ↑re (inner x x)) (2 • ↑(innerSL ℝ) x) x
[PROOFSTEP]
convert (hasStrictFDerivAt_id x).inner ℝ (hasStrictFDerivAt_id x)
[GOAL]
case h.e'_10.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x✝ : G
n : ℕ∞
x : F
e_7✝ : normedAddCommGroup = NonUnitalNormedRing.toNormedAddCommGroup
he✝ : InnerProductSpace.toNormedSpace = NormedAlgebra.toNormedSpace'
⊢ 2 • ↑(innerSL ℝ) x =
ContinuousLinearMap.comp (fderivInnerClm ℝ (id x, id x))
(ContinuousLinearMap.prod (ContinuousLinearMap.id ℝ F) (ContinuousLinearMap.id ℝ F))
[PROOFSTEP]
ext y
[GOAL]
case h.e'_10.h.h.h
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x✝ : G
n : ℕ∞
x : F
e_7✝ : normedAddCommGroup = NonUnitalNormedRing.toNormedAddCommGroup
he✝ : InnerProductSpace.toNormedSpace = NormedAlgebra.toNormedSpace'
y : F
⊢ ↑(2 • ↑(innerSL ℝ) x) y =
↑(ContinuousLinearMap.comp (fderivInnerClm ℝ (id x, id x))
(ContinuousLinearMap.prod (ContinuousLinearMap.id ℝ F) (ContinuousLinearMap.id ℝ F)))
y
[PROOFSTEP]
simp [two_smul, real_inner_comm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
hf : DifferentiableAt ℝ f x
hg : DifferentiableAt ℝ g x
hne : f x ≠ g x
⊢ DifferentiableAt ℝ (fun y => Dist.dist (f y) (g y)) x
[PROOFSTEP]
simp only [dist_eq_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
hf : DifferentiableAt ℝ f x
hg : DifferentiableAt ℝ g x
hne : f x ≠ g x
⊢ DifferentiableAt ℝ (fun y => ‖f y - g y‖) x
[PROOFSTEP]
exact (hf.sub hg).norm 𝕜 (sub_ne_zero.2 hne)
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
hf : DifferentiableWithinAt ℝ f s x
hg : DifferentiableWithinAt ℝ g s x
hne : f x ≠ g x
⊢ DifferentiableWithinAt ℝ (fun y => Dist.dist (f y) (g y)) s x
[PROOFSTEP]
simp only [dist_eq_norm]
[GOAL]
𝕜 : Type u_1
E : Type u_2
F : Type u_3
inst✝⁷ : IsROrC 𝕜
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : InnerProductSpace 𝕜 E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : InnerProductSpace ℝ F
inst✝² : NormedSpace ℝ E
G : Type u_4
inst✝¹ : NormedAddCommGroup G
inst✝ : NormedSpace ℝ G
f g : G → E
f' g' : G →L[ℝ] E
s : Set G
x : G
n : ℕ∞
hf : DifferentiableWithinAt ℝ f s x
hg : DifferentiableWithinAt ℝ g s x
hne : f x ≠ g x
⊢ DifferentiableWithinAt ℝ (fun y => ‖f y - g y‖) s x
[PROOFSTEP]
exact (hf.sub hg).norm 𝕜 (sub_ne_zero.2 hne)
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ DifferentiableWithinAt 𝕜 f t y ↔ ∀ (i : ι), DifferentiableWithinAt 𝕜 (fun x => f x i) t y
[PROOFSTEP]
rw [← (EuclideanSpace.equiv ι 𝕜).comp_differentiableWithinAt_iff, differentiableWithinAt_pi]
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ (∀ (i : ι), DifferentiableWithinAt 𝕜 (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) t y) ↔
∀ (i : ι), DifferentiableWithinAt 𝕜 (fun x => f x i) t y
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ DifferentiableAt 𝕜 f y ↔ ∀ (i : ι), DifferentiableAt 𝕜 (fun x => f x i) y
[PROOFSTEP]
rw [← (EuclideanSpace.equiv ι 𝕜).comp_differentiableAt_iff, differentiableAt_pi]
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ (∀ (i : ι), DifferentiableAt 𝕜 (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) y) ↔
∀ (i : ι), DifferentiableAt 𝕜 (fun x => f x i) y
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ DifferentiableOn 𝕜 f t ↔ ∀ (i : ι), DifferentiableOn 𝕜 (fun x => f x i) t
[PROOFSTEP]
rw [← (EuclideanSpace.equiv ι 𝕜).comp_differentiableOn_iff, differentiableOn_pi]
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ (∀ (i : ι), DifferentiableOn 𝕜 (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) t) ↔
∀ (i : ι), DifferentiableOn 𝕜 (fun x => f x i) t
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ Differentiable 𝕜 f ↔ ∀ (i : ι), Differentiable 𝕜 fun x => f x i
[PROOFSTEP]
rw [← (EuclideanSpace.equiv ι 𝕜).comp_differentiable_iff, differentiable_pi]
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ (∀ (i : ι), Differentiable 𝕜 fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) ↔
∀ (i : ι), Differentiable 𝕜 fun x => f x i
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ HasStrictFDerivAt f f' y ↔ ∀ (i : ι), HasStrictFDerivAt (fun x => f x i) (comp (EuclideanSpace.proj i) f') y
[PROOFSTEP]
rw [← (EuclideanSpace.equiv ι 𝕜).comp_hasStrictFDerivAt_iff, hasStrictFDerivAt_pi']
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ (∀ (i : ι),
HasStrictFDerivAt (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i)
(comp (proj i) (comp (↑(EuclideanSpace.equiv ι 𝕜)) f')) y) ↔
∀ (i : ι), HasStrictFDerivAt (fun x => f x i) (comp (EuclideanSpace.proj i) f') y
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ HasFDerivWithinAt f f' t y ↔ ∀ (i : ι), HasFDerivWithinAt (fun x => f x i) (comp (EuclideanSpace.proj i) f') t y
[PROOFSTEP]
rw [← (EuclideanSpace.equiv ι 𝕜).comp_hasFDerivWithinAt_iff, hasFDerivWithinAt_pi']
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
⊢ (∀ (i : ι),
HasFDerivWithinAt (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i)
(comp (proj i) (comp (↑(EuclideanSpace.equiv ι 𝕜)) f')) t y) ↔
∀ (i : ι), HasFDerivWithinAt (fun x => f x i) (comp (EuclideanSpace.proj i) f') t y
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
n : ℕ∞
⊢ ContDiffWithinAt 𝕜 n f t y ↔ ∀ (i : ι), ContDiffWithinAt 𝕜 n (fun x => f x i) t y
[PROOFSTEP]
rw [← (EuclideanSpace.equiv ι 𝕜).comp_contDiffWithinAt_iff, contDiffWithinAt_pi]
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
n : ℕ∞
⊢ (∀ (i : ι), ContDiffWithinAt 𝕜 n (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) t y) ↔
∀ (i : ι), ContDiffWithinAt 𝕜 n (fun x => f x i) t y
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
n : ℕ∞
⊢ ContDiffAt 𝕜 n f y ↔ ∀ (i : ι), ContDiffAt 𝕜 n (fun x => f x i) y
[PROOFSTEP]
rw [← (EuclideanSpace.equiv ι 𝕜).comp_contDiffAt_iff, contDiffAt_pi]
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
n : ℕ∞
⊢ (∀ (i : ι), ContDiffAt 𝕜 n (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) y) ↔
∀ (i : ι), ContDiffAt 𝕜 n (fun x => f x i) y
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
n : ℕ∞
⊢ ContDiffOn 𝕜 n f t ↔ ∀ (i : ι), ContDiffOn 𝕜 n (fun x => f x i) t
[PROOFSTEP]
rw [← (EuclideanSpace.equiv ι 𝕜).comp_contDiffOn_iff, contDiffOn_pi]
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
n : ℕ∞
⊢ (∀ (i : ι), ContDiffOn 𝕜 n (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) t) ↔
∀ (i : ι), ContDiffOn 𝕜 n (fun x => f x i) t
[PROOFSTEP]
rfl
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
n : ℕ∞
⊢ ContDiff 𝕜 n f ↔ ∀ (i : ι), ContDiff 𝕜 n fun x => f x i
[PROOFSTEP]
rw [← (EuclideanSpace.equiv ι 𝕜).comp_contDiff_iff, contDiff_pi]
[GOAL]
𝕜 : Type u_1
ι : Type u_2
H : Type u_3
inst✝³ : IsROrC 𝕜
inst✝² : NormedAddCommGroup H
inst✝¹ : NormedSpace 𝕜 H
inst✝ : Fintype ι
f : H → EuclideanSpace 𝕜 ι
f' : H →L[𝕜] EuclideanSpace 𝕜 ι
t : Set H
y : H
n : ℕ∞
⊢ (∀ (i : ι), ContDiff 𝕜 n fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) ↔ ∀ (i : ι), ContDiff 𝕜 n fun x => f x i
[PROOFSTEP]
rfl
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
⊢ ContDiff ℝ n ↑univUnitBall
[PROOFSTEP]
suffices ContDiff ℝ n fun x : E => ((1 : ℝ) + ‖x‖ ^ 2).sqrt⁻¹ from this.smul contDiff_id
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
⊢ ContDiff ℝ n fun x => (sqrt (1 + ‖x‖ ^ 2))⁻¹
[PROOFSTEP]
have h : ∀ x : E, (0 : ℝ) < (1 : ℝ) + ‖x‖ ^ 2 := fun x => by positivity
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
x : E
⊢ 0 < 1 + ‖x‖ ^ 2
[PROOFSTEP]
positivity
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
h : ∀ (x : E), 0 < 1 + ‖x‖ ^ 2
⊢ ContDiff ℝ n fun x => (sqrt (1 + ‖x‖ ^ 2))⁻¹
[PROOFSTEP]
refine' ContDiff.inv _ fun x => Real.sqrt_ne_zero'.mpr (h x)
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
h : ∀ (x : E), 0 < 1 + ‖x‖ ^ 2
⊢ ContDiff ℝ n fun x => sqrt (1 + ‖x‖ ^ 2)
[PROOFSTEP]
exact (contDiff_const.add <| contDiff_norm_sq ℝ).sqrt fun x => (h x).ne'
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
y : E
hy : y ∈ ball 0 1
⊢ ContDiffWithinAt ℝ n (↑(LocalHomeomorph.symm univUnitBall)) (ball 0 1) y
[PROOFSTEP]
apply ContDiffAt.contDiffWithinAt
[GOAL]
case h
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
y : E
hy : y ∈ ball 0 1
⊢ ContDiffAt ℝ n (↑(LocalHomeomorph.symm univUnitBall)) y
[PROOFSTEP]
suffices ContDiffAt ℝ n (fun y : E => ((1 : ℝ) - ‖y‖ ^ 2).sqrt⁻¹) y from this.smul contDiffAt_id
[GOAL]
case h
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
y : E
hy : y ∈ ball 0 1
⊢ ContDiffAt ℝ n (fun y => (sqrt (1 - ‖y‖ ^ 2))⁻¹) y
[PROOFSTEP]
have h : (0 : ℝ) < (1 : ℝ) - ‖(y : E)‖ ^ 2 := by
rwa [mem_ball_zero_iff, ← _root_.abs_one, ← abs_norm, ← sq_lt_sq, one_pow, ← sub_pos] at hy
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
y : E
hy : y ∈ ball 0 1
⊢ 0 < 1 - ‖y‖ ^ 2
[PROOFSTEP]
rwa [mem_ball_zero_iff, ← _root_.abs_one, ← abs_norm, ← sq_lt_sq, one_pow, ← sub_pos] at hy
[GOAL]
case h
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
y : E
hy : y ∈ ball 0 1
h : 0 < 1 - ‖y‖ ^ 2
⊢ ContDiffAt ℝ n (fun y => (sqrt (1 - ‖y‖ ^ 2))⁻¹) y
[PROOFSTEP]
refine' ContDiffAt.inv _ (Real.sqrt_ne_zero'.mpr h)
[GOAL]
case h
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
y : E
hy : y ∈ ball 0 1
h : 0 < 1 - ‖y‖ ^ 2
⊢ ContDiffAt ℝ n (fun y => sqrt (1 - ‖y‖ ^ 2)) y
[PROOFSTEP]
refine' (contDiffAt_sqrt h.ne').comp y _
[GOAL]
case h
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
y : E
hy : y ∈ ball 0 1
h : 0 < 1 - ‖y‖ ^ 2
⊢ ContDiffAt ℝ n (fun y => 1 - ‖y‖ ^ 2) y
[PROOFSTEP]
exact contDiffAt_const.sub (contDiff_norm_sq ℝ).contDiffAt
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
c : E
r : ℝ
⊢ ContDiff ℝ n ↑(univBall c r)
[PROOFSTEP]
unfold univBall
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
c : E
r : ℝ
⊢ ContDiff ℝ n
↑(if h : 0 < r then
LocalHomeomorph.trans' univUnitBall (unitBallBall c r h)
(_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target)
else Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c)))
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
c : E
r : ℝ
h : 0 < r
⊢ ContDiff ℝ n
↑(LocalHomeomorph.trans' univUnitBall (unitBallBall c r h)
(_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target))
[PROOFSTEP]
exact (contDiff_unitBallBall h).comp contDiff_univUnitBall
[GOAL]
case neg
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
c : E
r : ℝ
h : ¬0 < r
⊢ ContDiff ℝ n ↑(Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c)))
[PROOFSTEP]
exact contDiff_id.add contDiff_const
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
c : E
r : ℝ
⊢ ContDiffOn ℝ n (↑(LocalHomeomorph.symm (univBall c r))) (ball c r)
[PROOFSTEP]
unfold univBall
[GOAL]
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
c : E
r : ℝ
⊢ ContDiffOn ℝ n
(↑(LocalHomeomorph.symm
(if h : 0 < r then
LocalHomeomorph.trans' univUnitBall (unitBallBall c r h)
(_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target)
else Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c)))))
(ball c r)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
c : E
r : ℝ
h : 0 < r
⊢ ContDiffOn ℝ n
(↑(LocalHomeomorph.symm
(LocalHomeomorph.trans' univUnitBall (unitBallBall c r h)
(_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target))))
(ball c r)
[PROOFSTEP]
refine contDiffOn_univUnitBall_symm.comp (contDiff_unitBallBall_symm h).contDiffOn ?_
[GOAL]
case pos
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
c : E
r : ℝ
h : 0 < r
⊢ ball c r ⊆ (fun x => ↑(LocalEquiv.symm (unitBallBall c r h).toLocalEquiv) x) ⁻¹' ball 0 1
[PROOFSTEP]
rw [← unitBallBall_source c r h, ← unitBallBall_target c r h]
[GOAL]
case pos
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
c : E
r : ℝ
h : 0 < r
⊢ (unitBallBall c r h).toLocalEquiv.target ⊆
(fun x => ↑(LocalEquiv.symm (unitBallBall c r h).toLocalEquiv) x) ⁻¹' (unitBallBall c r h).toLocalEquiv.source
[PROOFSTEP]
apply LocalHomeomorph.symm_mapsTo
[GOAL]
case neg
n : ℕ∞
E : Type u_1
inst✝¹ : NormedAddCommGroup E
inst✝ : InnerProductSpace ℝ E
c : E
r : ℝ
h : ¬0 < r
⊢ ContDiffOn ℝ n
(↑(LocalHomeomorph.symm (Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c)))))
(ball c r)
[PROOFSTEP]
exact contDiffOn_id.sub contDiffOn_const
| {"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.Calculus", "llama_tokens": 12361} |
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
x y : ContT r m α
h : ∀ (f : α → m r), run x f = run y f
⊢ x = y
[PROOFSTEP]
unfold ContT
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
x y : ContT r m α
h : ∀ (f : α → m r), run x f = run y f
⊢ x = y
[PROOFSTEP]
ext
[GOAL]
case h
r : Type u
m : Type u → Type v
α β γ ω : Type w
x y : ContT r m α
h : ∀ (f : α → m r), run x f = run y f
x✝ : α → m r
⊢ x x✝ = y x✝
[PROOFSTEP]
apply h
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
⊢ ∀ {α : Type ?u.3230} (x : ContT r m α), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ : Type ?u.3230
x✝ : ContT r m α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
rfl
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
⊢ ∀ {α β : Type ?u.3230} (x : α) (f : α → ContT r m β), pure x >>= f = f x
[PROOFSTEP]
intros
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ β✝ : Type ?u.3230
x✝ : α✝
f✝ : α✝ → ContT r m β✝
⊢ pure x✝ >>= f✝ = f✝ x✝
[PROOFSTEP]
ext
[GOAL]
case h
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ β✝ : Type ?u.3230
x✝ : α✝
f✝¹ : α✝ → ContT r m β✝
f✝ : β✝ → m r
⊢ run (pure x✝ >>= f✝¹) f✝ = run (f✝¹ x✝) f✝
[PROOFSTEP]
rfl
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
⊢ ∀ {α β γ : Type ?u.3230} (x : ContT r m α) (f : α → ContT r m β) (g : β → ContT r m γ),
x >>= f >>= g = x >>= fun x => f x >>= g
[PROOFSTEP]
intros
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ β✝ γ✝ : Type ?u.3230
x✝ : ContT r m α✝
f✝ : α✝ → ContT r m β✝
g✝ : β✝ → ContT r m γ✝
⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
ext
[GOAL]
case h
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ β✝ γ✝ : Type ?u.3230
x✝ : ContT r m α✝
f✝¹ : α✝ → ContT r m β✝
g✝ : β✝ → ContT r m γ✝
f✝ : γ✝ → m r
⊢ run (x✝ >>= f✝¹ >>= g✝) f✝ = run (x✝ >>= fun x => f✝¹ x >>= g✝) f✝
[PROOFSTEP]
rfl
[GOAL]
r : Type u
m : Type u → Type v
α✝ β✝ γ ω : Type w
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α β : Type u
x : m α
f : α → m β
⊢ monadLift (x >>= f) = monadLift x >>= monadLift ∘ f
[PROOFSTEP]
ext
[GOAL]
case h
r : Type u
m : Type u → Type v
α✝ β✝ γ ω : Type w
inst✝¹ : Monad m
inst✝ : LawfulMonad m
α β : Type u
x : m α
f : α → m β
f✝ : β → m r
⊢ run (monadLift (x >>= f)) f✝ = run (monadLift x >>= monadLift ∘ f) f✝
[PROOFSTEP]
simp only [monadLift, MonadLift.monadLift, (· ∘ ·), (· >>= ·), bind_assoc, id.def, run, ContT.monadLift]
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
⊢ ∀ {α ω γ : Type ?u.4864} (cmd : ContT r m α) (next : Label ω (ContT r m) γ → α → ContT r m ω),
(callCC fun f => cmd >>= next f) = do
let x ← cmd
callCC fun f => next f x
[PROOFSTEP]
intros
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ ω✝ γ✝ : Type ?u.4864
cmd✝ : ContT r m α✝
next✝ : Label ω✝ (ContT r m) γ✝ → α✝ → ContT r m ω✝
⊢ (callCC fun f => cmd✝ >>= next✝ f) = do
let x ← cmd✝
callCC fun f => next✝ f x
[PROOFSTEP]
ext
[GOAL]
case h
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ ω✝ γ✝ : Type ?u.4864
cmd✝ : ContT r m α✝
next✝ : Label ω✝ (ContT r m) γ✝ → α✝ → ContT r m ω✝
f✝ : ω✝ → m r
⊢ run (callCC fun f => cmd✝ >>= next✝ f) f✝ =
run
(do
let x ← cmd✝
callCC fun f => next✝ f x)
f✝
[PROOFSTEP]
rfl
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
⊢ ∀ {α : Type ?u.4864} (β : Type ?u.4864) (x : α) (dead : Label α (ContT r m) β → β → ContT r m α),
(callCC fun f => goto f x >>= dead f) = pure x
[PROOFSTEP]
intros
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ β✝ : Type ?u.4864
x✝ : α✝
dead✝ : Label α✝ (ContT r m) β✝ → β✝ → ContT r m α✝
⊢ (callCC fun f => goto f x✝ >>= dead✝ f) = pure x✝
[PROOFSTEP]
ext
[GOAL]
case h
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ β✝ : Type ?u.4864
x✝ : α✝
dead✝ : Label α✝ (ContT r m) β✝ → β✝ → ContT r m α✝
f✝ : α✝ → m r
⊢ run (callCC fun f => goto f x✝ >>= dead✝ f) f✝ = run (pure x✝) f✝
[PROOFSTEP]
rfl
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
⊢ ∀ {α β : Type ?u.4864} (dummy : ContT r m α), (callCC fun x => dummy) = dummy
[PROOFSTEP]
intros
[GOAL]
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ β✝ : Type ?u.4864
dummy✝ : ContT r m α✝
⊢ (callCC fun x => dummy✝) = dummy✝
[PROOFSTEP]
ext
[GOAL]
case h
r : Type u
m : Type u → Type v
α β γ ω : Type w
α✝ β✝ : Type ?u.4864
dummy✝ : ContT r m α✝
f✝ : α✝ → m r
⊢ run (callCC fun x => dummy✝) f✝ = run dummy✝ f✝
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝ : Monad m
α β ε : Type u
x : Label (Except ε α) m β
i : α
⊢ goto (mkLabel x) i = mk (Except.ok <$> goto x (Except.ok i))
[PROOFSTEP]
cases x
[GOAL]
case mk
m : Type u → Type v
inst✝ : Monad m
α β ε : Type u
i : α
apply✝ : Except ε α → m β
⊢ goto (mkLabel { apply := apply✝ }) i = mk (Except.ok <$> goto { apply := apply✝ } (Except.ok i))
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α ω γ : Type u} (cmd : ExceptT ε m α) (next : Label ω (ExceptT ε m) γ → α → ExceptT ε m ω),
(callCC fun f => cmd >>= next f) = do
let x ← cmd
callCC fun f => next f x
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : ExceptT ε m α✝
next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝
⊢ (callCC fun f => cmd✝ >>= next✝ f) = do
let x ← cmd✝
callCC fun f => next✝ f x
[PROOFSTEP]
simp [callCC, ExceptT.callCC, callCC_bind_right]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : ExceptT ε m α✝
next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝
⊢ (ExceptT.mk do
let x ← ExceptT.run cmd✝
callCC fun f =>
match x with
| Except.ok x => ExceptT.run (next✝ (ExceptT.mkLabel f) x)
| Except.error e => pure (Except.error e)) =
do
let x ← cmd✝
ExceptT.mk (callCC fun x_1 => ExceptT.run (next✝ (ExceptT.mkLabel x_1) x))
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : ExceptT ε m α✝
next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝
⊢ ExceptT.run
(ExceptT.mk do
let x ← ExceptT.run cmd✝
callCC fun f =>
match x with
| Except.ok x => ExceptT.run (next✝ (ExceptT.mkLabel f) x)
| Except.error e => pure (Except.error e)) =
ExceptT.run do
let x ← cmd✝
ExceptT.mk (callCC fun x_1 => ExceptT.run (next✝ (ExceptT.mkLabel x_1) x))
[PROOFSTEP]
dsimp
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : ExceptT ε m α✝
next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝
⊢ (do
let x ← ExceptT.run cmd✝
callCC fun f =>
match x with
| Except.ok x => ExceptT.run (next✝ (ExceptT.mkLabel f) x)
| Except.error e => pure (Except.error e)) =
do
let x ← ExceptT.run cmd✝
match x with
| Except.ok x => callCC fun x_1 => ExceptT.run (next✝ (ExceptT.mkLabel x_1) x)
| Except.error e => pure (Except.error e)
[PROOFSTEP]
congr with ⟨⟩
[GOAL]
case h.e_a.h.error
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : ExceptT ε m α✝
next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝
a✝ : ε
⊢ (callCC fun f =>
match Except.error a✝ with
| Except.ok x => ExceptT.run (next✝ (ExceptT.mkLabel f) x)
| Except.error e => pure (Except.error e)) =
match Except.error a✝ with
| Except.ok x => callCC fun x_1 => ExceptT.run (next✝ (ExceptT.mkLabel x_1) x)
| Except.error e => pure (Except.error e)
[PROOFSTEP]
simp [ExceptT.bindCont, @callCC_dummy m _]
[GOAL]
case h.e_a.h.ok
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : ExceptT ε m α✝
next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝
a✝ : α✝
⊢ (callCC fun f =>
match Except.ok a✝ with
| Except.ok x => ExceptT.run (next✝ (ExceptT.mkLabel f) x)
| Except.error e => pure (Except.error e)) =
match Except.ok a✝ with
| Except.ok x => callCC fun x_1 => ExceptT.run (next✝ (ExceptT.mkLabel x_1) x)
| Except.error e => pure (Except.error e)
[PROOFSTEP]
simp [ExceptT.bindCont, @callCC_dummy m _]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α : Type u} (β : Type u) (x : α) (dead : Label α (ExceptT ε m) β → β → ExceptT ε m α),
(callCC fun f => goto f x >>= dead f) = pure x
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (ExceptT ε m) β✝ → β✝ → ExceptT ε m α✝
⊢ (callCC fun f => goto f x✝ >>= dead✝ f) = pure x✝
[PROOFSTEP]
simp [callCC, ExceptT.callCC, callCC_bind_right, ExceptT.goto_mkLabel, map_eq_bind_pure_comp, bind_assoc,
@callCC_bind_left m _, Function.comp]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (ExceptT ε m) β✝ → β✝ → ExceptT ε m α✝
⊢ ExceptT.mk (pure (Except.ok x✝)) = pure x✝
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (ExceptT ε m) β✝ → β✝ → ExceptT ε m α✝
⊢ ExceptT.run (ExceptT.mk (pure (Except.ok x✝))) = ExceptT.run (pure x✝)
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α β : Type u} (dummy : ExceptT ε m α), (callCC fun x => dummy) = dummy
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : ExceptT ε m α✝
⊢ (callCC fun x => dummy✝) = dummy✝
[PROOFSTEP]
simp [callCC, ExceptT.callCC, @callCC_dummy m _]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : ExceptT ε m α✝
⊢ ExceptT.mk (ExceptT.run dummy✝) = dummy✝
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
ε : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : ExceptT ε m α✝
⊢ ExceptT.run (ExceptT.mk (ExceptT.run dummy✝)) = ExceptT.run dummy✝
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α ω γ : Type u} (cmd : OptionT m α) (next : Label ω (OptionT m) γ → α → OptionT m ω),
(callCC fun f => cmd >>= next f) = do
let x ← cmd
callCC fun f => next f x
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : OptionT m α✝
next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝
⊢ (callCC fun f => cmd✝ >>= next✝ f) = do
let x ← cmd✝
callCC fun f => next✝ f x
[PROOFSTEP]
simp [callCC, OptionT.callCC, callCC_bind_right]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : OptionT m α✝
next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝
⊢ (OptionT.mk do
let x ← OptionT.run cmd✝
callCC fun f =>
match x with
| some a => OptionT.run (next✝ (OptionT.mkLabel f) a)
| none => pure none) =
do
let x ← cmd✝
OptionT.mk (callCC fun x_1 => OptionT.run (next✝ (OptionT.mkLabel x_1) x))
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : OptionT m α✝
next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝
⊢ OptionT.run
(OptionT.mk do
let x ← OptionT.run cmd✝
callCC fun f =>
match x with
| some a => OptionT.run (next✝ (OptionT.mkLabel f) a)
| none => pure none) =
OptionT.run do
let x ← cmd✝
OptionT.mk (callCC fun x_1 => OptionT.run (next✝ (OptionT.mkLabel x_1) x))
[PROOFSTEP]
dsimp
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : OptionT m α✝
next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝
⊢ (do
let x ← OptionT.run cmd✝
callCC fun f =>
match x with
| some a => OptionT.run (next✝ (OptionT.mkLabel f) a)
| none => pure none) =
do
let x ← OptionT.run cmd✝
match x with
| some a => callCC fun x => OptionT.run (next✝ (OptionT.mkLabel x) a)
| none => pure none
[PROOFSTEP]
congr with ⟨⟩
[GOAL]
case h.e_a.h.none
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : OptionT m α✝
next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝
⊢ (callCC fun f =>
match none with
| some a => OptionT.run (next✝ (OptionT.mkLabel f) a)
| none => pure none) =
match none with
| some a => callCC fun x => OptionT.run (next✝ (OptionT.mkLabel x) a)
| none => pure none
[PROOFSTEP]
simp [@callCC_dummy m _]
[GOAL]
case h.e_a.h.some
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : OptionT m α✝
next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝
val✝ : α✝
⊢ (callCC fun f =>
match some val✝ with
| some a => OptionT.run (next✝ (OptionT.mkLabel f) a)
| none => pure none) =
match some val✝ with
| some a => callCC fun x => OptionT.run (next✝ (OptionT.mkLabel x) a)
| none => pure none
[PROOFSTEP]
simp [@callCC_dummy m _]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α : Type u} (β : Type u) (x : α) (dead : Label α (OptionT m) β → β → OptionT m α),
(callCC fun f => goto f x >>= dead f) = pure x
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (OptionT m) β✝ → β✝ → OptionT m α✝
⊢ (callCC fun f => goto f x✝ >>= dead✝ f) = pure x✝
[PROOFSTEP]
simp [callCC, OptionT.callCC, callCC_bind_right, OptionT.goto_mkLabel, map_eq_bind_pure_comp, bind_assoc,
@callCC_bind_left m _, Function.comp]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (OptionT m) β✝ → β✝ → OptionT m α✝
⊢ OptionT.mk (pure (some x✝)) = pure x✝
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (OptionT m) β✝ → β✝ → OptionT m α✝
⊢ OptionT.run (OptionT.mk (pure (some x✝))) = OptionT.run (pure x✝)
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α β : Type u} (dummy : OptionT m α), (callCC fun x => dummy) = dummy
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : OptionT m α✝
⊢ (callCC fun x => dummy✝) = dummy✝
[PROOFSTEP]
simp [callCC, OptionT.callCC, @callCC_dummy m _]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : OptionT m α✝
⊢ OptionT.mk (OptionT.run dummy✝) = dummy✝
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : OptionT m α✝
⊢ OptionT.run (OptionT.mk (OptionT.run dummy✝)) = OptionT.run dummy✝
[PROOFSTEP]
rfl
/- Porting note: In Lean 3, `One ω` is required for `MonadLift (WriterT ω m)`. In Lean 4,
`EmptyCollection ω` or `Monoid ω` is required. So we give definitions for the both
instances. -/
[GOAL]
m : Type u → Type v
inst✝¹ : Monad m
α : Type u_1
β ω : Type u
inst✝ : EmptyCollection ω
x : Label (α × ω) m β
i : α
⊢ goto (mkLabel x) i = monadLift (goto x (i, ∅))
[PROOFSTEP]
cases x
[GOAL]
case mk
m : Type u → Type v
inst✝¹ : Monad m
α : Type u_1
β ω : Type u
inst✝ : EmptyCollection ω
i : α
apply✝ : α × ω → m β
⊢ goto (mkLabel { apply := apply✝ }) i = monadLift (goto { apply := apply✝ } (i, ∅))
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝¹ : Monad m
α : Type u_1
β ω : Type u
inst✝ : Monoid ω
x : Label (α × ω) m β
i : α
⊢ goto (mkLabel' x) i = monadLift (goto x (i, 1))
[PROOFSTEP]
cases x
[GOAL]
case mk
m : Type u → Type v
inst✝¹ : Monad m
α : Type u_1
β ω : Type u
inst✝ : Monoid ω
i : α
apply✝ : α × ω → m β
⊢ goto (mkLabel' { apply := apply✝ }) i = monadLift (goto { apply := apply✝ } (i, 1))
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝ : Monad m
α β σ : Type u
x : Label (α × σ) m (β × σ)
i : α
⊢ goto (mkLabel x) i = StateT.mk fun s => goto x (i, s)
[PROOFSTEP]
cases x
[GOAL]
case mk
m : Type u → Type v
inst✝ : Monad m
α β σ : Type u
i : α
apply✝ : α × σ → m (β × σ)
⊢ goto (mkLabel { apply := apply✝ }) i = StateT.mk fun s => goto { apply := apply✝ } (i, s)
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α ω γ : Type u} (cmd : StateT σ m α) (next : Label ω (StateT σ m) γ → α → StateT σ m ω),
(callCC fun f => cmd >>= next f) = do
let x ← cmd
callCC fun f => next f x
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : StateT σ m α✝
next✝ : Label ω✝ (StateT σ m) γ✝ → α✝ → StateT σ m ω✝
⊢ (callCC fun f => cmd✝ >>= next✝ f) = do
let x ← cmd✝
callCC fun f => next✝ f x
[PROOFSTEP]
simp [callCC, StateT.callCC, callCC_bind_right]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : StateT σ m α✝
next✝ : Label ω✝ (StateT σ m) γ✝ → α✝ → StateT σ m ω✝
⊢ (StateT.mk fun r => do
let x ← StateT.run cmd✝ r
callCC fun f => StateT.run (next✝ (StateT.mkLabel f) x.fst) x.snd) =
do
let x ← cmd✝
StateT.mk fun r => callCC fun f' => StateT.run (next✝ (StateT.mkLabel f') x) r
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : StateT σ m α✝
next✝ : Label ω✝ (StateT σ m) γ✝ → α✝ → StateT σ m ω✝
s✝ : σ
⊢ StateT.run
(StateT.mk fun r => do
let x ← StateT.run cmd✝ r
callCC fun f => StateT.run (next✝ (StateT.mkLabel f) x.fst) x.snd)
s✝ =
StateT.run
(do
let x ← cmd✝
StateT.mk fun r => callCC fun f' => StateT.run (next✝ (StateT.mkLabel f') x) r)
s✝
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α : Type u} (β : Type u) (x : α) (dead : Label α (StateT σ m) β → β → StateT σ m α),
(callCC fun f => goto f x >>= dead f) = pure x
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (StateT σ m) β✝ → β✝ → StateT σ m α✝
⊢ (callCC fun f => goto f x✝ >>= dead✝ f) = pure x✝
[PROOFSTEP]
simp [callCC, StateT.callCC, callCC_bind_left, StateT.goto_mkLabel]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (StateT σ m) β✝ → β✝ → StateT σ m α✝
⊢ (StateT.mk fun r => pure (x✝, r)) = pure x✝
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (StateT σ m) β✝ → β✝ → StateT σ m α✝
s✝ : σ
⊢ StateT.run (StateT.mk fun r => pure (x✝, r)) s✝ = StateT.run (pure x✝) s✝
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α β : Type u} (dummy : StateT σ m α), (callCC fun x => dummy) = dummy
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : StateT σ m α✝
⊢ (callCC fun x => dummy✝) = dummy✝
[PROOFSTEP]
simp [callCC, StateT.callCC, callCC_bind_right, @callCC_dummy m _]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : StateT σ m α✝
⊢ (StateT.mk fun r => StateT.run dummy✝ r) = dummy✝
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
σ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : StateT σ m α✝
s✝ : σ
⊢ StateT.run (StateT.mk fun r => StateT.run dummy✝ r) s✝ = StateT.run dummy✝ s✝
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝ : Monad m
α : Type u_1
ρ β : Type u
x : Label α m β
i : α
⊢ goto (mkLabel ρ x) i = monadLift (goto x i)
[PROOFSTEP]
cases x
[GOAL]
case mk
m : Type u → Type v
inst✝ : Monad m
α : Type u_1
ρ β : Type u
i : α
apply✝ : α → m β
⊢ goto (mkLabel ρ { apply := apply✝ }) i = monadLift (goto { apply := apply✝ } i)
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α ω γ : Type u} (cmd : ReaderT ρ m α) (next : Label ω (ReaderT ρ m) γ → α → ReaderT ρ m ω),
(callCC fun f => cmd >>= next f) = do
let x ← cmd
callCC fun f => next f x
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : ReaderT ρ m α✝
next✝ : Label ω✝ (ReaderT ρ m) γ✝ → α✝ → ReaderT ρ m ω✝
⊢ (callCC fun f => cmd✝ >>= next✝ f) = do
let x ← cmd✝
callCC fun f => next✝ f x
[PROOFSTEP]
simp [callCC, ReaderT.callCC, callCC_bind_right]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : ReaderT ρ m α✝
next✝ : Label ω✝ (ReaderT ρ m) γ✝ → α✝ → ReaderT ρ m ω✝
⊢ (ReaderT.mk fun r => do
let x ← ReaderT.run cmd✝ r
callCC fun f => ReaderT.run (next✝ (ReaderT.mkLabel ρ f) x) r) =
do
let x ← cmd✝
ReaderT.mk fun r => callCC fun f' => ReaderT.run (next✝ (ReaderT.mkLabel ρ f') x) r
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ ω✝ γ✝ : Type u
cmd✝ : ReaderT ρ m α✝
next✝ : Label ω✝ (ReaderT ρ m) γ✝ → α✝ → ReaderT ρ m ω✝
ctx✝ : ρ
⊢ ReaderT.run
(ReaderT.mk fun r => do
let x ← ReaderT.run cmd✝ r
callCC fun f => ReaderT.run (next✝ (ReaderT.mkLabel ρ f) x) r)
ctx✝ =
ReaderT.run
(do
let x ← cmd✝
ReaderT.mk fun r => callCC fun f' => ReaderT.run (next✝ (ReaderT.mkLabel ρ f') x) r)
ctx✝
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α : Type u} (β : Type u) (x : α) (dead : Label α (ReaderT ρ m) β → β → ReaderT ρ m α),
(callCC fun f => goto f x >>= dead f) = pure x
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (ReaderT ρ m) β✝ → β✝ → ReaderT ρ m α✝
⊢ (callCC fun f => goto f x✝ >>= dead✝ f) = pure x✝
[PROOFSTEP]
simp [callCC, ReaderT.callCC, callCC_bind_left, ReaderT.goto_mkLabel]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (ReaderT ρ m) β✝ → β✝ → ReaderT ρ m α✝
⊢ (ReaderT.mk fun r => pure x✝) = pure x✝
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
x✝ : α✝
dead✝ : Label α✝ (ReaderT ρ m) β✝ → β✝ → ReaderT ρ m α✝
ctx✝ : ρ
⊢ ReaderT.run (ReaderT.mk fun r => pure x✝) ctx✝ = ReaderT.run (pure x✝) ctx✝
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
⊢ ∀ {α β : Type u} (dummy : ReaderT ρ m α), (callCC fun x => dummy) = dummy
[PROOFSTEP]
intros
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : ReaderT ρ m α✝
⊢ (callCC fun x => dummy✝) = dummy✝
[PROOFSTEP]
simp [callCC, ReaderT.callCC, @callCC_dummy m _]
[GOAL]
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : ReaderT ρ m α✝
⊢ (ReaderT.mk fun r => ReaderT.run dummy✝ r) = dummy✝
[PROOFSTEP]
ext
[GOAL]
case h
m : Type u → Type v
inst✝² : Monad m
ρ : Type u
inst✝¹ : MonadCont m
inst✝ : LawfulMonadCont m
α✝ β✝ : Type u
dummy✝ : ReaderT ρ m α✝
ctx✝ : ρ
⊢ ReaderT.run (ReaderT.mk fun r => ReaderT.run dummy✝ r) ctx✝ = ReaderT.run dummy✝ ctx✝
[PROOFSTEP]
rfl
[GOAL]
m : Type u → Type v
inst✝ : Monad m
m₁ : Type u₀ → Type v₀
m₂ : Type u₁ → Type v₁
α₁ r₁ : Type u₀
α₂ r₂ : Type u₁
F : m₁ r₁ ≃ m₂ r₂
G : α₁ ≃ α₂
f : ContT r₁ m₁ α₁
⊢ (fun f r => ↑F.symm (f fun x => ↑F (r (↑G.symm x)))) ((fun f r => ↑F (f fun x => ↑F.symm (r (↑G x)))) f) = f
[PROOFSTEP]
funext r
[GOAL]
case h
m : Type u → Type v
inst✝ : Monad m
m₁ : Type u₀ → Type v₀
m₂ : Type u₁ → Type v₁
α₁ r₁ : Type u₀
α₂ r₂ : Type u₁
F : m₁ r₁ ≃ m₂ r₂
G : α₁ ≃ α₂
f : ContT r₁ m₁ α₁
r : α₁ → m₁ r₁
⊢ (fun f r => ↑F.symm (f fun x => ↑F (r (↑G.symm x)))) ((fun f r => ↑F (f fun x => ↑F.symm (r (↑G x)))) f) r = f r
[PROOFSTEP]
simp
[GOAL]
m : Type u → Type v
inst✝ : Monad m
m₁ : Type u₀ → Type v₀
m₂ : Type u₁ → Type v₁
α₁ r₁ : Type u₀
α₂ r₂ : Type u₁
F : m₁ r₁ ≃ m₂ r₂
G : α₁ ≃ α₂
f : ContT r₂ m₂ α₂
⊢ (fun f r => ↑F (f fun x => ↑F.symm (r (↑G x)))) ((fun f r => ↑F.symm (f fun x => ↑F (r (↑G.symm x)))) f) = f
[PROOFSTEP]
funext r
[GOAL]
case h
m : Type u → Type v
inst✝ : Monad m
m₁ : Type u₀ → Type v₀
m₂ : Type u₁ → Type v₁
α₁ r₁ : Type u₀
α₂ r₂ : Type u₁
F : m₁ r₁ ≃ m₂ r₂
G : α₁ ≃ α₂
f : ContT r₂ m₂ α₂
r : α₂ → m₂ r₂
⊢ (fun f r => ↑F (f fun x => ↑F.symm (r (↑G x)))) ((fun f r => ↑F.symm (f fun x => ↑F (r (↑G.symm x)))) f) r = f r
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Control.Monad.Cont", "llama_tokens": 13923} |
[GOAL]
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P✝ : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
P : F α → Prop
q : F β → Prop
f : α ⟹ β
g : β ⟹ α
h₀ : f ⊚ g = TypeVec.id
h₁ : ∀ (u : F α), P u ↔ q (f <$$> u)
⊢ (∃ u, P u) ↔ ∃ u, q u
[PROOFSTEP]
constructor
[GOAL]
case mp
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P✝ : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
P : F α → Prop
q : F β → Prop
f : α ⟹ β
g : β ⟹ α
h₀ : f ⊚ g = TypeVec.id
h₁ : ∀ (u : F α), P u ↔ q (f <$$> u)
⊢ (∃ u, P u) → ∃ u, q u
[PROOFSTEP]
rintro ⟨u, h₂⟩
[GOAL]
case mpr
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P✝ : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
P : F α → Prop
q : F β → Prop
f : α ⟹ β
g : β ⟹ α
h₀ : f ⊚ g = TypeVec.id
h₁ : ∀ (u : F α), P u ↔ q (f <$$> u)
⊢ (∃ u, q u) → ∃ u, P u
[PROOFSTEP]
rintro ⟨u, h₂⟩
[GOAL]
case mp.intro
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P✝ : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
P : F α → Prop
q : F β → Prop
f : α ⟹ β
g : β ⟹ α
h₀ : f ⊚ g = TypeVec.id
h₁ : ∀ (u : F α), P u ↔ q (f <$$> u)
u : F α
h₂ : P u
⊢ ∃ u, q u
[PROOFSTEP]
refine ⟨f <$$> u, ?_⟩
[GOAL]
case mp.intro
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P✝ : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
P : F α → Prop
q : F β → Prop
f : α ⟹ β
g : β ⟹ α
h₀ : f ⊚ g = TypeVec.id
h₁ : ∀ (u : F α), P u ↔ q (f <$$> u)
u : F α
h₂ : P u
⊢ q (f <$$> u)
[PROOFSTEP]
apply (h₁ u).mp h₂
[GOAL]
case mpr.intro
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P✝ : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
P : F α → Prop
q : F β → Prop
f : α ⟹ β
g : β ⟹ α
h₀ : f ⊚ g = TypeVec.id
h₁ : ∀ (u : F α), P u ↔ q (f <$$> u)
u : F β
h₂ : q u
⊢ ∃ u, P u
[PROOFSTEP]
refine ⟨g <$$> u, ?_⟩
[GOAL]
case mpr.intro
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P✝ : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
P : F α → Prop
q : F β → Prop
f : α ⟹ β
g : β ⟹ α
h₀ : f ⊚ g = TypeVec.id
h₁ : ∀ (u : F α), P u ↔ q (f <$$> u)
u : F β
h₂ : q u
⊢ P (g <$$> u)
[PROOFSTEP]
apply (h₁ _).mpr _
[GOAL]
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P✝ : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
P : F α → Prop
q : F β → Prop
f : α ⟹ β
g : β ⟹ α
h₀ : f ⊚ g = TypeVec.id
h₁ : ∀ (u : F α), P u ↔ q (f <$$> u)
u : F β
h₂ : q u
⊢ q (f <$$> g <$$> u)
[PROOFSTEP]
simp only [MvFunctor.map_map, h₀, LawfulMvFunctor.id_map, h₂]
[GOAL]
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
x : F α
⊢ ∀ (u : F fun i => Subtype ((fun i x => ofRepeat (P i x)) i)),
(fun i => Subtype.val) <$$> u = x ↔ subtypeVal P <$$> toSubtype P <$$> u = x
[PROOFSTEP]
simp [MvFunctor.map_map]
[GOAL]
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
x y : F α
⊢ ∀ (u : F fun i => { p // (fun i x y => ofRepeat (R i (prod.mk i x y))) i p.fst p.snd }),
(fun i t => (↑t).fst) <$$> u = x ∧ (fun i t => (↑t).snd) <$$> u = y ↔
(prod.fst ⊚ subtypeVal R) <$$> toSubtype' R <$$> u = x ∧ (prod.snd ⊚ subtypeVal R) <$$> toSubtype' R <$$> u = y
[PROOFSTEP]
simp only [map_map, comp_assoc, subtypeVal_toSubtype']
[GOAL]
n : ℕ
α β γ : TypeVec n
F : TypeVec n → Type v
inst✝¹ : MvFunctor F
P : α ⟹ TypeVec.repeat n Prop
R : α ⊗ α ⟹ TypeVec.repeat n Prop
inst✝ : LawfulMvFunctor F
x y : F α
⊢ ∀ (u : F fun i => { p // (fun i x y => ofRepeat (R i (prod.mk i x y))) i p.fst p.snd }),
(fun i t => (↑t).fst) <$$> u = x ∧ (fun i t => (↑t).snd) <$$> u = y ↔
(prod.fst ⊚ fun i x => prod.mk i (↑x).fst (↑x).snd) <$$> u = x ∧
(prod.snd ⊚ fun i x => prod.mk i (↑x).fst (↑x).snd) <$$> u = y
[PROOFSTEP]
simp [comp]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α✝ : TypeVec n
β : Type u
pp : β → Prop
x✝ : ℕ
α : TypeVec x✝
i : Fin2 x✝
x : (fun i => { p_1 // ofRepeat (PredLast' α pp i p_1) }) (Fin2.fs i)
⊢ ofRepeat (PredLast' α pp (Fin2.fs i) ↑x) = PredLast α pp ↑x
[PROOFSTEP]
simp only [PredLast]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α✝ : TypeVec n
β : Type u
pp : β → Prop
x✝ : ℕ
α : TypeVec x✝
i : Fin2 x✝
x : (fun i => { p_1 // ofRepeat (PredLast' α pp i p_1) }) (Fin2.fs i)
⊢ ofRepeat (PredLast' α pp (Fin2.fs i) ↑x) = True
[PROOFSTEP]
erw [const_iff_true]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α✝ : TypeVec n
β : Type u
pp : β → Prop
x✝ : ℕ
α : TypeVec x✝
i : Fin2 x✝
x : (fun i => { p_1 // PredLast α pp p_1 }) (Fin2.fs i)
⊢ PredLast α pp ↑x = ofRepeat (PredLast' α pp (Fin2.fs i) ↑x)
[PROOFSTEP]
simp only [PredLast]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α✝ : TypeVec n
β : Type u
pp : β → Prop
x✝ : ℕ
α : TypeVec x✝
i : Fin2 x✝
x : (fun i => { p_1 // PredLast α pp p_1 }) (Fin2.fs i)
⊢ True = ofRepeat (PredLast' α pp (Fin2.fs i) ↑x)
[PROOFSTEP]
erw [const_iff_true]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x : F (α ::: β)
⊢ LiftP' (PredLast' α P) x ↔ LiftP (PredLast α P) x
[PROOFSTEP]
dsimp only [LiftP, LiftP']
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x : F (α ::: β)
⊢ (∃ u, (fun i => Subtype.val) <$$> u = x) ↔ ∃ u, (fun i => Subtype.val) <$$> u = x
[PROOFSTEP]
apply exists_iff_exists_of_mono F (f _ n α) (g _ n α)
[GOAL]
case h₀
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x : F (α ::: β)
⊢ MvFunctor.f P n α ⊚ MvFunctor.g P n α = TypeVec.id
[PROOFSTEP]
ext i ⟨x, _⟩
[GOAL]
case h₀.a.h.mk.a
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x✝ : F (α ::: β)
i : Fin2 (n + 1)
x : (α ::: β) i
property✝ : PredLast α P x
⊢ ↑((MvFunctor.f P n α ⊚ MvFunctor.g P n α) i { val := x, property := property✝ }) =
↑(TypeVec.id i { val := x, property := property✝ })
[PROOFSTEP]
cases i
[GOAL]
case h₀.a.h.mk.a.fz
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x✝ : F (α ::: β)
x : (α ::: β) Fin2.fz
property✝ : PredLast α P x
⊢ ↑((MvFunctor.f P n α ⊚ MvFunctor.g P n α) Fin2.fz { val := x, property := property✝ }) =
↑(TypeVec.id Fin2.fz { val := x, property := property✝ })
[PROOFSTEP]
rfl
[GOAL]
case h₀.a.h.mk.a.fs
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x✝ : F (α ::: β)
a✝ : Fin2 (Nat.add n 0)
x : (α ::: β) (Fin2.fs a✝)
property✝ : PredLast α P x
⊢ ↑((MvFunctor.f P n α ⊚ MvFunctor.g P n α) (Fin2.fs a✝) { val := x, property := property✝ }) =
↑(TypeVec.id (Fin2.fs a✝) { val := x, property := property✝ })
[PROOFSTEP]
rfl
[GOAL]
case h₁
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x : F (α ::: β)
⊢ ∀ (u : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) }),
(fun i => Subtype.val) <$$> u = x ↔ (fun i => Subtype.val) <$$> MvFunctor.f P n α <$$> u = x
[PROOFSTEP]
intros
[GOAL]
case h₁
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) }
⊢ (fun i => Subtype.val) <$$> u✝ = x ↔ (fun i => Subtype.val) <$$> MvFunctor.f P n α <$$> u✝ = x
[PROOFSTEP]
rw [MvFunctor.map_map]
[GOAL]
case h₁
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) }
⊢ (fun i => Subtype.val) <$$> u✝ = x ↔ ((fun i => Subtype.val) ⊚ MvFunctor.f P n α) <$$> u✝ = x
[PROOFSTEP]
dsimp [(· ⊚ ·)]
[GOAL]
case h₁
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) }
⊢ (fun i => Subtype.val) <$$> u✝ = x ↔ (fun i x => ↑(MvFunctor.f P n α i x)) <$$> u✝ = x
[PROOFSTEP]
suffices (fun i => Subtype.val) = (fun i x => (MvFunctor.f P n α i x).val) by rw [this];
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) }
this : (fun i => Subtype.val) = fun i x => ↑(MvFunctor.f P n α i x)
⊢ (fun i => Subtype.val) <$$> u✝ = x ↔ (fun i x => ↑(MvFunctor.f P n α i x)) <$$> u✝ = x
[PROOFSTEP]
rw [this]
[GOAL]
case h₁
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) }
⊢ (fun i => Subtype.val) = fun i x => ↑(MvFunctor.f P n α i x)
[PROOFSTEP]
ext i ⟨x, _⟩
[GOAL]
case h₁.h.h.mk
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x✝ : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) }
i : Fin2 (n + 1)
x : (α ::: β) i
property✝ : ofRepeat (PredLast' α P i x)
⊢ ↑{ val := x, property := property✝ } = ↑(MvFunctor.f P n α i { val := x, property := property✝ })
[PROOFSTEP]
cases i
[GOAL]
case h₁.h.h.mk.fz
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x✝ : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) }
x : (α ::: β) Fin2.fz
property✝ : ofRepeat (PredLast' α P Fin2.fz x)
⊢ ↑{ val := x, property := property✝ } = ↑(MvFunctor.f P n α Fin2.fz { val := x, property := property✝ })
[PROOFSTEP]
rfl
[GOAL]
case h₁.h.h.mk.fs
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β✝ : Type u
pp : β✝ → Prop
β : Type u
P : β → Prop
x✝ : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) }
a✝ : Fin2 (Nat.add n 0)
x : (α ::: β) (Fin2.fs a✝)
property✝ : ofRepeat (PredLast' α P (Fin2.fs a✝) x)
⊢ ↑{ val := x, property := property✝ } = ↑(MvFunctor.f P n α (Fin2.fs a✝) { val := x, property := property✝ })
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α✝ : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ : ℕ
α : TypeVec x✝
i : Fin2 x✝
x : (fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }) (Fin2.fs i)
⊢ ofRepeat (RelLast' α rr (Fin2.fs i) (prod.mk (Fin2.fs i) (↑x).fst (↑x).snd)) = RelLast α rr (↑x).fst (↑x).snd
[PROOFSTEP]
simp only [RelLast]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α✝ : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ : ℕ
α : TypeVec x✝
i : Fin2 x✝
x : (fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }) (Fin2.fs i)
⊢ ofRepeat (RelLast' α rr (Fin2.fs i) (prod.mk (Fin2.fs i) (↑x).fst (↑x).snd)) = ((↑x).fst = (↑x).snd)
[PROOFSTEP]
erw [repeatEq_iff_eq]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α✝ : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ : ℕ
α : TypeVec x✝
i : Fin2 x✝
x : (fun i => { p_1 // RelLast α rr p_1.fst p_1.snd }) (Fin2.fs i)
⊢ RelLast α rr (↑x).fst (↑x).snd = ofRepeat (RelLast' α rr (Fin2.fs i) (prod.mk (Fin2.fs i) (↑x).fst (↑x).snd))
[PROOFSTEP]
simp only [RelLast]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α✝ : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ : ℕ
α : TypeVec x✝
i : Fin2 x✝
x : (fun i => { p_1 // RelLast α rr p_1.fst p_1.snd }) (Fin2.fs i)
⊢ ((↑x).fst = (↑x).snd) = ofRepeat (RelLast' α rr (Fin2.fs i) (prod.mk (Fin2.fs i) (↑x).fst (↑x).snd))
[PROOFSTEP]
erw [repeatEq_iff_eq]
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
⊢ LiftR' (RelLast' α rr) x y ↔ LiftR (fun {i} => RelLast α rr) x y
[PROOFSTEP]
dsimp only [LiftR, LiftR']
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
⊢ (∃ u, (fun i t => (↑t).fst) <$$> u = x ∧ (fun i t => (↑t).snd) <$$> u = y) ↔
∃ u, (fun i t => (↑t).fst) <$$> u = x ∧ (fun i t => (↑t).snd) <$$> u = y
[PROOFSTEP]
apply exists_iff_exists_of_mono F (f' rr _ _) (g' rr _ _)
[GOAL]
case h₀
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
⊢ MvFunctor.f' rr n α ⊚ MvFunctor.g' rr n α = TypeVec.id
[PROOFSTEP]
ext i ⟨x, _⟩ : 2
[GOAL]
case h₀.a.h.mk
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ y : F (α ::: β)
i : Fin2 (n + 1)
x : (α ::: β) i × (α ::: β) i
property✝ : RelLast α rr x.fst x.snd
⊢ (MvFunctor.f' rr n α ⊚ MvFunctor.g' rr n α) i { val := x, property := property✝ } =
TypeVec.id i { val := x, property := property✝ }
[PROOFSTEP]
cases i
[GOAL]
case h₀.a.h.mk.fz
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ y : F (α ::: β)
x : (α ::: β) Fin2.fz × (α ::: β) Fin2.fz
property✝ : RelLast α rr x.fst x.snd
⊢ (MvFunctor.f' rr n α ⊚ MvFunctor.g' rr n α) Fin2.fz { val := x, property := property✝ } =
TypeVec.id Fin2.fz { val := x, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
case h₀.a.h.mk.fs
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ y : F (α ::: β)
a✝ : Fin2 (Nat.add n 0)
x : (α ::: β) (Fin2.fs a✝) × (α ::: β) (Fin2.fs a✝)
property✝ : RelLast α rr x.fst x.snd
⊢ (MvFunctor.f' rr n α ⊚ MvFunctor.g' rr n α) (Fin2.fs a✝) { val := x, property := property✝ } =
TypeVec.id (Fin2.fs a✝) { val := x, property := property✝ }
[PROOFSTEP]
rfl
[GOAL]
case h₁
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
⊢ ∀ (u : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }),
(fun i t => (↑t).fst) <$$> u = x ∧ (fun i t => (↑t).snd) <$$> u = y ↔
(fun i t => (↑t).fst) <$$> MvFunctor.f' rr n α <$$> u = x ∧
(fun i t => (↑t).snd) <$$> MvFunctor.f' rr n α <$$> u = y
[PROOFSTEP]
intros
[GOAL]
case h₁
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
⊢ (fun i t => (↑t).fst) <$$> u✝ = x ∧ (fun i t => (↑t).snd) <$$> u✝ = y ↔
(fun i t => (↑t).fst) <$$> MvFunctor.f' rr n α <$$> u✝ = x ∧
(fun i t => (↑t).snd) <$$> MvFunctor.f' rr n α <$$> u✝ = y
[PROOFSTEP]
simp [MvFunctor.map_map, (· ⊚ ·)]
-- porting note: proof was
-- rw [MvFunctor.map_map, MvFunctor.map_map, (· ⊚ ·), (· ⊚ ·)]
-- congr <;> ext i ⟨x, _⟩ <;> cases i <;> rfl
[GOAL]
case h₁
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
⊢ (fun i t => (↑t).fst) <$$> u✝ = x ∧ (fun i t => (↑t).snd) <$$> u✝ = y ↔
(fun i x => (↑(MvFunctor.f' rr n α i x)).fst) <$$> u✝ = x ∧
(fun i x => (↑(MvFunctor.f' rr n α i x)).snd) <$$> u✝ = y
[PROOFSTEP]
suffices
(fun i t => t.val.fst) = ((fun i x => (MvFunctor.f' rr n α i x).val.fst)) ∧
(fun i t => t.val.snd) = ((fun i x => (MvFunctor.f' rr n α i x).val.snd))
by
rcases this with ⟨left, right⟩
rw [left, right];
[GOAL]
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
this :
((fun i t => (↑t).fst) = fun i x => (↑(MvFunctor.f' rr n α i x)).fst) ∧
(fun i t => (↑t).snd) = fun i x => (↑(MvFunctor.f' rr n α i x)).snd
⊢ (fun i t => (↑t).fst) <$$> u✝ = x ∧ (fun i t => (↑t).snd) <$$> u✝ = y ↔
(fun i x => (↑(MvFunctor.f' rr n α i x)).fst) <$$> u✝ = x ∧
(fun i x => (↑(MvFunctor.f' rr n α i x)).snd) <$$> u✝ = y
[PROOFSTEP]
rcases this with ⟨left, right⟩
[GOAL]
case intro
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
left : (fun i t => (↑t).fst) = fun i x => (↑(MvFunctor.f' rr n α i x)).fst
right : (fun i t => (↑t).snd) = fun i x => (↑(MvFunctor.f' rr n α i x)).snd
⊢ (fun i t => (↑t).fst) <$$> u✝ = x ∧ (fun i t => (↑t).snd) <$$> u✝ = y ↔
(fun i x => (↑(MvFunctor.f' rr n α i x)).fst) <$$> u✝ = x ∧
(fun i x => (↑(MvFunctor.f' rr n α i x)).snd) <$$> u✝ = y
[PROOFSTEP]
rw [left, right]
[GOAL]
case h₁
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
⊢ ((fun i t => (↑t).fst) = fun i x => (↑(MvFunctor.f' rr n α i x)).fst) ∧
(fun i t => (↑t).snd) = fun i x => (↑(MvFunctor.f' rr n α i x)).snd
[PROOFSTEP]
constructor
[GOAL]
case h₁.left
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
⊢ (fun i t => (↑t).fst) = fun i x => (↑(MvFunctor.f' rr n α i x)).fst
[PROOFSTEP]
ext i ⟨x, _⟩
[GOAL]
case h₁.right
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
⊢ (fun i t => (↑t).snd) = fun i x => (↑(MvFunctor.f' rr n α i x)).snd
[PROOFSTEP]
ext i ⟨x, _⟩
[GOAL]
case h₁.left.h.h.mk
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
i : Fin2 (n + 1)
x : (α ::: β) i × (α ::: β) i
property✝ : ofRepeat (RelLast' α rr i (prod.mk i x.fst x.snd))
⊢ (↑{ val := x, property := property✝ }).fst = (↑(MvFunctor.f' rr n α i { val := x, property := property✝ })).fst
[PROOFSTEP]
cases i
[GOAL]
case h₁.right.h.h.mk
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
i : Fin2 (n + 1)
x : (α ::: β) i × (α ::: β) i
property✝ : ofRepeat (RelLast' α rr i (prod.mk i x.fst x.snd))
⊢ (↑{ val := x, property := property✝ }).snd = (↑(MvFunctor.f' rr n α i { val := x, property := property✝ })).snd
[PROOFSTEP]
cases i
[GOAL]
case h₁.left.h.h.mk.fz
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
x : (α ::: β) Fin2.fz × (α ::: β) Fin2.fz
property✝ : ofRepeat (RelLast' α rr Fin2.fz (prod.mk Fin2.fz x.fst x.snd))
⊢ (↑{ val := x, property := property✝ }).fst = (↑(MvFunctor.f' rr n α Fin2.fz { val := x, property := property✝ })).fst
[PROOFSTEP]
rfl
[GOAL]
case h₁.left.h.h.mk.fs
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
a✝ : Fin2 (Nat.add n 0)
x : (α ::: β) (Fin2.fs a✝) × (α ::: β) (Fin2.fs a✝)
property✝ : ofRepeat (RelLast' α rr (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x.fst x.snd))
⊢ (↑{ val := x, property := property✝ }).fst =
(↑(MvFunctor.f' rr n α (Fin2.fs a✝) { val := x, property := property✝ })).fst
[PROOFSTEP]
rfl
[GOAL]
case h₁.right.h.h.mk.fz
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
x : (α ::: β) Fin2.fz × (α ::: β) Fin2.fz
property✝ : ofRepeat (RelLast' α rr Fin2.fz (prod.mk Fin2.fz x.fst x.snd))
⊢ (↑{ val := x, property := property✝ }).snd = (↑(MvFunctor.f' rr n α Fin2.fz { val := x, property := property✝ })).snd
[PROOFSTEP]
rfl
[GOAL]
case h₁.right.h.h.mk.fs
n : ℕ
F : TypeVec (n + 1) → Type u_1
inst✝¹ : MvFunctor F
inst✝ : LawfulMvFunctor F
α : TypeVec n
β : Type u
pp : β → Prop
rr : β → β → Prop
x✝ y : F (α ::: β)
u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }
a✝ : Fin2 (Nat.add n 0)
x : (α ::: β) (Fin2.fs a✝) × (α ::: β) (Fin2.fs a✝)
property✝ : ofRepeat (RelLast' α rr (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x.fst x.snd))
⊢ (↑{ val := x, property := property✝ }).snd =
(↑(MvFunctor.f' rr n α (Fin2.fs a✝) { val := x, property := property✝ })).snd
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Control.Functor.Multivariate", "llama_tokens": 12408} |
[GOAL]
M : Type u → Type v
inst✝² : Monad M
ω α β : Type u
inst✝¹ : Monoid ω
inst✝ : LawfulMonad M
⊢ ∀ {α : Type u} (x : WriterT ω M α), id <$> x = x
[PROOFSTEP]
intros
[GOAL]
M : Type u → Type v
inst✝² : Monad M
ω α β : Type u
inst✝¹ : Monoid ω
inst✝ : LawfulMonad M
α✝ : Type u
x✝ : WriterT ω M α✝
⊢ id <$> x✝ = x✝
[PROOFSTEP]
simp [Functor.map, WriterT.mk]
[GOAL]
M : Type u → Type v
inst✝² : Monad M
ω α β : Type u
inst✝¹ : Monoid ω
inst✝ : LawfulMonad M
⊢ ∀ {α β : Type u} (x : α) (f : α → WriterT ω M β), pure x >>= f = f x
[PROOFSTEP]
intros
[GOAL]
M : Type u → Type v
inst✝² : Monad M
ω α β : Type u
inst✝¹ : Monoid ω
inst✝ : LawfulMonad M
α✝ β✝ : Type u
x✝ : α✝
f✝ : α✝ → WriterT ω M β✝
⊢ pure x✝ >>= f✝ = f✝ x✝
[PROOFSTEP]
simp [Bind.bind, Pure.pure, WriterT.mk]
[GOAL]
M : Type u → Type v
inst✝² : Monad M
ω α β : Type u
inst✝¹ : Monoid ω
inst✝ : LawfulMonad M
⊢ ∀ {α β γ : Type u} (x : WriterT ω M α) (f : α → WriterT ω M β) (g : β → WriterT ω M γ),
x >>= f >>= g = x >>= fun x => f x >>= g
[PROOFSTEP]
intros
[GOAL]
M : Type u → Type v
inst✝² : Monad M
ω α β : Type u
inst✝¹ : Monoid ω
inst✝ : LawfulMonad M
α✝ β✝ γ✝ : Type u
x✝ : WriterT ω M α✝
f✝ : α✝ → WriterT ω M β✝
g✝ : β✝ → WriterT ω M γ✝
⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝
[PROOFSTEP]
simp [Bind.bind, mul_assoc, WriterT.mk, ← bind_pure_comp]
[GOAL]
M : Type u → Type v
inst✝² : Monad M
ω α β : Type u
inst✝¹ : Monoid ω
inst✝ : LawfulMonad M
⊢ ∀ {α β : Type u} (f : α → β) (x : WriterT ω M α),
(do
let y ← x
pure (f y)) =
f <$> x
[PROOFSTEP]
intros
[GOAL]
M : Type u → Type v
inst✝² : Monad M
ω α β : Type u
inst✝¹ : Monoid ω
inst✝ : LawfulMonad M
α✝ β✝ : Type u
f✝ : α✝ → β✝
x✝ : WriterT ω M α✝
⊢ (do
let y ← x✝
pure (f✝ y)) =
f✝ <$> x✝
[PROOFSTEP]
simp [Bind.bind, Functor.map, Pure.pure, WriterT.mk, bind_pure_comp]
| {"mathlib_filename": "Mathlib.Control.Monad.Writer", "llama_tokens": 1088} |
[GOAL]
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
x : Option α
⊢ Option.traverse pure x = x
[PROOFSTEP]
cases x
[GOAL]
case none
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
⊢ Option.traverse pure none = none
[PROOFSTEP]
rfl
[GOAL]
case some
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
val✝ : α
⊢ Option.traverse pure (some val✝) = some val✝
[PROOFSTEP]
rfl
[GOAL]
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
f : β → F γ
g : α → G β
x : Option α
⊢ Option.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) x = Comp.mk (Option.traverse f <$> Option.traverse g x)
[PROOFSTEP]
cases x
[GOAL]
case none
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
f : β → F γ
g : α → G β
⊢ Option.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) none =
Comp.mk (Option.traverse f <$> Option.traverse g none)
[PROOFSTEP]
simp! [functor_norm]
[GOAL]
case some
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
f : β → F γ
g : α → G β
val✝ : α
⊢ Option.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) (some val✝) =
Comp.mk (Option.traverse f <$> Option.traverse g (some val✝))
[PROOFSTEP]
simp! [functor_norm]
[GOAL]
case none
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
f : β → F γ
g : α → G β
⊢ pure none = Comp.mk (pure (pure none))
[PROOFSTEP]
rfl
[GOAL]
case some
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
f : β → F γ
g : α → G β
val✝ : α
⊢ Comp.mk (((fun x => some <$> x) ∘ f) <$> g val✝) = Comp.mk ((Option.traverse f ∘ some) <$> g val✝)
[PROOFSTEP]
rfl
[GOAL]
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u_1
f : α → β
x : Option α
⊢ Option.traverse (pure ∘ f) x = pure (f <$> x)
[PROOFSTEP]
cases x
[GOAL]
case none
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u_1
f : α → β
⊢ Option.traverse (pure ∘ f) none = pure (f <$> none)
[PROOFSTEP]
rfl
[GOAL]
case some
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u_1
f : α → β
val✝ : α
⊢ Option.traverse (pure ∘ f) (some val✝) = pure (f <$> some val✝)
[PROOFSTEP]
rfl
[GOAL]
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α : Type u_1
β : Type u
f : α → F β
x : Option α
⊢ (fun {α} => ApplicativeTransformation.app η α) (Option.traverse f x) =
Option.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x
[PROOFSTEP]
cases' x with x
[GOAL]
case none
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α : Type u_1
β : Type u
f : α → F β
⊢ (fun {α} => ApplicativeTransformation.app η α) (Option.traverse f none) =
Option.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) none
[PROOFSTEP]
simp! [*, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq,
ApplicativeTransformation.preserves_pure]
[GOAL]
case some
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α : Type u_1
β : Type u
f : α → F β
x : α
⊢ (fun {α} => ApplicativeTransformation.app η α) (Option.traverse f (some x)) =
Option.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (some x)
[PROOFSTEP]
simp! [*, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq,
ApplicativeTransformation.preserves_pure]
[GOAL]
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
xs : List α
⊢ List.traverse pure xs = xs
[PROOFSTEP]
induction xs
[GOAL]
case nil
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
⊢ List.traverse pure [] = []
[PROOFSTEP]
simp! [*, List.traverse, functor_norm]
[GOAL]
case cons
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
head✝ : α
tail✝ : List α
tail_ih✝ : List.traverse pure tail✝ = tail✝
⊢ List.traverse pure (head✝ :: tail✝) = head✝ :: tail✝
[PROOFSTEP]
simp! [*, List.traverse, functor_norm]
[GOAL]
case cons
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
head✝ : α
tail✝ : List α
tail_ih✝ : List.traverse pure tail✝ = tail✝
⊢ (Seq.seq (cons head✝) fun x => tail✝) = head✝ :: tail✝
[PROOFSTEP]
rfl
[GOAL]
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
f : β → F γ
g : α → G β
x : List α
⊢ List.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) x = Comp.mk (List.traverse f <$> List.traverse g x)
[PROOFSTEP]
induction x
[GOAL]
case nil
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
f : β → F γ
g : α → G β
⊢ List.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) [] = Comp.mk (List.traverse f <$> List.traverse g [])
[PROOFSTEP]
simp! [*, functor_norm]
[GOAL]
case cons
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
f : β → F γ
g : α → G β
head✝ : α
tail✝ : List α
tail_ih✝ :
List.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) tail✝ = Comp.mk (List.traverse f <$> List.traverse g tail✝)
⊢ List.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) (head✝ :: tail✝) =
Comp.mk (List.traverse f <$> List.traverse g (head✝ :: tail✝))
[PROOFSTEP]
simp! [*, functor_norm]
[GOAL]
case nil
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
f : β → F γ
g : α → G β
⊢ pure [] = Comp.mk (pure (pure []))
[PROOFSTEP]
rfl
[GOAL]
case cons
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
f : β → F γ
g : α → G β
head✝ : α
tail✝ : List α
tail_ih✝ :
List.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) tail✝ = Comp.mk (List.traverse f <$> List.traverse g tail✝)
⊢ Comp.mk
(Seq.seq
(((fun x => x ∘ List.traverse f) ∘ (fun x x_1 => Seq.seq x fun x => x_1) ∘ (fun x => cons <$> x) ∘ f) <$>
g head✝)
fun x => List.traverse g tail✝) =
Comp.mk (Seq.seq (((fun x => List.traverse f ∘ x) ∘ cons) <$> g head✝) fun x => List.traverse g tail✝)
[PROOFSTEP]
rfl
[GOAL]
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u_1
f : α → β
x : List α
⊢ List.traverse (pure ∘ f) x = pure (f <$> x)
[PROOFSTEP]
induction x
[GOAL]
case nil
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u_1
f : α → β
⊢ List.traverse (pure ∘ f) [] = pure (f <$> [])
[PROOFSTEP]
simp! [*, functor_norm]
[GOAL]
case cons
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u_1
f : α → β
head✝ : α
tail✝ : List α
tail_ih✝ : List.traverse (pure ∘ f) tail✝ = pure (f <$> tail✝)
⊢ List.traverse (pure ∘ f) (head✝ :: tail✝) = pure (f <$> (head✝ :: tail✝))
[PROOFSTEP]
simp! [*, functor_norm]
[GOAL]
case cons
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u_1
f : α → β
head✝ : α
tail✝ : List α
tail_ih✝ : List.traverse (pure ∘ f) tail✝ = pure (f <$> tail✝)
⊢ (Seq.seq (cons (f head✝)) fun x => map f tail✝) = f head✝ :: map f tail✝
[PROOFSTEP]
rfl
[GOAL]
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α : Type u_1
β : Type u
f : α → F β
x : List α
⊢ (fun {α} => ApplicativeTransformation.app η α) (List.traverse f x) =
List.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x
[PROOFSTEP]
induction x
[GOAL]
case nil
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α : Type u_1
β : Type u
f : α → F β
⊢ (fun {α} => ApplicativeTransformation.app η α) (List.traverse f []) =
List.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) []
[PROOFSTEP]
simp! [*, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq,
ApplicativeTransformation.preserves_pure]
[GOAL]
case cons
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α : Type u_1
β : Type u
f : α → F β
head✝ : α
tail✝ : List α
tail_ih✝ :
(fun {α} => ApplicativeTransformation.app η α) (List.traverse f tail✝) =
List.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) tail✝
⊢ (fun {α} => ApplicativeTransformation.app η α) (List.traverse f (head✝ :: tail✝)) =
List.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (head✝ :: tail✝)
[PROOFSTEP]
simp! [*, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq,
ApplicativeTransformation.preserves_pure]
[GOAL]
F G : Type u → Type u
inst✝² : Applicative F
inst✝¹ : Applicative G
α' β' : Type u
f : α' → F β'
inst✝ : LawfulApplicative F
bs : List α'
⊢ traverse f ([] ++ bs) = Seq.seq ((fun x x_1 => x ++ x_1) <$> traverse f []) fun x => traverse f bs
[PROOFSTEP]
simp [functor_norm]
[GOAL]
F G : Type u → Type u
inst✝² : Applicative F
inst✝¹ : Applicative G
α' β' : Type u
f : α' → F β'
inst✝ : LawfulApplicative F
a : α'
as bs : List α'
⊢ traverse f (a :: as ++ bs) = Seq.seq ((fun x x_1 => x ++ x_1) <$> traverse f (a :: as)) fun x => traverse f bs
[PROOFSTEP]
simp [traverse_append as bs, functor_norm]
[GOAL]
F G : Type u → Type u
inst✝² : Applicative F
inst✝¹ : Applicative G
α' β' : Type u
f : α' → F β'
inst✝ : LawfulApplicative F
a : α'
as bs : List α'
⊢ (Seq.seq
(Seq.seq (((fun x => x ∘ fun x x_1 => x ++ x_1) ∘ Function.comp ∘ fun x x_1 => x :: x_1) <$> f a) fun x =>
traverse f as)
fun x => traverse f bs) =
Seq.seq (Seq.seq (((fun x => (fun x x_1 => x ++ x_1) ∘ x) ∘ fun x x_1 => x :: x_1) <$> f a) fun x => traverse f as)
fun x => traverse f bs
[PROOFSTEP]
congr
[GOAL]
F G : Type u → Type u
inst✝² : Applicative F
inst✝¹ : Applicative G
α' β' : Type u
f✝ : α' → F β'
inst✝ : LawfulApplicative F
f : α' → Set β'
⊢ [] ∈ traverse f [] ↔ Forall₂ (fun b a => b ∈ f a) [] []
[PROOFSTEP]
simp
[GOAL]
F G : Type u → Type u
inst✝² : Applicative F
inst✝¹ : Applicative G
α' β' : Type u
f✝ : α' → F β'
inst✝ : LawfulApplicative F
f : α' → Set β'
a : α'
as : List α'
⊢ [] ∈ traverse f (a :: as) ↔ Forall₂ (fun b a => b ∈ f a) [] (a :: as)
[PROOFSTEP]
simp
[GOAL]
F G : Type u → Type u
inst✝² : Applicative F
inst✝¹ : Applicative G
α' β' : Type u
f✝ : α' → F β'
inst✝ : LawfulApplicative F
f : α' → Set β'
b : β'
bs : List β'
⊢ b :: bs ∈ traverse f [] ↔ Forall₂ (fun b a => b ∈ f a) (b :: bs) []
[PROOFSTEP]
simp
[GOAL]
F G : Type u → Type u
inst✝² : Applicative F
inst✝¹ : Applicative G
α' β' : Type u
f✝ : α' → F β'
inst✝ : LawfulApplicative F
f : α' → Set β'
a : α'
as : List α'
b : β'
bs : List β'
⊢ b :: bs ∈ traverse f (a :: as) ↔ Forall₂ (fun b a => b ∈ f a) (b :: bs) (a :: as)
[PROOFSTEP]
simp [mem_traverse as bs]
[GOAL]
σ : Type u
F G : Type u → Type u
inst✝¹ : Applicative F
inst✝ : Applicative G
α β γ : Type u
g : α → β
f : β → G γ
x : σ ⊕ α
⊢ Sum.traverse f (g <$> x) = Sum.traverse (f ∘ g) x
[PROOFSTEP]
cases x
[GOAL]
case inl
σ : Type u
F G : Type u → Type u
inst✝¹ : Applicative F
inst✝ : Applicative G
α β γ : Type u
g : α → β
f : β → G γ
val✝ : σ
⊢ Sum.traverse f (g <$> inl val✝) = Sum.traverse (f ∘ g) (inl val✝)
[PROOFSTEP]
simp [Sum.traverse, id_map, functor_norm]
[GOAL]
case inr
σ : Type u
F G : Type u → Type u
inst✝¹ : Applicative F
inst✝ : Applicative G
α β γ : Type u
g : α → β
f : β → G γ
val✝ : α
⊢ Sum.traverse f (g <$> inr val✝) = Sum.traverse (f ∘ g) (inr val✝)
[PROOFSTEP]
simp [Sum.traverse, id_map, functor_norm]
[GOAL]
case inl
σ : Type u
F G : Type u → Type u
inst✝¹ : Applicative F
inst✝ : Applicative G
α β γ : Type u
g : α → β
f : β → G γ
val✝ : σ
⊢ (match g <$> inl val✝ with
| inl x => pure (inl x)
| inr x => inr <$> f x) =
pure (inl val✝)
[PROOFSTEP]
rfl
[GOAL]
case inr
σ : Type u
F G : Type u → Type u
inst✝¹ : Applicative F
inst✝ : Applicative G
α β γ : Type u
g : α → β
f : β → G γ
val✝ : α
⊢ (match g <$> inr val✝ with
| inl x => pure (inl x)
| inr x => inr <$> f x) =
inr <$> f (g val✝)
[PROOFSTEP]
rfl
[GOAL]
σ✝ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
σ α : Type u_1
x : σ ⊕ α
⊢ Sum.traverse pure x = x
[PROOFSTEP]
cases x
[GOAL]
case inl
σ✝ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
σ α : Type u_1
val✝ : σ
⊢ Sum.traverse pure (inl val✝) = inl val✝
[PROOFSTEP]
rfl
[GOAL]
case inr
σ✝ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
σ α : Type u_1
val✝ : α
⊢ Sum.traverse pure (inr val✝) = inr val✝
[PROOFSTEP]
rfl
[GOAL]
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type u
f : β → F γ
g : α → G β
x : σ ⊕ α
⊢ Sum.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) x = Comp.mk (Sum.traverse f <$> Sum.traverse g x)
[PROOFSTEP]
cases x
[GOAL]
case inl
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type u
f : β → F γ
g : α → G β
val✝ : σ
⊢ Sum.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) (inl val✝) =
Comp.mk (Sum.traverse f <$> Sum.traverse g (inl val✝))
[PROOFSTEP]
simp! [Sum.traverse, map_id, functor_norm]
[GOAL]
case inr
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type u
f : β → F γ
g : α → G β
val✝ : α
⊢ Sum.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) (inr val✝) =
Comp.mk (Sum.traverse f <$> Sum.traverse g (inr val✝))
[PROOFSTEP]
simp! [Sum.traverse, map_id, functor_norm]
[GOAL]
case inl
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type u
f : β → F γ
g : α → G β
val✝ : σ
⊢ pure (inl val✝) = Comp.mk (pure (pure (inl val✝)))
[PROOFSTEP]
rfl
[GOAL]
case inr
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β γ : Type u
f : β → F γ
g : α → G β
val✝ : α
⊢ Comp.mk (((fun x => inr <$> x) ∘ f) <$> g val✝) = Comp.mk ((Sum.traverse f ∘ inr) <$> g val✝)
[PROOFSTEP]
rfl
[GOAL]
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u
f : α → β
x : σ ⊕ α
⊢ Sum.traverse (pure ∘ f) x = pure (f <$> x)
[PROOFSTEP]
induction x
[GOAL]
case inl
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u
f : α → β
val✝ : σ
⊢ Sum.traverse (pure ∘ f) (inl val✝) = pure (f <$> inl val✝)
[PROOFSTEP]
simp! [*, functor_norm]
[GOAL]
case inr
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u
f : α → β
val✝ : α
⊢ Sum.traverse (pure ∘ f) (inr val✝) = pure (f <$> inr val✝)
[PROOFSTEP]
simp! [*, functor_norm]
[GOAL]
case inl
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u
f : α → β
val✝ : σ
⊢ inl val✝ = f <$> inl val✝
[PROOFSTEP]
rfl
[GOAL]
case inr
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α β : Type u
f : α → β
val✝ : α
⊢ inr (f val✝) = f <$> inr val✝
[PROOFSTEP]
rfl
[GOAL]
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
g : α → G β
f : β → γ
x : σ ⊕ α
⊢ (fun x x_1 => x <$> x_1) f <$> Sum.traverse g x = Sum.traverse ((fun x x_1 => x <$> x_1) f ∘ g) x
[PROOFSTEP]
cases x
[GOAL]
case inl
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
g : α → G β
f : β → γ
val✝ : σ
⊢ (fun x x_1 => x <$> x_1) f <$> Sum.traverse g (inl val✝) = Sum.traverse ((fun x x_1 => x <$> x_1) f ∘ g) (inl val✝)
[PROOFSTEP]
simp [Sum.traverse, id_map, functor_norm]
[GOAL]
case inr
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
g : α → G β
f : β → γ
val✝ : α
⊢ (fun x x_1 => x <$> x_1) f <$> Sum.traverse g (inr val✝) = Sum.traverse ((fun x x_1 => x <$> x_1) f ∘ g) (inr val✝)
[PROOFSTEP]
simp [Sum.traverse, id_map, functor_norm]
[GOAL]
case inl
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
g : α → G β
f : β → γ
val✝ : σ
⊢ pure (f <$> inl val✝) = pure (inl val✝)
[PROOFSTEP]
congr
[GOAL]
case inr
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
α : Type u_1
β γ : Type u
g : α → G β
f : β → γ
val✝ : α
⊢ ((fun x => f <$> x) ∘ inr) <$> g val✝ = (inr ∘ f) <$> g val✝
[PROOFSTEP]
congr
[GOAL]
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α : Type u_1
β : Type u
f : α → F β
x : σ ⊕ α
⊢ (fun {α} => ApplicativeTransformation.app η α) (Sum.traverse f x) =
Sum.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x
[PROOFSTEP]
cases x
[GOAL]
case inl
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α : Type u_1
β : Type u
f : α → F β
val✝ : σ
⊢ (fun {α} => ApplicativeTransformation.app η α) (Sum.traverse f (inl val✝)) =
Sum.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (inl val✝)
[PROOFSTEP]
simp! [Sum.traverse, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq,
ApplicativeTransformation.preserves_pure]
[GOAL]
case inr
σ : Type u
F G : Type u → Type u
inst✝³ : Applicative F
inst✝² : Applicative G
inst✝¹ : LawfulApplicative F
inst✝ : LawfulApplicative G
η : ApplicativeTransformation F G
α : Type u_1
β : Type u
f : α → F β
val✝ : α
⊢ (fun {α} => ApplicativeTransformation.app η α) (Sum.traverse f (inr val✝)) =
Sum.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (inr val✝)
[PROOFSTEP]
simp! [Sum.traverse, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq,
ApplicativeTransformation.preserves_pure]
| {"mathlib_filename": "Mathlib.Control.Traversable.Instances", "llama_tokens": 9933} |
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hn : IsPeriodicPt f n x
hm : IsPeriodicPt f m x
⊢ IsPeriodicPt f (n + m) x
[PROOFSTEP]
rw [IsPeriodicPt, iterate_add]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hn : IsPeriodicPt f n x
hm : IsPeriodicPt f m x
⊢ IsFixedPt (f^[n] ∘ f^[m]) x
[PROOFSTEP]
exact hn.comp hm
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hn : IsPeriodicPt f (n + m) x
hm : IsPeriodicPt f m x
⊢ IsPeriodicPt f n x
[PROOFSTEP]
rw [IsPeriodicPt, iterate_add] at hn
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hn : IsFixedPt (f^[n] ∘ f^[m]) x
hm : IsPeriodicPt f m x
⊢ IsPeriodicPt f n x
[PROOFSTEP]
exact hn.left_of_comp hm
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hn : IsPeriodicPt f (n + m) x
hm : IsPeriodicPt f n x
⊢ IsPeriodicPt f m x
[PROOFSTEP]
rw [add_comm] at hn
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hn : IsPeriodicPt f (m + n) x
hm : IsPeriodicPt f n x
⊢ IsPeriodicPt f m x
[PROOFSTEP]
exact hn.left_of_add hm
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m x
hn : IsPeriodicPt f n x
⊢ IsPeriodicPt f (m - n) x
[PROOFSTEP]
cases' le_total n m with h h
[GOAL]
case inl
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m x
hn : IsPeriodicPt f n x
h : n ≤ m
⊢ IsPeriodicPt f (m - n) x
[PROOFSTEP]
refine' left_of_add _ hn
[GOAL]
case inl
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m x
hn : IsPeriodicPt f n x
h : n ≤ m
⊢ IsPeriodicPt f (m - n + n) x
[PROOFSTEP]
rwa [tsub_add_cancel_of_le h]
[GOAL]
case inr
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m x
hn : IsPeriodicPt f n x
h : m ≤ n
⊢ IsPeriodicPt f (m - n) x
[PROOFSTEP]
rw [tsub_eq_zero_iff_le.mpr h]
[GOAL]
case inr
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m x
hn : IsPeriodicPt f n x
h : m ≤ n
⊢ IsPeriodicPt f 0 x
[PROOFSTEP]
apply isPeriodicPt_zero
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n✝ : ℕ
hm : IsPeriodicPt f m x
n : ℕ
⊢ IsPeriodicPt f (m * n) x
[PROOFSTEP]
simp only [IsPeriodicPt, iterate_mul, hm.isFixedPt.iterate n]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n✝ : ℕ
hm : IsPeriodicPt f m x
n : ℕ
⊢ IsPeriodicPt f (n * m) x
[PROOFSTEP]
simp only [mul_comm n, hm.mul_const n]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n : ℕ
hf : IsPeriodicPt f n x
m : ℕ
⊢ IsPeriodicPt f^[m] n x
[PROOFSTEP]
rw [IsPeriodicPt, ← iterate_mul, mul_comm, iterate_mul]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n : ℕ
hf : IsPeriodicPt f n x
m : ℕ
⊢ IsFixedPt f^[n]^[m] x
[PROOFSTEP]
exact hf.isFixedPt.iterate m
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
g : α → α
hco : Function.Commute f g
hf : IsPeriodicPt f n x
hg : IsPeriodicPt g n x
⊢ IsPeriodicPt (f ∘ g) n x
[PROOFSTEP]
rw [IsPeriodicPt, hco.comp_iterate]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
g : α → α
hco : Function.Commute f g
hf : IsPeriodicPt f n x
hg : IsPeriodicPt g n x
⊢ IsFixedPt (f^[n] ∘ g^[n]) x
[PROOFSTEP]
exact IsFixedPt.comp hf hg
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
g : α → α
hco : Function.Commute f g
hfg : IsPeriodicPt (f ∘ g) n x
hg : IsPeriodicPt g n x
⊢ IsPeriodicPt f n x
[PROOFSTEP]
rw [IsPeriodicPt, hco.comp_iterate] at hfg
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
g : α → α
hco : Function.Commute f g
hfg : IsFixedPt (f^[n] ∘ g^[n]) x
hg : IsPeriodicPt g n x
⊢ IsPeriodicPt f n x
[PROOFSTEP]
exact hfg.left_of_comp hg
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n : ℕ
h : IsPeriodicPt f n x
m : ℕ
⊢ f^[m % n] x = f^[m] x
[PROOFSTEP]
conv_rhs => rw [← Nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n : ℕ
h : IsPeriodicPt f n x
m : ℕ
| f^[m] x
[PROOFSTEP]
rw [← Nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n : ℕ
h : IsPeriodicPt f n x
m : ℕ
| f^[m] x
[PROOFSTEP]
rw [← Nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n : ℕ
h : IsPeriodicPt f n x
m : ℕ
| f^[m] x
[PROOFSTEP]
rw [← Nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m x
hn : IsPeriodicPt f n x
⊢ IsPeriodicPt f (Nat.gcd m n) x
[PROOFSTEP]
revert hm hn
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ IsPeriodicPt f m x → IsPeriodicPt f n x → IsPeriodicPt f (Nat.gcd m n) x
[PROOFSTEP]
refine' Nat.gcd.induction m n (fun n _ hn => _) fun m n _ ih hm hn => _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n✝ n : ℕ
x✝ : IsPeriodicPt f 0 x
hn : IsPeriodicPt f n x
⊢ IsPeriodicPt f (Nat.gcd 0 n) x
[PROOFSTEP]
rwa [Nat.gcd_zero_left]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n✝ m n : ℕ
x✝ : 0 < m
ih : IsPeriodicPt f (n % m) x → IsPeriodicPt f m x → IsPeriodicPt f (Nat.gcd (n % m) m) x
hm : IsPeriodicPt f m x
hn : IsPeriodicPt f n x
⊢ IsPeriodicPt f (Nat.gcd m n) x
[PROOFSTEP]
rw [Nat.gcd_rec]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n✝ m n : ℕ
x✝ : 0 < m
ih : IsPeriodicPt f (n % m) x → IsPeriodicPt f m x → IsPeriodicPt f (Nat.gcd (n % m) m) x
hm : IsPeriodicPt f m x
hn : IsPeriodicPt f n x
⊢ IsPeriodicPt f (Nat.gcd (n % m) m) x
[PROOFSTEP]
exact ih (hn.mod hm) hm
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hx : IsPeriodicPt f n x
hy : IsPeriodicPt f n y
hn : 0 < n
h : f x = f y
⊢ x = y
[PROOFSTEP]
rw [← hx.eq, ← hy.eq, ← iterate_pred_comp_of_pos f hn, comp_apply, comp_apply, h]
[GOAL]
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n✝ : ℕ
f : α → α
n : ℕ
hn : 0 < n
x : α
hx : x ∈ ptsOfPeriod f n
⊢ f (f^[Nat.pred n] x) = x
[PROOFSTEP]
rw [← comp_apply (f := f), comp_iterate_pred_of_pos f hn, hx.eq]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hx : x ∈ periodicPts f
hm : IsPeriodicPt f m (f^[n] x)
⊢ IsPeriodicPt f m x
[PROOFSTEP]
rcases hx with ⟨r, hr, hr'⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m (f^[n] x)
r : ℕ
hr : r > 0
hr' : IsPeriodicPt f r x
⊢ IsPeriodicPt f m x
[PROOFSTEP]
suffices n ≤ (n / r + 1) * r by
-- porting note: convert used to unfold IsPeriodicPt
change _ = _
convert (hm.apply_iterate ((n / r + 1) * r - n)).eq <;>
rw [← iterate_add_apply, Nat.sub_add_cancel this, iterate_mul, (hr'.iterate _).eq]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m (f^[n] x)
r : ℕ
hr : r > 0
hr' : IsPeriodicPt f r x
this : n ≤ (n / r + 1) * r
⊢ IsPeriodicPt f m x
[PROOFSTEP]
change _ = _
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m (f^[n] x)
r : ℕ
hr : r > 0
hr' : IsPeriodicPt f r x
this : n ≤ (n / r + 1) * r
⊢ f^[m] x = x
[PROOFSTEP]
convert (hm.apply_iterate ((n / r + 1) * r - n)).eq
[GOAL]
case h.e'_2.h.e'_4
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m (f^[n] x)
r : ℕ
hr : r > 0
hr' : IsPeriodicPt f r x
this : n ≤ (n / r + 1) * r
⊢ x = f^[(n / r + 1) * r - n] (f^[n] x)
[PROOFSTEP]
rw [← iterate_add_apply, Nat.sub_add_cancel this, iterate_mul, (hr'.iterate _).eq]
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m (f^[n] x)
r : ℕ
hr : r > 0
hr' : IsPeriodicPt f r x
this : n ≤ (n / r + 1) * r
⊢ x = f^[(n / r + 1) * r - n] (f^[n] x)
[PROOFSTEP]
rw [← iterate_add_apply, Nat.sub_add_cancel this, iterate_mul, (hr'.iterate _).eq]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m (f^[n] x)
r : ℕ
hr : r > 0
hr' : IsPeriodicPt f r x
⊢ n ≤ (n / r + 1) * r
[PROOFSTEP]
rw [add_mul, one_mul]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hm : IsPeriodicPt f m (f^[n] x)
r : ℕ
hr : r > 0
hr' : IsPeriodicPt f r x
⊢ n ≤ n / r * r + r
[PROOFSTEP]
exact (Nat.lt_div_mul_add hr).le
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
x : α
⊢ x ∈ ⋃ (n : ℕ) (_ : n > 0), ptsOfPeriod f n ↔ x ∈ periodicPts f
[PROOFSTEP]
simp [mem_periodicPts]
[GOAL]
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
f : α → α
x : α
⊢ IsPeriodicPt f (minimalPeriod f x) x
[PROOFSTEP]
delta minimalPeriod
[GOAL]
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
f : α → α
x : α
⊢ IsPeriodicPt f (if h : x ∈ periodicPts f then Nat.find h else 0) x
[PROOFSTEP]
split_ifs with hx
[GOAL]
case pos
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
f : α → α
x : α
hx : x ∈ periodicPts f
⊢ IsPeriodicPt f (Nat.find hx) x
[PROOFSTEP]
exact (Nat.find_spec hx).2
[GOAL]
case neg
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
f : α → α
x : α
hx : ¬x ∈ periodicPts f
⊢ IsPeriodicPt f 0 x
[PROOFSTEP]
exact isPeriodicPt_zero f x
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ f^[n + minimalPeriod f x] x = f^[n] x
[PROOFSTEP]
rw [iterate_add_apply]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ f^[n] (f^[minimalPeriod f x] x) = f^[n] x
[PROOFSTEP]
congr
[GOAL]
case e_a
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ f^[minimalPeriod f x] x = x
[PROOFSTEP]
exact isPeriodicPt_minimalPeriod f x
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hx : x ∈ periodicPts f
⊢ 0 < minimalPeriod f x
[PROOFSTEP]
simp only [minimalPeriod, dif_pos hx, (Nat.find_spec hx).1.lt]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hx : ¬x ∈ periodicPts f
⊢ minimalPeriod f x = 0
[PROOFSTEP]
simp only [minimalPeriod, dif_neg hx]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : ¬x ∈ periodicPts f
⊢ ¬0 < minimalPeriod f x
[PROOFSTEP]
simp only [minimalPeriod, dif_neg h, lt_irrefl 0, not_false_iff]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ minimalPeriod f x = 0 ↔ ¬x ∈ periodicPts f
[PROOFSTEP]
rw [← minimalPeriod_pos_iff_mem_periodicPts, not_lt, nonpos_iff_eq_zero]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hn : 0 < n
hx : IsPeriodicPt f n x
⊢ minimalPeriod f x ≤ n
[PROOFSTEP]
rw [minimalPeriod, dif_pos (mk_mem_periodicPts hn hx)]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hn : 0 < n
hx : IsPeriodicPt f n x
⊢ Nat.find (_ : x ∈ periodicPts f) ≤ n
[PROOFSTEP]
exact Nat.find_min' (mk_mem_periodicPts hn hx) ⟨hn, hx⟩
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n✝ : ℕ
hx : x ∈ periodicPts f
n : ℕ
⊢ minimalPeriod f (f^[n] x) = minimalPeriod f x
[PROOFSTEP]
apply
(IsPeriodicPt.minimalPeriod_le (minimalPeriod_pos_of_mem_periodicPts hx) _).antisymm
((isPeriodicPt_of_mem_periodicPts_of_isPeriodicPt_iterate hx (isPeriodicPt_minimalPeriod f _)).minimalPeriod_le
(minimalPeriod_pos_of_mem_periodicPts _))
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n✝ : ℕ
hx : x ∈ periodicPts f
n : ℕ
⊢ IsPeriodicPt f (minimalPeriod f x) (f^[n] x)
[PROOFSTEP]
exact (isPeriodicPt_minimalPeriod f x).apply_iterate n
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n✝ : ℕ
hx : x ∈ periodicPts f
n : ℕ
⊢ f^[n] x ∈ periodicPts f
[PROOFSTEP]
rcases hx with ⟨m, hm, hx⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n✝ n m : ℕ
hm : m > 0
hx : IsPeriodicPt f m x
⊢ f^[n] x ∈ periodicPts f
[PROOFSTEP]
exact ⟨m, hm, hx.apply_iterate n⟩
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n✝ m n : ℕ
hm : m < minimalPeriod f x
hmn : f^[m] x = f^[n] x
⊢ m ≤ n
[PROOFSTEP]
by_contra' hmn'
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n✝ m n : ℕ
hm : m < minimalPeriod f x
hmn : f^[m] x = f^[n] x
hmn' : n < m
⊢ False
[PROOFSTEP]
rw [← Nat.add_sub_of_le hmn'.le, add_comm, iterate_add_apply] at hmn
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n✝ m n : ℕ
hm : m < minimalPeriod f x
hmn : f^[m - n] (f^[n] x) = f^[n] x
hmn' : n < m
⊢ False
[PROOFSTEP]
exact
((IsPeriodicPt.minimalPeriod_le (tsub_pos_of_lt hmn')
(isPeriodicPt_of_mem_periodicPts_of_isPeriodicPt_iterate
(minimalPeriod_pos_iff_mem_periodicPts.1 ((zero_le m).trans_lt hm)) hmn)).trans
(Nat.sub_le m n)).not_lt
hm
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ minimalPeriod f x = 1 ↔ IsFixedPt f x
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : minimalPeriod f x = 1
⊢ IsFixedPt f x
[PROOFSTEP]
rw [← iterate_one f]
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : minimalPeriod f x = 1
⊢ IsFixedPt f^[1] x
[PROOFSTEP]
refine' Function.IsPeriodicPt.isFixedPt _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : minimalPeriod f x = 1
⊢ IsPeriodicPt f 1 x
[PROOFSTEP]
rw [← h]
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : minimalPeriod f x = 1
⊢ IsPeriodicPt f (minimalPeriod f x) x
[PROOFSTEP]
exact isPeriodicPt_minimalPeriod f x
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : IsFixedPt f x
⊢ minimalPeriod f x = 1
[PROOFSTEP]
exact
((h.isPeriodicPt 1).minimalPeriod_le Nat.one_pos).antisymm
(Nat.succ_le_of_lt ((h.isPeriodicPt 1).minimalPeriod_pos Nat.one_pos))
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y✝ : α
m n : ℕ
g : β → β
y : β
⊢ minimalPeriod f x = minimalPeriod g y ↔ ∀ (n : ℕ), IsPeriodicPt f n x ↔ IsPeriodicPt g n y
[PROOFSTEP]
simp_rw [isPeriodicPt_iff_minimalPeriod_dvd, dvd_right_iff_eq]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n p k : ℕ
hp : Fact (Nat.Prime p)
hk : ¬IsPeriodicPt f (p ^ k) x
hk1 : IsPeriodicPt f (p ^ (k + 1)) x
⊢ minimalPeriod f x = p ^ (k + 1)
[PROOFSTEP]
apply Nat.eq_prime_pow_of_dvd_least_prime_pow hp.out
[GOAL]
case h₁
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n p k : ℕ
hp : Fact (Nat.Prime p)
hk : ¬IsPeriodicPt f (p ^ k) x
hk1 : IsPeriodicPt f (p ^ (k + 1)) x
⊢ ¬minimalPeriod f x ∣ p ^ k
[PROOFSTEP]
rwa [← isPeriodicPt_iff_minimalPeriod_dvd]
[GOAL]
case h₂
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n p k : ℕ
hp : Fact (Nat.Prime p)
hk : ¬IsPeriodicPt f (p ^ k) x
hk1 : IsPeriodicPt f (p ^ (k + 1)) x
⊢ minimalPeriod f x ∣ p ^ (k + 1)
[PROOFSTEP]
rwa [← isPeriodicPt_iff_minimalPeriod_dvd]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
g : α → α
h : Function.Commute f g
⊢ minimalPeriod (f ∘ g) x ∣ lcm (minimalPeriod f x) (minimalPeriod g x)
[PROOFSTEP]
rw [← isPeriodicPt_iff_minimalPeriod_dvd]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
g : α → α
h : Function.Commute f g
⊢ IsPeriodicPt (f ∘ g) (lcm (minimalPeriod f x) (minimalPeriod g x)) x
[PROOFSTEP]
exact (isPeriodicPt_minimalPeriod f x).comp_lcm h (isPeriodicPt_minimalPeriod g x)
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
g : α → α
h : Function.Commute f g
hco : coprime (minimalPeriod f x) (minimalPeriod g x)
⊢ minimalPeriod (f ∘ g) x = minimalPeriod f x * minimalPeriod g x
[PROOFSTEP]
apply h.minimalPeriod_of_comp_dvd_mul.antisymm
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
g : α → α
h : Function.Commute f g
hco : coprime (minimalPeriod f x) (minimalPeriod g x)
⊢ minimalPeriod f x * minimalPeriod g x ∣ minimalPeriod (f ∘ g) x
[PROOFSTEP]
suffices :
∀ {f g : α → α},
Commute f g → coprime (minimalPeriod f x) (minimalPeriod g x) → minimalPeriod f x ∣ minimalPeriod (f ∘ g) x
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
g : α → α
h : Function.Commute f g
hco : coprime (minimalPeriod f x) (minimalPeriod g x)
this :
∀ {f g : α → α},
Function.Commute f g → coprime (minimalPeriod f x) (minimalPeriod g x) → minimalPeriod f x ∣ minimalPeriod (f ∘ g) x
⊢ minimalPeriod f x * minimalPeriod g x ∣ minimalPeriod (f ∘ g) x
[PROOFSTEP]
exact hco.mul_dvd_of_dvd_of_dvd (this h hco) (h.comp_eq.symm ▸ this h.symm hco.symm)
[GOAL]
case this
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
g : α → α
h : Function.Commute f g
hco : coprime (minimalPeriod f x) (minimalPeriod g x)
⊢ ∀ {f g : α → α},
Function.Commute f g → coprime (minimalPeriod f x) (minimalPeriod g x) → minimalPeriod f x ∣ minimalPeriod (f ∘ g) x
[PROOFSTEP]
intro f g h hco
[GOAL]
case this
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x y : α
m n : ℕ
g✝ : α → α
h✝ : Function.Commute f✝ g✝
hco✝ : coprime (minimalPeriod f✝ x) (minimalPeriod g✝ x)
f g : α → α
h : Function.Commute f g
hco : coprime (minimalPeriod f x) (minimalPeriod g x)
⊢ minimalPeriod f x ∣ minimalPeriod (f ∘ g) x
[PROOFSTEP]
refine' hco.dvd_of_dvd_mul_left (IsPeriodicPt.left_of_comp h _ _).minimalPeriod_dvd
[GOAL]
case this.refine'_1
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x y : α
m n : ℕ
g✝ : α → α
h✝ : Function.Commute f✝ g✝
hco✝ : coprime (minimalPeriod f✝ x) (minimalPeriod g✝ x)
f g : α → α
h : Function.Commute f g
hco : coprime (minimalPeriod f x) (minimalPeriod g x)
⊢ IsPeriodicPt (f ∘ g) (minimalPeriod g x * minimalPeriod (f ∘ g) x) x
[PROOFSTEP]
exact (isPeriodicPt_minimalPeriod _ _).const_mul _
[GOAL]
case this.refine'_2
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x y : α
m n : ℕ
g✝ : α → α
h✝ : Function.Commute f✝ g✝
hco✝ : coprime (minimalPeriod f✝ x) (minimalPeriod g✝ x)
f g : α → α
h : Function.Commute f g
hco : coprime (minimalPeriod f x) (minimalPeriod g x)
⊢ IsPeriodicPt g (minimalPeriod g x * minimalPeriod (f ∘ g) x) x
[PROOFSTEP]
exact (isPeriodicPt_minimalPeriod _ _).mul_const _
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : 0 < gcd (minimalPeriod f x) n
⊢ minimalPeriod f^[n] x = minimalPeriod f x / gcd (minimalPeriod f x) n
[PROOFSTEP]
apply Nat.dvd_antisymm
[GOAL]
case a
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : 0 < gcd (minimalPeriod f x) n
⊢ minimalPeriod f^[n] x ∣ minimalPeriod f x / gcd (minimalPeriod f x) n
[PROOFSTEP]
apply IsPeriodicPt.minimalPeriod_dvd
[GOAL]
case a.hx
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : 0 < gcd (minimalPeriod f x) n
⊢ IsPeriodicPt f^[n] (minimalPeriod f x / gcd (minimalPeriod f x) n) x
[PROOFSTEP]
rw [IsPeriodicPt, IsFixedPt, ← iterate_mul, ← Nat.mul_div_assoc _ (gcd_dvd_left _ _), mul_comm,
Nat.mul_div_assoc _ (gcd_dvd_right _ _), mul_comm, iterate_mul]
[GOAL]
case a.hx
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : 0 < gcd (minimalPeriod f x) n
⊢ f^[n / gcd (minimalPeriod f x) n]^[minimalPeriod f x] x = x
[PROOFSTEP]
exact (isPeriodicPt_minimalPeriod f x).iterate _
[GOAL]
case a
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : 0 < gcd (minimalPeriod f x) n
⊢ minimalPeriod f x / gcd (minimalPeriod f x) n ∣ minimalPeriod f^[n] x
[PROOFSTEP]
apply coprime.dvd_of_dvd_mul_right (coprime_div_gcd_div_gcd h)
[GOAL]
case a
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : 0 < gcd (minimalPeriod f x) n
⊢ minimalPeriod f x / gcd (minimalPeriod f x) n ∣ minimalPeriod f^[n] x * (n / gcd (minimalPeriod f x) n)
[PROOFSTEP]
apply Nat.dvd_of_mul_dvd_mul_right h
[GOAL]
case a
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : 0 < gcd (minimalPeriod f x) n
⊢ minimalPeriod f x / gcd (minimalPeriod f x) n * gcd (minimalPeriod f x) n ∣
minimalPeriod f^[n] x * (n / gcd (minimalPeriod f x) n) * gcd (minimalPeriod f x) n
[PROOFSTEP]
rw [Nat.div_mul_cancel (gcd_dvd_left _ _), mul_assoc, Nat.div_mul_cancel (gcd_dvd_right _ _), mul_comm]
[GOAL]
case a
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : 0 < gcd (minimalPeriod f x) n
⊢ minimalPeriod f x ∣ n * minimalPeriod f^[n] x
[PROOFSTEP]
apply IsPeriodicPt.minimalPeriod_dvd
[GOAL]
case a.hx
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : 0 < gcd (minimalPeriod f x) n
⊢ IsPeriodicPt f (n * minimalPeriod f^[n] x) x
[PROOFSTEP]
rw [IsPeriodicPt, IsFixedPt, iterate_mul]
[GOAL]
case a.hx
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
h : 0 < gcd (minimalPeriod f x) n
⊢ f^[n]^[minimalPeriod f^[n] x] x = x
[PROOFSTEP]
exact isPeriodicPt_minimalPeriod _ _
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ Cycle.length (periodicOrbit f x) = minimalPeriod f x
[PROOFSTEP]
rw [periodicOrbit, Cycle.length_coe, List.length_map, List.length_range]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ periodicOrbit f x = Cycle.nil ↔ ¬x ∈ periodicPts f
[PROOFSTEP]
simp [periodicOrbit]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ minimalPeriod f x = 0 ↔ ¬x ∈ periodicPts f
[PROOFSTEP]
exact minimalPeriod_eq_zero_iff_nmem_periodicPts
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hx : x ∈ periodicPts f
⊢ y ∈ periodicOrbit f x ↔ ∃ n, f^[n] x = y
[PROOFSTEP]
simp only [periodicOrbit, Cycle.mem_coe_iff, List.mem_map, List.mem_range]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hx : x ∈ periodicPts f
⊢ (∃ a, a < minimalPeriod f x ∧ f^[a] x = y) ↔ ∃ n, f^[n] x = y
[PROOFSTEP]
use fun ⟨a, _, ha'⟩ => ⟨a, ha'⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
hx : x ∈ periodicPts f
⊢ (∃ n, f^[n] x = y) → ∃ a, a < minimalPeriod f x ∧ f^[a] x = y
[PROOFSTEP]
rintro ⟨n, rfl⟩
[GOAL]
case mpr.intro
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x : α
m n✝ : ℕ
hx : x ∈ periodicPts f
n : ℕ
⊢ ∃ a, a < minimalPeriod f x ∧ f^[a] x = f^[n] x
[PROOFSTEP]
use n % minimalPeriod f x, mod_lt _ (minimalPeriod_pos_of_mem_periodicPts hx)
[GOAL]
case right
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x : α
m n✝ : ℕ
hx : x ∈ periodicPts f
n : ℕ
⊢ f^[n % minimalPeriod f x] x = f^[n] x
[PROOFSTEP]
rw [iterate_mod_minimalPeriod_eq]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ Cycle.Nodup (periodicOrbit f x)
[PROOFSTEP]
rw [periodicOrbit, Cycle.nodup_coe_iff, List.nodup_map_iff_inj_on (List.nodup_range _)]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n : ℕ
⊢ ∀ (x_1 : ℕ),
x_1 ∈ List.range (minimalPeriod f x) → ∀ (y : ℕ), y ∈ List.range (minimalPeriod f x) → f^[x_1] x = f^[y] x → x_1 = y
[PROOFSTEP]
intro m hm n hn hmn
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n✝ m : ℕ
hm : m ∈ List.range (minimalPeriod f x)
n : ℕ
hn : n ∈ List.range (minimalPeriod f x)
hmn : f^[m] x = f^[n] x
⊢ m = n
[PROOFSTEP]
rw [List.mem_range] at hm hn
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m✝ n✝ m : ℕ
hm : m < minimalPeriod f x
n : ℕ
hn : n < minimalPeriod f x
hmn : f^[m] x = f^[n] x
⊢ m = n
[PROOFSTEP]
rwa [eq_iff_lt_minimalPeriod_of_iterate_eq hm hn] at hmn
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n✝ : ℕ
hx : x ∈ periodicPts f
n : ℕ
⊢ List.rotate (List.map (fun n => f^[n] x) (List.range (minimalPeriod f x))) n =
List.map (fun n_1 => f^[n_1] (f^[n] x)) (List.range (minimalPeriod f (f^[n] x)))
[PROOFSTEP]
apply List.ext_nthLe _ fun m _ _ => _
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n✝ : ℕ
hx : x ∈ periodicPts f
n : ℕ
⊢ List.length (List.rotate (List.map (fun n => f^[n] x) (List.range (minimalPeriod f x))) n) =
List.length (List.map (fun n_1 => f^[n_1] (f^[n] x)) (List.range (minimalPeriod f (f^[n] x))))
[PROOFSTEP]
simp [minimalPeriod_apply_iterate hx]
[GOAL]
α : Type u_1
β : Type u_2
f fa : α → α
fb : β → β
x y : α
m n✝ : ℕ
hx : x ∈ periodicPts f
n : ℕ
⊢ ∀ (m : ℕ) (x_1 : m < List.length (List.rotate (List.map (fun n => f^[n] x) (List.range (minimalPeriod f x))) n))
(x_2 : m < List.length (List.map (fun n_1 => f^[n_1] (f^[n] x)) (List.range (minimalPeriod f (f^[n] x))))),
List.nthLe (List.rotate (List.map (fun n => f^[n] x) (List.range (minimalPeriod f x))) n) m x_1 =
List.nthLe (List.map (fun n_1 => f^[n_1] (f^[n] x)) (List.range (minimalPeriod f (f^[n] x)))) m x_2
[PROOFSTEP]
simp [List.nthLe_rotate, iterate_add_apply]
[GOAL]
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
by_cases hx : x ∈ periodicPts f
[GOAL]
case pos
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
have hx' := minimalPeriod_pos_of_mem_periodicPts hx
[GOAL]
case pos
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
have hM := Nat.sub_add_cancel (succ_le_iff.2 hx')
[GOAL]
case pos
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x
⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
rw [periodicOrbit, ← Cycle.map_coe, Cycle.chain_map, ← hM, Cycle.chain_range_succ]
[GOAL]
case pos
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x
⊢ (r (f^[minimalPeriod f x - succ 0] x) (f^[0] x) ∧
∀ (m : ℕ), m < minimalPeriod f x - succ 0 → r (f^[m] x) (f^[succ m] x)) ↔
∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
refine' ⟨_, fun H => ⟨_, fun m hm => H _ (hm.trans (Nat.lt_succ_self _))⟩⟩
[GOAL]
case pos.refine'_1
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x
⊢ (r (f^[minimalPeriod f x - succ 0] x) (f^[0] x) ∧
∀ (m : ℕ), m < minimalPeriod f x - succ 0 → r (f^[m] x) (f^[succ m] x)) →
∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
rintro ⟨hr, H⟩ n hn
[GOAL]
case pos.refine'_1.intro
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n✝ : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x
hr : r (f^[minimalPeriod f x - succ 0] x) (f^[0] x)
H : ∀ (m : ℕ), m < minimalPeriod f x - succ 0 → r (f^[m] x) (f^[succ m] x)
n : ℕ
hn : n < minimalPeriod f x - succ 0 + succ 0
⊢ r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
cases' eq_or_lt_of_le (lt_succ_iff.1 hn) with hM' hM'
[GOAL]
case pos.refine'_1.intro.inl
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n✝ : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x
hr : r (f^[minimalPeriod f x - succ 0] x) (f^[0] x)
H : ∀ (m : ℕ), m < minimalPeriod f x - succ 0 → r (f^[m] x) (f^[succ m] x)
n : ℕ
hn : n < minimalPeriod f x - succ 0 + succ 0
hM' : n = minimalPeriod f x - succ 0
⊢ r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
rwa [hM', hM, iterate_minimalPeriod]
[GOAL]
case pos.refine'_1.intro.inr
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n✝ : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x
hr : r (f^[minimalPeriod f x - succ 0] x) (f^[0] x)
H : ∀ (m : ℕ), m < minimalPeriod f x - succ 0 → r (f^[m] x) (f^[succ m] x)
n : ℕ
hn : n < minimalPeriod f x - succ 0 + succ 0
hM' : n < minimalPeriod f x - succ 0
⊢ r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
exact H _ hM'
[GOAL]
case pos.refine'_2
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x
H : ∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x)
⊢ r (f^[minimalPeriod f x - succ 0] x) (f^[0] x)
[PROOFSTEP]
rw [iterate_zero_apply]
[GOAL]
case pos.refine'_2
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x
H : ∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x)
⊢ r (f^[minimalPeriod f x - succ 0] x) x
[PROOFSTEP]
nth_rw 3 [← @iterate_minimalPeriod α f x]
[GOAL]
case pos.refine'_2
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x
H : ∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x)
⊢ r (f^[minimalPeriod f x - succ 0] x) (f^[minimalPeriod f x] x)
[PROOFSTEP]
nth_rw 2 [← hM]
[GOAL]
case pos.refine'_2
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
hx' : 0 < minimalPeriod f x
hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x
H : ∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x)
⊢ r (f^[minimalPeriod f x - succ 0] x) (f^[minimalPeriod f x - succ 0 + succ 0] x)
[PROOFSTEP]
exact H _ (Nat.lt_succ_self _)
[GOAL]
case neg
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : ¬x ∈ periodicPts f
⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
rw [periodicOrbit_eq_nil_of_not_periodic_pt hx, minimalPeriod_eq_zero_of_nmem_periodicPts hx]
[GOAL]
case neg
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : ¬x ∈ periodicPts f
⊢ Cycle.Chain r Cycle.nil ↔ ∀ (n : ℕ), n < 0 → r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
rw [periodicOrbit_chain r]
[GOAL]
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
⊢ (∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x)) ↔ ∀ (n : ℕ), r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
refine' ⟨fun H n => _, fun H n _ => H n⟩
[GOAL]
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n✝ : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
H : ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x)
n : ℕ
⊢ r (f^[n] x) (f^[n + 1] x)
[PROOFSTEP]
rw [iterate_succ_apply, ← iterate_mod_minimalPeriod_eq, ← iterate_mod_minimalPeriod_eq (n := n), ← iterate_succ_apply,
minimalPeriod_apply hx]
[GOAL]
α : Type u_1
β : Type u_2
f✝ fa : α → α
fb : β → β
x✝ y : α
m n✝ : ℕ
r : α → α → Prop
f : α → α
x : α
hx : x ∈ periodicPts f
H : ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x)
n : ℕ
⊢ r (f^[n % minimalPeriod f x] x) (f^[succ (n % minimalPeriod f x)] x)
[PROOFSTEP]
exact H _ (mod_lt _ (minimalPeriod_pos_of_mem_periodicPts hx))
[GOAL]
α : Type u_1
β : Type u_2
f✝ : α → α
g✝ : β → β
x : α × β
a : α
b : β
m n✝ : ℕ
f : α → α
g : β → β
n : ℕ
⊢ (Prod.map f g)^[n] = Prod.map f^[n] g^[n]
[PROOFSTEP]
induction n
[GOAL]
case zero
α : Type u_1
β : Type u_2
f✝ : α → α
g✝ : β → β
x : α × β
a : α
b : β
m n : ℕ
f : α → α
g : β → β
⊢ (Prod.map f g)^[Nat.zero] = Prod.map f^[Nat.zero] g^[Nat.zero]
[PROOFSTEP]
simp [*, Prod.map_comp_map]
[GOAL]
case succ
α : Type u_1
β : Type u_2
f✝ : α → α
g✝ : β → β
x : α × β
a : α
b : β
m n : ℕ
f : α → α
g : β → β
n✝ : ℕ
n_ih✝ : (Prod.map f g)^[n✝] = Prod.map f^[n✝] g^[n✝]
⊢ (Prod.map f g)^[Nat.succ n✝] = Prod.map f^[Nat.succ n✝] g^[Nat.succ n✝]
[PROOFSTEP]
simp [*, Prod.map_comp_map]
[GOAL]
α : Type u_1
β : Type u_2
f : α → α
g : β → β
x✝ : α × β
a : α
b : β
m n : ℕ
x : α × β
⊢ IsPeriodicPt (Prod.map f g) n x ↔ IsPeriodicPt f n x.fst ∧ IsPeriodicPt g n x.snd
[PROOFSTEP]
simp [IsPeriodicPt]
[GOAL]
α : Type u_1
β : Type u_2
f✝ : α → α
g✝ : β → β
x✝ : α × β
a : α
b : β
m n : ℕ
f : α → α
g : β → β
x : α × β
⊢ ∀ (c : ℕ), minimalPeriod (Prod.map f g) x ∣ c ↔ Nat.lcm (minimalPeriod f x.fst) (minimalPeriod g x.snd) ∣ c
[PROOFSTEP]
cases x
[GOAL]
case mk
α : Type u_1
β : Type u_2
f✝ : α → α
g✝ : β → β
x : α × β
a : α
b : β
m n : ℕ
f : α → α
g : β → β
fst✝ : α
snd✝ : β
⊢ ∀ (c : ℕ),
minimalPeriod (Prod.map f g) (fst✝, snd✝) ∣ c ↔
Nat.lcm (minimalPeriod f (fst✝, snd✝).fst) (minimalPeriod g (fst✝, snd✝).snd) ∣ c
[PROOFSTEP]
simp [← isPeriodicPt_iff_minimalPeriod_dvd, Nat.lcm_dvd_iff]
[GOAL]
α : Type u_1
β : Type u_2
f : α → α
g : β → β
x : α × β
a : α
b : β
m n : ℕ
⊢ minimalPeriod f x.fst ∣ minimalPeriod (Prod.map f g) x
[PROOFSTEP]
rw [minimalPeriod_prod_map]
[GOAL]
α : Type u_1
β : Type u_2
f : α → α
g : β → β
x : α × β
a : α
b : β
m n : ℕ
⊢ minimalPeriod f x.fst ∣ Nat.lcm (minimalPeriod f x.fst) (minimalPeriod g x.snd)
[PROOFSTEP]
exact Nat.dvd_lcm_left _ _
[GOAL]
α : Type u_1
β : Type u_2
f : α → α
g : β → β
x : α × β
a : α
b : β
m n : ℕ
⊢ minimalPeriod g x.snd ∣ minimalPeriod (Prod.map f g) x
[PROOFSTEP]
rw [minimalPeriod_prod_map]
[GOAL]
α : Type u_1
β : Type u_2
f : α → α
g : β → β
x : α × β
a : α
b : β
m n : ℕ
⊢ minimalPeriod g x.snd ∣ Nat.lcm (minimalPeriod f x.fst) (minimalPeriod g x.snd)
[PROOFSTEP]
exact Nat.dvd_lcm_right _ _
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
n : ℕ
⊢ a ^ n • b = b ↔ minimalPeriod ((fun x x_1 => x • x_1) a) b ∣ n
[PROOFSTEP]
rw [← isPeriodicPt_iff_minimalPeriod_dvd, IsPeriodicPt, IsFixedPt, smul_iterate]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
n : ℤ
⊢ a ^ n • b = b ↔ ↑(minimalPeriod ((fun x x_1 => x • x_1) a) b) ∣ n
[PROOFSTEP]
cases n
[GOAL]
case ofNat
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
a✝ : ℕ
⊢ a ^ Int.ofNat a✝ • b = b ↔ ↑(minimalPeriod ((fun x x_1 => x • x_1) a) b) ∣ Int.ofNat a✝
[PROOFSTEP]
rw [Int.ofNat_eq_coe, zpow_ofNat, Int.coe_nat_dvd, pow_smul_eq_iff_minimalPeriod_dvd]
[GOAL]
case negSucc
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
a✝ : ℕ
⊢ a ^ Int.negSucc a✝ • b = b ↔ ↑(minimalPeriod ((fun x x_1 => x • x_1) a) b) ∣ Int.negSucc a✝
[PROOFSTEP]
rw [Int.negSucc_coe, zpow_neg, zpow_ofNat, inv_smul_eq_iff, eq_comm, dvd_neg, Int.coe_nat_dvd,
pow_smul_eq_iff_minimalPeriod_dvd]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
n : ℕ
⊢ a ^ (n % minimalPeriod ((fun x x_1 => x • x_1) a) b) • b = a ^ n • b
[PROOFSTEP]
conv_rhs =>
rw [← Nat.mod_add_div n (minimalPeriod ((· • ·) a) b), pow_add, mul_smul,
pow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
n : ℕ
| a ^ n • b
[PROOFSTEP]
rw [← Nat.mod_add_div n (minimalPeriod ((· • ·) a) b), pow_add, mul_smul,
pow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
n : ℕ
| a ^ n • b
[PROOFSTEP]
rw [← Nat.mod_add_div n (minimalPeriod ((· • ·) a) b), pow_add, mul_smul,
pow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
n : ℕ
| a ^ n • b
[PROOFSTEP]
rw [← Nat.mod_add_div n (minimalPeriod ((· • ·) a) b), pow_add, mul_smul,
pow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
n : ℤ
⊢ a ^ (n % ↑(minimalPeriod ((fun x x_1 => x • x_1) a) b)) • b = a ^ n • b
[PROOFSTEP]
conv_rhs =>
rw [← Int.emod_add_ediv n (minimalPeriod ((a • ·)) b), zpow_add, mul_smul,
zpow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
n : ℤ
| a ^ n • b
[PROOFSTEP]
rw [← Int.emod_add_ediv n (minimalPeriod ((a • ·)) b), zpow_add, mul_smul,
zpow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
n : ℤ
| a ^ n • b
[PROOFSTEP]
rw [← Int.emod_add_ediv n (minimalPeriod ((a • ·)) b), zpow_add, mul_smul,
zpow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Group α
inst✝ : MulAction α β
a : α
b : β
n : ℤ
| a ^ n • b
[PROOFSTEP]
rw [← Int.emod_add_ediv n (minimalPeriod ((a • ·)) b), zpow_add, mul_smul,
zpow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)]
| {"mathlib_filename": "Mathlib.Dynamics.PeriodicPts", "llama_tokens": 20096} |
[GOAL]
α : Type u_1
X : Type u_2
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : Nonempty X
inst✝¹ : MeasurableSpace X
s : Set X
inst✝ : HasCountableSeparatingOn X MeasurableSet s
f : α → α
g : α → X
h : QuasiErgodic f
hs : ∀ᵐ (x : α) ∂μ, g x ∈ s
hgm : NullMeasurable g
hg_eq : g ∘ f =ᵐ[μ] g
⊢ ∃ c, g =ᵐ[μ] const α c
[PROOFSTEP]
refine exists_eventuallyEq_const_of_eventually_mem_of_forall_separating MeasurableSet hs ?_
[GOAL]
α : Type u_1
X : Type u_2
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : Nonempty X
inst✝¹ : MeasurableSpace X
s : Set X
inst✝ : HasCountableSeparatingOn X MeasurableSet s
f : α → α
g : α → X
h : QuasiErgodic f
hs : ∀ᵐ (x : α) ∂μ, g x ∈ s
hgm : NullMeasurable g
hg_eq : g ∘ f =ᵐ[μ] g
⊢ ∀ (U : Set X), MeasurableSet U → (∀ᵐ (x : α) ∂μ, g x ∈ U) ∨ ∀ᵐ (x : α) ∂μ, ¬g x ∈ U
[PROOFSTEP]
refine fun U hU ↦ h.ae_mem_or_ae_nmem₀ (s := g ⁻¹' U) (hgm hU) ?_b
[GOAL]
case _b
α : Type u_1
X : Type u_2
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : Nonempty X
inst✝¹ : MeasurableSpace X
s : Set X
inst✝ : HasCountableSeparatingOn X MeasurableSet s
f : α → α
g : α → X
h : QuasiErgodic f
hs : ∀ᵐ (x : α) ∂μ, g x ∈ s
hgm : NullMeasurable g
hg_eq : g ∘ f =ᵐ[μ] g
U : Set X
hU : MeasurableSet U
⊢ f ⁻¹' (g ⁻¹' U) =ᵐ[μ] g ⁻¹' U
[PROOFSTEP]
refine (hg_eq.mono fun x hx ↦ ?_).set_eq
[GOAL]
case _b
α : Type u_1
X : Type u_2
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : Nonempty X
inst✝¹ : MeasurableSpace X
s : Set X
inst✝ : HasCountableSeparatingOn X MeasurableSet s
f : α → α
g : α → X
h : QuasiErgodic f
hs : ∀ᵐ (x : α) ∂μ, g x ∈ s
hgm : NullMeasurable g
hg_eq : g ∘ f =ᵐ[μ] g
U : Set X
hU : MeasurableSet U
x : α
hx : (g ∘ f) x = g x
⊢ x ∈ f ⁻¹' (g ⁻¹' U) ↔ x ∈ g ⁻¹' U
[PROOFSTEP]
rw [← preimage_comp, mem_preimage, mem_preimage, hx]
[GOAL]
α : Type u_1
X : Type u_2
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : Nonempty X
inst✝¹ : MeasurableSpace X
inst✝ : HasCountableSeparatingOn X MeasurableSet univ
f : α → α
g : α → X
h : PreErgodic f
hgm : Measurable g
hg_eq : g ∘ f = g
U : Set X
hU : MeasurableSet U
⊢ f ⁻¹' (g ⁻¹' U) = g ⁻¹' U
[PROOFSTEP]
rw [← preimage_comp, hg_eq]
[GOAL]
α : Type u_1
X : Type u_2
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : TopologicalSpace X
inst✝¹ : MetrizableSpace X
inst✝ : Nonempty X
f : α → α
g : α → X
h : QuasiErgodic f
hgm : AEStronglyMeasurable g μ
hg_eq : g ∘ f =ᵐ[μ] g
⊢ ∃ c, g =ᵐ[μ] const α c
[PROOFSTEP]
borelize X
[GOAL]
α : Type u_1
X : Type u_2
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : TopologicalSpace X
inst✝¹ : MetrizableSpace X
inst✝ : Nonempty X
f : α → α
g : α → X
h : QuasiErgodic f
hgm : AEStronglyMeasurable g μ
hg_eq : g ∘ f =ᵐ[μ] g
this✝¹ : MeasurableSpace X := borel X
this✝ : BorelSpace X
⊢ ∃ c, g =ᵐ[μ] const α c
[PROOFSTEP]
rcases hgm.isSeparable_ae_range with ⟨t, ht, hgt⟩
[GOAL]
case intro.intro
α : Type u_1
X : Type u_2
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : TopologicalSpace X
inst✝¹ : MetrizableSpace X
inst✝ : Nonempty X
f : α → α
g : α → X
h : QuasiErgodic f
hgm : AEStronglyMeasurable g μ
hg_eq : g ∘ f =ᵐ[μ] g
this✝¹ : MeasurableSpace X := borel X
this✝ : BorelSpace X
t : Set X
ht : IsSeparable t
hgt : ∀ᵐ (x : α) ∂μ, g x ∈ t
⊢ ∃ c, g =ᵐ[μ] const α c
[PROOFSTEP]
haveI := ht.secondCountableTopology
[GOAL]
case intro.intro
α : Type u_1
X : Type u_2
inst✝³ : MeasurableSpace α
μ : Measure α
inst✝² : TopologicalSpace X
inst✝¹ : MetrizableSpace X
inst✝ : Nonempty X
f : α → α
g : α → X
h : QuasiErgodic f
hgm : AEStronglyMeasurable g μ
hg_eq : g ∘ f =ᵐ[μ] g
this✝¹ : MeasurableSpace X := borel X
this✝ : BorelSpace X
t : Set X
ht : IsSeparable t
hgt : ∀ᵐ (x : α) ∂μ, g x ∈ t
this : SecondCountableTopology ↑t
⊢ ∃ c, g =ᵐ[μ] const α c
[PROOFSTEP]
exact h.ae_eq_const_of_ae_eq_comp_of_ae_range₀ hgt hgm.aemeasurable.nullMeasurable hg_eq
| {"mathlib_filename": "Mathlib.Dynamics.Ergodic.Function", "llama_tokens": 1981} |
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
⊢ E →ₗ[ℝ] E →ₗ[ℝ] ℝ
[PROOFSTEP]
let z : AlternatingMap ℝ E ℝ (Fin 0) ≃ₗ[ℝ] ℝ := AlternatingMap.constLinearEquivOfIsEmpty.symm
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
z : AlternatingMap ℝ E ℝ (Fin 0) ≃ₗ[ℝ] ℝ := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
⊢ E →ₗ[ℝ] E →ₗ[ℝ] ℝ
[PROOFSTEP]
let y : AlternatingMap ℝ E ℝ (Fin 1) →ₗ[ℝ] E →ₗ[ℝ] ℝ :=
LinearMap.llcomp ℝ E (AlternatingMap ℝ E ℝ (Fin 0)) ℝ z ∘ₗ AlternatingMap.curryLeftLinearMap
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
z : AlternatingMap ℝ E ℝ (Fin 0) ≃ₗ[ℝ] ℝ := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty
y : AlternatingMap ℝ E ℝ (Fin 1) →ₗ[ℝ] E →ₗ[ℝ] ℝ :=
LinearMap.comp (↑(LinearMap.llcomp ℝ E (AlternatingMap ℝ E ℝ (Fin 0)) ℝ) ↑z) AlternatingMap.curryLeftLinearMap
⊢ E →ₗ[ℝ] E →ₗ[ℝ] ℝ
[PROOFSTEP]
exact y ∘ₗ AlternatingMap.curryLeftLinearMap (R' := ℝ) o.volumeForm
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(areaForm o) x) y = ↑(volumeForm o) ![x, y]
[PROOFSTEP]
simp [areaForm]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ↑(↑(areaForm o) x) x = 0
[PROOFSTEP]
rw [areaForm_to_volumeForm]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ↑(volumeForm o) ![x, x] = 0
[PROOFSTEP]
refine' o.volumeForm.map_eq_zero_of_eq ![x, x] _ (_ : (0 : Fin 2) ≠ 1)
[GOAL]
case refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ Matrix.vecCons x ![x] 0 = Matrix.vecCons x ![x] 1
[PROOFSTEP]
simp
[GOAL]
case refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ 0 ≠ 1
[PROOFSTEP]
norm_num
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(areaForm o) x) y = -↑(↑(areaForm o) y) x
[PROOFSTEP]
simp only [areaForm_to_volumeForm]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(volumeForm o) ![x, y] = -↑(volumeForm o) ![y, x]
[PROOFSTEP]
convert o.volumeForm.map_swap ![y, x] (_ : (0 : Fin 2) ≠ 1)
[GOAL]
case h.e'_2.h.e'_6
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ![x, y] = ![y, x] ∘ ↑(Equiv.swap 0 1)
[PROOFSTEP]
ext i
[GOAL]
case h.e'_2.h.e'_6.h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
i : Fin (Nat.succ 1)
⊢ Matrix.vecCons x ![y] i = (![y, x] ∘ ↑(Equiv.swap 0 1)) i
[PROOFSTEP]
fin_cases i
[GOAL]
case h.e'_2.h.e'_6.h.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < Nat.succ 1) } =
(![y, x] ∘ ↑(Equiv.swap 0 1)) { val := 0, isLt := (_ : 0 < Nat.succ 1) }
[PROOFSTEP]
rfl
[GOAL]
case h.e'_2.h.e'_6.h.tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < Nat.succ 1) 1) } =
(![y, x] ∘ ↑(Equiv.swap 0 1)) { val := 1, isLt := (_ : (fun a => a < Nat.succ 1) 1) }
[PROOFSTEP]
rfl
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ 0 ≠ 1
[PROOFSTEP]
norm_num
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
⊢ areaForm (-o) = -areaForm o
[PROOFSTEP]
ext x y
[GOAL]
case h.h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(areaForm (-o)) x) y = ↑(↑(-areaForm o) x) y
[PROOFSTEP]
simp [areaForm_to_volumeForm]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ |↑(↑(areaForm o) x) y| ≤ ‖x‖ * ‖y‖
[PROOFSTEP]
simpa [areaForm_to_volumeForm, Fin.prod_univ_succ] using o.abs_volumeForm_apply_le ![x, y]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(areaForm o) x) y ≤ ‖x‖ * ‖y‖
[PROOFSTEP]
simpa [areaForm_to_volumeForm, Fin.prod_univ_succ] using o.volumeForm_apply_le ![x, y]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
h : inner x y = 0
⊢ |↑(↑(areaForm o) x) y| = ‖x‖ * ‖y‖
[PROOFSTEP]
rw [o.areaForm_to_volumeForm, o.abs_volumeForm_apply_of_pairwise_orthogonal]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
h : inner x y = 0
⊢ (Finset.prod Finset.univ fun i => ‖Matrix.vecCons x ![y] i‖) = ‖x‖ * ‖y‖
[PROOFSTEP]
simp [Fin.prod_univ_succ]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
h : inner x y = 0
⊢ Pairwise fun i j => inner (Matrix.vecCons x ![y] i) (Matrix.vecCons x ![y] j) = 0
[PROOFSTEP]
intro i j hij
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
h : inner x y = 0
i j : Fin 2
hij : i ≠ j
⊢ inner (Matrix.vecCons x ![y] i) (Matrix.vecCons x ![y] j) = 0
[PROOFSTEP]
fin_cases i
[GOAL]
case head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
h : inner x y = 0
j : Fin 2
hij : { val := 0, isLt := (_ : 0 < 2) } ≠ j
⊢ inner (Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < 2) }) (Matrix.vecCons x ![y] j) = 0
[PROOFSTEP]
fin_cases j
[GOAL]
case tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
h : inner x y = 0
j : Fin 2
hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ j
⊢ inner (Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) (Matrix.vecCons x ![y] j) = 0
[PROOFSTEP]
fin_cases j
[GOAL]
case head.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
h : inner x y = 0
hij : { val := 0, isLt := (_ : 0 < 2) } ≠ { val := 0, isLt := (_ : 0 < 2) }
⊢ inner (Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < 2) })
(Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < 2) }) =
0
[PROOFSTEP]
simp_all
[GOAL]
case head.tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
h : inner x y = 0
hij : { val := 0, isLt := (_ : 0 < 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 2) 1) }
⊢ inner (Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < 2) })
(Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) =
0
[PROOFSTEP]
simpa using h
[GOAL]
case tail.head.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
h : inner x y = 0
hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ { val := 0, isLt := (_ : 0 < 2) }
⊢ inner (Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < 2) 1) })
(Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < 2) }) =
0
[PROOFSTEP]
simpa [real_inner_comm] using h
[GOAL]
case tail.head.tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
h : inner x y = 0
hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 2) 1) }
⊢ inner (Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < 2) 1) })
(Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) =
0
[PROOFSTEP]
simp_all
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ ↑(↑(areaForm (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y =
↑(↑(areaForm o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y)
[PROOFSTEP]
have : φ.symm ∘ ![x, y] = ![φ.symm x, φ.symm y] := by
ext i
fin_cases i <;> rfl
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ ↑(LinearIsometryEquiv.symm φ) ∘ ![x, y] = ![↑(LinearIsometryEquiv.symm φ) x, ↑(LinearIsometryEquiv.symm φ) y]
[PROOFSTEP]
ext i
[GOAL]
case h
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
i : Fin (Nat.succ (Nat.succ 0))
⊢ (↑(LinearIsometryEquiv.symm φ) ∘ ![x, y]) i =
Matrix.vecCons (↑(LinearIsometryEquiv.symm φ) x) ![↑(LinearIsometryEquiv.symm φ) y] i
[PROOFSTEP]
fin_cases i
[GOAL]
case h.head
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ (↑(LinearIsometryEquiv.symm φ) ∘ ![x, y]) { val := 0, isLt := (_ : 0 < Nat.succ (Nat.succ 0)) } =
Matrix.vecCons (↑(LinearIsometryEquiv.symm φ) x) ![↑(LinearIsometryEquiv.symm φ) y]
{ val := 0, isLt := (_ : 0 < Nat.succ (Nat.succ 0)) }
[PROOFSTEP]
rfl
[GOAL]
case h.tail.head
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ (↑(LinearIsometryEquiv.symm φ) ∘ ![x, y]) { val := 1, isLt := (_ : (fun a => a < Nat.succ (Nat.succ 0)) 1) } =
Matrix.vecCons (↑(LinearIsometryEquiv.symm φ) x) ![↑(LinearIsometryEquiv.symm φ) y]
{ val := 1, isLt := (_ : (fun a => a < Nat.succ (Nat.succ 0)) 1) }
[PROOFSTEP]
rfl
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
this : ↑(LinearIsometryEquiv.symm φ) ∘ ![x, y] = ![↑(LinearIsometryEquiv.symm φ) x, ↑(LinearIsometryEquiv.symm φ) y]
⊢ ↑(↑(areaForm (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y =
↑(↑(areaForm o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y)
[PROOFSTEP]
simp [areaForm_to_volumeForm, volumeForm_map, this]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x y : E
⊢ ↑(↑(areaForm o) (↑φ x)) (↑φ y) = ↑(↑(areaForm o) x) y
[PROOFSTEP]
convert o.areaForm_map φ (φ x) (φ y)
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_5
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x y : E
⊢ o = ↑(map (Fin 2) φ.toLinearEquiv) o
[PROOFSTEP]
symm
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_5
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x y : E
⊢ ↑(map (Fin 2) φ.toLinearEquiv) o = o
[PROOFSTEP]
rwa [← o.map_eq_iff_det_pos φ.toLinearEquiv] at hφ
[GOAL]
case h.e'_2.h.e'_5.h.e'_5.h.e'_5
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x y : E
⊢ Fintype.card (Fin 2) = finrank ℝ E
[PROOFSTEP]
rw [@Fact.out (finrank ℝ E = 2), Fintype.card_fin]
[GOAL]
case h.e'_3.h.e'_5.h.e'_6
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x y : E
⊢ x = ↑(LinearIsometryEquiv.symm φ) (↑φ x)
[PROOFSTEP]
simp
[GOAL]
case h.e'_3.h.e'_6
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x y : E
⊢ y = ↑(LinearIsometryEquiv.symm φ) (↑φ y)
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner (↑(rightAngleRotationAux₁ o) x) y = ↑(↑(areaForm o) x) y
[PROOFSTEP]
simp only [rightAngleRotationAux₁, LinearEquiv.trans_symm, LinearIsometryEquiv.toLinearEquiv_symm, LinearMap.coe_comp,
LinearEquiv.coe_coe, Function.comp_apply, LinearEquiv.trans_apply, LinearIsometryEquiv.coe_toLinearEquiv]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner
(↑(LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E))
(↑(LinearEquiv.symm (LinearEquiv.symm LinearMap.toContinuousLinearMap)) (↑(areaForm o) x)))
y =
↑(↑(areaForm o) x) y
[PROOFSTEP]
rw [InnerProductSpace.toDual_symm_apply]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(LinearEquiv.symm (LinearEquiv.symm LinearMap.toContinuousLinearMap)) (↑(areaForm o) x)) y = ↑(↑(areaForm o) x) y
[PROOFSTEP]
norm_cast
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner x (↑(rightAngleRotationAux₁ o) y) = -↑(↑(areaForm o) x) y
[PROOFSTEP]
rw [real_inner_comm]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner (↑(rightAngleRotationAux₁ o) y) x = -↑(↑(areaForm o) x) y
[PROOFSTEP]
simp [o.areaForm_swap y x]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
⊢ ‖↑{ toAddHom := src✝.toAddHom,
map_smul' :=
(_ :
∀ (r : ℝ) (x : E),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id ℝ) r • AddHom.toFun src✝.toAddHom x) }
x‖ =
‖x‖
[PROOFSTEP]
dsimp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
⊢ ‖↑(rightAngleRotationAux₁ o) x‖ = ‖x‖
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
⊢ ‖↑(rightAngleRotationAux₁ o) x‖ ≤ ‖x‖
[PROOFSTEP]
cases' eq_or_lt_of_le (norm_nonneg (o.rightAngleRotationAux₁ x)) with h h
[GOAL]
case refine'_1.inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
h : 0 = ‖↑(rightAngleRotationAux₁ o) x‖
⊢ ‖↑(rightAngleRotationAux₁ o) x‖ ≤ ‖x‖
[PROOFSTEP]
rw [← h]
[GOAL]
case refine'_1.inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
h : 0 = ‖↑(rightAngleRotationAux₁ o) x‖
⊢ 0 ≤ ‖x‖
[PROOFSTEP]
positivity
[GOAL]
case refine'_1.inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
h : 0 < ‖↑(rightAngleRotationAux₁ o) x‖
⊢ ‖↑(rightAngleRotationAux₁ o) x‖ ≤ ‖x‖
[PROOFSTEP]
refine' le_of_mul_le_mul_right _ h
[GOAL]
case refine'_1.inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
h : 0 < ‖↑(rightAngleRotationAux₁ o) x‖
⊢ ‖↑(rightAngleRotationAux₁ o) x‖ * ‖↑(rightAngleRotationAux₁ o) x‖ ≤ ‖x‖ * ‖↑(rightAngleRotationAux₁ o) x‖
[PROOFSTEP]
rw [← real_inner_self_eq_norm_mul_norm, o.inner_rightAngleRotationAux₁_left]
[GOAL]
case refine'_1.inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
h : 0 < ‖↑(rightAngleRotationAux₁ o) x‖
⊢ ↑(↑(areaForm o) x) (↑(rightAngleRotationAux₁ o) x) ≤ ‖x‖ * ‖↑(rightAngleRotationAux₁ o) x‖
[PROOFSTEP]
exact o.areaForm_le x (o.rightAngleRotationAux₁ x)
[GOAL]
case refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖
[PROOFSTEP]
let K : Submodule ℝ E := ℝ ∙ x
[GOAL]
case refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖
[PROOFSTEP]
have : Nontrivial Kᗮ := by
apply @FiniteDimensional.nontrivial_of_finrank_pos ℝ
have : finrank ℝ K ≤ Finset.card { x } := by
rw [← Set.toFinset_singleton]
exact finrank_span_le_card ({ x } : Set E)
have : Finset.card { x } = 1 := Finset.card_singleton x
have : finrank ℝ K + finrank ℝ Kᗮ = finrank ℝ E := K.finrank_add_finrank_orthogonal
have : finrank ℝ E = 2 := Fact.out
linarith
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
⊢ Nontrivial { x // x ∈ Kᗮ }
[PROOFSTEP]
apply @FiniteDimensional.nontrivial_of_finrank_pos ℝ
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
⊢ 0 < finrank ℝ { x // x ∈ Kᗮ }
[PROOFSTEP]
have : finrank ℝ K ≤ Finset.card { x } := by
rw [← Set.toFinset_singleton]
exact finrank_span_le_card ({ x } : Set E)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
⊢ finrank ℝ { x // x ∈ K } ≤ Finset.card {x}
[PROOFSTEP]
rw [← Set.toFinset_singleton]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
⊢ finrank ℝ { x // x ∈ K } ≤ Finset.card (Set.toFinset {x})
[PROOFSTEP]
exact finrank_span_le_card ({ x } : Set E)
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this : finrank ℝ { x // x ∈ K } ≤ Finset.card {x}
⊢ 0 < finrank ℝ { x // x ∈ Kᗮ }
[PROOFSTEP]
have : Finset.card { x } = 1 := Finset.card_singleton x
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this✝ : finrank ℝ { x // x ∈ K } ≤ Finset.card {x}
this : Finset.card {x} = 1
⊢ 0 < finrank ℝ { x // x ∈ Kᗮ }
[PROOFSTEP]
have : finrank ℝ K + finrank ℝ Kᗮ = finrank ℝ E := K.finrank_add_finrank_orthogonal
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this✝¹ : finrank ℝ { x // x ∈ K } ≤ Finset.card {x}
this✝ : Finset.card {x} = 1
this : finrank ℝ { x // x ∈ K } + finrank ℝ { x // x ∈ Kᗮ } = finrank ℝ E
⊢ 0 < finrank ℝ { x // x ∈ Kᗮ }
[PROOFSTEP]
have : finrank ℝ E = 2 := Fact.out
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this✝² : finrank ℝ { x // x ∈ K } ≤ Finset.card {x}
this✝¹ : Finset.card {x} = 1
this✝ : finrank ℝ { x // x ∈ K } + finrank ℝ { x // x ∈ Kᗮ } = finrank ℝ E
this : finrank ℝ E = 2
⊢ 0 < finrank ℝ { x // x ∈ Kᗮ }
[PROOFSTEP]
linarith
[GOAL]
case refine'_2
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this : Nontrivial { x // x ∈ Kᗮ }
⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖
[PROOFSTEP]
obtain ⟨w, hw₀⟩ : ∃ w : Kᗮ, w ≠ 0 := exists_ne 0
[GOAL]
case refine'_2.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this : Nontrivial { x // x ∈ Kᗮ }
w : { x // x ∈ Kᗮ }
hw₀ : w ≠ 0
⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖
[PROOFSTEP]
have hw' : ⟪x, (w : E)⟫ = 0 := Submodule.mem_orthogonal_singleton_iff_inner_right.mp w.2
[GOAL]
case refine'_2.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this : Nontrivial { x // x ∈ Kᗮ }
w : { x // x ∈ Kᗮ }
hw₀ : w ≠ 0
hw' : inner x ↑w = 0
⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖
[PROOFSTEP]
have hw : (w : E) ≠ 0 := fun h => hw₀ (Submodule.coe_eq_zero.mp h)
[GOAL]
case refine'_2.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this : Nontrivial { x // x ∈ Kᗮ }
w : { x // x ∈ Kᗮ }
hw₀ : w ≠ 0
hw' : inner x ↑w = 0
hw : ↑w ≠ 0
⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖
[PROOFSTEP]
refine' le_of_mul_le_mul_right _ (by rwa [norm_pos_iff] : 0 < ‖(w : E)‖)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this : Nontrivial { x // x ∈ Kᗮ }
w : { x // x ∈ Kᗮ }
hw₀ : w ≠ 0
hw' : inner x ↑w = 0
hw : ↑w ≠ 0
⊢ 0 < ‖↑w‖
[PROOFSTEP]
rwa [norm_pos_iff]
[GOAL]
case refine'_2.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this : Nontrivial { x // x ∈ Kᗮ }
w : { x // x ∈ Kᗮ }
hw₀ : w ≠ 0
hw' : inner x ↑w = 0
hw : ↑w ≠ 0
⊢ ‖x‖ * ‖↑w‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖ * ‖↑w‖
[PROOFSTEP]
rw [← o.abs_areaForm_of_orthogonal hw']
[GOAL]
case refine'_2.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this : Nontrivial { x // x ∈ Kᗮ }
w : { x // x ∈ Kᗮ }
hw₀ : w ≠ 0
hw' : inner x ↑w = 0
hw : ↑w ≠ 0
⊢ |↑(↑(areaForm o) x) ↑w| ≤ ‖↑(rightAngleRotationAux₁ o) x‖ * ‖↑w‖
[PROOFSTEP]
rw [← o.inner_rightAngleRotationAux₁_left x w]
[GOAL]
case refine'_2.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o
x : E
K : Submodule ℝ E := Submodule.span ℝ {x}
this : Nontrivial { x // x ∈ Kᗮ }
w : { x // x ∈ Kᗮ }
hw₀ : w ≠ 0
hw' : inner x ↑w = 0
hw : ↑w ≠ 0
⊢ |inner (↑(rightAngleRotationAux₁ o) x) ↑w| ≤ ‖↑(rightAngleRotationAux₁ o) x‖ * ‖↑w‖
[PROOFSTEP]
exact abs_real_inner_le_norm (o.rightAngleRotationAux₁ x) w
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ↑(rightAngleRotationAux₁ o) (↑(rightAngleRotationAux₁ o) x) = -x
[PROOFSTEP]
apply ext_inner_left ℝ
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ∀ (v : (fun x => E) (↑(rightAngleRotationAux₁ o) x)),
inner v (↑(rightAngleRotationAux₁ o) (↑(rightAngleRotationAux₁ o) x)) = inner v (-x)
[PROOFSTEP]
intro y
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
y : (fun x => E) (↑(rightAngleRotationAux₁ o) x)
⊢ inner y (↑(rightAngleRotationAux₁ o) (↑(rightAngleRotationAux₁ o) x)) = inner y (-x)
[PROOFSTEP]
have : ⟪o.rightAngleRotationAux₁ y, o.rightAngleRotationAux₁ x⟫ = ⟪y, x⟫ :=
LinearIsometry.inner_map_map o.rightAngleRotationAux₂ y x
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
y : (fun x => E) (↑(rightAngleRotationAux₁ o) x)
this : inner (↑(rightAngleRotationAux₁ o) y) (↑(rightAngleRotationAux₁ o) x) = inner y x
⊢ inner y (↑(rightAngleRotationAux₁ o) (↑(rightAngleRotationAux₁ o) x)) = inner y (-x)
[PROOFSTEP]
rw [o.inner_rightAngleRotationAux₁_right, ← o.inner_rightAngleRotationAux₁_left, this, inner_neg_right]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
⊢ LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id
[PROOFSTEP]
ext
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x✝ : E
⊢ ↑(LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o)) x✝ = ↑LinearMap.id x✝
[PROOFSTEP]
simp [rightAngleRotationAux₂]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
⊢ LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id
[PROOFSTEP]
ext
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x✝ : E
⊢ ↑(LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap) x✝ = ↑LinearMap.id x✝
[PROOFSTEP]
simp [rightAngleRotationAux₂]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner (↑(rightAngleRotation o) x) y = ↑(↑(areaForm o) x) y
[PROOFSTEP]
rw [rightAngleRotation]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner
(↑(LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o)
(_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id)
(_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id))
x)
y =
↑(↑(areaForm o) x) y
[PROOFSTEP]
exact o.inner_rightAngleRotationAux₁_left x y
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner x (↑(rightAngleRotation o) y) = -↑(↑(areaForm o) x) y
[PROOFSTEP]
rw [rightAngleRotation]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner x
(↑(LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o)
(_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id)
(_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id))
y) =
-↑(↑(areaForm o) x) y
[PROOFSTEP]
exact o.inner_rightAngleRotationAux₁_right x y
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ↑(rightAngleRotation o) (↑(rightAngleRotation o) x) = -x
[PROOFSTEP]
rw [rightAngleRotation]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ↑(LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o)
(_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id)
(_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id))
(↑(LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o)
(_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id)
(_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id))
x) =
-x
[PROOFSTEP]
exact o.rightAngleRotationAux₁_rightAngleRotationAux₁ x
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
⊢ LinearIsometryEquiv.symm (rightAngleRotation o) =
LinearIsometryEquiv.trans (rightAngleRotation o) (LinearIsometryEquiv.neg ℝ)
[PROOFSTEP]
rw [rightAngleRotation]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
⊢ LinearIsometryEquiv.symm
(LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o)
(_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id)
(_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id)) =
LinearIsometryEquiv.trans
(LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o)
(_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id)
(_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id))
(LinearIsometryEquiv.neg ℝ)
[PROOFSTEP]
exact LinearIsometryEquiv.toLinearIsometry_injective rfl
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ inner (↑(rightAngleRotation o) x) x = 0
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner x (↑(rightAngleRotation o) y) = -inner (↑(rightAngleRotation o) x) y
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner (↑(rightAngleRotation o) x) y = -inner x (↑(rightAngleRotation o) y)
[PROOFSTEP]
simp [o.inner_rightAngleRotation_swap x y]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(areaForm o) (↑(rightAngleRotation o) x)) y = -inner x y
[PROOFSTEP]
rw [← o.inner_comp_rightAngleRotation, o.inner_rightAngleRotation_right, neg_neg]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(areaForm o) x) (↑(rightAngleRotation o) y) = inner x y
[PROOFSTEP]
rw [← o.inner_rightAngleRotation_left, o.inner_comp_rightAngleRotation]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(areaForm o) (↑(rightAngleRotation o) x)) (↑(rightAngleRotation o) y) = ↑(↑(areaForm o) x) y
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
⊢ LinearIsometryEquiv.trans (rightAngleRotation o) (rightAngleRotation o) = LinearIsometryEquiv.neg ℝ
[PROOFSTEP]
ext
[GOAL]
case h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x✝ : E
⊢ ↑(LinearIsometryEquiv.trans (rightAngleRotation o) (rightAngleRotation o)) x✝ = ↑(LinearIsometryEquiv.neg ℝ) x✝
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ↑(rightAngleRotation (-o)) x = -↑(rightAngleRotation o) x
[PROOFSTEP]
apply ext_inner_right ℝ
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ∀ (v : E), inner (↑(rightAngleRotation (-o)) x) v = inner (-↑(rightAngleRotation o) x) v
[PROOFSTEP]
intro y
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ inner (↑(rightAngleRotation (-o)) x) y = inner (-↑(rightAngleRotation o) x) y
[PROOFSTEP]
rw [inner_rightAngleRotation_left]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(areaForm (-o)) x) y = inner (-↑(rightAngleRotation o) x) y
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x : F
⊢ ↑(rightAngleRotation (↑(map (Fin 2) φ.toLinearEquiv) o)) x =
↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))
[PROOFSTEP]
apply ext_inner_right ℝ
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x : F
⊢ ∀ (v : F),
inner (↑(rightAngleRotation (↑(map (Fin 2) φ.toLinearEquiv) o)) x) v =
inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) v
[PROOFSTEP]
intro y
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ inner (↑(rightAngleRotation (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y =
inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) y
[PROOFSTEP]
rw [inner_rightAngleRotation_left]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ ↑(↑(areaForm (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y =
inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) y
[PROOFSTEP]
trans ⟪J (φ.symm x), φ.symm y⟫
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ ↑(↑(areaForm (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y =
inner (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y)
[PROOFSTEP]
simp [o.areaForm_map]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ inner (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y) =
inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) y
[PROOFSTEP]
trans ⟪φ (J (φ.symm x)), φ (φ.symm y)⟫
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ inner (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y) =
inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) (↑φ (↑(LinearIsometryEquiv.symm φ) y))
[PROOFSTEP]
rw [φ.inner_map_map]
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) (↑φ (↑(LinearIsometryEquiv.symm φ) y)) =
inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) y
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x : E
⊢ ↑φ (↑(rightAngleRotation o) x) = ↑(rightAngleRotation o) (↑φ x)
[PROOFSTEP]
convert (o.rightAngleRotation_map φ (φ x)).symm
[GOAL]
case h.e'_2.h.e'_6.h.e'_6
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x : E
⊢ x = ↑(LinearIsometryEquiv.symm φ) (↑φ x)
[PROOFSTEP]
simp
[GOAL]
case h.e'_3.h.e'_5.h.e'_5
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x : E
⊢ o = ↑(map (Fin 2) φ.toLinearEquiv) o
[PROOFSTEP]
symm
[GOAL]
case h.e'_3.h.e'_5.h.e'_5
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x : E
⊢ ↑(map (Fin 2) φ.toLinearEquiv) o = o
[PROOFSTEP]
rwa [← o.map_eq_iff_det_pos φ.toLinearEquiv] at hφ
[GOAL]
case h.e'_3.h.e'_5.h.e'_5
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x : E
⊢ Fintype.card (Fin 2) = finrank ℝ E
[PROOFSTEP]
rw [@Fact.out (finrank ℝ E = 2), Fintype.card_fin]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
i : Fin 2
⊢ Matrix.vecCons x ![↑(rightAngleRotation o) x] i ≠ 0
[PROOFSTEP]
fin_cases i
[GOAL]
case head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
⊢ Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) } ≠ 0
[PROOFSTEP]
simp [hx]
[GOAL]
case tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
⊢ Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ 0
[PROOFSTEP]
simp [hx]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
⊢ ∀ (i j : Fin 2),
i ≠ j →
inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] i) (Matrix.vecCons x ![↑(rightAngleRotation o) x] j) = 0
[PROOFSTEP]
intro i j hij
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
i j : Fin 2
hij : i ≠ j
⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] i) (Matrix.vecCons x ![↑(rightAngleRotation o) x] j) = 0
[PROOFSTEP]
fin_cases i
[GOAL]
case head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
j : Fin 2
hij : { val := 0, isLt := (_ : 0 < 2) } ≠ j
⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) })
(Matrix.vecCons x ![↑(rightAngleRotation o) x] j) =
0
[PROOFSTEP]
fin_cases j
[GOAL]
case tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
j : Fin 2
hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ j
⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) })
(Matrix.vecCons x ![↑(rightAngleRotation o) x] j) =
0
[PROOFSTEP]
fin_cases j
[GOAL]
case head.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
hij : { val := 0, isLt := (_ : 0 < 2) } ≠ { val := 0, isLt := (_ : 0 < 2) }
⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) })
(Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) }) =
0
[PROOFSTEP]
simp_all
[GOAL]
case head.tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
hij : { val := 0, isLt := (_ : 0 < 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 2) 1) }
⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) })
(Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) =
0
[PROOFSTEP]
simp_all
[GOAL]
case tail.head.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ { val := 0, isLt := (_ : 0 < 2) }
⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) })
(Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) }) =
0
[PROOFSTEP]
simp_all
[GOAL]
case tail.head.tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : x ≠ 0
hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 2) 1) }
⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) })
(Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) =
0
[PROOFSTEP]
simp_all
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
⊢ inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a = ‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x
[PROOFSTEP]
by_cases ha : a = 0
[GOAL]
case pos
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : a = 0
⊢ inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a = ‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x
[PROOFSTEP]
simp [ha]
[GOAL]
case neg
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a = ‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x
[PROOFSTEP]
apply (o.basisRightAngleRotation a ha).ext
[GOAL]
case neg
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ ∀ (i : Fin 2),
↑(inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a) (↑(basisRightAngleRotation o a ha) i) =
↑(‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x) (↑(basisRightAngleRotation o a ha) i)
[PROOFSTEP]
intro i
[GOAL]
case neg
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
i : Fin 2
⊢ ↑(inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a) (↑(basisRightAngleRotation o a ha) i) =
↑(‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x) (↑(basisRightAngleRotation o a ha) i)
[PROOFSTEP]
fin_cases i
[GOAL]
case neg.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ ↑(inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a)
(↑(basisRightAngleRotation o a ha) { val := 0, isLt := (_ : 0 < 2) }) =
↑(‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x) (↑(basisRightAngleRotation o a ha) { val := 0, isLt := (_ : 0 < 2) })
[PROOFSTEP]
simp only [Fin.mk_zero, coe_basisRightAngleRotation, Matrix.cons_val_zero, LinearMap.add_apply, LinearMap.smul_apply,
innerₛₗ_apply, real_inner_self_eq_norm_sq, smul_eq_mul, areaForm_apply_self, mul_zero, add_zero, Real.rpow_two,
real_inner_comm]
[GOAL]
case neg.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ inner a x * ‖a‖ ^ 2 = ‖a‖ ^ 2 * inner a x
[PROOFSTEP]
ring
[GOAL]
case neg.tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ ↑(inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a)
(↑(basisRightAngleRotation o a ha) { val := 1, isLt := (_ : (fun a => a < 2) 1) }) =
↑(‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x) (↑(basisRightAngleRotation o a ha) { val := 1, isLt := (_ : (fun a => a < 2) 1) })
[PROOFSTEP]
simp only [Fin.mk_one, coe_basisRightAngleRotation, Matrix.cons_val_one, Matrix.head_cons, LinearMap.add_apply,
LinearMap.smul_apply, innerₛₗ_apply, inner_rightAngleRotation_right, areaForm_apply_self, neg_zero, smul_eq_mul,
mul_zero, areaForm_rightAngleRotation_right, real_inner_self_eq_norm_sq, zero_add, Real.rpow_two, mul_neg]
[GOAL]
case neg.tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ ↑(↑(areaForm o) a) x * ‖a‖ ^ 2 = -(‖a‖ ^ 2 * ↑(↑(areaForm o) x) a)
[PROOFSTEP]
rw [o.areaForm_swap]
[GOAL]
case neg.tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ -↑(↑(areaForm o) x) a * ‖a‖ ^ 2 = -(‖a‖ ^ 2 * ↑(↑(areaForm o) x) a)
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a b : E
⊢ inner a b ^ 2 + ↑(↑(areaForm o) a) b ^ 2 = ‖a‖ ^ 2 * ‖b‖ ^ 2
[PROOFSTEP]
simpa [sq, real_inner_self_eq_norm_sq] using o.inner_mul_inner_add_areaForm_mul_areaForm a b b
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
⊢ inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a = ‖a‖ ^ 2 • ↑(areaForm o) x
[PROOFSTEP]
by_cases ha : a = 0
[GOAL]
case pos
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : a = 0
⊢ inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a = ‖a‖ ^ 2 • ↑(areaForm o) x
[PROOFSTEP]
simp [ha]
[GOAL]
case neg
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a = ‖a‖ ^ 2 • ↑(areaForm o) x
[PROOFSTEP]
apply (o.basisRightAngleRotation a ha).ext
[GOAL]
case neg
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ ∀ (i : Fin 2),
↑(inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a) (↑(basisRightAngleRotation o a ha) i) =
↑(‖a‖ ^ 2 • ↑(areaForm o) x) (↑(basisRightAngleRotation o a ha) i)
[PROOFSTEP]
intro i
[GOAL]
case neg
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
i : Fin 2
⊢ ↑(inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a) (↑(basisRightAngleRotation o a ha) i) =
↑(‖a‖ ^ 2 • ↑(areaForm o) x) (↑(basisRightAngleRotation o a ha) i)
[PROOFSTEP]
fin_cases i
[GOAL]
case neg.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ ↑(inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a)
(↑(basisRightAngleRotation o a ha) { val := 0, isLt := (_ : 0 < 2) }) =
↑(‖a‖ ^ 2 • ↑(areaForm o) x) (↑(basisRightAngleRotation o a ha) { val := 0, isLt := (_ : 0 < 2) })
[PROOFSTEP]
simp only [o.areaForm_swap a x, neg_smul, sub_neg_eq_add, Fin.mk_zero, coe_basisRightAngleRotation,
Matrix.cons_val_zero, LinearMap.add_apply, LinearMap.smul_apply, areaForm_apply_self, smul_eq_mul, mul_zero,
innerₛₗ_apply, real_inner_self_eq_norm_sq, zero_add, Real.rpow_two]
[GOAL]
case neg.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ ↑(↑(areaForm o) x) a * ‖a‖ ^ 2 = ‖a‖ ^ 2 * ↑(↑(areaForm o) x) a
[PROOFSTEP]
ring
[GOAL]
case neg.tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ ↑(inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a)
(↑(basisRightAngleRotation o a ha) { val := 1, isLt := (_ : (fun a => a < 2) 1) }) =
↑(‖a‖ ^ 2 • ↑(areaForm o) x) (↑(basisRightAngleRotation o a ha) { val := 1, isLt := (_ : (fun a => a < 2) 1) })
[PROOFSTEP]
simp only [Fin.mk_one, coe_basisRightAngleRotation, Matrix.cons_val_one, Matrix.head_cons, LinearMap.sub_apply,
LinearMap.smul_apply, areaForm_rightAngleRotation_right, real_inner_self_eq_norm_sq, smul_eq_mul, innerₛₗ_apply,
inner_rightAngleRotation_right, areaForm_apply_self, neg_zero, mul_zero, sub_zero, Real.rpow_two, real_inner_comm]
[GOAL]
case neg.tail.head
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x : E
ha : ¬a = 0
⊢ inner a x * ‖a‖ ^ 2 = ‖a‖ ^ 2 * inner a x
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 ↔ SameRay ℝ x y
[PROOFSTEP]
by_cases hx : x = 0
[GOAL]
case pos
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : x = 0
⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 ↔ SameRay ℝ x y
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 ↔ SameRay ℝ x y
[PROOFSTEP]
constructor
[GOAL]
case neg.mp
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 → SameRay ℝ x y
[PROOFSTEP]
let a : ℝ := (o.basisRightAngleRotation x hx).repr y 0
[GOAL]
case neg.mp
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 → SameRay ℝ x y
[PROOFSTEP]
let b : ℝ := (o.basisRightAngleRotation x hx).repr y 1
[GOAL]
case neg.mp
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 → SameRay ℝ x y
[PROOFSTEP]
suffices ↑0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → SameRay ℝ x (a • x + b • J x)
by
rw [← (o.basisRightAngleRotation x hx).sum_repr y]
simp only [Fin.sum_univ_succ, coe_basisRightAngleRotation, Matrix.cons_val_zero, Fin.succ_zero_eq_one',
Fintype.univ_of_isEmpty, Finset.sum_empty, areaForm_apply_self, map_smul, map_add, real_inner_smul_right,
inner_add_right, Matrix.cons_val_one, Matrix.head_cons, Algebra.id.smul_eq_mul, areaForm_rightAngleRotation_right,
mul_zero, add_zero, zero_add, neg_zero, inner_rightAngleRotation_right, real_inner_self_eq_norm_sq]
exact this
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
this : 0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x)
⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 → SameRay ℝ x y
[PROOFSTEP]
rw [← (o.basisRightAngleRotation x hx).sum_repr y]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
this : 0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x)
⊢ 0 ≤
inner x
(Finset.sum Finset.univ fun i =>
↑(↑(basisRightAngleRotation o x hx).repr y) i • ↑(basisRightAngleRotation o x hx) i) ∧
↑(↑(areaForm o) x)
(Finset.sum Finset.univ fun i =>
↑(↑(basisRightAngleRotation o x hx).repr y) i • ↑(basisRightAngleRotation o x hx) i) =
0 →
SameRay ℝ x
(Finset.sum Finset.univ fun i =>
↑(↑(basisRightAngleRotation o x hx).repr y) i • ↑(basisRightAngleRotation o x hx) i)
[PROOFSTEP]
simp only [Fin.sum_univ_succ, coe_basisRightAngleRotation, Matrix.cons_val_zero, Fin.succ_zero_eq_one',
Fintype.univ_of_isEmpty, Finset.sum_empty, areaForm_apply_self, map_smul, map_add, real_inner_smul_right,
inner_add_right, Matrix.cons_val_one, Matrix.head_cons, Algebra.id.smul_eq_mul, areaForm_rightAngleRotation_right,
mul_zero, add_zero, zero_add, neg_zero, inner_rightAngleRotation_right, real_inner_self_eq_norm_sq]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
this : 0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x)
⊢ 0 ≤ ↑(↑(basisRightAngleRotation o x hx).repr y) 0 * ‖x‖ ^ 2 ∧
↑(↑(basisRightAngleRotation o x hx).repr y) 1 * ‖x‖ ^ 2 = 0 →
SameRay ℝ x
(↑(↑(basisRightAngleRotation o x hx).repr y) 0 • x +
↑(↑(basisRightAngleRotation o x hx).repr y) 1 • ↑(rightAngleRotation o) x)
[PROOFSTEP]
exact this
[GOAL]
case neg.mp
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
⊢ 0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x)
[PROOFSTEP]
rintro ⟨ha, hb⟩
[GOAL]
case neg.mp.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
ha : 0 ≤ a * ‖x‖ ^ 2
hb : b * ‖x‖ ^ 2 = 0
⊢ SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x)
[PROOFSTEP]
have hx' : 0 < ‖x‖ := by simpa using hx
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
ha : 0 ≤ a * ‖x‖ ^ 2
hb : b * ‖x‖ ^ 2 = 0
⊢ 0 < ‖x‖
[PROOFSTEP]
simpa using hx
[GOAL]
case neg.mp.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
ha : 0 ≤ a * ‖x‖ ^ 2
hb : b * ‖x‖ ^ 2 = 0
hx' : 0 < ‖x‖
⊢ SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x)
[PROOFSTEP]
have ha' : 0 ≤ a := nonneg_of_mul_nonneg_left ha (by positivity)
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
ha : 0 ≤ a * ‖x‖ ^ 2
hb : b * ‖x‖ ^ 2 = 0
hx' : 0 < ‖x‖
⊢ 0 < ‖x‖ ^ 2
[PROOFSTEP]
positivity
[GOAL]
case neg.mp.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
ha : 0 ≤ a * ‖x‖ ^ 2
hb : b * ‖x‖ ^ 2 = 0
hx' : 0 < ‖x‖
ha' : 0 ≤ a
⊢ SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x)
[PROOFSTEP]
have hb' : b = 0 := eq_zero_of_ne_zero_of_mul_right_eq_zero (pow_ne_zero 2 hx'.ne') hb
[GOAL]
case neg.mp.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0
b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1
ha : 0 ≤ a * ‖x‖ ^ 2
hb : b * ‖x‖ ^ 2 = 0
hx' : 0 < ‖x‖
ha' : 0 ≤ a
hb' : b = 0
⊢ SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x)
[PROOFSTEP]
simpa [hb'] using SameRay.sameRay_nonneg_smul_right x ha'
[GOAL]
case neg.mpr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
⊢ SameRay ℝ x y → 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0
[PROOFSTEP]
intro h
[GOAL]
case neg.mpr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ¬x = 0
h : SameRay ℝ x y
⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0
[PROOFSTEP]
obtain ⟨r, hr, rfl⟩ := h.exists_nonneg_left hx
[GOAL]
case neg.mpr.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : ¬x = 0
r : ℝ
hr : 0 ≤ r
h : SameRay ℝ x (r • x)
⊢ 0 ≤ inner x (r • x) ∧ ↑(↑(areaForm o) x) (r • x) = 0
[PROOFSTEP]
simp only [inner_smul_right, real_inner_self_eq_norm_sq, LinearMap.map_smulₛₗ, areaForm_apply_self,
Algebra.id.smul_eq_mul, mul_zero, eq_self_iff_true, and_true_iff]
[GOAL]
case neg.mpr.intro.intro
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
hx : ¬x = 0
r : ℝ
hr : 0 ≤ r
h : SameRay ℝ x (r • x)
⊢ 0 ≤ r * ‖x‖ ^ 2
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(kahler o) x) y = ↑(starRingEnd ((fun x => ℂ) x)) (↑(↑(kahler o) y) x)
[PROOFSTEP]
have : ∀ r : ℝ, Complex.ofReal' r = @IsROrC.ofReal ℂ _ r := fun r => rfl
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
this : ∀ (r : ℝ), ↑r = ↑r
⊢ ↑(↑(kahler o) x) y = ↑(starRingEnd ((fun x => ℂ) x)) (↑(↑(kahler o) y) x)
[PROOFSTEP]
simp only [kahler_apply_apply]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
this : ∀ (r : ℝ), ↑r = ↑r
⊢ ↑(inner x y) + ↑(↑(areaForm o) x) y • Complex.I = ↑(starRingEnd ℂ) (↑(inner y x) + ↑(↑(areaForm o) y) x • Complex.I)
[PROOFSTEP]
rw [real_inner_comm, areaForm_swap]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
this : ∀ (r : ℝ), ↑r = ↑r
⊢ ↑(inner y x) + -↑(↑(areaForm o) y) x • Complex.I = ↑(starRingEnd ℂ) (↑(inner y x) + ↑(↑(areaForm o) y) x • Complex.I)
[PROOFSTEP]
simp [this]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ↑(↑(kahler o) x) x = ↑(‖x‖ ^ 2)
[PROOFSTEP]
simp [kahler_apply_apply, real_inner_self_eq_norm_sq]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(kahler o) (↑(rightAngleRotation o) x)) y = -Complex.I * ↑(↑(kahler o) x) y
[PROOFSTEP]
simp only [o.areaForm_rightAngleRotation_left, o.inner_rightAngleRotation_left, o.kahler_apply_apply,
Complex.ofReal_neg, Complex.real_smul]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(↑(areaForm o) x) y) + -↑(inner x y) * Complex.I =
-Complex.I * (↑(inner x y) + ↑(↑(↑(areaForm o) x) y) * Complex.I)
[PROOFSTEP]
linear_combination ω x y * Complex.I_sq
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(kahler o) x) (↑(rightAngleRotation o) y) = Complex.I * ↑(↑(kahler o) x) y
[PROOFSTEP]
simp only [o.areaForm_rightAngleRotation_right, o.inner_rightAngleRotation_right, o.kahler_apply_apply,
Complex.ofReal_neg, Complex.real_smul]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ -↑(↑(↑(areaForm o) x) y) + ↑(inner x y) * Complex.I = Complex.I * (↑(inner x y) + ↑(↑(↑(areaForm o) x) y) * Complex.I)
[PROOFSTEP]
linear_combination -ω x y * Complex.I_sq
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(kahler o) (↑(rightAngleRotation o) x)) (↑(rightAngleRotation o) y) = ↑(↑(kahler o) x) y
[PROOFSTEP]
simp only [kahler_rightAngleRotation_left, kahler_rightAngleRotation_right]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ Complex.I * (-Complex.I * ↑(↑(kahler o) x) y) = ↑(↑(kahler o) x) y
[PROOFSTEP]
linear_combination -o.kahler x y * Complex.I_sq
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ -(Complex.I * (Complex.I * ↑(↑(kahler o) x) y)) = ↑(↑(kahler o) x) y
[PROOFSTEP]
linear_combination -o.kahler x y * Complex.I_sq
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(kahler (-o)) x) y = ↑(starRingEnd ((fun x => ℂ) y)) (↑(↑(kahler o) x) y)
[PROOFSTEP]
have : ∀ r : ℝ, Complex.ofReal' r = @IsROrC.ofReal ℂ _ r := fun r => rfl
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
this : ∀ (r : ℝ), ↑r = ↑r
⊢ ↑(↑(kahler (-o)) x) y = ↑(starRingEnd ((fun x => ℂ) y)) (↑(↑(kahler o) x) y)
[PROOFSTEP]
simp [kahler_apply_apply, this]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x y : E
⊢ ↑(↑(kahler o) x) a * ↑(↑(kahler o) a) y = ↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y
[PROOFSTEP]
trans (↑(‖a‖ ^ 2) : ℂ) * o.kahler x y
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x y : E
⊢ ↑(↑(kahler o) x) a * ↑(↑(kahler o) a) y = ↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y
[PROOFSTEP]
ext
[GOAL]
case a
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x y : E
⊢ (↑(↑(kahler o) x) a * ↑(↑(kahler o) a) y).re = (↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y).re
[PROOFSTEP]
simp only [o.kahler_apply_apply, Complex.add_im, Complex.add_re, Complex.I_im, Complex.I_re, Complex.mul_im,
Complex.mul_re, Complex.ofReal_im, Complex.ofReal_re, Complex.real_smul]
[GOAL]
case a
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x y : E
⊢ (inner x a + (↑(↑(areaForm o) x) a * 0 - 0 * 1)) * (inner a y + (↑(↑(areaForm o) a) y * 0 - 0 * 1)) -
(0 + (↑(↑(areaForm o) x) a * 1 + 0 * 0)) * (0 + (↑(↑(areaForm o) a) y * 1 + 0 * 0)) =
‖a‖ ^ 2 * (inner x y + (↑(↑(areaForm o) x) y * 0 - 0 * 1)) - 0 * (0 + (↑(↑(areaForm o) x) y * 1 + 0 * 0))
[PROOFSTEP]
rw [real_inner_comm a x, o.areaForm_swap x a]
[GOAL]
case a
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x y : E
⊢ (inner a x + (-↑(↑(areaForm o) a) x * 0 - 0 * 1)) * (inner a y + (↑(↑(areaForm o) a) y * 0 - 0 * 1)) -
(0 + (-↑(↑(areaForm o) a) x * 1 + 0 * 0)) * (0 + (↑(↑(areaForm o) a) y * 1 + 0 * 0)) =
‖a‖ ^ 2 * (inner x y + (↑(↑(areaForm o) x) y * 0 - 0 * 1)) - 0 * (0 + (↑(↑(areaForm o) x) y * 1 + 0 * 0))
[PROOFSTEP]
linear_combination o.inner_mul_inner_add_areaForm_mul_areaForm a x y
[GOAL]
case a
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x y : E
⊢ (↑(↑(kahler o) x) a * ↑(↑(kahler o) a) y).im = (↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y).im
[PROOFSTEP]
simp only [o.kahler_apply_apply, Complex.add_im, Complex.add_re, Complex.I_im, Complex.I_re, Complex.mul_im,
Complex.mul_re, Complex.ofReal_im, Complex.ofReal_re, Complex.real_smul]
[GOAL]
case a
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x y : E
⊢ (inner x a + (↑(↑(areaForm o) x) a * 0 - 0 * 1)) * (0 + (↑(↑(areaForm o) a) y * 1 + 0 * 0)) +
(0 + (↑(↑(areaForm o) x) a * 1 + 0 * 0)) * (inner a y + (↑(↑(areaForm o) a) y * 0 - 0 * 1)) =
‖a‖ ^ 2 * (0 + (↑(↑(areaForm o) x) y * 1 + 0 * 0)) + 0 * (inner x y + (↑(↑(areaForm o) x) y * 0 - 0 * 1))
[PROOFSTEP]
rw [real_inner_comm a x, o.areaForm_swap x a]
[GOAL]
case a
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x y : E
⊢ (inner a x + (-↑(↑(areaForm o) a) x * 0 - 0 * 1)) * (0 + (↑(↑(areaForm o) a) y * 1 + 0 * 0)) +
(0 + (-↑(↑(areaForm o) a) x * 1 + 0 * 0)) * (inner a y + (↑(↑(areaForm o) a) y * 0 - 0 * 1)) =
‖a‖ ^ 2 * (0 + (↑(↑(areaForm o) x) y * 1 + 0 * 0)) + 0 * (inner x y + (↑(↑(areaForm o) x) y * 0 - 0 * 1))
[PROOFSTEP]
linear_combination o.inner_mul_areaForm_sub a x y
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
a x y : E
⊢ ↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y = ↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y
[PROOFSTEP]
norm_cast
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑Complex.normSq (↑(↑(kahler o) x) y) = ‖x‖ ^ 2 * ‖y‖ ^ 2
[PROOFSTEP]
simpa [kahler_apply_apply, Complex.normSq, sq] using o.inner_sq_add_areaForm_sq x y
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑Complex.abs (↑(↑(kahler o) x) y) = ‖x‖ * ‖y‖
[PROOFSTEP]
rw [← sq_eq_sq, Complex.sq_abs]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑Complex.normSq (↑(↑(kahler o) x) y) = (‖x‖ * ‖y‖) ^ 2
[PROOFSTEP]
linear_combination o.normSq_kahler x y
[GOAL]
case ha
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ 0 ≤ ↑Complex.abs (↑(↑(kahler o) x) y)
[PROOFSTEP]
positivity
[GOAL]
case hb
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ 0 ≤ ‖x‖ * ‖y‖
[PROOFSTEP]
positivity
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ‖↑(↑(kahler o) x) y‖ = ‖x‖ * ‖y‖
[PROOFSTEP]
simpa using o.abs_kahler x y
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ↑(↑(kahler o) x) y = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
have : ‖x‖ * ‖y‖ = 0 := by simpa [hx] using (o.norm_kahler x y).symm
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ↑(↑(kahler o) x) y = 0
⊢ ‖x‖ * ‖y‖ = 0
[PROOFSTEP]
simpa [hx] using (o.norm_kahler x y).symm
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ↑(↑(kahler o) x) y = 0
this : ‖x‖ * ‖y‖ = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
cases' eq_zero_or_eq_zero_of_mul_eq_zero this with h h
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ↑(↑(kahler o) x) y = 0
this : ‖x‖ * ‖y‖ = 0
h : ‖x‖ = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
left
[GOAL]
case inl.h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ↑(↑(kahler o) x) y = 0
this : ‖x‖ * ‖y‖ = 0
h : ‖x‖ = 0
⊢ x = 0
[PROOFSTEP]
simpa using h
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ↑(↑(kahler o) x) y = 0
this : ‖x‖ * ‖y‖ = 0
h : ‖y‖ = 0
⊢ x = 0 ∨ y = 0
[PROOFSTEP]
right
[GOAL]
case inr.h
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : ↑(↑(kahler o) x) y = 0
this : ‖x‖ * ‖y‖ = 0
h : ‖y‖ = 0
⊢ y = 0
[PROOFSTEP]
simpa using h
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(kahler o) x) y = 0 ↔ x = 0 ∨ y = 0
[PROOFSTEP]
refine' ⟨o.eq_zero_or_eq_zero_of_kahler_eq_zero, _⟩
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ x = 0 ∨ y = 0 → ↑(↑(kahler o) x) y = 0
[PROOFSTEP]
rintro (rfl | rfl)
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
y : E
⊢ ↑(↑(kahler o) 0) y = 0
[PROOFSTEP]
simp
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ↑(↑(kahler o) x) 0 = 0
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : x ≠ 0
hy : y ≠ 0
⊢ ↑(↑(kahler o) x) y ≠ 0
[PROOFSTEP]
apply mt o.eq_zero_or_eq_zero_of_kahler_eq_zero
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
hx : x ≠ 0
hy : y ≠ 0
⊢ ¬(x = 0 ∨ y = 0)
[PROOFSTEP]
tauto
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(kahler o) x) y ≠ 0 ↔ x ≠ 0 ∧ y ≠ 0
[PROOFSTEP]
refine' ⟨_, fun h => o.kahler_ne_zero h.1 h.2⟩
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ↑(↑(kahler o) x) y ≠ 0 → x ≠ 0 ∧ y ≠ 0
[PROOFSTEP]
contrapose
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ ¬(x ≠ 0 ∧ y ≠ 0) → ¬↑(↑(kahler o) x) y ≠ 0
[PROOFSTEP]
simp only [not_and_or, Classical.not_not, kahler_apply_apply, Complex.real_smul]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x y : E
⊢ x = 0 ∨ y = 0 → ↑(inner x y) + ↑(↑(↑(areaForm o) x) y) * Complex.I = 0
[PROOFSTEP]
rintro (rfl | rfl)
[GOAL]
case inl
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
y : E
⊢ ↑(inner 0 y) + ↑(↑(↑(areaForm o) 0) y) * Complex.I = 0
[PROOFSTEP]
simp
[GOAL]
case inr
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
x : E
⊢ ↑(inner x 0) + ↑(↑(↑(areaForm o) x) 0) * Complex.I = 0
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace ℝ E
inst✝² : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
F : Type u_2
inst✝¹ : NormedAddCommGroup F
inst✝ : InnerProductSpace ℝ F
hF : Fact (finrank ℝ F = 2)
φ : E ≃ₗᵢ[ℝ] F
x y : F
⊢ ↑(↑(kahler (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y =
↑(↑(kahler o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y)
[PROOFSTEP]
simp [kahler_apply_apply, areaForm_map]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
φ : E ≃ₗᵢ[ℝ] E
hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv
x y : E
⊢ ↑(↑(kahler o) (↑φ x)) (↑φ y) = ↑(↑(kahler o) x) y
[PROOFSTEP]
simp [kahler_apply_apply, o.areaForm_comp_linearIsometryEquiv φ hφ]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
w z : ℂ
⊢ ↑(↑(Orientation.areaForm Complex.orientation) w) z = (↑(starRingEnd ℂ) w * z).im
[PROOFSTEP]
let o := Complex.orientation
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o✝ : Orientation ℝ E (Fin 2)
w z : ℂ
o : Orientation ℝ ℂ (Fin 2) := Complex.orientation
⊢ ↑(↑(Orientation.areaForm Complex.orientation) w) z = (↑(starRingEnd ℂ) w * z).im
[PROOFSTEP]
simp only [o.areaForm_to_volumeForm, o.volumeForm_robust Complex.orthonormalBasisOneI rfl, (Basis.det_apply),
Matrix.det_fin_two, (Basis.toMatrix_apply), toBasis_orthonormalBasisOneI, Matrix.cons_val_zero, coe_basisOneI_repr,
Matrix.cons_val_one, Matrix.head_cons, mul_im, conj_re, conj_im]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o✝ : Orientation ℝ E (Fin 2)
w z : ℂ
o : Orientation ℝ ℂ (Fin 2) := Complex.orientation
⊢ w.re * z.im - z.re * w.im = w.re * z.im + -w.im * z.re
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
z : ℂ
⊢ ↑(Orientation.rightAngleRotation Complex.orientation) z = I * z
[PROOFSTEP]
apply ext_inner_right ℝ
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
z : ℂ
⊢ ∀ (v : ℂ), inner (↑(Orientation.rightAngleRotation Complex.orientation) z) v = inner (I * z) v
[PROOFSTEP]
intro w
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
z w : ℂ
⊢ inner (↑(Orientation.rightAngleRotation Complex.orientation) z) w = inner (I * z) w
[PROOFSTEP]
rw [Orientation.inner_rightAngleRotation_left]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
z w : ℂ
⊢ ↑(↑(Orientation.areaForm Complex.orientation) z) w = inner (I * z) w
[PROOFSTEP]
simp only [Complex.areaForm, Complex.inner, mul_re, mul_im, conj_re, conj_im, map_mul, conj_I, neg_re, neg_im, I_re,
I_im]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
z w : ℂ
⊢ z.re * w.im + -z.im * w.re = (-0 * z.re - -1 * -z.im) * w.re - (-0 * -z.im + -1 * z.re) * w.im
[PROOFSTEP]
ring
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
w z : ℂ
⊢ ↑(↑(Orientation.kahler Complex.orientation) w) z = ↑(starRingEnd ℂ) w * z
[PROOFSTEP]
rw [Orientation.kahler_apply_apply]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
w z : ℂ
⊢ ↑(inner w z) + ↑(↑(Orientation.areaForm Complex.orientation) w) z • I = ↑(starRingEnd ℂ) w * z
[PROOFSTEP]
ext1
[GOAL]
case a
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
w z : ℂ
⊢ (↑(inner w z) + ↑(↑(Orientation.areaForm Complex.orientation) w) z • I).re = (↑(starRingEnd ℂ) w * z).re
[PROOFSTEP]
simp
[GOAL]
case a
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
w z : ℂ
⊢ (↑(inner w z) + ↑(↑(Orientation.areaForm Complex.orientation) w) z • I).im = (↑(starRingEnd ℂ) w * z).im
[PROOFSTEP]
simp
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
f : E ≃ₗᵢ[ℝ] ℂ
hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation
x y : E
⊢ ↑(↑(areaForm o) x) y = (↑(starRingEnd ℂ) (↑f x) * ↑f y).im
[PROOFSTEP]
rw [← Complex.areaForm, ← hf, areaForm_map (hF := _)]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
f : E ≃ₗᵢ[ℝ] ℂ
hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation
x y : E
⊢ ↑(↑(areaForm o) x) y = ↑(↑(areaForm o) (↑(LinearIsometryEquiv.symm f) (↑f x))) (↑(LinearIsometryEquiv.symm f) (↑f y))
[PROOFSTEP]
iterate 2 rw [LinearIsometryEquiv.symm_apply_apply]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
f : E ≃ₗᵢ[ℝ] ℂ
hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation
x y : E
⊢ ↑(↑(areaForm o) x) y = ↑(↑(areaForm o) (↑(LinearIsometryEquiv.symm f) (↑f x))) (↑(LinearIsometryEquiv.symm f) (↑f y))
[PROOFSTEP]
rw [LinearIsometryEquiv.symm_apply_apply]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
f : E ≃ₗᵢ[ℝ] ℂ
hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation
x y : E
⊢ ↑(↑(areaForm o) x) y = ↑(↑(areaForm o) x) (↑(LinearIsometryEquiv.symm f) (↑f y))
[PROOFSTEP]
rw [LinearIsometryEquiv.symm_apply_apply]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
f : E ≃ₗᵢ[ℝ] ℂ
hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation
x : E
⊢ ↑f (↑(rightAngleRotation o) x) = I * ↑f x
[PROOFSTEP]
rw [← Complex.rightAngleRotation, ← hf, rightAngleRotation_map (hF := _), LinearIsometryEquiv.symm_apply_apply]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
f : E ≃ₗᵢ[ℝ] ℂ
hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation
x y : E
⊢ ↑(↑(kahler o) x) y = ↑(starRingEnd ℂ) (↑f x) * ↑f y
[PROOFSTEP]
rw [← Complex.kahler, ← hf, kahler_map (hF := _)]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
f : E ≃ₗᵢ[ℝ] ℂ
hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation
x y : E
⊢ ↑(↑(kahler o) x) y = ↑(↑(kahler o) (↑(LinearIsometryEquiv.symm f) (↑f x))) (↑(LinearIsometryEquiv.symm f) (↑f y))
[PROOFSTEP]
iterate 2 rw [LinearIsometryEquiv.symm_apply_apply]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
f : E ≃ₗᵢ[ℝ] ℂ
hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation
x y : E
⊢ ↑(↑(kahler o) x) y = ↑(↑(kahler o) (↑(LinearIsometryEquiv.symm f) (↑f x))) (↑(LinearIsometryEquiv.symm f) (↑f y))
[PROOFSTEP]
rw [LinearIsometryEquiv.symm_apply_apply]
[GOAL]
E : Type u_1
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : Fact (finrank ℝ E = 2)
o : Orientation ℝ E (Fin 2)
f : E ≃ₗᵢ[ℝ] ℂ
hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation
x y : E
⊢ ↑(↑(kahler o) x) y = ↑(↑(kahler o) x) (↑(LinearIsometryEquiv.symm f) (↑f y))
[PROOFSTEP]
rw [LinearIsometryEquiv.symm_apply_apply]
| {"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.TwoDim", "llama_tokens": 41954} |
[GOAL]
M : Type u_1
G : Type u_2
α : Type u_3
inst✝⁵ : Monoid M
inst✝⁴ : Group G
inst✝³ : TopologicalSpace α
inst✝² : MulAction M α
inst✝¹ : MulAction G α
inst✝ : ContinuousConstSMul M α
⊢ IsMinimal M α ↔ ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ
[PROOFSTEP]
constructor
[GOAL]
case mp
M : Type u_1
G : Type u_2
α : Type u_3
inst✝⁵ : Monoid M
inst✝⁴ : Group G
inst✝³ : TopologicalSpace α
inst✝² : MulAction M α
inst✝¹ : MulAction G α
inst✝ : ContinuousConstSMul M α
⊢ IsMinimal M α → ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ
[PROOFSTEP]
intro _ _
[GOAL]
case mp
M : Type u_1
G : Type u_2
α : Type u_3
inst✝⁵ : Monoid M
inst✝⁴ : Group G
inst✝³ : TopologicalSpace α
inst✝² : MulAction M α
inst✝¹ : MulAction G α
inst✝ : ContinuousConstSMul M α
a✝ : IsMinimal M α
s✝ : Set α
⊢ IsClosed s✝ → (∀ (c : M), c • s✝ ⊆ s✝) → s✝ = ∅ ∨ s✝ = univ
[PROOFSTEP]
exact eq_empty_or_univ_of_smul_invariant_closed M
[GOAL]
case mpr
M : Type u_1
G : Type u_2
α : Type u_3
inst✝⁵ : Monoid M
inst✝⁴ : Group G
inst✝³ : TopologicalSpace α
inst✝² : MulAction M α
inst✝¹ : MulAction G α
inst✝ : ContinuousConstSMul M α
⊢ (∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ) → IsMinimal M α
[PROOFSTEP]
refine' fun H ↦ ⟨fun _ ↦ dense_iff_closure_eq.2 <| (H _ _ _).resolve_left _⟩
[GOAL]
case mpr.refine'_1
M : Type u_1
G : Type u_2
α : Type u_3
inst✝⁵ : Monoid M
inst✝⁴ : Group G
inst✝³ : TopologicalSpace α
inst✝² : MulAction M α
inst✝¹ : MulAction G α
inst✝ : ContinuousConstSMul M α
H : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ
x✝ : α
⊢ IsClosed (closure (orbit M x✝))
case mpr.refine'_2
M : Type u_1
G : Type u_2
α : Type u_3
inst✝⁵ : Monoid M
inst✝⁴ : Group G
inst✝³ : TopologicalSpace α
inst✝² : MulAction M α
inst✝¹ : MulAction G α
inst✝ : ContinuousConstSMul M α
H : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ
x✝ : α
⊢ ∀ (c : M), c • closure (orbit M x✝) ⊆ closure (orbit M x✝)
case mpr.refine'_3
M : Type u_1
G : Type u_2
α : Type u_3
inst✝⁵ : Monoid M
inst✝⁴ : Group G
inst✝³ : TopologicalSpace α
inst✝² : MulAction M α
inst✝¹ : MulAction G α
inst✝ : ContinuousConstSMul M α
H : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ
x✝ : α
⊢ ¬closure (orbit M x✝) = ∅
[PROOFSTEP]
exacts [isClosed_closure, fun _ ↦ smul_closure_orbit_subset _ _, (orbit_nonempty _).closure.ne_empty]
| {"mathlib_filename": "Mathlib.Dynamics.Minimal", "llama_tokens": 1232} |
[GOAL]
α : Type u
β : Type v
f fa g : α → α
x✝ y : α
fb : β → β
m n k : ℕ
e : Perm α
x : α
hx : IsFixedPt f x
⊢ IsFixedPt f (f x)
[PROOFSTEP]
convert hx
[GOAL]
α : Type u
β : Type v
f fa g : α → α
x y : α
fb : β → β
m n✝ k : ℕ
e : Perm α
s : Set α
h : IsFixedPt (Set.preimage f) s
n : ℕ
⊢ IsFixedPt (Set.preimage f^[n]) s
[PROOFSTEP]
rw [Set.preimage_iterate_eq]
[GOAL]
α : Type u
β : Type v
f fa g : α → α
x y : α
fb : β → β
m n✝ k : ℕ
e : Perm α
s : Set α
h : IsFixedPt (Set.preimage f) s
n : ℕ
⊢ IsFixedPt (Set.preimage f)^[n] s
[PROOFSTEP]
exact h.iterate n
[GOAL]
α : Type u
β : Type v
f fa g : α → α
x y : α
fb : β → β
m n✝ k : ℕ
e : Perm α
h : IsFixedPt (↑e) x
n : ℕ
⊢ IsFixedPt (↑(e ^ n)) x
[PROOFSTEP]
rw [Equiv.Perm.coe_pow]
[GOAL]
α : Type u
β : Type v
f fa g : α → α
x y : α
fb : β → β
m n✝ k : ℕ
e : Perm α
h : IsFixedPt (↑e) x
n : ℕ
⊢ IsFixedPt (↑e)^[n] x
[PROOFSTEP]
exact h.iterate _
[GOAL]
α✝ : Type u
β : Type v
f✝ fa g : α✝ → α✝
x✝ y : α✝
fb : β → β
m n k : ℕ
e : Perm α✝
α : Type u_1
f : α → α
x : α
⊢ x ∈ fixedPoints f ↔ f x = x
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
f fa g : α → α
x y : α
fb : β → β
m n k : ℕ
e : Perm α
x✝ : α
⊢ x✝ ∈ fixedPoints id ↔ x✝ ∈ Set.univ
[PROOFSTEP]
simpa using isFixedPt_id _
[GOAL]
α : Type u
β : Type v
f fa g : α → α
x y : α
fb : β → β
m n k : ℕ
e : Perm α
h : Function.Commute f g
⊢ Set.InvOn f g (fixedPoints (f ∘ g)) (fixedPoints (f ∘ g))
[PROOFSTEP]
simpa only [h.comp_eq] using Function.invOn_fixedPoints_comp f g
[GOAL]
α : Type u
β : Type v
f fa g : α → α
x y : α
fb : β → β
m n k : ℕ
e : Perm α
h : Function.Commute f g
⊢ Set.BijOn f (fixedPoints (f ∘ g)) (fixedPoints (f ∘ g))
[PROOFSTEP]
simpa only [h.comp_eq] using bijOn_fixedPoints_comp g f
[GOAL]
α : Type u
β : Type v
f fa g : α → α
x y : α
fb : β → β
m n k : ℕ
e : Perm α
h : Function.Commute f g
⊢ Set.BijOn g (fixedPoints (f ∘ g)) (fixedPoints (f ∘ g))
[PROOFSTEP]
simpa only [h.comp_eq] using bijOn_fixedPoints_comp f g
| {"mathlib_filename": "Mathlib.Dynamics.FixedPoints.Basic", "llama_tokens": 1048} |
[GOAL]
α : Type u_1
inst✝¹ : TopologicalSpace α
inst✝ : T2Space α
f : α → α
x y : α
hy : Tendsto (fun n => f^[n] x) atTop (𝓝 y)
hf : ContinuousAt f y
⊢ IsFixedPt f y
[PROOFSTEP]
refine' tendsto_nhds_unique ((tendsto_add_atTop_iff_nat 1).1 _) hy
[GOAL]
α : Type u_1
inst✝¹ : TopologicalSpace α
inst✝ : T2Space α
f : α → α
x y : α
hy : Tendsto (fun n => f^[n] x) atTop (𝓝 y)
hf : ContinuousAt f y
⊢ Tendsto (fun n => f^[n + 1] x) atTop (𝓝 (f y))
[PROOFSTEP]
simp only [iterate_succ' f]
[GOAL]
α : Type u_1
inst✝¹ : TopologicalSpace α
inst✝ : T2Space α
f : α → α
x y : α
hy : Tendsto (fun n => f^[n] x) atTop (𝓝 y)
hf : ContinuousAt f y
⊢ Tendsto (fun n => (f ∘ f^[n]) x) atTop (𝓝 (f y))
[PROOFSTEP]
exact hf.tendsto.comp hy
| {"mathlib_filename": "Mathlib.Dynamics.FixedPoints.Topology", "llama_tokens": 370} |
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
⊢ ∃ᶠ (m : ℕ) in atTop, ↑↑μ (s ∩ f^[m] ⁻¹' s) ≠ 0
[PROOFSTEP]
by_contra H
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
H : ¬∃ᶠ (m : ℕ) in atTop, ↑↑μ (s ∩ f^[m] ⁻¹' s) ≠ 0
⊢ False
[PROOFSTEP]
simp only [not_frequently, eventually_atTop, Ne.def, Classical.not_not] at H
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
H : ∃ a, ∀ (b : ℕ), b ≥ a → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
⊢ False
[PROOFSTEP]
rcases H with ⟨N, hN⟩
[GOAL]
case intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
⊢ False
[PROOFSTEP]
induction' N with N ihN
[GOAL]
case intro.zero
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
hN : ∀ (b : ℕ), b ≥ Nat.zero → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
⊢ False
[PROOFSTEP]
apply h0
[GOAL]
case intro.zero
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
hN : ∀ (b : ℕ), b ≥ Nat.zero → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
⊢ ↑↑μ s = 0
[PROOFSTEP]
simpa using hN 0 le_rfl
[GOAL]
case intro.succ
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
ihN : (∀ (b : ℕ), b ≥ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0) → False
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
⊢ False
[PROOFSTEP]
rw [imp_false] at ihN
[GOAL]
case intro.succ
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
ihN : ¬∀ (b : ℕ), b ≥ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
⊢ False
[PROOFSTEP]
push_neg at ihN
[GOAL]
case intro.succ
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
ihN : ∃ b, b ≥ N ∧ ↑↑μ (s ∩ f^[b] ⁻¹' s) ≠ 0
⊢ False
[PROOFSTEP]
rcases ihN with ⟨n, hn, hμn⟩
[GOAL]
case intro.succ.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
⊢ False
[PROOFSTEP]
set T := s ∩ ⋃ n ≥ N + 1, f^[n] ⁻¹' s
[GOAL]
case intro.succ.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
⊢ False
[PROOFSTEP]
have hT : MeasurableSet T := hs.inter (MeasurableSet.biUnion (to_countable _) fun _ _ => hf.measurable.iterate _ hs)
[GOAL]
case intro.succ.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
hT : MeasurableSet T
⊢ False
[PROOFSTEP]
have hμT : μ T = 0 := by
convert (measure_biUnion_null_iff <| to_countable _).2 hN
rw [← inter_iUnion₂]
rfl
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
hT : MeasurableSet T
⊢ ↑↑μ T = 0
[PROOFSTEP]
convert (measure_biUnion_null_iff <| to_countable _).2 hN
[GOAL]
case h.e'_2.h.e'_3
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
hT : MeasurableSet T
⊢ T = ⋃ (i : ℕ) (_ : i ∈ fun i => Nat.le (Nat.succ N) i), s ∩ f^[i] ⁻¹' s
[PROOFSTEP]
rw [← inter_iUnion₂]
[GOAL]
case h.e'_2.h.e'_3
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
hT : MeasurableSet T
⊢ T = s ∩ ⋃ (i : ℕ) (_ : i ∈ fun i => Nat.le (Nat.succ N) i), f^[i] ⁻¹' s
[PROOFSTEP]
rfl
[GOAL]
case intro.succ.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
hT : MeasurableSet T
hμT : ↑↑μ T = 0
⊢ False
[PROOFSTEP]
have : μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0 := by rwa [measure_diff_null hμT]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
hT : MeasurableSet T
hμT : ↑↑μ T = 0
⊢ ↑↑μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0
[PROOFSTEP]
rwa [measure_diff_null hμT]
[GOAL]
case intro.succ.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
hT : MeasurableSet T
hμT : ↑↑μ T = 0
this : ↑↑μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0
⊢ False
[PROOFSTEP]
rcases hf.exists_mem_image_mem ((hs.inter (hf.measurable.iterate n hs)).diff hT) this with
⟨x, ⟨⟨hxs, _⟩, hxT⟩, m, hm0, ⟨_, hxm⟩, _⟩
[GOAL]
case intro.succ.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
hT : MeasurableSet T
hμT : ↑↑μ T = 0
this : ↑↑μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0
x : α
hxT : ¬x ∈ T
hxs : x ∈ s
right✝¹ : x ∈ f^[n] ⁻¹' s
m : ℕ
hm0 : m ≠ 0
right✝ : ¬f^[m] x ∈ T
left✝ : f^[m] x ∈ s
hxm : f^[m] x ∈ f^[n] ⁻¹' s
⊢ False
[PROOFSTEP]
refine' hxT ⟨hxs, mem_iUnion₂.2 ⟨n + m, _, _⟩⟩
[GOAL]
case intro.succ.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
hT : MeasurableSet T
hμT : ↑↑μ T = 0
this : ↑↑μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0
x : α
hxT : ¬x ∈ T
hxs : x ∈ s
right✝¹ : x ∈ f^[n] ⁻¹' s
m : ℕ
hm0 : m ≠ 0
right✝ : ¬f^[m] x ∈ T
left✝ : f^[m] x ∈ s
hxm : f^[m] x ∈ f^[n] ⁻¹' s
⊢ n + m ≥ N + 1
[PROOFSTEP]
exact add_le_add hn (Nat.one_le_of_lt <| pos_iff_ne_zero.2 hm0)
[GOAL]
case intro.succ.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
h0 : ↑↑μ s ≠ 0
N✝ : ℕ
hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
N : ℕ
hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0
n : ℕ
hn : n ≥ N
hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0
T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s
hT : MeasurableSet T
hμT : ↑↑μ T = 0
this : ↑↑μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0
x : α
hxT : ¬x ∈ T
hxs : x ∈ s
right✝¹ : x ∈ f^[n] ⁻¹' s
m : ℕ
hm0 : m ≠ 0
right✝ : ¬f^[m] x ∈ T
left✝ : f^[m] x ∈ s
hxm : f^[m] x ∈ f^[n] ⁻¹' s
⊢ x ∈ f^[n + m] ⁻¹' s
[PROOFSTEP]
rwa [Set.mem_preimage, ← iterate_add_apply] at hxm
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
n : ℕ
⊢ ↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0
[PROOFSTEP]
by_contra H
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
n : ℕ
H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0
⊢ False
[PROOFSTEP]
have : MeasurableSet (s ∩ {x | ∀ m ≥ n, f^[m] x ∉ s}) :=
by
simp only [setOf_forall, ← compl_setOf]
exact hs.inter (MeasurableSet.biInter (to_countable _) fun m _ => hf.measurable.iterate m hs.compl)
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
n : ℕ
H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0
⊢ MeasurableSet (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s})
[PROOFSTEP]
simp only [setOf_forall, ← compl_setOf]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
n : ℕ
H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0
⊢ MeasurableSet (s ∩ ⋂ (i : ℕ) (_ : i ≥ n), {a | f^[i] a ∈ s}ᶜ)
[PROOFSTEP]
exact hs.inter (MeasurableSet.biInter (to_countable _) fun m _ => hf.measurable.iterate m hs.compl)
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
n : ℕ
H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0
this : MeasurableSet (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s})
⊢ False
[PROOFSTEP]
rcases(hf.exists_gt_measure_inter_ne_zero this H) n with ⟨m, hmn, hm⟩
[GOAL]
case intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
n : ℕ
H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0
this : MeasurableSet (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s})
m : ℕ
hmn : m > n
hm : ↑↑μ (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} ∩ f^[m] ⁻¹' (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s})) ≠ 0
⊢ False
[PROOFSTEP]
rcases nonempty_of_measure_ne_zero hm with ⟨x, ⟨_, hxn⟩, hxm, -⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
n : ℕ
H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0
this : MeasurableSet (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s})
m : ℕ
hmn : m > n
hm : ↑↑μ (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} ∩ f^[m] ⁻¹' (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s})) ≠ 0
x : α
left✝ : x ∈ s
hxn : x ∈ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s}
hxm : f^[m] x ∈ s
⊢ False
[PROOFSTEP]
exact hxn m hmn.lt.le hxm
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
⊢ ∀ᵐ (x : α) ∂μ, x ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
[PROOFSTEP]
simp only [frequently_atTop, @forall_swap (_ ∈ s), ae_all_iff]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
⊢ ∀ (i : ℕ), ∀ᵐ (a : α) ∂μ, a ∈ s → ∃ b, b ≥ i ∧ f^[b] a ∈ s
[PROOFSTEP]
intro n
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
n : ℕ
⊢ ∀ᵐ (a : α) ∂μ, a ∈ s → ∃ b, b ≥ n ∧ f^[b] a ∈ s
[PROOFSTEP]
filter_upwards [measure_zero_iff_ae_nmem.1 (hf.measure_mem_forall_ge_image_not_mem_eq_zero hs n)]
[GOAL]
case h
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
n : ℕ
⊢ ∀ (a : α), ¬(a ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] a ∈ s) → a ∈ s → ∃ b, b ≥ n ∧ f^[b] a ∈ s
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
⊢ ∀ᵐ (x : α) ∂μ, ∀ (k : ℕ), f^[k] x ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
[PROOFSTEP]
refine' ae_all_iff.2 fun k => _
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
k : ℕ
⊢ ∀ᵐ (a : α) ∂μ, f^[k] a ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] a ∈ s
[PROOFSTEP]
refine' (hf.ae_mem_imp_frequently_image_mem (hf.measurable.iterate k hs)).mono fun x hx hk => _
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
k : ℕ
x : α
hx : x ∈ f^[k] ⁻¹' s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ f^[k] ⁻¹' s
hk : f^[k] x ∈ s
⊢ ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
[PROOFSTEP]
rw [← map_add_atTop_eq_nat k, frequently_map]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
k : ℕ
x : α
hx : x ∈ f^[k] ⁻¹' s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ f^[k] ⁻¹' s
hk : f^[k] x ∈ s
⊢ ∃ᶠ (a : ℕ) in atTop, f^[a + k] x ∈ s
[PROOFSTEP]
refine' (hx hk).mono fun n hn => _
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
hs : MeasurableSet s
k : ℕ
x : α
hx : x ∈ f^[k] ⁻¹' s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ f^[k] ⁻¹' s
hk : f^[k] x ∈ s
n : ℕ
hn : f^[n] x ∈ f^[k] ⁻¹' s
⊢ f^[n + k] x ∈ s
[PROOFSTEP]
rwa [add_comm, iterate_add_apply]
[GOAL]
ι : Type u_1
α : Type u_2
inst✝³ : MeasurableSpace α
f✝ : α → α
s : Set α
μ✝ : Measure α
inst✝² : TopologicalSpace α
inst✝¹ : SecondCountableTopology α
inst✝ : OpensMeasurableSpace α
f : α → α
μ : Measure α
h : Conservative f μ
⊢ ∀ᵐ (x : α) ∂μ, ∀ (s : Set α), s ∈ 𝓝 x → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
[PROOFSTEP]
have : ∀ s ∈ countableBasis α, ∀ᵐ x ∂μ, x ∈ s → ∃ᶠ n in atTop, f^[n] x ∈ s := fun s hs =>
h.ae_mem_imp_frequently_image_mem (isOpen_of_mem_countableBasis hs).measurableSet
[GOAL]
ι : Type u_1
α : Type u_2
inst✝³ : MeasurableSpace α
f✝ : α → α
s : Set α
μ✝ : Measure α
inst✝² : TopologicalSpace α
inst✝¹ : SecondCountableTopology α
inst✝ : OpensMeasurableSpace α
f : α → α
μ : Measure α
h : Conservative f μ
this : ∀ (s : Set α), s ∈ countableBasis α → ∀ᵐ (x : α) ∂μ, x ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
⊢ ∀ᵐ (x : α) ∂μ, ∀ (s : Set α), s ∈ 𝓝 x → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
[PROOFSTEP]
refine' ((ae_ball_iff <| countable_countableBasis α).2 this).mono fun x hx s hs => _
[GOAL]
ι : Type u_1
α : Type u_2
inst✝³ : MeasurableSpace α
f✝ : α → α
s✝ : Set α
μ✝ : Measure α
inst✝² : TopologicalSpace α
inst✝¹ : SecondCountableTopology α
inst✝ : OpensMeasurableSpace α
f : α → α
μ : Measure α
h : Conservative f μ
this : ∀ (s : Set α), s ∈ countableBasis α → ∀ᵐ (x : α) ∂μ, x ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
x : α
hx : ∀ (i : Set α), i ∈ countableBasis α → x ∈ i → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ i
s : Set α
hs : s ∈ 𝓝 x
⊢ ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
[PROOFSTEP]
rcases(isBasis_countableBasis α).mem_nhds_iff.1 hs with ⟨o, hoS, hxo, hos⟩
[GOAL]
case intro.intro.intro
ι : Type u_1
α : Type u_2
inst✝³ : MeasurableSpace α
f✝ : α → α
s✝ : Set α
μ✝ : Measure α
inst✝² : TopologicalSpace α
inst✝¹ : SecondCountableTopology α
inst✝ : OpensMeasurableSpace α
f : α → α
μ : Measure α
h : Conservative f μ
this : ∀ (s : Set α), s ∈ countableBasis α → ∀ᵐ (x : α) ∂μ, x ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
x : α
hx : ∀ (i : Set α), i ∈ countableBasis α → x ∈ i → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ i
s : Set α
hs : s ∈ 𝓝 x
o : Set α
hoS : o ∈ countableBasis α
hxo : x ∈ o
hos : o ⊆ s
⊢ ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
[PROOFSTEP]
exact (hx o hoS hxo).mono fun n hn => hos hn
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
⊢ Conservative f^[n] μ
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
⊢ Conservative f^[Nat.zero] μ
[PROOFSTEP]
exact Conservative.id μ
[GOAL]
case succ
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
⊢ Conservative f^[Nat.succ n] μ
[PROOFSTEP]
refine' ⟨hf.1.iterate _, fun s hs hs0 => _⟩
[GOAL]
case succ
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s
[PROOFSTEP]
rcases(hf.frequently_ae_mem_and_frequently_image_mem hs hs0).exists with
⟨x, _, hx⟩
/- We take a point `x ∈ s` such that `f^[k] x ∈ s` for infinitely many values of `k`,
then we choose two of these values `k < l` such that `k ≡ l [MOD (n + 1)]`.
Then `f^[k] x ∈ s` and `f^[n + 1]^[(l - k) / (n + 1)] (f^[k] x) = f^[l] x ∈ s`. -/
[GOAL]
case succ.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s
⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s
[PROOFSTEP]
rw [Nat.frequently_atTop_iff_infinite] at hx
[GOAL]
case succ.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s
[PROOFSTEP]
rcases Nat.exists_lt_modEq_of_infinite hx n.succ_pos with ⟨k, hk, l, hl, hkl, hn⟩
[GOAL]
case succ.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
k : ℕ
hk : k ∈ {n | f^[n] x ∈ s}
l : ℕ
hl : l ∈ {n | f^[n] x ∈ s}
hkl : k < l
hn : k ≡ l [MOD Nat.succ n]
⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s
[PROOFSTEP]
set m := (l - k) / (n + 1)
[GOAL]
case succ.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
k : ℕ
hk : k ∈ {n | f^[n] x ∈ s}
l : ℕ
hl : l ∈ {n | f^[n] x ∈ s}
hkl : k < l
hn : k ≡ l [MOD Nat.succ n]
m : ℕ := (l - k) / (n + 1)
⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s
[PROOFSTEP]
have : (n + 1) * m = l - k := by
apply Nat.mul_div_cancel'
exact (Nat.modEq_iff_dvd' hkl.le).1 hn
[GOAL]
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
k : ℕ
hk : k ∈ {n | f^[n] x ∈ s}
l : ℕ
hl : l ∈ {n | f^[n] x ∈ s}
hkl : k < l
hn : k ≡ l [MOD Nat.succ n]
m : ℕ := (l - k) / (n + 1)
⊢ (n + 1) * m = l - k
[PROOFSTEP]
apply Nat.mul_div_cancel'
[GOAL]
case H
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
k : ℕ
hk : k ∈ {n | f^[n] x ∈ s}
l : ℕ
hl : l ∈ {n | f^[n] x ∈ s}
hkl : k < l
hn : k ≡ l [MOD Nat.succ n]
m : ℕ := (l - k) / (n + 1)
⊢ n + 1 ∣ l - k
[PROOFSTEP]
exact (Nat.modEq_iff_dvd' hkl.le).1 hn
[GOAL]
case succ.intro.intro.intro.intro.intro.intro.intro
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
k : ℕ
hk : k ∈ {n | f^[n] x ∈ s}
l : ℕ
hl : l ∈ {n | f^[n] x ∈ s}
hkl : k < l
hn : k ≡ l [MOD Nat.succ n]
m : ℕ := (l - k) / (n + 1)
this : (n + 1) * m = l - k
⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s
[PROOFSTEP]
refine' ⟨f^[k] x, hk, m, _, _⟩
[GOAL]
case succ.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
k : ℕ
hk : k ∈ {n | f^[n] x ∈ s}
l : ℕ
hl : l ∈ {n | f^[n] x ∈ s}
hkl : k < l
hn : k ≡ l [MOD Nat.succ n]
m : ℕ := (l - k) / (n + 1)
this : (n + 1) * m = l - k
⊢ m ≠ 0
[PROOFSTEP]
intro hm
[GOAL]
case succ.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
k : ℕ
hk : k ∈ {n | f^[n] x ∈ s}
l : ℕ
hl : l ∈ {n | f^[n] x ∈ s}
hkl : k < l
hn : k ≡ l [MOD Nat.succ n]
m : ℕ := (l - k) / (n + 1)
this : (n + 1) * m = l - k
hm : m = 0
⊢ False
[PROOFSTEP]
rw [hm, mul_zero, eq_comm, tsub_eq_zero_iff_le] at this
[GOAL]
case succ.intro.intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
k : ℕ
hk : k ∈ {n | f^[n] x ∈ s}
l : ℕ
hl : l ∈ {n | f^[n] x ∈ s}
hkl : k < l
hn : k ≡ l [MOD Nat.succ n]
m : ℕ := (l - k) / (n + 1)
this : l ≤ k
hm : m = 0
⊢ False
[PROOFSTEP]
exact this.not_lt hkl
[GOAL]
case succ.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
k : ℕ
hk : k ∈ {n | f^[n] x ∈ s}
l : ℕ
hl : l ∈ {n | f^[n] x ∈ s}
hkl : k < l
hn : k ≡ l [MOD Nat.succ n]
m : ℕ := (l - k) / (n + 1)
this : (n + 1) * m = l - k
⊢ f^[Nat.succ n]^[m] (f^[k] x) ∈ s
[PROOFSTEP]
rwa [← iterate_mul, this, ← iterate_add_apply, tsub_add_cancel_of_le]
[GOAL]
case succ.intro.intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u_1
α : Type u_2
inst✝ : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
hf : Conservative f μ
n : ℕ
s : Set α
hs : MeasurableSet s
hs0 : ↑↑μ s ≠ 0
x : α
left✝ : x ∈ s
hx : Set.Infinite {n | f^[n] x ∈ s}
k : ℕ
hk : k ∈ {n | f^[n] x ∈ s}
l : ℕ
hl : l ∈ {n | f^[n] x ∈ s}
hkl : k < l
hn : k ≡ l [MOD Nat.succ n]
m : ℕ := (l - k) / (n + 1)
this : (n + 1) * m = l - k
⊢ k ≤ l
[PROOFSTEP]
exact hkl.le
| {"mathlib_filename": "Mathlib.Dynamics.Ergodic.Conservative", "llama_tokens": 14246} |
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
m : τ → τ
f₁ f₂ : Filter τ
hf : Tendsto m f₁ f₂
⊢ ω f₁ (fun t x => ϕ (m t) x) s ⊆ ω f₂ ϕ s
[PROOFSTEP]
refine' iInter₂_mono' fun u hu ↦ ⟨m ⁻¹' u, tendsto_def.mp hf _ hu, _⟩
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
m : τ → τ
f₁ f₂ : Filter τ
hf : Tendsto m f₁ f₂
u : Set τ
hu : u ∈ f₂
⊢ closure (image2 (fun t x => ϕ (m t) x) (m ⁻¹' u) s) ⊆ closure (image2 ϕ u s)
[PROOFSTEP]
rw [← image2_image_left]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
m : τ → τ
f₁ f₂ : Filter τ
hf : Tendsto m f₁ f₂
u : Set τ
hu : u ∈ f₂
⊢ closure (image2 ϕ ((fun t => m t) '' (m ⁻¹' u)) s) ⊆ closure (image2 ϕ u s)
[PROOFSTEP]
exact closure_mono (image2_subset (image_preimage_subset _ _) Subset.rfl)
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f✝ : Filter τ
ϕ✝ : τ → α → β
s s₁ s₂ : Set α
α' : Type u_5
β' : Type u_6
inst✝ : TopologicalSpace β'
f : Filter τ
ϕ : τ → α → β
ϕ' : τ → α' → β'
ga : α → α'
s' : Set α'
hs : MapsTo ga s s'
gb : β → β'
hg : ∀ᶠ (t : τ) in f, EqOn (gb ∘ ϕ t) (ϕ' t ∘ ga) s
hgc : Continuous gb
⊢ MapsTo gb (ω f ϕ s) (ω f ϕ' s')
[PROOFSTEP]
simp only [omegaLimit_def, mem_iInter, MapsTo]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f✝ : Filter τ
ϕ✝ : τ → α → β
s s₁ s₂ : Set α
α' : Type u_5
β' : Type u_6
inst✝ : TopologicalSpace β'
f : Filter τ
ϕ : τ → α → β
ϕ' : τ → α' → β'
ga : α → α'
s' : Set α'
hs : MapsTo ga s s'
gb : β → β'
hg : ∀ᶠ (t : τ) in f, EqOn (gb ∘ ϕ t) (ϕ' t ∘ ga) s
hgc : Continuous gb
⊢ ∀ ⦃x : β⦄,
(∀ (i : Set τ), i ∈ f → x ∈ closure (image2 ϕ i s)) → ∀ (i : Set τ), i ∈ f → gb x ∈ closure (image2 ϕ' i s')
[PROOFSTEP]
intro y hy u hu
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f✝ : Filter τ
ϕ✝ : τ → α → β
s s₁ s₂ : Set α
α' : Type u_5
β' : Type u_6
inst✝ : TopologicalSpace β'
f : Filter τ
ϕ : τ → α → β
ϕ' : τ → α' → β'
ga : α → α'
s' : Set α'
hs : MapsTo ga s s'
gb : β → β'
hg : ∀ᶠ (t : τ) in f, EqOn (gb ∘ ϕ t) (ϕ' t ∘ ga) s
hgc : Continuous gb
y : β
hy : ∀ (i : Set τ), i ∈ f → y ∈ closure (image2 ϕ i s)
u : Set τ
hu : u ∈ f
⊢ gb y ∈ closure (image2 ϕ' u s')
[PROOFSTEP]
refine' map_mem_closure hgc (hy _ (inter_mem hu hg)) (forall_image2_iff.2 fun t ht x hx ↦ _)
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f✝ : Filter τ
ϕ✝ : τ → α → β
s s₁ s₂ : Set α
α' : Type u_5
β' : Type u_6
inst✝ : TopologicalSpace β'
f : Filter τ
ϕ : τ → α → β
ϕ' : τ → α' → β'
ga : α → α'
s' : Set α'
hs : MapsTo ga s s'
gb : β → β'
hg : ∀ᶠ (t : τ) in f, EqOn (gb ∘ ϕ t) (ϕ' t ∘ ga) s
hgc : Continuous gb
y : β
hy : ∀ (i : Set τ), i ∈ f → y ∈ closure (image2 ϕ i s)
u : Set τ
hu : u ∈ f
t : τ
ht : t ∈ u ∩ {x | (fun t => EqOn (gb ∘ ϕ t) (ϕ' t ∘ ga) s) x}
x : α
hx : x ∈ s
⊢ gb (ϕ t x) ∈ image2 ϕ' u s'
[PROOFSTEP]
calc
gb (ϕ t x) = ϕ' t (ga x) := ht.2 hx
_ ∈ image2 ϕ' u s' := mem_image2_of_mem ht.1 (hs hx)
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f✝ : Filter τ
ϕ✝ : τ → α → β
s s₁ s₂ : Set α
α' : Type u_5
ϕ : τ → α' → β
f : Filter τ
g : α → α'
⊢ ω f ϕ (g '' s) = ω f (fun t x => ϕ t (g x)) s
[PROOFSTEP]
simp only [omegaLimit, image2_image_right]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ y ∈ ω f ϕ s ↔ ∀ (n : Set β), n ∈ 𝓝 y → ∃ᶠ (t : τ) in f, Set.Nonempty (s ∩ ϕ t ⁻¹' n)
[PROOFSTEP]
simp_rw [frequently_iff, omegaLimit_def, mem_iInter, mem_closure_iff_nhds]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ (∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s)) ↔
∀ (n : Set β), n ∈ 𝓝 y → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n)
[PROOFSTEP]
constructor
[GOAL]
case mp
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ (∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s)) →
∀ (n : Set β), n ∈ 𝓝 y → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n)
[PROOFSTEP]
intro h _ hn _ hu
[GOAL]
case mp
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
h : ∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s)
n✝ : Set β
hn : n✝ ∈ 𝓝 y
U✝ : Set τ
hu : U✝ ∈ f
⊢ ∃ x, x ∈ U✝ ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n✝)
[PROOFSTEP]
rcases h _ hu _ hn with ⟨_, _, _, _, ht, hx, hϕtx⟩
[GOAL]
case mp.intro.intro.intro.intro.intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
h : ∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s)
n✝ : Set β
hn : n✝ ∈ 𝓝 y
U✝ : Set τ
hu : U✝ ∈ f
w✝² : β
left✝ : w✝² ∈ n✝
w✝¹ : τ
w✝ : α
ht : w✝¹ ∈ U✝
hx : w✝ ∈ s
hϕtx : ϕ w✝¹ w✝ = w✝²
⊢ ∃ x, x ∈ U✝ ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n✝)
[PROOFSTEP]
exact ⟨_, ht, _, hx, by rwa [mem_preimage, hϕtx]⟩
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
h : ∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s)
n✝ : Set β
hn : n✝ ∈ 𝓝 y
U✝ : Set τ
hu : U✝ ∈ f
w✝² : β
left✝ : w✝² ∈ n✝
w✝¹ : τ
w✝ : α
ht : w✝¹ ∈ U✝
hx : w✝ ∈ s
hϕtx : ϕ w✝¹ w✝ = w✝²
⊢ w✝ ∈ ϕ w✝¹ ⁻¹' n✝
[PROOFSTEP]
rwa [mem_preimage, hϕtx]
[GOAL]
case mpr
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ (∀ (n : Set β), n ∈ 𝓝 y → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n)) →
∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s)
[PROOFSTEP]
intro h _ hu _ hn
[GOAL]
case mpr
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
h : ∀ (n : Set β), n ∈ 𝓝 y → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n)
i✝ : Set τ
hu : i✝ ∈ f
t✝ : Set β
hn : t✝ ∈ 𝓝 y
⊢ Set.Nonempty (t✝ ∩ image2 ϕ i✝ s)
[PROOFSTEP]
rcases h _ hn hu with ⟨_, ht, _, hx, hϕtx⟩
[GOAL]
case mpr.intro.intro.intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
h : ∀ (n : Set β), n ∈ 𝓝 y → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n)
i✝ : Set τ
hu : i✝ ∈ f
t✝ : Set β
hn : t✝ ∈ 𝓝 y
w✝¹ : τ
ht : w✝¹ ∈ i✝
w✝ : α
hx : w✝ ∈ s
hϕtx : w✝ ∈ ϕ w✝¹ ⁻¹' t✝
⊢ Set.Nonempty (t✝ ∩ image2 ϕ i✝ s)
[PROOFSTEP]
exact ⟨_, hϕtx, _, _, ht, hx, rfl⟩
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ y ∈ ω f ϕ s ↔ ∀ (n : Set β), n ∈ 𝓝 y → ∃ᶠ (t : τ) in f, Set.Nonempty (ϕ t '' s ∩ n)
[PROOFSTEP]
simp_rw [mem_omegaLimit_iff_frequently, image_inter_nonempty_iff]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
x : α
y : β
⊢ y ∈ ω f ϕ {x} ↔ MapClusterPt y f fun t => ϕ t x
[PROOFSTEP]
simp_rw [mem_omegaLimit_iff_frequently, mapClusterPt_iff, singleton_inter_nonempty, mem_preimage]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
⊢ ω f ϕ (s₁ ∪ s₂) = ω f ϕ s₁ ∪ ω f ϕ s₂
[PROOFSTEP]
ext y
[GOAL]
case h
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ y ∈ ω f ϕ (s₁ ∪ s₂) ↔ y ∈ ω f ϕ s₁ ∪ ω f ϕ s₂
[PROOFSTEP]
constructor
[GOAL]
case h.mp
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ y ∈ ω f ϕ (s₁ ∪ s₂) → y ∈ ω f ϕ s₁ ∪ ω f ϕ s₂
[PROOFSTEP]
simp only [mem_union, mem_omegaLimit_iff_frequently, union_inter_distrib_right, union_nonempty, frequently_or_distrib]
[GOAL]
case h.mp
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ (∀ (n : Set β),
n ∈ 𝓝 y → (∃ᶠ (x : τ) in f, Set.Nonempty (s₁ ∩ ϕ x ⁻¹' n)) ∨ ∃ᶠ (x : τ) in f, Set.Nonempty (s₂ ∩ ϕ x ⁻¹' n)) →
(∀ (n : Set β), n ∈ 𝓝 y → ∃ᶠ (t : τ) in f, Set.Nonempty (s₁ ∩ ϕ t ⁻¹' n)) ∨
∀ (n : Set β), n ∈ 𝓝 y → ∃ᶠ (t : τ) in f, Set.Nonempty (s₂ ∩ ϕ t ⁻¹' n)
[PROOFSTEP]
contrapose!
[GOAL]
case h.mp
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ ((∃ n, n ∈ 𝓝 y ∧ ¬∃ᶠ (t : τ) in f, Set.Nonempty (s₁ ∩ ϕ t ⁻¹' n)) ∧
∃ n, n ∈ 𝓝 y ∧ ¬∃ᶠ (t : τ) in f, Set.Nonempty (s₂ ∩ ϕ t ⁻¹' n)) →
∃ n, n ∈ 𝓝 y ∧ (¬∃ᶠ (x : τ) in f, Set.Nonempty (s₁ ∩ ϕ x ⁻¹' n)) ∧ ¬∃ᶠ (x : τ) in f, Set.Nonempty (s₂ ∩ ϕ x ⁻¹' n)
[PROOFSTEP]
simp only [not_frequently, not_nonempty_iff_eq_empty, ← subset_empty_iff]
[GOAL]
case h.mp
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ ((∃ n, n ∈ 𝓝 y ∧ ∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n ⊆ ∅) ∧ ∃ n, n ∈ 𝓝 y ∧ ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n ⊆ ∅) →
∃ n, n ∈ 𝓝 y ∧ (∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n ⊆ ∅) ∧ ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n ⊆ ∅
[PROOFSTEP]
rintro ⟨⟨n₁, hn₁, h₁⟩, ⟨n₂, hn₂, h₂⟩⟩
[GOAL]
case h.mp.intro.intro.intro.intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
n₁ : Set β
hn₁ : n₁ ∈ 𝓝 y
h₁ : ∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n₁ ⊆ ∅
n₂ : Set β
hn₂ : n₂ ∈ 𝓝 y
h₂ : ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n₂ ⊆ ∅
⊢ ∃ n, n ∈ 𝓝 y ∧ (∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n ⊆ ∅) ∧ ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n ⊆ ∅
[PROOFSTEP]
refine' ⟨n₁ ∩ n₂, inter_mem hn₁ hn₂, h₁.mono fun t ↦ _, h₂.mono fun t ↦ _⟩
[GOAL]
case h.mp.intro.intro.intro.intro.intro.refine'_1
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
n₁ : Set β
hn₁ : n₁ ∈ 𝓝 y
h₁ : ∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n₁ ⊆ ∅
n₂ : Set β
hn₂ : n₂ ∈ 𝓝 y
h₂ : ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n₂ ⊆ ∅
t : τ
⊢ s₁ ∩ ϕ t ⁻¹' n₁ ⊆ ∅ → s₁ ∩ ϕ t ⁻¹' (n₁ ∩ n₂) ⊆ ∅
case h.mp.intro.intro.intro.intro.intro.refine'_2
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
n₁ : Set β
hn₁ : n₁ ∈ 𝓝 y
h₁ : ∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n₁ ⊆ ∅
n₂ : Set β
hn₂ : n₂ ∈ 𝓝 y
h₂ : ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n₂ ⊆ ∅
t : τ
⊢ s₂ ∩ ϕ t ⁻¹' n₂ ⊆ ∅ → s₂ ∩ ϕ t ⁻¹' (n₁ ∩ n₂) ⊆ ∅
[PROOFSTEP]
exacts [Subset.trans <| inter_subset_inter_right _ <| preimage_mono <| inter_subset_left _ _,
Subset.trans <| inter_subset_inter_right _ <| preimage_mono <| inter_subset_right _ _]
[GOAL]
case h.mpr
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
⊢ y ∈ ω f ϕ s₁ ∪ ω f ϕ s₂ → y ∈ ω f ϕ (s₁ ∪ s₂)
[PROOFSTEP]
rintro (hy | hy)
[GOAL]
case h.mpr.inl
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
hy : y ∈ ω f ϕ s₁
⊢ y ∈ ω f ϕ (s₁ ∪ s₂)
case h.mpr.inr
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
y : β
hy : y ∈ ω f ϕ s₂
⊢ y ∈ ω f ϕ (s₁ ∪ s₂)
[PROOFSTEP]
exacts [omegaLimit_mono_right _ _ (subset_union_left _ _) hy, omegaLimit_mono_right _ _ (subset_union_right _ _) hy]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
p : ι → Set α
⊢ ⋃ (i : ι), ω f ϕ (p i) ⊆ ω f ϕ (⋃ (i : ι), p i)
[PROOFSTEP]
rw [iUnion_subset_iff]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
p : ι → Set α
⊢ ∀ (i : ι), ω f ϕ (p i) ⊆ ω f ϕ (⋃ (i : ι), p i)
[PROOFSTEP]
exact fun i ↦ omegaLimit_mono_right _ _ (subset_iUnion _ _)
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
v : Set τ
hv : v ∈ f
⊢ ω f ϕ s = ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s)
[PROOFSTEP]
rw [omegaLimit_eq_biInter_inter _ _ _ hv]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
v : Set τ
hv : v ∈ f
⊢ ⋂ (u : Set τ) (_ : u ∈ f), closure (image2 ϕ (u ∩ v) s) = ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s)
[PROOFSTEP]
apply biInter_eq_iInter
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
u : Set τ
hu : u ∈ f
⊢ ω f ϕ s ⊆ closure (image2 ϕ u s)
[PROOFSTEP]
rw [omegaLimit_eq_iInter]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
u : Set τ
hu : u ∈ f
⊢ ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u) s) ⊆ closure (image2 ϕ u s)
[PROOFSTEP]
intro _ hx
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
u : Set τ
hu : u ∈ f
a✝ : β
hx : a✝ ∈ ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u) s)
⊢ a✝ ∈ closure (image2 ϕ u s)
[PROOFSTEP]
rw [mem_iInter] at hx
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
u : Set τ
hu : u ∈ f
a✝ : β
hx : ∀ (i : ↑f.sets), a✝ ∈ closure (image2 ϕ (↑i) s)
⊢ a✝ ∈ closure (image2 ϕ u s)
[PROOFSTEP]
exact hx ⟨u, hu⟩
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
hc₂ : ∃ v, v ∈ f ∧ closure (image2 ϕ v s) ⊆ c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
rcases hc₂ with ⟨v, hv₁, hv₂⟩
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
let k := closure (image2 ϕ v s)
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
have hk : IsCompact (k \ n) := IsCompact.diff (isCompact_of_isClosed_subset hc₁ isClosed_closure hv₂) hn₁
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
let j u := (closure (image2 ϕ (u ∩ v) s))ᶜ
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
have hj₁ : ∀ u ∈ f, IsOpen (j u) := fun _ _ ↦ isOpen_compl_iff.mpr isClosed_closure
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
have hj₂ : k \ n ⊆ ⋃ u ∈ f, j u :=
by
have : ⋃ u ∈ f, j u = ⋃ u : (↥f.sets), j u := biUnion_eq_iUnion _ _
rw [this, diff_subset_comm, diff_iUnion]
rw [omegaLimit_eq_iInter_inter _ _ _ hv₁] at hn₂
simp_rw [diff_compl]
rw [← inter_iInter]
exact Subset.trans (inter_subset_right _ _) hn₂
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
⊢ k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
[PROOFSTEP]
have : ⋃ u ∈ f, j u = ⋃ u : (↥f.sets), j u := biUnion_eq_iUnion _ _
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
this : ⋃ (u : Set τ) (_ : u ∈ f), j u = ⋃ (u : ↑f.sets), j ↑u
⊢ k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
[PROOFSTEP]
rw [this, diff_subset_comm, diff_iUnion]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
this : ⋃ (u : Set τ) (_ : u ∈ f), j u = ⋃ (u : ↑f.sets), j ↑u
⊢ ⋂ (i : ↑f.sets), k \ j ↑i ⊆ n
[PROOFSTEP]
rw [omegaLimit_eq_iInter_inter _ _ _ hv₁] at hn₂
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
v : Set τ
hn₂ : ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s) ⊆ n
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
this : ⋃ (u : Set τ) (_ : u ∈ f), j u = ⋃ (u : ↑f.sets), j ↑u
⊢ ⋂ (i : ↑f.sets), k \ j ↑i ⊆ n
[PROOFSTEP]
simp_rw [diff_compl]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
v : Set τ
hn₂ : ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s) ⊆ n
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
this : ⋃ (u : Set τ) (_ : u ∈ f), j u = ⋃ (u : ↑f.sets), j ↑u
⊢ ⋂ (i : ↑f.sets), closure (image2 ϕ v s) ∩ closure (image2 ϕ (↑i ∩ v) s) ⊆ n
[PROOFSTEP]
rw [← inter_iInter]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
v : Set τ
hn₂ : ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s) ⊆ n
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
this : ⋃ (u : Set τ) (_ : u ∈ f), j u = ⋃ (u : ↑f.sets), j ↑u
⊢ closure (image2 ϕ v s) ∩ ⋂ (i : ↑f.sets), closure (image2 ϕ (↑i ∩ v) s) ⊆ n
[PROOFSTEP]
exact Subset.trans (inter_subset_right _ _) hn₂
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
rcases hk.elim_finite_subcover_image hj₁ hj₂ with ⟨g, hg₁ : ∀ u ∈ g, u ∈ f, hg₂, hg₃⟩
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
let w := (⋂ u ∈ g, u) ∩ v
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
have hw₂ : w ∈ f := by simpa [*]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
⊢ w ∈ f
[PROOFSTEP]
simpa [*]
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
have hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ := by
apply Subset.trans hg₃
simp only [iUnion_subset_iff, compl_subset_compl]
intros u hu
mono
refine' iInter_subset_of_subset u (iInter_subset_of_subset hu _)
all_goals exact Subset.rfl
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
⊢ k \ n ⊆ (closure (image2 ϕ w s))ᶜ
[PROOFSTEP]
apply Subset.trans hg₃
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
⊢ ⋃ (i : Set τ) (_ : i ∈ g), j i ⊆ (closure (image2 ϕ w s))ᶜ
[PROOFSTEP]
simp only [iUnion_subset_iff, compl_subset_compl]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
⊢ ∀ (i : Set τ), i ∈ g → closure (image2 ϕ ((⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v) s) ⊆ closure (image2 ϕ (i ∩ v) s)
[PROOFSTEP]
intros u hu
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
u : Set τ
hu : u ∈ g
⊢ closure (image2 ϕ ((⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v) s) ⊆ closure (image2 ϕ (u ∩ v) s)
[PROOFSTEP]
mono
[GOAL]
case h.hs.h₁
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
u : Set τ
hu : u ∈ g
⊢ ⋂ (u : Set τ) (_ : u ∈ g), u ⊆ u
case h.hs.h₂
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
u : Set τ
hu : u ∈ g
⊢ v ⊆ v
case h.ht
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
u : Set τ
hu : u ∈ g
⊢ s ⊆ s
[PROOFSTEP]
refine' iInter_subset_of_subset u (iInter_subset_of_subset hu _)
[GOAL]
case h.hs.h₁
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
u : Set τ
hu : u ∈ g
⊢ u ⊆ u
case h.hs.h₂
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
u : Set τ
hu : u ∈ g
⊢ v ⊆ v
case h.ht
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
u : Set τ
hu : u ∈ g
⊢ s ⊆ s
[PROOFSTEP]
all_goals exact Subset.rfl
[GOAL]
case h.hs.h₁
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
u : Set τ
hu : u ∈ g
⊢ u ⊆ u
[PROOFSTEP]
exact Subset.rfl
[GOAL]
case h.hs.h₂
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
u : Set τ
hu : u ∈ g
⊢ v ⊆ v
[PROOFSTEP]
exact Subset.rfl
[GOAL]
case h.ht
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
u : Set τ
hu : u ∈ g
⊢ s ⊆ s
[PROOFSTEP]
exact Subset.rfl
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
have hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ :=
by
simp only [compl_subset_compl]
exact closure_mono (image2_subset (inter_subset_right _ _) Subset.rfl)
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ
⊢ kᶜ ⊆ (closure (image2 ϕ w s))ᶜ
[PROOFSTEP]
simp only [compl_subset_compl]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ
⊢ closure (image2 ϕ ((⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v) s) ⊆ closure (image2 ϕ v s)
[PROOFSTEP]
exact closure_mono (image2_subset (inter_subset_right _ _) Subset.rfl)
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ
hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
have hnc : nᶜ ⊆ k \ n ∪ kᶜ := by rw [union_comm, ← inter_subset, diff_eq, inter_comm]
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ
hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ
⊢ nᶜ ⊆ k \ n ∪ kᶜ
[PROOFSTEP]
rw [union_comm, ← inter_subset, diff_eq, inter_comm]
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ
hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ
hnc : nᶜ ⊆ k \ n ∪ kᶜ
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
have hw : closure (image2 ϕ w s) ⊆ n := compl_subset_compl.mp (Subset.trans hnc (union_subset hw₃ hw₄))
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
c : Set β
hc₁ : IsCompact c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
k : Set β := closure (image2 ϕ v s)
hk : IsCompact (k \ n)
j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ
hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u)
hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u
g : Set (Set τ)
hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f
hg₂ : Set.Finite g
hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i
w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v
hw₂ : w ∈ f
hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ
hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ
hnc : nᶜ ⊆ k \ n ∪ kᶜ
hw : closure (image2 ϕ w s) ⊆ n
⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n
[PROOFSTEP]
exact ⟨_, hw₂, hw⟩
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : T2Space β
c : Set β
hc₁ : IsCompact c
hc₂ : ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
⊢ ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s n
[PROOFSTEP]
rcases eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset f ϕ s hc₁ hc₂ hn₁ hn₂ with
⟨u, hu_mem, hu⟩
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : T2Space β
c : Set β
hc₁ : IsCompact c
hc₂ : ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
u : Set τ
hu_mem : u ∈ f
hu : closure (image2 ϕ u s) ⊆ n
⊢ ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s n
[PROOFSTEP]
refine' mem_of_superset hu_mem fun t ht x hx ↦ _
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : T2Space β
c : Set β
hc₁ : IsCompact c
hc₂ : ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s c
n : Set β
hn₁ : IsOpen n
hn₂ : ω f ϕ s ⊆ n
u : Set τ
hu_mem : u ∈ f
hu : closure (image2 ϕ u s) ⊆ n
t : τ
ht : t ∈ u
x : α
hx : x ∈ s
⊢ ϕ t x ∈ n
[PROOFSTEP]
exact hu (subset_closure <| mem_image2_of_mem ht hx)
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : CompactSpace β
v : Set β
hv₁ : IsOpen v
hv₂ : ω f ϕ s ⊆ v
⊢ ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s v
[PROOFSTEP]
rcases eventually_closure_subset_of_isOpen_of_omegaLimit_subset f ϕ s hv₁ hv₂ with ⟨u, hu_mem, hu⟩
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : CompactSpace β
v : Set β
hv₁ : IsOpen v
hv₂ : ω f ϕ s ⊆ v
u : Set τ
hu_mem : u ∈ f
hu : closure (image2 ϕ u s) ⊆ v
⊢ ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s v
[PROOFSTEP]
refine' mem_of_superset hu_mem fun t ht x hx ↦ _
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : CompactSpace β
v : Set β
hv₁ : IsOpen v
hv₂ : ω f ϕ s ⊆ v
u : Set τ
hu_mem : u ∈ f
hu : closure (image2 ϕ u s) ⊆ v
t : τ
ht : t ∈ u
x : α
hx : x ∈ s
⊢ ϕ t x ∈ v
[PROOFSTEP]
exact hu (subset_closure <| mem_image2_of_mem ht hx)
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hc₂ : ∃ v, v ∈ f ∧ closure (image2 ϕ v s) ⊆ c
hs : Set.Nonempty s
⊢ Set.Nonempty (ω f ϕ s)
[PROOFSTEP]
rcases hc₂ with ⟨v, hv₁, hv₂⟩
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
⊢ Set.Nonempty (ω f ϕ s)
[PROOFSTEP]
rw [omegaLimit_eq_iInter_inter _ _ _ hv₁]
[GOAL]
case intro.intro
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
⊢ Set.Nonempty (⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s))
[PROOFSTEP]
apply IsCompact.nonempty_iInter_of_directed_nonempty_compact_closed
[GOAL]
case intro.intro.hZd
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
⊢ Directed (fun x x_1 => x ⊇ x_1) fun i => closure (image2 ϕ (↑i ∩ v) s)
[PROOFSTEP]
rintro ⟨u₁, hu₁⟩ ⟨u₂, hu₂⟩
[GOAL]
case intro.intro.hZd.mk.mk
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
u₁ : Set τ
hu₁ : u₁ ∈ f.sets
u₂ : Set τ
hu₂ : u₂ ∈ f.sets
⊢ ∃ z,
(fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁, property := hu₁ })
((fun i => closure (image2 ϕ (↑i ∩ v) s)) z) ∧
(fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₂, property := hu₂ })
((fun i => closure (image2 ϕ (↑i ∩ v) s)) z)
[PROOFSTEP]
use⟨u₁ ∩ u₂, inter_mem hu₁ hu₂⟩
[GOAL]
case h
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
u₁ : Set τ
hu₁ : u₁ ∈ f.sets
u₂ : Set τ
hu₂ : u₂ ∈ f.sets
⊢ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁, property := hu₁ })
((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) }) ∧
(fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₂, property := hu₂ })
((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) })
[PROOFSTEP]
constructor
[GOAL]
case h.left
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
u₁ : Set τ
hu₁ : u₁ ∈ f.sets
u₂ : Set τ
hu₂ : u₂ ∈ f.sets
⊢ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁, property := hu₁ })
((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) })
case h.right
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
u₁ : Set τ
hu₁ : u₁ ∈ f.sets
u₂ : Set τ
hu₂ : u₂ ∈ f.sets
⊢ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₂, property := hu₂ })
((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) })
[PROOFSTEP]
all_goals exact closure_mono (image2_subset (inter_subset_inter_left _ (by simp)) Subset.rfl)
[GOAL]
case h.left
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
u₁ : Set τ
hu₁ : u₁ ∈ f.sets
u₂ : Set τ
hu₂ : u₂ ∈ f.sets
⊢ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁, property := hu₁ })
((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) })
[PROOFSTEP]
exact closure_mono (image2_subset (inter_subset_inter_left _ (by simp)) Subset.rfl)
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
u₁ : Set τ
hu₁ : u₁ ∈ f.sets
u₂ : Set τ
hu₂ : u₂ ∈ f.sets
⊢ ↑{ val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) } ⊆ ↑{ val := u₁, property := hu₁ }
[PROOFSTEP]
simp
[GOAL]
case h.right
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
u₁ : Set τ
hu₁ : u₁ ∈ f.sets
u₂ : Set τ
hu₂ : u₂ ∈ f.sets
⊢ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₂, property := hu₂ })
((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) })
[PROOFSTEP]
exact closure_mono (image2_subset (inter_subset_inter_left _ (by simp)) Subset.rfl)
[GOAL]
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
u₁ : Set τ
hu₁ : u₁ ∈ f.sets
u₂ : Set τ
hu₂ : u₂ ∈ f.sets
⊢ ↑{ val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) } ⊆ ↑{ val := u₂, property := hu₂ }
[PROOFSTEP]
simp
[GOAL]
case intro.intro.hZn
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
⊢ ∀ (i : ↑f.sets), Set.Nonempty (closure (image2 ϕ (↑i ∩ v) s))
[PROOFSTEP]
intro u
[GOAL]
case intro.intro.hZn
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
u : ↑f.sets
⊢ Set.Nonempty (closure (image2 ϕ (↑u ∩ v) s))
[PROOFSTEP]
have hn : (image2 ϕ (u ∩ v) s).Nonempty := Nonempty.image2 (Filter.nonempty_of_mem (inter_mem u.prop hv₁)) hs
[GOAL]
case intro.intro.hZn
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
u : ↑f.sets
hn : Set.Nonempty (image2 ϕ (↑u ∩ v) s)
⊢ Set.Nonempty (closure (image2 ϕ (↑u ∩ v) s))
[PROOFSTEP]
exact hn.mono subset_closure
[GOAL]
case intro.intro.hZc
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
⊢ ∀ (i : ↑f.sets), IsCompact (closure (image2 ϕ (↑i ∩ v) s))
[PROOFSTEP]
intro
[GOAL]
case intro.intro.hZc
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
i✝ : ↑f.sets
⊢ IsCompact (closure (image2 ϕ (↑i✝ ∩ v) s))
[PROOFSTEP]
apply isCompact_of_isClosed_subset hc₁ isClosed_closure
[GOAL]
case intro.intro.hZc
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
i✝ : ↑f.sets
⊢ closure (image2 ϕ (↑i✝ ∩ v) s) ⊆ c
[PROOFSTEP]
calc
_ ⊆ closure (image2 ϕ v s) := closure_mono (image2_subset (inter_subset_right _ _) Subset.rfl)
_ ⊆ c := hv₂
[GOAL]
case intro.intro.hZcl
τ : Type u_1
α : Type u_2
β : Type u_3
ι : Type u_4
inst✝¹ : TopologicalSpace β
f : Filter τ
ϕ : τ → α → β
s s₁ s₂ : Set α
inst✝ : NeBot f
c : Set β
hc₁ : IsCompact c
hs : Set.Nonempty s
v : Set τ
hv₁ : v ∈ f
hv₂ : closure (image2 ϕ v s) ⊆ c
⊢ ∀ (i : ↑f.sets), IsClosed (closure (image2 ϕ (↑i ∩ v) s))
[PROOFSTEP]
exact fun _ ↦ isClosed_closure
[GOAL]
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddMonoid τ
inst✝¹ : ContinuousAdd τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
⊢ IsInvariant ϕ.toFun (ω f ϕ.toFun s)
[PROOFSTEP]
refine' fun t ↦ MapsTo.mono_right _ (omegaLimit_subset_of_tendsto ϕ s (hf t))
[GOAL]
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddMonoid τ
inst✝¹ : ContinuousAdd τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
t : τ
⊢ MapsTo (toFun ϕ t) (ω f ϕ.toFun s) (ω f (fun t_1 x => toFun ϕ ((fun x x_1 => x + x_1) t t_1) x) s)
[PROOFSTEP]
exact mapsTo_omegaLimit _ (mapsTo_id _) (fun t' x ↦ (ϕ.map_add _ _ _).symm) (continuous_const.flow ϕ continuous_id)
[GOAL]
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddMonoid τ
inst✝¹ : ContinuousAdd τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
t : τ
ht : Tendsto (fun x => x + t) f f
⊢ ω f ϕ.toFun (toFun ϕ t '' s) ⊆ ω f ϕ.toFun s
[PROOFSTEP]
simp only [omegaLimit_image_eq, ← map_add]
[GOAL]
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddMonoid τ
inst✝¹ : ContinuousAdd τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
t : τ
ht : Tendsto (fun x => x + t) f f
⊢ ω f (fun t_1 x => toFun ϕ (t_1 + t) x) s ⊆ ω f ϕ.toFun s
[PROOFSTEP]
exact omegaLimit_subset_of_tendsto ϕ s ht
[GOAL]
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto (fun x => x + t) f f
t : τ
⊢ ω f ϕ.toFun s = ω f ϕ.toFun (toFun ϕ (-t) '' (toFun ϕ t '' s))
[PROOFSTEP]
simp [image_image, ← map_add]
[GOAL]
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
⊢ ω f ϕ.toFun (ω f ϕ.toFun s) ⊆ ω f ϕ.toFun s
[PROOFSTEP]
simp only [subset_def, mem_omegaLimit_iff_frequently₂, frequently_iff]
[GOAL]
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
⊢ ∀ (x : α),
(∀ (n : Set α), n ∈ 𝓝 x → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)) →
∀ (n : Set α), n ∈ 𝓝 x → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' s ∩ n)
[PROOFSTEP]
intro _ h
[GOAL]
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
x✝ : α
h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)
⊢ ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' s ∩ n)
[PROOFSTEP]
rintro n hn u hu
[GOAL]
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
x✝ : α
h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)
n : Set α
hn : n ∈ 𝓝 x✝
u : Set τ
hu : u ∈ f
⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n)
[PROOFSTEP]
rcases mem_nhds_iff.mp hn with ⟨o, ho₁, ho₂, ho₃⟩
[GOAL]
case intro.intro.intro
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
x✝ : α
h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)
n : Set α
hn : n ∈ 𝓝 x✝
u : Set τ
hu : u ∈ f
o : Set α
ho₁ : o ⊆ n
ho₂ : IsOpen o
ho₃ : x✝ ∈ o
⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n)
[PROOFSTEP]
rcases h o (IsOpen.mem_nhds ho₂ ho₃) hu with ⟨t, _ht₁, ht₂⟩
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
x✝ : α
h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)
n : Set α
hn : n ∈ 𝓝 x✝
u : Set τ
hu : u ∈ f
o : Set α
ho₁ : o ⊆ n
ho₂ : IsOpen o
ho₃ : x✝ ∈ o
t : τ
_ht₁ : t ∈ u
ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o)
⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n)
[PROOFSTEP]
have l₁ : (ω f ϕ s ∩ o).Nonempty :=
ht₂.mono (inter_subset_inter_left _ ((isInvariant_iff_image _ _).mp (isInvariant_omegaLimit _ _ _ hf) _))
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
x✝ : α
h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)
n : Set α
hn : n ∈ 𝓝 x✝
u : Set τ
hu : u ∈ f
o : Set α
ho₁ : o ⊆ n
ho₂ : IsOpen o
ho₃ : x✝ ∈ o
t : τ
_ht₁ : t ∈ u
ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o)
l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o)
⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n)
[PROOFSTEP]
have l₂ : (closure (image2 ϕ u s) ∩ o).Nonempty :=
l₁.mono fun b hb ↦ ⟨omegaLimit_subset_closure_fw_image _ _ _ hu hb.1, hb.2⟩
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
x✝ : α
h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)
n : Set α
hn : n ∈ 𝓝 x✝
u : Set τ
hu : u ∈ f
o : Set α
ho₁ : o ⊆ n
ho₂ : IsOpen o
ho₃ : x✝ ∈ o
t : τ
_ht₁ : t ∈ u
ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o)
l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o)
l₂ : Set.Nonempty (closure (image2 ϕ.toFun u s) ∩ o)
⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n)
[PROOFSTEP]
have l₃ : (o ∩ image2 ϕ u s).Nonempty := by
rcases l₂ with ⟨b, hb₁, hb₂⟩
exact mem_closure_iff_nhds.mp hb₁ o (IsOpen.mem_nhds ho₂ hb₂)
[GOAL]
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
x✝ : α
h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)
n : Set α
hn : n ∈ 𝓝 x✝
u : Set τ
hu : u ∈ f
o : Set α
ho₁ : o ⊆ n
ho₂ : IsOpen o
ho₃ : x✝ ∈ o
t : τ
_ht₁ : t ∈ u
ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o)
l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o)
l₂ : Set.Nonempty (closure (image2 ϕ.toFun u s) ∩ o)
⊢ Set.Nonempty (o ∩ image2 ϕ.toFun u s)
[PROOFSTEP]
rcases l₂ with ⟨b, hb₁, hb₂⟩
[GOAL]
case intro.intro
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
x✝ : α
h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)
n : Set α
hn : n ∈ 𝓝 x✝
u : Set τ
hu : u ∈ f
o : Set α
ho₁ : o ⊆ n
ho₂ : IsOpen o
ho₃ : x✝ ∈ o
t : τ
_ht₁ : t ∈ u
ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o)
l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o)
b : α
hb₁ : b ∈ closure (image2 ϕ.toFun u s)
hb₂ : b ∈ o
⊢ Set.Nonempty (o ∩ image2 ϕ.toFun u s)
[PROOFSTEP]
exact mem_closure_iff_nhds.mp hb₁ o (IsOpen.mem_nhds ho₂ hb₂)
[GOAL]
case intro.intro.intro.intro.intro
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
x✝ : α
h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)
n : Set α
hn : n ∈ 𝓝 x✝
u : Set τ
hu : u ∈ f
o : Set α
ho₁ : o ⊆ n
ho₂ : IsOpen o
ho₃ : x✝ ∈ o
t : τ
_ht₁ : t ∈ u
ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o)
l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o)
l₂ : Set.Nonempty (closure (image2 ϕ.toFun u s) ∩ o)
l₃ : Set.Nonempty (o ∩ image2 ϕ.toFun u s)
⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n)
[PROOFSTEP]
rcases l₃ with ⟨ϕra, ho, ⟨_, _, hr, ha, hϕra⟩⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
τ : Type u_1
inst✝³ : TopologicalSpace τ
inst✝² : AddCommGroup τ
inst✝¹ : TopologicalAddGroup τ
α : Type u_2
inst✝ : TopologicalSpace α
f : Filter τ
ϕ : Flow τ α
s : Set α
hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f
x✝ : α
h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)
n : Set α
hn : n ∈ 𝓝 x✝
u : Set τ
hu : u ∈ f
o : Set α
ho₁ : o ⊆ n
ho₂ : IsOpen o
ho₃ : x✝ ∈ o
t : τ
_ht₁ : t ∈ u
ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o)
l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o)
l₂ : Set.Nonempty (closure (image2 ϕ.toFun u s) ∩ o)
ϕra : α
ho : ϕra ∈ o
w✝¹ : τ
w✝ : α
hr : w✝¹ ∈ u
ha : w✝ ∈ s
hϕra : toFun ϕ w✝¹ w✝ = ϕra
⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n)
[PROOFSTEP]
exact ⟨_, hr, ϕra, ⟨_, ha, hϕra⟩, ho₁ ho⟩
| {"mathlib_filename": "Mathlib.Dynamics.OmegaLimit", "llama_tokens": 33571} |
[GOAL]
R : Type u_1
α : Type u_2
M : Type u_3
inst✝² : DivisionSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : α → α
g : α → M
x : α
⊢ birkhoffAverage R f g 0 x = 0
[PROOFSTEP]
simp [birkhoffAverage]
[GOAL]
R : Type u_1
α : Type u_2
M : Type u_3
inst✝² : DivisionSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
f : α → α
g : α → M
x : α
⊢ birkhoffAverage R f g 1 x = g x
[PROOFSTEP]
simp [birkhoffAverage]
[GOAL]
R : Type u_1
α : Type u_2
M : Type u_3
inst✝⁶ : DivisionSemiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : Module R M
S : Type u_4
F : Type u_5
N : Type u_6
inst✝³ : DivisionSemiring S
inst✝² : AddCommMonoid N
inst✝¹ : Module S N
inst✝ : AddMonoidHomClass F M N
g' : F
f : α → α
g : α → M
n : ℕ
x : α
⊢ ↑g' (birkhoffAverage R f g n x) = birkhoffAverage S f (↑g' ∘ g) n x
[PROOFSTEP]
simp only [birkhoffAverage, map_inv_nat_cast_smul g' R S, map_birkhoffSum]
[GOAL]
R : Type u_1
α : Type u_2
M : Type u_3
inst✝⁴ : DivisionSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
S : Type u_4
inst✝¹ : DivisionSemiring S
inst✝ : Module S M
⊢ birkhoffAverage R = birkhoffAverage S
[PROOFSTEP]
ext
[GOAL]
case h.h.h.h
R : Type u_1
α : Type u_2
M : Type u_3
inst✝⁴ : DivisionSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
S : Type u_4
inst✝¹ : DivisionSemiring S
inst✝ : Module S M
x✝³ : α → α
x✝² : α → M
x✝¹ : ℕ
x✝ : α
⊢ birkhoffAverage R x✝³ x✝² x✝¹ x✝ = birkhoffAverage S x✝³ x✝² x✝¹ x✝
[PROOFSTEP]
apply birkhoffAverage_congr_ring
[GOAL]
R : Type u_1
α : Type u_2
M : Type u_3
inst✝³ : DivisionSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : CharZero R
f : α → α
x : α
h : IsFixedPt f x
g : α → M
n : ℕ
hn : n ≠ 0
⊢ birkhoffAverage R f g n x = g x
[PROOFSTEP]
rw [birkhoffAverage, h.birkhoffSum_eq, nsmul_eq_smul_cast R, inv_smul_smul₀]
[GOAL]
case hc
R : Type u_1
α : Type u_2
M : Type u_3
inst✝³ : DivisionSemiring R
inst✝² : AddCommMonoid M
inst✝¹ : Module R M
inst✝ : CharZero R
f : α → α
x : α
h : IsFixedPt f x
g : α → M
n : ℕ
hn : n ≠ 0
⊢ ↑n ≠ 0
[PROOFSTEP]
rwa [Nat.cast_ne_zero]
[GOAL]
M : Type u_2
α : Type u_3
R : Type u_1
inst✝² : DivisionRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : α → α
g : α → M
n : ℕ
x : α
⊢ birkhoffAverage R f g n (f x) - birkhoffAverage R f g n x = (↑n)⁻¹ • (g (f^[n] x) - g x)
[PROOFSTEP]
simp only [birkhoffAverage, birkhoffSum_apply_sub_birkhoffSum, ← smul_sub]
| {"mathlib_filename": "Mathlib.Dynamics.BirkhoffSum.Average", "llama_tokens": 1232} |
{"mathlib_filename": "Mathlib.Tactic.LeftRight", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.ComputeDegree", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
M : Type u_2
inst✝ : AddCommMonoid M
f : α → α
g : α → M
m n : ℕ
x : α
⊢ birkhoffSum f g (m + n) x = birkhoffSum f g m x + birkhoffSum f g n (f^[m] x)
[PROOFSTEP]
simp_rw [birkhoffSum, sum_range_add, add_comm m, iterate_add_apply]
[GOAL]
α : Type u_1
M : Type u_2
inst✝ : AddCommMonoid M
f : α → α
x : α
h : IsFixedPt f x
g : α → M
n : ℕ
⊢ birkhoffSum f g n x = n • g x
[PROOFSTEP]
simp [birkhoffSum, (h.iterate _).eq]
[GOAL]
α : Type u_1
G : Type u_2
inst✝ : AddCommGroup G
f : α → α
g : α → G
n : ℕ
x : α
⊢ birkhoffSum f g n (f x) - birkhoffSum f g n x = g (f^[n] x) - g x
[PROOFSTEP]
rw [← sub_eq_iff_eq_add.2 (birkhoffSum_succ f g n x), ← sub_eq_iff_eq_add.2 (birkhoffSum_succ' f g n x), ← sub_add, ←
sub_add, sub_add_comm]
| {"mathlib_filename": "Mathlib.Dynamics.BirkhoffSum.Basic", "llama_tokens": 393} |
{"mathlib_filename": "Mathlib.Tactic.Propose", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa✝ : Measure α
μb✝ : Measure β
μc : Measure γ
μd : Measure δ
e : α ≃ᵐ β
μa : Measure α
μb : Measure β
h : MeasurePreserving ↑e
⊢ map (↑(MeasurableEquiv.symm e)) μb = μa
[PROOFSTEP]
rw [← h.map_eq, map_map e.symm.measurable e.measurable, e.symm_comp_self, map_id]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
f : α → β
hf : MeasurePreserving f
s : Set β
hs : MeasurableSet s
⊢ map f (Measure.restrict μa (f ⁻¹' s)) = Measure.restrict μb s
[PROOFSTEP]
rw [← hf.map_eq, restrict_map hf.measurable hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
f : α → β
hf : MeasurePreserving f
h₂ : MeasurableEmbedding f
s : Set β
⊢ map f (Measure.restrict μa (f ⁻¹' s)) = Measure.restrict μb s
[PROOFSTEP]
rw [← hf.map_eq, h₂.restrict_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
f : α → β
hf : MeasurePreserving f
h₂ : MeasurableEmbedding f
s : Set α
⊢ MeasurePreserving f
[PROOFSTEP]
simpa only [Set.preimage_image_eq _ h₂.injective] using hf.restrict_preimage_emb h₂ (f '' s)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
f : α → β
hf : MeasurePreserving f
h₂ : MeasurableEmbedding f
g : β → γ
⊢ AEMeasurable (g ∘ f) ↔ AEMeasurable g
[PROOFSTEP]
rw [← hf.map_eq, h₂.aemeasurable_map_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
g : β → γ
f : α → β
hg : MeasurePreserving g
hf : MeasurePreserving f
⊢ map (g ∘ f) μa = μc
[PROOFSTEP]
rw [← map_map hg.1 hf.1, hf.2, hg.2]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
g : α → β
e : β ≃ᵐ γ
h : MeasurePreserving ↑e
⊢ MeasurePreserving (↑e ∘ g) ↔ MeasurePreserving g
[PROOFSTEP]
refine' ⟨fun hg => _, fun hg => h.comp hg⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
g : α → β
e : β ≃ᵐ γ
h : MeasurePreserving ↑e
hg : MeasurePreserving (↑e ∘ g)
⊢ MeasurePreserving g
[PROOFSTEP]
convert (MeasurePreserving.symm e h).comp hg
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
g : α → β
e : β ≃ᵐ γ
h : MeasurePreserving ↑e
hg : MeasurePreserving (↑e ∘ g)
⊢ g = ↑(MeasurableEquiv.symm e) ∘ ↑e ∘ g
[PROOFSTEP]
simp [← Function.comp.assoc e.symm e g]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
g : α → β
e : γ ≃ᵐ α
h : MeasurePreserving ↑e
⊢ MeasurePreserving (g ∘ ↑e) ↔ MeasurePreserving g
[PROOFSTEP]
refine' ⟨fun hg => _, fun hg => hg.comp h⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
g : α → β
e : γ ≃ᵐ α
h : MeasurePreserving ↑e
hg : MeasurePreserving (g ∘ ↑e)
⊢ MeasurePreserving g
[PROOFSTEP]
convert hg.comp (MeasurePreserving.symm e h)
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
g : α → β
e : γ ≃ᵐ α
h : MeasurePreserving ↑e
hg : MeasurePreserving (g ∘ ↑e)
⊢ g = (g ∘ ↑e) ∘ ↑(MeasurableEquiv.symm e)
[PROOFSTEP]
simp [Function.comp.assoc g e e.symm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁴ : MeasurableSpace α
inst✝³ : MeasurableSpace β
inst✝² : MeasurableSpace γ
inst✝¹ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
f : α → β
hf : MeasurePreserving f
inst✝ : SigmaFinite μb
⊢ SigmaFinite (map f μa)
[PROOFSTEP]
rwa [hf.map_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
f : α → β
hf : MeasurePreserving f
s : Set β
hs : MeasurableSet s
⊢ ↑↑μa (f ⁻¹' s) = ↑↑μb s
[PROOFSTEP]
rw [← hf.map_eq, map_apply hf.1 hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
f : α → β
hf : MeasurePreserving f
hfe : MeasurableEmbedding f
s : Set β
⊢ ↑↑μa (f ⁻¹' s) = ↑↑μb s
[PROOFSTEP]
rw [← hf.map_eq, hfe.map_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
⊢ ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s))
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
⊢ ↑↑μ (s ∆ (f^[Nat.zero] ⁻¹' s)) ≤ Nat.zero • ↑↑μ (s ∆ (f ⁻¹' s))
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
ih : ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s))
⊢ ↑↑μ (s ∆ (f^[Nat.succ n] ⁻¹' s)) ≤ Nat.succ n • ↑↑μ (s ∆ (f ⁻¹' s))
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
ih : ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s))
⊢ ↑↑μ (s ∆ (f^[Nat.succ n] ⁻¹' s)) ≤ Nat.succ n • ↑↑μ (s ∆ (f ⁻¹' s))
[PROOFSTEP]
simp only [add_smul, one_smul, ← n.add_one]
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
ih : ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s))
⊢ ↑↑μ (s ∆ (f^[n + 1] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s)) + ↑↑μ (s ∆ (f ⁻¹' s))
[PROOFSTEP]
refine' le_trans (measure_symmDiff_le s (f^[n] ⁻¹' s) (f^[n + 1] ⁻¹' s)) (add_le_add ih _)
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
ih : ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s))
⊢ ↑↑μ ((f^[n] ⁻¹' s) ∆ (f^[n + 1] ⁻¹' s)) ≤ ↑↑μ (s ∆ (f ⁻¹' s))
[PROOFSTEP]
replace hs : MeasurableSet (s ∆ (f ⁻¹' s)) := hs.symmDiff $ hf.measurable hs
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
n : ℕ
ih : ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s))
hs : MeasurableSet (s ∆ (f ⁻¹' s))
⊢ ↑↑μ ((f^[n] ⁻¹' s) ∆ (f^[n + 1] ⁻¹' s)) ≤ ↑↑μ (s ∆ (f ⁻¹' s))
[PROOFSTEP]
rw [iterate_succ', preimage_comp, ← preimage_symmDiff, (hf.iterate n).measure_preimage hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
hvol : ↑↑μ univ < ↑n * ↑↑μ s
⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s
[PROOFSTEP]
have A : ∀ m, MeasurableSet (f^[m] ⁻¹' s) := fun m => (hf.iterate m).measurable hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
hvol : ↑↑μ univ < ↑n * ↑↑μ s
A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s)
⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s
[PROOFSTEP]
have B : ∀ m, μ (f^[m] ⁻¹' s) = μ s := fun m => (hf.iterate m).measure_preimage hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
hvol : ↑↑μ univ < ↑n * ↑↑μ s
A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s)
B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s
⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s
[PROOFSTEP]
have : μ (Set.univ : Set α) < (Finset.range n).sum fun m => μ (f^[m] ⁻¹' s) := by
simpa only [B, nsmul_eq_mul, Finset.sum_const, Finset.card_range]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
hvol : ↑↑μ univ < ↑n * ↑↑μ s
A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s)
B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s
⊢ ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s)
[PROOFSTEP]
simpa only [B, nsmul_eq_mul, Finset.sum_const, Finset.card_range]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
hvol : ↑↑μ univ < ↑n * ↑↑μ s
A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s)
B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s
this : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s)
⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s
[PROOFSTEP]
rcases exists_nonempty_inter_of_measure_univ_lt_sum_measure μ (fun m _ => A m) this with
⟨i, hi, j, hj, hij, x, hxi, hxj⟩
[GOAL]
case intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
hvol : ↑↑μ univ < ↑n * ↑↑μ s
A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s)
B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s
this : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s)
i : ℕ
hi : i ∈ Finset.range n
j : ℕ
hj : j ∈ Finset.range n
hij : i ≠ j
x : α
hxi : x ∈ f^[i] ⁻¹' s
hxj : x ∈ f^[j] ⁻¹' s
⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s
[PROOFSTEP]
wlog hlt : i < j generalizing i j
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
hvol : ↑↑μ univ < ↑n * ↑↑μ s
A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s)
B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s
this✝ : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s)
i : ℕ
hi : i ∈ Finset.range n
j : ℕ
hj : j ∈ Finset.range n
hij : i ≠ j
x : α
hxi : x ∈ f^[i] ⁻¹' s
hxj : x ∈ f^[j] ⁻¹' s
this :
∀ (i : ℕ),
i ∈ Finset.range n →
∀ (j : ℕ),
j ∈ Finset.range n →
i ≠ j → x ∈ f^[i] ⁻¹' s → x ∈ f^[j] ⁻¹' s → i < j → ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s
hlt : ¬i < j
⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s
[PROOFSTEP]
exact this j hj i hi hij.symm hxj hxi (hij.lt_or_lt.resolve_left hlt)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
hvol : ↑↑μ univ < ↑n * ↑↑μ s
A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s)
B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s
this : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s)
x : α
i : ℕ
hi : i ∈ Finset.range n
j : ℕ
hj : j ∈ Finset.range n
hij : i ≠ j
hxi : x ∈ f^[i] ⁻¹' s
hxj : x ∈ f^[j] ⁻¹' s
hlt : i < j
⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s
[PROOFSTEP]
simp only [Set.mem_preimage, Finset.mem_range] at hi hj hxi hxj
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
hvol : ↑↑μ univ < ↑n * ↑↑μ s
A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s)
B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s
this : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s)
x : α
i j : ℕ
hij : i ≠ j
hlt : i < j
hi : i < n
hj : j < n
hxi : f^[i] x ∈ s
hxj : f^[j] x ∈ s
⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s
[PROOFSTEP]
refine' ⟨f^[i] x, hxi, j - i, ⟨tsub_pos_of_lt hlt, lt_of_le_of_lt (j.sub_le i) hj⟩, _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
n : ℕ
hvol : ↑↑μ univ < ↑n * ↑↑μ s
A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s)
B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s
this : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s)
x : α
i j : ℕ
hij : i ≠ j
hlt : i < j
hi : i < n
hj : j < n
hxi : f^[i] x ∈ s
hxj : f^[j] x ∈ s
⊢ f^[j - i] (f^[i] x) ∈ s
[PROOFSTEP]
rwa [← iterate_add_apply, tsub_add_cancel_of_le hlt.le]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁴ : MeasurableSpace α
inst✝³ : MeasurableSpace β
inst✝² : MeasurableSpace γ
inst✝¹ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
inst✝ : IsFiniteMeasure μ
hf : MeasurePreserving f
hs : MeasurableSet s
hs' : ↑↑μ s ≠ 0
⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[m] x ∈ s
[PROOFSTEP]
rcases ENNReal.exists_nat_mul_gt hs' (measure_ne_top μ (Set.univ : Set α)) with ⟨N, hN⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁴ : MeasurableSpace α
inst✝³ : MeasurableSpace β
inst✝² : MeasurableSpace γ
inst✝¹ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
inst✝ : IsFiniteMeasure μ
hf : MeasurePreserving f
hs : MeasurableSet s
hs' : ↑↑μ s ≠ 0
N : ℕ
hN : ↑↑μ univ < ↑N * ↑↑μ s
⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[m] x ∈ s
[PROOFSTEP]
rcases hf.exists_mem_image_mem_of_volume_lt_mul_volume hs hN with ⟨x, hx, m, hm, hmx⟩
[GOAL]
case intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁴ : MeasurableSpace α
inst✝³ : MeasurableSpace β
inst✝² : MeasurableSpace γ
inst✝¹ : MeasurableSpace δ
μa : Measure α
μb : Measure β
μc : Measure γ
μd : Measure δ
μ : Measure α
f : α → α
s : Set α
inst✝ : IsFiniteMeasure μ
hf : MeasurePreserving f
hs : MeasurableSet s
hs' : ↑↑μ s ≠ 0
N : ℕ
hN : ↑↑μ univ < ↑N * ↑↑μ s
x : α
hx : x ∈ s
m : ℕ
hm : m ∈ Ioo 0 N
hmx : f^[m] x ∈ s
⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[m] x ∈ s
[PROOFSTEP]
exact ⟨x, hx, m, hm.1.ne', hmx⟩
| {"mathlib_filename": "Mathlib.Dynamics.Ergodic.MeasurePreserving", "llama_tokens": 9508} |
{"mathlib_filename": "Mathlib.Tactic.SudoSetOption", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Linarith", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Inhabit", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : PreErgodic f
hs : MeasurableSet s
hs' : f ⁻¹' s = s
⊢ ↑↑μ s = 0 ∨ ↑↑μ sᶜ = 0
[PROOFSTEP]
simpa using hf.ae_empty_or_univ hs hs'
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
inst✝ : IsProbabilityMeasure μ
hf : PreErgodic f
hs : MeasurableSet s
hs' : f ⁻¹' s = s
⊢ ↑↑μ s = 0 ∨ ↑↑μ s = 1
[PROOFSTEP]
simpa [hs] using hf.measure_self_or_compl_eq_zero hs hs'
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
hg : MeasurePreserving g
hf : PreErgodic f
f' : β → β
h_comm : g ∘ f = f' ∘ g
⊢ ∀ ⦃s : Set β⦄, MeasurableSet s → f' ⁻¹' s = s → s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ
[PROOFSTEP]
intro s hs₀ hs₁
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
hg : MeasurePreserving g
hf : PreErgodic f
f' : β → β
h_comm : g ∘ f = f' ∘ g
s : Set β
hs₀ : MeasurableSet s
hs₁ : f' ⁻¹' s = s
⊢ s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ
[PROOFSTEP]
replace hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s
[GOAL]
case hs₁
α : Type u_1
m : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
hg : MeasurePreserving g
hf : PreErgodic f
f' : β → β
h_comm : g ∘ f = f' ∘ g
s : Set β
hs₀ : MeasurableSet s
hs₁ : f' ⁻¹' s = s
⊢ f ⁻¹' (g ⁻¹' s) = g ⁻¹' s
[PROOFSTEP]
rw [← preimage_comp, h_comm, preimage_comp, hs₁]
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
hg : MeasurePreserving g
hf : PreErgodic f
f' : β → β
h_comm : g ∘ f = f' ∘ g
s : Set β
hs₀ : MeasurableSet s
hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s
⊢ s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ
[PROOFSTEP]
cases' hf.ae_empty_or_univ (hg.measurable hs₀) hs₁ with hs₂ hs₂ <;> [left; right]
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
hg : MeasurePreserving g
hf : PreErgodic f
f' : β → β
h_comm : g ∘ f = f' ∘ g
s : Set β
hs₀ : MeasurableSet s
hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s
⊢ s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ
[PROOFSTEP]
cases' hf.ae_empty_or_univ (hg.measurable hs₀) hs₁ with hs₂ hs₂
[GOAL]
case inl
α : Type u_1
m : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
hg : MeasurePreserving g
hf : PreErgodic f
f' : β → β
h_comm : g ∘ f = f' ∘ g
s : Set β
hs₀ : MeasurableSet s
hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s
hs₂ : g ⁻¹' s =ᶠ[ae μ] ∅
⊢ s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ
[PROOFSTEP]
left
[GOAL]
case inr
α : Type u_1
m : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
hg : MeasurePreserving g
hf : PreErgodic f
f' : β → β
h_comm : g ∘ f = f' ∘ g
s : Set β
hs₀ : MeasurableSet s
hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s
hs₂ : g ⁻¹' s =ᶠ[ae μ] univ
⊢ s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ
[PROOFSTEP]
right
[GOAL]
case inl.h
α : Type u_1
m : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
hg : MeasurePreserving g
hf : PreErgodic f
f' : β → β
h_comm : g ∘ f = f' ∘ g
s : Set β
hs₀ : MeasurableSet s
hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s
hs₂ : g ⁻¹' s =ᶠ[ae μ] ∅
⊢ s =ᶠ[ae μ'] ∅
[PROOFSTEP]
simpa only [ae_eq_empty, hg.measure_preimage hs₀] using hs₂
[GOAL]
case inr.h
α : Type u_1
m : MeasurableSpace α
f : α → α
s✝ : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
hg : MeasurePreserving g
hf : PreErgodic f
f' : β → β
h_comm : g ∘ f = f' ∘ g
s : Set β
hs₀ : MeasurableSet s
hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s
hs₂ : g ⁻¹' s =ᶠ[ae μ] univ
⊢ s =ᶠ[ae μ'] univ
[PROOFSTEP]
simpa only [ae_eq_univ, ← preimage_compl, hg.measure_preimage hs₀.compl] using hs₂
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
e : α ≃ᵐ β
h : MeasurePreserving ↑e
⊢ PreErgodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ PreErgodic f
[PROOFSTEP]
refine'
⟨fun hf => preErgodic_of_preErgodic_conjugate (h.symm e) hf _, fun hf => preErgodic_of_preErgodic_conjugate h hf _⟩
[GOAL]
case refine'_1
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
e : α ≃ᵐ β
h : MeasurePreserving ↑e
hf : PreErgodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e))
⊢ ↑(MeasurableEquiv.symm e) ∘ ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = f ∘ ↑(MeasurableEquiv.symm e)
[PROOFSTEP]
change (e.symm ∘ e) ∘ f ∘ e.symm = f ∘ e.symm
[GOAL]
case refine'_1
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
e : α ≃ᵐ β
h : MeasurePreserving ↑e
hf : PreErgodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e))
⊢ (↑(MeasurableEquiv.symm e) ∘ ↑e) ∘ f ∘ ↑(MeasurableEquiv.symm e) = f ∘ ↑(MeasurableEquiv.symm e)
[PROOFSTEP]
rw [MeasurableEquiv.symm_comp_self, comp.left_id]
[GOAL]
case refine'_2
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
e : α ≃ᵐ β
h : MeasurePreserving ↑e
hf : PreErgodic f
⊢ ↑e ∘ f = (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ∘ ↑e
[PROOFSTEP]
change e ∘ f = e ∘ f ∘ e.symm ∘ e
[GOAL]
case refine'_2
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
e : α ≃ᵐ β
h : MeasurePreserving ↑e
hf : PreErgodic f
⊢ ↑e ∘ f = ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) ∘ ↑e
[PROOFSTEP]
rw [MeasurableEquiv.symm_comp_self, comp.right_id]
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
e : α ≃ᵐ β
h : MeasurePreserving ↑e
⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f
[PROOFSTEP]
have : MeasurePreserving (e ∘ f ∘ e.symm) μ' μ' ↔ MeasurePreserving f μ μ := by
rw [h.comp_left_iff, (MeasurePreserving.symm e h).comp_right_iff]
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
e : α ≃ᵐ β
h : MeasurePreserving ↑e
⊢ MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f
[PROOFSTEP]
rw [h.comp_left_iff, (MeasurePreserving.symm e h).comp_right_iff]
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
e : α ≃ᵐ β
h : MeasurePreserving ↑e
this : MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f
⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f
[PROOFSTEP]
replace h : PreErgodic (e ∘ f ∘ e.symm) μ' ↔ PreErgodic f μ := h.preErgodic_conjugate_iff
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
β : Type u_2
m' : MeasurableSpace β
μ' : Measure β
s' : Set β
g : α → β
e : α ≃ᵐ β
this : MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f
h : PreErgodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ PreErgodic f
⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f
[PROOFSTEP]
exact
⟨fun hf => { this.mp hf.toMeasurePreserving, h.mp hf.toPreErgodic with }, fun hf =>
{ this.mpr hf.toMeasurePreserving, h.mpr hf.toPreErgodic with }⟩
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : QuasiErgodic f
hs : MeasurableSet s
hs' : f ⁻¹' s =ᶠ[ae μ] s
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
obtain ⟨t, h₀, h₁, h₂⟩ := hf.toQuasiMeasurePreserving.exists_preimage_eq_of_preimage_ae hs hs'
[GOAL]
case intro.intro.intro
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : QuasiErgodic f
hs : MeasurableSet s
hs' : f ⁻¹' s =ᶠ[ae μ] s
t : Set α
h₀ : MeasurableSet t
h₁ : t =ᶠ[ae μ] s
h₂ : f ⁻¹' t = t
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
rcases hf.ae_empty_or_univ h₀ h₂ with (h₃ | h₃) <;> [left; right]
[GOAL]
case intro.intro.intro
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : QuasiErgodic f
hs : MeasurableSet s
hs' : f ⁻¹' s =ᶠ[ae μ] s
t : Set α
h₀ : MeasurableSet t
h₁ : t =ᶠ[ae μ] s
h₂ : f ⁻¹' t = t
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
rcases hf.ae_empty_or_univ h₀ h₂ with (h₃ | h₃)
[GOAL]
case intro.intro.intro.inl
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : QuasiErgodic f
hs : MeasurableSet s
hs' : f ⁻¹' s =ᶠ[ae μ] s
t : Set α
h₀ : MeasurableSet t
h₁ : t =ᶠ[ae μ] s
h₂ : f ⁻¹' t = t
h₃ : t =ᶠ[ae μ] ∅
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
left
[GOAL]
case intro.intro.intro.inr
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : QuasiErgodic f
hs : MeasurableSet s
hs' : f ⁻¹' s =ᶠ[ae μ] s
t : Set α
h₀ : MeasurableSet t
h₁ : t =ᶠ[ae μ] s
h₂ : f ⁻¹' t = t
h₃ : t =ᶠ[ae μ] univ
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
right
[GOAL]
case intro.intro.intro.inl.h
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : QuasiErgodic f
hs : MeasurableSet s
hs' : f ⁻¹' s =ᶠ[ae μ] s
t : Set α
h₀ : MeasurableSet t
h₁ : t =ᶠ[ae μ] s
h₂ : f ⁻¹' t = t
h₃ : t =ᶠ[ae μ] ∅
⊢ s =ᶠ[ae μ] ∅
[PROOFSTEP]
exact ae_eq_trans h₁.symm h₃
[GOAL]
case intro.intro.intro.inr.h
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : QuasiErgodic f
hs : MeasurableSet s
hs' : f ⁻¹' s =ᶠ[ae μ] s
t : Set α
h₀ : MeasurableSet t
h₁ : t =ᶠ[ae μ] s
h₂ : f ⁻¹' t = t
h₃ : t =ᶠ[ae μ] univ
⊢ s =ᶠ[ae μ] univ
[PROOFSTEP]
exact ae_eq_trans h₁.symm h₃
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : QuasiErgodic f
hsm : NullMeasurableSet s
hs : f ⁻¹' s =ᶠ[ae μ] s
⊢ s =ᶠ[ae μ] univ → ∀ᵐ (x : α) ∂μ, x ∈ s
[PROOFSTEP]
simp [mem_ae_iff]
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : QuasiErgodic f
hsm : NullMeasurableSet s
hs : f ⁻¹' s =ᶠ[ae μ] s
⊢ s =ᶠ[ae μ] ∅ → ∀ᵐ (x : α) ∂μ, ¬x ∈ s
[PROOFSTEP]
simp [ae_iff]
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Ergodic f
hs : MeasurableSet s
hs' : f ⁻¹' s ≤ᶠ[ae μ] s
h_fin : ↑↑μ s ≠ ⊤
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
refine' hf.quasiErgodic.ae_empty_or_univ' hs _
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Ergodic f
hs : MeasurableSet s
hs' : f ⁻¹' s ≤ᶠ[ae μ] s
h_fin : ↑↑μ s ≠ ⊤
⊢ f ⁻¹' s =ᶠ[ae μ] s
[PROOFSTEP]
refine' ae_eq_of_ae_subset_of_measure_ge hs' (hf.measure_preimage hs).symm.le _ h_fin
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Ergodic f
hs : MeasurableSet s
hs' : f ⁻¹' s ≤ᶠ[ae μ] s
h_fin : ↑↑μ s ≠ ⊤
⊢ MeasurableSet (f ⁻¹' s)
[PROOFSTEP]
exact measurableSet_preimage hf.measurable hs
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Ergodic f
hs : MeasurableSet s
hs' : s ≤ᶠ[ae μ] f ⁻¹' s
h_fin : ↑↑μ s ≠ ⊤
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
replace h_fin : μ (f ⁻¹' s) ≠ ∞
[GOAL]
case h_fin
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Ergodic f
hs : MeasurableSet s
hs' : s ≤ᶠ[ae μ] f ⁻¹' s
h_fin : ↑↑μ s ≠ ⊤
⊢ ↑↑μ (f ⁻¹' s) ≠ ⊤
[PROOFSTEP]
rwa [hf.measure_preimage hs]
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Ergodic f
hs : MeasurableSet s
hs' : s ≤ᶠ[ae μ] f ⁻¹' s
h_fin : ↑↑μ (f ⁻¹' s) ≠ ⊤
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
refine' hf.quasiErgodic.ae_empty_or_univ' hs _
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Ergodic f
hs : MeasurableSet s
hs' : s ≤ᶠ[ae μ] f ⁻¹' s
h_fin : ↑↑μ (f ⁻¹' s) ≠ ⊤
⊢ f ⁻¹' s =ᶠ[ae μ] s
[PROOFSTEP]
exact (ae_eq_of_ae_subset_of_measure_ge hs' (hf.measure_preimage hs).le hs h_fin).symm
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Ergodic f
hs : MeasurableSet s
hs' : f '' s ≤ᶠ[ae μ] s
h_fin : ↑↑μ s ≠ ⊤
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
replace hs' : s ≤ᵐ[μ] f ⁻¹' s :=
(HasSubset.Subset.eventuallyLE (subset_preimage_image f s)).trans (hf.quasiMeasurePreserving.preimage_mono_ae hs')
[GOAL]
α : Type u_1
m : MeasurableSpace α
f : α → α
s : Set α
μ : Measure α
hf : Ergodic f
hs : MeasurableSet s
h_fin : ↑↑μ s ≠ ⊤
hs' : s ≤ᶠ[ae μ] f ⁻¹' s
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
exact ae_empty_or_univ_of_ae_le_preimage' hf hs hs' h_fin
| {"mathlib_filename": "Mathlib.Dynamics.Ergodic.Ergodic", "llama_tokens": 6958} |
{"mathlib_filename": "Mathlib.Tactic.Recover", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.SimpIntro", "llama_tokens": 0} |
|
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
⊢ integralSum f vol (Prepartition.biUnionTagged π πi) = ∑ J in π.boxes, integralSum f vol (πi J)
[PROOFSTEP]
refine (π.sum_biUnion_boxes _ _).trans <| sum_congr rfl fun J hJ => sum_congr rfl fun J' hJ' => ?_
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π : Prepartition I
πi : (J : Box ι) → TaggedPrepartition J
J : Box ι
hJ : J ∈ π.boxes
J' : Box ι
hJ' : J' ∈ (πi J).boxes
⊢ ↑(↑vol J') (f (tag (Prepartition.biUnionTagged π πi) J')) = ↑(↑vol J') (f (tag (πi J) J'))
[PROOFSTEP]
rw [π.tag_biUnionTagged hJ hJ']
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π : TaggedPrepartition I
πi : (J : Box ι) → Prepartition J
hπi : ∀ (J : Box ι), J ∈ π → Prepartition.IsPartition (πi J)
⊢ integralSum f vol (biUnionPrepartition π πi) = integralSum f vol π
[PROOFSTEP]
refine' (π.sum_biUnion_boxes _ _).trans (sum_congr rfl fun J hJ => _)
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π : TaggedPrepartition I
πi : (J : Box ι) → Prepartition J
hπi : ∀ (J : Box ι), J ∈ π → Prepartition.IsPartition (πi J)
J : Box ι
hJ : J ∈ π.boxes
⊢ ∑ J' in (πi J).boxes, ↑(↑vol J') (f (tag (biUnionPrepartition π πi) J')) = ↑(↑vol J) (f (tag π J))
[PROOFSTEP]
calc
(∑ J' in (πi J).boxes, vol J' (f (π.tag <| π.toPrepartition.biUnionIndex πi J'))) =
∑ J' in (πi J).boxes, vol J' (f (π.tag J)) :=
sum_congr rfl fun J' hJ' => by rw [Prepartition.biUnionIndex_of_mem _ hJ hJ']
_ = vol J (f (π.tag J)) :=
(vol.map ⟨⟨fun g : E →L[ℝ] F => g (f (π.tag J)), rfl⟩, fun _ _ => rfl⟩).sum_partition_boxes le_top (hπi J hJ)
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π : TaggedPrepartition I
πi : (J : Box ι) → Prepartition J
hπi : ∀ (J : Box ι), J ∈ π → Prepartition.IsPartition (πi J)
J : Box ι
hJ : J ∈ π.boxes
J' : Box ι
hJ' : J' ∈ (πi J).boxes
⊢ ↑(↑vol J') (f (tag π (Prepartition.biUnionIndex π.toPrepartition πi J'))) = ↑(↑vol J') (f (tag π J))
[PROOFSTEP]
rw [Prepartition.biUnionIndex_of_mem _ hJ hJ']
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π₁ π₂ : TaggedPrepartition I
h₁ : IsPartition π₁
h₂ : IsPartition π₂
⊢ integralSum f vol π₁ - integralSum f vol π₂ =
∑ J in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes,
(↑(↑vol J) (f (tag (infPrepartition π₁ π₂.toPrepartition) J)) -
↑(↑vol J) (f (tag (infPrepartition π₂ π₁.toPrepartition) J)))
[PROOFSTEP]
rw [← integralSum_inf_partition f vol π₁ h₂, ← integralSum_inf_partition f vol π₂ h₁, integralSum, integralSum,
Finset.sum_sub_distrib]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π₁ π₂ : TaggedPrepartition I
h₁ : IsPartition π₁
h₂ : IsPartition π₂
⊢ ∑ J in (infPrepartition π₁ π₂.toPrepartition).toPrepartition.boxes,
↑(↑vol J) (f (tag (infPrepartition π₁ π₂.toPrepartition) J)) -
∑ J in (infPrepartition π₂ π₁.toPrepartition).toPrepartition.boxes,
↑(↑vol J) (f (tag (infPrepartition π₂ π₁.toPrepartition) J)) =
∑ x in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes, ↑(↑vol x) (f (tag (infPrepartition π₁ π₂.toPrepartition) x)) -
∑ x in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes, ↑(↑vol x) (f (tag (infPrepartition π₂ π₁.toPrepartition) x))
[PROOFSTEP]
simp only [infPrepartition_toPrepartition, inf_comm]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π₁ π₂ : TaggedPrepartition I
h : Disjoint (TaggedPrepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
⊢ integralSum f vol (TaggedPrepartition.disjUnion π₁ π₂ h) = integralSum f vol π₁ + integralSum f vol π₂
[PROOFSTEP]
refine'
(Prepartition.sum_disj_union_boxes h _).trans
(congr_arg₂ (· + ·) (sum_congr rfl fun J hJ => _) (sum_congr rfl fun J hJ => _))
[GOAL]
case refine'_1
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π₁ π₂ : TaggedPrepartition I
h : Disjoint (TaggedPrepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
J : Box ι
hJ : J ∈ π₁.boxes
⊢ ↑(↑vol J) (f (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J)) = ↑(↑vol J) (f (tag π₁ J))
[PROOFSTEP]
rw [disjUnion_tag_of_mem_left _ hJ]
[GOAL]
case refine'_2
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π₁ π₂ : TaggedPrepartition I
h : Disjoint (TaggedPrepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂)
J : Box ι
hJ : J ∈ π₂.boxes
⊢ ↑(↑vol J) (f (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J)) = ↑(↑vol J) (f (tag π₂ J))
[PROOFSTEP]
rw [disjUnion_tag_of_mem_right _ hJ]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π : TaggedPrepartition I
⊢ integralSum (f + g) vol π = integralSum f vol π + integralSum g vol π
[PROOFSTEP]
simp only [integralSum, Pi.add_apply, (vol _).map_add, Finset.sum_add_distrib]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π : TaggedPrepartition I
⊢ integralSum (-f) vol π = -integralSum f vol π
[PROOFSTEP]
simp only [integralSum, Pi.neg_apply, (vol _).map_neg, Finset.sum_neg_distrib]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : NormedAddCommGroup F
inst✝ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
c : ℝ
f : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
π : TaggedPrepartition I
⊢ integralSum (c • f) vol π = c • integralSum f vol π
[PROOFSTEP]
simp only [integralSum, Finset.smul_sum, Pi.smul_apply, ContinuousLinearMap.map_smul]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
⊢ (∀ (ib : ℝ),
0 < ib →
∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall y ib) ↔
∀ (ε : ℝ),
ε > 0 →
∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ ε
[PROOFSTEP]
simp [@forall_swap ℝ≥0 (TaggedPrepartition I)]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
a : ℝ
h :
∀ (ε : ℝ),
0 < ε →
∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ a * ε
⊢ HasIntegral I l f vol y
[PROOFSTEP]
refine' hasIntegral_iff.2 fun ε hε => _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
a : ℝ
h :
∀ (ε : ℝ),
0 < ε →
∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ a * ε
ε : ℝ
hε : ε > 0
⊢ ∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ ε
[PROOFSTEP]
rcases exists_pos_mul_lt hε a with ⟨ε', hε', ha⟩
[GOAL]
case intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
a : ℝ
h :
∀ (ε : ℝ),
0 < ε →
∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ a * ε
ε : ℝ
hε : ε > 0
ε' : ℝ
hε' : 0 < ε'
ha : a * ε' < ε
⊢ ∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ ε
[PROOFSTEP]
rcases h ε' hε' with ⟨r, hr, H⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
a : ℝ
h :
∀ (ε : ℝ),
0 < ε →
∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ a * ε
ε : ℝ
hε : ε > 0
ε' : ℝ
hε' : 0 < ε'
ha : a * ε' < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0)
hr : ∀ (c : ℝ≥0), RCond l (r c)
H :
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ a * ε'
⊢ ∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ ε
[PROOFSTEP]
exact ⟨r, hr, fun c π hπ hπp => (H c π hπ hπp).trans ha.le⟩
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝ : CompleteSpace F
⊢ Integrable I l f vol ↔
∀ (ε : ℝ),
ε > 0 →
∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I),
MemBaseSet l I c₁ (r c₁) π₁ →
IsPartition π₁ →
MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε
[PROOFSTEP]
rw [integrable_iff_cauchy, cauchy_map_iff',
(l.hasBasis_toFilteriUnion_top _).prod_self.tendsto_iff uniformity_basis_dist_le]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝ : CompleteSpace F
⊢ (∀ (ib : ℝ),
0 < ib →
∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I × TaggedPrepartition I),
x ∈
{π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} ×ˢ
{π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} →
(integralSum f vol x.fst, integralSum f vol x.snd) ∈ {p | dist p.fst p.snd ≤ ib}) ↔
∀ (ε : ℝ),
ε > 0 →
∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I),
MemBaseSet l I c₁ (r c₁) π₁ →
IsPartition π₁ →
MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε
[PROOFSTEP]
refine' forall₂_congr fun ε _ => exists_congr fun r => _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝ : CompleteSpace F
ε : ℝ
x✝ : 0 < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0)
⊢ ((∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (x : TaggedPrepartition I × TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (r c) π ∧ IsPartition π} ×ˢ {π | ∃ c, MemBaseSet l I c (r c) π ∧ IsPartition π} →
(integralSum f vol x.fst, integralSum f vol x.snd) ∈ {p | dist p.fst p.snd ≤ ε}) ↔
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I),
MemBaseSet l I c₁ (r c₁) π₁ →
IsPartition π₁ →
MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε
[PROOFSTEP]
simp only [exists_prop, Prod.forall, Set.mem_iUnion, exists_imp, prod_mk_mem_set_prod_eq, and_imp, mem_inter_iff,
mem_setOf_eq]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝ : CompleteSpace F
ε : ℝ
x✝ : 0 < ε
r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0)
⊢ ((∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (a b : TaggedPrepartition I) (x : ℝ≥0),
MemBaseSet l I x (r x) a →
IsPartition a →
∀ (x : ℝ≥0),
MemBaseSet l I x (r x) b → IsPartition b → dist (integralSum f vol a) (integralSum f vol b) ≤ ε) ↔
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I),
MemBaseSet l I c₁ (r c₁) π₁ →
IsPartition π₁ →
MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε
[PROOFSTEP]
exact
and_congr Iff.rfl
⟨fun H c₁ c₂ π₁ π₂ h₁ hU₁ h₂ hU₂ => H π₁ π₂ c₁ h₁ hU₁ c₂ h₂ hU₂, fun H π₁ π₂ c₁ h₁ hU₁ c₂ h₂ hU₂ =>
H c₁ c₂ π₁ π₂ h₁ hU₁ h₂ hU₂⟩
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
h : Integrable I l f vol
⊢ HasIntegral I l f vol (integral I l f vol)
[PROOFSTEP]
rw [integral, dif_pos h]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
h : Integrable I l f vol
⊢ HasIntegral I l f vol (Exists.choose h)
[PROOFSTEP]
exact Classical.choose_spec h
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
h : HasIntegral I l f vol y
h' : HasIntegral I l g vol y'
⊢ HasIntegral I l (f + g) vol (y + y')
[PROOFSTEP]
simpa only [HasIntegral, ← integralSum_add] using h.add h'
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hf : HasIntegral I l f vol y
⊢ HasIntegral I l (-f) vol (-y)
[PROOFSTEP]
simpa only [HasIntegral, ← integralSum_neg] using hf.neg
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
h : ¬Integrable I l f vol
⊢ integral I l (-f) vol = -integral I l f vol
[PROOFSTEP]
rw [integral, integral, dif_neg h, dif_neg (mt Integrable.of_neg h), neg_zero]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
h : HasIntegral I l f vol y
h' : HasIntegral I l g vol y'
⊢ HasIntegral I l (f - g) vol (y - y')
[PROOFSTEP]
simpa only [sub_eq_add_neg] using h.add h'.neg
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
⊢ HasIntegral I l (fun x => 0) vol 0
[PROOFSTEP]
simpa only [← (vol I).map_zero] using hasIntegral_const (0 : E)
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f✝ g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
α : Type u_1
s : Finset α
f : α → (ι → ℝ) → E
g : α → F
h : ∀ (i : α), i ∈ s → HasIntegral I l (f i) vol (g i)
⊢ HasIntegral I l (fun x => ∑ i in s, f i x) vol (∑ i in s, g i)
[PROOFSTEP]
induction' s using Finset.induction_on with a s ha ihs
[GOAL]
case empty
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f✝ g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
α : Type u_1
s : Finset α
f : α → (ι → ℝ) → E
g : α → F
h✝ : ∀ (i : α), i ∈ s → HasIntegral I l (f i) vol (g i)
h : ∀ (i : α), i ∈ ∅ → HasIntegral I l (f i) vol (g i)
⊢ HasIntegral I l (fun x => ∑ i in ∅, f i x) vol (∑ i in ∅, g i)
[PROOFSTEP]
simp [hasIntegral_zero]
[GOAL]
case insert
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f✝ g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
α : Type u_1
s✝ : Finset α
f : α → (ι → ℝ) → E
g : α → F
h✝ : ∀ (i : α), i ∈ s✝ → HasIntegral I l (f i) vol (g i)
a : α
s : Finset α
ha : ¬a ∈ s
ihs :
(∀ (i : α), i ∈ s → HasIntegral I l (f i) vol (g i)) → HasIntegral I l (fun x => ∑ i in s, f i x) vol (∑ i in s, g i)
h : ∀ (i : α), i ∈ insert a s → HasIntegral I l (f i) vol (g i)
⊢ HasIntegral I l (fun x => ∑ i in insert a s, f i x) vol (∑ i in insert a s, g i)
[PROOFSTEP]
simp only [Finset.sum_insert ha]
[GOAL]
case insert
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f✝ g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
α : Type u_1
s✝ : Finset α
f : α → (ι → ℝ) → E
g : α → F
h✝ : ∀ (i : α), i ∈ s✝ → HasIntegral I l (f i) vol (g i)
a : α
s : Finset α
ha : ¬a ∈ s
ihs :
(∀ (i : α), i ∈ s → HasIntegral I l (f i) vol (g i)) → HasIntegral I l (fun x => ∑ i in s, f i x) vol (∑ i in s, g i)
h : ∀ (i : α), i ∈ insert a s → HasIntegral I l (f i) vol (g i)
⊢ HasIntegral I l (fun x => f a x + ∑ i in s, f i x) vol (g a + ∑ i in s, g i)
[PROOFSTEP]
rw [Finset.forall_mem_insert] at h
[GOAL]
case insert
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f✝ g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
α : Type u_1
s✝ : Finset α
f : α → (ι → ℝ) → E
g : α → F
h✝ : ∀ (i : α), i ∈ s✝ → HasIntegral I l (f i) vol (g i)
a : α
s : Finset α
ha : ¬a ∈ s
ihs :
(∀ (i : α), i ∈ s → HasIntegral I l (f i) vol (g i)) → HasIntegral I l (fun x => ∑ i in s, f i x) vol (∑ i in s, g i)
h : HasIntegral I l (f a) vol (g a) ∧ ∀ (x : α), x ∈ s → HasIntegral I l (f x) vol (g x)
⊢ HasIntegral I l (fun x => f a x + ∑ i in s, f i x) vol (g a + ∑ i in s, g i)
[PROOFSTEP]
exact h.1.add (ihs h.2)
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hf : HasIntegral I l f vol y
c : ℝ
⊢ HasIntegral I l (c • f) vol (c • y)
[PROOFSTEP]
simpa only [HasIntegral, ← integralSum_smul] using (tendsto_const_nhds : Tendsto _ _ (𝓝 c)).smul hf
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c : ℝ
hf : Integrable I l (c • f) vol
hc : c ≠ 0
⊢ Integrable I l f vol
[PROOFSTEP]
simpa [inv_smul_smul₀ hc] using hf.smul c⁻¹
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c : ℝ
⊢ integral I l (fun x => c • f x) vol = c • integral I l f vol
[PROOFSTEP]
rcases eq_or_ne c 0 with (rfl | hc)
[GOAL]
case inl
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
⊢ integral I l (fun x => 0 • f x) vol = 0 • integral I l f vol
[PROOFSTEP]
simp only [zero_smul, integral_zero]
[GOAL]
case inr
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c : ℝ
hc : c ≠ 0
⊢ integral I l (fun x => c • f x) vol = c • integral I l f vol
[PROOFSTEP]
by_cases hf : Integrable I l f vol
[GOAL]
case pos
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c : ℝ
hc : c ≠ 0
hf : Integrable I l f vol
⊢ integral I l (fun x => c • f x) vol = c • integral I l f vol
[PROOFSTEP]
exact (hf.hasIntegral.smul c).integral_eq
[GOAL]
case neg
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c : ℝ
hc : c ≠ 0
hf : ¬Integrable I l f vol
⊢ integral I l (fun x => c • f x) vol = c • integral I l f vol
[PROOFSTEP]
have : ¬Integrable I l (fun x => c • f x) vol := mt (fun h => h.of_smul hc) hf
[GOAL]
case neg
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c : ℝ
hc : c ≠ 0
hf : ¬Integrable I l f vol
this : ¬Integrable I l (fun x => c • f x) vol
⊢ integral I l (fun x => c • f x) vol = c • integral I l f vol
[PROOFSTEP]
rw [integral, integral, dif_neg hf, dif_neg this, smul_zero]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hg : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → 0 ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
⊢ 0 ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
by_cases hgi : Integrable I l g μ.toBoxAdditive.toSMul
[GOAL]
case pos
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hg : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → 0 ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hgi : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
⊢ 0 ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
refine ge_of_tendsto' hgi.hasIntegral fun π => sum_nonneg fun J _ => ?_
[GOAL]
case pos
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hg : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → 0 ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hgi : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
π : TaggedPrepartition I
J : Box ι
x✝ : J ∈ π.boxes
⊢ 0 ≤ ↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (g (tag π J))
[PROOFSTEP]
exact mul_nonneg ENNReal.toReal_nonneg (hg _ <| π.tag_mem_Icc _)
[GOAL]
case neg
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hg : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → 0 ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hgi : ¬Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
⊢ 0 ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
rw [integral, dif_neg hgi]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
⊢ ‖integral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))‖ ≤
integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
by_cases hfi : Integrable.{u, v, v} I l f μ.toBoxAdditive.toSMul
[GOAL]
case pos
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfi : Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
⊢ ‖integral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))‖ ≤
integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
refine' le_of_tendsto_of_tendsto' hfi.hasIntegral.norm hg.hasIntegral fun π => _
[GOAL]
case pos
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfi : Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
π : TaggedPrepartition I
⊢ ‖integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π‖ ≤
integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π
[PROOFSTEP]
refine' norm_sum_le_of_le _ fun J _ => _
[GOAL]
case pos
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfi : Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
π : TaggedPrepartition I
J : Box ι
x✝ : J ∈ π.boxes
⊢ ‖↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (f (tag π J))‖ ≤
↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (g (tag π J))
[PROOFSTEP]
simp only [BoxAdditiveMap.toSMul_apply, norm_smul, smul_eq_mul, Real.norm_eq_abs, μ.toBoxAdditive_apply,
abs_of_nonneg ENNReal.toReal_nonneg]
[GOAL]
case pos
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfi : Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
π : TaggedPrepartition I
J : Box ι
x✝ : J ∈ π.boxes
⊢ ENNReal.toReal (↑↑μ ↑J) * ‖f (tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * g (tag π J)
[PROOFSTEP]
exact mul_le_mul_of_nonneg_left (hle _ <| π.tag_mem_Icc _) ENNReal.toReal_nonneg
[GOAL]
case neg
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfi : ¬Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
⊢ ‖integral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))‖ ≤
integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
rw [integral, dif_neg hfi, norm_zero]
[GOAL]
case neg
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
g : (ι → ℝ) → ℝ
hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
hfi : ¬Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
⊢ 0 ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
exact integral_nonneg (fun x hx => (norm_nonneg _).trans (hle x hx)) μ
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c : ℝ
hc : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ c
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
⊢ ‖integral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))‖ ≤ ENNReal.toReal (↑↑μ ↑I) * c
[PROOFSTEP]
simpa only [integral_const] using norm_integral_le_of_norm_le hc μ (integrable_const c)
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c✝ c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
ε : ℝ
c : ℝ≥0
⊢ RCond l (convergenceR h ε c)
[PROOFSTEP]
rw [convergenceR]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c✝ c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
ε : ℝ
c : ℝ≥0
⊢ RCond l
(dite (0 < ε)
(fun hε =>
Exists.choose
(_ :
∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) (integral I l f vol) ≤ ε))
(fun hε x x => { val := 1, property := convergenceR.proof_3 }) c)
[PROOFSTEP]
split_ifs with h₀
[GOAL]
case pos
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c✝ c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
ε : ℝ
c : ℝ≥0
h₀ : 0 < ε
⊢ RCond l
(Exists.choose
(_ :
∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) (integral I l f vol) ≤ ε)
c)
case neg
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c✝ c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
ε : ℝ
c : ℝ≥0
h₀ : ¬0 < ε
⊢ RCond l ((fun x x => { val := 1, property := convergenceR.proof_3 }) c)
[PROOFSTEP]
exacts [(hasIntegral_iff.1 h.hasIntegral ε h₀).choose_spec.1 _, fun _ x => rfl]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
h₀ : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
hπp : IsPartition π
⊢ dist (integralSum f vol π) (integral I l f vol) ≤ ε
[PROOFSTEP]
rw [convergenceR, dif_pos h₀] at hπ
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
h₀ : 0 < ε
hπ :
MemBaseSet l I c
(Exists.choose
(_ :
∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c : ℝ≥0) (π : TaggedPrepartition I),
MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) (integral I l f vol) ≤ ε)
c)
π
hπp : IsPartition π
⊢ dist (integralSum f vol π) (integral I l f vol) ≤ ε
[PROOFSTEP]
exact (hasIntegral_iff.1 h.hasIntegral ε h₀).choose_spec.2 c _ hπ hπp
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
hpos₁ : 0 < ε₁
hpos₂ : 0 < ε₂
h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁
h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂
HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂
[PROOFSTEP]
rcases h₁.exists_common_compl h₂ HU with ⟨π, hπU, hπc₁, hπc₂⟩
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
hpos₁ : 0 < ε₁
hpos₂ : 0 < ε₂
h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁
h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂
HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
π : Prepartition I
hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁
hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁
hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂
⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂
[PROOFSTEP]
set r : ℝⁿ → Ioi (0 : ℝ) := fun x => min (h.convergenceR ε₁ c₁ x) (h.convergenceR ε₂ c₂ x)
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
hpos₁ : 0 < ε₁
hpos₂ : 0 < ε₂
h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁
h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂
HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
π : Prepartition I
hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁
hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁
hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x)
⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂
[PROOFSTEP]
have hr : l.RCond r := (h.convergenceR_cond _ c₁).min (h.convergenceR_cond _ c₂)
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
hpos₁ : 0 < ε₁
hpos₂ : 0 < ε₂
h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁
h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂
HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
π : Prepartition I
hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁
hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁
hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x)
hr : RCond l r
⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂
[PROOFSTEP]
set πr := π.toSubordinate r
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
hpos₁ : 0 < ε₁
hpos₂ : 0 < ε₂
h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁
h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂
HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
π : Prepartition I
hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁
hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁
hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x)
hr : RCond l r
πr : TaggedPrepartition I := Prepartition.toSubordinate π r
⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂
[PROOFSTEP]
have H₁ : dist (integralSum f vol (π₁.unionComplToSubordinate π hπU r)) (integral I l f vol) ≤ ε₁ :=
h.dist_integralSum_integral_le_of_memBaseSet hpos₁ (h₁.unionComplToSubordinate (fun _ _ => min_le_left _ _) hπU hπc₁)
(isPartition_unionComplToSubordinate _ _ _ _)
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
hpos₁ : 0 < ε₁
hpos₂ : 0 < ε₂
h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁
h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂
HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
π : Prepartition I
hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁
hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁
hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x)
hr : RCond l r
πr : TaggedPrepartition I := Prepartition.toSubordinate π r
H₁ : dist (integralSum f vol (unionComplToSubordinate π₁ π hπU r)) (integral I l f vol) ≤ ε₁
⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂
[PROOFSTEP]
rw [HU] at hπU
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
hpos₁ : 0 < ε₁
hpos₂ : 0 < ε₂
h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁
h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂
HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
π : Prepartition I
hπU✝ : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁
hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₂
hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁
hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x)
hr : RCond l r
πr : TaggedPrepartition I := Prepartition.toSubordinate π r
H₁ : dist (integralSum f vol (unionComplToSubordinate π₁ π hπU✝ r)) (integral I l f vol) ≤ ε₁
⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂
[PROOFSTEP]
have H₂ : dist (integralSum f vol (π₂.unionComplToSubordinate π hπU r)) (integral I l f vol) ≤ ε₂ :=
h.dist_integralSum_integral_le_of_memBaseSet hpos₂ (h₂.unionComplToSubordinate (fun _ _ => min_le_right _ _) hπU hπc₂)
(isPartition_unionComplToSubordinate _ _ _ _)
[GOAL]
case intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
hpos₁ : 0 < ε₁
hpos₂ : 0 < ε₂
h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁
h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂
HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂
π : Prepartition I
hπU✝ : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁
hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₂
hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁
hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x)
hr : RCond l r
πr : TaggedPrepartition I := Prepartition.toSubordinate π r
H₁ : dist (integralSum f vol (unionComplToSubordinate π₁ π hπU✝ r)) (integral I l f vol) ≤ ε₁
H₂ : dist (integralSum f vol (unionComplToSubordinate π₂ π hπU r)) (integral I l f vol) ≤ ε₂
⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂
[PROOFSTEP]
simpa [unionComplToSubordinate] using (dist_triangle_right _ _ _).trans (add_le_add H₁ H₂)
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
⊢ Tendsto (fun π => (integralSum f vol π.fst, integralSum f vol π.snd))
(toFilter l I ×ˢ toFilter l I ⊓ 𝓟 {π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd}) (𝓤 F)
[PROOFSTEP]
refine (((l.hasBasis_toFilter I).prod_self.inf_principal _).tendsto_iff uniformity_basis_dist_le).2 fun ε ε0 => ?_
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
ε : ℝ
ε0 : 0 < ε
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I × TaggedPrepartition I),
x ∈
{π | ∃ c, MemBaseSet l I c (ia c) π} ×ˢ {π | ∃ c, MemBaseSet l I c (ia c) π} ∩
{π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd} →
(integralSum f vol x.fst, integralSum f vol x.snd) ∈ {p | dist p.fst p.snd ≤ ε}
[PROOFSTEP]
replace ε0 := half_pos ε0
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
ε : ℝ
ε0 : 0 < ε / 2
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I × TaggedPrepartition I),
x ∈
{π | ∃ c, MemBaseSet l I c (ia c) π} ×ˢ {π | ∃ c, MemBaseSet l I c (ia c) π} ∩
{π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd} →
(integralSum f vol x.fst, integralSum f vol x.snd) ∈ {p | dist p.fst p.snd ≤ ε}
[PROOFSTEP]
use h.convergenceR (ε / 2), h.convergenceR_cond (ε / 2)
[GOAL]
case right
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
ε : ℝ
ε0 : 0 < ε / 2
⊢ ∀ (x : TaggedPrepartition I × TaggedPrepartition I),
x ∈
{π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π} ×ˢ
{π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π} ∩
{π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd} →
(integralSum f vol x.fst, integralSum f vol x.snd) ∈ {p | dist p.fst p.snd ≤ ε}
[PROOFSTEP]
rintro ⟨π₁, π₂⟩ ⟨⟨h₁, h₂⟩, hU⟩
[GOAL]
case right.mk.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁✝ π₂✝ : TaggedPrepartition I
h : Integrable I l f vol
ε : ℝ
ε0 : 0 < ε / 2
π₁ π₂ : TaggedPrepartition I
hU : (π₁, π₂) ∈ {π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd}
h₁ : (π₁, π₂).fst ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π}
h₂ : (π₁, π₂).snd ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π}
⊢ (integralSum f vol (π₁, π₂).fst, integralSum f vol (π₁, π₂).snd) ∈ {p | dist p.fst p.snd ≤ ε}
[PROOFSTEP]
rw [← add_halves ε]
[GOAL]
case right.mk.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁✝ π₂✝ : TaggedPrepartition I
h : Integrable I l f vol
ε : ℝ
ε0 : 0 < ε / 2
π₁ π₂ : TaggedPrepartition I
hU : (π₁, π₂) ∈ {π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd}
h₁ : (π₁, π₂).fst ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π}
h₂ : (π₁, π₂).snd ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π}
⊢ (integralSum f vol (π₁, π₂).fst, integralSum f vol (π₁, π₂).snd) ∈ {p | dist p.fst p.snd ≤ ε / 2 + ε / 2}
[PROOFSTEP]
exact h.dist_integralSum_le_of_memBaseSet ε0 ε0 h₁.choose_spec h₂.choose_spec hU
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
π₀ : Prepartition I
⊢ Cauchy (Filter.map (integralSum f vol) (toFilteriUnion l I π₀))
[PROOFSTEP]
refine' ⟨inferInstance, _⟩
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
π₀ : Prepartition I
⊢ Filter.map (integralSum f vol) (toFilteriUnion l I π₀) ×ˢ Filter.map (integralSum f vol) (toFilteriUnion l I π₀) ≤ 𝓤 F
[PROOFSTEP]
rw [prod_map_map_eq, ← toFilter_inf_iUnion_eq, ← prod_inf_prod, prod_principal_principal]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
h : Integrable I l f vol
π₀ : Prepartition I
⊢ Filter.map (fun p => (integralSum f vol p.fst, integralSum f vol p.snd))
(toFilter l I ×ˢ toFilter l I ⊓
𝓟
({π | TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} ×ˢ
{π | TaggedPrepartition.iUnion π = Prepartition.iUnion π₀})) ≤
𝓤 F
[PROOFSTEP]
exact
h.tendsto_integralSum_toFilter_prod_self_inf_iUnion_eq_uniformity.mono_left
(inf_le_inf_left _ <| principal_mono.2 fun π h => h.1.trans h.2.symm)
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
hJ : J ≤ I
⊢ ∃ y, HasIntegral J l f vol y ∧ Tendsto (integralSum f vol) (toFilteriUnion l I (Prepartition.single I J hJ)) (𝓝 y)
[PROOFSTEP]
refine
(cauchy_map_iff_exists_tendsto.1 (h.cauchy_map_integralSum_toFilteriUnion (.single I J hJ))).imp fun y hy ↦ ⟨?_, hy⟩
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y✝ y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
hJ : J ≤ I
y : F
hy : Tendsto (integralSum f vol) (toFilteriUnion l I (Prepartition.single I J hJ)) (𝓝 y)
⊢ HasIntegral J l f vol y
[PROOFSTEP]
convert
hy.comp
(l.tendsto_embedBox_toFilteriUnion_top hJ)
-- faster than `exact` here
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε
[PROOFSTEP]
refine'
le_of_forall_pos_le_add fun δ δ0 =>
_
-- First we choose some constants.
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
set δ' : ℝ := δ / (π₀.boxes.card + 1)
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
have H0 : 0 < (π₀.boxes.card + 1 : ℝ) := Nat.cast_add_one_pos _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
have δ'0 : 0 < δ' := div_pos δ0 H0
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
set C := max π₀.distortion π₀.compl.distortion
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
have :
∀ J ∈ π₀,
∃ πi : TaggedPrepartition J,
πi.IsPartition ∧
dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ l.MemBaseSet J C (h.convergenceR δ' C) πi :=
by
intro J hJ
have Hle : J ≤ I := π₀.le_of_mem hJ
have HJi : Integrable J l f vol := h.to_subbox Hle
set r := fun x => min (h.convergenceR δ' C x) (HJi.convergenceR δ' C x)
have hJd : J.distortion ≤ C := le_trans (Finset.le_sup hJ) (le_max_left _ _)
rcases l.exists_memBaseSet_isPartition J hJd r with ⟨πJ, hC, hp⟩
have hC₁ : l.MemBaseSet J C (HJi.convergenceR δ' C) πJ := by refine' hC.mono J le_rfl le_rfl fun x _ => _;
exact min_le_right _ _
have hC₂ : l.MemBaseSet J C (h.convergenceR δ' C) πJ := by refine' hC.mono J le_rfl le_rfl fun x _ => _;
exact min_le_left _ _
exact
⟨πJ, hp, HJi.dist_integralSum_integral_le_of_memBaseSet δ'0 hC₁ hp, hC₂⟩
/- Now we combine these tagged partitions into a tagged prepartition of `I` that covers the
same part of `I` as `π₀` and apply `BoxIntegral.dist_integralSum_le_of_memBaseSet` to
`π` and this prepartition. -/
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
⊢ ∀ (J : Box ι),
J ∈ π₀ →
∃ πi,
IsPartition πi ∧
dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi
[PROOFSTEP]
intro J hJ
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
⊢ ∃ πi,
IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi
[PROOFSTEP]
have Hle : J ≤ I := π₀.le_of_mem hJ
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
⊢ ∃ πi,
IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi
[PROOFSTEP]
have HJi : Integrable J l f vol := h.to_subbox Hle
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
HJi : Integrable J l f vol
⊢ ∃ πi,
IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi
[PROOFSTEP]
set r := fun x => min (h.convergenceR δ' C x) (HJi.convergenceR δ' C x)
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
HJi : Integrable J l f vol
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x)
⊢ ∃ πi,
IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi
[PROOFSTEP]
have hJd : J.distortion ≤ C := le_trans (Finset.le_sup hJ) (le_max_left _ _)
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
HJi : Integrable J l f vol
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x)
hJd : Box.distortion J ≤ C
⊢ ∃ πi,
IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi
[PROOFSTEP]
rcases l.exists_memBaseSet_isPartition J hJd r with ⟨πJ, hC, hp⟩
[GOAL]
case intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
HJi : Integrable J l f vol
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x)
hJd : Box.distortion J ≤ C
πJ : TaggedPrepartition J
hC : MemBaseSet l J C r πJ
hp : IsPartition πJ
⊢ ∃ πi,
IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi
[PROOFSTEP]
have hC₁ : l.MemBaseSet J C (HJi.convergenceR δ' C) πJ := by refine' hC.mono J le_rfl le_rfl fun x _ => _;
exact min_le_right _ _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
HJi : Integrable J l f vol
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x)
hJd : Box.distortion J ≤ C
πJ : TaggedPrepartition J
hC : MemBaseSet l J C r πJ
hp : IsPartition πJ
⊢ MemBaseSet l J C (convergenceR HJi δ' C) πJ
[PROOFSTEP]
refine' hC.mono J le_rfl le_rfl fun x _ => _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
HJi : Integrable J l f vol
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x)
hJd : Box.distortion J ≤ C
πJ : TaggedPrepartition J
hC : MemBaseSet l J C r πJ
hp : IsPartition πJ
x : ι → ℝ
x✝ : x ∈ ↑Box.Icc J
⊢ r x ≤ convergenceR HJi δ' C x
[PROOFSTEP]
exact min_le_right _ _
[GOAL]
case intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
HJi : Integrable J l f vol
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x)
hJd : Box.distortion J ≤ C
πJ : TaggedPrepartition J
hC : MemBaseSet l J C r πJ
hp : IsPartition πJ
hC₁ : MemBaseSet l J C (convergenceR HJi δ' C) πJ
⊢ ∃ πi,
IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi
[PROOFSTEP]
have hC₂ : l.MemBaseSet J C (h.convergenceR δ' C) πJ := by refine' hC.mono J le_rfl le_rfl fun x _ => _;
exact min_le_left _ _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
HJi : Integrable J l f vol
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x)
hJd : Box.distortion J ≤ C
πJ : TaggedPrepartition J
hC : MemBaseSet l J C r πJ
hp : IsPartition πJ
hC₁ : MemBaseSet l J C (convergenceR HJi δ' C) πJ
⊢ MemBaseSet l J C (convergenceR h δ' C) πJ
[PROOFSTEP]
refine' hC.mono J le_rfl le_rfl fun x _ => _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
HJi : Integrable J l f vol
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x)
hJd : Box.distortion J ≤ C
πJ : TaggedPrepartition J
hC : MemBaseSet l J C r πJ
hp : IsPartition πJ
hC₁ : MemBaseSet l J C (convergenceR HJi δ' C) πJ
x : ι → ℝ
x✝ : x ∈ ↑Box.Icc J
⊢ r x ≤ convergenceR h δ' C x
[PROOFSTEP]
exact min_le_left _ _
[GOAL]
case intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
J : Box ι
hJ : J ∈ π₀
Hle : J ≤ I
HJi : Integrable J l f vol
r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x)
hJd : Box.distortion J ≤ C
πJ : TaggedPrepartition J
hC : MemBaseSet l J C r πJ
hp : IsPartition πJ
hC₁ : MemBaseSet l J C (convergenceR HJi δ' C) πJ
hC₂ : MemBaseSet l J C (convergenceR h δ' C) πJ
⊢ ∃ πi,
IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi
[PROOFSTEP]
exact
⟨πJ, hp, HJi.dist_integralSum_integral_le_of_memBaseSet δ'0 hC₁ hp, hC₂⟩
/- Now we combine these tagged partitions into a tagged prepartition of `I` that covers the
same part of `I` as `π₀` and apply `BoxIntegral.dist_integralSum_le_of_memBaseSet` to
`π` and this prepartition. -/
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
this :
∀ (J : Box ι),
J ∈ π₀ →
∃ πi,
IsPartition πi ∧
dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
choose! πi hπip hπiδ' hπiC using this
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
πi : (J : Box ι) → TaggedPrepartition J
hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J)
hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ'
hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J)
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
have : l.MemBaseSet I C (h.convergenceR δ' C) (π₀.biUnionTagged πi) :=
biUnionTagged_memBaseSet hπiC hπip fun _ => le_max_right _ _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
πi : (J : Box ι) → TaggedPrepartition J
hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J)
hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ'
hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J)
this : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi)
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
have hU' : π.iUnion = (π₀.biUnionTagged πi).iUnion := hU.trans (Prepartition.iUnion_biUnion_partition _ hπip).symm
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
πi : (J : Box ι) → TaggedPrepartition J
hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J)
hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ'
hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J)
this : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi)
hU' : TaggedPrepartition.iUnion π = TaggedPrepartition.iUnion (Prepartition.biUnionTagged π₀ πi)
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
have := h.dist_integralSum_le_of_memBaseSet h0 δ'0 hπ this hU'
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
πi : (J : Box ι) → TaggedPrepartition J
hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J)
hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ'
hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J)
this✝ : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi)
hU' : TaggedPrepartition.iUnion π = TaggedPrepartition.iUnion (Prepartition.biUnionTagged π₀ πi)
this : dist (integralSum f vol π) (integralSum f vol (Prepartition.biUnionTagged π₀ πi)) ≤ ε + δ'
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
rw [integralSum_biUnionTagged] at this
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
πi : (J : Box ι) → TaggedPrepartition J
hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J)
hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ'
hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J)
this✝ : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi)
hU' : TaggedPrepartition.iUnion π = TaggedPrepartition.iUnion (Prepartition.biUnionTagged π₀ πi)
this : dist (integralSum f vol π) (∑ J in π₀.boxes, integralSum f vol (πi J)) ≤ ε + δ'
⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ
[PROOFSTEP]
calc
dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤
dist (integralSum f vol π) (∑ J in π₀.boxes, integralSum f vol (πi J)) +
dist (∑ J in π₀.boxes, integralSum f vol (πi J)) (∑ J in π₀.boxes, integral J l f vol) :=
dist_triangle _ _ _
_ ≤ ε + δ' + ∑ _J in π₀.boxes, δ' := (add_le_add this (dist_sum_sum_le_of_le _ hπiδ'))
_ = ε + δ := by field_simp [H0.ne']; ring
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
πi : (J : Box ι) → TaggedPrepartition J
hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J)
hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ'
hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J)
this✝ : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi)
hU' : TaggedPrepartition.iUnion π = TaggedPrepartition.iUnion (Prepartition.biUnionTagged π₀ πi)
this : dist (integralSum f vol π) (∑ J in π₀.boxes, integralSum f vol (πi J)) ≤ ε + δ'
⊢ ε + δ' + ∑ _J in π₀.boxes, δ' = ε + δ
[PROOFSTEP]
field_simp [H0.ne']
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
h0 : 0 < ε
hπ : MemBaseSet l I c (convergenceR h ε c) π
π₀ : Prepartition I
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
δ : ℝ
δ0 : 0 < δ
δ' : ℝ := δ / (↑(card π₀.boxes) + 1)
H0 : 0 < ↑(card π₀.boxes) + 1
δ'0 : 0 < δ'
C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀))
πi : (J : Box ι) → TaggedPrepartition J
hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J)
hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ'
hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J)
this✝ : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi)
hU' : TaggedPrepartition.iUnion π = TaggedPrepartition.iUnion (Prepartition.biUnionTagged π₀ πi)
this : dist (integralSum f vol π) (∑ J in π₀.boxes, integralSum f vol (πi J)) ≤ ε + δ'
⊢ ε * (↑(card π₀.boxes) + 1) + δ + ↑(card π₀.boxes) * δ = (ε + δ) * (↑(card π₀.boxes) + 1)
[PROOFSTEP]
ring
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
π₀ : Prepartition I
⊢ Tendsto (integralSum f vol) (toFilteriUnion l I π₀) (𝓝 (∑ J in π₀.boxes, integral J l f vol))
[PROOFSTEP]
refine' ((l.hasBasis_toFilteriUnion I π₀).tendsto_iff nhds_basis_closedBall).2 fun ε ε0 => _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
π₀ : Prepartition I
ε : ℝ
ε0 : 0 < ε
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} →
integralSum f vol x ∈ closedBall (∑ J in π₀.boxes, integral J l f vol) ε
[PROOFSTEP]
refine' ⟨h.convergenceR ε, h.convergenceR_cond ε, _⟩
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
π₀ : Prepartition I
ε : ℝ
ε0 : 0 < ε
⊢ ∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h ε c) π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} →
integralSum f vol x ∈ closedBall (∑ J in π₀.boxes, integral J l f vol) ε
[PROOFSTEP]
simp only [mem_inter_iff, Set.mem_iUnion, mem_setOf_eq]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
π₀ : Prepartition I
ε : ℝ
ε0 : 0 < ε
⊢ ∀ (x : TaggedPrepartition I),
(∃ c, MemBaseSet l I c (convergenceR h ε c) x ∧ TaggedPrepartition.iUnion x = Prepartition.iUnion π₀) →
integralSum f vol x ∈ closedBall (∑ J in π₀.boxes, integral J l f vol) ε
[PROOFSTEP]
rintro π ⟨c, hc, hU⟩
[GOAL]
case intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c✝ c₁ c₂ : ℝ≥0
ε✝ ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
π₀ : Prepartition I
ε : ℝ
ε0 : 0 < ε
π : TaggedPrepartition I
c : ℝ≥0
hc : MemBaseSet l I c (convergenceR h ε c) π
hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀
⊢ integralSum f vol π ∈ closedBall (∑ J in π₀.boxes, integral J l f vol) ε
[PROOFSTEP]
exact h.dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq ε0 hc hU
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁✝ π₂✝ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
π₁ π₂ : Prepartition I
hU : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
⊢ ∑ J in π₁.boxes, integral J l f vol = ∑ J in π₂.boxes, integral J l f vol
[PROOFSTEP]
refine' tendsto_nhds_unique (h.tendsto_integralSum_sum_integral π₁) _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁✝ π₂✝ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
π₁ π₂ : Prepartition I
hU : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
⊢ Tendsto (integralSum f vol) (toFilteriUnion l I π₁) (𝓝 (∑ J in π₂.boxes, integral J l f vol))
[PROOFSTEP]
rw [l.toFilteriUnion_congr _ hU]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁✝ π₂✝ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
π₁ π₂ : Prepartition I
hU : Prepartition.iUnion π₁ = Prepartition.iUnion π₂
⊢ Tendsto (integralSum f vol) (toFilteriUnion l I π₂) (𝓝 (∑ J in π₂.boxes, integral J l f vol))
[PROOFSTEP]
exact h.tendsto_integralSum_sum_integral π₂
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
J : Box ι
hJ : ↑J ≤ ↑I
π : Prepartition J
hπ : Prepartition.IsPartition π
⊢ ∑ Ji in π.boxes, (fun J => integral J l f vol) Ji = (fun J => integral J l f vol) J
[PROOFSTEP]
replace hπ := hπ.iUnion_eq
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
J : Box ι
hJ : ↑J ≤ ↑I
π : Prepartition J
hπ : Prepartition.iUnion π = ↑J
⊢ ∑ Ji in π.boxes, (fun J => integral J l f vol) Ji = (fun J => integral J l f vol) J
[PROOFSTEP]
rw [← Prepartition.iUnion_top] at hπ
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁵ : NormedAddCommGroup E
inst✝⁴ : NormedSpace ℝ E
inst✝³ : NormedAddCommGroup F
inst✝² : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝¹ : Fintype ι
l : IntegrationParams
f g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
c c₁ c₂ : ℝ≥0
ε ε₁ ε₂ : ℝ
π₁ π₂ : TaggedPrepartition I
inst✝ : CompleteSpace F
h : Integrable I l f vol
J : Box ι
hJ : ↑J ≤ ↑I
π : Prepartition J
hπ : Prepartition.iUnion π = Prepartition.iUnion ⊤
⊢ ∑ Ji in π.boxes, (fun J => integral J l f vol) Ji = (fun J => integral J l f vol) J
[PROOFSTEP]
rw [(h.to_subbox (WithTop.coe_le_coe.1 hJ)).sum_integral_congr hπ, Prepartition.top_boxes, sum_singleton]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
⊢ Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
have huc := I.isCompact_Icc.uniformContinuousOn_of_continuous hc
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc : UniformContinuousOn f (↑Box.Icc I)
⊢ Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
rw [Metric.uniformContinuousOn_iff_le] at huc
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
⊢ Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))
[PROOFSTEP]
refine' integrable_iff_cauchy_basis.2 fun ε ε0 => _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
⊢ ∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I),
MemBaseSet l I c₁ (r c₁) π₁ →
IsPartition π₁ →
MemBaseSet l I c₂ (r c₂) π₂ →
IsPartition π₂ →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₁)
(integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₂) ≤
ε
[PROOFSTEP]
rcases exists_pos_mul_lt ε0 (μ.toBoxAdditive I) with ⟨ε', ε0', hε⟩
[GOAL]
case intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
⊢ ∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I),
MemBaseSet l I c₁ (r c₁) π₁ →
IsPartition π₁ →
MemBaseSet l I c₂ (r c₂) π₂ →
IsPartition π₂ →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₁)
(integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₂) ≤
ε
[PROOFSTEP]
rcases huc ε' ε0' with ⟨δ, δ0 : 0 < δ, Hδ⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
⊢ ∃ r,
(∀ (c : ℝ≥0), RCond l (r c)) ∧
∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I),
MemBaseSet l I c₁ (r c₁) π₁ →
IsPartition π₁ →
MemBaseSet l I c₂ (r c₂) π₂ →
IsPartition π₂ →
dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₁)
(integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₂) ≤
ε
[PROOFSTEP]
refine' ⟨fun _ _ => ⟨δ / 2, half_pos δ0⟩, fun _ _ _ => rfl, fun c₁ c₂ π₁ π₂ h₁ h₁p h₂ h₂p => _⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
⊢ dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₁)
(integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₂) ≤
ε
[PROOFSTEP]
simp only [dist_eq_norm, integralSum_sub_partitions _ _ h₁p h₂p, BoxAdditiveMap.toSMul_apply, ← smul_sub]
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
⊢ ‖∑ x in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes,
↑(Measure.toBoxAdditive μ) x •
(f (tag (infPrepartition π₁ π₂.toPrepartition) x) - f (tag (infPrepartition π₂ π₁.toPrepartition) x))‖ ≤
ε
[PROOFSTEP]
have :
∀ J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition,
‖μ.toBoxAdditive J •
(f ((π₁.infPrepartition π₂.toPrepartition).tag J) - f ((π₂.infPrepartition π₁.toPrepartition).tag J))‖ ≤
μ.toBoxAdditive J * ε' :=
by
intro J hJ
have : 0 ≤ μ.toBoxAdditive J := ENNReal.toReal_nonneg
rw [norm_smul, Real.norm_eq_abs, abs_of_nonneg this, ← dist_eq_norm]
refine' mul_le_mul_of_nonneg_left _ this
refine' Hδ _ (TaggedPrepartition.tag_mem_Icc _ _) _ (TaggedPrepartition.tag_mem_Icc _ _) _
rw [← add_halves δ]
refine' (dist_triangle_left _ _ J.upper).trans (add_le_add (h₁.1 _ _ _) (h₂.1 _ _ _))
· exact Prepartition.biUnionIndex_mem _ hJ
· exact Box.le_iff_Icc.1 (Prepartition.le_biUnionIndex _ hJ) J.upper_mem_Icc
· rw [_root_.inf_comm] at hJ
exact Prepartition.biUnionIndex_mem _ hJ
· rw [_root_.inf_comm] at hJ
exact Box.le_iff_Icc.1 (Prepartition.le_biUnionIndex _ hJ) J.upper_mem_Icc
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
⊢ ∀ (J : Box ι),
J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition →
‖↑(Measure.toBoxAdditive μ) J •
(f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤
↑(Measure.toBoxAdditive μ) J * ε'
[PROOFSTEP]
intro J hJ
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition
⊢ ‖↑(Measure.toBoxAdditive μ) J •
(f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤
↑(Measure.toBoxAdditive μ) J * ε'
[PROOFSTEP]
have : 0 ≤ μ.toBoxAdditive J := ENNReal.toReal_nonneg
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ ‖↑(Measure.toBoxAdditive μ) J •
(f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤
↑(Measure.toBoxAdditive μ) J * ε'
[PROOFSTEP]
rw [norm_smul, Real.norm_eq_abs, abs_of_nonneg this, ← dist_eq_norm]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ ↑(Measure.toBoxAdditive μ) J *
dist (f (tag (infPrepartition π₁ π₂.toPrepartition) J)) (f (tag (infPrepartition π₂ π₁.toPrepartition) J)) ≤
↑(Measure.toBoxAdditive μ) J * ε'
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left _ this
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ dist (f (tag (infPrepartition π₁ π₂.toPrepartition) J)) (f (tag (infPrepartition π₂ π₁.toPrepartition) J)) ≤ ε'
[PROOFSTEP]
refine' Hδ _ (TaggedPrepartition.tag_mem_Icc _ _) _ (TaggedPrepartition.tag_mem_Icc _ _) _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ dist (tag (infPrepartition π₁ π₂.toPrepartition) J) (tag (infPrepartition π₂ π₁.toPrepartition) J) ≤ δ
[PROOFSTEP]
rw [← add_halves δ]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ dist (tag (infPrepartition π₁ π₂.toPrepartition) J) (tag (infPrepartition π₂ π₁.toPrepartition) J) ≤ δ / 2 + δ / 2
[PROOFSTEP]
refine' (dist_triangle_left _ _ J.upper).trans (add_le_add (h₁.1 _ _ _) (h₂.1 _ _ _))
[GOAL]
case refine'_1
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ Prepartition.biUnionIndex π₁.toPrepartition (fun J => Prepartition.restrict π₂.toPrepartition J) J ∈ π₁
[PROOFSTEP]
exact Prepartition.biUnionIndex_mem _ hJ
[GOAL]
case refine'_2
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ J.upper ∈
↑Box.Icc (Prepartition.biUnionIndex π₁.toPrepartition (fun J => Prepartition.restrict π₂.toPrepartition J) J)
[PROOFSTEP]
exact Box.le_iff_Icc.1 (Prepartition.le_biUnionIndex _ hJ) J.upper_mem_Icc
[GOAL]
case refine'_3
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ Prepartition.biUnionIndex π₂.toPrepartition (fun J => Prepartition.restrict π₁.toPrepartition J) J ∈ π₂
[PROOFSTEP]
rw [_root_.inf_comm] at hJ
[GOAL]
case refine'_3
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₂.toPrepartition ⊓ π₁.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ Prepartition.biUnionIndex π₂.toPrepartition (fun J => Prepartition.restrict π₁.toPrepartition J) J ∈ π₂
[PROOFSTEP]
exact Prepartition.biUnionIndex_mem _ hJ
[GOAL]
case refine'_4
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ J.upper ∈
↑Box.Icc (Prepartition.biUnionIndex π₂.toPrepartition (fun J => Prepartition.restrict π₁.toPrepartition J) J)
[PROOFSTEP]
rw [_root_.inf_comm] at hJ
[GOAL]
case refine'_4
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J✝ : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
J : Box ι
hJ : J ∈ π₂.toPrepartition ⊓ π₁.toPrepartition
this : 0 ≤ ↑(Measure.toBoxAdditive μ) J
⊢ J.upper ∈
↑Box.Icc (Prepartition.biUnionIndex π₂.toPrepartition (fun J => Prepartition.restrict π₁.toPrepartition J) J)
[PROOFSTEP]
exact Box.le_iff_Icc.1 (Prepartition.le_biUnionIndex _ hJ) J.upper_mem_Icc
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
this :
∀ (J : Box ι),
J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition →
‖↑(Measure.toBoxAdditive μ) J •
(f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤
↑(Measure.toBoxAdditive μ) J * ε'
⊢ ‖∑ x in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes,
↑(Measure.toBoxAdditive μ) x •
(f (tag (infPrepartition π₁ π₂.toPrepartition) x) - f (tag (infPrepartition π₂ π₁.toPrepartition) x))‖ ≤
ε
[PROOFSTEP]
refine' (norm_sum_le_of_le _ this).trans _
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
this :
∀ (J : Box ι),
J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition →
‖↑(Measure.toBoxAdditive μ) J •
(f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤
↑(Measure.toBoxAdditive μ) J * ε'
⊢ ∑ b in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes, ↑(Measure.toBoxAdditive μ) b * ε' ≤ ε
[PROOFSTEP]
rw [← Finset.sum_mul, μ.toBoxAdditive.sum_partition_boxes le_top (h₁p.inf h₂p)]
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : NormedAddCommGroup F
inst✝³ : NormedSpace ℝ F
I✝ J : Box ι
π : TaggedPrepartition I✝
inst✝² : Fintype ι
l : IntegrationParams
f✝ g : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
inst✝¹ : CompleteSpace E
I : Box ι
f : (ι → ℝ) → E
hc : ContinuousOn f (↑Box.Icc I)
μ : Measure (ι → ℝ)
inst✝ : IsLocallyFiniteMeasure μ
huc :
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε
ε : ℝ
ε0 : ε > 0
ε' : ℝ
ε0' : 0 < ε'
hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε
δ : ℝ
δ0 : 0 < δ
Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε'
c₁ c₂ : ℝ≥0
π₁ π₂ : TaggedPrepartition I
h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁
h₁p : IsPartition π₁
h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂
h₂p : IsPartition π₂
this :
∀ (J : Box ι),
J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition →
‖↑(Measure.toBoxAdditive μ) J •
(f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤
↑(Measure.toBoxAdditive μ) J * ε'
⊢ ↑(Measure.toBoxAdditive μ) I * ε' ≤ ε
[PROOFSTEP]
exact hε.le
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
H₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
H₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
⊢ HasIntegral I l f vol (↑g I)
[PROOFSTEP]
refine' ((l.hasBasis_toFilteriUnion_top _).tendsto_iff Metric.nhds_basis_closedBall).2 _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
H₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
H₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
⊢ ∀ (ib : ℝ),
0 < ib →
∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ib
[PROOFSTEP]
intro ε ε0
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
H₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
H₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε : ℝ
ε0 : 0 < ε
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
simp only [← exists_prop, gt_iff_lt, Subtype.exists'] at H₁ H₂
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
H₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∃ x_1,
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑x_1 →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
H₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∃ x_1,
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑x_1 →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
choose! δ₁ Hδ₁ using H₁
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
H₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∃ x_1,
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑x_1 →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
choose! δ₂ Hδ₂ using H₂
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
have ε0' := half_pos ε0
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
have H0 : 0 < (2 : ℝ) ^ Fintype.card ι := pow_pos zero_lt_two _
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
rcases hs.exists_pos_forall_sum_le (div_pos ε0' H0) with ⟨εs, hεs0, hεs⟩
[GOAL]
case intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ i in t, εs i ≤ ε / 2 / 2 ^ Fintype.card ι
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
simp only [le_div_iff' H0, mul_sum] at hεs
[GOAL]
case intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
rcases exists_pos_mul_lt ε0' (B I) with ⟨ε', ε'0, hεI⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
set δ : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ) := fun c x => if x ∈ s then δ₁ c x (εs x) else (δ₂ c) x ε'
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
⊢ ∃ ia,
(∀ (c : ℝ≥0), RCond l (ia c)) ∧
∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
refine' ⟨δ, fun c => l.rCond_of_bRiemann_eq_false hl, _⟩
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
⊢ ∀ (x : TaggedPrepartition I),
x ∈ {π | ∃ c, MemBaseSet l I c (δ c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
simp only [Set.mem_iUnion, mem_inter_iff, mem_setOf_eq]
[GOAL]
case intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
⊢ ∀ (x : TaggedPrepartition I),
(∃ c, MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') x ∧ IsPartition x) →
integralSum f vol x ∈ closedBall (↑g I) ε
[PROOFSTEP]
rintro π
⟨c, hπδ, hπp⟩
-- Now we split the sum into two parts based on whether `π.tag J` belongs to `s` or not.
[GOAL]
case intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
⊢ integralSum f vol π ∈ closedBall (↑g I) ε
[PROOFSTEP]
rw [← g.sum_partition_boxes le_rfl hπp, mem_closedBall, integralSum, ←
sum_filter_add_sum_filter_not π.boxes fun J => π.tag J ∈ s, ←
sum_filter_add_sum_filter_not π.boxes fun J => π.tag J ∈ s, ← add_halves ε]
[GOAL]
case intro.intro.intro.intro.intro.intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
⊢ dist
(∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑(↑vol x) (f (tag π x)) +
∑ x in Finset.filter (fun x => ¬tag π x ∈ s) π.boxes, ↑(↑vol x) (f (tag π x)))
(∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑g x +
∑ x in Finset.filter (fun x => ¬tag π x ∈ s) π.boxes, ↑g x) ≤
ε / 2 + ε / 2
[PROOFSTEP]
refine' dist_add_add_le_of_le _ _
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑(↑vol x) (f (tag π x)))
(∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑g x) ≤
ε / 2
[PROOFSTEP]
rcases s.eq_empty_or_nonempty with (rfl | hsne)
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inl
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
ε : ℝ
ε0 : 0 < ε
δ₁ δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
π : TaggedPrepartition I
c : ℝ≥0
hπp : IsPartition π
hs : Set.Countable ∅
hlH : Set.Nonempty ∅ → l.bHenstock = true
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ ∅ →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ ∅ →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ ∅ → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ ∅ then δ₁ c x (εs x) else δ₂ c x ε'
hπδ : MemBaseSet l I c (fun x => if x ∈ ∅ then δ₁ c x (εs x) else δ₂ c x ε') π
⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ ∅) π.boxes, ↑(↑vol x) (f (tag π x)))
(∑ x in Finset.filter (fun J => tag π J ∈ ∅) π.boxes, ↑g x) ≤
ε / 2
[PROOFSTEP]
simp [ε0'.le]
/- For the boxes such that `π.tag J ∈ s`, we use the fact that at most `2 ^ #ι` boxes have the
same tag. -/
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑(↑vol x) (f (tag π x)))
(∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑g x) ≤
ε / 2
[PROOFSTEP]
specialize hlH hsne
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑(↑vol x) (f (tag π x)))
(∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑g x) ≤
ε / 2
[PROOFSTEP]
have : ∀ J ∈ π.boxes.filter fun J => π.tag J ∈ s, dist (vol J (f <| π.tag J)) (g J) ≤ εs (π.tag J) := fun J hJ ↦
by
rw [Finset.mem_filter] at hJ ; cases' hJ with hJ hJs
refine'
Hδ₁ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ (hεs0 _) _ (π.le_of_mem' _ hJ) _ (hπδ.2 hlH J hJ) fun hD =>
(Finset.le_sup hJ).trans (hπδ.3 hD)
convert hπδ.1 J hJ using 3; exact (if_pos hJs).symm
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
J : Box ι
hJ : J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes
⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
[PROOFSTEP]
rw [Finset.mem_filter] at hJ
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
J : Box ι
hJ : J ∈ π.boxes ∧ tag π J ∈ s
⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
[PROOFSTEP]
cases' hJ with hJ hJs
[GOAL]
case intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
J : Box ι
hJ : J ∈ π.boxes
hJs : tag π J ∈ s
⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
[PROOFSTEP]
refine'
Hδ₁ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ (hεs0 _) _ (π.le_of_mem' _ hJ) _ (hπδ.2 hlH J hJ) fun hD =>
(Finset.le_sup hJ).trans (hπδ.3 hD)
[GOAL]
case intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
J : Box ι
hJ : J ∈ π.boxes
hJs : tag π J ∈ s
⊢ ↑Box.Icc J ⊆ closedBall (tag π J) ↑(δ₁ c (tag π J) (εs (tag π J)))
[PROOFSTEP]
convert hπδ.1 J hJ using 3
[GOAL]
case h.e'_4.h.e'_4.h.e'_3.h
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
J : Box ι
hJ : J ∈ π.boxes
hJs : tag π J ∈ s
e_2✝ : (fun a => 0 < a) = fun x => x ∈ Set.Ioi 0
⊢ δ₁ c (tag π J) (εs (tag π J)) = (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') (tag π J)
[PROOFSTEP]
exact (if_pos hJs).symm
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
this :
∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑(↑vol x) (f (tag π x)))
(∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑g x) ≤
ε / 2
[PROOFSTEP]
refine' (dist_sum_sum_le_of_le _ this).trans _
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
this :
∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
⊢ ∑ b in Finset.filter (fun J => tag π J ∈ s) π.boxes, εs (tag π b) ≤ ε / 2
[PROOFSTEP]
rw [sum_comp]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
this :
∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
⊢ ∑ b in Finset.image (fun b => tag π b) (Finset.filter (fun J => tag π J ∈ s) π.boxes),
card (Finset.filter (fun a => tag π a = b) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) • εs b ≤
ε / 2
[PROOFSTEP]
refine' (sum_le_sum _).trans (hεs _ _)
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_1
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
this :
∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
⊢ ∀ (i : ι → ℝ),
i ∈ Finset.image (fun b => tag π b) (Finset.filter (fun J => tag π J ∈ s) π.boxes) →
card (Finset.filter (fun a => tag π a = i) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) • εs i ≤
2 ^ Fintype.card ι * εs i
[PROOFSTEP]
rintro b -
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_1
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
this :
∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
b : ι → ℝ
⊢ card (Finset.filter (fun a => tag π a = b) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) • εs b ≤
2 ^ Fintype.card ι * εs b
[PROOFSTEP]
rw [← Nat.cast_two, ← Nat.cast_pow, ← nsmul_eq_mul]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_1
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
this :
∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
b : ι → ℝ
⊢ card (Finset.filter (fun a => tag π a = b) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) • εs b ≤
2 ^ Fintype.card ι • εs b
[PROOFSTEP]
refine' nsmul_le_nsmul (hεs0 _).le _
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_1
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
this :
∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
b : ι → ℝ
⊢ card (Finset.filter (fun a => tag π a = b) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) ≤ 2 ^ Fintype.card ι
[PROOFSTEP]
refine' (Finset.card_le_of_subset _).trans ((hπδ.isHenstock hlH).card_filter_tag_eq_le b)
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_1
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
this :
∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
b : ι → ℝ
⊢ Finset.filter (fun a => tag π a = b) (Finset.filter (fun J => tag π J ∈ s) π.boxes) ⊆
Finset.filter (fun J => tag π J = b) π.boxes
[PROOFSTEP]
exact filter_subset_filter _ (filter_subset _ _)
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_2
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
this :
∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
⊢ ↑(Finset.image (fun b => tag π b) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) ⊆ s
[PROOFSTEP]
rw [Finset.coe_image, Set.image_subset_iff]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_2
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
hsne : Set.Nonempty s
hlH : l.bHenstock = true
this :
∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J)
⊢ ↑(Finset.filter (fun J => tag π J ∈ s) π.boxes) ⊆ (fun b => tag π b) ⁻¹' s
[PROOFSTEP]
exact fun J hJ =>
(Finset.mem_filter.1 hJ).2
/- Now we deal with boxes such that `π.tag J ∉ s`.
In this case the estimate is straightforward. -/
-- porting note: avoided strange elaboration issues by rewriting using `calc`
[GOAL]
case intro.intro.intro.intro.intro.intro.refine'_2
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
⊢ dist (∑ x in Finset.filter (fun x => ¬tag π x ∈ s) π.boxes, ↑(↑vol x) (f (tag π x)))
(∑ x in Finset.filter (fun x => ¬tag π x ∈ s) π.boxes, ↑g x) ≤
ε / 2
[PROOFSTEP]
calc
dist (∑ J in π.boxes.filter (¬tag π · ∈ s), vol J (f (tag π J))) (∑ J in π.boxes.filter (¬tag π · ∈ s), g J) ≤
∑ J in π.boxes.filter (¬tag π · ∈ s), ε' * B J :=
dist_sum_sum_le_of_le _ fun J hJ ↦ by
rw [Finset.mem_filter] at hJ ; cases' hJ with hJ hJs
refine'
Hδ₂ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ ε'0 _ (π.le_of_mem' _ hJ) _ (fun hH => hπδ.2 hH J hJ) fun hD =>
(Finset.le_sup hJ).trans (hπδ.3 hD)
convert hπδ.1 J hJ using 3; exact (if_neg hJs).symm
_ ≤ ∑ J in π.boxes, ε' * B J :=
(sum_le_sum_of_subset_of_nonneg (filter_subset _ _) fun _ _ _ ↦ mul_nonneg ε'0.le (hB0 _))
_ = B I * ε' := by rw [← mul_sum, B.sum_partition_boxes le_rfl hπp, mul_comm]
_ ≤ ε / 2 := hεI.le
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
J : Box ι
hJ : J ∈ Finset.filter (fun x => ¬tag π x ∈ s) π.boxes
⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ ε' * ↑B J
[PROOFSTEP]
rw [Finset.mem_filter] at hJ
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
J : Box ι
hJ : J ∈ π.boxes ∧ ¬tag π J ∈ s
⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ ε' * ↑B J
[PROOFSTEP]
cases' hJ with hJ hJs
[GOAL]
case intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
J : Box ι
hJ : J ∈ π.boxes
hJs : ¬tag π J ∈ s
⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ ε' * ↑B J
[PROOFSTEP]
refine'
Hδ₂ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ ε'0 _ (π.le_of_mem' _ hJ) _ (fun hH => hπδ.2 hH J hJ) fun hD =>
(Finset.le_sup hJ).trans (hπδ.3 hD)
[GOAL]
case intro
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
J : Box ι
hJ : J ∈ π.boxes
hJs : ¬tag π J ∈ s
⊢ ↑Box.Icc J ⊆ closedBall (tag π J) ↑(δ₂ c (tag π J) ε')
[PROOFSTEP]
convert hπδ.1 J hJ using 3
[GOAL]
case h.e'_4.h.e'_4.h.e'_3.h
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J✝ : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
J : Box ι
hJ : J ∈ π.boxes
hJs : ¬tag π J ∈ s
e_2✝ : (fun a => 0 < a) = fun x => x ∈ Set.Ioi 0
⊢ δ₂ c (tag π J) ε' = (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') (tag π J)
[PROOFSTEP]
exact (if_neg hJs).symm
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π✝ : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l.bRiemann = false
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
hlH : Set.Nonempty s → l.bHenstock = true
ε : ℝ
ε0 : 0 < ε
δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a }
Hδ₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
0 < ε →
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
ε0' : 0 < ε / 2
H0 : 0 < 2 ^ Fintype.card ι
εs : (ι → ℝ) → ℝ
hεs0 : ∀ (i : ι → ℝ), 0 < εs i
hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2
ε' : ℝ
ε'0 : 0 < ε'
hεI : ↑B I * ε' < ε / 2
δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε'
π : TaggedPrepartition I
c : ℝ≥0
hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π
hπp : IsPartition π
⊢ ∑ J in π.boxes, ε' * ↑B J = ↑B I * ε'
[PROOFSTEP]
rw [← mul_sum, B.sum_partition_boxes le_rfl hπp, mul_comm]
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l ≤ Henstock
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
H₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
H₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
⊢ ¬(↑equivProd Henstock).snd.fst = false
[PROOFSTEP]
decide
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l ≤ Henstock
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
H₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
H₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
A : l.bHenstock = true
⊢ ¬(↑equivProd Henstock).fst = true
[PROOFSTEP]
decide
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
hl : l ≤ Henstock
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
s : Set (ι → ℝ)
hs : Set.Countable s
H₁ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I ∩ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε
H₂ :
∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
x ∈ ↑Box.Icc J →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
A : l.bHenstock = true
⊢ ∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ s →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
(l.bHenstock = true → x ∈ ↑Box.Icc J) →
(l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
[PROOFSTEP]
simpa only [A, true_imp_iff] using H₂
[GOAL]
ι : Type u
E : Type v
F : Type w
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace ℝ F
I J : Box ι
π : TaggedPrepartition I
inst✝ : Fintype ι
l : IntegrationParams
f g✝ : (ι → ℝ) → E
vol : ι →ᵇᵃ[⊤] E →L[ℝ] F
y y' : F
B : ι →ᵇᵃ[↑I] ℝ
hB0 : ∀ (J : Box ι), 0 ≤ ↑B J
g : ι →ᵇᵃ[↑I] F
H :
ℝ≥0 →
∀ (x : ι → ℝ),
x ∈ ↑Box.Icc I →
∀ (ε : ℝ),
ε > 0 →
∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
⊢ ∀ (c : ℝ≥0) (x : ι → ℝ),
x ∈ ↑Box.Icc I \ ∅ →
∀ (ε : ℝ),
ε > 0 →
∃ δ,
δ > 0 ∧
∀ (J : Box ι),
J ≤ I →
↑Box.Icc J ⊆ closedBall x δ →
(McShane.bHenstock = true → x ∈ ↑Box.Icc J) →
(McShane.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J
[PROOFSTEP]
simpa only [McShane, Bool.coe_sort_false, false_imp_iff, true_imp_iff, diff_empty] using H
| {"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Basic", "llama_tokens": 107440} |
{"mathlib_filename": "Mathlib.Tactic.RestateAxiom", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Classical", "llama_tokens": 0} |
|
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
hs : NullMeasurableSet s
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae volume] s
hu₂ : Tendsto (addOrderOf ∘ u) l atTop
⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ
[PROOFSTEP]
set μ := (volume : Measure <| AddCircle T)
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
hu₂ : Tendsto (addOrderOf ∘ u) l atTop
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
set n : ι → ℕ := addOrderOf ∘ u
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
have hT₀ : 0 < T := hT.out
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
have hT₁ : ENNReal.ofReal T ≠ 0 := by simpa
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
⊢ ENNReal.ofReal T ≠ 0
[PROOFSTEP]
simpa
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ
[PROOFSTEP]
rw [ae_eq_empty, ae_eq_univ_iff_measure_eq hs, AddCircle.measure_univ]
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
⊢ ↑↑μ s = 0 ∨ ↑↑μ s = ENNReal.ofReal T
[PROOFSTEP]
cases' eq_or_ne (μ s) 0 with h h
[GOAL]
case inl
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s = 0
⊢ ↑↑μ s = 0 ∨ ↑↑μ s = ENNReal.ofReal T
[PROOFSTEP]
exact Or.inl h
[GOAL]
case inr
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
⊢ ↑↑μ s = 0 ∨ ↑↑μ s = ENNReal.ofReal T
[PROOFSTEP]
right
[GOAL]
case inr.h
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
⊢ ↑↑μ s = ENNReal.ofReal T
[PROOFSTEP]
obtain ⟨d, -, hd⟩ :
∃ d,
d ∈ s ∧
∀ {ι'} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[>] 0) →
(∀ᶠ j in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => μ (s ∩ closedBall (w j) (δ j)) / μ (closedBall (w j) (δ j))) l (𝓝 1) :=
exists_mem_of_measure_ne_zero_of_ae h (IsUnifLocDoublingMeasure.ae_tendsto_measure_inter_div μ s 1)
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
⊢ ↑↑μ s = ENNReal.ofReal T
[PROOFSTEP]
let I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
⊢ ↑↑μ s = ENNReal.ofReal T
[PROOFSTEP]
replace hd : Tendsto (fun j => μ (s ∩ I j) / μ (I j)) l (𝓝 1)
[GOAL]
case hd
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
⊢ Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
[PROOFSTEP]
let δ : ι → ℝ := fun j => T / (2 * ↑(n j))
[GOAL]
case hd
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
⊢ Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
[PROOFSTEP]
have hδ₀ : ∀ᶠ j in l, 0 < δ j := (hu₂.eventually_gt_atTop 0).mono fun j hj => div_pos hT₀ <| by positivity
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
j : ι
hj : 0 < n j
⊢ 0 < 2 * ↑(n j)
[PROOFSTEP]
positivity
[GOAL]
case hd
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
⊢ Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
[PROOFSTEP]
have hδ₁ : Tendsto δ l (𝓝[>] 0) := by
refine' tendsto_nhdsWithin_iff.mpr ⟨_, hδ₀⟩
replace hu₂ : Tendsto (fun j => T⁻¹ * 2 * n j) l atTop :=
(tendsto_nat_cast_atTop_iff.mpr hu₂).const_mul_atTop (by positivity : 0 < T⁻¹ * 2)
convert hu₂.inv_tendsto_atTop
ext j
simp only [Pi.inv_apply, mul_inv_rev, inv_inv, div_eq_inv_mul, ← mul_assoc]
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
⊢ Tendsto δ l (𝓝[Ioi 0] 0)
[PROOFSTEP]
refine' tendsto_nhdsWithin_iff.mpr ⟨_, hδ₀⟩
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
⊢ Tendsto δ l (𝓝 0)
[PROOFSTEP]
replace hu₂ : Tendsto (fun j => T⁻¹ * 2 * n j) l atTop :=
(tendsto_nat_cast_atTop_iff.mpr hu₂).const_mul_atTop (by positivity : 0 < T⁻¹ * 2)
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
⊢ 0 < T⁻¹ * 2
[PROOFSTEP]
positivity
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
hu₂ : Tendsto (fun j => T⁻¹ * 2 * ↑(n j)) l atTop
⊢ Tendsto δ l (𝓝 0)
[PROOFSTEP]
convert hu₂.inv_tendsto_atTop
[GOAL]
case h.e'_3
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
hu₂ : Tendsto (fun j => T⁻¹ * 2 * ↑(n j)) l atTop
⊢ δ = (fun j => T⁻¹ * 2 * ↑(n j))⁻¹
[PROOFSTEP]
ext j
[GOAL]
case h.e'_3.h
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
hu₂ : Tendsto (fun j => T⁻¹ * 2 * ↑(n j)) l atTop
j : ι
⊢ δ j = (fun j => T⁻¹ * 2 * ↑(n j))⁻¹ j
[PROOFSTEP]
simp only [Pi.inv_apply, mul_inv_rev, inv_inv, div_eq_inv_mul, ← mul_assoc]
[GOAL]
case hd
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
hδ₁ : Tendsto δ l (𝓝[Ioi 0] 0)
⊢ Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
[PROOFSTEP]
have hw : ∀ᶠ j in l, d ∈ closedBall d (1 * δ j) :=
hδ₀.mono fun j hj => by
simp only [comp_apply, one_mul, mem_closedBall, dist_self]
apply hj.le
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
hδ₁ : Tendsto δ l (𝓝[Ioi 0] 0)
j : ι
hj : 0 < δ j
⊢ d ∈ closedBall d (1 * δ j)
[PROOFSTEP]
simp only [comp_apply, one_mul, mem_closedBall, dist_self]
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
hδ₁ : Tendsto δ l (𝓝[Ioi 0] 0)
j : ι
hj : 0 < δ j
⊢ 0 ≤ T / (2 * ↑(addOrderOf (u j)))
[PROOFSTEP]
apply hj.le
[GOAL]
case hd
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
hd :
∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ),
Tendsto δ l (𝓝[Ioi 0] 0) →
(∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) →
Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1)
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
δ : ι → ℝ := fun j => T / (2 * ↑(n j))
hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j
hδ₁ : Tendsto δ l (𝓝[Ioi 0] 0)
hw : ∀ᶠ (j : ι) in l, d ∈ closedBall d (1 * δ j)
⊢ Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
[PROOFSTEP]
exact hd _ δ hδ₁ hw
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
⊢ ↑↑μ s = ENNReal.ofReal T
[PROOFSTEP]
suffices ∀ᶠ j in l, μ (s ∩ I j) / μ (I j) = μ s / ENNReal.ofReal T
by
replace hd := hd.congr' this
rwa [tendsto_const_nhds_iff, ENNReal.div_eq_one_iff hT₁ ENNReal.ofReal_ne_top] at hd
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
this : ∀ᶠ (j : ι) in l, ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T
⊢ ↑↑μ s = ENNReal.ofReal T
[PROOFSTEP]
replace hd := hd.congr' this
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
this : ∀ᶠ (j : ι) in l, ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T
hd : Tendsto (fun x => ↑↑μ s / ENNReal.ofReal T) l (𝓝 1)
⊢ ↑↑μ s = ENNReal.ofReal T
[PROOFSTEP]
rwa [tendsto_const_nhds_iff, ENNReal.div_eq_one_iff hT₁ ENNReal.ofReal_ne_top] at hd
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
⊢ ∀ᶠ (j : ι) in l, ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T
[PROOFSTEP]
refine' (hu₂.eventually_gt_atTop 0).mono fun j hj => _
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T
[PROOFSTEP]
have : addOrderOf (u j) = n j := rfl
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
this : addOrderOf (u j) = n j
⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T
[PROOFSTEP]
have huj : IsOfFinAddOrder (u j) := addOrderOf_pos_iff.mp hj
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
this : addOrderOf (u j) = n j
huj : IsOfFinAddOrder (u j)
⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T
[PROOFSTEP]
have huj' : 1 ≤ (↑(n j) : ℝ) := by norm_cast
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
this : addOrderOf (u j) = n j
huj : IsOfFinAddOrder (u j)
⊢ 1 ≤ ↑(n j)
[PROOFSTEP]
norm_cast
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
this : addOrderOf (u j) = n j
huj : IsOfFinAddOrder (u j)
huj' : 1 ≤ ↑(n j)
⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T
[PROOFSTEP]
have hI₀ : μ (I j) ≠ 0 := (measure_closedBall_pos _ d <| by positivity).ne.symm
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
this : addOrderOf (u j) = n j
huj : IsOfFinAddOrder (u j)
huj' : 1 ≤ ↑(n j)
⊢ 0 < T / (2 * ↑(n j))
[PROOFSTEP]
positivity
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
this : addOrderOf (u j) = n j
huj : IsOfFinAddOrder (u j)
huj' : 1 ≤ ↑(n j)
hI₀ : ↑↑μ (I j) ≠ 0
⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T
[PROOFSTEP]
have hI₁ : μ (I j) ≠ ⊤ := measure_ne_top _ _
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
this : addOrderOf (u j) = n j
huj : IsOfFinAddOrder (u j)
huj' : 1 ≤ ↑(n j)
hI₀ : ↑↑μ (I j) ≠ 0
hI₁ : ↑↑μ (I j) ≠ ⊤
⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T
[PROOFSTEP]
have hI₂ : μ (I j) * ↑(n j) = ENNReal.ofReal T :=
by
rw [volume_closedBall, mul_div, mul_div_mul_left T _ two_ne_zero, min_eq_right (div_le_self hT₀.le huj'), mul_comm, ←
nsmul_eq_mul, ← ENNReal.ofReal_nsmul, nsmul_eq_mul, mul_div_cancel']
exact Nat.cast_ne_zero.mpr hj.ne'
[GOAL]
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
this : addOrderOf (u j) = n j
huj : IsOfFinAddOrder (u j)
huj' : 1 ≤ ↑(n j)
hI₀ : ↑↑μ (I j) ≠ 0
hI₁ : ↑↑μ (I j) ≠ ⊤
⊢ ↑↑μ (I j) * ↑(n j) = ENNReal.ofReal T
[PROOFSTEP]
rw [volume_closedBall, mul_div, mul_div_mul_left T _ two_ne_zero, min_eq_right (div_le_self hT₀.le huj'), mul_comm, ←
nsmul_eq_mul, ← ENNReal.ofReal_nsmul, nsmul_eq_mul, mul_div_cancel']
[GOAL]
case hb
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
this : addOrderOf (u j) = n j
huj : IsOfFinAddOrder (u j)
huj' : 1 ≤ ↑(n j)
hI₀ : ↑↑μ (I j) ≠ 0
hI₁ : ↑↑μ (I j) ≠ ⊤
⊢ ↑(n j) ≠ 0
[PROOFSTEP]
exact Nat.cast_ne_zero.mpr hj.ne'
[GOAL]
case inr.h.intro.intro
T : ℝ
hT : Fact (0 < T)
s : Set (AddCircle T)
ι : Type u_1
l : Filter ι
inst✝ : NeBot l
u : ι → AddCircle T
μ : Measure (AddCircle T) := volume
hs : NullMeasurableSet s
hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s
n : ι → ℕ := addOrderOf ∘ u
hu₂ : Tendsto n l atTop
hT₀ : 0 < T
hT₁ : ENNReal.ofReal T ≠ 0
h : ↑↑μ s ≠ 0
d : AddCircle T
I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j)))
hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1)
j : ι
hj : 0 < n j
this : addOrderOf (u j) = n j
huj : IsOfFinAddOrder (u j)
huj' : 1 ≤ ↑(n j)
hI₀ : ↑↑μ (I j) ≠ 0
hI₁ : ↑↑μ (I j) ≠ ⊤
hI₂ : ↑↑μ (I j) * ↑(n j) = ENNReal.ofReal T
⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T
[PROOFSTEP]
rw [ENNReal.div_eq_div_iff hT₁ ENNReal.ofReal_ne_top hI₀ hI₁,
volume_of_add_preimage_eq s _ (u j) d huj (hu₁ j) closedBall_ae_eq_ball, nsmul_eq_mul, ← mul_assoc, this, hI₂]
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ
[PROOFSTEP]
let u : ℕ → AddCircle T := fun j => ↑((↑1 : ℝ) / ↑(n.natAbs ^ j) * T)
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ
[PROOFSTEP]
replace hn : 1 < n.natAbs := by rwa [Int.abs_eq_natAbs, Nat.one_lt_cast] at hn
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
⊢ 1 < Int.natAbs n
[PROOFSTEP]
rwa [Int.abs_eq_natAbs, Nat.one_lt_cast] at hn
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ
[PROOFSTEP]
have hu₀ : ∀ j, addOrderOf (u j) = n.natAbs ^ j := fun j =>
by
convert addOrderOf_div_of_gcd_eq_one (p := T) (m := 1) (pow_pos (pos_of_gt hn) j) (gcd_one_left _)
norm_cast
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
j : ℕ
⊢ addOrderOf (u j) = Int.natAbs n ^ j
[PROOFSTEP]
convert addOrderOf_div_of_gcd_eq_one (p := T) (m := 1) (pow_pos (pos_of_gt hn) j) (gcd_one_left _)
[GOAL]
case h.e'_2.h.e'_3.h.h.e'_4.h.e'_5.h.e'_5
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
j : ℕ
e_1✝ : AddCircle T = (ℝ ⧸ AddSubgroup.zmultiples T)
⊢ 1 = ↑1
[PROOFSTEP]
norm_cast
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j
⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ
[PROOFSTEP]
have hnu : ∀ j, n ^ j • u j = 0 := fun j => by
rw [← addOrderOf_dvd_iff_zsmul_eq_zero, hu₀, Int.coe_nat_pow, Int.coe_natAbs, ← abs_pow, abs_dvd]
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j
j : ℕ
⊢ n ^ j • u j = 0
[PROOFSTEP]
rw [← addOrderOf_dvd_iff_zsmul_eq_zero, hu₀, Int.coe_nat_pow, Int.coe_natAbs, ← abs_pow, abs_dvd]
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j
hnu : ∀ (j : ℕ), n ^ j • u j = 0
⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ
[PROOFSTEP]
have hu₁ : ∀ j, (u j +ᵥ s : Set _) =ᵐ[volume] s := fun j => by rw [vadd_eq_self_of_preimage_zsmul_eq_self hs' (hnu j)]
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j
hnu : ∀ (j : ℕ), n ^ j • u j = 0
j : ℕ
⊢ u j +ᵥ s =ᶠ[ae volume] s
[PROOFSTEP]
rw [vadd_eq_self_of_preimage_zsmul_eq_self hs' (hnu j)]
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j
hnu : ∀ (j : ℕ), n ^ j • u j = 0
hu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s
⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ
[PROOFSTEP]
have hu₂ : Tendsto (fun j => addOrderOf <| u j) atTop atTop := by simp_rw [hu₀];
exact Nat.tendsto_pow_atTop_atTop_of_one_lt hn
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j
hnu : ∀ (j : ℕ), n ^ j • u j = 0
hu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s
⊢ Tendsto (fun j => addOrderOf (u j)) atTop atTop
[PROOFSTEP]
simp_rw [hu₀]
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j
hnu : ∀ (j : ℕ), n ^ j • u j = 0
hu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s
⊢ Tendsto (fun j => Int.natAbs n ^ j) atTop atTop
[PROOFSTEP]
exact Nat.tendsto_pow_atTop_atTop_of_one_lt hn
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℤ
hn✝ : 1 < |n|
src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝))
s : Set (AddCircle T)
hs : MeasurableSet s
hs' : (fun y => n • y) ⁻¹' s = s
u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T)
hn : 1 < Int.natAbs n
hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j
hnu : ∀ (j : ℕ), n ^ j • u j = 0
hu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s
hu₂ : Tendsto (fun j => addOrderOf (u j)) atTop atTop
⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ
[PROOFSTEP]
exact ae_empty_or_univ_of_forall_vadd_ae_eq_self hs.nullMeasurableSet hu₁ hu₂
[GOAL]
T : ℝ
hT : Fact (0 < T)
n : ℕ
hn : 1 < n
⊢ 1 < |↑n|
[PROOFSTEP]
simp [hn]
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
h : 1 < |n|
⊢ Ergodic fun y => n • y + x
[PROOFSTEP]
set f : AddCircle T → AddCircle T := fun y => n • y + x
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
h : 1 < |n|
f : AddCircle T → AddCircle T := fun y => n • y + x
⊢ Ergodic f
[PROOFSTEP]
let e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x <| n - 1)
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
h : 1 < |n|
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
⊢ Ergodic f
[PROOFSTEP]
have he : MeasurePreserving e volume volume := measurePreserving_add_left volume (DivisibleBy.div x <| n - 1)
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
h : 1 < |n|
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
⊢ Ergodic f
[PROOFSTEP]
suffices e ∘ f ∘ e.symm = fun y => n • y by rw [← he.ergodic_conjugate_iff, this]; exact ergodic_zsmul h
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
h : 1 < |n|
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
this : ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = fun y => n • y
⊢ Ergodic f
[PROOFSTEP]
rw [← he.ergodic_conjugate_iff, this]
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
h : 1 < |n|
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
this : ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = fun y => n • y
⊢ Ergodic fun y => n • y
[PROOFSTEP]
exact ergodic_zsmul h
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
h : 1 < |n|
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
⊢ ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = fun y => n • y
[PROOFSTEP]
replace h : n - 1 ≠ 0
[GOAL]
case h
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
h : 1 < |n|
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
⊢ n - 1 ≠ 0
[PROOFSTEP]
rw [← abs_one] at h
[GOAL]
case h
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
h : |1| < |n|
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
⊢ n - 1 ≠ 0
[PROOFSTEP]
rw [sub_ne_zero]
[GOAL]
case h
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
h : |1| < |n|
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
⊢ n ≠ 1
[PROOFSTEP]
exact ne_of_apply_ne _ (ne_of_gt h)
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
⊢ ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = fun y => n • y
[PROOFSTEP]
have hnx : n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1) :=
by
conv_rhs => congr; rw [← DivisibleBy.div_cancel x h]
rw [sub_smul, one_smul, sub_add_cancel]
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
⊢ n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1)
[PROOFSTEP]
conv_rhs => congr; rw [← DivisibleBy.div_cancel x h]
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
| x + DivisibleBy.div x (n - 1)
[PROOFSTEP]
congr; rw [← DivisibleBy.div_cancel x h]
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
| x + DivisibleBy.div x (n - 1)
[PROOFSTEP]
congr; rw [← DivisibleBy.div_cancel x h]
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
| x + DivisibleBy.div x (n - 1)
[PROOFSTEP]
congr
[GOAL]
case a
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
| x
case a
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
| DivisibleBy.div x (n - 1)
[PROOFSTEP]
rw [← DivisibleBy.div_cancel x h]
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
⊢ n • DivisibleBy.div x (n - 1) = (n - 1) • DivisibleBy.div x (n - 1) + DivisibleBy.div x (n - 1)
[PROOFSTEP]
rw [sub_smul, one_smul, sub_add_cancel]
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
hnx : n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1)
⊢ ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = fun y => n • y
[PROOFSTEP]
ext y
[GOAL]
case h
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
hnx : n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1)
y : AddCircle T
⊢ (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) y = n • y
[PROOFSTEP]
simp only [hnx, MeasurableEquiv.coe_addLeft, MeasurableEquiv.symm_addLeft, comp_apply, smul_add, zsmul_neg', neg_smul,
neg_add_rev]
[GOAL]
case h
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
hnx : n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1)
y : AddCircle T
⊢ DivisibleBy.div x (n - 1) + (-DivisibleBy.div x (n - 1) + -x + n • y + x) = n • y
[PROOFSTEP]
abel
[GOAL]
case h
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℤ
f : AddCircle T → AddCircle T := fun y => n • y + x
e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1))
he : MeasurePreserving ↑e
h : n - 1 ≠ 0
hnx : n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1)
y : AddCircle T
⊢ DivisibleBy.div x (n - 1) + (-DivisibleBy.div x (n - 1) + -x + n • y + x) = n • y
[PROOFSTEP]
abel
[GOAL]
T : ℝ
hT : Fact (0 < T)
x : AddCircle T
n : ℕ
h : 1 < n
⊢ 1 < |↑n|
[PROOFSTEP]
simp [h]
| {"mathlib_filename": "Mathlib.Dynamics.Ergodic.AddCircle", "llama_tokens": 23408} |
{"mathlib_filename": "Mathlib.Tactic.Conv", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.DeriveToExpr", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.NormCast", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.LibrarySearch", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Monotonicity", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.SlimCheck", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Cache", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Have", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Tauto", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.ScopedNS", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Clear!", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Measurability", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.FinCases", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.NormNum", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Choose", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.MkIffOfInductiveProp", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Says", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.PPWithUniv", "llama_tokens": 0} |
|
[GOAL]
p : Sort u_1
a : ℤ
n : ℕ
hn : Nat.ble 1 n = true
H : OnModCases n a 0 p
⊢ 0 ≤ toNat (a % ↑n) ∧ toNat (a % ↑n) < n ∧ a ≡ ↑(toNat (a % ↑n)) [ZMOD ↑n]
[PROOFSTEP]
have := ofNat_pos.2 <| Nat.le_of_ble_eq_true hn
[GOAL]
p : Sort u_1
a : ℤ
n : ℕ
hn : Nat.ble 1 n = true
H : OnModCases n a 0 p
this : 0 < ↑n
⊢ 0 ≤ toNat (a % ↑n) ∧ toNat (a % ↑n) < n ∧ a ≡ ↑(toNat (a % ↑n)) [ZMOD ↑n]
[PROOFSTEP]
have nonneg := emod_nonneg a <| Int.ne_of_gt this
[GOAL]
p : Sort u_1
a : ℤ
n : ℕ
hn : Nat.ble 1 n = true
H : OnModCases n a 0 p
this : 0 < ↑n
nonneg : 0 ≤ a % ↑n
⊢ 0 ≤ toNat (a % ↑n) ∧ toNat (a % ↑n) < n ∧ a ≡ ↑(toNat (a % ↑n)) [ZMOD ↑n]
[PROOFSTEP]
refine ⟨Nat.zero_le _, ?_, ?_⟩
[GOAL]
case refine_1
p : Sort u_1
a : ℤ
n : ℕ
hn : Nat.ble 1 n = true
H : OnModCases n a 0 p
this : 0 < ↑n
nonneg : 0 ≤ a % ↑n
⊢ toNat (a % ↑n) < n
[PROOFSTEP]
rw [Int.toNat_lt nonneg]
[GOAL]
case refine_1
p : Sort u_1
a : ℤ
n : ℕ
hn : Nat.ble 1 n = true
H : OnModCases n a 0 p
this : 0 < ↑n
nonneg : 0 ≤ a % ↑n
⊢ a % ↑n < ↑n
[PROOFSTEP]
exact Int.emod_lt_of_pos _ this
[GOAL]
case refine_2
p : Sort u_1
a : ℤ
n : ℕ
hn : Nat.ble 1 n = true
H : OnModCases n a 0 p
this : 0 < ↑n
nonneg : 0 ≤ a % ↑n
⊢ a ≡ ↑(toNat (a % ↑n)) [ZMOD ↑n]
[PROOFSTEP]
rw [Int.ModEq, Int.toNat_of_nonneg nonneg, emod_emod]
| {"mathlib_filename": "Mathlib.Tactic.ModCases", "llama_tokens": 770} |
{"mathlib_filename": "Mathlib.Tactic.ByContra", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Recall", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.ToExpr", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.ApplyWith", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Spread", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.GuardHypNums", "llama_tokens": 0} |
|
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
f : V → E
inst✝⁴ : NormedAddCommGroup V
inst✝³ : MeasurableSpace V
inst✝² : BorelSpace V
inst✝¹ : InnerProductSpace ℝ V
inst✝ : FiniteDimensional ℝ V
w : V
⊢ Integrable f ↔ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
[PROOFSTEP]
have hL : Continuous fun p : V × V => BilinForm.toLin bilinFormOfRealInner p.1 p.2 := continuous_inner
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
f : V → E
inst✝⁴ : NormedAddCommGroup V
inst✝³ : MeasurableSpace V
inst✝² : BorelSpace V
inst✝¹ : InnerProductSpace ℝ V
inst✝ : FiniteDimensional ℝ V
w : V
hL : Continuous fun p => ↑(↑(↑BilinForm.toLin bilinFormOfRealInner) p.fst) p.snd
⊢ Integrable f ↔ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
[PROOFSTEP]
rw [VectorFourier.fourier_integral_convergent_iff Real.continuous_fourierChar hL w]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℂ E
f : V → E
inst✝⁴ : NormedAddCommGroup V
inst✝³ : MeasurableSpace V
inst✝² : BorelSpace V
inst✝¹ : InnerProductSpace ℝ V
inst✝ : FiniteDimensional ℝ V
w : V
hL : Continuous fun p => ↑(↑(↑BilinForm.toLin bilinFormOfRealInner) p.fst) p.snd
⊢ (Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑(↑BilinForm.toLin bilinFormOfRealInner) v) w))) • f v) ↔
Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
[PROOFSTEP]
simp only [BilinForm.toLin_apply, bilinFormOfRealInner_apply]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) =
-∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
[PROOFSTEP]
have hiw : ⟪i w, w⟫ = 1 / 2 :=
by
rw [inner_smul_left, inner_self_eq_norm_sq_to_K, IsROrC.ofReal_real_eq_id, id.def, IsROrC.conj_to_real, ← div_div,
div_mul_cancel]
rwa [Ne.def, sq_eq_zero_iff, norm_eq_zero]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
⊢ inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
[PROOFSTEP]
rw [inner_smul_left, inner_self_eq_norm_sq_to_K, IsROrC.ofReal_real_eq_id, id.def, IsROrC.conj_to_real, ← div_div,
div_mul_cancel]
[GOAL]
case h
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
⊢ ‖w‖ ^ 2 ≠ 0
[PROOFSTEP]
rwa [Ne.def, sq_eq_zero_iff, norm_eq_zero]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) =
-∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
[PROOFSTEP]
have : (fun v : V => e[-⟪v, w⟫] • f (v + i w)) = fun v : V => (fun x : V => -e[-⟪x, w⟫] • f x) (v + i w) :=
by
ext1 v
simp_rw [inner_add_left, hiw, Real.fourierChar_apply, neg_add, mul_add, ofReal_add, add_mul, exp_add]
have : 2 * π * -(1 / 2) = -π := by field_simp; ring
rw [this, ofReal_neg, neg_mul, exp_neg, exp_pi_mul_I, inv_neg, inv_one, mul_neg_one, neg_neg]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
⊢ (fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) = fun v =>
(fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)
[PROOFSTEP]
ext1 v
[GOAL]
case h
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
v : V
⊢ ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) =
(fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)
[PROOFSTEP]
simp_rw [inner_add_left, hiw, Real.fourierChar_apply, neg_add, mul_add, ofReal_add, add_mul, exp_add]
[GOAL]
case h
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
v : V
⊢ exp (↑(2 * π * -inner v w) * I) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w) =
-(exp (↑(2 * π * -inner v w) * I) * exp (↑(2 * π * -(1 / 2)) * I)) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w)
[PROOFSTEP]
have : 2 * π * -(1 / 2) = -π := by field_simp; ring
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
v : V
⊢ 2 * π * -(1 / 2) = -π
[PROOFSTEP]
field_simp
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
v : V
⊢ 2 * π = π * 2
[PROOFSTEP]
ring
[GOAL]
case h
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
v : V
this : 2 * π * -(1 / 2) = -π
⊢ exp (↑(2 * π * -inner v w) * I) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w) =
-(exp (↑(2 * π * -inner v w) * I) * exp (↑(2 * π * -(1 / 2)) * I)) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w)
[PROOFSTEP]
rw [this, ofReal_neg, neg_mul, exp_neg, exp_pi_mul_I, inv_neg, inv_one, mul_neg_one, neg_neg]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
this :
(fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) = fun v =>
(fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) =
-∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
[PROOFSTEP]
rw [this]
-- Porting note:
-- The next three lines had just been
-- rw [integral_add_right_eq_self (fun (x : V) ↦ -(e[-⟪x, w⟫]) • f x)
-- ((fun w ↦ (1 / (2 * ‖w‖ ^ (2 : ℕ))) • w) w)]
-- Unfortunately now we need to specify `volume`, and call `dsimp`.
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
this :
(fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) = fun v =>
(fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)
⊢ ∫ (v : V), (fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) =
-∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
[PROOFSTEP]
have :=
@integral_add_right_eq_self _ _ _ _ _ volume _ _ _ (fun (x : V) ↦ -(e[-⟪x, w⟫]) • f x)
((fun w ↦ (1 / (2 * ‖w‖ ^ (2 : ℕ))) • w) w)
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
this✝ :
(fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) = fun v =>
(fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)
this :
∫ (x : V),
-↑(↑e (↑Multiplicative.ofAdd (-inner (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w))) •
f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) =
∫ (x : V), -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x
⊢ ∫ (v : V), (fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) =
-∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
[PROOFSTEP]
erw [this]
-- Porting note, we can avoid `erw` by first calling `dsimp at this ⊢`.
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2
this✝ :
(fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) = fun v =>
(fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)
this :
∫ (x : V),
-↑(↑e (↑Multiplicative.ofAdd (-inner (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w))) •
f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) =
∫ (x : V), -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x
⊢ ∫ (x : V), -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x =
-∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
[PROOFSTEP]
simp only [neg_smul, integral_neg]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hf : Integrable f
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v =
(1 / 2) •
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • (f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w))
[PROOFSTEP]
simp_rw [smul_sub]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hf : Integrable f
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v =
(1 / 2) •
∫ (v : V),
↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v -
↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w)
[PROOFSTEP]
rw [integral_sub, fourier_integral_half_period_translate hw, sub_eq_add_neg, neg_neg, ← two_smul ℂ _, ←
@smul_assoc _ _ _ _ _ _ (IsScalarTower.left ℂ), smul_eq_mul]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hf : Integrable f
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v =
(1 / 2 * 2) • ∫ (a : V), ↑(↑e (↑Multiplicative.ofAdd (-inner a w))) • f a
case hf
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hf : Integrable f
⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
case hg
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hf : Integrable f
⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w)
[PROOFSTEP]
norm_num
[GOAL]
case hf
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hf : Integrable f
⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v
case hg
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
w : V
hw : w ≠ 0
hf : Integrable f
⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w)
[PROOFSTEP]
exacts [(fourier_integrand_integrable w).mp hf, (fourier_integrand_integrable w).mp (hf.comp_add_right _)]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0)
[PROOFSTEP]
refine' NormedAddCommGroup.tendsto_nhds_zero.mpr fun ε hε => _
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (x : V) in cocompact V, ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v x))) • f v‖ < ε
[PROOFSTEP]
suffices ∃ T : ℝ, ∀ w : V, T ≤ ‖w‖ → ‖∫ v : V, e[-⟪v, w⟫] • f v‖ < ε
by
simp_rw [← comap_dist_left_atTop_eq_cocompact (0 : V), eventually_comap, eventually_atTop, dist_eq_norm', sub_zero]
exact
let ⟨T, hT⟩ := this
⟨T, fun b hb v hv => hT v (hv.symm ▸ hb)⟩
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
this : ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
⊢ ∀ᶠ (x : V) in cocompact V, ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v x))) • f v‖ < ε
[PROOFSTEP]
simp_rw [← comap_dist_left_atTop_eq_cocompact (0 : V), eventually_comap, eventually_atTop, dist_eq_norm', sub_zero]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
this : ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
⊢ ∃ a, ∀ (b : ℝ), b ≥ a → ∀ (a : V), ‖a‖ = b → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v a))) • f v‖ < ε
[PROOFSTEP]
exact
let ⟨T, hT⟩ := this
⟨T, fun b hb v hv => hT v (hv.symm ▸ hb)⟩
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
obtain ⟨R, -, hR_bd⟩ : ∃ R : ℝ, 0 < R ∧ ∀ x : V, R ≤ ‖x‖ → f x = 0
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
⊢ ∃ R, 0 < R ∧ ∀ (x : V), R ≤ ‖x‖ → f x = 0
case intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
exact hf2.exists_pos_le_norm
[GOAL]
case intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
let A := {v : V | ‖v‖ ≤ R + 1}
[GOAL]
case intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
have mA : MeasurableSet A :=
by
suffices A = Metric.closedBall (0 : V) (R + 1) by
rw [this]
exact Metric.isClosed_ball.measurableSet
simp_rw [Metric.closedBall, dist_eq_norm, sub_zero]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
⊢ MeasurableSet A
[PROOFSTEP]
suffices A = Metric.closedBall (0 : V) (R + 1) by
rw [this]
exact Metric.isClosed_ball.measurableSet
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
this : A = Metric.closedBall 0 (R + 1)
⊢ MeasurableSet A
[PROOFSTEP]
rw [this]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
this : A = Metric.closedBall 0 (R + 1)
⊢ MeasurableSet (Metric.closedBall 0 (R + 1))
[PROOFSTEP]
exact Metric.isClosed_ball.measurableSet
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
⊢ A = Metric.closedBall 0 (R + 1)
[PROOFSTEP]
simp_rw [Metric.closedBall, dist_eq_norm, sub_zero]
[GOAL]
case intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
obtain ⟨B, hB_pos, hB_vol⟩ : ∃ B : ℝ≥0, 0 < B ∧ volume A ≤ B :=
by
have hc : IsCompact A := by
simpa only [Metric.closedBall, dist_eq_norm, sub_zero] using isCompact_closedBall (0 : V) _
let B₀ := volume A
replace hc : B₀ < ⊤ := hc.measure_lt_top
refine' ⟨B₀.toNNReal + 1, add_pos_of_nonneg_of_pos B₀.toNNReal.coe_nonneg one_pos, _⟩
rw [ENNReal.coe_add, ENNReal.coe_one, ENNReal.coe_toNNReal hc.ne]
exact le_self_add
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
⊢ ∃ B, 0 < B ∧ ↑↑volume A ≤ ↑B
[PROOFSTEP]
have hc : IsCompact A := by simpa only [Metric.closedBall, dist_eq_norm, sub_zero] using isCompact_closedBall (0 : V) _
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
⊢ IsCompact A
[PROOFSTEP]
simpa only [Metric.closedBall, dist_eq_norm, sub_zero] using isCompact_closedBall (0 : V) _
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
hc : IsCompact A
⊢ ∃ B, 0 < B ∧ ↑↑volume A ≤ ↑B
[PROOFSTEP]
let B₀ := volume A
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
hc : IsCompact A
B₀ : ℝ≥0∞ := ↑↑volume A
⊢ ∃ B, 0 < B ∧ ↑↑volume A ≤ ↑B
[PROOFSTEP]
replace hc : B₀ < ⊤ := hc.measure_lt_top
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B₀ : ℝ≥0∞ := ↑↑volume A
hc : B₀ < ⊤
⊢ ∃ B, 0 < B ∧ ↑↑volume A ≤ ↑B
[PROOFSTEP]
refine' ⟨B₀.toNNReal + 1, add_pos_of_nonneg_of_pos B₀.toNNReal.coe_nonneg one_pos, _⟩
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B₀ : ℝ≥0∞ := ↑↑volume A
hc : B₀ < ⊤
⊢ ↑↑volume A ≤ ↑(ENNReal.toNNReal B₀ + 1)
[PROOFSTEP]
rw [ENNReal.coe_add, ENNReal.coe_one, ENNReal.coe_toNNReal hc.ne]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B₀ : ℝ≥0∞ := ↑↑volume A
hc : B₀ < ⊤
⊢ ↑↑volume A ≤ B₀ + 1
[PROOFSTEP]
exact le_self_add
[GOAL]
case intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
obtain ⟨δ, hδ1, hδ2⟩ :=
Metric.uniformContinuous_iff.mp (hf2.uniformContinuous_of_continuous hf1) (ε / B) (div_pos hε hB_pos)
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
refine' ⟨1 / 2 + 1 / (2 * δ), fun w hw_bd => _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
⊢ ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
have hw_ne : w ≠ 0 := by
contrapose! hw_bd; rw [hw_bd, norm_zero]
exact add_pos one_half_pos (one_div_pos.mpr <| mul_pos two_pos hδ1)
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
⊢ w ≠ 0
[PROOFSTEP]
contrapose! hw_bd
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : w = 0
⊢ ‖w‖ < 1 / 2 + 1 / (2 * δ)
[PROOFSTEP]
rw [hw_bd, norm_zero]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : w = 0
⊢ 0 < 1 / 2 + 1 / (2 * δ)
[PROOFSTEP]
exact add_pos one_half_pos (one_div_pos.mpr <| mul_pos two_pos hδ1)
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
⊢ ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
have hw'_nm : ‖i w‖ = 1 / (2 * ‖w‖) := by
rw [norm_smul, norm_div, Real.norm_of_nonneg (mul_nonneg two_pos.le <| sq_nonneg _), norm_one, sq, ← div_div, ←
div_div, ← div_div, div_mul_cancel _ (norm_eq_zero.not.mpr hw_ne)]
--* Rewrite integral in terms of `f v - f (v + w')`.
-- Porting note: this was
-- rw [norm_eq_abs, ← Complex.ofReal_one, ← ofReal_bit0, ← of_real_div,
-- Complex.abs_of_nonneg one_half_pos.le]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
⊢ ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
[PROOFSTEP]
rw [norm_smul, norm_div, Real.norm_of_nonneg (mul_nonneg two_pos.le <| sq_nonneg _), norm_one, sq, ← div_div, ← div_div,
← div_div, div_mul_cancel _ (norm_eq_zero.not.mpr hw_ne)]
--* Rewrite integral in terms of `f v - f (v + w')`.
-- Porting note: this was
-- rw [norm_eq_abs, ← Complex.ofReal_one, ← ofReal_bit0, ← of_real_div,
-- Complex.abs_of_nonneg one_half_pos.le]
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
⊢ ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
have : ‖(1 / 2 : ℂ)‖ = 1 / 2 := by norm_num
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
⊢ ‖1 / 2‖ = 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this : ‖1 / 2‖ = 1 / 2
⊢ ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε
[PROOFSTEP]
rw [fourier_integral_eq_half_sub_half_period_translate hw_ne (hf1.integrable_of_hasCompactSupport hf2), norm_smul, this]
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this : ‖1 / 2‖ = 1 / 2
⊢ 1 / 2 *
‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • (f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w))‖ <
ε
[PROOFSTEP]
have : ε = 1 / 2 * (2 * ε) := by field_simp; rw [mul_comm]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this : ‖1 / 2‖ = 1 / 2
⊢ ε = 1 / 2 * (2 * ε)
[PROOFSTEP]
field_simp
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this : ‖1 / 2‖ = 1 / 2
⊢ ε * 2 = 2 * ε
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
⊢ 1 / 2 *
‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • (f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w))‖ <
ε
[PROOFSTEP]
rw [this, mul_lt_mul_left (one_half_pos : (0 : ℝ) < 1 / 2)]
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
⊢ ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • (f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w))‖ < 2 * ε
[PROOFSTEP]
refine' lt_of_le_of_lt (norm_integral_le_integral_norm _) _
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
⊢ ∫ (a : V), ‖↑(↑e (↑Multiplicative.ofAdd (-inner a w))) • (f a - f (a + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w))‖ < 2 * ε
[PROOFSTEP]
simp_rw [norm_smul, norm_eq_abs, abs_coe_circle, one_mul]
--* Show integral can be taken over A only.
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
⊢ ∫ (a : V), ‖f a - f (a + (1 / (2 * ‖w‖ ^ 2)) • w)‖ < 2 * ε
[PROOFSTEP]
have int_A : ∫ v : V, ‖f v - f (v + i w)‖ = ∫ v in A, ‖f v - f (v + i w)‖ :=
by
refine' (set_integral_eq_integral_of_forall_compl_eq_zero fun v hv => _).symm
dsimp only at hv
simp only [mem_setOf, not_le] at hv
rw [hR_bd v _, hR_bd (v + i w) _, sub_zero, norm_zero]
· rw [← sub_neg_eq_add]
refine' le_trans _ (norm_sub_norm_le _ _)
rw [le_sub_iff_add_le, norm_neg]
refine' le_trans _ hv.le
rw [add_le_add_iff_left, hw'_nm, ← div_div]
refine' (div_le_one <| norm_pos_iff.mpr hw_ne).mpr _
refine' le_trans (le_add_of_nonneg_right <| one_div_nonneg.mpr <| _) hw_bd
exact (mul_pos (zero_lt_two' ℝ) hδ1).le
· exact ((le_add_iff_nonneg_right _).mpr zero_le_one).trans hv.le
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
⊢ ∫ (v : V), ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
[PROOFSTEP]
refine' (set_integral_eq_integral_of_forall_compl_eq_zero fun v hv => _).symm
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : ¬v ∈ A
⊢ ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ = 0
[PROOFSTEP]
dsimp only at hv
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : ¬v ∈ {v | ‖v‖ ≤ R + 1}
⊢ ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ = 0
[PROOFSTEP]
simp only [mem_setOf, not_le] at hv
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : R + 1 < ‖v‖
⊢ ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ = 0
[PROOFSTEP]
rw [hR_bd v _, hR_bd (v + i w) _, sub_zero, norm_zero]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : R + 1 < ‖v‖
⊢ R ≤ ‖v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖
[PROOFSTEP]
rw [← sub_neg_eq_add]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : R + 1 < ‖v‖
⊢ R ≤ ‖v - -(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖
[PROOFSTEP]
refine' le_trans _ (norm_sub_norm_le _ _)
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : R + 1 < ‖v‖
⊢ R ≤ ‖v‖ - ‖-(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖
[PROOFSTEP]
rw [le_sub_iff_add_le, norm_neg]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : R + 1 < ‖v‖
⊢ R + ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ ≤ ‖v‖
[PROOFSTEP]
refine' le_trans _ hv.le
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : R + 1 < ‖v‖
⊢ R + ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ ≤ R + 1
[PROOFSTEP]
rw [add_le_add_iff_left, hw'_nm, ← div_div]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : R + 1 < ‖v‖
⊢ 1 / 2 / ‖w‖ ≤ 1
[PROOFSTEP]
refine' (div_le_one <| norm_pos_iff.mpr hw_ne).mpr _
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : R + 1 < ‖v‖
⊢ 1 / 2 ≤ ‖w‖
[PROOFSTEP]
refine' le_trans (le_add_of_nonneg_right <| one_div_nonneg.mpr <| _) hw_bd
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : R + 1 < ‖v‖
⊢ 0 ≤ 2 * δ
[PROOFSTEP]
exact (mul_pos (zero_lt_two' ℝ) hδ1).le
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
v : V
hv : R + 1 < ‖v‖
⊢ R ≤ ‖v‖
[PROOFSTEP]
exact ((le_add_iff_nonneg_right _).mpr zero_le_one).trans hv.le
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
int_A :
∫ (v : V), ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ∫ (a : V), ‖f a - f (a + (1 / (2 * ‖w‖ ^ 2)) • w)‖ < 2 * ε
[PROOFSTEP]
rw [int_A]
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
int_A :
∫ (v : V), ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε
[PROOFSTEP]
clear int_A
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε
[PROOFSTEP]
have bdA : ∀ v : V, v ∈ A → ‖‖f v - f (v + i w)‖‖ ≤ ε / B :=
by
simp_rw [norm_norm]
simp_rw [dist_eq_norm] at hδ2
refine' fun x _ => (hδ2 _).le
rw [sub_add_cancel', norm_neg, hw'_nm, ← div_div, div_lt_iff (norm_pos_iff.mpr hw_ne), ← div_lt_iff' hδ1, div_div]
refine' (lt_add_of_pos_left _ _).trans_le hw_bd
exact one_half_pos
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
⊢ ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
[PROOFSTEP]
simp_rw [norm_norm]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
⊢ ∀ (v : V), v ∈ {v | ‖v‖ ≤ R + 1} → ‖f v - f (v + (1 / (2 * ‖w‖ ^ 2)) • w)‖ ≤ ε / ↑B
[PROOFSTEP]
simp_rw [dist_eq_norm] at hδ2
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
hδ2 : ∀ {a b : V}, ‖a - b‖ < δ → ‖f a - f b‖ < ε / ↑B
⊢ ∀ (v : V), v ∈ {v | ‖v‖ ≤ R + 1} → ‖f v - f (v + (1 / (2 * ‖w‖ ^ 2)) • w)‖ ≤ ε / ↑B
[PROOFSTEP]
refine' fun x _ => (hδ2 _).le
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
hδ2 : ∀ {a b : V}, ‖a - b‖ < δ → ‖f a - f b‖ < ε / ↑B
x : V
x✝ : x ∈ {v | ‖v‖ ≤ R + 1}
⊢ ‖x - (x + (1 / (2 * ‖w‖ ^ 2)) • w)‖ < δ
[PROOFSTEP]
rw [sub_add_cancel', norm_neg, hw'_nm, ← div_div, div_lt_iff (norm_pos_iff.mpr hw_ne), ← div_lt_iff' hδ1, div_div]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
hδ2 : ∀ {a b : V}, ‖a - b‖ < δ → ‖f a - f b‖ < ε / ↑B
x : V
x✝ : x ∈ {v | ‖v‖ ≤ R + 1}
⊢ 1 / (2 * δ) < ‖w‖
[PROOFSTEP]
refine' (lt_add_of_pos_left _ _).trans_le hw_bd
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
hδ2 : ∀ {a b : V}, ‖a - b‖ < δ → ‖f a - f b‖ < ε / ↑B
x : V
x✝ : x ∈ {v | ‖v‖ ≤ R + 1}
⊢ 0 < 1 / 2
[PROOFSTEP]
exact one_half_pos
[GOAL]
case intro.intro.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε
[PROOFSTEP]
have bdA2 := norm_set_integral_le_of_norm_le_const (hB_vol.trans_lt ENNReal.coe_lt_top) bdA ?_
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ‖∫ (x : V) in A, ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε
case intro.intro.intro.intro.intro.intro.refine_1
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
⊢ AEStronglyMeasurable (fun x => ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖) (Measure.restrict volume A)
[PROOFSTEP]
swap
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_1
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
⊢ AEStronglyMeasurable (fun x => ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖) (Measure.restrict volume A)
[PROOFSTEP]
apply Continuous.aestronglyMeasurable
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_1.hf
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
⊢ Continuous fun x => ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
[PROOFSTEP]
exact continuous_norm.comp <| Continuous.sub hf1 <| Continuous.comp hf1 <| continuous_id'.add continuous_const
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝ : ‖1 / 2‖ = 1 / 2
this : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ‖∫ (x : V) in A, ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε
[PROOFSTEP]
have : ‖_‖ = ∫ v : V in A, ‖f v - f (v + i w)‖ := Real.norm_of_nonneg (set_integral_nonneg mA fun x _ => norm_nonneg _)
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝¹ : ‖1 / 2‖ = 1 / 2
this✝ : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ‖∫ (x : V) in A, ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
this :
‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε
[PROOFSTEP]
rw [this] at bdA2
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝¹ : ‖1 / 2‖ = 1 / 2
this✝ : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
this :
‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε
[PROOFSTEP]
refine' bdA2.trans_lt _
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝¹ : ‖1 / 2‖ = 1 / 2
this✝ : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
this :
‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ε / ↑B * ENNReal.toReal (↑↑volume A) < 2 * ε
[PROOFSTEP]
rw [div_mul_eq_mul_div, div_lt_iff (NNReal.coe_pos.mpr hB_pos), mul_comm (2 : ℝ), mul_assoc, mul_lt_mul_left hε]
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝¹ : ‖1 / 2‖ = 1 / 2
this✝ : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
this :
‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ENNReal.toReal (↑↑volume A) < 2 * ↑B
[PROOFSTEP]
rw [← ENNReal.toReal_le_toReal] at hB_vol
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ENNReal.toReal (↑↑volume A) ≤ ENNReal.toReal ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝¹ : ‖1 / 2‖ = 1 / 2
this✝ : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
this :
‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ENNReal.toReal (↑↑volume A) < 2 * ↑B
[PROOFSTEP]
refine' hB_vol.trans_lt _
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ENNReal.toReal (↑↑volume A) ≤ ENNReal.toReal ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝¹ : ‖1 / 2‖ = 1 / 2
this✝ : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
this :
‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ENNReal.toReal ↑B < 2 * ↑B
[PROOFSTEP]
rw [(by rfl : (↑B : ENNReal).toReal = ↑B), two_mul]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ENNReal.toReal (↑↑volume A) ≤ ENNReal.toReal ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝¹ : ‖1 / 2‖ = 1 / 2
this✝ : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
this :
‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ENNReal.toReal ↑B = ↑B
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ENNReal.toReal (↑↑volume A) ≤ ENNReal.toReal ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝¹ : ‖1 / 2‖ = 1 / 2
this✝ : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
this :
‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ↑B < ↑B + ↑B
[PROOFSTEP]
exact lt_add_of_pos_left _ hB_pos
[GOAL]
case intro.intro.intro.intro.intro.intro.refine_2.ha
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝¹ : ‖1 / 2‖ = 1 / 2
this✝ : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
this :
‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ↑↑volume A ≠ ⊤
case intro.intro.intro.intro.intro.intro.refine_2.hb
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hf1 : Continuous f
hf2 : HasCompactSupport f
ε : ℝ
hε : ε > 0
R : ℝ
hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0
A : Set V := {v | ‖v‖ ≤ R + 1}
mA : MeasurableSet A
B : ℝ≥0
hB_pos : 0 < B
hB_vol : ↑↑volume A ≤ ↑B
δ : ℝ
hδ1 : δ > 0
hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B
w : V
hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖
hw_ne : w ≠ 0
hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖)
this✝¹ : ‖1 / 2‖ = 1 / 2
this✝ : ε = 1 / 2 * (2 * ε)
bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B
bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A)
this :
‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ =
∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖
⊢ ↑B ≠ ⊤
[PROOFSTEP]
exacts [(hB_vol.trans_lt ENNReal.coe_lt_top).ne, ENNReal.coe_lt_top.ne]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0)
[PROOFSTEP]
by_cases hfi : Integrable f
[GOAL]
case pos
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0)
case neg
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : ¬Integrable f
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0)
[PROOFSTEP]
swap
[GOAL]
case neg
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : ¬Integrable f
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0)
[PROOFSTEP]
convert tendsto_const_nhds (a := (0 : E)) with w
[GOAL]
case h.e.h.e'_3.h
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : ¬Integrable f
w : V
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v = 0
[PROOFSTEP]
apply integral_undef
[GOAL]
case h.e.h.e'_3.h.h
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : ¬Integrable f
w : V
⊢ ¬Integrable fun a => ↑(↑e (↑Multiplicative.ofAdd (-inner a w))) • f a
[PROOFSTEP]
rwa [← fourier_integrand_integrable w]
[GOAL]
case pos
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0)
[PROOFSTEP]
refine' Metric.tendsto_nhds.mpr fun ε hε => _
[GOAL]
case pos
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
⊢ ∀ᶠ (x : V) in cocompact V, dist (∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v x))) • f v) 0 < ε
[PROOFSTEP]
obtain ⟨g, hg_supp, hfg, hg_cont, -⟩ := hfi.exists_hasCompactSupport_integral_sub_le (div_pos hε two_pos)
[GOAL]
case pos.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
g : V → E
hg_supp : HasCompactSupport g
hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2
hg_cont : Continuous g
⊢ ∀ᶠ (x : V) in cocompact V, dist (∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v x))) • f v) 0 < ε
[PROOFSTEP]
refine'
((Metric.tendsto_nhds.mp (tendsto_integral_exp_inner_smul_cocompact_of_continuous_compact_support hg_cont hg_supp)) _
(div_pos hε two_pos)).mp
(eventually_of_forall fun w hI => _)
[GOAL]
case pos.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
g : V → E
hg_supp : HasCompactSupport g
hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2
hg_cont : Continuous g
w : V
hI : dist (∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) 0 < ε / 2
⊢ dist (∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) 0 < ε
[PROOFSTEP]
rw [dist_eq_norm] at hI ⊢
[GOAL]
case pos.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
g : V → E
hg_supp : HasCompactSupport g
hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2
hg_cont : Continuous g
w : V
hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2
⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - 0‖ < ε
[PROOFSTEP]
have : ‖(∫ v, e[-⟪v, w⟫] • f v) - ∫ v, e[-⟪v, w⟫] • g v‖ ≤ ε / 2 :=
by
refine' le_trans _ hfg
simp_rw [←
integral_sub ((fourier_integrand_integrable w).mp hfi)
((fourier_integrand_integrable w).mp (hg_cont.integrable_of_hasCompactSupport hg_supp)),
← smul_sub, ← Pi.sub_apply]
exact VectorFourier.norm_fourierIntegral_le_integral_norm e volume (BilinForm.toLin bilinFormOfRealInner) (f - g) w
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
g : V → E
hg_supp : HasCompactSupport g
hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2
hg_cont : Continuous g
w : V
hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2
⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) -
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ ≤
ε / 2
[PROOFSTEP]
refine' le_trans _ hfg
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
g : V → E
hg_supp : HasCompactSupport g
hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2
hg_cont : Continuous g
w : V
hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2
⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) -
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ ≤
∫ (x : V), ‖f x - g x‖
[PROOFSTEP]
simp_rw [←
integral_sub ((fourier_integrand_integrable w).mp hfi)
((fourier_integrand_integrable w).mp (hg_cont.integrable_of_hasCompactSupport hg_supp)),
← smul_sub, ← Pi.sub_apply]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
g : V → E
hg_supp : HasCompactSupport g
hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2
hg_cont : Continuous g
w : V
hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2
⊢ ‖∫ (a : V), ↑(↑e (↑Multiplicative.ofAdd (-inner a w))) • (f - g) a‖ ≤ ∫ (x : V), ‖(f - g) x‖
[PROOFSTEP]
exact VectorFourier.norm_fourierIntegral_le_integral_norm e volume (BilinForm.toLin bilinFormOfRealInner) (f - g) w
[GOAL]
case pos.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
g : V → E
hg_supp : HasCompactSupport g
hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2
hg_cont : Continuous g
w : V
hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2
this :
‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) -
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ ≤
ε / 2
⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - 0‖ < ε
[PROOFSTEP]
replace := add_lt_add_of_le_of_lt this hI
[GOAL]
case pos.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
g : V → E
hg_supp : HasCompactSupport g
hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2
hg_cont : Continuous g
w : V
hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2
this :
‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) -
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ +
‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ <
ε / 2 + ε / 2
⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - 0‖ < ε
[PROOFSTEP]
rw [add_halves] at this
[GOAL]
case pos.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
g : V → E
hg_supp : HasCompactSupport g
hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2
hg_cont : Continuous g
w : V
hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2
this :
‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) -
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ +
‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ <
ε
⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - 0‖ < ε
[PROOFSTEP]
refine' ((le_of_eq _).trans (norm_add_le _ _)).trans_lt this
[GOAL]
case pos.intro.intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁷ : NormedAddCommGroup E
inst✝⁶ : NormedSpace ℂ E
f : V → E
inst✝⁵ : NormedAddCommGroup V
inst✝⁴ : MeasurableSpace V
inst✝³ : BorelSpace V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : FiniteDimensional ℝ V
inst✝ : CompleteSpace E
hfi : Integrable f
ε : ℝ
hε : ε > 0
g : V → E
hg_supp : HasCompactSupport g
hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2
hg_cont : Continuous g
w : V
hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2
this :
‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) -
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ +
‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ <
ε
⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - 0‖ =
‖((∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) -
∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) +
((∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0)‖
[PROOFSTEP]
simp only [sub_zero, sub_add_cancel]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
obtain ⟨C, _, _, hC⟩ := μ.isAddHaarMeasure_eq_smul_isAddHaarMeasure volume
[GOAL]
case intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
rw [hC]
[GOAL]
case intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂C • volume) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
simp_rw [integral_smul_measure]
[GOAL]
case intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
⊢ Tendsto (fun w => ENNReal.toReal C • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v) (cocompact (V →L[ℝ] ℝ))
(𝓝 0)
[PROOFSTEP]
rw [← (smul_zero _ : C.toReal • (0 : E) = 0)]
[GOAL]
case intro.intro.intro
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
⊢ Tendsto (fun w => ENNReal.toReal C • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v) (cocompact (V →L[ℝ] ℝ))
(𝓝 (ENNReal.toReal C • 0))
[PROOFSTEP]
apply Tendsto.const_smul
[GOAL]
case intro.intro.intro.hf
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
⊢ Tendsto (fun x => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑x v))) • f v) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
let A := (InnerProductSpace.toDual ℝ V).symm
[GOAL]
case intro.intro.intro.hf
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V)
⊢ Tendsto (fun x => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑x v))) • f v) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
have : (fun w : V →L[ℝ] ℝ => ∫ v, e[-w v] • f v) = (fun w : V => ∫ v, e[-⟪v, w⟫] • f v) ∘ A :=
by
ext1 w
congr 1 with v : 1
rw [← inner_conj_symm, IsROrC.conj_to_real, InnerProductSpace.toDual_symm_apply, Real.fourierChar_apply]
[GOAL]
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V)
⊢ (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v) =
(fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) ∘ ↑A
[PROOFSTEP]
ext1 w
[GOAL]
case h
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V)
w : V →L[ℝ] ℝ
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v =
((fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) ∘ ↑A) w
[PROOFSTEP]
congr 1 with v : 1
[GOAL]
case h.e_f.h
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V)
w : V →L[ℝ] ℝ
v : V
⊢ ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v = ↑(↑e (↑Multiplicative.ofAdd (-inner v (↑A w)))) • f v
[PROOFSTEP]
rw [← inner_conj_symm, IsROrC.conj_to_real, InnerProductSpace.toDual_symm_apply, Real.fourierChar_apply]
[GOAL]
case intro.intro.intro.hf
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V)
this :
(fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v) =
(fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) ∘ ↑A
⊢ Tendsto (fun x => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑x v))) • f v) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
rw [this]
[GOAL]
case intro.intro.intro.hf
E : Type u_1
V : Type u_2
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℂ E
f : V → E
inst✝⁶ : NormedAddCommGroup V
inst✝⁵ : MeasurableSpace V
inst✝⁴ : BorelSpace V
inst✝³ : InnerProductSpace ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
C : ℝ≥0∞
left✝¹ : C ≠ 0
left✝ : C ≠ ⊤
hC : μ = C • volume
A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V)
this :
(fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v) =
(fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) ∘ ↑A
⊢ Tendsto ((fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) ∘ ↑A) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
exact (tendsto_integral_exp_inner_smul_cocompact f).comp A.toHomeomorph.toCocompactMap.cocompact_tendsto'
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
let V' := EuclideanSpace ℝ (Fin (finrank ℝ V))
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
have A : V ≃L[ℝ] V' := toEuclidean
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
borelize V'
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
let Aₘ : MeasurableEquiv V V' := A.toHomeomorph.toMeasurableEquiv
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
let Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ :=
{ toFun := fun t => t.comp A.symm.toContinuousLinearMap
invFun := fun t => t.comp A.toContinuousLinearMap
map_add' := by
intro t s
ext1 v
simp only [ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.add_apply]
map_smul' := by
intro x f
ext1 v
simp only [RingHom.id_apply, ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.smul_apply]
left_inv := by
intro w
ext1 v
simp only [ContinuousLinearMap.coe_comp', ContinuousLinearEquiv.coe_coe, Function.comp_apply,
ContinuousLinearEquiv.symm_apply_apply]
right_inv := by
intro w
ext1 v
simp only [ContinuousLinearMap.coe_comp', ContinuousLinearEquiv.coe_coe, Function.comp_apply,
ContinuousLinearEquiv.apply_symm_apply] }
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
⊢ ∀ (x y : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (x + y) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) x +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) y
[PROOFSTEP]
intro t s
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
t s : V →L[ℝ] ℝ
⊢ (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s
[PROOFSTEP]
ext1 v
[GOAL]
case h
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
t s : V →L[ℝ] ℝ
v : V'
⊢ ↑((fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s)) v =
↑((fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s)
v
[PROOFSTEP]
simp only [ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.add_apply]
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
⊢ ∀ (r : ℝ) (x : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(r • x) =
↑(RingHom.id ℝ) r •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
x
[PROOFSTEP]
intro x f
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f✝ : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
x : ℝ
f : V →L[ℝ] ℝ
⊢ AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f
[PROOFSTEP]
ext1 v
[GOAL]
case h
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f✝ : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
x : ℝ
f : V →L[ℝ] ℝ
v : V'
⊢ ↑(AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f))
v =
↑(↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f)
v
[PROOFSTEP]
simp only [RingHom.id_apply, ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.smul_apply]
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
⊢ Function.LeftInverse (fun t => ContinuousLinearMap.comp t ↑A)
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom.toFun
[PROOFSTEP]
intro w
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
w : V →L[ℝ] ℝ
⊢ (fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w) =
w
[PROOFSTEP]
ext1 v
[GOAL]
case h
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
w : V →L[ℝ] ℝ
v : V
⊢ ↑((fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w))
v =
↑w v
[PROOFSTEP]
simp only [ContinuousLinearMap.coe_comp', ContinuousLinearEquiv.coe_coe, Function.comp_apply,
ContinuousLinearEquiv.symm_apply_apply]
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
⊢ Function.RightInverse (fun t => ContinuousLinearMap.comp t ↑A)
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom.toFun
[PROOFSTEP]
intro w
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
w : V' →L[ℝ] ℝ
⊢ AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w) =
w
[PROOFSTEP]
ext1 v
[GOAL]
case h
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
w : V' →L[ℝ] ℝ
v : V'
⊢ ↑(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w))
v =
↑w v
[PROOFSTEP]
simp only [ContinuousLinearMap.coe_comp', ContinuousLinearEquiv.coe_coe, Function.comp_apply,
ContinuousLinearEquiv.apply_symm_apply]
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ :=
{
toLinearMap :=
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) },
invFun := fun t => ContinuousLinearMap.comp t ↑A,
left_inv :=
(_ :
∀ (w : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w) =
w),
right_inv :=
(_ :
∀ (w : V' →L[ℝ] ℝ),
AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w) =
w) }
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
let Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ :=
{ Adualₗ with
continuous_toFun := Adualₗ.toLinearMap.continuous_of_finiteDimensional
continuous_invFun := Adualₗ.symm.toLinearMap.continuous_of_finiteDimensional }
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ :=
{
toLinearMap :=
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) },
invFun := fun t => ContinuousLinearMap.comp t ↑A,
left_inv :=
(_ :
∀ (w : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w) =
w),
right_inv :=
(_ :
∀ (w : V' →L[ℝ] ℝ),
AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w) =
w) }
Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ :=
ContinuousLinearEquiv.mk
{ toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun,
left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun),
right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) }
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
have : (μ.map Aₘ).IsAddHaarMeasure := Measure.MapContinuousLinearEquiv.isAddHaarMeasure _ A
[GOAL]
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ :=
{
toLinearMap :=
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) },
invFun := fun t => ContinuousLinearMap.comp t ↑A,
left_inv :=
(_ :
∀ (w : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w) =
w),
right_inv :=
(_ :
∀ (w : V' →L[ℝ] ℝ),
AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w) =
w) }
Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ :=
ContinuousLinearEquiv.mk
{ toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun,
left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun),
right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) }
this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ)
⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0)
[PROOFSTEP]
convert
(tendsto_integral_exp_smul_cocompact_of_inner_product (f ∘ A.symm) (μ.map Aₘ)).comp
Adual.toHomeomorph.toCocompactMap.cocompact_tendsto' with
w
[GOAL]
case h.e'_3.h
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ :=
{
toLinearMap :=
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) },
invFun := fun t => ContinuousLinearMap.comp t ↑A,
left_inv :=
(_ :
∀ (w : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w) =
w),
right_inv :=
(_ :
∀ (w : V' →L[ℝ] ℝ),
AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w) =
w) }
Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ :=
ContinuousLinearEquiv.mk
{ toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun,
left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun),
right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) }
this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ)
w : V →L[ℝ] ℝ
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ =
((fun w =>
∫ (v : V'),
↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • (f ∘ ↑(ContinuousLinearEquiv.symm A)) v ∂Measure.map (↑Aₘ) μ) ∘
(Homeomorph.toCocompactMap (ContinuousLinearEquiv.toHomeomorph Adual)).toContinuousMap.toFun)
w
[PROOFSTEP]
rw [Function.comp_apply, integral_map_equiv]
[GOAL]
case h.e'_3.h
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ :=
{
toLinearMap :=
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) },
invFun := fun t => ContinuousLinearMap.comp t ↑A,
left_inv :=
(_ :
∀ (w : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w) =
w),
right_inv :=
(_ :
∀ (w : V' →L[ℝ] ℝ),
AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w) =
w) }
Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ :=
ContinuousLinearEquiv.mk
{ toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun,
left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun),
right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) }
this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ)
w : V →L[ℝ] ℝ
⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ =
∫ (x : V),
↑(↑e
(↑Multiplicative.ofAdd
(-↑(ContinuousMap.toFun
(Homeomorph.toCocompactMap (ContinuousLinearEquiv.toHomeomorph Adual)).toContinuousMap w)
(↑Aₘ x)))) •
(f ∘ ↑(ContinuousLinearEquiv.symm A)) (↑Aₘ x) ∂μ
[PROOFSTEP]
congr 1 with v : 1
[GOAL]
case h.e'_3.h.e_f.h
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ :=
{
toLinearMap :=
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) },
invFun := fun t => ContinuousLinearMap.comp t ↑A,
left_inv :=
(_ :
∀ (w : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w) =
w),
right_inv :=
(_ :
∀ (w : V' →L[ℝ] ℝ),
AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w) =
w) }
Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ :=
ContinuousLinearEquiv.mk
{ toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun,
left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun),
right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) }
this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ)
w : V →L[ℝ] ℝ
v : V
⊢ ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v =
↑(↑e
(↑Multiplicative.ofAdd
(-↑(ContinuousMap.toFun
(Homeomorph.toCocompactMap (ContinuousLinearEquiv.toHomeomorph Adual)).toContinuousMap w)
(↑Aₘ v)))) •
(f ∘ ↑(ContinuousLinearEquiv.symm A)) (↑Aₘ v)
[PROOFSTEP]
congr
[GOAL]
case h.e'_3.h.e_f.h.e_a.e_self.h.e_6.h.h.e_6.h.e_a
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ :=
{
toLinearMap :=
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) },
invFun := fun t => ContinuousLinearMap.comp t ↑A,
left_inv :=
(_ :
∀ (w : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w) =
w),
right_inv :=
(_ :
∀ (w : V' →L[ℝ] ℝ),
AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w) =
w) }
Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ :=
ContinuousLinearEquiv.mk
{ toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun,
left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun),
right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) }
this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ)
w : V →L[ℝ] ℝ
v : V
⊢ ↑w v =
↑(ContinuousMap.toFun (Homeomorph.toCocompactMap (ContinuousLinearEquiv.toHomeomorph Adual)).toContinuousMap w)
(↑Aₘ v)
[PROOFSTEP]
apply congr_arg w
[GOAL]
case h.e'_3.h.e_f.h.e_a.e_self.h.e_6.h.h.e_6.h.e_a
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ :=
{
toLinearMap :=
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) },
invFun := fun t => ContinuousLinearMap.comp t ↑A,
left_inv :=
(_ :
∀ (w : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w) =
w),
right_inv :=
(_ :
∀ (w : V' →L[ℝ] ℝ),
AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w) =
w) }
Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ :=
ContinuousLinearEquiv.mk
{ toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun,
left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun),
right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) }
this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ)
w : V →L[ℝ] ℝ
v : V
⊢ v = ↑↑↑(ContinuousLinearEquiv.symm A) (↑Aₘ v)
[PROOFSTEP]
exact (ContinuousLinearEquiv.symm_apply_apply A v).symm
[GOAL]
case h.e'_3.h.e_f.h.e_a.e_a
E : Type u_1
V : Type u_2
inst✝¹² : NormedAddCommGroup E
inst✝¹¹ : NormedSpace ℂ E
f : V → E
inst✝¹⁰ : AddCommGroup V
inst✝⁹ : TopologicalSpace V
inst✝⁸ : TopologicalAddGroup V
inst✝⁷ : T2Space V
inst✝⁶ : MeasurableSpace V
inst✝⁵ : BorelSpace V
inst✝⁴ : Module ℝ V
inst✝³ : ContinuousSMul ℝ V
inst✝² : FiniteDimensional ℝ V
inst✝¹ : CompleteSpace E
μ : Measure V
inst✝ : Measure.IsAddHaarMeasure μ
V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V))
A : V ≃L[ℝ] V'
this✝¹ : MeasurableSpace V' := borel V'
this✝ : BorelSpace V'
Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A)
Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ :=
{
toLinearMap :=
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) },
invFun := fun t => ContinuousLinearMap.comp t ↑A,
left_inv :=
(_ :
∀ (w : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑A)
(AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
w) =
w),
right_inv :=
(_ :
∀ (w : V' →L[ℝ] ℝ),
AddHom.toFun
{
toAddHom :=
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) },
map_smul' :=
(_ :
∀ (x : ℝ) (f : V →L[ℝ] ℝ),
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
(x • f) =
↑(RingHom.id ℝ) x •
AddHom.toFun
{ toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A),
map_add' :=
(_ :
∀ (t s : V →L[ℝ] ℝ),
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) =
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t +
(fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }
f) }.toAddHom
((fun t => ContinuousLinearMap.comp t ↑A) w) =
w) }
Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ :=
ContinuousLinearEquiv.mk
{ toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun,
left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun),
right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) }
this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ)
w : V →L[ℝ] ℝ
v : V
⊢ v = ↑(ContinuousLinearEquiv.symm A) (↑Aₘ v)
[PROOFSTEP]
exact (ContinuousLinearEquiv.symm_apply_apply A v).symm
| {"mathlib_filename": "Mathlib.Analysis.Fourier.RiemannLebesgueLemma", "llama_tokens": 87063} |
{"mathlib_filename": "Mathlib.Tactic.InferParam", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Substs", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Existsi", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.UnsetOption", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Observe", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Use", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.SolveByElim", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.GuardGoalNums", "llama_tokens": 0} |
|
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
f g : { x // x ∈ lp G 2 }
⊢ Summable fun i => inner (↑f i) (↑g i)
[PROOFSTEP]
refine' summable_of_norm_bounded (fun i => ‖f i‖ * ‖g i‖) (lp.summable_mul _ f g) _
[GOAL]
case refine'_1
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
f g : { x // x ∈ lp G 2 }
⊢ Real.IsConjugateExponent (ENNReal.toReal 2) (ENNReal.toReal 2)
[PROOFSTEP]
rw [Real.isConjugateExponent_iff]
[GOAL]
case refine'_1
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
f g : { x // x ∈ lp G 2 }
⊢ ENNReal.toReal 2 = ENNReal.toReal 2 / (ENNReal.toReal 2 - 1)
[PROOFSTEP]
norm_num
[GOAL]
case refine'_1
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
f g : { x // x ∈ lp G 2 }
⊢ 1 < ENNReal.toReal 2
[PROOFSTEP]
norm_num
[GOAL]
case refine'_2
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
f g : { x // x ∈ lp G 2 }
⊢ ∀ (i : ι), ‖inner (↑f i) (↑g i)‖ ≤ (fun i => ‖↑f i‖ * ‖↑g i‖) i
[PROOFSTEP]
intro i
[GOAL]
case refine'_2
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
f g : { x // x ∈ lp G 2 }
i : ι
⊢ ‖inner (↑f i) (↑g i)‖ ≤ (fun i => ‖↑f i‖ * ‖↑g i‖) i
[PROOFSTEP]
exact norm_inner_le_norm (𝕜 := 𝕜) _ _
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f : { x // x ∈ lp G 2 }
⊢ ‖f‖ ^ 2 = ↑re (inner f f)
[PROOFSTEP]
calc
‖f‖ ^ 2 = ‖f‖ ^ (2 : ℝ≥0∞).toReal := by norm_cast
_ = ∑' i, ‖f i‖ ^ (2 : ℝ≥0∞).toReal := (lp.norm_rpow_eq_tsum ?_ f)
_ = ∑' i, ‖f i‖ ^ (2 : ℕ) := by norm_cast
_ = ∑' i, re ⟪f i, f i⟫ := by
congr
funext i
rw [norm_sq_eq_inner (𝕜 := 𝕜)]
-- porting note: `simp` couldn't do this anymore
_ = re (∑' i, ⟪f i, f i⟫) := (IsROrC.reClm.map_tsum ?_).symm
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f : { x // x ∈ lp G 2 }
⊢ ‖f‖ ^ 2 = ‖f‖ ^ ENNReal.toReal 2
[PROOFSTEP]
norm_cast
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f : { x // x ∈ lp G 2 }
⊢ ∑' (i : ι), ‖↑f i‖ ^ ENNReal.toReal 2 = ∑' (i : ι), ‖↑f i‖ ^ 2
[PROOFSTEP]
norm_cast
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f : { x // x ∈ lp G 2 }
⊢ ∑' (i : ι), ‖↑f i‖ ^ 2 = ∑' (i : ι), ↑re (inner (↑f i) (↑f i))
[PROOFSTEP]
congr
[GOAL]
case e_f
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f : { x // x ∈ lp G 2 }
⊢ (fun i => ‖↑f i‖ ^ 2) = fun i => ↑re (inner (↑f i) (↑f i))
[PROOFSTEP]
funext i
[GOAL]
case e_f.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f : { x // x ∈ lp G 2 }
i : ι
⊢ ‖↑f i‖ ^ 2 = ↑re (inner (↑f i) (↑f i))
[PROOFSTEP]
rw [norm_sq_eq_inner (𝕜 := 𝕜)]
-- porting note: `simp` couldn't do this anymore
[GOAL]
case calc_1
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f : { x // x ∈ lp G 2 }
⊢ 0 < ENNReal.toReal 2
[PROOFSTEP]
norm_num
[GOAL]
case calc_2
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f : { x // x ∈ lp G 2 }
⊢ Summable fun i => inner (↑f i) (↑f i)
[PROOFSTEP]
exact summable_inner f f
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f g : { x // x ∈ lp G 2 }
⊢ ↑(starRingEnd 𝕜) (inner g f) = inner f g
[PROOFSTEP]
calc
conj _ = conj (∑' i, ⟪g i, f i⟫) := by congr
_ = ∑' i, conj ⟪g i, f i⟫ := IsROrC.conjCle.map_tsum
_ = ∑' i, ⟪f i, g i⟫ := by simp only [inner_conj_symm]
_ = _ := by congr
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f g : { x // x ∈ lp G 2 }
⊢ ↑(starRingEnd 𝕜) (inner g f) = ↑(starRingEnd 𝕜) (∑' (i : ι), inner (↑g i) (↑f i))
[PROOFSTEP]
congr
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f g : { x // x ∈ lp G 2 }
⊢ ∑' (i : ι), ↑(starRingEnd 𝕜) (inner (↑g i) (↑f i)) = ∑' (i : ι), inner (↑f i) (↑g i)
[PROOFSTEP]
simp only [inner_conj_symm]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f g : { x // x ∈ lp G 2 }
⊢ ∑' (i : ι), inner (↑f i) (↑g i) = inner f g
[PROOFSTEP]
congr
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f₁ f₂ g : { x // x ∈ lp G 2 }
⊢ inner (f₁ + f₂) g = inner f₁ g + inner f₂ g
[PROOFSTEP]
calc
_ = ∑' i, ⟪(f₁ + f₂) i, g i⟫ := ?_
_ = ∑' i, (⟪f₁ i, g i⟫ + ⟪f₂ i, g i⟫) := by simp only [inner_add_left, Pi.add_apply, coeFn_add]
_ = (∑' i, ⟪f₁ i, g i⟫) + ∑' i, ⟪f₂ i, g i⟫ := (tsum_add ?_ ?_)
_ = _ := by congr
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f₁ f₂ g : { x // x ∈ lp G 2 }
⊢ ∑' (i : ι), inner (↑(f₁ + f₂) i) (↑g i) = ∑' (i : ι), (inner (↑f₁ i) (↑g i) + inner (↑f₂ i) (↑g i))
[PROOFSTEP]
simp only [inner_add_left, Pi.add_apply, coeFn_add]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f₁ f₂ g : { x // x ∈ lp G 2 }
⊢ ∑' (i : ι), inner (↑f₁ i) (↑g i) + ∑' (i : ι), inner (↑f₂ i) (↑g i) = inner f₁ g + inner f₂ g
[PROOFSTEP]
congr
[GOAL]
case calc_1
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f₁ f₂ g : { x // x ∈ lp G 2 }
⊢ inner (f₁ + f₂) g = ∑' (i : ι), inner (↑(f₁ + f₂) i) (↑g i)
[PROOFSTEP]
congr
[GOAL]
case calc_2
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f₁ f₂ g : { x // x ∈ lp G 2 }
⊢ Summable fun i => inner (↑f₁ i) (↑g i)
[PROOFSTEP]
exact summable_inner f₁ g
[GOAL]
case calc_3
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f₁ f₂ g : { x // x ∈ lp G 2 }
⊢ Summable fun i => inner (↑f₂ i) (↑g i)
[PROOFSTEP]
exact summable_inner f₂ g
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f g : { x // x ∈ lp G 2 }
c : 𝕜
⊢ inner (c • f) g = ↑(starRingEnd 𝕜) c * inner f g
[PROOFSTEP]
calc
_ = ∑' i, ⟪c • f i, g i⟫ := ?_
_ = ∑' i, conj c * ⟪f i, g i⟫ := by simp only [inner_smul_left]
_ = conj c * ∑' i, ⟪f i, g i⟫ := tsum_mul_left
_ = _ := ?_
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f g : { x // x ∈ lp G 2 }
c : 𝕜
⊢ ∑' (i : ι), inner (c • ↑f i) (↑g i) = ∑' (i : ι), ↑(starRingEnd 𝕜) c * inner (↑f i) (↑g i)
[PROOFSTEP]
simp only [inner_smul_left]
[GOAL]
case calc_1
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f g : { x // x ∈ lp G 2 }
c : 𝕜
⊢ inner (c • f) g = ∑' (i : ι), inner (c • ↑f i) (↑g i)
[PROOFSTEP]
simp only [coeFn_smul, Pi.smul_apply]
[GOAL]
case calc_2
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup
f g : { x // x ∈ lp G 2 }
c : 𝕜
⊢ ↑(starRingEnd 𝕜) c * ∑' (i : ι), inner (↑f i) (↑g i) = ↑(starRingEnd 𝕜) c * inner f g
[PROOFSTEP]
congr
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
i : ι
a : G i
f : { x // x ∈ lp G 2 }
⊢ inner (lp.single 2 i a) f = inner a (↑f i)
[PROOFSTEP]
refine' (hasSum_inner (lp.single 2 i a) f).unique _
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
i : ι
a : G i
f : { x // x ∈ lp G 2 }
⊢ HasSum (fun i_1 => inner (↑(lp.single 2 i a) i_1) (↑f i_1)) (inner a (↑f i))
[PROOFSTEP]
convert hasSum_ite_eq i ⟪a, f i⟫ using 1
[GOAL]
case h.e'_5
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
i : ι
a : G i
f : { x // x ∈ lp G 2 }
⊢ (fun i_1 => inner (↑(lp.single 2 i a) i_1) (↑f i_1)) = fun b' => if b' = i then inner a (↑f i) else 0
[PROOFSTEP]
ext j
[GOAL]
case h.e'_5.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
i : ι
a : G i
f : { x // x ∈ lp G 2 }
j : ι
⊢ inner (↑(lp.single 2 i a) j) (↑f j) = if j = i then inner a (↑f i) else 0
[PROOFSTEP]
rw [lp.single_apply]
[GOAL]
case h.e'_5.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
i : ι
a : G i
f : { x // x ∈ lp G 2 }
j : ι
⊢ inner (if h : j = i then (_ : i = j) ▸ a else 0) (↑f j) = if j = i then inner a (↑f i) else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
i : ι
a : G i
f : { x // x ∈ lp G 2 }
j : ι
h : j = i
⊢ inner ((_ : i = j) ▸ a) (↑f j) = inner a (↑f i)
[PROOFSTEP]
subst h
[GOAL]
case pos
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
f : { x // x ∈ lp G 2 }
j : ι
a : G j
⊢ inner ((_ : j = j) ▸ a) (↑f j) = inner a (↑f j)
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
i : ι
a : G i
f : { x // x ∈ lp G 2 }
j : ι
h : ¬j = i
⊢ inner 0 (↑f j) = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
i : ι
a : G i
f : { x // x ∈ lp G 2 }
⊢ inner f (lp.single 2 i a) = inner (↑f i) a
[PROOFSTEP]
simpa [inner_conj_symm] using congr_arg conj (@inner_single_left _ 𝕜 _ _ _ _ i a f)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
⊢ Summable fun i => ↑(V i) (↑f i)
[PROOFSTEP]
rw [hV.summable_iff_norm_sq_summable]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
⊢ Summable fun i => ‖↑f i‖ ^ 2
[PROOFSTEP]
convert (lp.memℓp f).summable _
[GOAL]
case h.e'_5.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
x✝ : ι
⊢ ‖↑f x✝‖ ^ 2 = ‖↑f x✝‖ ^ ENNReal.toReal 2
[PROOFSTEP]
norm_cast
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
⊢ 0 < ENNReal.toReal 2
[PROOFSTEP]
norm_num
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f g : { x // x ∈ lp G 2 }
⊢ (fun f => ∑' (i : ι), ↑(V i) (↑f i)) (f + g) =
(fun f => ∑' (i : ι), ↑(V i) (↑f i)) f + (fun f => ∑' (i : ι), ↑(V i) (↑f i)) g
[PROOFSTEP]
simp only [tsum_add (hV.summable_of_lp f) (hV.summable_of_lp g), lp.coeFn_add, Pi.add_apply, LinearIsometry.map_add]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
c : 𝕜
f : { x // x ∈ lp G 2 }
⊢ AddHom.toFun
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }
(c • f) =
↑(RingHom.id 𝕜) c •
AddHom.toFun
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }
f
[PROOFSTEP]
simpa only [LinearIsometry.map_smul, Pi.smul_apply, lp.coeFn_smul] using tsum_const_smul c (hV.summable_of_lp f)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
⊢ ‖↑{
toAddHom :=
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) },
map_smul' :=
(_ :
∀ (c : 𝕜) (f : { x // x ∈ lp G 2 }),
AddHom.toFun
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) =
∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }
(c • f) =
↑(RingHom.id 𝕜) c •
AddHom.toFun
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) =
∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }
f) }
f‖ =
‖f‖
[PROOFSTEP]
classical
-- needed for lattice instance on `Finset ι`, for `Filter.atTop_neBot`
have H : 0 < (2 : ℝ≥0∞).toReal := by norm_num
suffices ‖∑' i : ι, V i (f i)‖ ^ (2 : ℝ≥0∞).toReal = ‖f‖ ^ (2 : ℝ≥0∞).toReal by
exact Real.rpow_left_injOn H.ne' (norm_nonneg _) (norm_nonneg _) this
refine' tendsto_nhds_unique _ (lp.hasSum_norm H f)
convert (hV.summable_of_lp f).hasSum.norm.rpow_const (Or.inr H.le) using 1
ext s
exact_mod_cast (hV.norm_sum f s).symm
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
⊢ ‖↑{
toAddHom :=
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) },
map_smul' :=
(_ :
∀ (c : 𝕜) (f : { x // x ∈ lp G 2 }),
AddHom.toFun
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) =
∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }
(c • f) =
↑(RingHom.id 𝕜) c •
AddHom.toFun
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) =
∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }
f) }
f‖ =
‖f‖
[PROOFSTEP]
have H : 0 < (2 : ℝ≥0∞).toReal := by norm_num
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
⊢ 0 < ENNReal.toReal 2
[PROOFSTEP]
norm_num
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
H : 0 < ENNReal.toReal 2
⊢ ‖↑{
toAddHom :=
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) },
map_smul' :=
(_ :
∀ (c : 𝕜) (f : { x // x ∈ lp G 2 }),
AddHom.toFun
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) =
∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }
(c • f) =
↑(RingHom.id 𝕜) c •
AddHom.toFun
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) =
∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }
f) }
f‖ =
‖f‖
[PROOFSTEP]
suffices ‖∑' i : ι, V i (f i)‖ ^ (2 : ℝ≥0∞).toReal = ‖f‖ ^ (2 : ℝ≥0∞).toReal by
exact Real.rpow_left_injOn H.ne' (norm_nonneg _) (norm_nonneg _) this
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
H : 0 < ENNReal.toReal 2
this : ‖∑' (i : ι), ↑(V i) (↑f i)‖ ^ ENNReal.toReal 2 = ‖f‖ ^ ENNReal.toReal 2
⊢ ‖↑{
toAddHom :=
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) },
map_smul' :=
(_ :
∀ (c : 𝕜) (f : { x // x ∈ lp G 2 }),
AddHom.toFun
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) =
∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }
(c • f) =
↑(RingHom.id 𝕜) c •
AddHom.toFun
{ toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i),
map_add' :=
(_ :
∀ (f g : { x // x ∈ lp G 2 }),
∑' (x : ι), ↑(V x) (↑f x + ↑g x) =
∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }
f) }
f‖ =
‖f‖
[PROOFSTEP]
exact Real.rpow_left_injOn H.ne' (norm_nonneg _) (norm_nonneg _) this
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
H : 0 < ENNReal.toReal 2
⊢ ‖∑' (i : ι), ↑(V i) (↑f i)‖ ^ ENNReal.toReal 2 = ‖f‖ ^ ENNReal.toReal 2
[PROOFSTEP]
refine' tendsto_nhds_unique _ (lp.hasSum_norm H f)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
H : 0 < ENNReal.toReal 2
⊢ Tendsto (fun s => ∑ b in s, (fun i => ‖↑f i‖ ^ ENNReal.toReal 2) b) atTop
(𝓝 (‖∑' (i : ι), ↑(V i) (↑f i)‖ ^ ENNReal.toReal 2))
[PROOFSTEP]
convert (hV.summable_of_lp f).hasSum.norm.rpow_const (Or.inr H.le) using 1
[GOAL]
case h.e'_3
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
H : 0 < ENNReal.toReal 2
⊢ (fun s => ∑ b in s, (fun i => ‖↑f i‖ ^ ENNReal.toReal 2) b) = fun a =>
‖∑ b in a, (fun i => ↑(V i) (↑f i)) b‖ ^ ENNReal.toReal 2
[PROOFSTEP]
ext s
[GOAL]
case h.e'_3.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
f : { x // x ∈ lp G 2 }
H : 0 < ENNReal.toReal 2
s : Finset ι
⊢ ∑ b in s, (fun i => ‖↑f i‖ ^ ENNReal.toReal 2) b = ‖∑ b in s, (fun i => ↑(V i) (↑f i)) b‖ ^ ENNReal.toReal 2
[PROOFSTEP]
exact_mod_cast (hV.norm_sum f s).symm
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
i : ι
x : G i
⊢ ↑(OrthogonalFamily.linearIsometry hV) (lp.single 2 i x) = ↑(V i) x
[PROOFSTEP]
rw [hV.linearIsometry_apply, ← tsum_ite_eq i (V i x)]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
i : ι
x : G i
⊢ ∑' (i_1 : ι), ↑(V i_1) (↑(lp.single 2 i x) i_1) = ∑' (b' : ι), if b' = i then ↑(V i) x else 0
[PROOFSTEP]
congr
[GOAL]
case e_f
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
i : ι
x : G i
⊢ (fun i_1 => ↑(V i_1) (↑(lp.single 2 i x) i_1)) = fun b' => if b' = i then ↑(V i) x else 0
[PROOFSTEP]
ext j
[GOAL]
case e_f.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
i : ι
x : G i
j : ι
⊢ ↑(V j) (↑(lp.single 2 i x) j) = if j = i then ↑(V i) x else 0
[PROOFSTEP]
rw [lp.single_apply]
[GOAL]
case e_f.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
i : ι
x : G i
j : ι
⊢ ↑(V j) (if h : j = i then (_ : i = j) ▸ x else 0) = if j = i then ↑(V i) x else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
i : ι
x : G i
j : ι
h : j = i
⊢ ↑(V j) (if h : j = i then (_ : i = j) ▸ x else 0) = ↑(V i) x
[PROOFSTEP]
subst h
[GOAL]
case pos
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
j : ι
x : G j
⊢ ↑(V j) (if h : j = j then (_ : j = j) ▸ x else 0) = ↑(V j) x
[PROOFSTEP]
simp
[GOAL]
case neg
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
i : ι
x : G i
j : ι
h : ¬j = i
⊢ ↑(V j) (if h : j = i then (_ : i = j) ▸ x else 0) = 0
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
W₀ : Π₀ (i : ι), G i
⊢ ↑(OrthogonalFamily.linearIsometry hV) (DFinsupp.sum W₀ (lp.single 2)) = DFinsupp.sum W₀ fun i => ↑(V i)
[PROOFSTEP]
have :
hV.linearIsometry (∑ i in W₀.support, lp.single 2 i (W₀ i)) =
∑ i in W₀.support, hV.linearIsometry (lp.single 2 i (W₀ i)) :=
hV.linearIsometry.toLinearMap.map_sum
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
W₀ : Π₀ (i : ι), G i
this :
↑(OrthogonalFamily.linearIsometry hV) (∑ i in DFinsupp.support W₀, lp.single 2 i (↑W₀ i)) =
∑ i in DFinsupp.support W₀, ↑(OrthogonalFamily.linearIsometry hV) (lp.single 2 i (↑W₀ i))
⊢ ↑(OrthogonalFamily.linearIsometry hV) (DFinsupp.sum W₀ (lp.single 2)) = DFinsupp.sum W₀ fun i => ↑(V i)
[PROOFSTEP]
simp (config := { contextual := true }) [DFinsupp.sum, this]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
⊢ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap =
topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap)
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
⊢ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap ≤
topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap)
[PROOFSTEP]
rintro x ⟨f, rfl⟩
[GOAL]
case refine'_1.intro
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
f : { x // x ∈ lp G 2 }
⊢ ↑(OrthogonalFamily.linearIsometry hV).toLinearMap f ∈
topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap)
[PROOFSTEP]
refine' mem_closure_of_tendsto (hV.hasSum_linearIsometry f) (eventually_of_forall _)
[GOAL]
case refine'_1.intro
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
f : { x // x ∈ lp G 2 }
⊢ ∀ (x : Finset ι), ∑ b in x, (fun i => ↑(V i) (↑f i)) b ∈ ↑(⨆ (i : ι), LinearMap.range (V i).toLinearMap)
[PROOFSTEP]
intro s
[GOAL]
case refine'_1.intro
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
f : { x // x ∈ lp G 2 }
s : Finset ι
⊢ ∑ b in s, (fun i => ↑(V i) (↑f i)) b ∈ ↑(⨆ (i : ι), LinearMap.range (V i).toLinearMap)
[PROOFSTEP]
rw [SetLike.mem_coe]
[GOAL]
case refine'_1.intro
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
f : { x // x ∈ lp G 2 }
s : Finset ι
⊢ ∑ b in s, (fun i => ↑(V i) (↑f i)) b ∈ ⨆ (i : ι), LinearMap.range (V i).toLinearMap
[PROOFSTEP]
refine' sum_mem _
[GOAL]
case refine'_1.intro
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
f : { x // x ∈ lp G 2 }
s : Finset ι
⊢ ∀ (c : ι), c ∈ s → (fun i => ↑(V i) (↑f i)) c ∈ ⨆ (i : ι), LinearMap.range (V i).toLinearMap
[PROOFSTEP]
intro i _
[GOAL]
case refine'_1.intro
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
f : { x // x ∈ lp G 2 }
s : Finset ι
i : ι
a✝ : i ∈ s
⊢ (fun i => ↑(V i) (↑f i)) i ∈ ⨆ (i : ι), LinearMap.range (V i).toLinearMap
[PROOFSTEP]
refine' mem_iSup_of_mem i _
[GOAL]
case refine'_1.intro
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
f : { x // x ∈ lp G 2 }
s : Finset ι
i : ι
a✝ : i ∈ s
⊢ (fun i => ↑(V i) (↑f i)) i ∈ LinearMap.range (V i).toLinearMap
[PROOFSTEP]
exact LinearMap.mem_range_self _ (f i)
[GOAL]
case refine'_2
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
⊢ topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap) ≤
LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap
[PROOFSTEP]
apply topologicalClosure_minimal
[GOAL]
case refine'_2.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
⊢ ⨆ (i : ι), LinearMap.range (V i).toLinearMap ≤ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap
[PROOFSTEP]
refine' iSup_le _
[GOAL]
case refine'_2.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
⊢ ∀ (i : ι), LinearMap.range (V i).toLinearMap ≤ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap
[PROOFSTEP]
rintro i x ⟨x, rfl⟩
[GOAL]
case refine'_2.h.intro
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
i : ι
x : G i
⊢ ↑(V i).toLinearMap x ∈ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap
[PROOFSTEP]
use lp.single 2 i x
[GOAL]
case h
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
i : ι
x : G i
⊢ ↑(OrthogonalFamily.linearIsometry hV).toLinearMap (lp.single 2 i x) = ↑(V i).toLinearMap x
[PROOFSTEP]
exact hV.linearIsometry_apply_single x
[GOAL]
case refine'_2.ht
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
hV : OrthogonalFamily 𝕜 G V
inst✝ : ∀ (i : ι), CompleteSpace (G i)
⊢ IsClosed ↑(LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap)
[PROOFSTEP]
exact hV.linearIsometry.isometry.uniformInducing.isComplete_range.isClosed
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
inst✝ : ∀ (i : ι), CompleteSpace (G i)
hVortho : OrthogonalFamily 𝕜 G V
hVtotal : ⊤ ≤ topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap)
⊢ Function.Surjective ↑(OrthogonalFamily.linearIsometry hVortho)
[PROOFSTEP]
rw [← LinearIsometry.coe_toLinearMap]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
inst✝ : ∀ (i : ι), CompleteSpace (G i)
hVortho : OrthogonalFamily 𝕜 G V
hVtotal : ⊤ ≤ topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap)
⊢ Function.Surjective ↑(OrthogonalFamily.linearIsometry hVortho).toLinearMap
[PROOFSTEP]
exact LinearMap.range_eq_top.mp (eq_top_iff.mpr <| hVtotal.trans_eq hVortho.range_linearIsometry.symm)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
inst✝ : ∀ (i : ι), CompleteSpace { x // x ∈ F i }
hFortho : OrthogonalFamily 𝕜 (fun i => { x // x ∈ F i }) fun i => subtypeₗᵢ (F i)
hFtotal : ⊤ ≤ topologicalClosure (⨆ (i : ι), F i)
⊢ ⊤ ≤ topologicalClosure (⨆ (i : ι), LinearMap.range (subtypeₗᵢ (F i)).toLinearMap)
[PROOFSTEP]
simpa [subtypeₗᵢ_toLinearMap, range_subtype] using hFtotal
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
hV : IsHilbertSum 𝕜 G V
w : { x // x ∈ lp G 2 }
⊢ ↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) w = ∑' (i : ι), ↑(V i) (↑w i)
[PROOFSTEP]
simp [IsHilbertSum.linearIsometryEquiv, OrthogonalFamily.linearIsometry_apply]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
hV : IsHilbertSum 𝕜 G V
w : { x // x ∈ lp G 2 }
⊢ HasSum (fun i => ↑(V i) (↑w i)) (↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) w)
[PROOFSTEP]
simp [IsHilbertSum.linearIsometryEquiv, OrthogonalFamily.hasSum_linearIsometry]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
hV : IsHilbertSum 𝕜 G V
i : ι
x : G i
⊢ ↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) (lp.single 2 i x) = ↑(V i) x
[PROOFSTEP]
simp [IsHilbertSum.linearIsometryEquiv, OrthogonalFamily.linearIsometry_apply_single]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
hV : IsHilbertSum 𝕜 G V
W₀ : Π₀ (i : ι), G i
⊢ ↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) (DFinsupp.sum W₀ (lp.single 2)) = DFinsupp.sum W₀ fun i => ↑(V i)
[PROOFSTEP]
simp [IsHilbertSum.linearIsometryEquiv, OrthogonalFamily.linearIsometry_apply_dfinsupp_sum_single]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
hV : IsHilbertSum 𝕜 G V
W₀ : Π₀ (i : ι), G i
⊢ ↑(↑(linearIsometryEquiv hV) (DFinsupp.sum W₀ fun i => ↑(V i))) = ↑W₀
[PROOFSTEP]
rw [← hV.linearIsometryEquiv_symm_apply_dfinsupp_sum_single]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
hV : IsHilbertSum 𝕜 G V
W₀ : Π₀ (i : ι), G i
⊢ ↑(↑(linearIsometryEquiv hV) (↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) (DFinsupp.sum W₀ (lp.single 2)))) =
↑W₀
[PROOFSTEP]
rw [LinearIsometryEquiv.apply_symm_apply]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
hV : IsHilbertSum 𝕜 G V
W₀ : Π₀ (i : ι), G i
⊢ ↑(DFinsupp.sum W₀ (lp.single 2)) = ↑W₀
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
hV : IsHilbertSum 𝕜 G V
W₀ : Π₀ (i : ι), G i
i : ι
⊢ ↑(DFinsupp.sum W₀ (lp.single 2)) i = ↑W₀ i
[PROOFSTEP]
simp (config := { contextual := true }) [DFinsupp.sum, lp.single_apply]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
v : ι → E
hv : Orthonormal 𝕜 v
hsp : ⊤ ≤ topologicalClosure (span 𝕜 (Set.range v))
⊢ ⊤ ≤ topologicalClosure (⨆ (i : ι), LinearMap.range (LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)).toLinearMap)
[PROOFSTEP]
convert hsp
[GOAL]
case h.e'_4.h.e'_9
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
v : ι → E
hv : Orthonormal 𝕜 v
hsp : ⊤ ≤ topologicalClosure (span 𝕜 (Set.range v))
⊢ ⨆ (i : ι), LinearMap.range (LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)).toLinearMap = span 𝕜 (Set.range v)
[PROOFSTEP]
simp [← LinearMap.span_singleton_eq_range, ← Submodule.span_iUnion]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
⊢ IsHilbertSum 𝕜 (fun b => { x // x ∈ bif b then K else Kᗮ }) fun b => subtypeₗᵢ (bif b then K else Kᗮ)
[PROOFSTEP]
have : ∀ b, CompleteSpace (↥(cond b K Kᗮ)) := by
intro b
cases b <;>
first
| exact instOrthogonalCompleteSpace K
| assumption
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
⊢ ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ }
[PROOFSTEP]
intro b
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
b : Bool
⊢ CompleteSpace { x // x ∈ bif b then K else Kᗮ }
[PROOFSTEP]
cases b
[GOAL]
case false
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
⊢ CompleteSpace { x // x ∈ bif false then K else Kᗮ }
[PROOFSTEP]
first
| exact instOrthogonalCompleteSpace K
| assumption
[GOAL]
case false
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
⊢ CompleteSpace { x // x ∈ bif false then K else Kᗮ }
[PROOFSTEP]
exact instOrthogonalCompleteSpace K
[GOAL]
case true
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
⊢ CompleteSpace { x // x ∈ bif true then K else Kᗮ }
[PROOFSTEP]
first
| exact instOrthogonalCompleteSpace K
| assumption
[GOAL]
case true
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
⊢ CompleteSpace { x // x ∈ bif true then K else Kᗮ }
[PROOFSTEP]
exact instOrthogonalCompleteSpace K
[GOAL]
case true
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
⊢ CompleteSpace { x // x ∈ bif true then K else Kᗮ }
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
this : ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ }
⊢ IsHilbertSum 𝕜 (fun b => { x // x ∈ bif b then K else Kᗮ }) fun b => subtypeₗᵢ (bif b then K else Kᗮ)
[PROOFSTEP]
refine' IsHilbertSum.mkInternal _ K.orthogonalFamily_self _
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
this : ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ }
⊢ ⊤ ≤ topologicalClosure (⨆ (i : Bool), bif i then K else Kᗮ)
[PROOFSTEP]
refine' le_trans _ (Submodule.le_topologicalClosure _)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
this : ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ }
⊢ ⊤ ≤ ⨆ (i : Bool), bif i then K else Kᗮ
[PROOFSTEP]
rw [iSup_bool_eq, cond, cond]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
this : ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ }
⊢ ⊤ ≤
(match true with
| true => K
| false => Kᗮ) ⊔
match false with
| true => K
| false => Kᗮ
[PROOFSTEP]
refine' Codisjoint.top_le _
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
V : (i : ι) → G i →ₗᵢ[𝕜] E
F : ι → Submodule 𝕜 E
K : Submodule 𝕜 E
hK : CompleteSpace { x // x ∈ K }
this : ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ }
⊢ Codisjoint
(match true with
| true => K
| false => Kᗮ)
(match false with
| true => K
| false => Kᗮ)
[PROOFSTEP]
exact Submodule.isCompl_orthogonal_of_completeSpace.codisjoint
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
i : ι
⊢ ↑b.repr ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = lp.single 2 i 1
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
v : E
i : ι
⊢ ↑(↑b.repr v) i = inner ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) v
[PROOFSTEP]
rw [← b.repr.inner_map_map (b i) v, b.repr_self, lp.inner_single_left]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
v : E
i : ι
⊢ ↑(↑b.repr v) i = inner 1 (↑(↑b.repr v) i)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
⊢ Orthonormal 𝕜 fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)
[PROOFSTEP]
rw [orthonormal_iff_ite]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
⊢ ∀ (i j : ι),
inner (↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))
(↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 j 1)) =
if i = j then 1 else 0
[PROOFSTEP]
intro i j
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
i j : ι
⊢ inner (↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) (↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 j 1)) =
if i = j then 1 else 0
[PROOFSTEP]
rw [← b.repr.inner_map_map (b i) (b j), b.repr_self, b.repr_self, lp.inner_single_left, lp.single_apply]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
i j : ι
⊢ inner 1 (if h : i = j then (_ : j = i) ▸ 1 else 0) = if i = j then 1 else 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
⊢ HasSum (fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i)
(↑(LinearIsometryEquiv.symm b.repr) f)
[PROOFSTEP]
suffices H :
(fun i : ι => f i • b i) = fun b_1 : ι =>
b.repr.symm.toContinuousLinearEquiv <| (fun i : ι => lp.single 2 i (f i) (E := (fun _ : ι => 𝕜))) b_1
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
H :
(fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = fun b_1 =>
↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr))
((fun i => lp.single 2 i (↑f i)) b_1)
⊢ HasSum (fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i)
(↑(LinearIsometryEquiv.symm b.repr) f)
[PROOFSTEP]
rw [H]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
H :
(fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = fun b_1 =>
↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr))
((fun i => lp.single 2 i (↑f i)) b_1)
⊢ HasSum
(fun b_1 =>
↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr))
((fun i => lp.single 2 i (↑f i)) b_1))
(↑(LinearIsometryEquiv.symm b.repr) f)
[PROOFSTEP]
have : HasSum (fun i : ι => lp.single 2 i (f i)) f := lp.hasSum_single ENNReal.two_ne_top f
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
H :
(fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = fun b_1 =>
↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr))
((fun i => lp.single 2 i (↑f i)) b_1)
this : HasSum (fun i => lp.single 2 i (↑f i)) f
⊢ HasSum
(fun b_1 =>
↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr))
((fun i => lp.single 2 i (↑f i)) b_1))
(↑(LinearIsometryEquiv.symm b.repr) f)
[PROOFSTEP]
exact (↑b.repr.symm.toContinuousLinearEquiv : ℓ²(ι, 𝕜) →L[𝕜] E).hasSum this
[GOAL]
case H
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
⊢ (fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = fun b_1 =>
↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr))
((fun i => lp.single 2 i (↑f i)) b_1)
[PROOFSTEP]
ext i
[GOAL]
case H.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
i : ι
⊢ ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i =
↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) i)
[PROOFSTEP]
apply b.repr.injective
[GOAL]
case H.h.a
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
i : ι
⊢ ↑b.repr (↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) =
↑b.repr
(↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr))
((fun i => lp.single 2 i (↑f i)) i))
[PROOFSTEP]
letI : NormedSpace 𝕜 (lp (fun _i : ι => 𝕜) 2) := by infer_instance
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
i : ι
⊢ NormedSpace 𝕜 { x // x ∈ lp (fun _i => 𝕜) 2 }
[PROOFSTEP]
infer_instance
[GOAL]
case H.h.a
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
i : ι
this : NormedSpace 𝕜 { x // x ∈ lp (fun _i => 𝕜) 2 } := inferInstance
⊢ ↑b.repr (↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) =
↑b.repr
(↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr))
((fun i => lp.single 2 i (↑f i)) i))
[PROOFSTEP]
have : lp.single (E := (fun _ : ι => 𝕜)) 2 i (f i * 1) = f i • lp.single 2 i 1 :=
lp.single_smul (E := (fun _ : ι => 𝕜)) 2 i (1 : 𝕜) (f i)
[GOAL]
case H.h.a
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
i : ι
this✝ : NormedSpace 𝕜 { x // x ∈ lp (fun _i => 𝕜) 2 } := inferInstance
this : lp.single 2 i (↑f i * 1) = ↑f i • lp.single 2 i 1
⊢ ↑b.repr (↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) =
↑b.repr
(↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr))
((fun i => lp.single 2 i (↑f i)) i))
[PROOFSTEP]
rw [mul_one] at this
[GOAL]
case H.h.a
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
i : ι
this✝ : NormedSpace 𝕜 { x // x ∈ lp (fun _i => 𝕜) 2 } := inferInstance
this : lp.single 2 i (↑f i) = ↑f i • lp.single 2 i 1
⊢ ↑b.repr (↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) =
↑b.repr
(↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr))
((fun i => lp.single 2 i (↑f i)) i))
[PROOFSTEP]
rw [LinearIsometryEquiv.map_smul, b.repr_self, ← this, LinearIsometryEquiv.coe_toContinuousLinearEquiv]
[GOAL]
case H.h.a
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
f : { x // x ∈ lp (fun i => 𝕜) 2 }
i : ι
this✝ : NormedSpace 𝕜 { x // x ∈ lp (fun _i => 𝕜) 2 } := inferInstance
this : lp.single 2 i (↑f i) = ↑f i • lp.single 2 i 1
⊢ lp.single 2 i (↑f i) = ↑b.repr (↑(LinearIsometryEquiv.symm b.repr) ((fun i => lp.single 2 i (↑f i)) i))
[PROOFSTEP]
exact (b.repr.apply_symm_apply (lp.single 2 i (f i))).symm
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x : E
⊢ HasSum (fun i => ↑(↑b.repr x) i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) x
[PROOFSTEP]
simpa using b.hasSum_repr_symm (b.repr x)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
⊢ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) = ⊤
[PROOFSTEP]
classical
rw [eq_top_iff]
rintro x -
refine' mem_closure_of_tendsto (b.hasSum_repr x) (eventually_of_forall _)
intro s
simp only [SetLike.mem_coe]
refine' sum_mem _
rintro i -
refine' smul_mem _ _ _
exact subset_span ⟨i, rfl⟩
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
⊢ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) = ⊤
[PROOFSTEP]
rw [eq_top_iff]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
⊢ ⊤ ≤ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)))
[PROOFSTEP]
rintro x -
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x : E
⊢ x ∈ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)))
[PROOFSTEP]
refine' mem_closure_of_tendsto (b.hasSum_repr x) (eventually_of_forall _)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x : E
⊢ ∀ (x_1 : Finset ι),
∑ b_1 in x_1, (fun i => ↑(↑b.repr x) i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) b_1 ∈
↑(span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)))
[PROOFSTEP]
intro s
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x : E
s : Finset ι
⊢ ∑ b_1 in s, (fun i => ↑(↑b.repr x) i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) b_1 ∈
↑(span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)))
[PROOFSTEP]
simp only [SetLike.mem_coe]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x : E
s : Finset ι
⊢ ∑ x_1 in s, ↑(↑b.repr x) x_1 • ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 x_1 1) ∈
span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))
[PROOFSTEP]
refine' sum_mem _
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x : E
s : Finset ι
⊢ ∀ (c : ι),
c ∈ s →
↑(↑b.repr x) c • ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 c 1) ∈
span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))
[PROOFSTEP]
rintro i -
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x : E
s : Finset ι
i : ι
⊢ ↑(↑b.repr x) i • ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1) ∈
span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))
[PROOFSTEP]
refine' smul_mem _ _ _
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x : E
s : Finset ι
i : ι
⊢ ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1) ∈
span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))
[PROOFSTEP]
exact subset_span ⟨i, rfl⟩
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x y : E
⊢ HasSum
(fun i =>
inner x ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) *
inner ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) y)
(inner x y)
[PROOFSTEP]
convert (b.hasSum_repr y).mapL (innerSL _ x) using 1
[GOAL]
case h.e'_5
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x y : E
⊢ (fun i =>
inner x ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) *
inner ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) y) =
fun b_1 =>
↑(↑(innerSL 𝕜) x) (↑(↑b.repr y) b_1 • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) b_1)
[PROOFSTEP]
ext i
[GOAL]
case h.e'_5.h
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
x y : E
i : ι
⊢ inner x ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) *
inner ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) y =
↑(↑(innerSL 𝕜) x) (↑(↑b.repr y) i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i)
[PROOFSTEP]
rw [innerSL_apply, b.repr_apply_apply, inner_smul_right, mul_comm]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
inst✝ : Fintype ι
b : HilbertBasis ι 𝕜 E
⊢ ⊤ ≤ span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))
[PROOFSTEP]
refine' Eq.ge _
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
inst✝ : Fintype ι
b : HilbertBasis ι 𝕜 E
⊢ span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) = ⊤
[PROOFSTEP]
have := (span 𝕜 (Finset.univ.image b : Set E)).closed_of_finiteDimensional
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
inst✝ : Fintype ι
b : HilbertBasis ι 𝕜 E
this : IsClosed ↑(span 𝕜 ↑(Finset.image (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) Finset.univ))
⊢ span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) = ⊤
[PROOFSTEP]
simpa only [Finset.coe_image, Finset.coe_univ, Set.image_univ, HilbertBasis.dense_span] using
this.submodule_topologicalClosure_eq.symm
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
U : Submodule 𝕜 E
inst✝ : CompleteSpace { x // x ∈ U }
b : HilbertBasis ι 𝕜 { x // x ∈ U }
x : E
⊢ HasSum
(fun i =>
inner (↑((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i)) x •
(fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i)
(↑(orthogonalProjection U) x)
[PROOFSTEP]
simpa only [b.repr_apply_apply, inner_orthogonalProjection_eq_of_mem_left] using
b.hasSum_repr (orthogonalProjection U x)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
⊢ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) ≤
topologicalClosure
(⨆ (J : Finset ι), span 𝕜 ↑(Finset.image (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) J))
[PROOFSTEP]
simp_rw [← Submodule.span_iUnion]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
b : HilbertBasis ι 𝕜 E
⊢ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) ≤
topologicalClosure
(span 𝕜 (⋃ (i : Finset ι), ↑(Finset.image (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i)))
[PROOFSTEP]
exact
topologicalClosure_mono
(span_mono <|
Set.range_subset_iff.mpr fun i =>
Set.mem_iUnion_of_mem { i } <| Finset.mem_coe.mpr <| Finset.mem_image_of_mem _ <| Finset.mem_singleton_self i)
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
v : ι → E
hv : Orthonormal 𝕜 v
h : ⊤ ≤ topologicalClosure (span 𝕜 (Set.range v))
i : ι
⊢ ↑(LinearIsometryEquiv.symm
(IsHilbertSum.linearIsometryEquiv
(_ : IsHilbertSum 𝕜 (fun x => 𝕜) fun i => LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1))))
(lp.single 2 i 1) =
v i
[PROOFSTEP]
rw [IsHilbertSum.linearIsometryEquiv_symm_apply_single, LinearIsometry.toSpanSingleton_apply, one_smul]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
v : ι → E
hv : Orthonormal 𝕜 v
hsp : ⊤ ≤ topologicalClosure (span 𝕜 (Set.range v))
⊢ (fun i => ↑(LinearIsometryEquiv.symm (HilbertBasis.mk hv hsp).repr) (lp.single 2 i 1)) = v
[PROOFSTEP]
apply funext <| Orthonormal.linearIsometryEquiv_symm_apply_single_one hv hsp
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
v : ι → E
hv : Orthonormal 𝕜 v
hsp : (span 𝕜 (Set.range v))ᗮ = ⊥
⊢ ⊤ ≤ topologicalClosure (span 𝕜 (Set.range v))
[PROOFSTEP]
rw [← orthogonal_orthogonal_eq_closure, ← eq_top_iff, orthogonal_eq_top_iff, hsp]
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁵ : IsROrC 𝕜
E : Type u_3
inst✝⁴ : NormedAddCommGroup E
inst✝³ : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝² : (i : ι) → NormedAddCommGroup (G i)
inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i)
v : ι → E
hv : Orthonormal 𝕜 v
inst✝ : Fintype ι
b : OrthonormalBasis ι 𝕜 E
⊢ ⊤ ≤ topologicalClosure (span 𝕜 (Set.range ↑b))
[PROOFSTEP]
simpa only [← OrthonormalBasis.coe_toBasis, b.toBasis.span_eq, eq_top_iff] using @subset_closure E _ _
[GOAL]
ι : Type u_1
𝕜 : Type u_2
inst✝⁴ : IsROrC 𝕜
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : InnerProductSpace 𝕜 E
cplt : CompleteSpace E
G : ι → Type u_4
inst✝¹ : (i : ι) → NormedAddCommGroup (G i)
inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)
v : ι → E
hv : Orthonormal 𝕜 v
s : Set E
hs : Orthonormal 𝕜 Subtype.val
w : Set E
hws : w ⊇ s
hw_ortho : Orthonormal 𝕜 Subtype.val
hw_max : ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w
⊢ (span 𝕜 (Set.range Subtype.val))ᗮ = ⊥
[PROOFSTEP]
simpa [maximal_orthonormal_iff_orthogonalComplement_eq_bot hw_ortho] using hw_max
| {"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.l2Space", "llama_tokens": 40302} |
{"mathlib_filename": "Mathlib.Tactic.Core", "llama_tokens": 0} |
|
[GOAL]
a b : ℤ
⊢ a = b ↔ ↑a = ↑b
[PROOFSTEP]
simp only [Int.cast_inj]
[GOAL]
a b : ℤ
⊢ a ≠ b ↔ ↑a ≠ ↑b
[PROOFSTEP]
simp only [ne_eq, Int.cast_inj]
| {"mathlib_filename": "Mathlib.Tactic.Qify", "llama_tokens": 92} |
[GOAL]
α α' : Sort u
β β' : Sort v
h : α = α'
h' : α' → β = β'
⊢ (α → β) = (α' → β')
[PROOFSTEP]
cases h
[GOAL]
case refl
α : Sort u
β β' : Sort v
h' : α → β = β'
⊢ (α → β) = (α → β')
[PROOFSTEP]
show (∀ (x : α), (fun _ => β) x) = _
[GOAL]
case refl
α : Sort u
β β' : Sort v
h' : α → β = β'
⊢ ((x : α) → (fun x => β) x) = (α → β')
[PROOFSTEP]
rw [funext h']
[GOAL]
α✝ : Sort u_1
x y : α✝
p : HEq x y → Prop
h : ∀ (he : x = y), p (_ : HEq x y)
he : HEq x y
⊢ p he
[PROOFSTEP]
cases he
[GOAL]
case refl
α✝ : Sort u_1
x : α✝
p : HEq x x → Prop
h : ∀ (he : x = x), p (_ : HEq x x)
⊢ p (_ : HEq x x)
[PROOFSTEP]
exact h rfl
[GOAL]
x y : Prop
p : x = y → Prop
h : ∀ (he : x ↔ y), p (_ : x = y)
he : x = y
⊢ p he
[PROOFSTEP]
cases he
[GOAL]
case refl
x : Prop
p : x = x → Prop
h : ∀ (he : x ↔ x), p (_ : x = x)
⊢ p (_ : x = x)
[PROOFSTEP]
exact h Iff.rfl
| {"mathlib_filename": "Mathlib.Tactic.Congr!", "llama_tokens": 489} |
{"mathlib_filename": "Mathlib.Tactic.Alias", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.ToAdditive", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Tactic.Contrapose", "llama_tokens": 0} |
Subsets and Splits