text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] f : Type u₀ → Type u₁ inst✝ : EquivFunctor f α β : Type u₀ e : α ≃ β x : f α ⊢ map e.symm (map e x) = x [PROOFSTEP] convert (congr_fun (EquivFunctor.map_trans' e e.symm) x).symm [GOAL] case h.e'_3 f : Type u₀ → Type u₁ inst✝ : EquivFunctor f α β : Type u₀ e : α ≃ β x : f α ⊢ x = map (e.trans e.symm) x [PROOFSTEP] simp [GOAL] f : Type u₀ → Type u₁ inst✝ : EquivFunctor f α β : Type u₀ e : α ≃ β y : f β ⊢ map e (map e.symm y) = y [PROOFSTEP] convert (congr_fun (EquivFunctor.map_trans' e.symm e) y).symm [GOAL] case h.e'_3 f : Type u₀ → Type u₁ inst✝ : EquivFunctor f α β : Type u₀ e : α ≃ β y : f β ⊢ y = map (e.symm.trans e) y [PROOFSTEP] simp [GOAL] f : Type u₀ → Type u₁ inst✝ : EquivFunctor f α✝ β : Type u₀ e : α✝ ≃ β α : Type u₀ ⊢ mapEquiv f (Equiv.refl α) = Equiv.refl (f α) [PROOFSTEP] simp [EquivFunctor.mapEquiv] [GOAL] f : Type u₀ → Type u₁ inst✝ : EquivFunctor f α✝ β : Type u₀ e : α✝ ≃ β α : Type u₀ ⊢ { toFun := id, invFun := id, left_inv := (_ : LeftInverse id id), right_inv := (_ : Function.RightInverse id id) } = Equiv.refl (f α) [PROOFSTEP] rfl [GOAL] f : Type u₀ → Type u₁ inst✝ : EquivFunctor f α β : Type u₀ e : α ≃ β γ : Type u₀ ab : α ≃ β bc : β ≃ γ x : f α ⊢ ↑((mapEquiv f ab).trans (mapEquiv f bc)) x = ↑(mapEquiv f (ab.trans bc)) x [PROOFSTEP] simp [mapEquiv, map_trans'] [GOAL] f : Type u₀ → Type u₁ inst✝¹ : Functor f inst✝ : LawfulFunctor f α : Type u₀ ⊢ (fun {α β} e => Functor.map ↑e) (Equiv.refl α) = id [PROOFSTEP] ext [GOAL] case h f : Type u₀ → Type u₁ inst✝¹ : Functor f inst✝ : LawfulFunctor f α : Type u₀ x✝ : f α ⊢ (fun {α β} e => Functor.map ↑e) (Equiv.refl α) x✝ = id x✝ [PROOFSTEP] apply LawfulFunctor.id_map [GOAL] f : Type u₀ → Type u₁ inst✝¹ : Functor f inst✝ : LawfulFunctor f α β γ : Type u₀ k : α ≃ β h : β ≃ γ ⊢ (fun {α β} e => Functor.map ↑e) (k.trans h) = (fun {α β} e => Functor.map ↑e) h ∘ (fun {α β} e => Functor.map ↑e) k [PROOFSTEP] ext x [GOAL] case h f : Type u₀ → Type u₁ inst✝¹ : Functor f inst✝ : LawfulFunctor f α β γ : Type u₀ k : α ≃ β h : β ≃ γ x : f α ⊢ (fun {α β} e => Functor.map ↑e) (k.trans h) x = ((fun {α β} e => Functor.map ↑e) h ∘ (fun {α β} e => Functor.map ↑e) k) x [PROOFSTEP] apply LawfulFunctor.comp_map k h x [GOAL] f : Type u₀ → Type u₁ inst✝¹ : Applicative f inst✝ : LawfulApplicative f α β : Type u₀ h : ∀ (γ : Type u₀), Injective pure e₁ e₂ : α ≃ β H : mapEquiv f e₁ = mapEquiv f e₂ x : α ⊢ pure (↑e₁ x) = pure (↑e₂ x) [PROOFSTEP] simpa [EquivFunctor.map] using Equiv.congr_fun H (pure x)
{"mathlib_filename": "Mathlib.Control.EquivFunctor", "llama_tokens": 1311}
[GOAL] ι : Type u_1 I J : Box ι x y : ι → ℝ ⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper] [PROOFSTEP] tfae_have 1 ↔ 2 [GOAL] case tfae_1_iff_2 ι : Type u_1 I J : Box ι x y : ι → ℝ ⊢ I ≤ J ↔ ↑I ⊆ ↑J ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J ⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper] [PROOFSTEP] exact Iff.rfl [GOAL] ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J ⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper] [PROOFSTEP] tfae_have 2 → 3 [GOAL] case tfae_2_to_3 ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J ⊢ ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper [PROOFSTEP] intro h [GOAL] case tfae_2_to_3 ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J h : ↑I ⊆ ↑J ⊢ Icc I.lower I.upper ⊆ Icc J.lower J.upper [PROOFSTEP] simpa [coe_eq_pi, closure_pi_set, lower_ne_upper] using closure_mono h [GOAL] ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper ⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper] [PROOFSTEP] tfae_have 3 ↔ 4 [GOAL] case tfae_3_iff_4 ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper ⊢ Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper tfae_3_iff_4 : Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper ⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper] [PROOFSTEP] exact Icc_subset_Icc_iff I.lower_le_upper [GOAL] ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper tfae_3_iff_4 : Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper ⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper] [PROOFSTEP] tfae_have 4 → 2 [GOAL] case tfae_4_to_2 ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper tfae_3_iff_4 : Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper ⊢ J.lower ≤ I.lower ∧ I.upper ≤ J.upper → ↑I ⊆ ↑J ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper tfae_3_iff_4 : Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper tfae_4_to_2 : J.lower ≤ I.lower ∧ I.upper ≤ J.upper → ↑I ⊆ ↑J ⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper] [PROOFSTEP] exact fun h x hx i ↦ Ioc_subset_Ioc (h.1 i) (h.2 i) (hx i) [GOAL] ι : Type u_1 I J : Box ι x y : ι → ℝ tfae_1_iff_2 : I ≤ J ↔ ↑I ⊆ ↑J tfae_2_to_3 : ↑I ⊆ ↑J → Icc I.lower I.upper ⊆ Icc J.lower J.upper tfae_3_iff_4 : Icc I.lower I.upper ⊆ Icc J.lower J.upper ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper tfae_4_to_2 : J.lower ≤ I.lower ∧ I.upper ≤ J.upper → ↑I ⊆ ↑J ⊢ List.TFAE [I ≤ J, ↑I ⊆ ↑J, Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper] [PROOFSTEP] tfae_finish [GOAL] ι : Type u_1 I J : Box ι x y : ι → ℝ ⊢ Injective toSet [PROOFSTEP] rintro ⟨l₁, u₁, h₁⟩ ⟨l₂, u₂, h₂⟩ h [GOAL] case mk.mk ι : Type u_1 I J : Box ι x y l₁ u₁ : ι → ℝ h₁ : ∀ (i : ι), l₁ i < u₁ i l₂ u₂ : ι → ℝ h₂ : ∀ (i : ι), l₂ i < u₂ i h : ↑{ lower := l₁, upper := u₁, lower_lt_upper := h₁ } = ↑{ lower := l₂, upper := u₂, lower_lt_upper := h₂ } ⊢ { lower := l₁, upper := u₁, lower_lt_upper := h₁ } = { lower := l₂, upper := u₂, lower_lt_upper := h₂ } [PROOFSTEP] simp only [Subset.antisymm_iff, coe_subset_coe, le_iff_bounds] at h [GOAL] case mk.mk ι : Type u_1 I J : Box ι x y l₁ u₁ : ι → ℝ h₁ : ∀ (i : ι), l₁ i < u₁ i l₂ u₂ : ι → ℝ h₂ : ∀ (i : ι), l₂ i < u₂ i h : (l₂ ≤ l₁ ∧ u₁ ≤ u₂) ∧ l₁ ≤ l₂ ∧ u₂ ≤ u₁ ⊢ { lower := l₁, upper := u₁, lower_lt_upper := h₁ } = { lower := l₂, upper := u₂, lower_lt_upper := h₂ } [PROOFSTEP] congr [GOAL] case mk.mk.e_lower ι : Type u_1 I J : Box ι x y l₁ u₁ : ι → ℝ h₁ : ∀ (i : ι), l₁ i < u₁ i l₂ u₂ : ι → ℝ h₂ : ∀ (i : ι), l₂ i < u₂ i h : (l₂ ≤ l₁ ∧ u₁ ≤ u₂) ∧ l₁ ≤ l₂ ∧ u₂ ≤ u₁ ⊢ l₁ = l₂ case mk.mk.e_upper ι : Type u_1 I J : Box ι x y l₁ u₁ : ι → ℝ h₁ : ∀ (i : ι), l₁ i < u₁ i l₂ u₂ : ι → ℝ h₂ : ∀ (i : ι), l₂ i < u₂ i h : (l₂ ≤ l₁ ∧ u₁ ≤ u₂) ∧ l₁ ≤ l₂ ∧ u₂ ≤ u₁ ⊢ u₁ = u₂ [PROOFSTEP] exacts [le_antisymm h.2.1 h.1.1, le_antisymm h.1.2 h.2.2] [GOAL] ι : Type u_1 I J : Box ι x y : ι → ℝ ⊢ Option.isSome ⊥ = true ↔ Set.Nonempty ↑⊥ [PROOFSTEP] erw [Option.isSome] [GOAL] ι : Type u_1 I J : Box ι x y : ι → ℝ ⊢ (match ⊥ with | some val => true | none => false) = true ↔ Set.Nonempty ↑⊥ [PROOFSTEP] simp [GOAL] ι : Type u_1 I✝ J : Box ι x y : ι → ℝ I : Box ι ⊢ Option.isSome ↑I = true ↔ Set.Nonempty ↑↑I [PROOFSTEP] erw [Option.isSome] [GOAL] ι : Type u_1 I✝ J : Box ι x y : ι → ℝ I : Box ι ⊢ (match ↑I with | some val => true | none => false) = true ↔ Set.Nonempty ↑↑I [PROOFSTEP] simp [I.nonempty_coe] [GOAL] ι : Type u_1 I✝ J : Box ι x y : ι → ℝ I : WithBot (Box ι) ⊢ ⋃ (J : Box ι) (_ : ↑J = I), ↑J = ↑I [PROOFSTEP] induction I using WithBot.recBotCoe [GOAL] case bot ι : Type u_1 I J : Box ι x y : ι → ℝ ⊢ ⋃ (J : Box ι) (_ : ↑J = ⊥), ↑J = ↑⊥ [PROOFSTEP] simp [WithBot.coe_eq_coe] [GOAL] case coe ι : Type u_1 I J : Box ι x y : ι → ℝ a✝ : Box ι ⊢ ⋃ (J : Box ι) (_ : ↑J = ↑a✝), ↑J = ↑↑a✝ [PROOFSTEP] simp [WithBot.coe_eq_coe] [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ I J : WithBot (Box ι) ⊢ ↑I ⊆ ↑J ↔ I ≤ J [PROOFSTEP] induction I using WithBot.recBotCoe [GOAL] case bot ι : Type u_1 I J✝ : Box ι x y : ι → ℝ J : WithBot (Box ι) ⊢ ↑⊥ ⊆ ↑J ↔ ⊥ ≤ J [PROOFSTEP] simp [GOAL] case coe ι : Type u_1 I J✝ : Box ι x y : ι → ℝ J : WithBot (Box ι) a✝ : Box ι ⊢ ↑↑a✝ ⊆ ↑J ↔ ↑a✝ ≤ J [PROOFSTEP] induction J using WithBot.recBotCoe [GOAL] case coe.bot ι : Type u_1 I J : Box ι x y : ι → ℝ a✝ : Box ι ⊢ ↑↑a✝ ⊆ ↑⊥ ↔ ↑a✝ ≤ ⊥ [PROOFSTEP] simp [subset_empty_iff] [GOAL] case coe.coe ι : Type u_1 I J : Box ι x y : ι → ℝ a✝¹ a✝ : Box ι ⊢ ↑↑a✝¹ ⊆ ↑↑a✝ ↔ ↑a✝¹ ≤ ↑a✝ [PROOFSTEP] simp [le_def] [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ I J : WithBot (Box ι) ⊢ ↑I = ↑J ↔ I = J [PROOFSTEP] simp only [Subset.antisymm_iff, ← le_antisymm_iff, withBotCoe_subset_iff] [GOAL] ι : Type u_1 I J : Box ι x y l u : ι → ℝ ⊢ mk' l u = ⊥ ↔ ∃ i, u i ≤ l i [PROOFSTEP] rw [mk'] [GOAL] ι : Type u_1 I J : Box ι x y l u : ι → ℝ ⊢ (if h : ∀ (i : ι), l i < u i then ↑{ lower := l, upper := u, lower_lt_upper := h } else ⊥) = ⊥ ↔ ∃ i, u i ≤ l i [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 I J : Box ι x y l u : ι → ℝ h : ∀ (i : ι), l i < u i ⊢ ↑{ lower := l, upper := u, lower_lt_upper := h } = ⊥ ↔ ∃ i, u i ≤ l i [PROOFSTEP] simpa using h [GOAL] case neg ι : Type u_1 I J : Box ι x y l u : ι → ℝ h : ¬∀ (i : ι), l i < u i ⊢ ⊥ = ⊥ ↔ ∃ i, u i ≤ l i [PROOFSTEP] simpa using h [GOAL] ι : Type u_1 I J : Box ι x y l u : ι → ℝ ⊢ mk' l u = ↑I ↔ l = I.lower ∧ u = I.upper [PROOFSTEP] cases' I with lI uI hI [GOAL] case mk ι : Type u_1 J : Box ι x y l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i ⊢ mk' l u = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔ l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧ u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper [PROOFSTEP] rw [mk'] [GOAL] case mk ι : Type u_1 J : Box ι x y l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i ⊢ (if h : ∀ (i : ι), l i < u i then ↑{ lower := l, upper := u, lower_lt_upper := h } else ⊥) = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔ l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧ u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 J : Box ι x y l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i h : ∀ (i : ι), l i < u i ⊢ ↑{ lower := l, upper := u, lower_lt_upper := h } = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔ l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧ u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper [PROOFSTEP] simp [WithBot.coe_eq_coe] [GOAL] case neg ι : Type u_1 J : Box ι x y l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i h : ¬∀ (i : ι), l i < u i ⊢ ⊥ = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔ l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧ u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper [PROOFSTEP] suffices l = lI → u ≠ uI by simpa [GOAL] ι : Type u_1 J : Box ι x y l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i h : ¬∀ (i : ι), l i < u i this : l = lI → u ≠ uI ⊢ ⊥ = ↑{ lower := lI, upper := uI, lower_lt_upper := hI } ↔ l = { lower := lI, upper := uI, lower_lt_upper := hI }.lower ∧ u = { lower := lI, upper := uI, lower_lt_upper := hI }.upper [PROOFSTEP] simpa [GOAL] case neg ι : Type u_1 J : Box ι x y l u lI uI : ι → ℝ hI : ∀ (i : ι), lI i < uI i h : ¬∀ (i : ι), l i < u i ⊢ l = lI → u ≠ uI [PROOFSTEP] rintro rfl rfl [GOAL] case neg ι : Type u_1 J : Box ι x y l u : ι → ℝ h : ¬∀ (i : ι), l i < u i hI : ∀ (i : ι), l i < u i ⊢ False [PROOFSTEP] exact h hI [GOAL] ι : Type u_1 I J : Box ι x y l u : ι → ℝ ⊢ ↑(mk' l u) = Set.pi univ fun i => Ioc (l i) (u i) [PROOFSTEP] rw [mk'] [GOAL] ι : Type u_1 I J : Box ι x y l u : ι → ℝ ⊢ ↑(if h : ∀ (i : ι), l i < u i then ↑{ lower := l, upper := u, lower_lt_upper := h } else ⊥) = Set.pi univ fun i => Ioc (l i) (u i) [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 I J : Box ι x y l u : ι → ℝ h : ∀ (i : ι), l i < u i ⊢ ↑↑{ lower := l, upper := u, lower_lt_upper := h } = Set.pi univ fun i => Ioc (l i) (u i) [PROOFSTEP] exact coe_eq_pi _ [GOAL] case neg ι : Type u_1 I J : Box ι x y l u : ι → ℝ h : ¬∀ (i : ι), l i < u i ⊢ ↑⊥ = Set.pi univ fun i => Ioc (l i) (u i) [PROOFSTEP] rcases not_forall.mp h with ⟨i, hi⟩ [GOAL] case neg.intro ι : Type u_1 I J : Box ι x y l u : ι → ℝ h : ¬∀ (i : ι), l i < u i i : ι hi : ¬l i < u i ⊢ ↑⊥ = Set.pi univ fun i => Ioc (l i) (u i) [PROOFSTEP] rw [coe_bot, univ_pi_eq_empty] [GOAL] case neg.intro ι : Type u_1 I J : Box ι x y l u : ι → ℝ h : ¬∀ (i : ι), l i < u i i : ι hi : ¬l i < u i ⊢ Ioc (l ?m.301759) (u ?m.301759) = ∅ ι : Type u_1 I J : Box ι x y l u : ι → ℝ h : ¬∀ (i : ι), l i < u i i : ι hi : ¬l i < u i ⊢ ι [PROOFSTEP] exact Ioc_eq_empty hi [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ I J : WithBot (Box ι) ⊢ ↑(I ⊓ J) = ↑I ∩ ↑J [PROOFSTEP] induction I using WithBot.recBotCoe [GOAL] case bot ι : Type u_1 I J✝ : Box ι x y : ι → ℝ J : WithBot (Box ι) ⊢ ↑(⊥ ⊓ J) = ↑⊥ ∩ ↑J [PROOFSTEP] change ∅ = _ [GOAL] case bot ι : Type u_1 I J✝ : Box ι x y : ι → ℝ J : WithBot (Box ι) ⊢ ∅ = ↑⊥ ∩ ↑J [PROOFSTEP] simp [GOAL] case coe ι : Type u_1 I J✝ : Box ι x y : ι → ℝ J : WithBot (Box ι) a✝ : Box ι ⊢ ↑(↑a✝ ⊓ J) = ↑↑a✝ ∩ ↑J [PROOFSTEP] induction J using WithBot.recBotCoe [GOAL] case coe.bot ι : Type u_1 I J : Box ι x y : ι → ℝ a✝ : Box ι ⊢ ↑(↑a✝ ⊓ ⊥) = ↑↑a✝ ∩ ↑⊥ [PROOFSTEP] change ∅ = _ [GOAL] case coe.bot ι : Type u_1 I J : Box ι x y : ι → ℝ a✝ : Box ι ⊢ ∅ = ↑↑a✝ ∩ ↑⊥ [PROOFSTEP] simp [GOAL] case coe.coe ι : Type u_1 I J : Box ι x y : ι → ℝ a✝¹ a✝ : Box ι ⊢ ↑(↑a✝¹ ⊓ ↑a✝) = ↑↑a✝¹ ∩ ↑↑a✝ [PROOFSTEP] change ((mk' _ _ : WithBot (Box ι)) : Set (ι → ℝ)) = _ [GOAL] case coe.coe ι : Type u_1 I J : Box ι x y : ι → ℝ a✝¹ a✝ : Box ι ⊢ ↑(mk' (fun i => (a✝¹.lower ⊔ a✝.lower) i) fun i => (a✝¹.upper ⊓ a✝.upper) i) = ↑↑a✝¹ ∩ ↑↑a✝ [PROOFSTEP] simp only [coe_eq_pi, ← pi_inter_distrib, Ioc_inter_Ioc, Pi.sup_apply, Pi.inf_apply, coe_mk', coe_coe] [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup src✝ : Inf (WithBot (Box ι)) := WithBot.inf I J : WithBot (Box ι) ⊢ I ⊓ J ≤ I [PROOFSTEP] rw [← withBotCoe_subset_iff, coe_inf] [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup src✝ : Inf (WithBot (Box ι)) := WithBot.inf I J : WithBot (Box ι) ⊢ ↑I ∩ ↑J ⊆ ↑I [PROOFSTEP] exact inter_subset_left _ _ [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup src✝ : Inf (WithBot (Box ι)) := WithBot.inf I J : WithBot (Box ι) ⊢ I ⊓ J ≤ J [PROOFSTEP] rw [← withBotCoe_subset_iff, coe_inf] [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup src✝ : Inf (WithBot (Box ι)) := WithBot.inf I J : WithBot (Box ι) ⊢ ↑I ∩ ↑J ⊆ ↑J [PROOFSTEP] exact inter_subset_right _ _ [GOAL] ι : Type u_1 I✝ J : Box ι x y : ι → ℝ src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup src✝ : Inf (WithBot (Box ι)) := WithBot.inf I J₁ J₂ : WithBot (Box ι) h₁ : I ≤ J₁ h₂ : I ≤ J₂ ⊢ I ≤ J₁ ⊓ J₂ [PROOFSTEP] simp only [← withBotCoe_subset_iff, coe_inf] at * [GOAL] ι : Type u_1 I✝ J : Box ι x y : ι → ℝ src✝¹ : SemilatticeSup (WithBot (Box ι)) := WithBot.semilatticeSup src✝ : Inf (WithBot (Box ι)) := WithBot.inf I J₁ J₂ : WithBot (Box ι) h₁ : ↑I ⊆ ↑J₁ h₂ : ↑I ⊆ ↑J₂ ⊢ ↑I ⊆ ↑J₁ ∩ ↑J₂ [PROOFSTEP] exact subset_inter h₁ h₂ [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ I J : WithBot (Box ι) ⊢ Disjoint ↑I ↑J ↔ Disjoint I J [PROOFSTEP] simp only [disjoint_iff_inf_le, ← withBotCoe_subset_iff, coe_inf] [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ I J : WithBot (Box ι) ⊢ ↑I ⊓ ↑J ≤ ⊥ ↔ ↑I ∩ ↑J ⊆ ↑⊥ [PROOFSTEP] rfl [GOAL] ι : Type u_1 I J : Box ι x y : ι → ℝ ⊢ ¬Disjoint ↑I ↑J ↔ Set.Nonempty (↑I ∩ ↑J) [PROOFSTEP] rw [disjoint_coe, Set.not_disjoint_iff_nonempty_inter] [GOAL] ι : Type u_1 I✝ J : Box ι x✝ y : ι → ℝ n : ℕ I : Box (Fin (n + 1)) i : Fin (n + 1) x : ℝ hx : x ∈ Ioc (lower I i) (upper I i) ⊢ MapsTo (Fin.insertNth i x) ↑(face I i) ↑I [PROOFSTEP] intro y hy [GOAL] ι : Type u_1 I✝ J : Box ι x✝ y✝ : ι → ℝ n : ℕ I : Box (Fin (n + 1)) i : Fin (n + 1) x : ℝ hx : x ∈ Ioc (lower I i) (upper I i) y : Fin n → ℝ hy : y ∈ ↑(face I i) ⊢ Fin.insertNth i x y ∈ ↑I [PROOFSTEP] simp_rw [mem_coe, mem_def, i.forall_iff_succAbove, Fin.insertNth_apply_same, Fin.insertNth_apply_succAbove] [GOAL] ι : Type u_1 I✝ J : Box ι x✝ y✝ : ι → ℝ n : ℕ I : Box (Fin (n + 1)) i : Fin (n + 1) x : ℝ hx : x ∈ Ioc (lower I i) (upper I i) y : Fin n → ℝ hy : y ∈ ↑(face I i) ⊢ x ∈ Ioc (lower I i) (upper I i) ∧ ∀ (j : Fin n), y j ∈ Ioc (lower I (Fin.succAbove i j)) (upper I (Fin.succAbove i j)) [PROOFSTEP] exact ⟨hx, hy⟩ [GOAL] ι : Type u_1 I✝ J : Box ι x y : ι → ℝ I : Box ι ⊢ ∃ J, (∀ (n : ℕ), ↑Box.Icc (↑J n) ⊆ ↑Box.Ioo I) ∧ Tendsto (lower ∘ ↑J) atTop (𝓝 I.lower) ∧ Tendsto (upper ∘ ↑J) atTop (𝓝 I.upper) [PROOFSTEP] choose a b ha_anti hb_mono ha_mem hb_mem hab ha_tendsto hb_tendsto using fun i ↦ exists_seq_strictAnti_strictMono_tendsto (I.lower_lt_upper i) [GOAL] ι : Type u_1 I✝ J : Box ι x y : ι → ℝ I : Box ι a b : ι → ℕ → ℝ ha_anti : ∀ (i : ι), StrictAnti (a i) hb_mono : ∀ (i : ι), StrictMono (b i) ha_mem : ∀ (i : ι) (k : ℕ), a i k ∈ Ioo (lower I i) (upper I i) hb_mem : ∀ (i : ι) (l : ℕ), b i l ∈ Ioo (lower I i) (upper I i) hab : ∀ (i : ι) (k l : ℕ), a i k < b i l ha_tendsto : ∀ (i : ι), Tendsto (a i) atTop (𝓝 (lower I i)) hb_tendsto : ∀ (i : ι), Tendsto (b i) atTop (𝓝 (upper I i)) ⊢ ∃ J, (∀ (n : ℕ), ↑Box.Icc (↑J n) ⊆ ↑Box.Ioo I) ∧ Tendsto (lower ∘ ↑J) atTop (𝓝 I.lower) ∧ Tendsto (upper ∘ ↑J) atTop (𝓝 I.upper) [PROOFSTEP] exact ⟨⟨fun k ↦ ⟨flip a k, flip b k, fun i ↦ hab _ _ _⟩, fun k l hkl ↦ le_iff_bounds.2 ⟨fun i ↦ (ha_anti i).antitone hkl, fun i ↦ (hb_mono i).monotone hkl⟩⟩, fun n x hx i _ ↦ ⟨(ha_mem _ _).1.trans_le (hx.1 _), (hx.2 _).trans_lt (hb_mem _ _).2⟩, tendsto_pi_nhds.2 ha_tendsto, tendsto_pi_nhds.2 hb_tendsto⟩ [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r ⊢ distortion I = distortion J [PROOFSTEP] simp only [distortion, nndist_pi_def, Real.nndist_eq', h, map_div₀] [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r ⊢ (Finset.sup Finset.univ fun i => (Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b) / ↑Real.nnabs r) / (↑Real.nnabs (upper J i - lower J i) / ↑Real.nnabs r)) = Finset.sup Finset.univ fun i => (Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b)) / ↑Real.nnabs (upper J i - lower J i) [PROOFSTEP] congr 1 with i [GOAL] case e_f.h.a ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r i : ι ⊢ ↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b) / ↑Real.nnabs r) / (↑Real.nnabs (upper J i - lower J i) / ↑Real.nnabs r)) = ↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b)) / ↑Real.nnabs (upper J i - lower J i)) [PROOFSTEP] have : 0 < r := by by_contra hr have := div_nonpos_of_nonneg_of_nonpos (sub_nonneg.2 <| J.lower_le_upper i) (not_lt.1 hr) rw [← h] at this exact this.not_lt (sub_pos.2 <| I.lower_lt_upper i) [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r i : ι ⊢ 0 < r [PROOFSTEP] by_contra hr [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r i : ι hr : ¬0 < r ⊢ False [PROOFSTEP] have := div_nonpos_of_nonneg_of_nonpos (sub_nonneg.2 <| J.lower_le_upper i) (not_lt.1 hr) [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r i : ι hr : ¬0 < r this : (upper J i - lower J i) / r ≤ 0 ⊢ False [PROOFSTEP] rw [← h] at this [GOAL] ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r i : ι hr : ¬0 < r this : upper I i - lower I i ≤ 0 ⊢ False [PROOFSTEP] exact this.not_lt (sub_pos.2 <| I.lower_lt_upper i) [GOAL] case e_f.h.a ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r i : ι this : 0 < r ⊢ ↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b) / ↑Real.nnabs r) / (↑Real.nnabs (upper J i - lower J i) / ↑Real.nnabs r)) = ↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b)) / ↑Real.nnabs (upper J i - lower J i)) [PROOFSTEP] have hn0 := (map_ne_zero Real.nnabs).2 this.ne' [GOAL] case e_f.h.a ι : Type u_1 I✝ J✝ : Box ι x y : ι → ℝ inst✝ : Fintype ι I J : Box ι r : ℝ h : ∀ (i : ι), upper I i - lower I i = (upper J i - lower J i) / r i : ι this : 0 < r hn0 : ↑Real.nnabs r ≠ 0 ⊢ ↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b) / ↑Real.nnabs r) / (↑Real.nnabs (upper J i - lower J i) / ↑Real.nnabs r)) = ↑((Finset.sup Finset.univ fun b => ↑Real.nnabs (upper J b - lower J b)) / ↑Real.nnabs (upper J i - lower J i)) [PROOFSTEP] simp_rw [NNReal.finset_sup_div, div_div_div_cancel_right _ hn0] [GOAL] ι : Type u_1 I✝ J : Box ι x y : ι → ℝ inst✝ : Fintype ι I : Box ι i : ι ⊢ nndist I.lower I.upper / nndist (lower I i) (upper I i) * nndist (lower I i) (upper I i) ≤ distortion I * nndist (lower I i) (upper I i) [PROOFSTEP] apply mul_le_mul_right' [GOAL] case bc ι : Type u_1 I✝ J : Box ι x y : ι → ℝ inst✝ : Fintype ι I : Box ι i : ι ⊢ nndist I.lower I.upper / nndist (lower I i) (upper I i) ≤ distortion I [PROOFSTEP] apply Finset.le_sup (Finset.mem_univ i) [GOAL] ι : Type u_1 I✝ J : Box ι x y : ι → ℝ inst✝ : Fintype ι I : Box ι i : ι ⊢ dist I.lower I.upper ≤ ↑(distortion I) * (upper I i - lower I i) [PROOFSTEP] have A : I.lower i - I.upper i < 0 := sub_neg.2 (I.lower_lt_upper i) [GOAL] ι : Type u_1 I✝ J : Box ι x y : ι → ℝ inst✝ : Fintype ι I : Box ι i : ι A : lower I i - upper I i < 0 ⊢ dist I.lower I.upper ≤ ↑(distortion I) * (upper I i - lower I i) [PROOFSTEP] simpa only [← NNReal.coe_le_coe, ← dist_nndist, NNReal.coe_mul, Real.dist_eq, abs_of_neg A, neg_sub] using I.nndist_le_distortion_mul i [GOAL] ι : Type u_1 I✝ J : Box ι x✝ y✝ : ι → ℝ inst✝ : Fintype ι I : Box ι i : ι c : ℝ≥0 h : distortion I ≤ c this : 0 ≤ ↑c * (upper I i - lower I i) x : ι → ℝ hx : x ∈ ↑Box.Icc I y : ι → ℝ hy : y ∈ ↑Box.Icc I ⊢ ↑(distortion I) * (upper I i - lower I i) ≤ ↑c * (upper I i - lower I i) [PROOFSTEP] gcongr [GOAL] case a0 ι : Type u_1 I✝ J : Box ι x✝ y✝ : ι → ℝ inst✝ : Fintype ι I : Box ι i : ι c : ℝ≥0 h : distortion I ≤ c this : 0 ≤ ↑c * (upper I i - lower I i) x : ι → ℝ hx : x ∈ ↑Box.Icc I y : ι → ℝ hy : y ∈ ↑Box.Icc I ⊢ 0 ≤ upper I i - lower I i [PROOFSTEP] exact sub_nonneg.2 (I.lower_le_upper i)
{"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Box.Basic", "llama_tokens": 11914}
[GOAL] 𝕜 : Type u_1 inst✝⁷ : CommRing 𝕜 V : Type u_2 inst✝⁶ : AddCommGroup V inst✝⁵ : Module 𝕜 V inst✝⁴ : MeasurableSpace V W : Type u_3 inst✝³ : AddCommGroup W inst✝² : Module 𝕜 W E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E r : ℂ ⊢ fourierIntegral e μ L (r • f) = r • fourierIntegral e μ L f [PROOFSTEP] ext1 w [GOAL] case h 𝕜 : Type u_1 inst✝⁷ : CommRing 𝕜 V : Type u_2 inst✝⁶ : AddCommGroup V inst✝⁵ : Module 𝕜 V inst✝⁴ : MeasurableSpace V W : Type u_3 inst✝³ : AddCommGroup W inst✝² : Module 𝕜 W E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E r : ℂ w : W ⊢ fourierIntegral e μ L (r • f) w = (r • fourierIntegral e μ L f) w [PROOFSTEP] simp only [Pi.smul_apply, fourierIntegral, ← integral_smul] [GOAL] case h 𝕜 : Type u_1 inst✝⁷ : CommRing 𝕜 V : Type u_2 inst✝⁶ : AddCommGroup V inst✝⁵ : Module 𝕜 V inst✝⁴ : MeasurableSpace V W : Type u_3 inst✝³ : AddCommGroup W inst✝² : Module 𝕜 W E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E r : ℂ w : W ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • r • f v ∂μ = ∫ (a : V), r • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) w))) • f a ∂μ [PROOFSTEP] congr [GOAL] case h.e_f 𝕜 : Type u_1 inst✝⁷ : CommRing 𝕜 V : Type u_2 inst✝⁶ : AddCommGroup V inst✝⁵ : Module 𝕜 V inst✝⁴ : MeasurableSpace V W : Type u_3 inst✝³ : AddCommGroup W inst✝² : Module 𝕜 W E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E r : ℂ w : W ⊢ (fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • r • f v) = fun a => r • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) w))) • f a [PROOFSTEP] funext [GOAL] case h.e_f.h 𝕜 : Type u_1 inst✝⁷ : CommRing 𝕜 V : Type u_2 inst✝⁶ : AddCommGroup V inst✝⁵ : Module 𝕜 V inst✝⁴ : MeasurableSpace V W : Type u_3 inst✝³ : AddCommGroup W inst✝² : Module 𝕜 W E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E r : ℂ w : W x✝ : V ⊢ ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L x✝) w))) • r • f x✝ = r • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L x✝) w))) • f x✝ [PROOFSTEP] rw [smul_comm] [GOAL] 𝕜 : Type u_1 inst✝⁷ : CommRing 𝕜 V : Type u_2 inst✝⁶ : AddCommGroup V inst✝⁵ : Module 𝕜 V inst✝⁴ : MeasurableSpace V W : Type u_3 inst✝³ : AddCommGroup W inst✝² : Module 𝕜 W E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E w : W ⊢ ‖fourierIntegral e μ L f w‖ ≤ ∫ (v : V), ‖f v‖ ∂μ [PROOFSTEP] refine' (norm_integral_le_integral_norm _).trans (le_of_eq _) [GOAL] 𝕜 : Type u_1 inst✝⁷ : CommRing 𝕜 V : Type u_2 inst✝⁶ : AddCommGroup V inst✝⁵ : Module 𝕜 V inst✝⁴ : MeasurableSpace V W : Type u_3 inst✝³ : AddCommGroup W inst✝² : Module 𝕜 W E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E w : W ⊢ ∫ (a : V), ‖↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) w))) • f a‖ ∂μ = ∫ (v : V), ‖f v‖ ∂μ [PROOFSTEP] simp_rw [norm_smul, Complex.norm_eq_abs, abs_coe_circle, one_mul] [GOAL] 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V ⊢ fourierIntegral e μ L (f ∘ fun v => v + v₀) = fun w => ↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • fourierIntegral e μ L f w [PROOFSTEP] ext1 w [GOAL] case h 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V w : W ⊢ fourierIntegral e μ L (f ∘ fun v => v + v₀) w = ↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • fourierIntegral e μ L f w [PROOFSTEP] dsimp only [fourierIntegral, Function.comp_apply] [GOAL] case h 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V w : W ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f (v + v₀) ∂μ = ↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ [PROOFSTEP] conv in L _ => rw [← add_sub_cancel v v₀] [GOAL] 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V w : W v : V | ↑L v [PROOFSTEP] rw [← add_sub_cancel v v₀] [GOAL] 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V w : W v : V | ↑L v [PROOFSTEP] rw [← add_sub_cancel v v₀] [GOAL] 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V w : W v : V | ↑L v [PROOFSTEP] rw [← add_sub_cancel v v₀] [GOAL] case h 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V w : W ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L (v + v₀ - v₀)) w))) • f (v + v₀) ∂μ = ↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ [PROOFSTEP] rw [integral_add_right_eq_self fun v : V => e[-L (v - v₀) w] • f v] [GOAL] case h 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V w : W ⊢ ∫ (x : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L (x - v₀)) w))) • f x ∂μ = ↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ [PROOFSTEP] dsimp only [GOAL] case h 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V w : W ⊢ ∫ (x : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L (x - v₀)) w))) • f x ∂μ = ↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ [PROOFSTEP] rw [← integral_smul] [GOAL] case h 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V w : W ⊢ ∫ (x : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L (x - v₀)) w))) • f x ∂μ = ∫ (a : V), ↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) w))) • f a ∂μ [PROOFSTEP] congr 1 with v [GOAL] case h.e_f.h 𝕜 : Type u_1 inst✝⁹ : CommRing 𝕜 V : Type u_2 inst✝⁸ : AddCommGroup V inst✝⁷ : Module 𝕜 V inst✝⁶ : MeasurableSpace V W : Type u_3 inst✝⁵ : AddCommGroup W inst✝⁴ : Module 𝕜 W E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℂ E inst✝¹ : MeasurableAdd V e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V inst✝ : Measure.IsAddRightInvariant μ L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 f : V → E v₀ : V w : W v : V ⊢ ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L (v - v₀)) w))) • f v = ↑(↑e (↑Multiplicative.ofAdd (↑(↑L v₀) w))) • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v [PROOFSTEP] rw [← smul_assoc, smul_eq_mul, ← Submonoid.coe_mul, ← e.map_mul, ← ofAdd_add, ← LinearMap.neg_apply, ← sub_eq_add_neg, ← LinearMap.sub_apply, LinearMap.map_sub, neg_sub] [GOAL] 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W ⊢ Integrable f ↔ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v [PROOFSTEP] have aux : ∀ {g : V → E} (_ : Integrable g μ) (x : W), Integrable (fun v : V => e[-L v x] • g v) μ := by intro g hg x have c : Continuous fun v => e[-L v x] := by refine' (continuous_induced_rng.mp he).comp (continuous_ofAdd.comp (Continuous.neg _)) exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩) rw [← integrable_norm_iff (c.aestronglyMeasurable.smul hg.1)] convert hg.norm using 2 rw [norm_smul, Complex.norm_eq_abs, abs_coe_circle, one_mul] -- then use it for both directions [GOAL] 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W ⊢ ∀ {g : V → E}, Integrable g → ∀ (x : W), Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v [PROOFSTEP] intro g hg x [GOAL] 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W g : V → E hg : Integrable g x : W ⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v [PROOFSTEP] have c : Continuous fun v => e[-L v x] := by refine' (continuous_induced_rng.mp he).comp (continuous_ofAdd.comp (Continuous.neg _)) exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩) [GOAL] 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W g : V → E hg : Integrable g x : W ⊢ Continuous fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) [PROOFSTEP] refine' (continuous_induced_rng.mp he).comp (continuous_ofAdd.comp (Continuous.neg _)) [GOAL] 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W g : V → E hg : Integrable g x : W ⊢ Continuous fun v => ↑(↑L v) x [PROOFSTEP] exact hL.comp (continuous_prod_mk.mpr ⟨continuous_id, continuous_const⟩) [GOAL] 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W g : V → E hg : Integrable g x : W c : Continuous fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) ⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v [PROOFSTEP] rw [← integrable_norm_iff (c.aestronglyMeasurable.smul hg.1)] [GOAL] 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W g : V → E hg : Integrable g x : W c : Continuous fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) ⊢ Integrable fun a => ‖↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) x))) • g a‖ [PROOFSTEP] convert hg.norm using 2 [GOAL] case h.e'_5.h 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W g : V → E hg : Integrable g x : W c : Continuous fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) x✝ : V ⊢ ‖↑(↑e (↑Multiplicative.ofAdd (-↑(↑L x✝) x))) • g x✝‖ = ‖g x✝‖ [PROOFSTEP] rw [norm_smul, Complex.norm_eq_abs, abs_coe_circle, one_mul] -- then use it for both directions [GOAL] 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W aux : ∀ {g : V → E}, Integrable g → ∀ (x : W), Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v ⊢ Integrable f ↔ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v [PROOFSTEP] refine' ⟨fun hf => aux hf w, fun hf => _⟩ [GOAL] 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W aux : ∀ {g : V → E}, Integrable g → ∀ (x : W), Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v hf : Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ⊢ Integrable f [PROOFSTEP] convert aux hf (-w) [GOAL] case h.e'_5.h 𝕜 : Type u_1 inst✝¹² : CommRing 𝕜 V : Type u_2 inst✝¹¹ : AddCommGroup V inst✝¹⁰ : Module 𝕜 V inst✝⁹ : MeasurableSpace V W : Type u_3 inst✝⁸ : AddCommGroup W inst✝⁷ : Module 𝕜 W E : Type u_4 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : TopologicalRing 𝕜 inst✝² : TopologicalSpace V inst✝¹ : BorelSpace V inst✝ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E w : W aux : ∀ {g : V → E}, Integrable g → ∀ (x : W), Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) x))) • g v hf : Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v x✝ : V ⊢ f x✝ = ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L x✝) (-w)))) • ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L x✝) w))) • f x✝ [PROOFSTEP] rw [← smul_assoc, smul_eq_mul, ← Submonoid.coe_mul, ← MonoidHom.map_mul, ← ofAdd_add, LinearMap.map_neg, neg_neg, ← sub_eq_add_neg, sub_self, ofAdd_zero, MonoidHom.map_one, Submonoid.coe_one, one_smul] [GOAL] 𝕜 : Type u_1 inst✝¹³ : CommRing 𝕜 V : Type u_2 inst✝¹² : AddCommGroup V inst✝¹¹ : Module 𝕜 V inst✝¹⁰ : MeasurableSpace V W : Type u_3 inst✝⁹ : AddCommGroup W inst✝⁸ : Module 𝕜 W E : Type u_4 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : TopologicalRing 𝕜 inst✝³ : TopologicalSpace V inst✝² : BorelSpace V inst✝¹ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝ : CompleteSpace E he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f g : V → E hf : Integrable f hg : Integrable g ⊢ fourierIntegral e μ L f + fourierIntegral e μ L g = fourierIntegral e μ L (f + g) [PROOFSTEP] ext1 w [GOAL] case h 𝕜 : Type u_1 inst✝¹³ : CommRing 𝕜 V : Type u_2 inst✝¹² : AddCommGroup V inst✝¹¹ : Module 𝕜 V inst✝¹⁰ : MeasurableSpace V W : Type u_3 inst✝⁹ : AddCommGroup W inst✝⁸ : Module 𝕜 W E : Type u_4 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : TopologicalRing 𝕜 inst✝³ : TopologicalSpace V inst✝² : BorelSpace V inst✝¹ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝ : CompleteSpace E he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f g : V → E hf : Integrable f hg : Integrable g w : W ⊢ (fourierIntegral e μ L f + fourierIntegral e μ L g) w = fourierIntegral e μ L (f + g) w [PROOFSTEP] dsimp only [Pi.add_apply, fourierIntegral] [GOAL] case h 𝕜 : Type u_1 inst✝¹³ : CommRing 𝕜 V : Type u_2 inst✝¹² : AddCommGroup V inst✝¹¹ : Module 𝕜 V inst✝¹⁰ : MeasurableSpace V W : Type u_3 inst✝⁹ : AddCommGroup W inst✝⁸ : Module 𝕜 W E : Type u_4 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : TopologicalRing 𝕜 inst✝³ : TopologicalSpace V inst✝² : BorelSpace V inst✝¹ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝ : CompleteSpace E he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f g : V → E hf : Integrable f hg : Integrable g w : W ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ + ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • g v ∂μ = ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • (f v + g v) ∂μ [PROOFSTEP] simp_rw [smul_add] [GOAL] case h 𝕜 : Type u_1 inst✝¹³ : CommRing 𝕜 V : Type u_2 inst✝¹² : AddCommGroup V inst✝¹¹ : Module 𝕜 V inst✝¹⁰ : MeasurableSpace V W : Type u_3 inst✝⁹ : AddCommGroup W inst✝⁸ : Module 𝕜 W E : Type u_4 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : TopologicalRing 𝕜 inst✝³ : TopologicalSpace V inst✝² : BorelSpace V inst✝¹ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝ : CompleteSpace E he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f g : V → E hf : Integrable f hg : Integrable g w : W ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v ∂μ + ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • g v ∂μ = ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v + ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • g v ∂μ [PROOFSTEP] rw [integral_add] [GOAL] case h.hf 𝕜 : Type u_1 inst✝¹³ : CommRing 𝕜 V : Type u_2 inst✝¹² : AddCommGroup V inst✝¹¹ : Module 𝕜 V inst✝¹⁰ : MeasurableSpace V W : Type u_3 inst✝⁹ : AddCommGroup W inst✝⁸ : Module 𝕜 W E : Type u_4 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : TopologicalRing 𝕜 inst✝³ : TopologicalSpace V inst✝² : BorelSpace V inst✝¹ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝ : CompleteSpace E he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f g : V → E hf : Integrable f hg : Integrable g w : W ⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v [PROOFSTEP] exact (fourier_integral_convergent_iff he hL w).mp hf [GOAL] case h.hg 𝕜 : Type u_1 inst✝¹³ : CommRing 𝕜 V : Type u_2 inst✝¹² : AddCommGroup V inst✝¹¹ : Module 𝕜 V inst✝¹⁰ : MeasurableSpace V W : Type u_3 inst✝⁹ : AddCommGroup W inst✝⁸ : Module 𝕜 W E : Type u_4 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E inst✝⁵ : TopologicalSpace 𝕜 inst✝⁴ : TopologicalRing 𝕜 inst✝³ : TopologicalSpace V inst✝² : BorelSpace V inst✝¹ : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝ : CompleteSpace E he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f g : V → E hf : Integrable f hg : Integrable g w : W ⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • g v [PROOFSTEP] exact (fourier_integral_convergent_iff he hL w).mp hg [GOAL] 𝕜 : Type u_1 inst✝¹⁴ : CommRing 𝕜 V : Type u_2 inst✝¹³ : AddCommGroup V inst✝¹² : Module 𝕜 V inst✝¹¹ : MeasurableSpace V W : Type u_3 inst✝¹⁰ : AddCommGroup W inst✝⁹ : Module 𝕜 W E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : TopologicalRing 𝕜 inst✝⁴ : TopologicalSpace V inst✝³ : BorelSpace V inst✝² : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝¹ : CompleteSpace E inst✝ : TopologicalSpace.FirstCountableTopology W he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E hf : Integrable f ⊢ Continuous (fourierIntegral e μ L f) [PROOFSTEP] apply continuous_of_dominated [GOAL] case hF_meas 𝕜 : Type u_1 inst✝¹⁴ : CommRing 𝕜 V : Type u_2 inst✝¹³ : AddCommGroup V inst✝¹² : Module 𝕜 V inst✝¹¹ : MeasurableSpace V W : Type u_3 inst✝¹⁰ : AddCommGroup W inst✝⁹ : Module 𝕜 W E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : TopologicalRing 𝕜 inst✝⁴ : TopologicalSpace V inst✝³ : BorelSpace V inst✝² : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝¹ : CompleteSpace E inst✝ : TopologicalSpace.FirstCountableTopology W he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E hf : Integrable f ⊢ ∀ (x : W), AEStronglyMeasurable (fun a => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) x))) • f a) μ [PROOFSTEP] exact fun w => ((fourier_integral_convergent_iff he hL w).mp hf).1 [GOAL] case h_bound 𝕜 : Type u_1 inst✝¹⁴ : CommRing 𝕜 V : Type u_2 inst✝¹³ : AddCommGroup V inst✝¹² : Module 𝕜 V inst✝¹¹ : MeasurableSpace V W : Type u_3 inst✝¹⁰ : AddCommGroup W inst✝⁹ : Module 𝕜 W E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : TopologicalRing 𝕜 inst✝⁴ : TopologicalSpace V inst✝³ : BorelSpace V inst✝² : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝¹ : CompleteSpace E inst✝ : TopologicalSpace.FirstCountableTopology W he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E hf : Integrable f ⊢ ∀ (x : W), ∀ᵐ (a : V) ∂μ, ‖↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) x))) • f a‖ ≤ ?bound a [PROOFSTEP] refine' fun w => ae_of_all _ fun v => _ [GOAL] case bound 𝕜 : Type u_1 inst✝¹⁴ : CommRing 𝕜 V : Type u_2 inst✝¹³ : AddCommGroup V inst✝¹² : Module 𝕜 V inst✝¹¹ : MeasurableSpace V W : Type u_3 inst✝¹⁰ : AddCommGroup W inst✝⁹ : Module 𝕜 W E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : TopologicalRing 𝕜 inst✝⁴ : TopologicalSpace V inst✝³ : BorelSpace V inst✝² : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝¹ : CompleteSpace E inst✝ : TopologicalSpace.FirstCountableTopology W he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E hf : Integrable f ⊢ V → ℝ [PROOFSTEP] exact fun v => ‖f v‖ [GOAL] case h_bound 𝕜 : Type u_1 inst✝¹⁴ : CommRing 𝕜 V : Type u_2 inst✝¹³ : AddCommGroup V inst✝¹² : Module 𝕜 V inst✝¹¹ : MeasurableSpace V W : Type u_3 inst✝¹⁰ : AddCommGroup W inst✝⁹ : Module 𝕜 W E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : TopologicalRing 𝕜 inst✝⁴ : TopologicalSpace V inst✝³ : BorelSpace V inst✝² : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝¹ : CompleteSpace E inst✝ : TopologicalSpace.FirstCountableTopology W he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E hf : Integrable f w : W v : V ⊢ ‖↑(↑e (↑Multiplicative.ofAdd (-↑(↑L v) w))) • f v‖ ≤ ‖f v‖ [PROOFSTEP] rw [norm_smul, Complex.norm_eq_abs, abs_coe_circle, one_mul] [GOAL] case bound_integrable 𝕜 : Type u_1 inst✝¹⁴ : CommRing 𝕜 V : Type u_2 inst✝¹³ : AddCommGroup V inst✝¹² : Module 𝕜 V inst✝¹¹ : MeasurableSpace V W : Type u_3 inst✝¹⁰ : AddCommGroup W inst✝⁹ : Module 𝕜 W E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : TopologicalRing 𝕜 inst✝⁴ : TopologicalSpace V inst✝³ : BorelSpace V inst✝² : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝¹ : CompleteSpace E inst✝ : TopologicalSpace.FirstCountableTopology W he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E hf : Integrable f ⊢ Integrable fun v => ‖f v‖ [PROOFSTEP] exact hf.norm [GOAL] case h_cont 𝕜 : Type u_1 inst✝¹⁴ : CommRing 𝕜 V : Type u_2 inst✝¹³ : AddCommGroup V inst✝¹² : Module 𝕜 V inst✝¹¹ : MeasurableSpace V W : Type u_3 inst✝¹⁰ : AddCommGroup W inst✝⁹ : Module 𝕜 W E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : TopologicalRing 𝕜 inst✝⁴ : TopologicalSpace V inst✝³ : BorelSpace V inst✝² : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝¹ : CompleteSpace E inst✝ : TopologicalSpace.FirstCountableTopology W he : Continuous ↑e hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E hf : Integrable f ⊢ ∀ᵐ (a : V) ∂μ, Continuous fun x => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) x))) • f a [PROOFSTEP] rw [continuous_induced_rng] at he [GOAL] case h_cont 𝕜 : Type u_1 inst✝¹⁴ : CommRing 𝕜 V : Type u_2 inst✝¹³ : AddCommGroup V inst✝¹² : Module 𝕜 V inst✝¹¹ : MeasurableSpace V W : Type u_3 inst✝¹⁰ : AddCommGroup W inst✝⁹ : Module 𝕜 W E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : TopologicalRing 𝕜 inst✝⁴ : TopologicalSpace V inst✝³ : BorelSpace V inst✝² : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝¹ : CompleteSpace E inst✝ : TopologicalSpace.FirstCountableTopology W he : Continuous (Subtype.val ∘ ↑e) hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E hf : Integrable f ⊢ ∀ᵐ (a : V) ∂μ, Continuous fun x => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑L a) x))) • f a [PROOFSTEP] refine' ae_of_all _ fun v => (he.comp (continuous_ofAdd.comp _)).smul continuous_const [GOAL] case h_cont 𝕜 : Type u_1 inst✝¹⁴ : CommRing 𝕜 V : Type u_2 inst✝¹³ : AddCommGroup V inst✝¹² : Module 𝕜 V inst✝¹¹ : MeasurableSpace V W : Type u_3 inst✝¹⁰ : AddCommGroup W inst✝⁹ : Module 𝕜 W E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E inst✝⁶ : TopologicalSpace 𝕜 inst✝⁵ : TopologicalRing 𝕜 inst✝⁴ : TopologicalSpace V inst✝³ : BorelSpace V inst✝² : TopologicalSpace W e : Multiplicative 𝕜 →* { x // x ∈ 𝕊 } μ : Measure V L : V →ₗ[𝕜] W →ₗ[𝕜] 𝕜 inst✝¹ : CompleteSpace E inst✝ : TopologicalSpace.FirstCountableTopology W he : Continuous (Subtype.val ∘ ↑e) hL : Continuous fun p => ↑(↑L p.fst) p.snd f : V → E hf : Integrable f v : V ⊢ Continuous fun x => -↑(↑L v) x [PROOFSTEP] refine' (hL.comp (continuous_prod_mk.mpr ⟨continuous_const, continuous_id⟩)).neg [GOAL] ⊢ (fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z)) 1 = 1 [PROOFSTEP] simp only [GOAL] ⊢ ↑expMapCircle (2 * π * ↑Multiplicative.toAdd 1) = 1 [PROOFSTEP] rw [toAdd_one, mul_zero, expMapCircle_zero] [GOAL] x y : Multiplicative ℝ ⊢ OneHom.toFun { toFun := fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z), map_one' := (_ : (fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z), map_one' := (_ : (fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z)) 1 = 1) } x * OneHom.toFun { toFun := fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z), map_one' := (_ : (fun z => ↑expMapCircle (2 * π * ↑Multiplicative.toAdd z)) 1 = 1) } y [PROOFSTEP] simp only [GOAL] x y : Multiplicative ℝ ⊢ ↑expMapCircle (2 * π * ↑Multiplicative.toAdd (x * y)) = ↑expMapCircle (2 * π * ↑Multiplicative.toAdd x) * ↑expMapCircle (2 * π * ↑Multiplicative.toAdd y) [PROOFSTEP] rw [toAdd_mul, mul_add, expMapCircle_add] [GOAL] x : ℝ ⊢ ↑(↑fourierChar (↑Multiplicative.ofAdd x)) = Complex.exp (↑(2 * π * x) * Complex.I) [PROOFSTEP] rfl [GOAL] E : Type u_1 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E V : Type u_2 inst✝⁴ : AddCommGroup V inst✝³ : Module ℝ V inst✝² : MeasurableSpace V W : Type u_3 inst✝¹ : AddCommGroup W inst✝ : Module ℝ W L : V →ₗ[ℝ] W →ₗ[ℝ] ℝ μ : Measure V f : V → E w : W ⊢ VectorFourier.fourierIntegral fourierChar μ L f w = ∫ (v : V), Complex.exp (↑(-2 * π * ↑(↑L v) w) * Complex.I) • f v ∂μ [PROOFSTEP] simp_rw [VectorFourier.fourierIntegral, Real.fourierChar_apply, mul_neg, neg_mul] [GOAL] E✝ : Type u_1 inst✝³ : NormedAddCommGroup E✝ inst✝² : NormedSpace ℂ E✝ E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℂ E f : ℝ → E w : ℝ ⊢ 𝓕 f w = ∫ (v : ℝ), Complex.exp (↑(-2 * π * v * w) * Complex.I) • f v [PROOFSTEP] simp_rw [fourierIntegral_def, Real.fourierChar_apply, mul_neg, neg_mul, mul_assoc]
{"mathlib_filename": "Mathlib.Analysis.Fourier.FourierTransform", "llama_tokens": 16666}
[GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π : TaggedPrepartition I x : ι → ℝ ⊢ x ∈ iUnion π ↔ ∃ J, J ∈ π ∧ x ∈ J [PROOFSTEP] convert Set.mem_iUnion₂ [GOAL] case h.e'_2.h.e'_2.h.a ι : Type u_1 I J J₁ J₂ : Box ι π : TaggedPrepartition I x : ι → ℝ x✝ : Box ι ⊢ x✝ ∈ π ∧ x ∈ x✝ ↔ ∃ j, x ∈ ↑x✝ [PROOFSTEP] rw [Box.mem_coe, mem_toPrepartition, exists_prop] [GOAL] ι : Type u_1 I J : Box ι π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J hJ : J ∈ π J' : Box ι hJ' : J' ∈ πi J ⊢ TaggedPrepartition.tag (biUnionTagged π πi) J' = TaggedPrepartition.tag (πi J) J' [PROOFSTEP] rw [← π.biUnionIndex_of_mem (πi := fun J => (πi J).toPrepartition) hJ hJ'] [GOAL] ι : Type u_1 I J : Box ι π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J hJ : J ∈ π J' : Box ι hJ' : J' ∈ πi J ⊢ TaggedPrepartition.tag (biUnionTagged π πi) J' = TaggedPrepartition.tag (πi (biUnionIndex π (fun J => (πi J).toPrepartition) J')) J' [PROOFSTEP] rfl [GOAL] ι : Type u_1 I J : Box ι p : (ι → ℝ) → Box ι → Prop π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J ⊢ (∀ (J : Box ι), J ∈ biUnionTagged π πi → p (TaggedPrepartition.tag (biUnionTagged π πi) J) J) ↔ ∀ (J : Box ι), J ∈ π → ∀ (J' : Box ι), J' ∈ πi J → p (TaggedPrepartition.tag (πi J) J') J' [PROOFSTEP] simp only [mem_biUnionTagged] [GOAL] ι : Type u_1 I J : Box ι p : (ι → ℝ) → Box ι → Prop π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J ⊢ (∀ (J : Box ι), (∃ J', J' ∈ π ∧ J ∈ πi J') → p (TaggedPrepartition.tag (biUnionTagged π πi) J) J) ↔ ∀ (J : Box ι), J ∈ π → ∀ (J' : Box ι), J' ∈ πi J → p (TaggedPrepartition.tag (πi J) J') J' [PROOFSTEP] refine' ⟨fun H J hJ J' hJ' => _, fun H J' ⟨J, hJ, hJ'⟩ => _⟩ [GOAL] case refine'_1 ι : Type u_1 I J✝ : Box ι p : (ι → ℝ) → Box ι → Prop π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J H : ∀ (J : Box ι), (∃ J', J' ∈ π ∧ J ∈ πi J') → p (TaggedPrepartition.tag (biUnionTagged π πi) J) J J : Box ι hJ : J ∈ π J' : Box ι hJ' : J' ∈ πi J ⊢ p (TaggedPrepartition.tag (πi J) J') J' [PROOFSTEP] rw [← π.tag_biUnionTagged hJ hJ'] [GOAL] case refine'_1 ι : Type u_1 I J✝ : Box ι p : (ι → ℝ) → Box ι → Prop π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J H : ∀ (J : Box ι), (∃ J', J' ∈ π ∧ J ∈ πi J') → p (TaggedPrepartition.tag (biUnionTagged π πi) J) J J : Box ι hJ : J ∈ π J' : Box ι hJ' : J' ∈ πi J ⊢ p (TaggedPrepartition.tag (biUnionTagged π πi) J') J' [PROOFSTEP] exact H J' ⟨J, hJ, hJ'⟩ [GOAL] case refine'_2 ι : Type u_1 I J✝ : Box ι p : (ι → ℝ) → Box ι → Prop π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J H : ∀ (J : Box ι), J ∈ π → ∀ (J' : Box ι), J' ∈ πi J → p (TaggedPrepartition.tag (πi J) J') J' J' : Box ι x✝ : ∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1 J : Box ι hJ : J ∈ π hJ' : J' ∈ πi J ⊢ p (TaggedPrepartition.tag (biUnionTagged π πi) J') J' [PROOFSTEP] rw [π.tag_biUnionTagged hJ hJ'] [GOAL] case refine'_2 ι : Type u_1 I J✝ : Box ι p : (ι → ℝ) → Box ι → Prop π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J H : ∀ (J : Box ι), J ∈ π → ∀ (J' : Box ι), J' ∈ πi J → p (TaggedPrepartition.tag (πi J) J') J' J' : Box ι x✝ : ∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1 J : Box ι hJ : J ∈ π hJ' : J' ∈ πi J ⊢ p (TaggedPrepartition.tag (πi J) J') J' [PROOFSTEP] exact H J hJ J' hJ' [GOAL] ι : Type u_1 I J : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ ⊢ J ∈ infPrepartition π₁ π₂.toPrepartition ↔ J ∈ infPrepartition π₂ π₁.toPrepartition [PROOFSTEP] simp only [← mem_toPrepartition, infPrepartition_toPrepartition, inf_comm] [GOAL] ι : Type u_1 I J : Box ι π π₁ π₂ : TaggedPrepartition I x✝ : ι → ℝ inst✝ : Fintype ι h : IsHenstock π x : ι → ℝ ⊢ Finset.card (Finset.filter (fun J => tag π J = x) π.boxes) ≤ Finset.card (Finset.filter (fun J => x ∈ ↑Box.Icc J) π.boxes) [PROOFSTEP] refine' Finset.card_le_of_subset fun J hJ => _ [GOAL] ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x✝ : ι → ℝ inst✝ : Fintype ι h : IsHenstock π x : ι → ℝ J : Box ι hJ : J ∈ Finset.filter (fun J => tag π J = x) π.boxes ⊢ J ∈ Finset.filter (fun J => x ∈ ↑Box.Icc J) π.boxes [PROOFSTEP] rw [Finset.mem_filter] at hJ ⊢ [GOAL] ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x✝ : ι → ℝ inst✝ : Fintype ι h : IsHenstock π x : ι → ℝ J : Box ι hJ : J ∈ π.boxes ∧ tag π J = x ⊢ J ∈ π.boxes ∧ x ∈ ↑Box.Icc J [PROOFSTEP] rcases hJ with ⟨hJ, rfl⟩ [GOAL] case intro ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ inst✝ : Fintype ι h : IsHenstock π J : Box ι hJ : J ∈ π.boxes ⊢ J ∈ π.boxes ∧ tag π J ∈ ↑Box.Icc J [PROOFSTEP] exact ⟨hJ, h J hJ⟩ [GOAL] ι : Type u_1 I J : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) p : (ι → ℝ) → Box ι → Prop hJ : J ≤ I h : x ∈ ↑Box.Icc I ⊢ (∀ (J' : Box ι), J' ∈ single I J hJ x h → p (tag (single I J hJ x h) J') J') ↔ p x J [PROOFSTEP] simp [GOAL] ι : Type u_1 I J✝ : Box ι π π₁✝ π₂✝ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) π₁ π₂ : TaggedPrepartition I h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι ⊢ Finset.piecewise π₁.boxes π₁.tag π₂.tag J ∈ ↑Box.Icc I [PROOFSTEP] dsimp only [Finset.piecewise] [GOAL] ι : Type u_1 I J✝ : Box ι π π₁✝ π₂✝ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) π₁ π₂ : TaggedPrepartition I h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι ⊢ (if J ∈ π₁.boxes then tag π₁ J else tag π₂ J) ∈ ↑Box.Icc I [PROOFSTEP] split_ifs [GOAL] case pos ι : Type u_1 I J✝ : Box ι π π₁✝ π₂✝ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) π₁ π₂ : TaggedPrepartition I h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι h✝ : J ∈ π₁.boxes ⊢ tag π₁ J ∈ ↑Box.Icc I case neg ι : Type u_1 I J✝ : Box ι π π₁✝ π₂✝ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) π₁ π₂ : TaggedPrepartition I h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι h✝ : ¬J ∈ π₁.boxes ⊢ tag π₂ J ∈ ↑Box.Icc I [PROOFSTEP] exacts [π₁.tag_mem_Icc J, π₂.tag_mem_Icc J] [GOAL] ι : Type u_1 I J : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) inst✝ : Fintype ι h₁ : IsSubordinate π₁ r h₂ : IsSubordinate π₂ r h : Disjoint (iUnion π₁) (iUnion π₂) ⊢ IsSubordinate (TaggedPrepartition.disjUnion π₁ π₂ h) r [PROOFSTEP] refine' fun J hJ => (Finset.mem_union.1 hJ).elim (fun hJ => _) fun hJ => _ [GOAL] case refine'_1 ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) inst✝ : Fintype ι h₁ : IsSubordinate π₁ r h₂ : IsSubordinate π₂ r h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h hJ : J ∈ π₁.boxes ⊢ ↑Box.Icc J ⊆ closedBall (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J) ↑(r (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J)) [PROOFSTEP] rw [disjUnion_tag_of_mem_left _ hJ] [GOAL] case refine'_1 ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) inst✝ : Fintype ι h₁ : IsSubordinate π₁ r h₂ : IsSubordinate π₂ r h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h hJ : J ∈ π₁.boxes ⊢ ↑Box.Icc J ⊆ closedBall (tag π₁ J) ↑(r (tag π₁ J)) [PROOFSTEP] exact h₁ _ hJ [GOAL] case refine'_2 ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) inst✝ : Fintype ι h₁ : IsSubordinate π₁ r h₂ : IsSubordinate π₂ r h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h hJ : J ∈ π₂.boxes ⊢ ↑Box.Icc J ⊆ closedBall (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J) ↑(r (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J)) [PROOFSTEP] rw [disjUnion_tag_of_mem_right _ hJ] [GOAL] case refine'_2 ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) inst✝ : Fintype ι h₁ : IsSubordinate π₁ r h₂ : IsSubordinate π₂ r h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h hJ : J ∈ π₂.boxes ⊢ ↑Box.Icc J ⊆ closedBall (tag π₂ J) ↑(r (tag π₂ J)) [PROOFSTEP] exact h₂ _ hJ [GOAL] ι : Type u_1 I J : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) h₁ : IsHenstock π₁ h₂ : IsHenstock π₂ h : Disjoint (iUnion π₁) (iUnion π₂) ⊢ IsHenstock (TaggedPrepartition.disjUnion π₁ π₂ h) [PROOFSTEP] refine' fun J hJ => (Finset.mem_union.1 hJ).elim (fun hJ => _) fun hJ => _ [GOAL] case refine'_1 ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) h₁ : IsHenstock π₁ h₂ : IsHenstock π₂ h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h hJ : J ∈ π₁.boxes ⊢ tag (TaggedPrepartition.disjUnion π₁ π₂ h) J ∈ ↑Box.Icc J [PROOFSTEP] rw [disjUnion_tag_of_mem_left _ hJ] [GOAL] case refine'_1 ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) h₁ : IsHenstock π₁ h₂ : IsHenstock π₂ h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h hJ : J ∈ π₁.boxes ⊢ tag π₁ J ∈ ↑Box.Icc J [PROOFSTEP] exact h₁ _ hJ [GOAL] case refine'_2 ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) h₁ : IsHenstock π₁ h₂ : IsHenstock π₂ h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h hJ : J ∈ π₂.boxes ⊢ tag (TaggedPrepartition.disjUnion π₁ π₂ h) J ∈ ↑Box.Icc J [PROOFSTEP] rw [disjUnion_tag_of_mem_right _ hJ] [GOAL] case refine'_2 ι : Type u_1 I J✝ : Box ι π π₁ π₂ : TaggedPrepartition I x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) h₁ : IsHenstock π₁ h₂ : IsHenstock π₂ h : Disjoint (iUnion π₁) (iUnion π₂) J : Box ι hJ✝ : J ∈ TaggedPrepartition.disjUnion π₁ π₂ h hJ : J ∈ π₂.boxes ⊢ tag π₂ J ∈ ↑Box.Icc J [PROOFSTEP] exact h₂ _ hJ [GOAL] ι : Type u_1 I✝ J✝ : Box ι π π₁ π₂ : TaggedPrepartition I✝ x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) I J : Box ι h : I ≤ J ⊢ Injective fun π => { toPrepartition := { boxes := π.boxes, le_of_mem' := (_ : ∀ (J' : Box ι), J' ∈ π.boxes → J' ≤ J), pairwiseDisjoint := (_ : Set.Pairwise (↑π.boxes) (Disjoint on Box.toSet)) }, tag := π.tag, tag_mem_Icc := (_ : ∀ (J_1 : Box ι), tag π J_1 ∈ ↑Box.Icc J) } [PROOFSTEP] rintro ⟨⟨b₁, h₁le, h₁d⟩, t₁, ht₁⟩ ⟨⟨b₂, h₂le, h₂d⟩, t₂, ht₂⟩ H [GOAL] case mk.mk.mk.mk ι : Type u_1 I✝ J✝ : Box ι π π₁ π₂ : TaggedPrepartition I✝ x : ι → ℝ r r₁ r₂ : (ι → ℝ) → ↑(Ioi 0) I J : Box ι h : I ≤ J t₁ : Box ι → ι → ℝ ht₁ : ∀ (J : Box ι), t₁ J ∈ ↑Box.Icc I b₁ : Finset (Box ι) h₁le : ∀ (J : Box ι), J ∈ b₁ → J ≤ I h₁d : Set.Pairwise (↑b₁) (Disjoint on Box.toSet) t₂ : Box ι → ι → ℝ ht₂ : ∀ (J : Box ι), t₂ J ∈ ↑Box.Icc I b₂ : Finset (Box ι) h₂le : ∀ (J : Box ι), J ∈ b₂ → J ≤ I h₂d : Set.Pairwise (↑b₂) (Disjoint on Box.toSet) H : (fun π => { toPrepartition := { boxes := π.boxes, le_of_mem' := (_ : ∀ (J' : Box ι), J' ∈ π.boxes → J' ≤ J), pairwiseDisjoint := (_ : Set.Pairwise (↑π.boxes) (Disjoint on Box.toSet)) }, tag := π.tag, tag_mem_Icc := (_ : ∀ (J_1 : Box ι), tag π J_1 ∈ ↑Box.Icc J) }) { toPrepartition := { boxes := b₁, le_of_mem' := h₁le, pairwiseDisjoint := h₁d }, tag := t₁, tag_mem_Icc := ht₁ } = (fun π => { toPrepartition := { boxes := π.boxes, le_of_mem' := (_ : ∀ (J' : Box ι), J' ∈ π.boxes → J' ≤ J), pairwiseDisjoint := (_ : Set.Pairwise (↑π.boxes) (Disjoint on Box.toSet)) }, tag := π.tag, tag_mem_Icc := (_ : ∀ (J_1 : Box ι), tag π J_1 ∈ ↑Box.Icc J) }) { toPrepartition := { boxes := b₂, le_of_mem' := h₂le, pairwiseDisjoint := h₂d }, tag := t₂, tag_mem_Icc := ht₂ } ⊢ { toPrepartition := { boxes := b₁, le_of_mem' := h₁le, pairwiseDisjoint := h₁d }, tag := t₁, tag_mem_Icc := ht₁ } = { toPrepartition := { boxes := b₂, le_of_mem' := h₂le, pairwiseDisjoint := h₂d }, tag := t₂, tag_mem_Icc := ht₂ } [PROOFSTEP] simpa using H
{"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Partition.Tagged", "llama_tokens": 6359}
[GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams ⊢ Henstock ≤ Riemann [PROOFSTEP] trivial [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams ⊢ Henstock ≤ McShane [PROOFSTEP] trivial [GOAL] ι✝ : Type u_1 inst✝ : Fintype ι✝ I J : Box ι✝ c c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι✝ → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ : IntegrationParams ι : Type u_2 l : IntegrationParams hl : l.bRiemann = false r : (ι → ℝ) → ↑(Set.Ioi 0) ⊢ RCond l r [PROOFSTEP] simp [RCond, hl] [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams h₁ : MemBaseSet l I c₁ r₁ π₁ h₂ : MemBaseSet l I c₂ r₂ π₂ hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ ⊢ ∃ π, Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂) [PROOFSTEP] wlog hc : c₁ ≤ c₂ with H [GOAL] case inr ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams h₁ : MemBaseSet l I c₁ r₁ π₁ h₂ : MemBaseSet l I c₂ r₂ π₂ hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ H : ∀ {ι : Type u_1} [inst : Fintype ι] {I : Box ι} {J : Box ι} {c : ℝ≥0} {c₁ c₂ : ℝ≥0} {r : (ι → ℝ) → ↑(Set.Ioi 0)} {r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0)} {π : TaggedPrepartition I} {π₁ π₂ : TaggedPrepartition I} {l : IntegrationParams} {l₁ l₂ : IntegrationParams}, MemBaseSet l I c₁ r₁ π₁ → MemBaseSet l I c₂ r₂ π₂ → TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ → c₁ ≤ c₂ → ∃ π, Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂) hc : ¬c₁ ≤ c₂ ⊢ ∃ π, Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂) [PROOFSTEP] simpa [hU, _root_.and_comm] using @H _ _ I J c c₂ c₁ r r₂ r₁ π π₂ π₁ _ l₂ l₁ h₂ h₁ hU.symm (le_of_not_le hc) [GOAL] ι✝ : Type u_1 inst✝¹ : Fintype ι✝ I✝ : Box ι✝ c₁✝ c₂✝ : ℝ≥0 r₁✝ r₂✝ : (ι✝ → ℝ) → ↑(Set.Ioi 0) π₁✝ π₂✝ : TaggedPrepartition I✝ l✝ : IntegrationParams ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams h₁ : MemBaseSet l I c₁ r₁ π₁ h₂ : MemBaseSet l I c₂ r₂ π₂ hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ hc : c₁ ≤ c₂ ⊢ ∃ π, Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂) [PROOFSTEP] by_cases hD : (l.bDistortion : Prop) [GOAL] case pos ι✝ : Type u_1 inst✝¹ : Fintype ι✝ I✝ : Box ι✝ c₁✝ c₂✝ : ℝ≥0 r₁✝ r₂✝ : (ι✝ → ℝ) → ↑(Set.Ioi 0) π₁✝ π₂✝ : TaggedPrepartition I✝ l✝ : IntegrationParams ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams h₁ : MemBaseSet l I c₁ r₁ π₁ h₂ : MemBaseSet l I c₂ r₂ π₂ hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ hc : c₁ ≤ c₂ hD : l.bDistortion = true ⊢ ∃ π, Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂) [PROOFSTEP] rcases h₁.4 hD with ⟨π, hπU, hπc⟩ [GOAL] case pos.intro.intro ι✝ : Type u_1 inst✝¹ : Fintype ι✝ I✝ : Box ι✝ c₁✝ c₂✝ : ℝ≥0 r₁✝ r₂✝ : (ι✝ → ℝ) → ↑(Set.Ioi 0) π₁✝ π₂✝ : TaggedPrepartition I✝ l✝ : IntegrationParams ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams h₁ : MemBaseSet l I c₁ r₁ π₁ h₂ : MemBaseSet l I c₂ r₂ π₂ hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ hc : c₁ ≤ c₂ hD : l.bDistortion = true π : Prepartition I hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ hπc : Prepartition.distortion π ≤ c₁ ⊢ ∃ π, Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂) [PROOFSTEP] exact ⟨π, hπU, fun _ => hπc, fun _ => hπc.trans hc⟩ [GOAL] case neg ι✝ : Type u_1 inst✝¹ : Fintype ι✝ I✝ : Box ι✝ c₁✝ c₂✝ : ℝ≥0 r₁✝ r₂✝ : (ι✝ → ℝ) → ↑(Set.Ioi 0) π₁✝ π₂✝ : TaggedPrepartition I✝ l✝ : IntegrationParams ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams h₁ : MemBaseSet l I c₁ r₁ π₁ h₂ : MemBaseSet l I c₂ r₂ π₂ hU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ hc : c₁ ≤ c₂ hD : ¬l.bDistortion = true ⊢ ∃ π, Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₁) ∧ (l.bDistortion = true → Prepartition.distortion π ≤ c₂) [PROOFSTEP] exact ⟨π₁.toPrepartition.compl, π₁.toPrepartition.iUnion_compl, fun h => (hD h).elim, fun h => (hD h).elim⟩ [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ₁ : MemBaseSet l I c r₁ π₁ hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → r₂ x ≤ r₁ x π₂ : Prepartition I hU : Prepartition.iUnion π₂ = ↑I \ TaggedPrepartition.iUnion π₁ hc : l.bDistortion = true → Prepartition.distortion π₂ ≤ c x✝ : l.bDistortion = true ⊢ Prepartition.iUnion ⊥ = ↑I \ TaggedPrepartition.iUnion (unionComplToSubordinate π₁ π₂ hU r₂) ∧ Prepartition.distortion ⊥ ≤ c [PROOFSTEP] simp [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop ⊢ MemBaseSet l I c r (TaggedPrepartition.filter π p) [PROOFSTEP] refine' ⟨fun J hJ => hπ.1 J (π.mem_filter.1 hJ).1, fun hH J hJ => hπ.2 hH J (π.mem_filter.1 hJ).1, fun hD => (distortion_filter_le _ _).trans (hπ.3 hD), fun hD => _⟩ [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true ⊢ ∃ π', Prepartition.iUnion π' = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ∧ Prepartition.distortion π' ≤ c [PROOFSTEP] rcases hπ.4 hD with ⟨π₁, hπ₁U, hc⟩ [GOAL] case intro.intro ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c ⊢ ∃ π', Prepartition.iUnion π' = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ∧ Prepartition.distortion π' ≤ c [PROOFSTEP] set π₂ := π.filter fun J => ¬p J [GOAL] case intro.intro ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J ⊢ ∃ π', Prepartition.iUnion π' = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ∧ Prepartition.distortion π' ≤ c [PROOFSTEP] have : Disjoint π₁.iUnion π₂.iUnion := by simpa [hπ₁U] using disjoint_sdiff_self_left.mono_right sdiff_le [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J ⊢ Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) [PROOFSTEP] simpa [hπ₁U] using disjoint_sdiff_self_left.mono_right sdiff_le [GOAL] case intro.intro ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) ⊢ ∃ π', Prepartition.iUnion π' = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ∧ Prepartition.distortion π' ≤ c [PROOFSTEP] refine' ⟨π₁.disjUnion π₂.toPrepartition this, _, _⟩ [GOAL] case intro.intro.refine'_1 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) ⊢ Prepartition.iUnion (Prepartition.disjUnion π₁ π₂.toPrepartition this) = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) [PROOFSTEP] suffices ↑I \ π.iUnion ∪ π.iUnion \ (π.filter p).iUnion = ↑I \ (π.filter p).iUnion by simp [*] [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this✝ : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) this : ↑I \ TaggedPrepartition.iUnion π ∪ TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊢ Prepartition.iUnion (Prepartition.disjUnion π₁ π₂.toPrepartition this✝) = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) [PROOFSTEP] simp [*] [GOAL] case intro.intro.refine'_1 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) ⊢ ↑I \ TaggedPrepartition.iUnion π ∪ TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) [PROOFSTEP] have h : (π.filter p).iUnion ⊆ π.iUnion := biUnion_subset_biUnion_left (Finset.filter_subset _ _) [GOAL] case intro.intro.refine'_1 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π ⊢ ↑I \ TaggedPrepartition.iUnion π ∪ TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) = ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) [PROOFSTEP] ext x [GOAL] case intro.intro.refine'_1.h ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π x : ι → ℝ ⊢ x ∈ ↑I \ TaggedPrepartition.iUnion π ∪ TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ↔ x ∈ ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) [PROOFSTEP] fconstructor [GOAL] case intro.intro.refine'_1.h.mp ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π x : ι → ℝ ⊢ x ∈ ↑I \ TaggedPrepartition.iUnion π ∪ TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) → x ∈ ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) [PROOFSTEP] rintro (⟨hxI, hxπ⟩ | ⟨hxπ, hxp⟩) [GOAL] case intro.intro.refine'_1.h.mp.inl.intro ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π x : ι → ℝ hxI : x ∈ ↑I hxπ : ¬x ∈ TaggedPrepartition.iUnion π ⊢ x ∈ ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) case intro.intro.refine'_1.h.mp.inr.intro ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π x : ι → ℝ hxπ : x ∈ TaggedPrepartition.iUnion π hxp : ¬x ∈ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊢ x ∈ ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) [PROOFSTEP] exacts [⟨hxI, mt (@h x) hxπ⟩, ⟨π.iUnion_subset hxπ, hxp⟩] [GOAL] case intro.intro.refine'_1.h.mpr ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π x : ι → ℝ ⊢ x ∈ ↑I \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) → x ∈ ↑I \ TaggedPrepartition.iUnion π ∪ TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) [PROOFSTEP] rintro ⟨hxI, hxp⟩ [GOAL] case intro.intro.refine'_1.h.mpr.intro ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π x : ι → ℝ hxI : x ∈ ↑I hxp : ¬x ∈ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊢ x ∈ ↑I \ TaggedPrepartition.iUnion π ∪ TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) [PROOFSTEP] by_cases hxπ : x ∈ π.iUnion [GOAL] case pos ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π x : ι → ℝ hxI : x ∈ ↑I hxp : ¬x ∈ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) hxπ : x ∈ TaggedPrepartition.iUnion π ⊢ x ∈ ↑I \ TaggedPrepartition.iUnion π ∪ TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) case neg ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) h : TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) ⊆ TaggedPrepartition.iUnion π x : ι → ℝ hxI : x ∈ ↑I hxp : ¬x ∈ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) hxπ : ¬x ∈ TaggedPrepartition.iUnion π ⊢ x ∈ ↑I \ TaggedPrepartition.iUnion π ∪ TaggedPrepartition.iUnion π \ TaggedPrepartition.iUnion (TaggedPrepartition.filter π p) [PROOFSTEP] exacts [Or.inr ⟨hxπ, hxp⟩, Or.inl ⟨hxI, hxπ⟩] [GOAL] case intro.intro.refine'_2 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) ⊢ Prepartition.distortion (Prepartition.disjUnion π₁ π₂.toPrepartition this) ≤ c [PROOFSTEP] have : (π.filter fun J => ¬p J).distortion ≤ c := (distortion_filter_le _ _).trans (hπ.3 hD) [GOAL] case intro.intro.refine'_2 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I l l₁ l₂ : IntegrationParams hπ : MemBaseSet l I c r π p : Box ι → Prop hD : l.bDistortion = true π₁ : Prepartition I hπ₁U : Prepartition.iUnion π₁ = ↑I \ TaggedPrepartition.iUnion π hc : Prepartition.distortion π₁ ≤ c π₂ : TaggedPrepartition I := TaggedPrepartition.filter π fun J => ¬p J this✝ : Disjoint (Prepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) this : distortion (TaggedPrepartition.filter π fun J => ¬p J) ≤ c ⊢ Prepartition.distortion (Prepartition.disjUnion π₁ π₂.toPrepartition this✝) ≤ c [PROOFSTEP] simpa [hc] [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J) hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J) hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c ⊢ MemBaseSet l I c r (Prepartition.biUnionTagged π πi) [PROOFSTEP] refine' ⟨TaggedPrepartition.isSubordinate_biUnionTagged.2 fun J hJ => (h J hJ).1, fun hH => TaggedPrepartition.isHenstock_biUnionTagged.2 fun J hJ => (h J hJ).2 hH, fun hD => _, fun hD => _⟩ [GOAL] case refine'_1 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J) hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J) hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c hD : l.bDistortion = true ⊢ distortion (Prepartition.biUnionTagged π πi) ≤ c [PROOFSTEP] rw [Prepartition.distortion_biUnionTagged, Finset.sup_le_iff] [GOAL] case refine'_1 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J) hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J) hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c hD : l.bDistortion = true ⊢ ∀ (b : Box ι), b ∈ π.boxes → distortion (πi b) ≤ c [PROOFSTEP] exact fun J hJ => (h J hJ).3 hD [GOAL] case refine'_2 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J) hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J) hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c hD : l.bDistortion = true ⊢ ∃ π', Prepartition.iUnion π' = ↑I \ TaggedPrepartition.iUnion (Prepartition.biUnionTagged π πi) ∧ Prepartition.distortion π' ≤ c [PROOFSTEP] refine' ⟨_, _, hc hD⟩ [GOAL] case refine'_2 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J) hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J) hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c hD : l.bDistortion = true ⊢ Prepartition.iUnion (Prepartition.compl π) = ↑I \ TaggedPrepartition.iUnion (Prepartition.biUnionTagged π πi) [PROOFSTEP] rw [π.iUnion_compl, ← π.iUnion_biUnion_partition hp] [GOAL] case refine'_2 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l l₁ l₂ : IntegrationParams π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J h : ∀ (J : Box ι), J ∈ π → MemBaseSet l J c r (πi J) hp : ∀ (J : Box ι), J ∈ π → IsPartition (πi J) hc : l.bDistortion = true → Prepartition.distortion (Prepartition.compl π) ≤ c hD : l.bDistortion = true ⊢ ↑I \ Prepartition.iUnion (Prepartition.biUnion π fun J => (πi J).toPrepartition) = ↑I \ TaggedPrepartition.iUnion (Prepartition.biUnionTagged π πi) [PROOFSTEP] rfl [GOAL] ι : Type u_1 inst✝ : Fintype ι I✝ J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁✝ π₂✝ : TaggedPrepartition I✝ l✝ l₁ l₂ : IntegrationParams I : Box ι l : IntegrationParams π₁ π₂ : Prepartition I h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ ⊢ toFilteriUnion l I π₁ = toFilteriUnion l I π₂ [PROOFSTEP] simp only [toFilteriUnion, toFilterDistortioniUnion, h] [GOAL] ι : Type u_1 inst✝ : Fintype ι I✝ J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I✝ l✝ l₁ l₂ l : IntegrationParams I : Box ι π₀ : Prepartition I ⊢ HasBasis (toFilteriUnion l I π₀) (fun r => ∀ (c : ℝ≥0), RCond l (r c)) fun r => {π | ∃ c, MemBaseSet l I c (r c) π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} [PROOFSTEP] have := fun c => l.hasBasis_toFilterDistortioniUnion I c π₀ [GOAL] ι : Type u_1 inst✝ : Fintype ι I✝ J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I✝ l✝ l₁ l₂ l : IntegrationParams I : Box ι π₀ : Prepartition I this : ∀ (c : ℝ≥0), HasBasis (toFilterDistortioniUnion l I c π₀) (RCond l) fun r => {π | MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} ⊢ HasBasis (toFilteriUnion l I π₀) (fun r => ∀ (c : ℝ≥0), RCond l (r c)) fun r => {π | ∃ c, MemBaseSet l I c (r c) π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} [PROOFSTEP] simpa only [setOf_and, setOf_exists] using hasBasis_iSup this [GOAL] ι : Type u_1 inst✝ : Fintype ι I✝ J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I✝ l✝ l₁ l₂ l : IntegrationParams I : Box ι ⊢ HasBasis (toFilteriUnion l I ⊤) (fun r => ∀ (c : ℝ≥0), RCond l (r c)) fun r => {π | ∃ c, MemBaseSet l I c (r c) π ∧ IsPartition π} [PROOFSTEP] simpa only [TaggedPrepartition.isPartition_iff_iUnion_eq, Prepartition.iUnion_top] using l.hasBasis_toFilteriUnion I ⊤ [GOAL] ι : Type u_1 inst✝ : Fintype ι I✝ J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I✝ l✝ l₁ l₂ l : IntegrationParams I : Box ι ⊢ HasBasis (toFilter l I) (fun r => ∀ (c : ℝ≥0), RCond l (r c)) fun r => {π | ∃ c, MemBaseSet l I c (r c) π} [PROOFSTEP] simpa only [setOf_exists] using hasBasis_iSup (l.hasBasis_toFilterDistortion I) [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J ⊢ Tendsto (↑(embedBox I J h)) (toFilteriUnion l I ⊤) (toFilteriUnion l J (Prepartition.single J I h)) [PROOFSTEP] simp only [toFilteriUnion, tendsto_iSup] [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J ⊢ ∀ (i : ℝ≥0), Tendsto (↑(embedBox I J h)) (toFilterDistortioniUnion l I i ⊤) (⨆ (c : ℝ≥0), toFilterDistortioniUnion l J c (Prepartition.single J I h)) [PROOFSTEP] intro c [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c✝ c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J c : ℝ≥0 ⊢ Tendsto (↑(embedBox I J h)) (toFilterDistortioniUnion l I c ⊤) (⨆ (c : ℝ≥0), toFilterDistortioniUnion l J c (Prepartition.single J I h)) [PROOFSTEP] set π₀ := Prepartition.single J I h [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c✝ c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J c : ℝ≥0 π₀ : Prepartition J := Prepartition.single J I h ⊢ Tendsto (↑(embedBox I J h)) (toFilterDistortioniUnion l I c ⊤) (⨆ (c : ℝ≥0), toFilterDistortioniUnion l J c π₀) [PROOFSTEP] refine' le_iSup_of_le (max c π₀.compl.distortion) _ [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c✝ c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J c : ℝ≥0 π₀ : Prepartition J := Prepartition.single J I h ⊢ Filter.map (↑(embedBox I J h)) (toFilterDistortioniUnion l I c ⊤) ≤ toFilterDistortioniUnion l J (max c (Prepartition.distortion (Prepartition.compl π₀))) π₀ [PROOFSTEP] refine' ((l.hasBasis_toFilterDistortioniUnion I c ⊤).tendsto_iff (l.hasBasis_toFilterDistortioniUnion J _ _)).2 fun r hr => _ [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c✝ c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J c : ℝ≥0 π₀ : Prepartition J := Prepartition.single J I h r : (ι → ℝ) → ↑(Set.Ioi 0) hr : RCond l r ⊢ ∃ ia, RCond l ia ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | MemBaseSet l I c ia π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion ⊤} → ↑(embedBox I J h) x ∈ {π | MemBaseSet l J (max c (Prepartition.distortion (Prepartition.compl π₀))) r π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} [PROOFSTEP] refine' ⟨r, hr, fun π hπ => _⟩ [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c✝ c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J c : ℝ≥0 π₀ : Prepartition J := Prepartition.single J I h r : (ι → ℝ) → ↑(Set.Ioi 0) hr : RCond l r π : TaggedPrepartition I hπ : π ∈ {π | MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion ⊤} ⊢ ↑(embedBox I J h) π ∈ {π | MemBaseSet l J (max c (Prepartition.distortion (Prepartition.compl π₀))) r π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} [PROOFSTEP] rw [mem_setOf_eq, Prepartition.iUnion_top] at hπ [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c✝ c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J c : ℝ≥0 π₀ : Prepartition J := Prepartition.single J I h r : (ι → ℝ) → ↑(Set.Ioi 0) hr : RCond l r π : TaggedPrepartition I hπ : MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = ↑I ⊢ ↑(embedBox I J h) π ∈ {π | MemBaseSet l J (max c (Prepartition.distortion (Prepartition.compl π₀))) r π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} [PROOFSTEP] refine' ⟨⟨hπ.1.1, hπ.1.2, fun hD => le_trans (hπ.1.3 hD) (le_max_left _ _), fun _ => _⟩, _⟩ [GOAL] case refine'_1 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c✝ c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J c : ℝ≥0 π₀ : Prepartition J := Prepartition.single J I h r : (ι → ℝ) → ↑(Set.Ioi 0) hr : RCond l r π : TaggedPrepartition I hπ : MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = ↑I x✝ : l.bDistortion = true ⊢ ∃ π', Prepartition.iUnion π' = ↑J \ TaggedPrepartition.iUnion (↑(embedBox I J h) π) ∧ Prepartition.distortion π' ≤ max c (Prepartition.distortion (Prepartition.compl π₀)) [PROOFSTEP] refine' ⟨_, π₀.iUnion_compl.trans _, le_max_right _ _⟩ [GOAL] case refine'_1 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c✝ c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J c : ℝ≥0 π₀ : Prepartition J := Prepartition.single J I h r : (ι → ℝ) → ↑(Set.Ioi 0) hr : RCond l r π : TaggedPrepartition I hπ : MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = ↑I x✝ : l.bDistortion = true ⊢ ↑J \ Prepartition.iUnion π₀ = ↑J \ TaggedPrepartition.iUnion (↑(embedBox I J h) π) [PROOFSTEP] congr 1 [GOAL] case refine'_1.e_a ι : Type u_1 inst✝ : Fintype ι I J : Box ι c✝ c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J c : ℝ≥0 π₀ : Prepartition J := Prepartition.single J I h r : (ι → ℝ) → ↑(Set.Ioi 0) hr : RCond l r π : TaggedPrepartition I hπ : MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = ↑I x✝ : l.bDistortion = true ⊢ Prepartition.iUnion π₀ = TaggedPrepartition.iUnion (↑(embedBox I J h) π) [PROOFSTEP] exact (Prepartition.iUnion_single h).trans hπ.2.symm [GOAL] case refine'_2 ι : Type u_1 inst✝ : Fintype ι I J : Box ι c✝ c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams h : I ≤ J c : ℝ≥0 π₀ : Prepartition J := Prepartition.single J I h r : (ι → ℝ) → ↑(Set.Ioi 0) hr : RCond l r π : TaggedPrepartition I hπ : MemBaseSet l I c r π ∧ TaggedPrepartition.iUnion π = ↑I ⊢ TaggedPrepartition.iUnion (↑(embedBox I J h) π) = Prepartition.iUnion π₀ [PROOFSTEP] exact hπ.2.trans (Prepartition.iUnion_single _).symm [GOAL] ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams π₀ : Prepartition I hc₁ : Prepartition.distortion π₀ ≤ c hc₂ : Prepartition.distortion (Prepartition.compl π₀) ≤ c r : (ι → ℝ) → ↑(Set.Ioi 0) ⊢ ∃ π, MemBaseSet l I c r π ∧ π.toPrepartition ≤ π₀ ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ [PROOFSTEP] rcases π₀.exists_tagged_le_isHenstock_isSubordinate_iUnion_eq r with ⟨π, hle, hH, hr, hd, hU⟩ [GOAL] case intro.intro.intro.intro.intro ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams π₀ : Prepartition I hc₁ : Prepartition.distortion π₀ ≤ c hc₂ : Prepartition.distortion (Prepartition.compl π₀) ≤ c r : (ι → ℝ) → ↑(Set.Ioi 0) π : TaggedPrepartition I hle : π.toPrepartition ≤ π₀ hH : IsHenstock π hr : IsSubordinate π r hd : distortion π = Prepartition.distortion π₀ hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ ⊢ ∃ π, MemBaseSet l I c r π ∧ π.toPrepartition ≤ π₀ ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ [PROOFSTEP] refine' ⟨π, ⟨hr, fun _ => hH, fun _ => hd.trans_le hc₁, fun _ => ⟨π₀.compl, _, hc₂⟩⟩, ⟨hle, hU⟩⟩ [GOAL] case intro.intro.intro.intro.intro ι : Type u_1 inst✝ : Fintype ι I J : Box ι c c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π✝ π₁ π₂ : TaggedPrepartition I l✝ l₁ l₂ l : IntegrationParams π₀ : Prepartition I hc₁ : Prepartition.distortion π₀ ≤ c hc₂ : Prepartition.distortion (Prepartition.compl π₀) ≤ c r : (ι → ℝ) → ↑(Set.Ioi 0) π : TaggedPrepartition I hle : π.toPrepartition ≤ π₀ hH : IsHenstock π hr : IsSubordinate π r hd : distortion π = Prepartition.distortion π₀ hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ x✝ : l.bDistortion = true ⊢ Prepartition.iUnion (Prepartition.compl π₀) = ↑I \ TaggedPrepartition.iUnion π [PROOFSTEP] exact Prepartition.compl_congr hU ▸ π.toPrepartition.iUnion_compl [GOAL] ι : Type u_1 inst✝ : Fintype ι I✝ J : Box ι c c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I✝ l✝ l₁ l₂ l : IntegrationParams I : Box ι hc : Box.distortion I ≤ c r : (ι → ℝ) → ↑(Set.Ioi 0) ⊢ ∃ π, MemBaseSet l I c r π ∧ IsPartition π [PROOFSTEP] rw [← Prepartition.distortion_top] at hc [GOAL] ι : Type u_1 inst✝ : Fintype ι I✝ J : Box ι c c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I✝ l✝ l₁ l₂ l : IntegrationParams I : Box ι hc : Prepartition.distortion ⊤ ≤ c r : (ι → ℝ) → ↑(Set.Ioi 0) ⊢ ∃ π, MemBaseSet l I c r π ∧ IsPartition π [PROOFSTEP] have hc' : (⊤ : Prepartition I).compl.distortion ≤ c := by simp [GOAL] ι : Type u_1 inst✝ : Fintype ι I✝ J : Box ι c c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I✝ l✝ l₁ l₂ l : IntegrationParams I : Box ι hc : Prepartition.distortion ⊤ ≤ c r : (ι → ℝ) → ↑(Set.Ioi 0) ⊢ Prepartition.distortion (Prepartition.compl ⊤) ≤ c [PROOFSTEP] simp [GOAL] ι : Type u_1 inst✝ : Fintype ι I✝ J : Box ι c c₁ c₂ : ℝ≥0 r✝ r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I✝ l✝ l₁ l₂ l : IntegrationParams I : Box ι hc : Prepartition.distortion ⊤ ≤ c r : (ι → ℝ) → ↑(Set.Ioi 0) hc' : Prepartition.distortion (Prepartition.compl ⊤) ≤ c ⊢ ∃ π, MemBaseSet l I c r π ∧ IsPartition π [PROOFSTEP] simpa [isPartition_iff_iUnion_eq] using l.exists_memBaseSet_le_iUnion_eq ⊤ hc hc' r [GOAL] ι : Type u_1 inst✝ : Fintype ι I✝ J : Box ι c c₁ c₂ : ℝ≥0 r r₁ r₂ : (ι → ℝ) → ↑(Set.Ioi 0) π π₁ π₂ : TaggedPrepartition I✝ l✝ l₁ l₂ l : IntegrationParams I : Box ι ⊢ NeBot (toFilterDistortion l I (Box.distortion I)) [PROOFSTEP] simpa using (l.toFilterDistortioniUnion_neBot' I ⊤).mono inf_le_left
{"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Partition.Filter", "llama_tokens": 17831}
[GOAL] m : Type u → Type u inst✝ : Monad m α β : Type u f : β → α → β ⊢ ∀ (x y : FreeMonoid α), OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) } (x * y) = OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) } x * OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) } y [PROOFSTEP] intros [GOAL] m : Type u → Type u inst✝ : Monad m α β : Type u f : β → α → β x✝ y✝ : FreeMonoid α ⊢ OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) } (x✝ * y✝) = OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) } x✝ * OneHom.toFun { toFun := fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldl f) (↑FreeMonoid.toList xs))) 1) } y✝ [PROOFSTEP] simp only [FreeMonoid.toList_mul, flip, unop_op, List.foldl_append, op_inj] [GOAL] m : Type u → Type u inst✝ : Monad m α β : Type u f : β → α → β x✝ y✝ : FreeMonoid α ⊢ (op fun a => List.foldl f (List.foldl f a (↑FreeMonoid.toList x✝)) (↑FreeMonoid.toList y✝)) = (op fun a => List.foldl f a (↑FreeMonoid.toList x✝)) * op fun a => List.foldl f a (↑FreeMonoid.toList y✝) [PROOFSTEP] rfl [GOAL] m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : β → α → m β ⊢ ∀ (x y : FreeMonoid α), OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } (x * y) = OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } x * OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } y [PROOFSTEP] intros [GOAL] m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : β → α → m β x✝ y✝ : FreeMonoid α ⊢ OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } (x✝ * y✝) = OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } x✝ * OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } y✝ [PROOFSTEP] apply unop_injective [GOAL] case a m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : β → α → m β x✝ y✝ : FreeMonoid α ⊢ unop (OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } (x✝ * y✝)) = unop (OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } x✝ * OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } y✝) [PROOFSTEP] funext [GOAL] case a.h m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : β → α → m β x✝¹ y✝ : FreeMonoid α x✝ : KleisliCat.mk m β ⊢ unop (OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } (x✝¹ * y✝)) x✝ = unop (OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } x✝¹ * OneHom.toFun { toFun := fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs)), map_one' := (_ : (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1 = (fun xs => op (flip (List.foldlM f) (↑FreeMonoid.toList xs))) 1) } y✝) x✝ [PROOFSTEP] apply List.foldlM_append [GOAL] m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : α → β → m β ⊢ ∀ (x y : FreeMonoid α), OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) } (x * y) = OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) } x * OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) } y [PROOFSTEP] intros [GOAL] m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : α → β → m β x✝ y✝ : FreeMonoid α ⊢ OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) } (x✝ * y✝) = OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) } x✝ * OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) } y✝ [PROOFSTEP] funext [GOAL] case h m : Type u → Type u inst✝¹ : Monad m α β : Type u inst✝ : LawfulMonad m f : α → β → m β x✝¹ y✝ : FreeMonoid α x✝ : KleisliCat.mk m β ⊢ OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) } (x✝¹ * y✝) x✝ = (OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) } x✝¹ * OneHom.toFun { toFun := fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs), map_one' := (_ : (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1 = (fun xs => flip (List.foldrM f) (↑FreeMonoid.toList xs)) 1) } y✝) x✝ [PROOFSTEP] apply List.foldrM_append [GOAL] α β γ : Type u inst✝¹ : Monoid α inst✝ : Monoid β f : α →* β ⊢ ∀ {α_1 : Type ?u.11080} (x : α_1), (fun x => ↑f) α_1 (pure x) = pure x [PROOFSTEP] intros [GOAL] α β γ : Type u inst✝¹ : Monoid α inst✝ : Monoid β f : α →* β α✝ : Type ?u.11080 x✝ : α✝ ⊢ (fun x => ↑f) α✝ (pure x✝) = pure x✝ [PROOFSTEP] simp only [map_one, pure] [GOAL] α β γ : Type u inst✝¹ : Monoid α inst✝ : Monoid β f : α →* β ⊢ ∀ {α_1 β_1 : Type ?u.11080} (x : Const α (α_1 → β_1)) (y : Const α α_1), (fun x => ↑f) β_1 (Seq.seq x fun x => y) = Seq.seq ((fun x => ↑f) (α_1 → β_1) x) fun x => (fun x => ↑f) α_1 y [PROOFSTEP] intros [GOAL] α β γ : Type u inst✝¹ : Monoid α inst✝ : Monoid β f : α →* β α✝ β✝ : Type ?u.11080 x✝ : Const α (α✝ → β✝) y✝ : Const α α✝ ⊢ (fun x => ↑f) β✝ (Seq.seq x✝ fun x => y✝) = Seq.seq ((fun x => ↑f) (α✝ → β✝) x✝) fun x => (fun x => ↑f) α✝ y✝ [PROOFSTEP] simp only [Seq.seq, map_mul] [GOAL] α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m α ⊢ ↑(foldlM.ofFreeMonoid f) ∘ FreeMonoid.of = foldlM.mk ∘ flip f [PROOFSTEP] ext1 x [GOAL] case h α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m α x : β ⊢ (↑(foldlM.ofFreeMonoid f) ∘ FreeMonoid.of) x = (foldlM.mk ∘ flip f) x [PROOFSTEP] simp [(· ∘ ·), foldlM.ofFreeMonoid, foldlM.mk, flip] [GOAL] α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : β → α → m α ⊢ ↑(foldrM.ofFreeMonoid f) ∘ FreeMonoid.of = foldrM.mk ∘ f [PROOFSTEP] ext [GOAL] case h α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : β → α → m α x✝ : β ⊢ (↑(foldrM.ofFreeMonoid f) ∘ FreeMonoid.of) x✝ = (foldrM.mk ∘ f) x✝ [PROOFSTEP] simp [(· ∘ ·), foldrM.ofFreeMonoid, foldrM.mk, flip] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ ↑FreeMonoid.toList (foldMap FreeMonoid.of xs) = ↑FreeMonoid.toList (List.reverse (List.reverse (foldMap FreeMonoid.of xs))) [PROOFSTEP] simp only [List.reverse_reverse] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ ↑FreeMonoid.toList (List.reverse (List.reverse (foldMap FreeMonoid.of xs))) = ↑FreeMonoid.toList (List.reverse (List.foldr cons [] (List.reverse (foldMap FreeMonoid.of xs)))) [PROOFSTEP] simp only [List.foldr_eta] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ ↑FreeMonoid.toList (List.reverse (List.foldr cons [] (List.reverse (foldMap FreeMonoid.of xs)))) = List.reverse (unop (↑(Foldl.ofFreeMonoid (flip cons)) (foldMap FreeMonoid.of xs)) []) [PROOFSTEP] simp [flip, List.foldr_reverse, Foldl.ofFreeMonoid, unop_op] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ List.reverse (unop (↑(Foldl.ofFreeMonoid (flip cons)) (foldMap FreeMonoid.of xs)) []) = toList xs [PROOFSTEP] rw [foldMap_hom_free (Foldl.ofFreeMonoid (flip <| @cons α))] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ List.reverse (unop (foldMap (↑(Foldl.ofFreeMonoid (flip cons)) ∘ FreeMonoid.of) xs) []) = toList xs [PROOFSTEP] simp only [toList, foldl, List.reverse_inj, Foldl.get, foldl.ofFreeMonoid_comp_of, Function.comp_apply] [GOAL] α β γ : Type u t : Type u → Type u inst✝² : Traversable t inst✝¹ : LawfulTraversable t inst✝ : Monoid γ f : α → β g : β → γ xs : t α ⊢ foldMap g (f <$> xs) = foldMap (g ∘ f) xs [PROOFSTEP] simp only [foldMap, traverse_map, Function.comp] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t f : α → β → α xs : t β x : α ⊢ foldl f x xs = List.foldl f x (toList xs) [PROOFSTEP] rw [← FreeMonoid.toList_ofList (toList xs), ← foldl.unop_ofFreeMonoid] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t f : α → β → α xs : t β x : α ⊢ foldl f x xs = unop (↑(Foldl.ofFreeMonoid f) (↑FreeMonoid.ofList (toList xs))) x [PROOFSTEP] simp only [foldl, toList_spec, foldMap_hom_free, foldl.ofFreeMonoid_comp_of, Foldl.get, FreeMonoid.ofList_toList] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t f : α → β → β xs : t α x : β ⊢ foldr f x xs = List.foldr f x (toList xs) [PROOFSTEP] change _ = Foldr.ofFreeMonoid _ (FreeMonoid.ofList <| toList xs) _ [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t f : α → β → β xs : t α x : β ⊢ foldr f x xs = ↑(Foldr.ofFreeMonoid f) (↑FreeMonoid.ofList (toList xs)) x [PROOFSTEP] rw [toList_spec, foldr, Foldr.get, FreeMonoid.ofList_toList, foldMap_hom_free, foldr.ofFreeMonoid_comp_of] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t f : α → β xs : t α ⊢ toList (f <$> xs) = f <$> toList xs [PROOFSTEP] simp only [toList_spec, Free.map_eq_map, foldMap_hom, foldMap_map, FreeMonoid.ofList_toList, FreeMonoid.map_of, (· ∘ ·)] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t g : β → γ f : α → γ → α a : α l : t β ⊢ foldl f a (g <$> l) = foldl (fun x y => f x (g y)) a l [PROOFSTEP] simp only [foldl, foldMap_map, (· ∘ ·), flip] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t g : β → γ f : γ → α → α a : α l : t β ⊢ foldr f a (g <$> l) = foldr (f ∘ g) a l [PROOFSTEP] simp only [foldr, foldMap_map, (· ∘ ·), flip] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : List α ⊢ toList xs = xs [PROOFSTEP] simp only [toList_spec, foldMap, traverse] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : List α ⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) xs) = xs [PROOFSTEP] induction xs [GOAL] case nil α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t ⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) []) = [] case cons α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α tail_ih✝ : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ ⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝ [PROOFSTEP] case nil => rfl [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t ⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) []) = [] [PROOFSTEP] case nil => rfl [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t ⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) []) = [] [PROOFSTEP] rfl [GOAL] case cons α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α tail_ih✝ : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ ⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝ [PROOFSTEP] case cons _ _ ih => conv_rhs => rw [← ih]; rfl [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ ⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝ [PROOFSTEP] case cons _ _ ih => conv_rhs => rw [← ih]; rfl [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ ⊢ ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) (head✝ :: tail✝)) = head✝ :: tail✝ [PROOFSTEP] conv_rhs => rw [← ih]; rfl [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ | head✝ :: tail✝ [PROOFSTEP] rw [← ih]; rfl [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ | head✝ :: tail✝ [PROOFSTEP] rw [← ih]; rfl [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ | head✝ :: tail✝ [PROOFSTEP] rw [← ih] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t head✝ : α tail✝ : List α ih : ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) = tail✝ | head✝ :: ↑FreeMonoid.toList (List.traverse (Const.mk' ∘ FreeMonoid.of) tail✝) [PROOFSTEP] rfl [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ length xs = List.length (toList xs) [PROOFSTEP] unfold length [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ (foldl (fun l x => { down := l.down + 1 }) { down := 0 } xs).down = List.length (toList xs) [PROOFSTEP] rw [foldl_toList] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := 0 } (toList xs)).down = List.length (toList xs) [PROOFSTEP] generalize toList xs = ys [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ys : List α ⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := 0 } ys).down = List.length ys [PROOFSTEP] rw [← Nat.add_zero ys.length] [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ys : List α ⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := 0 } ys).down = List.length ys + 0 [PROOFSTEP] generalize 0 = n [GOAL] α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α ys : List α n : ℕ ⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := n } ys).down = List.length ys + n [PROOFSTEP] induction' ys with _ _ ih generalizing n [GOAL] case nil α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α n✝ n : ℕ ⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := n } []).down = List.length [] + n [PROOFSTEP] simp [GOAL] case cons α β γ : Type u t : Type u → Type u inst✝¹ : Traversable t inst✝ : LawfulTraversable t xs : t α n✝ : ℕ head✝ : α tail✝ : List α ih : ∀ (n : ℕ), (List.foldl (fun l x => { down := l.down + 1 }) { down := n } tail✝).down = List.length tail✝ + n n : ℕ ⊢ (List.foldl (fun l x => { down := l.down + 1 }) { down := n } (head✝ :: tail✝)).down = List.length (head✝ :: tail✝) + n [PROOFSTEP] simp_arith [ih] [GOAL] α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m α x : α xs : t β ⊢ foldlm f x xs = unop (↑(foldlM.ofFreeMonoid f) (↑FreeMonoid.ofList (toList xs))) x [PROOFSTEP] simp only [foldlm, toList_spec, foldMap_hom_free (foldlM.ofFreeMonoid f), foldlm.ofFreeMonoid_comp_of, foldlM.get, FreeMonoid.ofList_toList] [GOAL] α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m α x : α xs : t β ⊢ unop (↑(foldlM.ofFreeMonoid f) (↑FreeMonoid.ofList (toList xs))) x = List.foldlM f x (toList xs) [PROOFSTEP] simp [foldlM.ofFreeMonoid, unop_op, flip] [GOAL] α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m β x : β xs : t α ⊢ foldrm f x xs = List.foldrM f x (toList xs) [PROOFSTEP] change _ = foldrM.ofFreeMonoid f (FreeMonoid.ofList <| toList xs) x [GOAL] α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m f : α → β → m β x : β xs : t α ⊢ foldrm f x xs = ↑(foldrM.ofFreeMonoid f) (↑FreeMonoid.ofList (toList xs)) x [PROOFSTEP] simp only [foldrm, toList_spec, foldMap_hom_free (foldrM.ofFreeMonoid f), foldrm.ofFreeMonoid_comp_of, foldrM.get, FreeMonoid.ofList_toList] [GOAL] α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m g : β → γ f : α → γ → m α a : α l : t β ⊢ foldlm f a (g <$> l) = foldlm (fun x y => f x (g y)) a l [PROOFSTEP] simp only [foldlm, foldMap_map, (· ∘ ·), flip] [GOAL] α β γ : Type u t : Type u → Type u inst✝³ : Traversable t inst✝² : LawfulTraversable t m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m g : β → γ f : γ → α → m α a : α l : t β ⊢ foldrm f a (g <$> l) = foldrm (f ∘ g) a l [PROOFSTEP] simp only [foldrm, foldMap_map, (· ∘ ·), flip]
{"mathlib_filename": "Mathlib.Control.Fold", "llama_tokens": 10815}
[GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom ⊢ Part.fix f x = Fix.approx f (Nat.succ (Nat.find h')) x [PROOFSTEP] let p := fun i : ℕ => (Fix.approx f i x).Dom [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom ⊢ Part.fix f x = Fix.approx f (Nat.succ (Nat.find h')) x [PROOFSTEP] have : p (Nat.find h') := Nat.find_spec h' [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom this : p (Nat.find h') ⊢ Part.fix f x = Fix.approx f (Nat.succ (Nat.find h')) x [PROOFSTEP] generalize hk : Nat.find h' = k [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom this : p (Nat.find h') k : ℕ hk : Nat.find h' = k ⊢ Part.fix f x = Fix.approx f (Nat.succ k) x [PROOFSTEP] replace hk : Nat.find h' = k + (@Upto.zero p).val := hk [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom this : p (Nat.find h') k : ℕ hk : Nat.find h' = k + ↑Upto.zero ⊢ Part.fix f x = Fix.approx f (Nat.succ k) x [PROOFSTEP] rw [hk] at this [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ this : p (k + ↑Upto.zero) hk : Nat.find h' = k + ↑Upto.zero ⊢ Part.fix f x = Fix.approx f (Nat.succ k) x [PROOFSTEP] revert hk [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ this : p (k + ↑Upto.zero) ⊢ Nat.find h' = k + ↑Upto.zero → Part.fix f x = Fix.approx f (Nat.succ k) x [PROOFSTEP] dsimp [Part.fix] [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ this : p (k + ↑Upto.zero) ⊢ Nat.find h' = k + ↑Upto.zero → (assert (∃ i, (Fix.approx f i x).Dom) fun h => WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) Upto.zero x) = Fix.approx f (Nat.succ k) x [PROOFSTEP] rw [assert_pos h'] [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ this : p (k + ↑Upto.zero) ⊢ Nat.find h' = k + ↑Upto.zero → WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) Upto.zero x = Fix.approx f (Nat.succ k) x [PROOFSTEP] revert this [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ ⊢ p (k + ↑Upto.zero) → Nat.find h' = k + ↑Upto.zero → WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) Upto.zero x = Fix.approx f (Nat.succ k) x [PROOFSTEP] generalize Upto.zero = z [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ z : Upto p ⊢ p (k + ↑z) → Nat.find h' = k + ↑z → WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x = Fix.approx f (Nat.succ k) x [PROOFSTEP] intro _this hk [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ z : Upto p _this : p (k + ↑z) hk : Nat.find h' = k + ↑z ⊢ WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x = Fix.approx f (Nat.succ k) x [PROOFSTEP] suffices : ∀ x', WellFounded.fix (Part.fix.proof_1 f x h') (fixAux f) z x' = Fix.approx f (succ k) x' [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ z : Upto p _this : p (k + ↑z) hk : Nat.find h' = k + ↑z this : ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ k) x' ⊢ WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x = Fix.approx f (Nat.succ k) x case this α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ z : Upto p _this : p (k + ↑z) hk : Nat.find h' = k + ↑z ⊢ ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ k) x' [PROOFSTEP] exact this _ [GOAL] case this α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ z : Upto p _this : p (k + ↑z) hk : Nat.find h' = k + ↑z ⊢ ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ k) x' [PROOFSTEP] induction k generalizing z with | zero => intro x' rw [Fix.approx, WellFounded.fix_eq, fixAux] congr ext x : 1 rw [assert_neg] rfl rw [Nat.zero_add] at _this simpa only [not_not, Coe] | succ n n_ih => intro x' rw [Fix.approx, WellFounded.fix_eq, fixAux] congr ext : 1 have hh : ¬(Fix.approx f z.val x).Dom := by apply Nat.find_min h' rw [hk, Nat.succ_add, ← Nat.add_succ] apply Nat.lt_of_succ_le apply Nat.le_add_left rw [succ_add_eq_succ_add] at _this hk rw [assert_pos hh, n_ih (Upto.succ z hh) _this hk] [GOAL] case this α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom k : ℕ z : Upto p _this : p (k + ↑z) hk : Nat.find h' = k + ↑z ⊢ ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ k) x' [PROOFSTEP] induction k generalizing z with | zero => intro x' rw [Fix.approx, WellFounded.fix_eq, fixAux] congr ext x : 1 rw [assert_neg] rfl rw [Nat.zero_add] at _this simpa only [not_not, Coe] | succ n n_ih => intro x' rw [Fix.approx, WellFounded.fix_eq, fixAux] congr ext : 1 have hh : ¬(Fix.approx f z.val x).Dom := by apply Nat.find_min h' rw [hk, Nat.succ_add, ← Nat.add_succ] apply Nat.lt_of_succ_le apply Nat.le_add_left rw [succ_add_eq_succ_add] at _this hk rw [assert_pos hh, n_ih (Upto.succ z hh) _this hk] [GOAL] case this.zero α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom z : Upto p _this : p (Nat.zero + ↑z) hk : Nat.find h' = Nat.zero + ↑z ⊢ ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ Nat.zero) x' [PROOFSTEP] | zero => intro x' rw [Fix.approx, WellFounded.fix_eq, fixAux] congr ext x : 1 rw [assert_neg] rfl rw [Nat.zero_add] at _this simpa only [not_not, Coe] [GOAL] case this.zero α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom z : Upto p _this : p (Nat.zero + ↑z) hk : Nat.find h' = Nat.zero + ↑z ⊢ ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ Nat.zero) x' [PROOFSTEP] intro x' [GOAL] case this.zero α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom z : Upto p _this : p (Nat.zero + ↑z) hk : Nat.find h' = Nat.zero + ↑z x' : α ⊢ WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ Nat.zero) x' [PROOFSTEP] rw [Fix.approx, WellFounded.fix_eq, fixAux] [GOAL] case this.zero α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom z : Upto p _this : p (Nat.zero + ↑z) hk : Nat.find h' = Nat.zero + ↑z x' : α ⊢ f (fun x_1 => assert (¬(Fix.approx f (↑z) x).Dom) fun h => WellFounded.fix (_ : WellFounded (Upto.GT fun x_2 => (Fix.approx f x_2 x).Dom)) (fixAux f) (Upto.succ z h) x_1) x' = f (Fix.approx f Nat.zero) x' [PROOFSTEP] congr [GOAL] case this.zero.e_a α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom z : Upto p _this : p (Nat.zero + ↑z) hk : Nat.find h' = Nat.zero + ↑z x' : α ⊢ (fun x_1 => assert (¬(Fix.approx f (↑z) x).Dom) fun h => WellFounded.fix (_ : WellFounded (Upto.GT fun x_2 => (Fix.approx f x_2 x).Dom)) (fixAux f) (Upto.succ z h) x_1) = Fix.approx f Nat.zero [PROOFSTEP] ext x : 1 [GOAL] case this.zero.e_a.h α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x✝ : α h' : ∃ i, (Fix.approx f i x✝).Dom p : ℕ → Prop := fun i => (Fix.approx f i x✝).Dom z : Upto p _this : p (Nat.zero + ↑z) hk : Nat.find h' = Nat.zero + ↑z x' x : α ⊢ (assert (¬(Fix.approx f (↑z) x✝).Dom) fun h => WellFounded.fix (_ : WellFounded (Upto.GT fun x => (Fix.approx f x x✝).Dom)) (fixAux f) (Upto.succ z h) x) = Fix.approx f Nat.zero x [PROOFSTEP] rw [assert_neg] [GOAL] case this.zero.e_a.h α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x✝ : α h' : ∃ i, (Fix.approx f i x✝).Dom p : ℕ → Prop := fun i => (Fix.approx f i x✝).Dom z : Upto p _this : p (Nat.zero + ↑z) hk : Nat.find h' = Nat.zero + ↑z x' x : α ⊢ none = Fix.approx f Nat.zero x case this.zero.e_a.h α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x✝ : α h' : ∃ i, (Fix.approx f i x✝).Dom p : ℕ → Prop := fun i => (Fix.approx f i x✝).Dom z : Upto p _this : p (Nat.zero + ↑z) hk : Nat.find h' = Nat.zero + ↑z x' x : α ⊢ ¬¬(Fix.approx f (↑z) x✝).Dom [PROOFSTEP] rfl [GOAL] case this.zero.e_a.h α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x✝ : α h' : ∃ i, (Fix.approx f i x✝).Dom p : ℕ → Prop := fun i => (Fix.approx f i x✝).Dom z : Upto p _this : p (Nat.zero + ↑z) hk : Nat.find h' = Nat.zero + ↑z x' x : α ⊢ ¬¬(Fix.approx f (↑z) x✝).Dom [PROOFSTEP] rw [Nat.zero_add] at _this [GOAL] case this.zero.e_a.h α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x✝ : α h' : ∃ i, (Fix.approx f i x✝).Dom p : ℕ → Prop := fun i => (Fix.approx f i x✝).Dom z : Upto p _this : p ↑z hk : Nat.find h' = Nat.zero + ↑z x' x : α ⊢ ¬¬(Fix.approx f (↑z) x✝).Dom [PROOFSTEP] simpa only [not_not, Coe] [GOAL] case this.succ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z ⊢ ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ (Nat.succ n)) x' [PROOFSTEP] | succ n n_ih => intro x' rw [Fix.approx, WellFounded.fix_eq, fixAux] congr ext : 1 have hh : ¬(Fix.approx f z.val x).Dom := by apply Nat.find_min h' rw [hk, Nat.succ_add, ← Nat.add_succ] apply Nat.lt_of_succ_le apply Nat.le_add_left rw [succ_add_eq_succ_add] at _this hk rw [assert_pos hh, n_ih (Upto.succ z hh) _this hk] [GOAL] case this.succ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z ⊢ ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ (Nat.succ n)) x' [PROOFSTEP] intro x' [GOAL] case this.succ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z x' : α ⊢ WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ (Nat.succ n)) x' [PROOFSTEP] rw [Fix.approx, WellFounded.fix_eq, fixAux] [GOAL] case this.succ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z x' : α ⊢ f (fun x_1 => assert (¬(Fix.approx f (↑z) x).Dom) fun h => WellFounded.fix (_ : WellFounded (Upto.GT fun x_2 => (Fix.approx f x_2 x).Dom)) (fixAux f) (Upto.succ z h) x_1) x' = f (Fix.approx f (n + 1)) x' [PROOFSTEP] congr [GOAL] case this.succ.e_a α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z x' : α ⊢ (fun x_1 => assert (¬(Fix.approx f (↑z) x).Dom) fun h => WellFounded.fix (_ : WellFounded (Upto.GT fun x_2 => (Fix.approx f x_2 x).Dom)) (fixAux f) (Upto.succ z h) x_1) = Fix.approx f (n + 1) [PROOFSTEP] ext : 1 [GOAL] case this.succ.e_a.h α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z x' x✝ : α ⊢ (assert (¬(Fix.approx f (↑z) x).Dom) fun h => WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) (Upto.succ z h) x✝) = Fix.approx f (n + 1) x✝ [PROOFSTEP] have hh : ¬(Fix.approx f z.val x).Dom := by apply Nat.find_min h' rw [hk, Nat.succ_add, ← Nat.add_succ] apply Nat.lt_of_succ_le apply Nat.le_add_left [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z x' x✝ : α ⊢ ¬(Fix.approx f (↑z) x).Dom [PROOFSTEP] apply Nat.find_min h' [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z x' x✝ : α ⊢ ↑z < Nat.find h' [PROOFSTEP] rw [hk, Nat.succ_add, ← Nat.add_succ] [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z x' x✝ : α ⊢ ↑z < n + Nat.succ ↑z [PROOFSTEP] apply Nat.lt_of_succ_le [GOAL] case h α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z x' x✝ : α ⊢ Nat.succ ↑z ≤ n + Nat.succ ↑z [PROOFSTEP] apply Nat.le_add_left [GOAL] case this.succ.e_a.h α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (Nat.succ n + ↑z) hk : Nat.find h' = Nat.succ n + ↑z x' x✝ : α hh : ¬(Fix.approx f (↑z) x).Dom ⊢ (assert (¬(Fix.approx f (↑z) x).Dom) fun h => WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) (Upto.succ z h) x✝) = Fix.approx f (n + 1) x✝ [PROOFSTEP] rw [succ_add_eq_succ_add] at _this hk [GOAL] case this.succ.e_a.h α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ∃ i, (Fix.approx f i x).Dom p : ℕ → Prop := fun i => (Fix.approx f i x).Dom n : ℕ n_ih : ∀ (z : Upto p), p (n + ↑z) → Nat.find h' = n + ↑z → ∀ (x' : α), WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) z x' = Fix.approx f (Nat.succ n) x' z : Upto p _this : p (n + Nat.succ ↑z) hk : Nat.find h' = n + Nat.succ ↑z x' x✝ : α hh : ¬(Fix.approx f (↑z) x).Dom ⊢ (assert (¬(Fix.approx f (↑z) x).Dom) fun h => WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) (Upto.succ z h) x✝) = Fix.approx f (n + 1) x✝ [PROOFSTEP] rw [assert_pos hh, n_ih (Upto.succ z hh) _this hk] [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ¬∃ i, (Fix.approx f i x).Dom ⊢ Part.fix f x = none [PROOFSTEP] dsimp [Part.fix] [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) → (a : α) → Part (β a) x : α h' : ¬∃ i, (Fix.approx f i x).Dom ⊢ (assert (∃ i, (Fix.approx f i x).Dom) fun h => WellFounded.fix (_ : WellFounded (Upto.GT fun x_1 => (Fix.approx f x_1 x).Dom)) (fixAux f) Upto.zero x) = none [PROOFSTEP] rw [assert_neg h']
{"mathlib_filename": "Mathlib.Control.Fix", "llama_tokens": 10440}
[GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E ⊢ InnerProductSpaceable.innerProp' E ↑(-1) [PROOFSTEP] intro x y [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E ⊢ inner_ 𝕜 (↑(-1) • x) y = ↑(starRingEnd 𝕜) ↑(-1) * inner_ 𝕜 x y [PROOFSTEP] simp only [inner_, neg_mul_eq_neg_mul, one_mul, Int.cast_one, one_smul, RingHom.map_one, map_neg, Int.cast_neg, neg_smul, neg_one_mul] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E ⊢ 4⁻¹ * (↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ - I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖) = -4⁻¹ * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] rw [neg_mul_comm] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E ⊢ 4⁻¹ * (↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ - I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖) = 4⁻¹ * -(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] congr 1 [GOAL] case e_a 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E ⊢ ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ - I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖ = -(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] have h₁ : ‖-x - y‖ = ‖x + y‖ := by rw [← neg_add', norm_neg] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E ⊢ ‖-x - y‖ = ‖x + y‖ [PROOFSTEP] rw [← neg_add', norm_neg] [GOAL] case e_a 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h₁ : ‖-x - y‖ = ‖x + y‖ ⊢ ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ - I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖ = -(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] have h₂ : ‖-x + y‖ = ‖x - y‖ := by rw [← neg_sub, norm_neg, sub_eq_neg_add] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h₁ : ‖-x - y‖ = ‖x + y‖ ⊢ ‖-x + y‖ = ‖x - y‖ [PROOFSTEP] rw [← neg_sub, norm_neg, sub_eq_neg_add] [GOAL] case e_a 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ ⊢ ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ - I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖ = -(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] have h₃ : ‖(I : 𝕜) • -x + y‖ = ‖(I : 𝕜) • x - y‖ := by rw [← neg_sub, norm_neg, sub_eq_neg_add, ← smul_neg] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ ⊢ ‖I • -x + y‖ = ‖I • x - y‖ [PROOFSTEP] rw [← neg_sub, norm_neg, sub_eq_neg_add, ← smul_neg] [GOAL] case e_a 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ h₃ : ‖I • -x + y‖ = ‖I • x - y‖ ⊢ ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ - I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖ = -(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] have h₄ : ‖(I : 𝕜) • -x - y‖ = ‖(I : 𝕜) • x + y‖ := by rw [smul_neg, ← neg_add', norm_neg] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ h₃ : ‖I • -x + y‖ = ‖I • x - y‖ ⊢ ‖I • -x - y‖ = ‖I • x + y‖ [PROOFSTEP] rw [smul_neg, ← neg_add', norm_neg] [GOAL] case e_a 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ h₃ : ‖I • -x + y‖ = ‖I • x - y‖ h₄ : ‖I • -x - y‖ = ‖I • x + y‖ ⊢ ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ + I * ↑𝓚 ‖I • -x + y‖ * ↑𝓚 ‖I • -x + y‖ - I * ↑𝓚 ‖I • -x - y‖ * ↑𝓚 ‖I • -x - y‖ = -(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] rw [h₁, h₂, h₃, h₄] [GOAL] case e_a 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ h₃ : ‖I • -x + y‖ = ‖I • x - y‖ h₄ : ‖I • -x - y‖ = ‖I • x + y‖ ⊢ ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ - ↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ + I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ - I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ = -(↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f g : ℝ → E hf : Continuous f hg : Continuous g ⊢ Continuous fun x => _root_.inner_ 𝕜 (f x) (g x) [PROOFSTEP] unfold inner_ [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f g : ℝ → E hf : Continuous f hg : Continuous g ⊢ Continuous fun x => 4⁻¹ * (↑𝓚 ‖f x + g x‖ * ↑𝓚 ‖f x + g x‖ - ↑𝓚 ‖f x - g x‖ * ↑𝓚 ‖f x - g x‖ + I * ↑𝓚 ‖I • f x + g x‖ * ↑𝓚 ‖I • f x + g x‖ - I * ↑𝓚 ‖I • f x - g x‖ * ↑𝓚 ‖I • f x - g x‖) [PROOFSTEP] have := Continuous.const_smul (M := 𝕜) hf I [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E f g : ℝ → E hf : Continuous f hg : Continuous g this : Continuous fun x => I • f x ⊢ Continuous fun x => 4⁻¹ * (↑𝓚 ‖f x + g x‖ * ↑𝓚 ‖f x + g x‖ - ↑𝓚 ‖f x - g x‖ * ↑𝓚 ‖f x - g x‖ + I * ↑𝓚 ‖I • f x + g x‖ * ↑𝓚 ‖I • f x + g x‖ - I * ↑𝓚 ‖I • f x - g x‖ * ↑𝓚 ‖I • f x - g x‖) [PROOFSTEP] continuity [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E ⊢ ‖x‖ ^ 2 = ↑re (inner_ 𝕜 x x) [PROOFSTEP] simp only [inner_] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E ⊢ ‖x‖ ^ 2 = ↑re (4⁻¹ * (↑𝓚 ‖x + x‖ * ↑𝓚 ‖x + x‖ - ↑𝓚 ‖x - x‖ * ↑𝓚 ‖x - x‖ + I * ↑𝓚 ‖I • x + x‖ * ↑𝓚 ‖I • x + x‖ - I * ↑𝓚 ‖I • x - x‖ * ↑𝓚 ‖I • x - x‖)) [PROOFSTEP] have h₁ : IsROrC.normSq (4 : 𝕜) = 16 := by have : ((4 : ℝ) : 𝕜) = (4 : 𝕜) := by norm_cast rw [← this, normSq_eq_def', IsROrC.norm_of_nonneg (by norm_num : (0 : ℝ) ≤ 4)] norm_num [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E ⊢ ↑normSq 4 = 16 [PROOFSTEP] have : ((4 : ℝ) : 𝕜) = (4 : 𝕜) := by norm_cast [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E ⊢ ↑4 = 4 [PROOFSTEP] norm_cast [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E this : ↑4 = 4 ⊢ ↑normSq 4 = 16 [PROOFSTEP] rw [← this, normSq_eq_def', IsROrC.norm_of_nonneg (by norm_num : (0 : ℝ) ≤ 4)] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E this : ↑4 = 4 ⊢ 0 ≤ 4 [PROOFSTEP] norm_num [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E this : ↑4 = 4 ⊢ 4 ^ 2 = 16 [PROOFSTEP] norm_num [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E h₁ : ↑normSq 4 = 16 ⊢ ‖x‖ ^ 2 = ↑re (4⁻¹ * (↑𝓚 ‖x + x‖ * ↑𝓚 ‖x + x‖ - ↑𝓚 ‖x - x‖ * ↑𝓚 ‖x - x‖ + I * ↑𝓚 ‖I • x + x‖ * ↑𝓚 ‖I • x + x‖ - I * ↑𝓚 ‖I • x - x‖ * ↑𝓚 ‖I • x - x‖)) [PROOFSTEP] have h₂ : ‖x + x‖ = 2 * ‖x‖ := by rw [← two_smul 𝕜, norm_smul, IsROrC.norm_two] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E h₁ : ↑normSq 4 = 16 ⊢ ‖x + x‖ = 2 * ‖x‖ [PROOFSTEP] rw [← two_smul 𝕜, norm_smul, IsROrC.norm_two] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E h₁ : ↑normSq 4 = 16 h₂ : ‖x + x‖ = 2 * ‖x‖ ⊢ ‖x‖ ^ 2 = ↑re (4⁻¹ * (↑𝓚 ‖x + x‖ * ↑𝓚 ‖x + x‖ - ↑𝓚 ‖x - x‖ * ↑𝓚 ‖x - x‖ + I * ↑𝓚 ‖I • x + x‖ * ↑𝓚 ‖I • x + x‖ - I * ↑𝓚 ‖I • x - x‖ * ↑𝓚 ‖I • x - x‖)) [PROOFSTEP] simp only [h₁, h₂, algebraMap_eq_ofReal, sub_self, norm_zero, mul_re, inv_re, ofNat_re, map_sub, map_add, ofReal_re, ofNat_im, ofReal_im, mul_im, I_re, inv_im] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x : E h₁ : ↑normSq 4 = 16 h₂ : ‖x + x‖ = 2 * ‖x‖ ⊢ ‖x‖ ^ 2 = 4 / 16 * (2 * ‖x‖ * (2 * ‖x‖) - 0 * 0 - 0 + ((0 * ‖I • x + x‖ - ↑im I * 0) * ‖I • x + x‖ - (0 * 0 + ↑im I * ‖I • x + x‖) * 0) - ((0 * ‖I • x - x‖ - ↑im I * 0) * ‖I • x - x‖ - (0 * 0 + ↑im I * ‖I • x - x‖) * 0)) - -0 / 16 * (2 * ‖x‖ * 0 + 0 * (2 * ‖x‖) - (0 * 0 + 0 * 0) + ((0 * ‖I • x + x‖ - ↑im I * 0) * 0 + (0 * 0 + ↑im I * ‖I • x + x‖) * ‖I • x + x‖) - ((0 * ‖I • x - x‖ - ↑im I * 0) * 0 + (0 * 0 + ↑im I * ‖I • x - x‖) * ‖I • x - x‖)) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E ⊢ ↑(starRingEnd 𝕜) (inner_ 𝕜 y x) = inner_ 𝕜 x y [PROOFSTEP] simp only [inner_] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E ⊢ ↑(starRingEnd 𝕜) (4⁻¹ * (↑𝓚 ‖y + x‖ * ↑𝓚 ‖y + x‖ - ↑𝓚 ‖y - x‖ * ↑𝓚 ‖y - x‖ + I * ↑𝓚 ‖I • y + x‖ * ↑𝓚 ‖I • y + x‖ - I * ↑𝓚 ‖I • y - x‖ * ↑𝓚 ‖I • y - x‖)) = 4⁻¹ * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] have h4 : conj (4⁻¹ : 𝕜) = 4⁻¹ := by norm_num [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E ⊢ ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ [PROOFSTEP] norm_num [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ ⊢ ↑(starRingEnd 𝕜) (4⁻¹ * (↑𝓚 ‖y + x‖ * ↑𝓚 ‖y + x‖ - ↑𝓚 ‖y - x‖ * ↑𝓚 ‖y - x‖ + I * ↑𝓚 ‖I • y + x‖ * ↑𝓚 ‖I • y + x‖ - I * ↑𝓚 ‖I • y - x‖ * ↑𝓚 ‖I • y - x‖)) = 4⁻¹ * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] rw [map_mul, h4] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ ⊢ 4⁻¹ * ↑(starRingEnd 𝕜) (↑𝓚 ‖y + x‖ * ↑𝓚 ‖y + x‖ - ↑𝓚 ‖y - x‖ * ↑𝓚 ‖y - x‖ + I * ↑𝓚 ‖I • y + x‖ * ↑𝓚 ‖I • y + x‖ - I * ↑𝓚 ‖I • y - x‖ * ↑𝓚 ‖I • y - x‖) = 4⁻¹ * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] congr 1 [GOAL] case e_a 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ ⊢ ↑(starRingEnd 𝕜) (↑𝓚 ‖y + x‖ * ↑𝓚 ‖y + x‖ - ↑𝓚 ‖y - x‖ * ↑𝓚 ‖y - x‖ + I * ↑𝓚 ‖I • y + x‖ * ↑𝓚 ‖I • y + x‖ - I * ↑𝓚 ‖I • y - x‖ * ↑𝓚 ‖I • y - x‖) = ↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ [PROOFSTEP] simp only [map_sub, map_add, algebraMap_eq_ofReal, ← ofReal_mul, conj_ofReal, map_mul, conj_I] [GOAL] case e_a 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ ⊢ ↑(‖y + x‖ * ‖y + x‖) - ↑(‖y - x‖ * ‖y - x‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ = ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖ [PROOFSTEP] rw [add_comm y x, norm_sub_rev] [GOAL] case e_a 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ ⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ = ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖ [PROOFSTEP] by_cases hI : (I : 𝕜) = 0 [GOAL] case pos 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : I = 0 ⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ = ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖ [PROOFSTEP] simp only [hI, neg_zero, zero_mul] -- Porting note: this replaces `norm_I_of_ne_zero` which does not exist in Lean 4 [GOAL] case neg 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 ⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ = ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖ [PROOFSTEP] have : ‖(I : 𝕜)‖ = 1 := by rw [← mul_self_inj_of_nonneg (norm_nonneg I) zero_le_one, one_mul, ← norm_mul, I_mul_I_of_nonzero hI, norm_neg, norm_one] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 ⊢ ‖I‖ = 1 [PROOFSTEP] rw [← mul_self_inj_of_nonneg (norm_nonneg I) zero_le_one, one_mul, ← norm_mul, I_mul_I_of_nonzero hI, norm_neg, norm_one] [GOAL] case neg 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 this : ‖I‖ = 1 ⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ = ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖ [PROOFSTEP] have h₁ : ‖(I : 𝕜) • y - x‖ = ‖(I : 𝕜) • x + y‖ := by trans ‖(I : 𝕜) • ((I : 𝕜) • y - x)‖ · rw [norm_smul, this, one_mul] · rw [smul_sub, smul_smul, I_mul_I_of_nonzero hI, neg_one_smul, ← neg_add', add_comm, norm_neg] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 this : ‖I‖ = 1 ⊢ ‖I • y - x‖ = ‖I • x + y‖ [PROOFSTEP] trans ‖(I : 𝕜) • ((I : 𝕜) • y - x)‖ [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 this : ‖I‖ = 1 ⊢ ‖I • y - x‖ = ‖I • (I • y - x)‖ [PROOFSTEP] rw [norm_smul, this, one_mul] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 this : ‖I‖ = 1 ⊢ ‖I • (I • y - x)‖ = ‖I • x + y‖ [PROOFSTEP] rw [smul_sub, smul_smul, I_mul_I_of_nonzero hI, neg_one_smul, ← neg_add', add_comm, norm_neg] [GOAL] case neg 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 this : ‖I‖ = 1 h₁ : ‖I • y - x‖ = ‖I • x + y‖ ⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ = ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖ [PROOFSTEP] have h₂ : ‖(I : 𝕜) • y + x‖ = ‖(I : 𝕜) • x - y‖ := by trans ‖(I : 𝕜) • ((I : 𝕜) • y + x)‖ · rw [norm_smul, this, one_mul] · rw [smul_add, smul_smul, I_mul_I_of_nonzero hI, neg_one_smul, ← neg_add_eq_sub] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 this : ‖I‖ = 1 h₁ : ‖I • y - x‖ = ‖I • x + y‖ ⊢ ‖I • y + x‖ = ‖I • x - y‖ [PROOFSTEP] trans ‖(I : 𝕜) • ((I : 𝕜) • y + x)‖ [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 this : ‖I‖ = 1 h₁ : ‖I • y - x‖ = ‖I • x + y‖ ⊢ ‖I • y + x‖ = ‖I • (I • y + x)‖ [PROOFSTEP] rw [norm_smul, this, one_mul] [GOAL] 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 this : ‖I‖ = 1 h₁ : ‖I • y - x‖ = ‖I • x + y‖ ⊢ ‖I • (I • y + x)‖ = ‖I • x - y‖ [PROOFSTEP] rw [smul_add, smul_smul, I_mul_I_of_nonzero hI, neg_one_smul, ← neg_add_eq_sub] [GOAL] case neg 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 this : ‖I‖ = 1 h₁ : ‖I • y - x‖ = ‖I • x + y‖ h₂ : ‖I • y + x‖ = ‖I • x - y‖ ⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + -I * ↑‖I • y + x‖ * ↑‖I • y + x‖ - -I * ↑‖I • y - x‖ * ↑‖I • y - x‖ = ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖ [PROOFSTEP] rw [h₁, h₂, ← sub_add_eq_add_sub] [GOAL] case neg 𝕜 : Type u_1 inst✝² : IsROrC 𝕜 E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E x y : E h4 : ↑(starRingEnd 𝕜) 4⁻¹ = 4⁻¹ hI : ¬I = 0 this : ‖I‖ = 1 h₁ : ‖I • y - x‖ = ‖I • x + y‖ h₂ : ‖I • y + x‖ = ‖I • x - y‖ ⊢ ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) - -I * ↑‖I • x + y‖ * ↑‖I • x + y‖ + -I * ↑‖I • x - y‖ * ↑‖I • x - y‖ = ↑(‖x + y‖ * ‖x + y‖) - ↑(‖x - y‖ * ‖x - y‖) + I * ↑‖I • x + y‖ * ↑‖I • x + y‖ - I * ↑‖I • x - y‖ * ↑‖I • x - y‖ [PROOFSTEP] simp only [neg_mul, sub_eq_add_neg, neg_neg] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖x + y + z‖ * ‖x + y + z‖ = (‖2 • x + y‖ * ‖2 • x + y‖ + ‖2 • z + y‖ * ‖2 • z + y‖) / 2 - ‖x - z‖ * ‖x - z‖ [PROOFSTEP] rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖2 • x + y‖ * ‖2 • x + y‖ + ‖2 • z + y‖ * ‖2 • z + y‖ = 2 * (‖x + y + z‖ * ‖x + y + z‖ + ‖x - z‖ * ‖x - z‖) [PROOFSTEP] convert parallelogram_identity (x + y + z) (x - z) using 4 [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ 2 • x + y = x + y + z + (x - z) [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ x + x + y = x + y + z + (x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ x + x + y = x + y + z + (x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ 2 • x + y = x + y + z + (x - z) [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ x + x + y = x + y + z + (x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ x + x + y = x + y + z + (x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ 2 • z + y = x + y + z - (x - z) [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ z + z + y = x + y + z - (x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ z + z + y = x + y + z - (x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ 2 • z + y = x + y + z - (x - z) [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ z + z + y = x + y + z - (x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ z + z + y = x + y + z - (x - z) [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖x + y - z‖ * ‖x + y - z‖ = (‖2 • x + y‖ * ‖2 • x + y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 - ‖x + z‖ * ‖x + z‖ [PROOFSTEP] rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖2 • x + y‖ * ‖2 • x + y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) [PROOFSTEP] have h₀ := parallelogram_identity (x + y - z) (x + z) [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ ‖2 • x + y‖ * ‖2 • x + y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) [PROOFSTEP] convert h₀ using 4 [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ 2 • x + y = x + y - z + (x + z) [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ x + x + y = x + y - z + (x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ x + x + y = x + y - z + (x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ 2 • x + y = x + y - z + (x + z) [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ x + x + y = x + y - z + (x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ x + x + y = x + y - z + (x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ y - 2 • z = x + y - z - (x + z) [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ y - (z + z) = x + y - z - (x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ y - (z + z) = x + y - z - (x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ y - 2 • z = x + y - z - (x + z) [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ y - (z + z) = x + y - z - (x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖x + y - z + (x + z)‖ * ‖x + y - z + (x + z)‖ + ‖x + y - z - (x + z)‖ * ‖x + y - z - (x + z)‖ = 2 * (‖x + y - z‖ * ‖x + y - z‖ + ‖x + z‖ * ‖x + z‖) ⊢ y - (z + z) = x + y - z - (x + z) [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖x + y + z‖ * ‖x + y + z‖ - ‖x + y - z‖ * ‖x + y - z‖ = ‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖ + (‖2 • z + y‖ * ‖2 • z + y‖ - ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 [PROOFSTEP] rw [add_left_aux1, add_left_aux2] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ (‖2 • x + y‖ * ‖2 • x + y‖ + ‖2 • z + y‖ * ‖2 • z + y‖) / 2 - ‖x - z‖ * ‖x - z‖ - ((‖2 • x + y‖ * ‖2 • x + y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 - ‖x + z‖ * ‖x + z‖) = ‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖ + (‖2 • z + y‖ * ‖2 • z + y‖ - ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ ‖2 • z + y‖ * ‖2 • z + y‖ = 2 * (‖y + z‖ * ‖y + z‖ + ‖z‖ * ‖z‖) - ‖y‖ * ‖y‖ [PROOFSTEP] apply eq_sub_of_add_eq [GOAL] case h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ ‖2 • z + y‖ * ‖2 • z + y‖ + ‖y‖ * ‖y‖ = 2 * (‖y + z‖ * ‖y + z‖ + ‖z‖ * ‖z‖) [PROOFSTEP] convert parallelogram_identity (y + z) z using 4 [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ 2 • z + y = y + z + z [PROOFSTEP] try rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ 2 • z + y = y + z + z [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ 2 • z + y = y + z + z [PROOFSTEP] try rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ 2 • z + y = y + z + z [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ y = y + z - z [PROOFSTEP] try rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ y = y + z - z [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ y = y + z - z [PROOFSTEP] try rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ y = y + z - z [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ z + z + y = y + z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ z + z + y = y + z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ z + z + y = y + z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ z + z + y = y + z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ y = y + z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ y = y + z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ y = y + z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ y = y + z - z [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) - ‖y‖ * ‖y‖ [PROOFSTEP] apply eq_sub_of_add_eq' [GOAL] case h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ ‖y‖ * ‖y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) [PROOFSTEP] have h₀ := parallelogram_identity (y - z) z [GOAL] case h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ ‖y‖ * ‖y‖ + ‖y - 2 • z‖ * ‖y - 2 • z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) [PROOFSTEP] convert h₀ using 4 [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y = y - z + z [PROOFSTEP] try rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y = y - z + z [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y = y - z + z [PROOFSTEP] try rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y = y - z + z [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y - 2 • z = y - z - z [PROOFSTEP] try rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y - 2 • z = y - z - z [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y - 2 • z = y - z - z [PROOFSTEP] try rw [two_smul] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y - 2 • z = y - z - z [PROOFSTEP] rw [two_smul] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y = y - z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y = y - z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y = y - z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y = y - z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y - (z + z) = y - z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y - (z + z) = y - z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y - (z + z) = y - z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖y - z + z‖ * ‖y - z + z‖ + ‖y - z - z‖ * ‖y - z - z‖ = 2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) ⊢ y - (z + z) = y - z - z [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ (‖2 • z + y‖ * ‖2 • z + y‖ - ‖y - 2 • z‖ * ‖y - 2 • z‖) / 2 = ‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖ [PROOFSTEP] rw [add_left_aux3, add_left_aux4] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ (2 * (‖y + z‖ * ‖y + z‖ + ‖z‖ * ‖z‖) - ‖y‖ * ‖y‖ - (2 * (‖y - z‖ * ‖y - z‖ + ‖z‖ * ‖z‖) - ‖y‖ * ‖y‖)) / 2 = ‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖ [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ = (‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖) / 2 - ‖I • x - z‖ * ‖I • x - z‖ [PROOFSTEP] rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) [PROOFSTEP] have h₀ := parallelogram_identity ((I : 𝕜) • (x + y) + z) ((I : 𝕜) • x - z) [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ ‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) [PROOFSTEP] convert h₀ using 4 [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • (2 • x + y) = I • (x + y) + z + (I • x - z) [PROOFSTEP] try simp only [two_smul, smul_add]; abel [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • (2 • x + y) = I • (x + y) + z + (I • x - z) [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • x + I • x + I • y = I • x + I • y + z + (I • x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • x + I • x + I • y = I • x + I • y + z + (I • x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • (2 • x + y) = I • (x + y) + z + (I • x - z) [PROOFSTEP] try simp only [two_smul, smul_add]; abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • (2 • x + y) = I • (x + y) + z + (I • x - z) [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • x + I • x + I • y = I • x + I • y + z + (I • x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • x + I • x + I • y = I • x + I • y + z + (I • x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • y + 2 • z = I • (x + y) + z - (I • x - z) [PROOFSTEP] try simp only [two_smul, smul_add]; abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • y + 2 • z = I • (x + y) + z - (I • x - z) [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • y + (z + z) = I • x + I • y + z - (I • x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • y + (z + z) = I • x + I • y + z - (I • x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • y + 2 • z = I • (x + y) + z - (I • x - z) [PROOFSTEP] try simp only [two_smul, smul_add]; abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • y + 2 • z = I • (x + y) + z - (I • x - z) [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • y + (z + z) = I • x + I • y + z - (I • x - z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) + z + (I • x - z)‖ * ‖I • (x + y) + z + (I • x - z)‖ + ‖I • (x + y) + z - (I • x - z)‖ * ‖I • (x + y) + z - (I • x - z)‖ = 2 * (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ + ‖I • x - z‖ * ‖I • x - z‖) ⊢ I • y + (z + z) = I • x + I • y + z - (I • x - z) [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ = (‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖) / 2 - ‖I • x + z‖ * ‖I • x + z‖ [PROOFSTEP] rw [eq_sub_iff_add_eq, eq_div_iff (two_ne_zero' ℝ), mul_comm _ (2 : ℝ), eq_comm] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) [PROOFSTEP] have h₀ := parallelogram_identity ((I : 𝕜) • (x + y) - z) ((I : 𝕜) • x + z) [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ ‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) [PROOFSTEP] convert h₀ using 4 [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • (2 • x + y) = I • (x + y) - z + (I • x + z) [PROOFSTEP] try simp only [two_smul, smul_add]; abel [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • (2 • x + y) = I • (x + y) - z + (I • x + z) [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • x + I • x + I • y = I • x + I • y - z + (I • x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • x + I • x + I • y = I • x + I • y - z + (I • x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • (2 • x + y) = I • (x + y) - z + (I • x + z) [PROOFSTEP] try simp only [two_smul, smul_add]; abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • (2 • x + y) = I • (x + y) - z + (I • x + z) [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • x + I • x + I • y = I • x + I • y - z + (I • x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • x + I • x + I • y = I • x + I • y - z + (I • x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • y - 2 • z = I • (x + y) - z - (I • x + z) [PROOFSTEP] try simp only [two_smul, smul_add]; abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • y - 2 • z = I • (x + y) - z - (I • x + z) [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • y - (z + z) = I • x + I • y - z - (I • x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • y - (z + z) = I • x + I • y - z - (I • x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • y - 2 • z = I • (x + y) - z - (I • x + z) [PROOFSTEP] try simp only [two_smul, smul_add]; abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • y - 2 • z = I • (x + y) - z - (I • x + z) [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • y - (z + z) = I • x + I • y - z - (I • x + z) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E h₀ : ‖I • (x + y) - z + (I • x + z)‖ * ‖I • (x + y) - z + (I • x + z)‖ + ‖I • (x + y) - z - (I • x + z)‖ * ‖I • (x + y) - z - (I • x + z)‖ = 2 * (‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ + ‖I • x + z‖ * ‖I • x + z‖) ⊢ I • y - (z + z) = I • x + I • y - z - (I • x + z) [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖ [PROOFSTEP] apply eq_sub_of_add_eq [GOAL] case h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖ + ‖I • y‖ * ‖I • y‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) [PROOFSTEP] have h₀ := parallelogram_identity ((I : 𝕜) • y + z) z [GOAL] case h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ ‖I • y + 2 • z‖ * ‖I • y + 2 • z‖ + ‖I • y‖ * ‖I • y‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) [PROOFSTEP] convert h₀ using 4 [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y + 2 • z = I • y + z + z [PROOFSTEP] try simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y + 2 • z = I • y + z + z [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y + (z + z) = I • y + z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y + (z + z) = I • y + z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y + 2 • z = I • y + z + z [PROOFSTEP] try simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y + 2 • z = I • y + z + z [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y + (z + z) = I • y + z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y + (z + z) = I • y + z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y + z - z [PROOFSTEP] try simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y + z - z [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y + z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y + z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y + z - z [PROOFSTEP] try simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y + z - z [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y + z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y + z + z‖ * ‖I • y + z + z‖ + ‖I • y + z - z‖ * ‖I • y + z - z‖ = 2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y + z - z [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖ [PROOFSTEP] apply eq_sub_of_add_eq' [GOAL] case h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E ⊢ ‖I • y‖ * ‖I • y‖ + ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) [PROOFSTEP] have h₀ := parallelogram_identity ((I : 𝕜) • y - z) z [GOAL] case h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ ‖I • y‖ * ‖I • y‖ + ‖I • y - 2 • z‖ * ‖I • y - 2 • z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) [PROOFSTEP] convert h₀ using 4 [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y - z + z [PROOFSTEP] try simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y - z + z [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y - z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y - z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y - z + z [PROOFSTEP] try simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y - z + z [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y - z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y = I • y - z + z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y - 2 • z = I • y - z - z [PROOFSTEP] try simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y - 2 • z = I • y - z - z [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y - (z + z) = I • y - z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_5.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y - (z + z) = I • y - z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y - 2 • z = I • y - z - z [PROOFSTEP] try simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y - 2 • z = I • y - z - z [PROOFSTEP] simp only [two_smul, smul_add] [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y - (z + z) = I • y - z - z [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6.h.e'_6.h.e'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E y z : E h₀ : ‖I • y - z + z‖ * ‖I • y - z + z‖ + ‖I • y - z - z‖ * ‖I • y - z - z‖ = 2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) ⊢ I • y - (z + z) = I • y - z - z [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ inner_ 𝕜 (x + y) z = inner_ 𝕜 x z + inner_ 𝕜 y z [PROOFSTEP] simp only [inner_, ← mul_add] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ 4⁻¹ * (↑𝓚 ‖x + y + z‖ * ↑𝓚 ‖x + y + z‖ - ↑𝓚 ‖x + y - z‖ * ↑𝓚 ‖x + y - z‖ + I * ↑𝓚 ‖I • (x + y) + z‖ * ↑𝓚 ‖I • (x + y) + z‖ - I * ↑𝓚 ‖I • (x + y) - z‖ * ↑𝓚 ‖I • (x + y) - z‖) = 4⁻¹ * (↑𝓚 ‖x + z‖ * ↑𝓚 ‖x + z‖ - ↑𝓚 ‖x - z‖ * ↑𝓚 ‖x - z‖ + I * ↑𝓚 ‖I • x + z‖ * ↑𝓚 ‖I • x + z‖ - I * ↑𝓚 ‖I • x - z‖ * ↑𝓚 ‖I • x - z‖ + (↑𝓚 ‖y + z‖ * ↑𝓚 ‖y + z‖ - ↑𝓚 ‖y - z‖ * ↑𝓚 ‖y - z‖ + I * ↑𝓚 ‖I • y + z‖ * ↑𝓚 ‖I • y + z‖ - I * ↑𝓚 ‖I • y - z‖ * ↑𝓚 ‖I • y - z‖)) [PROOFSTEP] congr [GOAL] case e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ↑𝓚 ‖x + y + z‖ * ↑𝓚 ‖x + y + z‖ - ↑𝓚 ‖x + y - z‖ * ↑𝓚 ‖x + y - z‖ + I * ↑𝓚 ‖I • (x + y) + z‖ * ↑𝓚 ‖I • (x + y) + z‖ - I * ↑𝓚 ‖I • (x + y) - z‖ * ↑𝓚 ‖I • (x + y) - z‖ = ↑𝓚 ‖x + z‖ * ↑𝓚 ‖x + z‖ - ↑𝓚 ‖x - z‖ * ↑𝓚 ‖x - z‖ + I * ↑𝓚 ‖I • x + z‖ * ↑𝓚 ‖I • x + z‖ - I * ↑𝓚 ‖I • x - z‖ * ↑𝓚 ‖I • x - z‖ + (↑𝓚 ‖y + z‖ * ↑𝓚 ‖y + z‖ - ↑𝓚 ‖y - z‖ * ↑𝓚 ‖y - z‖ + I * ↑𝓚 ‖I • y + z‖ * ↑𝓚 ‖I • y + z‖ - I * ↑𝓚 ‖I • y - z‖ * ↑𝓚 ‖I • y - z‖) [PROOFSTEP] simp only [mul_assoc, ← map_mul, add_sub_assoc, ← mul_sub, ← map_sub] [GOAL] case e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ↑𝓚 (‖x + y + z‖ * ‖x + y + z‖ - ‖x + (y - z)‖ * ‖x + (y - z)‖) + I * ↑𝓚 (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ - ‖I • (x + y) - z‖ * ‖I • (x + y) - z‖) = ↑𝓚 (‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖) + I * ↑𝓚 (‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖) + (↑𝓚 (‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖) + I * ↑𝓚 (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖)) [PROOFSTEP] rw [add_add_add_comm] [GOAL] case e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ↑𝓚 (‖x + y + z‖ * ‖x + y + z‖ - ‖x + (y - z)‖ * ‖x + (y - z)‖) + I * ↑𝓚 (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ - ‖I • (x + y) - z‖ * ‖I • (x + y) - z‖) = ↑𝓚 (‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖) + ↑𝓚 (‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖) + (I * ↑𝓚 (‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖) + I * ↑𝓚 (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖)) [PROOFSTEP] simp only [← map_add, ← mul_add] [GOAL] case e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ↑𝓚 (‖x + y + z‖ * ‖x + y + z‖ - ‖x + (y - z)‖ * ‖x + (y - z)‖) + I * ↑𝓚 (‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ - ‖I • (x + y) - z‖ * ‖I • (x + y) - z‖) = ↑𝓚 (‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖ + (‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖)) + I * ↑𝓚 (‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖ + (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖)) [PROOFSTEP] congr [GOAL] case e_a.e_a.h.e_6.h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖x + y + z‖ * ‖x + y + z‖ - ‖x + (y - z)‖ * ‖x + (y - z)‖ = ‖x + z‖ * ‖x + z‖ - ‖x - z‖ * ‖x - z‖ + (‖y + z‖ * ‖y + z‖ - ‖y - z‖ * ‖y - z‖) [PROOFSTEP] rw [← add_sub_assoc, add_left_aux2', add_left_aux4'] [GOAL] case e_a.e_a.e_a.h.e_6.h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ ‖I • (x + y) + z‖ * ‖I • (x + y) + z‖ - ‖I • (x + y) - z‖ * ‖I • (x + y) - z‖ = ‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖ + (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖) [PROOFSTEP] rw [add_left_aux5, add_left_aux6, add_left_aux7, add_left_aux8] [GOAL] case e_a.e_a.e_a.h.e_6.h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ (‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + (2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖)) / 2 - ‖I • x - z‖ * ‖I • x - z‖ - ((‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + (2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖)) / 2 - ‖I • x + z‖ * ‖I • x + z‖) = ‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖ + (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖) [PROOFSTEP] simp only [map_sub, map_mul, map_add, div_eq_mul_inv] [GOAL] case e_a.e_a.e_a.h.e_6.h 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y z : E ⊢ (‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + (2 * (‖I • y + z‖ * ‖I • y + z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖)) * 2⁻¹ - ‖I • x - z‖ * ‖I • x - z‖ - ((‖I • (2 • x + y)‖ * ‖I • (2 • x + y)‖ + (2 * (‖I • y - z‖ * ‖I • y - z‖ + ‖z‖ * ‖z‖) - ‖I • y‖ * ‖I • y‖)) * 2⁻¹ - ‖I • x + z‖ * ‖I • x + z‖) = ‖I • x + z‖ * ‖I • x + z‖ - ‖I • x - z‖ * ‖I • x - z‖ + (‖I • y + z‖ * ‖I • y + z‖ - ‖I • y - z‖ * ‖I • y - z‖) [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E n : ℕ x y : E ⊢ inner_ 𝕜 (↑n • x) y = ↑n * inner_ 𝕜 x y [PROOFSTEP] induction' n with n ih [GOAL] case zero 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y : E ⊢ inner_ 𝕜 (↑Nat.zero • x) y = ↑Nat.zero * inner_ 𝕜 x y [PROOFSTEP] simp only [inner_, Nat.zero_eq, zero_sub, Nat.cast_zero, zero_mul, eq_self_iff_true, zero_smul, zero_add, mul_zero, sub_self, norm_neg, smul_zero] [GOAL] case succ 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y : E n : ℕ ih : inner_ 𝕜 (↑n • x) y = ↑n * inner_ 𝕜 x y ⊢ inner_ 𝕜 (↑(Nat.succ n) • x) y = ↑(Nat.succ n) * inner_ 𝕜 x y [PROOFSTEP] simp only [Nat.cast_succ, add_smul, one_smul] [GOAL] case succ 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y : E n : ℕ ih : inner_ 𝕜 (↑n • x) y = ↑n * inner_ 𝕜 x y ⊢ inner_ 𝕜 (↑n • x + x) y = (↑n + 1) * inner_ 𝕜 x y [PROOFSTEP] rw [add_left, ih, add_mul, one_mul] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℕ x y : E ⊢ inner_ 𝕜 (↑r • x) y = ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y [PROOFSTEP] simp only [map_natCast] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℕ x y : E ⊢ inner_ 𝕜 (↑r • x) y = ↑r * inner_ 𝕜 x y [PROOFSTEP] exact nat r x y [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E n : ℤ ⊢ InnerProductSpaceable.innerProp' E ↑n [PROOFSTEP] intro x y [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E n : ℤ x y : E ⊢ inner_ 𝕜 (↑n • x) y = ↑(starRingEnd 𝕜) ↑n * inner_ 𝕜 x y [PROOFSTEP] rw [← n.sign_mul_natAbs] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E n : ℤ x y : E ⊢ inner_ 𝕜 (↑(Int.sign n * ↑(Int.natAbs n)) • x) y = ↑(starRingEnd 𝕜) ↑(Int.sign n * ↑(Int.natAbs n)) * inner_ 𝕜 x y [PROOFSTEP] simp only [Int.cast_ofNat, map_natCast, map_intCast, Int.cast_mul, map_mul, mul_smul] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E n : ℤ x y : E ⊢ inner_ 𝕜 (↑(Int.sign n) • ↑(Int.natAbs n) • x) y = ↑(Int.sign n) * ↑(Int.natAbs n) * inner_ 𝕜 x y [PROOFSTEP] obtain hn | rfl | hn := lt_trichotomy n 0 [GOAL] case inl 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E n : ℤ x y : E hn : n < 0 ⊢ inner_ 𝕜 (↑(Int.sign n) • ↑(Int.natAbs n) • x) y = ↑(Int.sign n) * ↑(Int.natAbs n) * inner_ 𝕜 x y [PROOFSTEP] rw [Int.sign_eq_neg_one_of_neg hn, innerProp_neg_one ((n.natAbs : 𝕜) • x), nat] [GOAL] case inl 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E n : ℤ x y : E hn : n < 0 ⊢ ↑(starRingEnd 𝕜) ↑(-1) * (↑(Int.natAbs n) * inner_ 𝕜 x y) = ↑(-1) * ↑(Int.natAbs n) * inner_ 𝕜 x y [PROOFSTEP] simp only [map_neg, neg_mul, one_mul, mul_eq_mul_left_iff, true_or_iff, Int.natAbs_eq_zero, eq_self_iff_true, Int.cast_one, map_one, neg_inj, Nat.cast_eq_zero, Int.cast_neg] [GOAL] case inr.inl 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y : E ⊢ inner_ 𝕜 (↑(Int.sign 0) • ↑(Int.natAbs 0) • x) y = ↑(Int.sign 0) * ↑(Int.natAbs 0) * inner_ 𝕜 x y [PROOFSTEP] simp only [inner_, Int.cast_zero, zero_sub, Nat.cast_zero, zero_mul, eq_self_iff_true, Int.sign_zero, zero_smul, zero_add, mul_zero, smul_zero, sub_self, norm_neg, Int.natAbs_zero] [GOAL] case inr.inr 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E n : ℤ x y : E hn : 0 < n ⊢ inner_ 𝕜 (↑(Int.sign n) • ↑(Int.natAbs n) • x) y = ↑(Int.sign n) * ↑(Int.natAbs n) * inner_ 𝕜 x y [PROOFSTEP] rw [Int.sign_eq_one_of_pos hn] [GOAL] case inr.inr 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E n : ℤ x y : E hn : 0 < n ⊢ inner_ 𝕜 (↑1 • ↑(Int.natAbs n) • x) y = ↑1 * ↑(Int.natAbs n) * inner_ 𝕜 x y [PROOFSTEP] simp only [one_mul, mul_eq_mul_left_iff, true_or_iff, Int.natAbs_eq_zero, eq_self_iff_true, Int.cast_one, one_smul, Nat.cast_eq_zero, nat] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℚ ⊢ InnerProductSpaceable.innerProp' E ↑r [PROOFSTEP] intro x y [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℚ x y : E ⊢ inner_ 𝕜 (↑r • x) y = ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y [PROOFSTEP] have : (r.den : 𝕜) ≠ 0 := by haveI : CharZero 𝕜 := IsROrC.charZero_isROrC exact_mod_cast r.pos.ne' [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℚ x y : E ⊢ ↑r.den ≠ 0 [PROOFSTEP] haveI : CharZero 𝕜 := IsROrC.charZero_isROrC [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℚ x y : E this : CharZero 𝕜 ⊢ ↑r.den ≠ 0 [PROOFSTEP] exact_mod_cast r.pos.ne' [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℚ x y : E this : ↑r.den ≠ 0 ⊢ inner_ 𝕜 (↑r • x) y = ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y [PROOFSTEP] rw [← r.num_div_den, ← mul_right_inj' this, ← nat r.den _ y, smul_smul, Rat.cast_div] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℚ x y : E this : ↑r.den ≠ 0 ⊢ inner_ 𝕜 ((↑r.den * (↑↑r.num / ↑↑r.den)) • x) y = ↑r.den * (↑(starRingEnd 𝕜) (↑↑r.num / ↑↑r.den) * inner_ 𝕜 x y) [PROOFSTEP] simp only [map_natCast, Rat.cast_coe_nat, map_intCast, Rat.cast_coe_int, map_div₀] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℚ x y : E this : ↑r.den ≠ 0 ⊢ inner_ 𝕜 ((↑r.den * (↑r.num / ↑r.den)) • x) y = ↑r.den * (↑r.num / ↑r.den * inner_ 𝕜 x y) [PROOFSTEP] rw [← mul_assoc, mul_div_cancel' _ this, int_prop _ x, map_intCast] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℝ ⊢ InnerProductSpaceable.innerProp' E ↑r [PROOFSTEP] intro x y [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : ℝ x y : E ⊢ inner_ 𝕜 (↑r • x) y = ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y [PROOFSTEP] revert r [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y : E ⊢ ∀ (r : ℝ), inner_ 𝕜 (↑r • x) y = ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y [PROOFSTEP] rw [← Function.funext_iff] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y : E ⊢ (fun r => inner_ 𝕜 (↑r • x) y) = fun r => ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y [PROOFSTEP] refine' Rat.denseEmbedding_coe_real.dense.equalizer _ _ (funext fun X => _) [GOAL] case refine'_1 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y : E ⊢ Continuous fun r => inner_ 𝕜 (↑r • x) y [PROOFSTEP] exact (continuous_ofReal.smul continuous_const).inner_ continuous_const [GOAL] case refine'_2 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y : E ⊢ Continuous fun r => ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y [PROOFSTEP] exact (continuous_conj.comp continuous_ofReal).mul continuous_const [GOAL] case refine'_3 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E x y : E X : ℚ ⊢ ((fun r => inner_ 𝕜 (↑r • x) y) ∘ Rat.cast) X = ((fun r => ↑(starRingEnd 𝕜) ↑r * inner_ 𝕜 x y) ∘ Rat.cast) X [PROOFSTEP] simp only [Function.comp_apply, IsROrC.ofReal_ratCast, rat_prop _ _] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E ⊢ InnerProductSpaceable.innerProp' E I [PROOFSTEP] by_cases hI : (I : 𝕜) = 0 [GOAL] case pos 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : I = 0 ⊢ InnerProductSpaceable.innerProp' E I [PROOFSTEP] rw [hI, ← Nat.cast_zero] [GOAL] case pos 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : I = 0 ⊢ InnerProductSpaceable.innerProp' E ↑0 [PROOFSTEP] exact nat_prop _ [GOAL] case neg 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 ⊢ InnerProductSpaceable.innerProp' E I [PROOFSTEP] intro x y [GOAL] case neg 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E ⊢ inner_ 𝕜 (I • x) y = ↑(starRingEnd 𝕜) I * inner_ 𝕜 x y [PROOFSTEP] have hI' : (-I : 𝕜) * I = 1 := by rw [← inv_I, inv_mul_cancel hI] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E ⊢ -I * I = 1 [PROOFSTEP] rw [← inv_I, inv_mul_cancel hI] [GOAL] case neg 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 ⊢ inner_ 𝕜 (I • x) y = ↑(starRingEnd 𝕜) I * inner_ 𝕜 x y [PROOFSTEP] rw [conj_I, inner_, inner_, mul_left_comm] [GOAL] case neg 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 ⊢ 4⁻¹ * (↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖I • I • x + y‖ * ↑𝓚 ‖I • I • x + y‖ - I * ↑𝓚 ‖I • I • x - y‖ * ↑𝓚 ‖I • I • x - y‖) = 4⁻¹ * (-I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖)) [PROOFSTEP] congr 1 [GOAL] case neg.e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 ⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖I • I • x + y‖ * ↑𝓚 ‖I • I • x + y‖ - I * ↑𝓚 ‖I • I • x - y‖ * ↑𝓚 ‖I • I • x - y‖ = -I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] rw [smul_smul, I_mul_I_of_nonzero hI, neg_one_smul] [GOAL] case neg.e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 ⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - I * ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ = -I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ - ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ + I * ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - I * ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖) [PROOFSTEP] rw [mul_sub, mul_add, mul_sub, mul_assoc I (𝓚 ‖I • x - y‖), ← mul_assoc (-I) I, hI', one_mul, mul_assoc I (𝓚 ‖I • x + y‖), ← mul_assoc (-I) I, hI', one_mul] [GOAL] case neg.e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 ⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - I * ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ = -I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖) - -I * (↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ [PROOFSTEP] have h₁ : ‖-x - y‖ = ‖x + y‖ := by rw [← neg_add', norm_neg] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 ⊢ ‖-x - y‖ = ‖x + y‖ [PROOFSTEP] rw [← neg_add', norm_neg] [GOAL] case neg.e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 h₁ : ‖-x - y‖ = ‖x + y‖ ⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - I * ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ = -I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖) - -I * (↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ [PROOFSTEP] have h₂ : ‖-x + y‖ = ‖x - y‖ := by rw [← neg_sub, norm_neg, sub_eq_neg_add] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 h₁ : ‖-x - y‖ = ‖x + y‖ ⊢ ‖-x + y‖ = ‖x - y‖ [PROOFSTEP] rw [← neg_sub, norm_neg, sub_eq_neg_add] [GOAL] case neg.e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ ⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖-x + y‖ * ↑𝓚 ‖-x + y‖ - I * ↑𝓚 ‖-x - y‖ * ↑𝓚 ‖-x - y‖ = -I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖) - -I * (↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ [PROOFSTEP] rw [h₁, h₂] [GOAL] case neg.e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ ⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ + I * ↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖ - I * ↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖ = -I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖) - -I * (↑𝓚 ‖x - y‖ * ↑𝓚 ‖x - y‖) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ - ↑𝓚 ‖I • x - y‖ * ↑𝓚 ‖I • x - y‖ [PROOFSTEP] simp only [sub_eq_add_neg, mul_assoc] [GOAL] case neg.e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ ⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ + -(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖) + I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖) + -(I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖)) = -I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖) + -(-I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖)) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ + -(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖) [PROOFSTEP] rw [← neg_mul_eq_neg_mul, ← neg_mul_eq_neg_mul] [GOAL] case neg.e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ ⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ + -(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖) + I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖) + -(I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖)) = -(I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖)) + - -(I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖)) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ + -(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖) [PROOFSTEP] abel [GOAL] case neg.e_a 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E hI : ¬I = 0 x y : E hI' : -I * I = 1 h₁ : ‖-x - y‖ = ‖x + y‖ h₂ : ‖-x + y‖ = ‖x - y‖ ⊢ ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ + -(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖) + I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖) + -(I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖)) = -(I * (↑𝓚 ‖x + y‖ * ↑𝓚 ‖x + y‖)) + - -(I * (↑𝓚 ‖x + -y‖ * ↑𝓚 ‖x + -y‖)) + ↑𝓚 ‖I • x + y‖ * ↑𝓚 ‖I • x + y‖ + -(↑𝓚 ‖I • x + -y‖ * ↑𝓚 ‖I • x + -y‖) [PROOFSTEP] abel [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : 𝕜 ⊢ InnerProductSpaceable.innerProp' E r [PROOFSTEP] intro x y [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : 𝕜 x y : E ⊢ inner_ 𝕜 (r • x) y = ↑(starRingEnd 𝕜) r * inner_ 𝕜 x y [PROOFSTEP] rw [← re_add_im r, add_smul, add_left, real_prop _ x, ← smul_smul, real_prop _ _ y, I_prop, map_add, map_mul, conj_ofReal, conj_ofReal, conj_I] [GOAL] 𝕜 : Type u_1 inst✝³ : IsROrC 𝕜 E : Type u_2 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : InnerProductSpaceable E r : 𝕜 x y : E ⊢ ↑(↑re r) * inner_ 𝕜 x y + ↑(↑im r) * (-I * inner_ 𝕜 x y) = (↑(↑re r) + ↑(↑im r) * -I) * inner_ 𝕜 x y [PROOFSTEP] ring [GOAL] 𝕜 : Type u_1 inst✝⁴ : IsROrC 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : InnerProductSpaceable E inst✝ : NormedSpace ℝ E ⊢ UniformConvexSpace E [PROOFSTEP] cases nonempty_innerProductSpace ℝ E [GOAL] case intro 𝕜 : Type u_1 inst✝⁴ : IsROrC 𝕜 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : InnerProductSpaceable E inst✝ : NormedSpace ℝ E val✝ : InnerProductSpace ℝ E ⊢ UniformConvexSpace E [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.OfNorm", "llama_tokens": 56486}
{"mathlib_filename": "Mathlib.Control.ULiftable", "llama_tokens": 0}
[GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ⊢ HasIntegral I l (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) [PROOFSTEP] refine' HasIntegral.of_mul ‖y‖ fun ε ε0 => _ [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ ε0 : 0 < ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ε [PROOFSTEP] lift ε to ℝ≥0 using ε0.le [GOAL] case intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ↑ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] rw [NNReal.coe_pos] at ε0 [GOAL] case intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] have A : μ (s ∩ Box.Icc I) ≠ ∞ := ((measure_mono <| Set.inter_subset_right _ _).trans_lt (I.measure_Icc_lt_top μ)).ne [GOAL] case intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] have B : μ (s ∩ I) ≠ ∞ := ((measure_mono <| Set.inter_subset_right _ _).trans_lt (I.measure_coe_lt_top μ)).ne [GOAL] case intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] obtain ⟨F, hFs, hFc, hμF⟩ : ∃ F, F ⊆ s ∩ Box.Icc I ∧ IsClosed F ∧ μ ((s ∩ Box.Icc I) \ F) < ε := (hs.inter I.measurableSet_Icc).exists_isClosed_diff_lt A (ENNReal.coe_pos.2 ε0).ne' [GOAL] case intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] obtain ⟨U, hsU, hUo, hUt, hμU⟩ : ∃ U, s ∩ Box.Icc I ⊆ U ∧ IsOpen U ∧ μ U < ∞ ∧ μ (U \ (s ∩ Box.Icc I)) < ε := (hs.inter I.measurableSet_Icc).exists_isOpen_diff_lt A (ENNReal.coe_pos.2 ε0).ne' [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] have : ∀ x ∈ s ∩ Box.Icc I, ∃ r : Ioi (0 : ℝ), closedBall x r ⊆ U := fun x hx => by rcases nhds_basis_closedBall.mem_iff.1 (hUo.mem_nhds <| hsU hx) with ⟨r, hr₀, hr⟩ exact ⟨⟨r, hr₀⟩, hr⟩ [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε x : ι → ℝ hx : x ∈ s ∩ ↑Box.Icc I ⊢ ∃ r, closedBall x ↑r ⊆ U [PROOFSTEP] rcases nhds_basis_closedBall.mem_iff.1 (hUo.mem_nhds <| hsU hx) with ⟨r, hr₀, hr⟩ [GOAL] case intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε x : ι → ℝ hx : x ∈ s ∩ ↑Box.Icc I r : ℝ hr₀ : 0 < r hr : closedBall x r ⊆ U ⊢ ∃ r, closedBall x ↑r ⊆ U [PROOFSTEP] exact ⟨⟨r, hr₀⟩, hr⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε this : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → ∃ r, closedBall x ↑r ⊆ U ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] choose! rs hrsU using this [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] have : ∀ x ∈ Box.Icc I \ s, ∃ r : Ioi (0 : ℝ), closedBall x r ⊆ Fᶜ := fun x hx => by obtain ⟨r, hr₀, hr⟩ := nhds_basis_closedBall.mem_iff.1 (hFc.isOpen_compl.mem_nhds fun hx' => hx.2 (hFs hx').1) exact ⟨⟨r, hr₀⟩, hr⟩ [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U x : ι → ℝ hx : x ∈ ↑Box.Icc I \ s ⊢ ∃ r, closedBall x ↑r ⊆ Fᶜ [PROOFSTEP] obtain ⟨r, hr₀, hr⟩ := nhds_basis_closedBall.mem_iff.1 (hFc.isOpen_compl.mem_nhds fun hx' => hx.2 (hFs hx').1) [GOAL] case intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U x : ι → ℝ hx : x ∈ ↑Box.Icc I \ s r : ℝ hr₀ : 0 < r hr : closedBall x r ⊆ Fᶜ ⊢ ∃ r, closedBall x ↑r ⊆ Fᶜ [PROOFSTEP] exact ⟨⟨r, hr₀⟩, hr⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U this : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∃ r, closedBall x ↑r ⊆ Fᶜ ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] choose! rs' hrs'F using this [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] set r : (ι → ℝ) → Ioi (0 : ℝ) := s.piecewise rs rs' [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] refine' ⟨fun _ => r, fun c => l.rCond_of_bRiemann_eq_false hl, fun c π hπ hπp => _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ‖y‖ * ↑ε [PROOFSTEP] rw [mul_comm] /- Then the union of boxes `J ∈ π` such that `π.tag ∈ s` includes `F` and is included by `U`, hence its measure is `ε`-close to the measure of `s`. -/ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (integralSum (indicator s fun x => y) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ↑ε * ‖y‖ [PROOFSTEP] dsimp [integralSum] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • indicator s (fun x => y) (TaggedPrepartition.tag π J)) (ENNReal.toReal (↑↑μ (s ∩ ↑I)) • y) ≤ ↑ε * ‖y‖ [PROOFSTEP] simp only [mem_closedBall, dist_eq_norm, ← indicator_const_smul_apply, sum_indicator_eq_sum_filter, ← sum_smul, ← sub_smul, norm_smul, Real.norm_eq_abs, ← Prepartition.filter_boxes, ← Prepartition.measure_iUnion_toReal] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π ⊢ |ENNReal.toReal (↑↑μ (Prepartition.iUnion (Prepartition.filter π.toPrepartition fun i => TaggedPrepartition.tag π i ∈ s))) - ENNReal.toReal (↑↑μ (s ∩ ↑I))| * ‖y‖ ≤ ↑ε * ‖y‖ [PROOFSTEP] refine' mul_le_mul_of_nonneg_right _ (norm_nonneg y) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π ⊢ |ENNReal.toReal (↑↑μ (Prepartition.iUnion (Prepartition.filter π.toPrepartition fun i => TaggedPrepartition.tag π i ∈ s))) - ENNReal.toReal (↑↑μ (s ∩ ↑I))| ≤ ↑ε [PROOFSTEP] set t := (π.filter (π.tag · ∈ s)).iUnion [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) ⊢ |ENNReal.toReal (↑↑μ (Prepartition.iUnion (Prepartition.filter π.toPrepartition fun i => TaggedPrepartition.tag π i ∈ s))) - ENNReal.toReal (↑↑μ (s ∩ ↑I))| ≤ ↑ε [PROOFSTEP] change abs ((μ t).toReal - (μ (s ∩ I)).toReal) ≤ ε [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) ⊢ |ENNReal.toReal (↑↑μ t) - ENNReal.toReal (↑↑μ (s ∩ ↑I))| ≤ ↑ε [PROOFSTEP] have htU : t ⊆ U ∩ I := by simp only [TaggedPrepartition.iUnion_def, iUnion_subset_iff, TaggedPrepartition.mem_filter, and_imp] refine' fun J hJ hJs x hx => ⟨hrsU _ ⟨hJs, π.tag_mem_Icc J⟩ _, π.le_of_mem' J hJ hx⟩ simpa only [s.piecewise_eq_of_mem _ _ hJs] using hπ.1 J hJ (Box.coe_subset_Icc hx) [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) ⊢ t ⊆ U ∩ ↑I [PROOFSTEP] simp only [TaggedPrepartition.iUnion_def, iUnion_subset_iff, TaggedPrepartition.mem_filter, and_imp] [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) ⊢ ∀ (i : Box ι), i ∈ π → TaggedPrepartition.tag π i ∈ s → ↑i ⊆ U ∩ ↑I [PROOFSTEP] refine' fun J hJ hJs x hx => ⟨hrsU _ ⟨hJs, π.tag_mem_Icc J⟩ _, π.le_of_mem' J hJ hx⟩ [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) J : Box ι hJ : J ∈ π hJs : TaggedPrepartition.tag π J ∈ s x : ι → ℝ hx : x ∈ ↑J ⊢ x ∈ closedBall (TaggedPrepartition.tag π J) ↑(rs (TaggedPrepartition.tag π J)) [PROOFSTEP] simpa only [s.piecewise_eq_of_mem _ _ hJs] using hπ.1 J hJ (Box.coe_subset_Icc hx) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I ⊢ |ENNReal.toReal (↑↑μ t) - ENNReal.toReal (↑↑μ (s ∩ ↑I))| ≤ ↑ε [PROOFSTEP] refine' abs_sub_le_iff.2 ⟨_, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I ⊢ ENNReal.toReal (↑↑μ t) - ENNReal.toReal (↑↑μ (s ∩ ↑I)) ≤ ↑ε [PROOFSTEP] refine' (ENNReal.le_toReal_sub B).trans (ENNReal.toReal_le_coe_of_le_coe _) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I ⊢ ↑↑μ t - ↑↑μ (s ∩ ↑I) ≤ ↑ε [PROOFSTEP] refine' (tsub_le_tsub (measure_mono htU) le_rfl).trans (le_measure_diff.trans _) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I ⊢ ↑↑μ ((U ∩ ↑I) \ (s ∩ ↑I)) ≤ ↑ε [PROOFSTEP] refine' (measure_mono fun x hx => _).trans hμU.le [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I x : ι → ℝ hx : x ∈ (U ∩ ↑I) \ (s ∩ ↑I) ⊢ x ∈ U \ (s ∩ ↑Box.Icc I) [PROOFSTEP] exact ⟨hx.1.1, fun hx' => hx.2 ⟨hx'.1, hx.1.2⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I ⊢ ENNReal.toReal (↑↑μ (s ∩ ↑I)) - ENNReal.toReal (↑↑μ t) ≤ ↑ε [PROOFSTEP] have hμt : μ t ≠ ∞ := ((measure_mono (htU.trans (inter_subset_left _ _))).trans_lt hUt).ne [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I hμt : ↑↑μ t ≠ ⊤ ⊢ ENNReal.toReal (↑↑μ (s ∩ ↑I)) - ENNReal.toReal (↑↑μ t) ≤ ↑ε [PROOFSTEP] refine' (ENNReal.le_toReal_sub hμt).trans (ENNReal.toReal_le_coe_of_le_coe _) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I hμt : ↑↑μ t ≠ ⊤ ⊢ ↑↑μ (s ∩ ↑I) - ↑↑μ t ≤ ↑ε [PROOFSTEP] refine' le_measure_diff.trans ((measure_mono _).trans hμF.le) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I hμt : ↑↑μ t ≠ ⊤ ⊢ (s ∩ ↑I) \ t ⊆ (s ∩ ↑Box.Icc I) \ F [PROOFSTEP] rintro x ⟨⟨hxs, hxI⟩, hxt⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I hμt : ↑↑μ t ≠ ⊤ x : ι → ℝ hxt : ¬x ∈ t hxs : x ∈ s hxI : x ∈ ↑I ⊢ x ∈ (s ∩ ↑Box.Icc I) \ F [PROOFSTEP] refine' ⟨⟨hxs, Box.coe_subset_Icc hxI⟩, fun hxF => hxt _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I hμt : ↑↑μ t ≠ ⊤ x : ι → ℝ hxt : ¬x ∈ t hxs : x ∈ s hxI : x ∈ ↑I hxF : x ∈ F ⊢ x ∈ t [PROOFSTEP] simp only [TaggedPrepartition.iUnion_def, TaggedPrepartition.mem_filter, Set.mem_iUnion, exists_prop] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I hμt : ↑↑μ t ≠ ⊤ x : ι → ℝ hxt : ¬x ∈ t hxs : x ∈ s hxI : x ∈ ↑I hxF : x ∈ F ⊢ ∃ i, (i ∈ π ∧ TaggedPrepartition.tag π i ∈ s) ∧ x ∈ ↑i [PROOFSTEP] rcases hπp x hxI with ⟨J, hJπ, hxJ⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I hμt : ↑↑μ t ≠ ⊤ x : ι → ℝ hxt : ¬x ∈ t hxs : x ∈ s hxI : x ∈ ↑I hxF : x ∈ F J : Box ι hJπ : J ∈ π.toPrepartition hxJ : x ∈ J ⊢ ∃ i, (i ∈ π ∧ TaggedPrepartition.tag π i ∈ s) ∧ x ∈ ↑i [PROOFSTEP] refine' ⟨J, ⟨hJπ, _⟩, hxJ⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I hμt : ↑↑μ t ≠ ⊤ x : ι → ℝ hxt : ¬x ∈ t hxs : x ∈ s hxI : x ∈ ↑I hxF : x ∈ F J : Box ι hJπ : J ∈ π.toPrepartition hxJ : x ∈ J ⊢ TaggedPrepartition.tag π J ∈ s [PROOFSTEP] contrapose hxF [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I hμt : ↑↑μ t ≠ ⊤ x : ι → ℝ hxt : ¬x ∈ t hxs : x ∈ s hxI : x ∈ ↑I J : Box ι hJπ : J ∈ π.toPrepartition hxJ : x ∈ J hxF : ¬TaggedPrepartition.tag π J ∈ s ⊢ ¬x ∈ F [PROOFSTEP] refine' hrs'F _ ⟨π.tag_mem_Icc J, hxF⟩ _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams hl : l.bRiemann = false s : Set (ι → ℝ) hs : MeasurableSet s I : Box ι y : E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ε : ℝ≥0 ε0 : 0 < ε A : ↑↑μ (s ∩ ↑Box.Icc I) ≠ ⊤ B : ↑↑μ (s ∩ ↑I) ≠ ⊤ F : Set (ι → ℝ) hFs : F ⊆ s ∩ ↑Box.Icc I hFc : IsClosed F hμF : ↑↑μ ((s ∩ ↑Box.Icc I) \ F) < ↑ε U : Set (ι → ℝ) hsU : s ∩ ↑Box.Icc I ⊆ U hUo : IsOpen U hUt : ↑↑μ U < ⊤ hμU : ↑↑μ (U \ (s ∩ ↑Box.Icc I)) < ↑ε rs : (ι → ℝ) → ↑(Set.Ioi 0) hrsU : ∀ (x : ι → ℝ), x ∈ s ∩ ↑Box.Icc I → closedBall x ↑(rs x) ⊆ U rs' : (ι → ℝ) → ↑(Set.Ioi 0) hrs'F : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → closedBall x ↑(rs' x) ⊆ Fᶜ r : (ι → ℝ) → ↑(Set.Ioi 0) := Set.piecewise s rs rs' c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π hπp : TaggedPrepartition.IsPartition π t : Set (ι → ℝ) := TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun x => TaggedPrepartition.tag π x ∈ s) htU : t ⊆ U ∩ ↑I hμt : ↑↑μ t ≠ ⊤ x : ι → ℝ hxt : ¬x ∈ t hxs : x ∈ s hxI : x ∈ ↑I J : Box ι hJπ : J ∈ π.toPrepartition hxJ : x ∈ J hxF : ¬TaggedPrepartition.tag π J ∈ s ⊢ x ∈ closedBall (TaggedPrepartition.tag π J) ↑(rs' (TaggedPrepartition.tag π J)) [PROOFSTEP] simpa only [s.piecewise_eq_of_not_mem _ _ hxF] using hπ.1 J hJπ (Box.coe_subset_Icc hxJ) [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hf : f =ᵐ[Measure.restrict μ ↑I] 0 hl : l.bRiemann = false ⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) 0 [PROOFSTEP] refine' hasIntegral_iff.2 fun ε ε0 => _ [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hf : f =ᵐ[Measure.restrict μ ↑I] 0 hl : l.bRiemann = false ε : ℝ ε0 : ε > 0 ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ε [PROOFSTEP] lift ε to ℝ≥0 using ε0.lt.le [GOAL] case intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hf : f =ᵐ[Measure.restrict μ ↑I] 0 hl : l.bRiemann = false ε : ℝ≥0 ε0 : ↑ε > 0 ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] rw [gt_iff_lt, NNReal.coe_pos] at ε0 [GOAL] case intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hf : f =ᵐ[Measure.restrict μ ↑I] 0 hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] rcases NNReal.exists_pos_sum_of_countable ε0.ne' ℕ with ⟨δ, δ0, c, hδc, hcε⟩ [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hf : f =ᵐ[Measure.restrict μ ↑I] 0 hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] haveI := Fact.mk (I.measure_coe_lt_top μ) [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hf : f =ᵐ[Measure.restrict μ ↑I] 0 hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] change μ.restrict I {x | f x ≠ 0} = 0 at hf [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] set N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] have N0 : ∀ {x}, N x = 0 ↔ f x = 0 := by simp [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ ⊢ ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 [PROOFSTEP] simp [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] have : ∀ n, ∃ U, N ⁻¹' { n } ⊆ U ∧ IsOpen U ∧ μ.restrict I U < δ n / n := by refine' fun n => (N ⁻¹' { n }).exists_isOpen_lt_of_lt _ _ cases' n with n · simpa [ENNReal.div_zero (ENNReal.coe_pos.2 (δ0 _)).ne'] using measure_lt_top (μ.restrict I) _ · refine' (measure_mono_null _ hf).le.trans_lt _ · exact fun x hxN hxf => n.succ_ne_zero ((Eq.symm hxN).trans <| N0.2 hxf) · simp [(δ0 _).ne'] [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 ⊢ ∀ (n : ℕ), ∃ U, N ⁻¹' {n} ⊆ U ∧ IsOpen U ∧ ↑↑(Measure.restrict μ ↑I) U < ↑(δ n) / ↑n [PROOFSTEP] refine' fun n => (N ⁻¹' { n }).exists_isOpen_lt_of_lt _ _ [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 n : ℕ ⊢ ↑↑(Measure.restrict μ ↑I) (N ⁻¹' {n}) < ↑(δ n) / ↑n [PROOFSTEP] cases' n with n [GOAL] case zero ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 ⊢ ↑↑(Measure.restrict μ ↑I) (N ⁻¹' {Nat.zero}) < ↑(δ Nat.zero) / ↑Nat.zero [PROOFSTEP] simpa [ENNReal.div_zero (ENNReal.coe_pos.2 (δ0 _)).ne'] using measure_lt_top (μ.restrict I) _ [GOAL] case succ ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 n : ℕ ⊢ ↑↑(Measure.restrict μ ↑I) (N ⁻¹' {Nat.succ n}) < ↑(δ (Nat.succ n)) / ↑(Nat.succ n) [PROOFSTEP] refine' (measure_mono_null _ hf).le.trans_lt _ [GOAL] case succ.refine'_1 ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 n : ℕ ⊢ N ⁻¹' {Nat.succ n} ⊆ {x | f x ≠ 0} [PROOFSTEP] exact fun x hxN hxf => n.succ_ne_zero ((Eq.symm hxN).trans <| N0.2 hxf) [GOAL] case succ.refine'_2 ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 n : ℕ ⊢ 0 < ↑(δ (Nat.succ n)) / ↑(Nat.succ n) [PROOFSTEP] simp [(δ0 _).ne'] [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this✝ : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 this : ∀ (n : ℕ), ∃ U, N ⁻¹' {n} ⊆ U ∧ IsOpen U ∧ ↑↑(Measure.restrict μ ↑I) U < ↑(δ n) / ↑n ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] choose U hNU hUo hμU using this [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] have : ∀ x, ∃ r : Ioi (0 : ℝ), closedBall x r ⊆ U (N x) := fun x => by obtain ⟨r, hr₀, hr⟩ := nhds_basis_closedBall.mem_iff.1 ((hUo _).mem_nhds (hNU _ rfl)) exact ⟨⟨r, hr₀⟩, hr⟩ [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n x : ι → ℝ ⊢ ∃ r, closedBall x ↑r ⊆ U (N x) [PROOFSTEP] obtain ⟨r, hr₀, hr⟩ := nhds_basis_closedBall.mem_iff.1 ((hUo _).mem_nhds (hNU _ rfl)) [GOAL] case intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n x : ι → ℝ r : ℝ hr₀ : 0 < r hr : closedBall ?m.310267 r ⊆ U (N ?m.310267) ⊢ ∃ r, closedBall x ↑r ⊆ U (N x) [PROOFSTEP] exact ⟨⟨r, hr₀⟩, hr⟩ [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this✝ : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n this : ∀ (x : ι → ℝ), ∃ r, closedBall x ↑r ⊆ U (N x) ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] choose r hrU using this [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] refine' ⟨fun _ => r, fun c => l.rCond_of_bRiemann_eq_false hl, fun c π hπ _ => _⟩ [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π ⊢ dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) 0 ≤ ↑ε [PROOFSTEP] rw [dist_eq_norm, sub_zero, ← integralSum_fiberwise fun J => N (π.tag J)] [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π ⊢ ‖∑ y in Finset.image (fun J => N (TaggedPrepartition.tag π J)) π.boxes, integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (TaggedPrepartition.filter π fun x => N (TaggedPrepartition.tag π x) = y)‖ ≤ ↑ε [PROOFSTEP] refine' le_trans _ (NNReal.coe_lt_coe.2 hcε).le [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π ⊢ ‖∑ y in Finset.image (fun J => N (TaggedPrepartition.tag π J)) π.boxes, integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (TaggedPrepartition.filter π fun x => N (TaggedPrepartition.tag π x) = y)‖ ≤ ↑c✝ [PROOFSTEP] refine' (norm_sum_le_of_le _ _).trans (sum_le_hasSum _ (fun n _ => (δ n).2) (NNReal.hasSum_coe.2 hδc)) [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π ⊢ ∀ (b : ℕ), b ∈ Finset.image (fun J => N (TaggedPrepartition.tag π J)) π.boxes → ‖integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (TaggedPrepartition.filter π fun x => N (TaggedPrepartition.tag π x) = b)‖ ≤ ↑(δ b) [PROOFSTEP] rintro n - [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ ⊢ ‖integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (TaggedPrepartition.filter π fun x => N (TaggedPrepartition.tag π x) = n)‖ ≤ ↑(δ n) [PROOFSTEP] dsimp [integralSum] [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ ⊢ ‖∑ J in (TaggedPrepartition.filter π fun x => ⌈‖f (TaggedPrepartition.tag π x)‖⌉₊ = n).toPrepartition.boxes, ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤ ↑(δ n) [PROOFSTEP] have : ∀ J ∈ π.filter fun J => N (π.tag J) = n, ‖(μ ↑J).toReal • f (π.tag J)‖ ≤ (μ J).toReal * n := fun J hJ ↦ by rw [TaggedPrepartition.mem_filter] at hJ rw [norm_smul, Real.norm_eq_abs, abs_of_nonneg ENNReal.toReal_nonneg] exact mul_le_mul_of_nonneg_left (hJ.2 ▸ Nat.le_ceil _) ENNReal.toReal_nonneg [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ J : Box ι hJ : J ∈ TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n ⊢ ‖ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑n [PROOFSTEP] rw [TaggedPrepartition.mem_filter] at hJ [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ J : Box ι hJ : J ∈ π ∧ N (TaggedPrepartition.tag π J) = n ⊢ ‖ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑n [PROOFSTEP] rw [norm_smul, Real.norm_eq_abs, abs_of_nonneg ENNReal.toReal_nonneg] [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ J : Box ι hJ : J ∈ π ∧ N (TaggedPrepartition.tag π J) = n ⊢ ENNReal.toReal (↑↑μ ↑J) * ‖f (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑n [PROOFSTEP] exact mul_le_mul_of_nonneg_left (hJ.2 ▸ Nat.le_ceil _) ENNReal.toReal_nonneg [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this✝ : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ this : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n) → ‖ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑n ⊢ ‖∑ J in (TaggedPrepartition.filter π fun x => ⌈‖f (TaggedPrepartition.tag π x)‖⌉₊ = n).toPrepartition.boxes, ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤ ↑(δ n) [PROOFSTEP] refine' (norm_sum_le_of_le _ this).trans _ [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this✝ : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ this : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n) → ‖ENNReal.toReal (↑↑μ ↑J) • f (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑n ⊢ ∑ b in (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n).toPrepartition.boxes, ENNReal.toReal (↑↑μ ↑b) * ↑n ≤ ↑(δ n) [PROOFSTEP] clear this [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ ⊢ ∑ b in (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n).toPrepartition.boxes, ENNReal.toReal (↑↑μ ↑b) * ↑n ≤ ↑(δ n) [PROOFSTEP] rw [← sum_mul, ← Prepartition.measure_iUnion_toReal] [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ ⊢ ENNReal.toReal (↑↑μ (Prepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n).toPrepartition)) * ↑n ≤ ↑(δ n) [PROOFSTEP] generalize hm : μ (π.filter fun J => N (π.tag J) = n).iUnion = m [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ m : ℝ≥0∞ hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m ⊢ ENNReal.toReal m * ↑n ≤ ↑(δ n) [PROOFSTEP] have : m < δ n / n := by simp only [Measure.restrict_apply (hUo _).measurableSet] at hμU refine' hm ▸ (measure_mono _).trans_lt (hμU _) simp only [Set.subset_def, TaggedPrepartition.mem_iUnion, TaggedPrepartition.mem_filter] rintro x ⟨J, ⟨hJ, rfl⟩, hx⟩ exact ⟨hrU _ (hπ.1 _ hJ (Box.coe_subset_Icc hx)), π.le_of_mem' J hJ hx⟩ [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ m : ℝ≥0∞ hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m ⊢ m < ↑(δ n) / ↑n [PROOFSTEP] simp only [Measure.restrict_apply (hUo _).measurableSet] at hμU [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ m : ℝ≥0∞ hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m hμU : ∀ (n : ℕ), ↑↑μ (U n ∩ ↑I) < ↑(δ n) / ↑n ⊢ m < ↑(δ n) / ↑n [PROOFSTEP] refine' hm ▸ (measure_mono _).trans_lt (hμU _) [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ m : ℝ≥0∞ hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m hμU : ∀ (n : ℕ), ↑↑μ (U n ∩ ↑I) < ↑(δ n) / ↑n ⊢ TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n) ⊆ U n ∩ ↑I [PROOFSTEP] simp only [Set.subset_def, TaggedPrepartition.mem_iUnion, TaggedPrepartition.mem_filter] [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ m : ℝ≥0∞ hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m hμU : ∀ (n : ℕ), ↑↑μ (U n ∩ ↑I) < ↑(δ n) / ↑n ⊢ ∀ (x : ι → ℝ), (∃ J, (J ∈ π ∧ ⌈‖f (TaggedPrepartition.tag π J)‖⌉₊ = n) ∧ x ∈ J) → x ∈ U n ∩ ↑I [PROOFSTEP] rintro x ⟨J, ⟨hJ, rfl⟩, hx⟩ [GOAL] case intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π m : ℝ≥0∞ hμU : ∀ (n : ℕ), ↑↑μ (U n ∩ ↑I) < ↑(δ n) / ↑n x : ι → ℝ J : Box ι hx : x ∈ J hJ : J ∈ π hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J_1 => N (TaggedPrepartition.tag π J_1) = ⌈‖f (TaggedPrepartition.tag π J)‖⌉₊)) = m ⊢ x ∈ U ⌈‖f (TaggedPrepartition.tag π J)‖⌉₊ ∩ ↑I [PROOFSTEP] exact ⟨hrU _ (hπ.1 _ hJ (Box.coe_subset_Icc hx)), π.le_of_mem' J hJ hx⟩ [GOAL] case intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this✝ : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ m : ℝ≥0∞ hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = m this : m < ↑(δ n) / ↑n ⊢ ENNReal.toReal m * ↑n ≤ ↑(δ n) [PROOFSTEP] lift m to ℝ≥0 using ne_top_of_lt this [GOAL] case intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this✝ : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ m : ℝ≥0 hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = ↑m this : ↑m < ↑(δ n) / ↑n ⊢ ENNReal.toReal ↑m * ↑n ≤ ↑(δ n) [PROOFSTEP] rw [ENNReal.coe_toReal, ← NNReal.coe_nat_cast, ← NNReal.coe_mul, NNReal.coe_le_coe, ← ENNReal.coe_le_coe, ENNReal.coe_mul, ENNReal.coe_nat, mul_comm] [GOAL] case intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hl : l.bRiemann = false ε : ℝ≥0 ε0 : 0 < ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε this✝ : Fact (↑↑μ ↑I < ⊤) hf : ↑↑(Measure.restrict μ ↑I) {x | f x ≠ 0} = 0 N : (ι → ℝ) → ℕ := fun x => ⌈‖f x‖⌉₊ N0 : ∀ {x : ι → ℝ}, N x = 0 ↔ f x = 0 U : ℕ → Set (ι → ℝ) hNU : ∀ (n : ℕ), N ⁻¹' {n} ⊆ U n hUo : ∀ (n : ℕ), IsOpen (U n) hμU : ∀ (n : ℕ), ↑↑(Measure.restrict μ ↑I) (U n) < ↑(δ n) / ↑n r : (ι → ℝ) → ↑(Set.Ioi 0) hrU : ∀ (x : ι → ℝ), closedBall x ↑(r x) ⊆ U (N x) c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c ((fun x => r) c) π x✝ : TaggedPrepartition.IsPartition π n : ℕ m : ℝ≥0 hm : ↑↑μ (TaggedPrepartition.iUnion (TaggedPrepartition.filter π fun J => N (TaggedPrepartition.tag π J) = n)) = ↑m this : ↑m < ↑(δ n) / ↑n ⊢ ↑n * ↑m ≤ ↑(δ n) [PROOFSTEP] exact (mul_le_mul_left' this.le _).trans ENNReal.mul_div_le [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι y : E f g : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hf : HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) y hfg : f =ᵐ[Measure.restrict μ ↑I] g hl : l.bRiemann = false ⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) y [PROOFSTEP] have : g - f =ᵐ[μ.restrict I] 0 := hfg.mono fun x hx => sub_eq_zero.2 hx.symm [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E l : IntegrationParams I : Box ι y : E f g : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hf : HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) y hfg : f =ᵐ[Measure.restrict μ ↑I] g hl : l.bRiemann = false this : g - f =ᵐ[Measure.restrict μ ↑I] 0 ⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) y [PROOFSTEP] simpa using hf.add (HasIntegral.of_aeEq_zero this hl) [GOAL] ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E f : SimpleFunc (ι → ℝ) E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false ⊢ HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f) [PROOFSTEP] induction' f using MeasureTheory.SimpleFunc.induction with y s hs f g _ hfi hgi [GOAL] case h_ind ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false y : E s : Set (ι → ℝ) hs : MeasurableSet s ⊢ HasIntegral I l (↑(piecewise s hs (const (ι → ℝ) y) (const (ι → ℝ) 0))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) (piecewise s hs (const (ι → ℝ) y) (const (ι → ℝ) 0))) [PROOFSTEP] simpa only [Measure.restrict_apply hs, const_zero, integral_piecewise_zero, integral_const, Measure.restrict_apply, MeasurableSet.univ, Set.univ_inter] using BoxIntegral.hasIntegralIndicatorConst l hl hs I y μ [GOAL] case h_add ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false f g : SimpleFunc (ι → ℝ) E a✝ : Disjoint (Function.support ↑f) (Function.support ↑g) hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f) hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g) ⊢ HasIntegral I l (↑(f + g)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) (f + g)) [PROOFSTEP] borelize E [GOAL] case h_add ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false f g : SimpleFunc (ι → ℝ) E a✝ : Disjoint (Function.support ↑f) (Function.support ↑g) hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f) hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E ⊢ HasIntegral I l (↑(f + g)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) (f + g)) [PROOFSTEP] haveI := Fact.mk (I.measure_coe_lt_top μ) [GOAL] case h_add ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false f g : SimpleFunc (ι → ℝ) E a✝ : Disjoint (Function.support ↑f) (Function.support ↑g) hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f) hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : Fact (↑↑μ ↑I < ⊤) ⊢ HasIntegral I l (↑(f + g)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) (f + g)) [PROOFSTEP] rw [integral_add] [GOAL] case h_add ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false f g : SimpleFunc (ι → ℝ) E a✝ : Disjoint (Function.support ↑f) (Function.support ↑g) hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f) hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : Fact (↑↑μ ↑I < ⊤) ⊢ HasIntegral I l (↑(f + g)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f + integral (Measure.restrict μ ↑I) g) case h_add.hf ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false f g : SimpleFunc (ι → ℝ) E a✝ : Disjoint (Function.support ↑f) (Function.support ↑g) hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f) hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : Fact (↑↑μ ↑I < ⊤) ⊢ Integrable ↑f case h_add.hg ι : Type u E : Type v inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false f g : SimpleFunc (ι → ℝ) E a✝ : Disjoint (Function.support ↑f) (Function.support ↑g) hfi : HasIntegral I l (↑f) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) f) hgi : HasIntegral I l (↑g) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (integral (Measure.restrict μ ↑I) g) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : Fact (↑↑μ ↑I < ⊤) ⊢ Integrable ↑g [PROOFSTEP] exacts [hfi.add hgi, integrable_iff.2 fun _ _ => measure_lt_top _ _, integrable_iff.2 fun _ _ => measure_lt_top _ _] [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι hf : IntegrableOn f ↑I l : IntegrationParams hl : l.bRiemann = false ⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (x : ι → ℝ) in ↑I, f x ∂μ) [PROOFSTEP] borelize E [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι hf : IntegrableOn f ↑I l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E ⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (x : ι → ℝ) in ↑I, f x ∂μ) [PROOFSTEP] rcases hf.aestronglyMeasurable with ⟨g, hg, hfg⟩ [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι hf : IntegrableOn f ↑I l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g hfg : f =ᵐ[Measure.restrict μ ↑I] g ⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (x : ι → ℝ) in ↑I, f x ∂μ) [PROOFSTEP] haveI : SeparableSpace (range g ∪ {0} : Set E) := hg.separableSpace_range_union_singleton [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι hf : IntegrableOn f ↑I l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g hfg : f =ᵐ[Measure.restrict μ ↑I] g this : SeparableSpace ↑(Set.range g ∪ {0}) ⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (x : ι → ℝ) in ↑I, f x ∂μ) [PROOFSTEP] rw [integral_congr_ae hfg] [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι hf : IntegrableOn f ↑I l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g hfg : f =ᵐ[Measure.restrict μ ↑I] g this : SeparableSpace ↑(Set.range g ∪ {0}) ⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) [PROOFSTEP] have hgi : IntegrableOn g I μ := (integrable_congr hfg).1 hf [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι hf : IntegrableOn f ↑I l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g hfg : f =ᵐ[Measure.restrict μ ↑I] g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I ⊢ HasIntegral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) [PROOFSTEP] refine' BoxIntegral.HasIntegral.congr_ae _ hfg.symm hl [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : (ι → ℝ) → E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι hf : IntegrableOn f ↑I l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g hfg : f =ᵐ[Measure.restrict μ ↑I] g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I ⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) [PROOFSTEP] clear! f [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I ⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) [PROOFSTEP] set f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g hg.measurable (range g ∪ {0}) 0 (by simp) [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I ⊢ 0 ∈ Set.range g ∪ {0} [PROOFSTEP] simp [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) ⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) [PROOFSTEP] have hfi : ∀ n, IntegrableOn (f n) I μ := SimpleFunc.integrable_approxOn_range hg.measurable hgi [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I ⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) [PROOFSTEP] have hfi' := fun n => ((f n).hasBoxIntegral μ I l hl).integrable [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) ⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) [PROOFSTEP] have hfg_mono : ∀ (x) {m n}, m ≤ n → ‖f n x - g x‖ ≤ ‖f m x - g x‖ := by intro x m n hmn rw [← dist_eq_norm, ← dist_eq_norm, dist_nndist, dist_nndist, NNReal.coe_le_coe, ← ENNReal.coe_le_coe, ← edist_nndist, ← edist_nndist] exact SimpleFunc.edist_approxOn_mono hg.measurable _ x hmn [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) ⊢ ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ [PROOFSTEP] intro x m n hmn [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) x : ι → ℝ m n : ℕ hmn : m ≤ n ⊢ ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ [PROOFSTEP] rw [← dist_eq_norm, ← dist_eq_norm, dist_nndist, dist_nndist, NNReal.coe_le_coe, ← ENNReal.coe_le_coe, ← edist_nndist, ← edist_nndist] [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) x : ι → ℝ m n : ℕ hmn : m ≤ n ⊢ edist (↑(f n) x) (g x) ≤ edist (↑(f m) x) (g x) [PROOFSTEP] exact SimpleFunc.edist_approxOn_mono hg.measurable _ x hmn [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ⊢ HasIntegral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) [PROOFSTEP] refine' HasIntegral.of_mul ((μ I).toReal + 1 + 1) fun ε ε0 => _ [GOAL] case intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ ε0 : 0 < ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ε [PROOFSTEP] lift ε to ℝ≥0 using ε0.le [GOAL] case intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ↑ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε [PROOFSTEP] rw [NNReal.coe_pos] at ε0 [GOAL] case intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε [PROOFSTEP] have ε0' := ENNReal.coe_pos.2 ε0 [GOAL] case intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε [PROOFSTEP] obtain ⟨N₀, hN₀⟩ : ∃ N : ℕ, ∫ x in I, ‖f N x - g x‖ ∂μ ≤ ε := by have : Tendsto (fun n => ∫⁻ x in I, ‖f n x - g x‖₊ ∂μ) atTop (𝓝 0) := SimpleFunc.tendsto_approxOn_range_L1_nnnorm hg.measurable hgi refine' (this.eventually (ge_mem_nhds ε0')).exists.imp fun N hN => _ exact integral_coe_le_of_lintegral_coe_le hN [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε ⊢ ∃ N, ∫ (x : ι → ℝ) in ↑I, ‖↑(f N) x - g x‖ ∂μ ≤ ↑ε [PROOFSTEP] have : Tendsto (fun n => ∫⁻ x in I, ‖f n x - g x‖₊ ∂μ) atTop (𝓝 0) := SimpleFunc.tendsto_approxOn_range_L1_nnnorm hg.measurable hgi [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this✝ : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε this : Tendsto (fun n => ∫⁻ (x : ι → ℝ) in ↑I, ↑‖↑(f n) x - g x‖₊ ∂μ) atTop (𝓝 0) ⊢ ∃ N, ∫ (x : ι → ℝ) in ↑I, ‖↑(f N) x - g x‖ ∂μ ≤ ↑ε [PROOFSTEP] refine' (this.eventually (ge_mem_nhds ε0')).exists.imp fun N hN => _ [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this✝ : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε this : Tendsto (fun n => ∫⁻ (x : ι → ℝ) in ↑I, ↑‖↑(f n) x - g x‖₊ ∂μ) atTop (𝓝 0) N : ℕ hN : ∫⁻ (x : ι → ℝ) in ↑I, ↑‖↑(f N) x - g x‖₊ ∂μ ≤ ↑ε ⊢ ∫ (x : ι → ℝ) in ↑I, ‖↑(f N) x - g x‖ ∂μ ≤ ↑ε [PROOFSTEP] exact integral_coe_le_of_lintegral_coe_le hN [GOAL] case intro.intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε [PROOFSTEP] have : ∀ x, ∃ N₁, N₀ ≤ N₁ ∧ dist (f N₁ x) (g x) ≤ ε := fun x ↦ by have : Tendsto (f · x) atTop (𝓝 <| g x) := SimpleFunc.tendsto_approxOn hg.measurable _ (subset_closure (by simp)) exact ((eventually_ge_atTop N₀).and <| this <| closedBall_mem_nhds _ ε0).exists [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε x : ι → ℝ ⊢ ∃ N₁, N₀ ≤ N₁ ∧ dist (↑(f N₁) x) (g x) ≤ ↑ε [PROOFSTEP] have : Tendsto (f · x) atTop (𝓝 <| g x) := SimpleFunc.tendsto_approxOn hg.measurable _ (subset_closure (by simp)) [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε x : ι → ℝ ⊢ g x ∈ Set.range g ∪ {0} [PROOFSTEP] simp [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this✝ : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε x : ι → ℝ this : Tendsto (fun x_1 => ↑(f x_1) x) atTop (𝓝 (g x)) ⊢ ∃ N₁, N₀ ≤ N₁ ∧ dist (↑(f N₁) x) (g x) ≤ ↑ε [PROOFSTEP] exact ((eventually_ge_atTop N₀).and <| this <| closedBall_mem_nhds _ ε0).exists [GOAL] case intro.intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this✝ : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε this : ∀ (x : ι → ℝ), ∃ N₁, N₀ ≤ N₁ ∧ dist (↑(f N₁) x) (g x) ≤ ↑ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε [PROOFSTEP] choose Nx hNx hNxε using this [GOAL] case intro.intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε [PROOFSTEP] rcases NNReal.exists_pos_sum_of_countable ε0.ne' ℕ with ⟨δ, δ0, c, hδc, hcε⟩ /- Since each simple function `fᵢ` is integrable, there exists `rᵢ : ℝⁿ → (0, ∞)` such that the integral sum of `f` over any tagged prepartition is `δᵢ`-close to the sum of integrals of `fᵢ` over the boxes of this prepartition. For each `x`, we choose `r (Nx x)` as the radius at `x`. -/ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε [PROOFSTEP] set r : ℝ≥0 → (ι → ℝ) → Ioi (0 : ℝ) := fun c x => (hfi' <| Nx x).convergenceR (δ <| Nx x) c x [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c : ℝ≥0 hδc : HasSum δ c hcε : c < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x ⊢ ∃ r, (∀ (c : ℝ≥0), IntegrationParams.RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), IntegrationParams.MemBaseSet l I c (r c) π → TaggedPrepartition.IsPartition π → dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε [PROOFSTEP] refine' ⟨r, fun c => l.rCond_of_bRiemann_eq_false hl, fun c π hπ hπp => _⟩ /- Now we prove the estimate in 3 "jumps": first we replace `g x` in the formula for the integral sum by `f (Nx x)`; then we replace each `μ J • f (Nx (π.tag J)) (π.tag J)` by the Bochner integral of `f (Nx (π.tag J)) x` over `J`, then we jump to the Bochner integral of `g`. -/ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε [PROOFSTEP] refine' (dist_triangle4 _ (∑ J in π.boxes, (μ J).toReal • f (Nx <| π.tag J) (π.tag J)) (∑ J in π.boxes, ∫ x in J, f (Nx <| π.tag J) x ∂μ) _).trans _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) + dist (∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) + dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ (ENNReal.toReal (↑↑μ ↑I) + 1 + 1) * ↑ε [PROOFSTEP] rw [add_mul, add_mul, one_mul] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) + dist (∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) + dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ ENNReal.toReal (↑↑μ ↑I) * ↑ε + ↑ε + ↑ε [PROOFSTEP] refine' add_le_add_three _ _ _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π) (∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) ≤ ENNReal.toReal (↑↑μ ↑I) * ↑ε [PROOFSTEP] rw [← hπp.iUnion_eq, π.measure_iUnion_toReal, sum_mul, integralSum] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (∑ J in π.boxes, ↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (g (TaggedPrepartition.tag π J))) (∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) ≤ ∑ x in π.boxes, ENNReal.toReal (↑↑μ ↑x) * ↑ε [PROOFSTEP] refine' dist_sum_sum_le_of_le _ fun J _ => _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π J : Box ι x✝ : J ∈ π.boxes ⊢ dist (↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (g (TaggedPrepartition.tag π J))) (ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) ≤ ENNReal.toReal (↑↑μ ↑J) * ↑ε [PROOFSTEP] dsimp [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π J : Box ι x✝ : J ∈ π.boxes ⊢ dist (ENNReal.toReal (↑↑μ ↑J) • g (TaggedPrepartition.tag π J)) (ENNReal.toReal (↑↑μ ↑J) • ↑(SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) ≤ ENNReal.toReal (↑↑μ ↑J) * ↑ε [PROOFSTEP] rw [dist_eq_norm, ← smul_sub, norm_smul, Real.norm_eq_abs, abs_of_nonneg ENNReal.toReal_nonneg] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π J : Box ι x✝ : J ∈ π.boxes ⊢ ENNReal.toReal (↑↑μ ↑J) * ‖g (TaggedPrepartition.tag π J) - ↑(SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * ↑ε [PROOFSTEP] refine' mul_le_mul_of_nonneg_left _ ENNReal.toReal_nonneg [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π J : Box ι x✝ : J ∈ π.boxes ⊢ ‖g (TaggedPrepartition.tag π J) - ↑(SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)‖ ≤ ↑ε [PROOFSTEP] rw [← dist_eq_norm'] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π J : Box ι x✝ : J ∈ π.boxes ⊢ dist (↑(SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) (g (TaggedPrepartition.tag π J)) ≤ ↑ε [PROOFSTEP] exact hNxε _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (∑ J in π.boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤ ↑ε [PROOFSTEP] rw [← π.sum_fiberwise fun J => Nx (π.tag J), ← π.sum_fiberwise fun J => Nx (π.tag J)] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (∑ y in Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes, ∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = y).boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) (∑ y in Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes, ∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = y).boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤ ↑ε [PROOFSTEP] refine' le_trans _ (NNReal.coe_lt_coe.2 hcε).le [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (∑ y in Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes, ∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = y).boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) (∑ y in Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes, ∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = y).boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤ ↑c✝ [PROOFSTEP] refine' (dist_sum_sum_le_of_le _ fun n hn => _).trans (sum_le_hasSum _ (fun n _ => (δ n).2) (NNReal.hasSum_coe.2 hδc)) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π n : ℕ hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes ⊢ dist (∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) (∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤ ↑(δ n) [PROOFSTEP] have hNxn : ∀ J ∈ π.filter fun J => Nx (π.tag J) = n, Nx (π.tag J) = n := fun J hJ => (π.mem_filter.1 hJ).2 [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π n : ℕ hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes hNxn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n ⊢ dist (∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) (∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤ ↑(δ n) [PROOFSTEP] have hrn : ∀ J ∈ π.filter fun J => Nx (π.tag J) = n, r c (π.tag J) = (hfi' n).convergenceR (δ n) c (π.tag J) := fun J hJ ↦ by obtain rfl := hNxn J hJ rfl [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π n : ℕ hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes hNxn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n J : Box ι hJ : J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n ⊢ r c (TaggedPrepartition.tag π J) = Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c (TaggedPrepartition.tag π J) [PROOFSTEP] obtain rfl := hNxn J hJ [GOAL] ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π J : Box ι hn : Nx (TaggedPrepartition.tag π J) ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes hNxn : ∀ (J_1 : Box ι), (J_1 ∈ TaggedPrepartition.filter π fun J_2 => Nx (TaggedPrepartition.tag π J_2) = Nx (TaggedPrepartition.tag π J)) → Nx (TaggedPrepartition.tag π J_1) = Nx (TaggedPrepartition.tag π J) hJ : J ∈ TaggedPrepartition.filter π fun J_1 => Nx (TaggedPrepartition.tag π J_1) = Nx (TaggedPrepartition.tag π J) ⊢ r c (TaggedPrepartition.tag π J) = Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx (TaggedPrepartition.tag π J)))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx (TaggedPrepartition.tag π J)))) c (TaggedPrepartition.tag π J) [PROOFSTEP] rfl [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π n : ℕ hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes hNxn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n hrn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → r c (TaggedPrepartition.tag π J) = Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c (TaggedPrepartition.tag π J) ⊢ dist (∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) (∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤ ↑(δ n) [PROOFSTEP] have : l.MemBaseSet I c ((hfi' n).convergenceR (δ n) c) (π.filter fun J => Nx (π.tag J) = n) := (hπ.filter _).mono' _ le_rfl le_rfl fun J hJ => (hrn J hJ).le [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this✝ : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π n : ℕ hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes hNxn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n hrn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → r c (TaggedPrepartition.tag π J) = Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c (TaggedPrepartition.tag π J) this : IntegrationParams.MemBaseSet l I c (Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c) (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) ⊢ dist (∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J)) (∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) ≤ ↑(δ n) [PROOFSTEP] convert (hfi' n).dist_integralSum_sum_integral_le_of_memBaseSet (δ0 _) this using 2 [GOAL] case h.e'_3.h.e'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this✝ : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π n : ℕ hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes hNxn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n hrn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → r c (TaggedPrepartition.tag π J) = Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c (TaggedPrepartition.tag π J) this : IntegrationParams.MemBaseSet l I c (Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c) (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) ⊢ ∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes, ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J) = integralSum (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) [PROOFSTEP] refine' sum_congr rfl fun J hJ => _ [GOAL] case h.e'_3.h.e'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this✝ : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π n : ℕ hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes hNxn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n hrn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → r c (TaggedPrepartition.tag π J) = Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c (TaggedPrepartition.tag π J) this : IntegrationParams.MemBaseSet l I c (Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c) (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) J : Box ι hJ : J ∈ (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n).toPrepartition.boxes ⊢ ENNReal.toReal (↑↑μ ↑J) • ↑(f (Nx (TaggedPrepartition.tag π J))) (TaggedPrepartition.tag π J) = ↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (↑(f n) (TaggedPrepartition.tag (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) J)) [PROOFSTEP] simp [hNxn J hJ] [GOAL] case h.e'_3.h.e'_4 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this✝ : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π n : ℕ hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes hNxn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n hrn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → r c (TaggedPrepartition.tag π J) = Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c (TaggedPrepartition.tag π J) this : IntegrationParams.MemBaseSet l I c (Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c) (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) ⊢ ∑ J in (Prepartition.filter π.toPrepartition fun J => Nx (TaggedPrepartition.tag π J) = n).boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ = ∑ J in (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n).toPrepartition.boxes, BoxIntegral.integral J l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] refine' sum_congr rfl fun J hJ => _ [GOAL] case h.e'_3.h.e'_4 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this✝ : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π n : ℕ hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes hNxn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n hrn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → r c (TaggedPrepartition.tag π J) = Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c (TaggedPrepartition.tag π J) this : IntegrationParams.MemBaseSet l I c (Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c) (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) J : Box ι hJ : J ∈ (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n).toPrepartition.boxes ⊢ ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ = BoxIntegral.integral J l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] rw [← SimpleFunc.integral_eq_integral, SimpleFunc.box_integral_eq_integral _ _ _ _ hl, hNxn J hJ] [GOAL] case h.e'_3.h.e'_4.hfi ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this✝ : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π n : ℕ hn : n ∈ Finset.image (fun J => Nx (TaggedPrepartition.tag π J)) π.boxes hNxn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → Nx (TaggedPrepartition.tag π J) = n hrn : ∀ (J : Box ι), (J ∈ TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) → r c (TaggedPrepartition.tag π J) = Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c (TaggedPrepartition.tag π J) this : IntegrationParams.MemBaseSet l I c (Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ n)) c) (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n) J : Box ι hJ : J ∈ (TaggedPrepartition.filter π fun J => Nx (TaggedPrepartition.tag π J) = n).toPrepartition.boxes ⊢ Integrable ↑(f (Nx (TaggedPrepartition.tag π J))) [PROOFSTEP] exact (hfi _).mono_set (Prepartition.le_of_mem _ hJ) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ ↑ε [PROOFSTEP] refine' le_trans _ hN₀ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π ⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ [PROOFSTEP] have hfi : ∀ (n), ∀ J ∈ π, IntegrableOn (f n) (↑J) μ := fun n J hJ => (hfi n).mono_set (π.le_of_mem' J hJ) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J ⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ [PROOFSTEP] have hgi : ∀ J ∈ π, IntegrableOn g (↑J) μ := fun J hJ => hgi.mono_set (π.le_of_mem' J hJ) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi✝ : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J ⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ [PROOFSTEP] have hfgi : ∀ (n), ∀ J ∈ π, IntegrableOn (fun x => ‖f n x - g x‖) J μ := fun n J hJ => ((hfi n J hJ).sub (hgi J hJ)).norm [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi✝ : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J hfgi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn (fun x => ‖↑(f n) x - g x‖) ↑J ⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) (∫ (a : ι → ℝ) in ↑I, g a ∂μ) ≤ ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ [PROOFSTEP] rw [← hπp.iUnion_eq, Prepartition.iUnion_def', integral_finset_biUnion π.boxes (fun J _ => J.measurableSet_coe) π.pairwiseDisjoint hgi, integral_finset_biUnion π.boxes (fun J _ => J.measurableSet_coe) π.pairwiseDisjoint (hfgi _)] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi✝ : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J hfgi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn (fun x => ‖↑(f n) x - g x‖) ↑J ⊢ dist (∑ J in π.boxes, ∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) (∑ i in π.boxes, ∫ (x : ι → ℝ) in ↑i, g x ∂μ) ≤ ∑ i in π.boxes, ∫ (x : ι → ℝ) in ↑i, ‖↑(f N₀) x - g x‖ ∂μ [PROOFSTEP] refine' dist_sum_sum_le_of_le _ fun J hJ => _ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi✝ : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J hfgi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn (fun x => ‖↑(f n) x - g x‖) ↑J J : Box ι hJ : J ∈ π.boxes ⊢ dist (∫ (x : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) x ∂μ) (∫ (x : ι → ℝ) in ↑J, g x ∂μ) ≤ ∫ (x : ι → ℝ) in ↑J, ‖↑(f N₀) x - g x‖ ∂μ [PROOFSTEP] rw [dist_eq_norm, ← integral_sub (hfi _ J hJ) (hgi J hJ)] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi✝ : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J hfgi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn (fun x => ‖↑(f n) x - g x‖) ↑J J : Box ι hJ : J ∈ π.boxes ⊢ ‖∫ (a : ι → ℝ) in ↑J, ↑(f (Nx (TaggedPrepartition.tag π J))) a - g a ∂μ‖ ≤ ∫ (x : ι → ℝ) in ↑J, ‖↑(f N₀) x - g x‖ ∂μ [PROOFSTEP] refine' norm_integral_le_of_norm_le (hfgi _ J hJ) (eventually_of_forall fun x => _) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.refine'_3 ι : Type u E : Type v inst✝⁴ : Fintype ι inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ I : Box ι l : IntegrationParams hl : l.bRiemann = false this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E g : (ι → ℝ) → E hg : StronglyMeasurable g this : SeparableSpace ↑(Set.range g ∪ {0}) hgi✝ : IntegrableOn g ↑I f : ℕ → SimpleFunc (ι → ℝ) E := SimpleFunc.approxOn g (_ : Measurable g) (Set.range g ∪ {0}) 0 (_ : 0 ∈ Set.range g ∪ {0}) hfi✝ : ∀ (n : ℕ), IntegrableOn ↑(f n) ↑I hfi' : ∀ (n : ℕ), BoxIntegral.Integrable I l (↑(f n)) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfg_mono : ∀ (x : ι → ℝ) {m n : ℕ}, m ≤ n → ‖↑(f n) x - g x‖ ≤ ‖↑(f m) x - g x‖ ε : ℝ≥0 ε0 : 0 < ε ε0' : 0 < ↑ε N₀ : ℕ hN₀ : ∫ (x : ι → ℝ) in ↑I, ‖↑(f N₀) x - g x‖ ∂μ ≤ ↑ε Nx : (ι → ℝ) → ℕ hNx : ∀ (x : ι → ℝ), N₀ ≤ Nx x hNxε : ∀ (x : ι → ℝ), dist (↑(f (Nx x)) x) (g x) ≤ ↑ε δ : ℕ → ℝ≥0 δ0 : ∀ (i : ℕ), 0 < δ i c✝ : ℝ≥0 hδc : HasSum δ c✝ hcε : c✝ < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => Integrable.convergenceR (_ : BoxIntegral.Integrable I l (↑(f (Nx x))) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))) (↑(δ (Nx x))) c x c : ℝ≥0 π : TaggedPrepartition I hπ : IntegrationParams.MemBaseSet l I c (r c) π hπp : TaggedPrepartition.IsPartition π hfi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn ↑(f n) ↑J hgi : ∀ (J : Box ι), J ∈ π → IntegrableOn g ↑J hfgi : ∀ (n : ℕ) (J : Box ι), J ∈ π → IntegrableOn (fun x => ‖↑(f n) x - g x‖) ↑J J : Box ι hJ : J ∈ π.boxes x : ι → ℝ ⊢ ‖↑(f (Nx (TaggedPrepartition.tag π J))) x - g x‖ ≤ ‖↑(f N₀) x - g x‖ [PROOFSTEP] exact hfg_mono x (hNx (π.tag J))
{"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Integrability", "llama_tokens": 103242}
[GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝¹ : AddCommMonoid M inst✝ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i : ι f g : ι →ᵇᵃ[I₀] M h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝¹ : AddCommMonoid M inst✝ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i : ι g : ι →ᵇᵃ[I₀] M toFun✝ : Box ι → M sum_partition_boxes'✝ : ∀ (J : Box ι), ↑J ≤ I₀ → ∀ (π : Prepartition J), IsPartition π → ∑ Ji in π.boxes, toFun✝ Ji = toFun✝ J h : { toFun := toFun✝, sum_partition_boxes' := sum_partition_boxes'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, sum_partition_boxes' := sum_partition_boxes'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝¹ : AddCommMonoid M inst✝ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i : ι toFun✝¹ : Box ι → M sum_partition_boxes'✝¹ : ∀ (J : Box ι), ↑J ≤ I₀ → ∀ (π : Prepartition J), IsPartition π → ∑ Ji in π.boxes, toFun✝¹ Ji = toFun✝¹ J toFun✝ : Box ι → M sum_partition_boxes'✝ : ∀ (J : Box ι), ↑J ≤ I₀ → ∀ (π : Prepartition J), IsPartition π → ∑ Ji in π.boxes, toFun✝ Ji = toFun✝ J h : { toFun := toFun✝¹, sum_partition_boxes' := sum_partition_boxes'✝¹ }.toFun = { toFun := toFun✝, sum_partition_boxes' := sum_partition_boxes'✝ }.toFun ⊢ { toFun := toFun✝¹, sum_partition_boxes' := sum_partition_boxes'✝¹ } = { toFun := toFun✝, sum_partition_boxes' := sum_partition_boxes'✝ } [PROOFSTEP] congr [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝¹ : AddCommMonoid M inst✝ : AddCommMonoid N I₀ : WithTop (Box ι) I✝ J : Box ι i : ι f g : ι →ᵇᵃ[I₀] M I : Box ι hI : ↑I ≤ I₀ π : Prepartition I hπ : IsPartition π ⊢ ∑ Ji in π.boxes, (↑f + ↑g) Ji = (↑f + ↑g) I [PROOFSTEP] simp only [Pi.add_apply, sum_add_distrib, sum_partition_boxes _ hI hπ] [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝³ : AddCommMonoid M inst✝² : AddCommMonoid N I₀ : WithTop (Box ι) I✝ J : Box ι i : ι R : Type ?u.25829 inst✝¹ : Monoid R inst✝ : DistribMulAction R M r : R f : ι →ᵇᵃ[I₀] M I : Box ι hI : ↑I ≤ I₀ π : Prepartition I hπ : IsPartition π ⊢ ∑ Ji in π.boxes, (r • ↑f) Ji = (r • ↑f) I [PROOFSTEP] simp only [Pi.smul_apply, ← smul_sum, sum_partition_boxes _ hI hπ] [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝¹ : AddCommMonoid M inst✝ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i✝ : ι f : ι →ᵇᵃ[I₀] M hI : ↑I ≤ I₀ i : ι x : ℝ ⊢ Option.elim' 0 (↑f) (splitLower I i x) + Option.elim' 0 (↑f) (splitUpper I i x) = ↑f I [PROOFSTEP] rw [← f.sum_partition_boxes hI (isPartitionSplit I i x), sum_split_boxes] [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I ⊢ ι →ᵇᵃ[I₀] M [PROOFSTEP] refine' ⟨f, _⟩ [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I ⊢ ∀ (J : Box ι), ↑J ≤ I₀ → ∀ (π : Prepartition J), IsPartition π → ∑ Ji in π.boxes, f Ji = f J [PROOFSTEP] replace hf : ∀ I : Box ι, ↑I ≤ I₀ → ∀ s, (∑ J in (splitMany I s).boxes, f J) = f I [GOAL] case hf ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I ⊢ ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I [PROOFSTEP] intro I hI s [GOAL] case hf ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I I : Box ι hI : ↑I ≤ I₀ s : Finset (ι × ℝ) ⊢ ∑ J in (splitMany I s).boxes, f J = f I [PROOFSTEP] induction' s using Finset.induction_on with a s _ ihs [GOAL] case hf.empty ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I I : Box ι hI : ↑I ≤ I₀ ⊢ ∑ J in (splitMany I ∅).boxes, f J = f I [PROOFSTEP] simp [GOAL] case hf.insert ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I I : Box ι hI : ↑I ≤ I₀ a : ι × ℝ s : Finset (ι × ℝ) a✝ : ¬a ∈ s ihs : ∑ J in (splitMany I s).boxes, f J = f I ⊢ ∑ J in (splitMany I (insert a s)).boxes, f J = f I [PROOFSTEP] rw [splitMany_insert, inf_split, ← ihs, biUnion_boxes, sum_biUnion_boxes] [GOAL] case hf.insert ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I I : Box ι hI : ↑I ≤ I₀ a : ι × ℝ s : Finset (ι × ℝ) a✝ : ¬a ∈ s ihs : ∑ J in (splitMany I s).boxes, f J = f I ⊢ ∑ J in (splitMany I s).boxes, ∑ J' in (split J a.fst a.snd).boxes, f J' = ∑ J in (splitMany I s).boxes, f J [PROOFSTEP] refine' Finset.sum_congr rfl fun J' hJ' => _ [GOAL] case hf.insert ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I I : Box ι hI : ↑I ≤ I₀ a : ι × ℝ s : Finset (ι × ℝ) a✝ : ¬a ∈ s ihs : ∑ J in (splitMany I s).boxes, f J = f I J' : Box ι hJ' : J' ∈ (splitMany I s).boxes ⊢ ∑ J' in (split J' a.fst a.snd).boxes, f J' = f J' [PROOFSTEP] by_cases h : a.2 ∈ Ioo (J'.lower a.1) (J'.upper a.1) [GOAL] case pos ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I I : Box ι hI : ↑I ≤ I₀ a : ι × ℝ s : Finset (ι × ℝ) a✝ : ¬a ∈ s ihs : ∑ J in (splitMany I s).boxes, f J = f I J' : Box ι hJ' : J' ∈ (splitMany I s).boxes h : a.snd ∈ Set.Ioo (lower J' a.fst) (upper J' a.fst) ⊢ ∑ J' in (split J' a.fst a.snd).boxes, f J' = f J' [PROOFSTEP] rw [sum_split_boxes] [GOAL] case pos ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I I : Box ι hI : ↑I ≤ I₀ a : ι × ℝ s : Finset (ι × ℝ) a✝ : ¬a ∈ s ihs : ∑ J in (splitMany I s).boxes, f J = f I J' : Box ι hJ' : J' ∈ (splitMany I s).boxes h : a.snd ∈ Set.Ioo (lower J' a.fst) (upper J' a.fst) ⊢ Option.elim' 0 (fun J' => f J') (splitLower J' a.fst a.snd) + Option.elim' 0 (fun J' => f J') (splitUpper J' a.fst a.snd) = f J' [PROOFSTEP] exact hf _ ((WithTop.coe_le_coe.2 <| le_of_mem _ hJ').trans hI) h [GOAL] case neg ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ {i : ι} {x : ℝ}, x ∈ Set.Ioo (lower I i) (upper I i) → Option.elim' 0 f (splitLower I i x) + Option.elim' 0 f (splitUpper I i x) = f I I : Box ι hI : ↑I ≤ I₀ a : ι × ℝ s : Finset (ι × ℝ) a✝ : ¬a ∈ s ihs : ∑ J in (splitMany I s).boxes, f J = f I J' : Box ι hJ' : J' ∈ (splitMany I s).boxes h : ¬a.snd ∈ Set.Ioo (lower J' a.fst) (upper J' a.fst) ⊢ ∑ J' in (split J' a.fst a.snd).boxes, f J' = f J' [PROOFSTEP] rw [split_of_not_mem_Ioo h, top_boxes, Finset.sum_singleton] [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I ⊢ ∀ (J : Box ι), ↑J ≤ I₀ → ∀ (π : Prepartition J), IsPartition π → ∑ Ji in π.boxes, f Ji = f J [PROOFSTEP] intro I hI π hπ [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I I : Box ι hI : ↑I ≤ I₀ π : Prepartition I hπ : IsPartition π ⊢ ∑ Ji in π.boxes, f Ji = f I [PROOFSTEP] have Hle : ∀ J ∈ π, ↑J ≤ I₀ := fun J hJ => (WithTop.coe_le_coe.2 <| π.le_of_mem hJ).trans hI [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I I : Box ι hI : ↑I ≤ I₀ π : Prepartition I hπ : IsPartition π Hle : ∀ (J : Box ι), J ∈ π → ↑J ≤ I₀ ⊢ ∑ Ji in π.boxes, f Ji = f I [PROOFSTEP] rcases hπ.exists_splitMany_le with ⟨s, hs⟩ [GOAL] case intro ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I I : Box ι hI : ↑I ≤ I₀ π : Prepartition I hπ : IsPartition π Hle : ∀ (J : Box ι), J ∈ π → ↑J ≤ I₀ s : Finset (ι × ℝ) hs : splitMany I s ≤ π ⊢ ∑ Ji in π.boxes, f Ji = f I [PROOFSTEP] rw [← hf _ hI, ← inf_of_le_right hs, inf_splitMany, biUnion_boxes, sum_biUnion_boxes] [GOAL] case intro ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I✝ J : Box ι i : ι inst✝ : Fintype ι f : Box ι → M I₀ : WithTop (Box ι) hf : ∀ (I : Box ι), ↑I ≤ I₀ → ∀ (s : Finset (ι × ℝ)), ∑ J in (splitMany I s).boxes, f J = f I I : Box ι hI : ↑I ≤ I₀ π : Prepartition I hπ : IsPartition π Hle : ∀ (J : Box ι), J ∈ π → ↑J ≤ I₀ s : Finset (ι × ℝ) hs : splitMany I s ≤ π ⊢ ∑ Ji in π.boxes, f Ji = ∑ J in π.boxes, ∑ J' in (splitMany J s).boxes, f J' [PROOFSTEP] exact Finset.sum_congr rfl fun J hJ => (hf _ (Hle _ hJ) _).symm [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝¹ : AddCommMonoid M inst✝ : AddCommMonoid N I₀ : WithTop (Box ι) I✝ J : Box ι i : ι f : ι →ᵇᵃ[I₀] M g : M →+ N I : Box ι hI : ↑I ≤ I₀ π : Prepartition I hπ : IsPartition π ⊢ ∑ Ji in π.boxes, (↑g ∘ ↑f) Ji = (↑g ∘ ↑f) I [PROOFSTEP] simp_rw [comp, ← g.map_sum, f.sum_partition_boxes hI hπ] [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Finite ι f : ι →ᵇᵃ[I₀] M hI : ↑I ≤ I₀ π₁ π₂ : Prepartition I h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ ⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J [PROOFSTEP] rcases exists_splitMany_inf_eq_filter_of_finite { π₁, π₂ } ((finite_singleton _).insert _) with ⟨s, hs⟩ [GOAL] case intro ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Finite ι f : ι →ᵇᵃ[I₀] M hI : ↑I ≤ I₀ π₁ π₂ : Prepartition I h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ s : Finset (ι × ℝ) hs : ∀ (π : Prepartition I), π ∈ {π₁, π₂} → π ⊓ splitMany I s = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π ⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J [PROOFSTEP] simp only [inf_splitMany] at hs [GOAL] case intro ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Finite ι f : ι →ᵇᵃ[I₀] M hI : ↑I ≤ I₀ π₁ π₂ : Prepartition I h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ s : Finset (ι × ℝ) hs : ∀ (π : Prepartition I), π ∈ {π₁, π₂} → (biUnion π fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π ⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J [PROOFSTEP] rcases hs _ (Or.inl rfl), hs _ (Or.inr rfl) with ⟨h₁, h₂⟩ [GOAL] case intro ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Finite ι f : ι →ᵇᵃ[I₀] M hI : ↑I ≤ I₀ π₁ π₂ : Prepartition I h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ s : Finset (ι × ℝ) hs : ∀ (π : Prepartition I), π ∈ {π₁, π₂} → (biUnion π fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₁ h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂ ⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J [PROOFSTEP] clear hs [GOAL] case intro ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Finite ι f : ι →ᵇᵃ[I₀] M hI : ↑I ≤ I₀ π₁ π₂ : Prepartition I h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ s : Finset (ι × ℝ) h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₁ h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂ ⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J [PROOFSTEP] rw [h] at h₁ [GOAL] case intro ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Finite ι f : ι →ᵇᵃ[I₀] M hI : ↑I ≤ I₀ π₁ π₂ : Prepartition I h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ s : Finset (ι × ℝ) h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂ h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂ ⊢ ∑ J in π₁.boxes, ↑f J = ∑ J in π₂.boxes, ↑f J [PROOFSTEP] calc ∑ J in π₁.boxes, f J = ∑ J in π₁.boxes, ∑ J' in (splitMany J s).boxes, f J' := Finset.sum_congr rfl fun J hJ => (f.sum_partition_boxes ?_ (isPartition_splitMany _ _)).symm _ = ∑ J in (π₁.biUnion fun J => splitMany J s).boxes, f J := (sum_biUnion_boxes _ _ _).symm _ = ∑ J in (π₂.biUnion fun J => splitMany J s).boxes, f J := by rw [h₁, h₂] _ = ∑ J in π₂.boxes, ∑ J' in (splitMany J s).boxes, f J' := (sum_biUnion_boxes _ _ _) _ = ∑ J in π₂.boxes, f J := Finset.sum_congr rfl fun J hJ => f.sum_partition_boxes ?_ (isPartition_splitMany _ _) [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀ : WithTop (Box ι) I J : Box ι i : ι inst✝ : Finite ι f : ι →ᵇᵃ[I₀] M hI : ↑I ≤ I₀ π₁ π₂ : Prepartition I h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ s : Finset (ι × ℝ) h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂ h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂ ⊢ ∑ J in (biUnion π₁ fun J => splitMany J s).boxes, ↑f J = ∑ J in (biUnion π₂ fun J => splitMany J s).boxes, ↑f J [PROOFSTEP] rw [h₁, h₂] [GOAL] case intro.calc_1 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀ : WithTop (Box ι) I J✝ : Box ι i : ι inst✝ : Finite ι f : ι →ᵇᵃ[I₀] M hI : ↑I ≤ I₀ π₁ π₂ : Prepartition I h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ s : Finset (ι × ℝ) h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂ h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂ J : Box ι hJ : J ∈ π₁.boxes ⊢ ↑J ≤ I₀ case intro.calc_2 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀ : WithTop (Box ι) I J✝ : Box ι i : ι inst✝ : Finite ι f : ι →ᵇᵃ[I₀] M hI : ↑I ≤ I₀ π₁ π₂ : Prepartition I h : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ s : Finset (ι × ℝ) h₁ : (biUnion π₁ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂ h₂ : (biUnion π₂ fun J => splitMany J s) = Prepartition.filter (splitMany I s) fun J => ↑J ⊆ Prepartition.iUnion π₂ J : Box ι hJ : J ∈ π₂.boxes ⊢ ↑J ≤ I₀ [PROOFSTEP] exacts [(WithTop.coe_le_coe.2 <| π₁.le_of_mem hJ).trans hI, (WithTop.coe_le_coe.2 <| π₂.le_of_mem hJ).trans hI] [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J ⊢ ∀ (I : Box (Fin (n + 1))), ↑I ≤ ↑I₀ → ∀ {i_1 : Fin (n + 1)} {x : ℝ}, x ∈ Set.Ioo (lower I i_1) (upper I i_1) → Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower I i_1 x) + Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper I i_1 x) = (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) I [PROOFSTEP] intro J hJ j x [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : ↑J ≤ ↑I₀ j : Fin (n + 1) x : ℝ ⊢ x ∈ Set.Ioo (lower J j) (upper J j) → Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J j x) + Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J j x) = (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J [PROOFSTEP] rw [WithTop.coe_le_coe] at hJ [GOAL] ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : J ≤ I₀ j : Fin (n + 1) x : ℝ ⊢ x ∈ Set.Ioo (lower J j) (upper J j) → Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J j x) + Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J j x) = (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J [PROOFSTEP] refine' i.succAboveCases (fun hx => _) (fun j hx => _) j [GOAL] case refine'_1 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : J ≤ I₀ j : Fin (n + 1) x : ℝ hx : x ∈ Set.Ioo (lower J i) (upper J i) ⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J i x) + Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J i x) = (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J [PROOFSTEP] simp only [Box.splitLower_def hx, Box.splitUpper_def hx, update_same, ← WithBot.some_eq_coe, Option.elim', Box.face, (· ∘ ·), update_noteq (Fin.succAbove_ne _ _)] [GOAL] case refine'_1 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : J ≤ I₀ j : Fin (n + 1) x : ℝ hx : x ∈ Set.Ioo (lower J i) (upper J i) ⊢ f x { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x_1 => lower { lower := J.lower, upper := update J.upper i x, lower_lt_upper := (_ : ∀ (x_2 : Fin (n + 1)), lower J x_2 < update J.upper i x x_2) } (Fin.succAbove i x_1)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } - f (lower J i) { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x_1 => lower { lower := J.lower, upper := update J.upper i x, lower_lt_upper := (_ : ∀ (x_2 : Fin (n + 1)), lower J x_2 < update J.upper i x x_2) } (Fin.succAbove i x_1)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } + (f (upper J i) { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } - f x { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) }) = f (upper J i) { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } - f (lower J i) { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } [PROOFSTEP] abel [GOAL] case refine'_1 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : J ≤ I₀ j : Fin (n + 1) x : ℝ hx : x ∈ Set.Ioo (lower J i) (upper J i) ⊢ f x { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x_1 => lower { lower := J.lower, upper := update J.upper i x, lower_lt_upper := (_ : ∀ (x_2 : Fin (n + 1)), lower J x_2 < update J.upper i x x_2) } (Fin.succAbove i x_1)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } - f (lower J i) { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x_1 => lower { lower := J.lower, upper := update J.upper i x, lower_lt_upper := (_ : ∀ (x_2 : Fin (n + 1)), lower J x_2 < update J.upper i x x_2) } (Fin.succAbove i x_1)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } + (f (upper J i) { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } - f x { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) }) = f (upper J i) { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } - f (lower J i) { lower := fun x => lower J (Fin.succAbove i x), upper := fun x => upper J (Fin.succAbove i x), lower_lt_upper := (_ : ∀ (i_1 : Fin n), (fun x => lower J (Fin.succAbove i x)) i_1 < (fun x => upper J (Fin.succAbove i x)) i_1) } [PROOFSTEP] abel [GOAL] case refine'_2 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : J ≤ I₀ j✝ : Fin (n + 1) x : ℝ j : Fin n hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j)) ⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) + Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J (Fin.succAbove i j) x) = (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J [PROOFSTEP] have : (J.face i : WithTop (Box (Fin n))) ≤ I₀.face i := WithTop.coe_le_coe.2 (face_mono hJ i) [GOAL] case refine'_2 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : J ≤ I₀ j✝ : Fin (n + 1) x : ℝ j : Fin n hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j)) this : ↑(face J i) ≤ ↑(face I₀ i) ⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) + Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J (Fin.succAbove i j) x) = (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J [PROOFSTEP] rw [le_iff_Icc, @Box.Icc_eq_pi _ I₀] at hJ [GOAL] case refine'_2 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : ↑Box.Icc J ⊆ Set.pi Set.univ fun i => Set.Icc (lower I₀ i) (upper I₀ i) j✝ : Fin (n + 1) x : ℝ j : Fin n hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j)) this : ↑(face J i) ≤ ↑(face I₀ i) ⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) + Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J (Fin.succAbove i j) x) = (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) J [PROOFSTEP] simp only [GOAL] case refine'_2 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : ↑Box.Icc J ⊆ Set.pi Set.univ fun i => Set.Icc (lower I₀ i) (upper I₀ i) j✝ : Fin (n + 1) x : ℝ j : Fin n hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j)) this : ↑(face J i) ≤ ↑(face I₀ i) ⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) + Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J (Fin.succAbove i j) x) = f (upper J i) (face J i) - f (lower J i) (face J i) [PROOFSTEP] rw [hf _ (hJ J.upper_mem_Icc _ trivial), hf _ (hJ J.lower_mem_Icc _ trivial), ← (fb _).map_split_add this j x, ← (fb _).map_split_add this j x] [GOAL] case refine'_2 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : ↑Box.Icc J ⊆ Set.pi Set.univ fun i => Set.Icc (lower I₀ i) (upper I₀ i) j✝ : Fin (n + 1) x : ℝ j : Fin n hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j)) this : ↑(face J i) ≤ ↑(face I₀ i) ⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) + Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J (Fin.succAbove i j) x) = Option.elim' 0 (↑(fb { val := upper J i, property := (_ : upper J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) })) (splitLower (face J i) j x) + Option.elim' 0 (↑(fb { val := upper J i, property := (_ : upper J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) })) (splitUpper (face J i) j x) - (Option.elim' 0 (↑(fb { val := lower J i, property := (_ : lower J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) })) (splitLower (face J i) j x) + Option.elim' 0 (↑(fb { val := lower J i, property := (_ : lower J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) })) (splitUpper (face J i) j x)) [PROOFSTEP] have hx' : x ∈ Ioo ((J.face i).lower j) ((J.face i).upper j) := hx [GOAL] case refine'_2 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : ↑Box.Icc J ⊆ Set.pi Set.univ fun i => Set.Icc (lower I₀ i) (upper I₀ i) j✝ : Fin (n + 1) x : ℝ j : Fin n hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j)) this : ↑(face J i) ≤ ↑(face I₀ i) hx' : x ∈ Set.Ioo (lower (face J i) j) (upper (face J i) j) ⊢ Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitLower J (Fin.succAbove i j) x) + Option.elim' 0 (fun J => f (upper J i) (face J i) - f (lower J i) (face J i)) (splitUpper J (Fin.succAbove i j) x) = Option.elim' 0 (↑(fb { val := upper J i, property := (_ : upper J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) })) (splitLower (face J i) j x) + Option.elim' 0 (↑(fb { val := upper J i, property := (_ : upper J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) })) (splitUpper (face J i) j x) - (Option.elim' 0 (↑(fb { val := lower J i, property := (_ : lower J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) })) (splitLower (face J i) j x) + Option.elim' 0 (↑(fb { val := lower J i, property := (_ : lower J i ∈ (fun i => Set.Icc (lower I₀ i) (upper I₀ i)) i) })) (splitUpper (face J i) j x)) [PROOFSTEP] simp only [Box.splitLower_def hx, Box.splitUpper_def hx, Box.splitLower_def hx', Box.splitUpper_def hx', ← WithBot.some_eq_coe, Option.elim', Box.face_mk, update_noteq (Fin.succAbove_ne _ _).symm, sub_add_sub_comm, update_comp_eq_of_injective _ (Fin.strictMono_succAbove i).injective j x, ← hf] [GOAL] case refine'_2 ι : Type u_1 M : Type u_2 n : ℕ N : Type u_3 inst✝² : AddCommMonoid M inst✝¹ : AddCommMonoid N I₀✝ : WithTop (Box ι) I J✝ : Box ι i✝ : ι G : Type u inst✝ : AddCommGroup G I₀ : Box (Fin (n + 1)) i : Fin (n + 1) f : ℝ → Box (Fin n) → G fb : ↑(Set.Icc (lower I₀ i) (upper I₀ i)) → Fin n →ᵇᵃ[↑(face I₀ i)] G hf : ∀ (x : ℝ) (hx : x ∈ Set.Icc (lower I₀ i) (upper I₀ i)) (J : Box (Fin n)), f x J = ↑(fb { val := x, property := hx }) J J : Box (Fin (n + 1)) hJ : ↑Box.Icc J ⊆ Set.pi Set.univ fun i => Set.Icc (lower I₀ i) (upper I₀ i) j✝ : Fin (n + 1) x : ℝ j : Fin n hx : x ∈ Set.Ioo (lower J (Fin.succAbove i j)) (upper J (Fin.succAbove i j)) this : ↑(face J i) ≤ ↑(face I₀ i) hx' : x ∈ Set.Ioo (lower (face J i) j) (upper (face J i) j) ⊢ f (upper J i) { lower := J.lower ∘ Fin.succAbove i, upper := update (J.upper ∘ Fin.succAbove i) j x, lower_lt_upper := (_ : ∀ (i_1 : Fin n), (J.lower ∘ Fin.succAbove i) i_1 < update (J.upper ∘ Fin.succAbove i) j x i_1) } + f (upper J i) { lower := update (J.lower ∘ Fin.succAbove i) j x, upper := J.upper ∘ Fin.succAbove i, lower_lt_upper := (_ : ∀ (i_1 : Fin n), update (J.lower ∘ Fin.succAbove i) j x i_1 < (J.upper ∘ Fin.succAbove i) i_1) } - (f (lower J i) { lower := J.lower ∘ Fin.succAbove i, upper := update (J.upper ∘ Fin.succAbove i) j x, lower_lt_upper := (_ : ∀ (i_1 : Fin n), (J.lower ∘ Fin.succAbove i) i_1 < update (J.upper ∘ Fin.succAbove i) j x i_1) } + f (lower J i) { lower := update (J.lower ∘ Fin.succAbove i) j x, upper := J.upper ∘ Fin.succAbove i, lower_lt_upper := (_ : ∀ (i_1 : Fin n), update (J.lower ∘ Fin.succAbove i) j x i_1 < (J.upper ∘ Fin.succAbove i) i_1) }) = f (upper J i) { lower := (face J i).lower, upper := update (face J i).upper j x, lower_lt_upper := (_ : ∀ (x_1 : Fin n), lower (face J i) x_1 < update (face J i).upper j x x_1) } + f (upper J i) { lower := update (face J i).lower j x, upper := (face J i).upper, lower_lt_upper := (_ : ∀ (x_1 : Fin n), update (face J i).lower j x x_1 < upper (face J i) x_1) } - (f (lower J i) { lower := (face J i).lower, upper := update (face J i).upper j x, lower_lt_upper := (_ : ∀ (x_1 : Fin n), lower (face J i) x_1 < update (face J i).upper j x x_1) } + f (lower J i) { lower := update (face J i).lower j x, upper := (face J i).upper, lower_lt_upper := (_ : ∀ (x_1 : Fin n), update (face J i).lower j x x_1 < upper (face J i) x_1) }) [PROOFSTEP] simp only [Box.face]
{"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Partition.Additive", "llama_tokens": 18940}
[GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) i : ℕ ⊢ approx (↑f) i ≤ approx (↑f) (Nat.succ i) [PROOFSTEP] induction i with | zero => dsimp [approx]; apply @bot_le _ _ _ (f ⊥) | succ _ i_ih => intro; apply f.monotone; apply i_ih [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) i : ℕ ⊢ approx (↑f) i ≤ approx (↑f) (Nat.succ i) [PROOFSTEP] induction i with | zero => dsimp [approx]; apply @bot_le _ _ _ (f ⊥) | succ _ i_ih => intro; apply f.monotone; apply i_ih [GOAL] case zero α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) ⊢ approx (↑f) Nat.zero ≤ approx (↑f) (Nat.succ Nat.zero) [PROOFSTEP] | zero => dsimp [approx]; apply @bot_le _ _ _ (f ⊥) [GOAL] case zero α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) ⊢ approx (↑f) Nat.zero ≤ approx (↑f) (Nat.succ Nat.zero) [PROOFSTEP] dsimp [approx] [GOAL] case zero α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) ⊢ ⊥ ≤ ↑f ⊥ [PROOFSTEP] apply @bot_le _ _ _ (f ⊥) [GOAL] case succ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) n✝ : ℕ i_ih : approx (↑f) n✝ ≤ approx (↑f) (Nat.succ n✝) ⊢ approx (↑f) (Nat.succ n✝) ≤ approx (↑f) (Nat.succ (Nat.succ n✝)) [PROOFSTEP] | succ _ i_ih => intro; apply f.monotone; apply i_ih [GOAL] case succ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) n✝ : ℕ i_ih : approx (↑f) n✝ ≤ approx (↑f) (Nat.succ n✝) ⊢ approx (↑f) (Nat.succ n✝) ≤ approx (↑f) (Nat.succ (Nat.succ n✝)) [PROOFSTEP] intro [GOAL] case succ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) n✝ : ℕ i_ih : approx (↑f) n✝ ≤ approx (↑f) (Nat.succ n✝) i✝ : α ⊢ approx (↑f) (Nat.succ n✝) i✝ ≤ approx (↑f) (Nat.succ (Nat.succ n✝)) i✝ [PROOFSTEP] apply f.monotone [GOAL] case succ.a α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) n✝ : ℕ i_ih : approx (↑f) n✝ ≤ approx (↑f) (Nat.succ n✝) i✝ : α ⊢ approx (↑f) n✝ ≤ approx (↑f) (Nat.succ n✝) [PROOFSTEP] apply i_ih [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) i j : ℕ hij : i ≤ j ⊢ approx (↑f) i ≤ approx (↑f) j [PROOFSTEP] induction' j with j ih [GOAL] case zero α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) i j : ℕ hij✝ : i ≤ j hij : i ≤ Nat.zero ⊢ approx (↑f) i ≤ approx (↑f) Nat.zero [PROOFSTEP] cases hij [GOAL] case zero.refl α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) j : ℕ hij : Nat.zero ≤ j ⊢ approx (↑f) Nat.zero ≤ approx (↑f) Nat.zero [PROOFSTEP] exact le_rfl [GOAL] case succ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) i j✝ : ℕ hij✝ : i ≤ j✝ j : ℕ ih : i ≤ j → approx (↑f) i ≤ approx (↑f) j hij : i ≤ Nat.succ j ⊢ approx (↑f) i ≤ approx (↑f) (Nat.succ j) [PROOFSTEP] cases hij [GOAL] case succ.refl α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) j✝ j : ℕ hij : Nat.succ j ≤ j✝ ih : Nat.succ j ≤ j → approx (↑f) (Nat.succ j) ≤ approx (↑f) j ⊢ approx (↑f) (Nat.succ j) ≤ approx (↑f) (Nat.succ j) [PROOFSTEP] exact le_rfl [GOAL] case succ.step α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) i j✝ : ℕ hij : i ≤ j✝ j : ℕ ih : i ≤ j → approx (↑f) i ≤ approx (↑f) j a✝ : Nat.le i j ⊢ approx (↑f) i ≤ approx (↑f) (Nat.succ j) [PROOFSTEP] exact le_trans (ih ‹_›) (approx_mono' f) [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a ⊢ b ∈ Part.fix (↑f) a ↔ ∃ i, b ∈ approx (↑f) i a [PROOFSTEP] by_cases h₀ : ∃ i : ℕ, (approx f i a).Dom [GOAL] case pos α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom ⊢ b ∈ Part.fix (↑f) a ↔ ∃ i, b ∈ approx (↑f) i a [PROOFSTEP] simp only [Part.fix_def f h₀] [GOAL] case pos α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom ⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a ↔ ∃ i, b ∈ approx (↑f) i a [PROOFSTEP] constructor [GOAL] case pos.mp α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom ⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a → ∃ i, b ∈ approx (↑f) i a [PROOFSTEP] intro hh [GOAL] case pos.mpr α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom ⊢ (∃ i, b ∈ approx (↑f) i a) → b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a [PROOFSTEP] intro hh [GOAL] case pos.mp α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom hh : b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a ⊢ ∃ i, b ∈ approx (↑f) i a [PROOFSTEP] exact ⟨_, hh⟩ [GOAL] case pos.mpr α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom hh : ∃ i, b ∈ approx (↑f) i a ⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a [PROOFSTEP] have h₁ := Nat.find_spec h₀ [GOAL] case pos.mpr α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom hh : ∃ i, b ∈ approx (↑f) i a h₁ : (approx (↑f) (Nat.find h₀) a).Dom ⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a [PROOFSTEP] rw [dom_iff_mem] at h₁ [GOAL] case pos.mpr α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom hh : ∃ i, b ∈ approx (↑f) i a h₁ : ∃ y, y ∈ approx (↑f) (Nat.find h₀) a ⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a [PROOFSTEP] cases' h₁ with y h₁ [GOAL] case pos.mpr.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom hh : ∃ i, b ∈ approx (↑f) i a y : β a h₁ : y ∈ approx (↑f) (Nat.find h₀) a ⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a [PROOFSTEP] replace h₁ := approx_mono' f _ _ h₁ [GOAL] case pos.mpr.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom hh : ∃ i, b ∈ approx (↑f) i a y : β a h₁ : y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a ⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a [PROOFSTEP] suffices : y = b [GOAL] case pos.mpr.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom hh : ∃ i, b ∈ approx (↑f) i a y : β a h₁ : y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a this : y = b ⊢ b ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a [PROOFSTEP] subst this [GOAL] case pos.mpr.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α h₀ : ∃ i, (approx (↑f) i a).Dom y : β a h₁ : y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a hh : ∃ i, y ∈ approx (↑f) i a ⊢ y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a [PROOFSTEP] exact h₁ [GOAL] case this α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom hh : ∃ i, b ∈ approx (↑f) i a y : β a h₁ : y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a ⊢ y = b [PROOFSTEP] cases' hh with i hh [GOAL] case this.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a h₁ : y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a i : ℕ hh : b ∈ approx (↑f) i a ⊢ y = b [PROOFSTEP] revert h₁ [GOAL] case this.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a ⊢ y ∈ approx (↑f) (Nat.succ (Nat.find h₀)) a → y = b [PROOFSTEP] generalize succ (Nat.find h₀) = j [GOAL] case this.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ ⊢ y ∈ approx (↑f) j a → y = b [PROOFSTEP] intro h₁ [GOAL] case this.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a ⊢ y = b [PROOFSTEP] wlog case : i ≤ j [GOAL] case this.intro.inr α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j ⊢ y = b [PROOFSTEP] cases' le_total i j with H H <;> [skip; symm] [GOAL] case this.intro.inr α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j ⊢ y = b [PROOFSTEP] cases' le_total i j with H H [GOAL] case this.intro.inr.inl α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : i ≤ j ⊢ y = b [PROOFSTEP] skip [GOAL] case this.intro.inr.inr α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : j ≤ i ⊢ y = b [PROOFSTEP] symm [GOAL] case this.intro.inr.inl α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : i ≤ j ⊢ y = b [PROOFSTEP] apply_assumption [GOAL] case this.intro.inr.inr α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : j ≤ i ⊢ b = y [PROOFSTEP] apply_assumption [GOAL] case this.intro.inr.inl.h₀ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : i ≤ j ⊢ ∃ i, (approx (↑?this.intro.inr.inl.f) i a).Dom [PROOFSTEP] assumption [GOAL] case this.intro.inr.inl.hh α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : i ≤ j ⊢ b ∈ approx ↑f ?this.intro.inr.inl.i a [PROOFSTEP] assumption [GOAL] case this.intro.inr.inl.h₁ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : i ≤ j ⊢ y ∈ approx ↑f ?this.intro.inr.inl.j a [PROOFSTEP] assumption [GOAL] case this.intro.inr.inl.case α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : i ≤ j ⊢ i ≤ j [PROOFSTEP] assumption [GOAL] case this.intro.inr.inr.h₀ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : j ≤ i ⊢ ∃ i, (approx (↑?this.intro.inr.inr.f) i a).Dom [PROOFSTEP] assumption [GOAL] case this.intro.inr.inr.hh α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : j ≤ i ⊢ y ∈ approx ↑f ?this.intro.inr.inr.i a [PROOFSTEP] assumption [GOAL] case this.intro.inr.inr.h₁ α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : j ≤ i ⊢ b ∈ approx ↑f ?this.intro.inr.inr.j a [PROOFSTEP] assumption [GOAL] case this.intro.inr.inr.case α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a this : ∀ {α : Type u_1} {β : α → Type u_2} (f : ((a : α) → Part (β a)) →o (a : α) → Part (β a)) (a : α) (b : β a), (∃ i, (approx (↑f) i a).Dom) → ∀ (y : β a) (i : ℕ), b ∈ approx (↑f) i a → ∀ (j : ℕ), y ∈ approx (↑f) j a → i ≤ j → y = b case : ¬i ≤ j H : j ≤ i ⊢ j ≤ i [PROOFSTEP] assumption [GOAL] α✝ : Type u_1 β✝ : α✝ → Type u_2 f✝ : ((a : α✝) → Part (β✝ a)) →o (a : α✝) → Part (β✝ a) α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i : ℕ hh : b ∈ approx (↑f) i a j : ℕ h₁ : y ∈ approx (↑f) j a case : i ≤ j ⊢ y = b [PROOFSTEP] replace hh := approx_mono f case _ _ hh [GOAL] α✝ : Type u_1 β✝ : α✝ → Type u_2 f✝ : ((a : α✝) → Part (β✝ a)) →o (a : α✝) → Part (β✝ a) α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∃ i, (approx (↑f) i a).Dom y : β a i j : ℕ h₁ : y ∈ approx (↑f) j a case : i ≤ j hh : b ∈ approx (↑f) j a ⊢ y = b [PROOFSTEP] apply Part.mem_unique h₁ hh [GOAL] case neg α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ¬∃ i, (approx (↑f) i a).Dom ⊢ b ∈ Part.fix (↑f) a ↔ ∃ i, b ∈ approx (↑f) i a [PROOFSTEP] simp only [fix_def' (⇑f) h₀, not_exists, false_iff_iff, not_mem_none] [GOAL] case neg α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ¬∃ i, (approx (↑f) i a).Dom ⊢ ∀ (x : ℕ), ¬b ∈ approx (↑f) x a [PROOFSTEP] simp only [dom_iff_mem, not_exists] at h₀ [GOAL] case neg α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∀ (x : ℕ) (x_1 : β a), ¬x_1 ∈ approx (↑f) x a ⊢ ∀ (x : ℕ), ¬b ∈ approx (↑f) x a [PROOFSTEP] intro [GOAL] case neg α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) a : α b : β a h₀ : ∀ (x : ℕ) (x_1 : β a), ¬x_1 ∈ approx (↑f) x a x✝ : ℕ ⊢ ¬b ∈ approx (↑f) x✝ a [PROOFSTEP] apply h₀ [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) i : ℕ a : α b : β a hh : b ∈ approx (↑f) i a ⊢ b ∈ Part.fix (↑f) a [PROOFSTEP] rw [mem_iff f] [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) i : ℕ a : α b : β a hh : b ∈ approx (↑f) i a ⊢ ∃ i, b ∈ approx (↑f) i a [PROOFSTEP] exact ⟨_, hh⟩ [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α ⊢ ∃ i, Part.fix (↑f) x ≤ approx (↑f) i x [PROOFSTEP] by_cases hh : ∃ i b, b ∈ approx f i x [GOAL] case pos α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α hh : ∃ i b, b ∈ approx (↑f) i x ⊢ ∃ i, Part.fix (↑f) x ≤ approx (↑f) i x [PROOFSTEP] rcases hh with ⟨i, b, hb⟩ [GOAL] case pos.intro.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α i : ℕ b : β x hb : b ∈ approx (↑f) i x ⊢ ∃ i, Part.fix (↑f) x ≤ approx (↑f) i x [PROOFSTEP] exists i [GOAL] case pos.intro.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α i : ℕ b : β x hb : b ∈ approx (↑f) i x ⊢ Part.fix (↑f) x ≤ approx (↑f) i x [PROOFSTEP] intro b' h' [GOAL] case pos.intro.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α i : ℕ b : β x hb : b ∈ approx (↑f) i x b' : β x h' : b' ∈ Part.fix (↑f) x ⊢ b' ∈ approx (↑f) i x [PROOFSTEP] have hb' := approx_le_fix f i _ _ hb [GOAL] case pos.intro.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α i : ℕ b : β x hb : b ∈ approx (↑f) i x b' : β x h' : b' ∈ Part.fix (↑f) x hb' : b ∈ Part.fix (↑f) x ⊢ b' ∈ approx (↑f) i x [PROOFSTEP] obtain rfl := Part.mem_unique h' hb' [GOAL] case pos.intro.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α i : ℕ b' : β x h' : b' ∈ Part.fix (↑f) x hb : b' ∈ approx (↑f) i x hb' : b' ∈ Part.fix (↑f) x ⊢ b' ∈ approx (↑f) i x [PROOFSTEP] exact hb [GOAL] case neg α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α hh : ¬∃ i b, b ∈ approx (↑f) i x ⊢ ∃ i, Part.fix (↑f) x ≤ approx (↑f) i x [PROOFSTEP] simp only [not_exists] at hh [GOAL] case neg α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α hh : ∀ (x_1 : ℕ) (x_2 : β x), ¬x_2 ∈ approx (↑f) x_1 x ⊢ ∃ i, Part.fix (↑f) x ≤ approx (↑f) i x [PROOFSTEP] exists 0 [GOAL] case neg α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α hh : ∀ (x_1 : ℕ) (x_2 : β x), ¬x_2 ∈ approx (↑f) x_1 x ⊢ Part.fix (↑f) x ≤ approx (↑f) 0 x [PROOFSTEP] intro b' h' [GOAL] case neg α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α hh : ∀ (x_1 : ℕ) (x_2 : β x), ¬x_2 ∈ approx (↑f) x_1 x b' : β x h' : b' ∈ Part.fix (↑f) x ⊢ b' ∈ approx (↑f) 0 x [PROOFSTEP] simp only [mem_iff f] at h' [GOAL] case neg α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α hh : ∀ (x_1 : ℕ) (x_2 : β x), ¬x_2 ∈ approx (↑f) x_1 x b' : β x h' : ∃ i, b' ∈ approx (↑f) i x ⊢ b' ∈ approx (↑f) 0 x [PROOFSTEP] cases' h' with i h' [GOAL] case neg.intro α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : α hh : ∀ (x_1 : ℕ) (x_2 : β x), ¬x_2 ∈ approx (↑f) x_1 x b' : β x i : ℕ h' : b' ∈ approx (↑f) i x ⊢ b' ∈ approx (↑f) 0 x [PROOFSTEP] cases hh _ _ h' [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : (a : α) → Part (β a) ⊢ x ∈ approxChain f → x ≤ ↑f x [PROOFSTEP] simp only [(· ∈ ·), forall_exists_index] [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) x : (a : α) → Part (β a) ⊢ ∀ (x_1 : ℕ), x = ↑(approxChain f) x_1 → x ≤ ↑f x [PROOFSTEP] rintro i rfl [GOAL] α : Type u_1 β : α → Type u_2 f : ((a : α) → Part (β a)) →o (a : α) → Part (β a) i : ℕ ⊢ ↑(approxChain f) i ≤ ↑f (↑(approxChain f) i) [PROOFSTEP] apply approx_mono' [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) ⊢ Part.fix ↑f = ωSup (approxChain f) [PROOFSTEP] apply le_antisymm [GOAL] case a α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) ⊢ Part.fix ↑f ≤ ωSup (approxChain f) [PROOFSTEP] intro x [GOAL] case a α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) x : α✝ ⊢ Part.fix (↑f) x ≤ ωSup (approxChain f) x [PROOFSTEP] cases' exists_fix_le_approx f x with i hx [GOAL] case a.intro α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) x : α✝ i : ℕ hx : Part.fix (↑f) x ≤ approx (↑f) i x ⊢ Part.fix (↑f) x ≤ ωSup (approxChain f) x [PROOFSTEP] trans approx f i.succ x [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) x : α✝ i : ℕ hx : Part.fix (↑f) x ≤ approx (↑f) i x ⊢ Part.fix (↑f) x ≤ approx (↑f) (Nat.succ i) x [PROOFSTEP] trans [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) x : α✝ i : ℕ hx : Part.fix (↑f) x ≤ approx (↑f) i x ⊢ Part.fix (↑f) x ≤ ?m.11190 α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) x : α✝ i : ℕ hx : Part.fix (↑f) x ≤ approx (↑f) i x ⊢ ?m.11190 ≤ approx (↑f) (Nat.succ i) x α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) x : α✝ i : ℕ hx : Part.fix (↑f) x ≤ approx (↑f) i x ⊢ Part (β x) [PROOFSTEP] apply hx [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) x : α✝ i : ℕ hx : Part.fix (↑f) x ≤ approx (↑f) i x ⊢ approx (↑f) i x ≤ approx (↑f) (Nat.succ i) x [PROOFSTEP] apply approx_mono' f [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) x : α✝ i : ℕ hx : Part.fix (↑f) x ≤ approx (↑f) i x ⊢ approx (↑f) (Nat.succ i) x ≤ ωSup (approxChain f) x [PROOFSTEP] apply le_ωSup_of_le i.succ [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) x : α✝ i : ℕ hx : Part.fix (↑f) x ≤ approx (↑f) i x ⊢ approx (↑f) (Nat.succ i) x ≤ ↑(Chain.map (approxChain f) (Pi.evalOrderHom x)) (Nat.succ i) [PROOFSTEP] dsimp [approx] [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) x : α✝ i : ℕ hx : Part.fix (↑f) x ≤ approx (↑f) i x ⊢ ↑f (approx (↑f) i) x ≤ ↑(approxChain f) (Nat.succ i) x [PROOFSTEP] rfl [GOAL] case a α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) ⊢ ωSup (approxChain f) ≤ Part.fix ↑f [PROOFSTEP] apply ωSup_le _ _ _ [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) ⊢ ∀ (i : ℕ), ↑(approxChain f) i ≤ Part.fix ↑f [PROOFSTEP] simp only [Fix.approxChain, OrderHom.coe_mk] [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) ⊢ ∀ (i : ℕ), ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } i ≤ Part.fix ↑f [PROOFSTEP] intro y x [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) y : ℕ x : α✝ ⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } y x ≤ Part.fix (↑f) x [PROOFSTEP] apply approx_le_fix f [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X ⊢ Part.fix ↑f ≤ X [PROOFSTEP] rw [fix_eq_ωSup f] [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X ⊢ ωSup (approxChain f) ≤ X [PROOFSTEP] apply ωSup_le _ _ _ [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X ⊢ ∀ (i : ℕ), ↑(approxChain f) i ≤ X [PROOFSTEP] simp only [Fix.approxChain, OrderHom.coe_mk] [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X ⊢ ∀ (i : ℕ), ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } i ≤ X [PROOFSTEP] intro i [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X i : ℕ ⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } i ≤ X [PROOFSTEP] induction i with | zero => dsimp [Fix.approx]; apply bot_le | succ _ i_ih => trans f X; apply f.monotone i_ih; apply hX [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X i : ℕ ⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } i ≤ X [PROOFSTEP] induction i with | zero => dsimp [Fix.approx]; apply bot_le | succ _ i_ih => trans f X; apply f.monotone i_ih; apply hX [GOAL] case zero α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X ⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } Nat.zero ≤ X [PROOFSTEP] | zero => dsimp [Fix.approx]; apply bot_le [GOAL] case zero α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X ⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } Nat.zero ≤ X [PROOFSTEP] dsimp [Fix.approx] [GOAL] case zero α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X ⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } 0 ≤ X [PROOFSTEP] apply bot_le [GOAL] case succ α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X n✝ : ℕ i_ih : ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } n✝ ≤ X ⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } (Nat.succ n✝) ≤ X [PROOFSTEP] | succ _ i_ih => trans f X; apply f.monotone i_ih; apply hX [GOAL] case succ α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X n✝ : ℕ i_ih : ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } n✝ ≤ X ⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } (Nat.succ n✝) ≤ X [PROOFSTEP] trans f X [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X n✝ : ℕ i_ih : ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } n✝ ≤ X ⊢ ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } (Nat.succ n✝) ≤ ↑f X α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X n✝ : ℕ i_ih : ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } n✝ ≤ X ⊢ ↑f X ≤ X [PROOFSTEP] apply f.monotone i_ih [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) X : (a : α✝) → Part (β a) hX : ↑f X ≤ X n✝ : ℕ i_ih : ↑{ toFun := approx ↑f, monotone' := (_ : ∀ ⦃i j : ℕ⦄, i ≤ j → approx (↑f) i ≤ approx (↑f) j) } n✝ ≤ X ⊢ ↑f X ≤ X [PROOFSTEP] apply hX [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) hc : Continuous f ⊢ Part.fix ↑f = ↑f (Part.fix ↑f) [PROOFSTEP] rw [fix_eq_ωSup f, hc] [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) hc : Continuous f ⊢ ωSup (approxChain f) = ωSup (Chain.map (approxChain f) f) [PROOFSTEP] apply le_antisymm [GOAL] case a α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) hc : Continuous f ⊢ ωSup (approxChain f) ≤ ωSup (Chain.map (approxChain f) f) [PROOFSTEP] apply ωSup_le_ωSup_of_le _ [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) hc : Continuous f ⊢ approxChain f ≤ Chain.map (approxChain f) f [PROOFSTEP] intro i [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) hc : Continuous f i : ℕ ⊢ ∃ j, ↑(approxChain f) i ≤ ↑(Chain.map (approxChain f) f) j [PROOFSTEP] exists i [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) hc : Continuous f i : ℕ ⊢ ↑(approxChain f) i ≤ ↑(Chain.map (approxChain f) f) i [PROOFSTEP] intro x [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) hc : Continuous f i : ℕ x : α✝ ⊢ ↑(approxChain f) i x ≤ ↑(Chain.map (approxChain f) f) i x [PROOFSTEP] apply le_f_of_mem_approx _ ⟨i, rfl⟩ [GOAL] case a α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) hc : Continuous f ⊢ ωSup (Chain.map (approxChain f) f) ≤ ωSup (approxChain f) [PROOFSTEP] apply ωSup_le_ωSup_of_le _ [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) hc : Continuous f ⊢ Chain.map (approxChain f) f ≤ approxChain f [PROOFSTEP] intro i [GOAL] α✝ : Type u_1 β : α✝ → Type u_2 α : Type u_3 f : ((a : α✝) → Part (β a)) →o (a : α✝) → Part (β a) hc : Continuous f i : ℕ ⊢ ∃ j, ↑(Chain.map (approxChain f) f) i ≤ ↑(approxChain f) j [PROOFSTEP] exists i.succ [GOAL] α : Type u_1 β : α → Type u_2 f : Part α →o Part α hc : Continuous f x✝ : Chain (Unit → Part α) ⊢ ↑(toUnitMono f) (ωSup x✝) = ωSup (Chain.map x✝ (toUnitMono f)) [PROOFSTEP] ext ⟨⟩ : 1 [GOAL] case h.unit α : Type u_1 β : α → Type u_2 f : Part α →o Part α hc : Continuous f x✝ : Chain (Unit → Part α) ⊢ ↑(toUnitMono f) (ωSup x✝) PUnit.unit = ωSup (Chain.map x✝ (toUnitMono f)) PUnit.unit [PROOFSTEP] dsimp [OmegaCompletePartialOrder.ωSup] [GOAL] case h.unit α : Type u_1 β : α → Type u_2 f : Part α →o Part α hc : Continuous f x✝ : Chain (Unit → Part α) ⊢ ↑f (Part.ωSup (Chain.map x✝ (Pi.evalOrderHom PUnit.unit))) = Part.ωSup (Chain.map (Chain.map x✝ (toUnitMono f)) (Pi.evalOrderHom PUnit.unit)) [PROOFSTEP] erw [hc, Chain.map_comp] [GOAL] case h.unit α : Type u_1 β : α → Type u_2 f : Part α →o Part α hc : Continuous f x✝ : Chain (Unit → Part α) ⊢ ωSup (Chain.map x✝ (OrderHom.comp f (Pi.evalOrderHom PUnit.unit))) = Part.ωSup (Chain.map x✝ (OrderHom.comp f (Pi.evalOrderHom PUnit.unit))) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : α → Type u_2 f : Part α →o Part α hc : Continuous f ⊢ Part.fix ↑(toUnitMono f) () = ↑f (Fix.fix ↑f) [PROOFSTEP] rw [Part.fix_eq (to_unit_cont f hc)] [GOAL] α : Type u_1 β : α → Type u_2 f : Part α →o Part α hc : Continuous f ⊢ ↑(toUnitMono f) (Part.fix ↑(toUnitMono f)) () = ↑f (Fix.fix ↑f) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) c : Chain ((x : (a : α) × β a) → γ x.fst x.snd) ⊢ ↑(monotoneCurry α β γ) (ωSup c) = ωSup (Chain.map c (monotoneCurry α β γ)) [PROOFSTEP] ext x y [GOAL] case h.h α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) c : Chain ((x : (a : α) × β a) → γ x.fst x.snd) x : α y : β x ⊢ ↑(monotoneCurry α β γ) (ωSup c) x y = ωSup (Chain.map c (monotoneCurry α β γ)) x y [PROOFSTEP] dsimp [curry, ωSup] [GOAL] case h.h α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) c : Chain ((x : (a : α) × β a) → γ x.fst x.snd) x : α y : β x ⊢ ωSup (Chain.map c (evalOrderHom { fst := x, snd := y })) = ωSup (Chain.map (Chain.map (Chain.map c (monotoneCurry α β γ)) (evalOrderHom x)) (evalOrderHom y)) [PROOFSTEP] rw [map_comp, map_comp] [GOAL] case h.h α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) c : Chain ((x : (a : α) × β a) → γ x.fst x.snd) x : α y : β x ⊢ ωSup (Chain.map c (evalOrderHom { fst := x, snd := y })) = ωSup (Chain.map c (OrderHom.comp (OrderHom.comp (evalOrderHom y) (evalOrderHom x)) (monotoneCurry α β γ))) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) c : Chain ((a : α) → (b : β a) → γ a b) ⊢ ↑(monotoneUncurry α β γ) (ωSup c) = ωSup (Chain.map c (monotoneUncurry α β γ)) [PROOFSTEP] ext ⟨x, y⟩ [GOAL] case h.mk α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) c : Chain ((a : α) → (b : β a) → γ a b) x : α y : β x ⊢ ↑(monotoneUncurry α β γ) (ωSup c) { fst := x, snd := y } = ωSup (Chain.map c (monotoneUncurry α β γ)) { fst := x, snd := y } [PROOFSTEP] dsimp [uncurry, ωSup] [GOAL] case h.mk α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) c : Chain ((a : α) → (b : β a) → γ a b) x : α y : β x ⊢ ωSup (Chain.map (Chain.map c (evalOrderHom x)) (evalOrderHom y)) = ωSup (Chain.map (Chain.map c (monotoneUncurry α β γ)) (evalOrderHom { fst := x, snd := y })) [PROOFSTEP] rw [map_comp, map_comp] [GOAL] case h.mk α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) c : Chain ((a : α) → (b : β a) → γ a b) x : α y : β x ⊢ ωSup (Chain.map c (OrderHom.comp (evalOrderHom y) (evalOrderHom x))) = ωSup (Chain.map c (OrderHom.comp (evalOrderHom { fst := x, snd := y }) (monotoneUncurry α β γ))) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd) _f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y hc : Continuous _f ⊢ fix ↑_f = ↑_f (fix ↑_f) [PROOFSTEP] dsimp [fix] [GOAL] α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd) _f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y hc : Continuous _f ⊢ curry (fix (uncurry ∘ ↑_f ∘ curry)) = ↑_f (curry (fix (uncurry ∘ ↑_f ∘ curry))) [PROOFSTEP] conv => lhs erw [LawfulFix.fix_eq (uncurry_curry_continuous hc)] [GOAL] α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd) _f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y hc : Continuous _f | curry (fix (uncurry ∘ ↑_f ∘ curry)) = ↑_f (curry (fix (uncurry ∘ ↑_f ∘ curry))) [PROOFSTEP] lhs erw [LawfulFix.fix_eq (uncurry_curry_continuous hc)] [GOAL] α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd) _f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y hc : Continuous _f | curry (fix (uncurry ∘ ↑_f ∘ curry)) = ↑_f (curry (fix (uncurry ∘ ↑_f ∘ curry))) [PROOFSTEP] lhs erw [LawfulFix.fix_eq (uncurry_curry_continuous hc)] [GOAL] α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd) _f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y hc : Continuous _f | curry (fix (uncurry ∘ ↑_f ∘ curry)) = ↑_f (curry (fix (uncurry ∘ ↑_f ∘ curry))) [PROOFSTEP] lhs [GOAL] α : Type u_1 β : α → Type u_2 γ : (a : α) → β a → Type u_3 inst✝¹ : (x : α) → (y : β x) → OmegaCompletePartialOrder (γ x y) inst✝ : LawfulFix ((x : Sigma β) → γ x.fst x.snd) _f : ((x : α) → (y : β x) → γ x y) →o (x : α) → (y : β x) → γ x y hc : Continuous _f | curry (fix (uncurry ∘ ↑_f ∘ curry)) [PROOFSTEP] erw [LawfulFix.fix_eq (uncurry_curry_continuous hc)]
{"mathlib_filename": "Mathlib.Control.LawfulFix", "llama_tokens": 21727}
[GOAL] α β γ : Type u F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F x : F (α → β) f : γ → α y : F γ ⊢ (Seq.seq x fun x => f <$> y) = Seq.seq ((fun x => x ∘ f) <$> x) fun x => y [PROOFSTEP] simp [← pure_seq] [GOAL] α β γ : Type u F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F x : F (α → β) f : γ → α y : F γ ⊢ (Seq.seq x fun x => Seq.seq (pure f) fun x => y) = Seq.seq (Seq.seq (pure fun x => x ∘ f) fun x_1 => x) fun x => y [PROOFSTEP] simp [seq_assoc, ← comp_map, (· ∘ ·)] [GOAL] α β γ : Type u F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F x : F (α → β) f : γ → α y : F γ ⊢ (Seq.seq ((fun x x_1 => x (f x_1)) <$> x) fun x => y) = Seq.seq (Seq.seq (pure fun x x_1 => x (f x_1)) fun x_1 => x) fun x => y [PROOFSTEP] simp [pure_seq] [GOAL] α β γ : Type u F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F f : β → γ x : F (α → β) y : F α ⊢ (f <$> Seq.seq x fun x => y) = Seq.seq ((fun x => f ∘ x) <$> x) fun x => y [PROOFSTEP] simp only [← pure_seq] [GOAL] α β γ : Type u F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F f : β → γ x : F (α → β) y : F α ⊢ (Seq.seq (pure f) fun x_1 => Seq.seq x fun x => y) = Seq.seq (Seq.seq (pure fun x => f ∘ x) fun x_1 => x) fun x => y [PROOFSTEP] simp [seq_assoc] [GOAL] α β γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m x : m α g : α → m β f : β → γ ⊢ f <$> (x >>= g) = do let a ← x f <$> g a [PROOFSTEP] rw [← bind_pure_comp, bind_assoc] [GOAL] α β γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m x : m α g : α → m β f : β → γ ⊢ (do let x ← x let a ← g x pure (f a)) = do let a ← x f <$> g a [PROOFSTEP] simp [bind_pure_comp] [GOAL] α β γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m x : m α g : β → m γ f : α → β ⊢ f <$> x >>= g = x >>= g ∘ f [PROOFSTEP] rw [← bind_pure_comp, bind_assoc] [GOAL] α β γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m x : m α g : β → m γ f : α → β ⊢ (x >>= fun x => pure (f x) >>= g) = x >>= g ∘ f [PROOFSTEP] simp [pure_bind, (· ∘ ·)] [GOAL] α✝ β✝ γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Type u_1 β : Type u f : α → m β ⊢ f >=> pure = f [PROOFSTEP] simp only [(· >=> ·), functor_norm] [GOAL] α✝ β✝ γ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α β : Type u f : α → m β ⊢ pure >=> f = f [PROOFSTEP] simp only [(· >=> ·), functor_norm] [GOAL] α✝ β✝ γ✝ : Type u m : Type u → Type v inst✝¹ : Monad m inst✝ : LawfulMonad m α : Type u_1 β γ φ : Type u f : α → m β g : β → m γ h : γ → m φ ⊢ (f >=> g) >=> h = f >=> g >=> h [PROOFSTEP] simp only [(· >=> ·), functor_norm] [GOAL] α✝ β✝ γ : Type u m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m α β : Type u f : α → β a : m (m α) ⊢ joinM (Functor.map f <$> a) = f <$> joinM a [PROOFSTEP] simp only [joinM, (· ∘ ·), id.def, ← bind_pure_comp, bind_assoc, map_bind, pure_bind] [GOAL] α✝ β γ : Type u m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m α : Type u a : m (m (m α)) ⊢ joinM (joinM <$> a) = joinM (joinM a) [PROOFSTEP] simp only [joinM, (· ∘ ·), id.def, map_bind, ← bind_pure_comp, bind_assoc, pure_bind] [GOAL] α✝ β γ : Type u m : Type u → Type u inst✝¹ : Monad m inst✝ : LawfulMonad m α : Type u a : m α ⊢ joinM (pure <$> a) = a [PROOFSTEP] simp only [joinM, (· ∘ ·), id.def, map_bind, ← bind_pure_comp, bind_assoc, pure_bind, bind_pure] [GOAL] α β γ : Type u F : Type → Type v inst✝ : Alternative F h : Decidable True ⊢ guard True = pure () [PROOFSTEP] simp [guard, if_pos] [GOAL] α β γ : Type u F : Type → Type v inst✝ : Alternative F h : Decidable False ⊢ guard False = failure [PROOFSTEP] simp [guard, if_neg not_false] [GOAL] α β γ : Type u e : Type v ⊢ LawfulFunctor (Sum e) [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 α β γ : Type u e : Type v ⊢ ∀ {α β : Type u}, Functor.mapConst = Functor.map ∘ Function.const β [PROOFSTEP] intros [GOAL] case refine'_2 α β γ : Type u e : Type v ⊢ ∀ {α : Type u} (x : e ⊕ α), id <$> x = x [PROOFSTEP] intros [GOAL] case refine'_3 α β γ : Type u e : Type v ⊢ ∀ {α β γ : Type u} (g : α → β) (h : β → γ) (x : e ⊕ α), (h ∘ g) <$> x = h <$> g <$> x [PROOFSTEP] intros [GOAL] case refine'_1 α β γ : Type u e : Type v α✝ β✝ : Type u ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] try casesm Sum _ _ [GOAL] case refine'_1 α β γ : Type u e : Type v α✝ β✝ : Type u ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case refine'_2 α β γ : Type u e : Type v α✝ : Type u x✝ : e ⊕ α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] try casesm Sum _ _ [GOAL] case refine'_2 α β γ : Type u e : Type v α✝ : Type u x✝ : e ⊕ α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case refine'_3 α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : e ⊕ α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] try casesm Sum _ _ [GOAL] case refine'_3 α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : e ⊕ α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case refine'_1 α β γ : Type u e : Type v α✝ β✝ : Type u ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] rfl [GOAL] case refine'_2.inl α β γ : Type u e : Type v α✝ : Type u val✝ : e ⊢ id <$> inl val✝ = inl val✝ [PROOFSTEP] rfl [GOAL] case refine'_2.inr α β γ : Type u e : Type v α✝ : Type u val✝ : α✝ ⊢ id <$> inr val✝ = inr val✝ [PROOFSTEP] rfl [GOAL] case refine'_3.inl α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u g✝ : α✝ → β✝ h✝ : β✝ → γ✝ val✝ : e ⊢ (h✝ ∘ g✝) <$> inl val✝ = h✝ <$> g✝ <$> inl val✝ [PROOFSTEP] rfl [GOAL] case refine'_3.inr α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u g✝ : α✝ → β✝ h✝ : β✝ → γ✝ val✝ : α✝ ⊢ (h✝ ∘ g✝) <$> inr val✝ = h✝ <$> g✝ <$> inr val✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (x : e ⊕ α) (y : e ⊕ β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u x✝ : e ⊕ α✝ y✝ : e ⊕ β✝ ⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl α β γ : Type u e : Type v α✝ β✝ : Type u y✝ : e ⊕ β✝ val✝ : e ⊢ (SeqLeft.seqLeft (inl val✝) fun x => y✝) = Seq.seq (Function.const β✝ <$> inl val✝) fun x => y✝ [PROOFSTEP] rfl [GOAL] case inr α β γ : Type u e : Type v α✝ β✝ : Type u y✝ : e ⊕ β✝ val✝ : α✝ ⊢ (SeqLeft.seqLeft (inr val✝) fun x => y✝) = Seq.seq (Function.const β✝ <$> inr val✝) fun x => y✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (x : e ⊕ α) (y : e ⊕ β), (SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α id <$> x) fun x => y [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u x✝ : e ⊕ α✝ y✝ : e ⊕ β✝ ⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl α β γ : Type u e : Type v α✝ β✝ : Type u y✝ : e ⊕ β✝ val✝ : e ⊢ (SeqRight.seqRight (inl val✝) fun x => y✝) = Seq.seq (Function.const α✝ id <$> inl val✝) fun x => y✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inr α β γ : Type u e : Type v α✝ β✝ : Type u y✝ : e ⊕ β✝ val✝ : α✝ ⊢ (SeqRight.seqRight (inr val✝) fun x => y✝) = Seq.seq (Function.const α✝ id <$> inr val✝) fun x => y✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl.inl α β γ : Type u e : Type v α✝ β✝ : Type u val✝¹ val✝ : e ⊢ (SeqRight.seqRight (inl val✝¹) fun x => inl val✝) = Seq.seq (Function.const α✝ id <$> inl val✝¹) fun x => inl val✝ [PROOFSTEP] rfl [GOAL] case inl.inr α β γ : Type u e : Type v α✝ β✝ : Type u val✝¹ : e val✝ : β✝ ⊢ (SeqRight.seqRight (inl val✝¹) fun x => inr val✝) = Seq.seq (Function.const α✝ id <$> inl val✝¹) fun x => inr val✝ [PROOFSTEP] rfl [GOAL] case inr.inl α β γ : Type u e : Type v α✝ β✝ : Type u val✝¹ : α✝ val✝ : e ⊢ (SeqRight.seqRight (inr val✝¹) fun x => inl val✝) = Seq.seq (Function.const α✝ id <$> inr val✝¹) fun x => inl val✝ [PROOFSTEP] rfl [GOAL] case inr.inr α β γ : Type u e : Type v α✝ β✝ : Type u val✝¹ : α✝ val✝ : β✝ ⊢ (SeqRight.seqRight (inr val✝¹) fun x => inr val✝) = Seq.seq (Function.const α✝ id <$> inr val✝¹) fun x => inr val✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (g : α → β) (x : e ⊕ α), (Seq.seq (pure g) fun x_1 => x) = g <$> x [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u g✝ : α✝ → β✝ x✝ : e ⊕ α✝ ⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (f : α → β) (x : e ⊕ α), (do let a ← x pure (f a)) = f <$> x [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u f✝ : α✝ → β✝ x✝ : e ⊕ α✝ ⊢ (do let a ← x✝ pure (f✝ a)) = f✝ <$> x✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl α β γ : Type u e : Type v α✝ β✝ : Type u f✝ : α✝ → β✝ val✝ : e ⊢ (do let a ← inl val✝ pure (f✝ a)) = f✝ <$> inl val✝ [PROOFSTEP] rfl [GOAL] case inr α β γ : Type u e : Type v α✝ β✝ : Type u f✝ : α✝ → β✝ val✝ : α✝ ⊢ (do let a ← inr val✝ pure (f✝ a)) = f✝ <$> inr val✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (f : e ⊕ (α → β)) (x : e ⊕ α), (do let x_1 ← f x_1 <$> x) = Seq.seq f fun x_1 => x [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u f✝ : e ⊕ (α✝ → β✝) x✝ : e ⊕ α✝ ⊢ (do let x ← f✝ x <$> x✝) = Seq.seq f✝ fun x => x✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl α β γ : Type u e : Type v α✝ β✝ : Type u x✝ : e ⊕ α✝ val✝ : e ⊢ (do let x ← inl val✝ x <$> x✝) = Seq.seq (inl val✝) fun x => x✝ [PROOFSTEP] rfl [GOAL] case inr α β γ : Type u e : Type v α✝ β✝ : Type u x✝ : e ⊕ α✝ val✝ : α✝ → β✝ ⊢ (do let x ← inr val✝ x <$> x✝) = Seq.seq (inr val✝) fun x => x✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β : Type u} (x : α) (f : α → e ⊕ β), pure x >>= f = f x [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ : Type u x✝ : α✝ f✝ : α✝ → e ⊕ β✝ ⊢ pure x✝ >>= f✝ = f✝ x✝ [PROOFSTEP] rfl [GOAL] α β γ : Type u e : Type v ⊢ ∀ {α β γ : Type u} (x : e ⊕ α) (f : α → e ⊕ β) (g : β → e ⊕ γ), x >>= f >>= g = x >>= fun x => f x >>= g [PROOFSTEP] intros [GOAL] α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u x✝ : e ⊕ α✝ f✝ : α✝ → e ⊕ β✝ g✝ : β✝ → e ⊕ γ✝ ⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] casesm Sum _ _ [GOAL] case inl α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u f✝ : α✝ → e ⊕ β✝ g✝ : β✝ → e ⊕ γ✝ val✝ : e ⊢ inl val✝ >>= f✝ >>= g✝ = inl val✝ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rfl [GOAL] case inr α β γ : Type u e : Type v α✝ β✝ γ✝ : Type u f✝ : α✝ → e ⊕ β✝ g✝ : β✝ → e ⊕ γ✝ val✝ : α✝ ⊢ inr val✝ >>= f✝ >>= g✝ = inr val✝ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] rfl [GOAL] α✝ β✝ γ✝ : Type u m✝ : ?m.20624 m : Type u → Type v h : Applicative m inst✝ : CommApplicative m α β γ : Type u a : m α b : m β f : α → β → γ ⊢ (Seq.seq (f <$> a) fun x => b) = (fun p => f p.fst p.snd) <$> Seq.seq (Prod.mk <$> a) fun x => b [PROOFSTEP] simp [seq_map_assoc, map_seq, seq_assoc, seq_pure, map_map] [GOAL] α✝ β✝ γ✝ : Type u m✝ : ?m.20624 m : Type u → Type v h : Applicative m inst✝ : CommApplicative m α β γ : Type u a : m α b : m β f : α → β → γ ⊢ (Seq.seq (f <$> a) fun x => b) = Seq.seq (((fun x => (fun p => f p.fst p.snd) ∘ x) ∘ Prod.mk) <$> a) fun x => b [PROOFSTEP] rfl [GOAL] α✝ β✝ γ✝ : Type u m✝ : ?m.20624 m : Type u → Type v h : Applicative m inst✝ : CommApplicative m α β γ : Type u a : m α b : m β f : α → β → γ ⊢ ((fun p => f p.fst p.snd) <$> Seq.seq (Prod.mk <$> a) fun x => b) = Seq.seq ((fun b a => f a b) <$> b) fun x => a [PROOFSTEP] rw [@CommApplicative.commutative_prod m h] [GOAL] α✝ β✝ γ✝ : Type u m✝ : ?m.20624 m : Type u → Type v h : Applicative m inst✝ : CommApplicative m α β γ : Type u a : m α b : m β f : α → β → γ ⊢ ((fun p => f p.fst p.snd) <$> Seq.seq ((fun b a => (a, b)) <$> b) fun x => a) = Seq.seq ((fun b a => f a b) <$> b) fun x => a [PROOFSTEP] simp [seq_map_assoc, map_seq, seq_assoc, seq_pure, map_map, (· ∘ ·)]
{"mathlib_filename": "Mathlib.Control.Basic", "llama_tokens": 7181}
[GOAL] F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F α β γ σ : Type u f : α → β → γ g : σ → β x : F α y : F σ ⊢ (Seq.seq (f <$> x) fun x => g <$> y) = Seq.seq ((flip (fun x x_1 => x ∘ x_1) g ∘ f) <$> x) fun x => y [PROOFSTEP] simp [flip, functor_norm] [GOAL] F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F α β γ σ : Type u f : α → β ⊢ (fun x x_1 => Seq.seq x fun x => x_1) (pure f) = (fun x x_1 => x <$> x_1) f [PROOFSTEP] ext [GOAL] case h F : Type u → Type v inst✝¹ : Applicative F inst✝ : LawfulApplicative F α β γ σ : Type u f : α → β x✝ : F α ⊢ (fun x x_1 => Seq.seq x fun x => x_1) (pure f) x✝ = (fun x x_1 => x <$> x_1) f x✝ [PROOFSTEP] simp [functor_norm] [GOAL] F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F p2 : {α : Type u} → α → F α s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β L1 : LawfulApplicative F L2 : LawfulApplicative F H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x ⊢ mk = mk [PROOFSTEP] obtain rfl : @p1 = @p2 := by funext α x apply H1 [GOAL] F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F p2 : {α : Type u} → α → F α s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β L1 : LawfulApplicative F L2 : LawfulApplicative F H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x ⊢ p1 = p2 [PROOFSTEP] funext α x [GOAL] case h.h F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α✝ β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F p2 : {α : Type u} → α → F α s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β L1 : LawfulApplicative F L2 : LawfulApplicative F H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x α : Type u x : α ⊢ p1 x = p2 x [PROOFSTEP] apply H1 [GOAL] F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β L1 : LawfulApplicative F L2 : LawfulApplicative F H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x ⊢ mk = mk [PROOFSTEP] obtain rfl : @s1 = @s2 := by funext α β f x exact H2 f (x Unit.unit) [GOAL] F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β L1 : LawfulApplicative F L2 : LawfulApplicative F H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x ⊢ s1 = s2 [PROOFSTEP] funext α β f x [GOAL] case h.h.h.h F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α✝ β✝ γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F s2 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β L1 : LawfulApplicative F L2 : LawfulApplicative F H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x α β : Type u f : F (α → β) x : Unit → F α ⊢ s1 f x = s2 f x [PROOFSTEP] exact H2 f (x Unit.unit) [GOAL] F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β L1 : LawfulApplicative F L2 : LawfulApplicative F H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x ⊢ mk = mk [PROOFSTEP] obtain ⟨seqLeft_eq1, seqRight_eq1, pure_seq1, -⟩ := L1 [GOAL] case mk F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β L2 : LawfulApplicative F H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x toLawfulFunctor✝ : LawfulFunctor F seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x ⊢ mk = mk [PROOFSTEP] obtain ⟨seqLeft_eq2, seqRight_eq2, pure_seq2, -⟩ := L2 [GOAL] case mk.mk F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x toLawfulFunctor✝¹ : LawfulFunctor F seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝¹ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x toLawfulFunctor✝ : LawfulFunctor F seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x ⊢ mk = mk [PROOFSTEP] obtain rfl : F1 = F2 := by apply Functor.ext intros exact (pure_seq1 _ _).symm.trans (pure_seq2 _ _) [GOAL] F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x toLawfulFunctor✝¹ : LawfulFunctor F seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝¹ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x toLawfulFunctor✝ : LawfulFunctor F seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x ⊢ F1 = F2 [PROOFSTEP] apply Functor.ext [GOAL] case a F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x toLawfulFunctor✝¹ : LawfulFunctor F seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝¹ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x toLawfulFunctor✝ : LawfulFunctor F seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x ⊢ ∀ (α β : Type u) (f : α → β) (x : F α), f <$> x = f <$> x [PROOFSTEP] intros [GOAL] case a F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β F2 : Functor F sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x toLawfulFunctor✝¹ : LawfulFunctor F seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝¹ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x toLawfulFunctor✝ : LawfulFunctor F seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x α✝ β✝ : Type u f✝ : α✝ → β✝ x✝ : F α✝ ⊢ f✝ <$> x✝ = f✝ <$> x✝ [PROOFSTEP] exact (pure_seq1 _ _).symm.trans (pure_seq2 _ _) [GOAL] case mk.mk F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β toLawfulFunctor✝¹ : LawfulFunctor F seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝¹ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x toLawfulFunctor✝ : LawfulFunctor F seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x ⊢ mk = mk [PROOFSTEP] congr [GOAL] case mk.mk.e_toSeqLeft.e_seqLeft F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β toLawfulFunctor✝¹ : LawfulFunctor F seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝¹ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x toLawfulFunctor✝ : LawfulFunctor F seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x ⊢ sl1 = sl2 [PROOFSTEP] funext α β x y [GOAL] case mk.mk.e_toSeqRight.e_seqRight F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α β γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β toLawfulFunctor✝¹ : LawfulFunctor F seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝¹ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x toLawfulFunctor✝ : LawfulFunctor F seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x ⊢ sr1 = sr2 [PROOFSTEP] funext α β x y [GOAL] case mk.mk.e_toSeqLeft.e_seqLeft.h.h.h.h F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α✝ β✝ γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β toLawfulFunctor✝¹ : LawfulFunctor F seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝¹ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x toLawfulFunctor✝ : LawfulFunctor F seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x α β : Type u x : F α y : Unit → F β ⊢ sl1 x y = sl2 x y [PROOFSTEP] exact (seqLeft_eq1 _ (y Unit.unit)).trans (seqLeft_eq2 _ _).symm [GOAL] case mk.mk.e_toSeqRight.e_seqRight.h.h.h.h F✝ : Type u → Type v inst✝¹ : Applicative F✝ inst✝ : LawfulApplicative F✝ α✝ β✝ γ σ : Type u F : Type u → Type u_1 F1 : Functor F p1 : {α : Type u} → α → F α s1 : {α β : Type u} → F (α → β) → (Unit → F α) → F β sl1 : {α β : Type u} → F α → (Unit → F β) → F α sr1 : {α β : Type u} → F α → (Unit → F β) → F β sl2 : {α β : Type u} → F α → (Unit → F β) → F α sr2 : {α β : Type u} → F α → (Unit → F β) → F β toLawfulFunctor✝¹ : LawfulFunctor F seqLeft_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq1 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq1 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝¹ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝¹ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x H1 : ∀ {α : Type u} (x : α), pure x = pure x H2 : ∀ {α β : Type u} (f : F (α → β)) (x : F α), (Seq.seq f fun x_1 => x) = Seq.seq f fun x_1 => x toLawfulFunctor✝ : LawfulFunctor F seqLeft_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y seqRight_eq2 : ∀ {α β : Type u} (x : F α) (y : F β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y pure_seq2 : ∀ {α β : Type u} (g : α → β) (x : F α), (Seq.seq (pure g) fun x_1 => x) = g <$> x seq_pure✝ : ∀ {α β : Type u} (g : F (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g seq_assoc✝ : ∀ {α β γ : Type u} (x : F α) (g : F (α → β)) (h : F (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (comp <$> h) fun x => g) fun x_1 => x α β : Type u x : F α y : Unit → F β ⊢ sr1 x y = sr2 x y [PROOFSTEP] exact (seqRight_eq1 _ (y Unit.unit)).trans (seqRight_eq2 _ (y Unit.unit)).symm [GOAL] ⊢ CommApplicative Id [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 ⊢ ∀ {α β : Type ?u.6279}, Functor.mapConst = Functor.map ∘ Function.const β [PROOFSTEP] intros [GOAL] case refine'_2 ⊢ ∀ {α : Type ?u.6279} (x : Id α), id <$> x = x [PROOFSTEP] intros [GOAL] case refine'_3 ⊢ ∀ {α β γ : Type ?u.6279} (g : α → β) (h : β → γ) (x : Id α), (h ∘ g) <$> x = h <$> g <$> x [PROOFSTEP] intros [GOAL] case refine'_4 ⊢ ∀ {α β : Type ?u.6279} (x : Id α) (y : Id β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y [PROOFSTEP] intros [GOAL] case refine'_5 ⊢ ∀ {α β : Type ?u.6279} (x : Id α) (y : Id β), (SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α id <$> x) fun x => y [PROOFSTEP] intros [GOAL] case refine'_6 ⊢ ∀ {α β : Type ?u.6279} (g : α → β) (x : Id α), (Seq.seq (pure g) fun x_1 => x) = g <$> x [PROOFSTEP] intros [GOAL] case refine'_7 ⊢ ∀ {α β : Type ?u.6279} (g : α → β) (x : α), g <$> pure x = pure (g x) [PROOFSTEP] intros [GOAL] case refine'_8 ⊢ ∀ {α β : Type ?u.6279} (g : Id (α → β)) (x : α), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g [PROOFSTEP] intros [GOAL] case refine'_9 ⊢ ∀ {α β γ : Type ?u.6279} (x : Id α) (g : Id (α → β)) (h : Id (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (Function.comp <$> h) fun x => g) fun x_1 => x [PROOFSTEP] intros [GOAL] case refine'_10 ⊢ ∀ {α β : Type ?u.6279} (a : Id α) (b : Id β), (Seq.seq (Prod.mk <$> a) fun x => b) = Seq.seq ((fun b a => (a, b)) <$> b) fun x => a [PROOFSTEP] intros [GOAL] case refine'_1 α✝ β✝ : Type ?u.6279 ⊢ Functor.mapConst = Functor.map ∘ Function.const β✝ [PROOFSTEP] rfl [GOAL] case refine'_2 α✝ : Type ?u.6279 x✝ : Id α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] rfl [GOAL] case refine'_3 α✝ β✝ γ✝ : Type ?u.6279 g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : Id α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] rfl [GOAL] case refine'_4 α✝ β✝ : Type ?u.6279 x✝ : Id α✝ y✝ : Id β✝ ⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝ [PROOFSTEP] rfl [GOAL] case refine'_5 α✝ β✝ : Type ?u.6279 x✝ : Id α✝ y✝ : Id β✝ ⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝ [PROOFSTEP] rfl [GOAL] case refine'_6 α✝ β✝ : Type ?u.6279 g✝ : α✝ → β✝ x✝ : Id α✝ ⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝ [PROOFSTEP] rfl [GOAL] case refine'_7 α✝ β✝ : Type ?u.6279 g✝ : α✝ → β✝ x✝ : α✝ ⊢ g✝ <$> pure x✝ = pure (g✝ x✝) [PROOFSTEP] rfl [GOAL] case refine'_8 α✝ β✝ : Type ?u.6279 g✝ : Id (α✝ → β✝) x✝ : α✝ ⊢ (Seq.seq g✝ fun x => pure x✝) = (fun h => h x✝) <$> g✝ [PROOFSTEP] rfl [GOAL] case refine'_9 α✝ β✝ γ✝ : Type ?u.6279 x✝ : Id α✝ g✝ : Id (α✝ → β✝) h✝ : Id (β✝ → γ✝) ⊢ (Seq.seq h✝ fun x => Seq.seq g✝ fun x => x✝) = Seq.seq (Seq.seq (Function.comp <$> h✝) fun x => g✝) fun x => x✝ [PROOFSTEP] rfl [GOAL] case refine'_10 α✝ β✝ : Type ?u.6279 a✝ : Id α✝ b✝ : Id β✝ ⊢ (Seq.seq (Prod.mk <$> a✝) fun x => b✝) = Seq.seq ((fun b a => (a, b)) <$> b✝) fun x => a✝ [PROOFSTEP] rfl [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type v f : α → β x : α ⊢ run (f <$> pure x) = run (pure (f x)) [PROOFSTEP] simp [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type v f : Comp F G (α → β) x : α ⊢ run (Seq.seq f fun x_1 => pure x) = run ((fun g => g x) <$> f) [PROOFSTEP] simp [(· ∘ ·), functor_norm] [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type v x : Comp F G α f : Comp F G (α → β) g : Comp F G (β → γ) ⊢ run (Seq.seq g fun x_1 => Seq.seq f fun x_2 => x) = run (Seq.seq (Seq.seq (Function.comp <$> g) fun x => f) fun x_1 => x) [PROOFSTEP] simp [(· ∘ ·), functor_norm] [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type v f : α → β x : Comp F G α ⊢ run (Seq.seq (pure f) fun x_1 => x) = run (f <$> x) [PROOFSTEP] simp [Applicative.pure_seq_eq_map', functor_norm] [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type v ⊢ ∀ {α β : Type v} (x : Comp F G α) (y : Comp F G β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (const β <$> x) fun x => y [PROOFSTEP] intros [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ α✝ β✝ : Type v x✝ : Comp F G α✝ y✝ : Comp F G β✝ ⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (const β✝ <$> x✝) fun x => y✝ [PROOFSTEP] rfl [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type v ⊢ ∀ {α β : Type v} (x : Comp F G α) (y : Comp F G β), (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y [PROOFSTEP] intros [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ α✝ β✝ : Type v x✝ : Comp F G α✝ y✝ : Comp F G β✝ ⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (const α✝ id <$> x✝) fun x => y✝ [PROOFSTEP] rfl [GOAL] F✝ : Type u → Type w G : Type v → Type u inst✝⁴ : Applicative F✝ inst✝³ : Applicative G inst✝² : LawfulApplicative F✝ inst✝¹ : LawfulApplicative G α β γ : Type v F : Type u_1 → Type u_2 AF : Applicative F inst✝ : LawfulApplicative F α✝ β✝ : Type u_1 f : F (α✝ → β✝) x : F α✝ ⊢ (Seq.seq (id <$> f) fun x_1 => x) = Seq.seq f fun x_1 => x [PROOFSTEP] rw [id_map] [GOAL] F : Type u → Type w G : Type v → Type u inst✝⁷ : Applicative F inst✝⁶ : Applicative G inst✝⁵ : LawfulApplicative F inst✝⁴ : LawfulApplicative G α β γ : Type v f : Type u → Type w g : Type v → Type u inst✝³ : Applicative f inst✝² : Applicative g inst✝¹ : CommApplicative f inst✝ : CommApplicative g ⊢ CommApplicative (Comp f g) [PROOFSTEP] refine' { @instLawfulApplicativeComp f g _ _ _ _ with .. } [GOAL] F : Type u → Type w G : Type v → Type u inst✝⁷ : Applicative F inst✝⁶ : Applicative G inst✝⁵ : LawfulApplicative F inst✝⁴ : LawfulApplicative G α β γ : Type v f : Type u → Type w g : Type v → Type u inst✝³ : Applicative f inst✝² : Applicative g inst✝¹ : CommApplicative f inst✝ : CommApplicative g src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp ⊢ ∀ {α β : Type v} (a : Comp f g α) (b : Comp f g β), (Seq.seq (Prod.mk <$> a) fun x => b) = Seq.seq ((fun b a => (a, b)) <$> b) fun x => a [PROOFSTEP] intros [GOAL] F : Type u → Type w G : Type v → Type u inst✝⁷ : Applicative F inst✝⁶ : Applicative G inst✝⁵ : LawfulApplicative F inst✝⁴ : LawfulApplicative G α β γ : Type v f : Type u → Type w g : Type v → Type u inst✝³ : Applicative f inst✝² : Applicative g inst✝¹ : CommApplicative f inst✝ : CommApplicative g src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp α✝ β✝ : Type v a✝ : Comp f g α✝ b✝ : Comp f g β✝ ⊢ (Seq.seq (Prod.mk <$> a✝) fun x => b✝) = Seq.seq ((fun b a => (a, b)) <$> b✝) fun x => a✝ [PROOFSTEP] simp! [map, Seq.seq, functor_norm] [GOAL] F : Type u → Type w G : Type v → Type u inst✝⁷ : Applicative F inst✝⁶ : Applicative G inst✝⁵ : LawfulApplicative F inst✝⁴ : LawfulApplicative G α β γ : Type v f : Type u → Type w g : Type v → Type u inst✝³ : Applicative f inst✝² : Applicative g inst✝¹ : CommApplicative f inst✝ : CommApplicative g src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp α✝ β✝ : Type v a✝ : Comp f g α✝ b✝ : Comp f g β✝ ⊢ mk (Seq.seq ((fun x x_1 => Seq.seq x fun x => x_1) <$> mk ((fun x => Prod.mk <$> x) <$> a✝)) fun x => b✝) = mk (Seq.seq ((fun x x_1 => Seq.seq x fun x => x_1) <$> mk ((fun x => (fun b a => (a, b)) <$> x) <$> b✝)) fun x => a✝) [PROOFSTEP] rw [commutative_map] [GOAL] F : Type u → Type w G : Type v → Type u inst✝⁷ : Applicative F inst✝⁶ : Applicative G inst✝⁵ : LawfulApplicative F inst✝⁴ : LawfulApplicative G α β γ : Type v f : Type u → Type w g : Type v → Type u inst✝³ : Applicative f inst✝² : Applicative g inst✝¹ : CommApplicative f inst✝ : CommApplicative g src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp α✝ β✝ : Type v a✝ : Comp f g α✝ b✝ : Comp f g β✝ ⊢ mk (Seq.seq ((flip fun x x_1 => Seq.seq x fun x => x_1) <$> b✝) fun x => mk ((fun x => Prod.mk <$> x) <$> a✝)) = mk (Seq.seq ((fun x x_1 => Seq.seq x fun x => x_1) <$> mk ((fun x => (fun b a => (a, b)) <$> x) <$> b✝)) fun x => a✝) [PROOFSTEP] simp [Comp.mk, flip, (· ∘ ·), functor_norm] [GOAL] F : Type u → Type w G : Type v → Type u inst✝⁷ : Applicative F inst✝⁶ : Applicative G inst✝⁵ : LawfulApplicative F inst✝⁴ : LawfulApplicative G α β γ : Type v f : Type u → Type w g : Type v → Type u inst✝³ : Applicative f inst✝² : Applicative g inst✝¹ : CommApplicative f inst✝ : CommApplicative g src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp α✝ β✝ : Type v a✝ : Comp f g α✝ b✝ : Comp f g β✝ ⊢ (Seq.seq ((fun x x_1 => Seq.seq (Prod.mk <$> x_1) fun x_2 => x) <$> b✝) fun x => a✝) = Seq.seq ((fun x x_1 => Seq.seq ((fun b a => (a, b)) <$> x) fun x => x_1) <$> b✝) fun x => a✝ [PROOFSTEP] congr [GOAL] case e_a.e_a F : Type u → Type w G : Type v → Type u inst✝⁷ : Applicative F inst✝⁶ : Applicative G inst✝⁵ : LawfulApplicative F inst✝⁴ : LawfulApplicative G α β γ : Type v f : Type u → Type w g : Type v → Type u inst✝³ : Applicative f inst✝² : Applicative g inst✝¹ : CommApplicative f inst✝ : CommApplicative g src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp α✝ β✝ : Type v a✝ : Comp f g α✝ b✝ : Comp f g β✝ ⊢ (fun x x_1 => Seq.seq (Prod.mk <$> x_1) fun x_2 => x) = fun x x_1 => Seq.seq ((fun b a => (a, b)) <$> x) fun x => x_1 [PROOFSTEP] funext x y [GOAL] case e_a.e_a.h.h F : Type u → Type w G : Type v → Type u inst✝⁷ : Applicative F inst✝⁶ : Applicative G inst✝⁵ : LawfulApplicative F inst✝⁴ : LawfulApplicative G α β γ : Type v f : Type u → Type w g : Type v → Type u inst✝³ : Applicative f inst✝² : Applicative g inst✝¹ : CommApplicative f inst✝ : CommApplicative g src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp α✝ β✝ : Type v a✝ : Comp f g α✝ b✝ : Comp f g β✝ x : g β✝ y : g α✝ ⊢ (Seq.seq (Prod.mk <$> y) fun x_1 => x) = Seq.seq ((fun b a => (a, b)) <$> x) fun x => y [PROOFSTEP] rw [commutative_map] [GOAL] case e_a.e_a.h.h F : Type u → Type w G : Type v → Type u inst✝⁷ : Applicative F inst✝⁶ : Applicative G inst✝⁵ : LawfulApplicative F inst✝⁴ : LawfulApplicative G α β γ : Type v f : Type u → Type w g : Type v → Type u inst✝³ : Applicative f inst✝² : Applicative g inst✝¹ : CommApplicative f inst✝ : CommApplicative g src✝ : LawfulApplicative (Comp f g) := instLawfulApplicativeComp α✝ β✝ : Type v a✝ : Comp f g α✝ b✝ : Comp f g β✝ x : g β✝ y : g α✝ ⊢ (Seq.seq (flip Prod.mk <$> x) fun x => y) = Seq.seq ((fun b a => (a, b)) <$> x) fun x => y [PROOFSTEP] congr [GOAL] α : Type ?u.61704 inst✝ : Monoid α ⊢ LawfulApplicative (Const α) [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 α : Type ?u.61704 inst✝ : Monoid α ⊢ ∀ {α_1 β : Type ?u.61710}, mapConst = map ∘ Function.const β [PROOFSTEP] intros [GOAL] case refine'_2 α : Type ?u.61704 inst✝ : Monoid α ⊢ ∀ {α_1 : Type ?u.61710} (x : Const α α_1), id <$> x = x [PROOFSTEP] intros [GOAL] case refine'_3 α : Type ?u.61704 inst✝ : Monoid α ⊢ ∀ {α_1 β γ : Type ?u.61710} (g : α_1 → β) (h : β → γ) (x : Const α α_1), (h ∘ g) <$> x = h <$> g <$> x [PROOFSTEP] intros [GOAL] case refine'_4 α : Type ?u.61704 inst✝ : Monoid α ⊢ ∀ {α_1 β : Type ?u.61710} (x : Const α α_1) (y : Const α β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y [PROOFSTEP] intros [GOAL] case refine'_5 α : Type ?u.61704 inst✝ : Monoid α ⊢ ∀ {α_1 β : Type ?u.61710} (x : Const α α_1) (y : Const α β), (SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α_1 id <$> x) fun x => y [PROOFSTEP] intros [GOAL] case refine'_6 α : Type ?u.61704 inst✝ : Monoid α ⊢ ∀ {α_1 β : Type ?u.61710} (g : α_1 → β) (x : Const α α_1), (Seq.seq (pure g) fun x_1 => x) = g <$> x [PROOFSTEP] intros [GOAL] case refine'_7 α : Type ?u.61704 inst✝ : Monoid α ⊢ ∀ {α_1 β : Type ?u.61710} (g : α_1 → β) (x : α_1), g <$> pure x = pure (g x) [PROOFSTEP] intros [GOAL] case refine'_8 α : Type ?u.61704 inst✝ : Monoid α ⊢ ∀ {α_1 β : Type ?u.61710} (g : Const α (α_1 → β)) (x : α_1), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g [PROOFSTEP] intros [GOAL] case refine'_9 α : Type ?u.61704 inst✝ : Monoid α ⊢ ∀ {α_1 β γ : Type ?u.61710} (x : Const α α_1) (g : Const α (α_1 → β)) (h : Const α (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (Function.comp <$> h) fun x => g) fun x_1 => x [PROOFSTEP] intros [GOAL] case refine'_1 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 ⊢ mapConst = map ∘ Function.const β✝ [PROOFSTEP] simp [mul_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_2 α : Type ?u.61704 inst✝ : Monoid α α✝ : Type ?u.61710 x✝ : Const α α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] simp [mul_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_3 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ γ✝ : Type ?u.61710 g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : Const α α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] simp [mul_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_4 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 x✝ : Const α α✝ y✝ : Const α β✝ ⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝ [PROOFSTEP] simp [mul_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_5 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 x✝ : Const α α✝ y✝ : Const α β✝ ⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝ [PROOFSTEP] simp [mul_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_6 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 g✝ : α✝ → β✝ x✝ : Const α α✝ ⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝ [PROOFSTEP] simp [mul_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_7 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 g✝ : α✝ → β✝ x✝ : α✝ ⊢ g✝ <$> pure x✝ = pure (g✝ x✝) [PROOFSTEP] simp [mul_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_8 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 g✝ : Const α (α✝ → β✝) x✝ : α✝ ⊢ (Seq.seq g✝ fun x => pure x✝) = (fun h => h x✝) <$> g✝ [PROOFSTEP] simp [mul_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_9 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ γ✝ : Type ?u.61710 x✝ : Const α α✝ g✝ : Const α (α✝ → β✝) h✝ : Const α (β✝ → γ✝) ⊢ (Seq.seq h✝ fun x => Seq.seq g✝ fun x => x✝) = Seq.seq (Seq.seq (Function.comp <$> h✝) fun x => g✝) fun x => x✝ [PROOFSTEP] simp [mul_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_1 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 ⊢ mapConst = Const.map ∘ Function.const β✝ [PROOFSTEP] rfl [GOAL] case refine'_2 α : Type ?u.61704 inst✝ : Monoid α α✝ : Type ?u.61710 x✝ : Const α α✝ ⊢ Const.map id x✝ = x✝ [PROOFSTEP] rfl [GOAL] case refine'_3 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ γ✝ : Type ?u.61710 g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : Const α α✝ ⊢ Const.map (h✝ ∘ g✝) x✝ = Const.map h✝ (Const.map g✝ x✝) [PROOFSTEP] rfl [GOAL] case refine'_4 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 x✝ : Const α α✝ y✝ : Const α β✝ ⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Const.map (Function.const β✝) x✝ * y✝ [PROOFSTEP] rfl [GOAL] case refine'_5 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 x✝ : Const α α✝ y✝ : Const α β✝ ⊢ (SeqRight.seqRight x✝ fun x => y✝) = Const.map (Function.const α✝ id) x✝ * y✝ [PROOFSTEP] rfl [GOAL] case refine'_6 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 g✝ : α✝ → β✝ x✝ : Const α α✝ ⊢ x✝ = Const.map g✝ x✝ [PROOFSTEP] rfl [GOAL] case refine'_7 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 g✝ : α✝ → β✝ x✝ : α✝ ⊢ Const.map g✝ 1 = 1 [PROOFSTEP] rfl [GOAL] case refine'_8 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ : Type ?u.61710 g✝ : Const α (α✝ → β✝) x✝ : α✝ ⊢ g✝ = Const.map (fun h => h x✝) g✝ [PROOFSTEP] rfl [GOAL] case refine'_9 α : Type ?u.61704 inst✝ : Monoid α α✝ β✝ γ✝ : Type ?u.61710 x✝ : Const α α✝ g✝ : Const α (α✝ → β✝) h✝ : Const α (β✝ → γ✝) ⊢ h✝ * (g✝ * x✝) = Const.map Function.comp h✝ * (g✝ * x✝) [PROOFSTEP] rfl [GOAL] α : Type ?u.64148 inst✝ : AddMonoid α ⊢ LawfulApplicative (AddConst α) [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 α : Type ?u.64148 inst✝ : AddMonoid α ⊢ ∀ {α_1 β : Type ?u.64153}, mapConst = map ∘ Function.const β [PROOFSTEP] intros [GOAL] case refine'_2 α : Type ?u.64148 inst✝ : AddMonoid α ⊢ ∀ {α_1 : Type ?u.64153} (x : AddConst α α_1), id <$> x = x [PROOFSTEP] intros [GOAL] case refine'_3 α : Type ?u.64148 inst✝ : AddMonoid α ⊢ ∀ {α_1 β γ : Type ?u.64153} (g : α_1 → β) (h : β → γ) (x : AddConst α α_1), (h ∘ g) <$> x = h <$> g <$> x [PROOFSTEP] intros [GOAL] case refine'_4 α : Type ?u.64148 inst✝ : AddMonoid α ⊢ ∀ {α_1 β : Type ?u.64153} (x : AddConst α α_1) (y : AddConst α β), (SeqLeft.seqLeft x fun x => y) = Seq.seq (Function.const β <$> x) fun x => y [PROOFSTEP] intros [GOAL] case refine'_5 α : Type ?u.64148 inst✝ : AddMonoid α ⊢ ∀ {α_1 β : Type ?u.64153} (x : AddConst α α_1) (y : AddConst α β), (SeqRight.seqRight x fun x => y) = Seq.seq (Function.const α_1 id <$> x) fun x => y [PROOFSTEP] intros [GOAL] case refine'_6 α : Type ?u.64148 inst✝ : AddMonoid α ⊢ ∀ {α_1 β : Type ?u.64153} (g : α_1 → β) (x : AddConst α α_1), (Seq.seq (pure g) fun x_1 => x) = g <$> x [PROOFSTEP] intros [GOAL] case refine'_7 α : Type ?u.64148 inst✝ : AddMonoid α ⊢ ∀ {α_1 β : Type ?u.64153} (g : α_1 → β) (x : α_1), g <$> pure x = pure (g x) [PROOFSTEP] intros [GOAL] case refine'_8 α : Type ?u.64148 inst✝ : AddMonoid α ⊢ ∀ {α_1 β : Type ?u.64153} (g : AddConst α (α_1 → β)) (x : α_1), (Seq.seq g fun x_1 => pure x) = (fun h => h x) <$> g [PROOFSTEP] intros [GOAL] case refine'_9 α : Type ?u.64148 inst✝ : AddMonoid α ⊢ ∀ {α_1 β γ : Type ?u.64153} (x : AddConst α α_1) (g : AddConst α (α_1 → β)) (h : AddConst α (β → γ)), (Seq.seq h fun x_1 => Seq.seq g fun x_2 => x) = Seq.seq (Seq.seq (Function.comp <$> h) fun x => g) fun x_1 => x [PROOFSTEP] intros [GOAL] case refine'_1 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 ⊢ mapConst = map ∘ Function.const β✝ [PROOFSTEP] simp [add_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_2 α : Type ?u.64148 inst✝ : AddMonoid α α✝ : Type ?u.64153 x✝ : AddConst α α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] simp [add_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_3 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ γ✝ : Type ?u.64153 g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : AddConst α α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] simp [add_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_4 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 x✝ : AddConst α α✝ y✝ : AddConst α β✝ ⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Seq.seq (Function.const β✝ <$> x✝) fun x => y✝ [PROOFSTEP] simp [add_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_5 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 x✝ : AddConst α α✝ y✝ : AddConst α β✝ ⊢ (SeqRight.seqRight x✝ fun x => y✝) = Seq.seq (Function.const α✝ id <$> x✝) fun x => y✝ [PROOFSTEP] simp [add_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_6 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 g✝ : α✝ → β✝ x✝ : AddConst α α✝ ⊢ (Seq.seq (pure g✝) fun x => x✝) = g✝ <$> x✝ [PROOFSTEP] simp [add_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_7 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 g✝ : α✝ → β✝ x✝ : α✝ ⊢ g✝ <$> pure x✝ = pure (g✝ x✝) [PROOFSTEP] simp [add_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_8 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 g✝ : AddConst α (α✝ → β✝) x✝ : α✝ ⊢ (Seq.seq g✝ fun x => pure x✝) = (fun h => h x✝) <$> g✝ [PROOFSTEP] simp [add_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_9 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ γ✝ : Type ?u.64153 x✝ : AddConst α α✝ g✝ : AddConst α (α✝ → β✝) h✝ : AddConst α (β✝ → γ✝) ⊢ (Seq.seq h✝ fun x => Seq.seq g✝ fun x => x✝) = Seq.seq (Seq.seq (Function.comp <$> h✝) fun x => g✝) fun x => x✝ [PROOFSTEP] simp [add_assoc, (· <$> ·), Seq.seq, pure] [GOAL] case refine'_1 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 ⊢ mapConst = Const.map ∘ Function.const β✝ [PROOFSTEP] rfl [GOAL] case refine'_2 α : Type ?u.64148 inst✝ : AddMonoid α α✝ : Type ?u.64153 x✝ : AddConst α α✝ ⊢ Const.map id x✝ = x✝ [PROOFSTEP] rfl [GOAL] case refine'_3 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ γ✝ : Type ?u.64153 g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : AddConst α α✝ ⊢ Const.map (h✝ ∘ g✝) x✝ = Const.map h✝ (Const.map g✝ x✝) [PROOFSTEP] rfl [GOAL] case refine'_4 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 x✝ : AddConst α α✝ y✝ : AddConst α β✝ ⊢ (SeqLeft.seqLeft x✝ fun x => y✝) = Const.map (Function.const β✝) x✝ + y✝ [PROOFSTEP] rfl [GOAL] case refine'_5 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 x✝ : AddConst α α✝ y✝ : AddConst α β✝ ⊢ (SeqRight.seqRight x✝ fun x => y✝) = Const.map (Function.const α✝ id) x✝ + y✝ [PROOFSTEP] rfl [GOAL] case refine'_6 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 g✝ : α✝ → β✝ x✝ : AddConst α α✝ ⊢ x✝ = Const.map g✝ x✝ [PROOFSTEP] rfl [GOAL] case refine'_7 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 g✝ : α✝ → β✝ x✝ : α✝ ⊢ Const.map g✝ 0 = 0 [PROOFSTEP] rfl [GOAL] case refine'_8 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ : Type ?u.64153 g✝ : AddConst α (α✝ → β✝) x✝ : α✝ ⊢ g✝ = Const.map (fun h => h x✝) g✝ [PROOFSTEP] rfl [GOAL] case refine'_9 α : Type ?u.64148 inst✝ : AddMonoid α α✝ β✝ γ✝ : Type ?u.64153 x✝ : AddConst α α✝ g✝ : AddConst α (α✝ → β✝) h✝ : AddConst α (β✝ → γ✝) ⊢ h✝ + (g✝ + x✝) = Const.map Function.comp h✝ + (g✝ + x✝) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Control.Applicative", "llama_tokens": 26015}
[GOAL] F✝ : Type u → Type v α β γ : Type u inst✝¹ : Functor F✝ inst✝ : LawfulFunctor F✝ F : Type u_1 → Type u_2 m : {α β : Type u_1} → (α → β) → F α → F β mc : {α β : Type u_1} → α → F β → F α m' : {α β : Type u_1} → (α → β) → F α → F β mc' : {α β : Type u_1} → α → F β → F α H1 : LawfulFunctor F H2 : LawfulFunctor F H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x ⊢ { map := m, mapConst := mc } = { map := m', mapConst := mc' } [PROOFSTEP] cases show @m = @m' by funext α β f x; apply H [GOAL] F✝ : Type u → Type v α β γ : Type u inst✝¹ : Functor F✝ inst✝ : LawfulFunctor F✝ F : Type u_1 → Type u_2 m : {α β : Type u_1} → (α → β) → F α → F β mc : {α β : Type u_1} → α → F β → F α m' : {α β : Type u_1} → (α → β) → F α → F β mc' : {α β : Type u_1} → α → F β → F α H1 : LawfulFunctor F H2 : LawfulFunctor F H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x ⊢ m = m' [PROOFSTEP] funext α β f x [GOAL] case h.h.h.h F✝ : Type u → Type v α✝ β✝ γ : Type u inst✝¹ : Functor F✝ inst✝ : LawfulFunctor F✝ F : Type u_1 → Type u_2 m : {α β : Type u_1} → (α → β) → F α → F β mc : {α β : Type u_1} → α → F β → F α m' : {α β : Type u_1} → (α → β) → F α → F β mc' : {α β : Type u_1} → α → F β → F α H1 : LawfulFunctor F H2 : LawfulFunctor F H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x α β : Type u_1 f : α → β x : F α ⊢ m f x = m' f x [PROOFSTEP] apply H [GOAL] case refl F✝ : Type u → Type v α β γ : Type u inst✝¹ : Functor F✝ inst✝ : LawfulFunctor F✝ F : Type u_1 → Type u_2 m : {α β : Type u_1} → (α → β) → F α → F β mc mc' : {α β : Type u_1} → α → F β → F α H1 : LawfulFunctor F H2 : LawfulFunctor F H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x ⊢ { map := m, mapConst := mc } = { map := m, mapConst := mc' } [PROOFSTEP] congr [GOAL] case refl.e_mapConst F✝ : Type u → Type v α β γ : Type u inst✝¹ : Functor F✝ inst✝ : LawfulFunctor F✝ F : Type u_1 → Type u_2 m : {α β : Type u_1} → (α → β) → F α → F β mc mc' : {α β : Type u_1} → α → F β → F α H1 : LawfulFunctor F H2 : LawfulFunctor F H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x ⊢ mc = mc' [PROOFSTEP] funext α β [GOAL] case refl.e_mapConst.h.h F✝ : Type u → Type v α✝ β✝ γ : Type u inst✝¹ : Functor F✝ inst✝ : LawfulFunctor F✝ F : Type u_1 → Type u_2 m : {α β : Type u_1} → (α → β) → F α → F β mc mc' : {α β : Type u_1} → α → F β → F α H1 : LawfulFunctor F H2 : LawfulFunctor F H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x α β : Type u_1 ⊢ mc = mc' [PROOFSTEP] have E1 := @map_const _ ⟨@m, @mc⟩ H1 [GOAL] case refl.e_mapConst.h.h F✝ : Type u → Type v α✝ β✝ γ : Type u inst✝¹ : Functor F✝ inst✝ : LawfulFunctor F✝ F : Type u_1 → Type u_2 m : {α β : Type u_1} → (α → β) → F α → F β mc mc' : {α β : Type u_1} → α → F β → F α H1 : LawfulFunctor F H2 : LawfulFunctor F H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x α β : Type u_1 E1 : ∀ {α β : Type u_1}, mapConst = map ∘ Function.const β ⊢ mc = mc' [PROOFSTEP] have E2 := @map_const _ ⟨@m, @mc'⟩ H2 [GOAL] case refl.e_mapConst.h.h F✝ : Type u → Type v α✝ β✝ γ : Type u inst✝¹ : Functor F✝ inst✝ : LawfulFunctor F✝ F : Type u_1 → Type u_2 m : {α β : Type u_1} → (α → β) → F α → F β mc mc' : {α β : Type u_1} → α → F β → F α H1 : LawfulFunctor F H2 : LawfulFunctor F H : ∀ (α β : Type u_1) (f : α → β) (x : F α), f <$> x = f <$> x α β : Type u_1 E1 : ∀ {α β : Type u_1}, mapConst = map ∘ Function.const β E2 : ∀ {α β : Type u_1}, mapConst = map ∘ Function.const β ⊢ mc = mc' [PROOFSTEP] exact E1.trans E2.symm [GOAL] γ : Type ?u.2497 ⊢ LawfulFunctor (Const γ) [PROOFSTEP] constructor [GOAL] case map_const γ : Type ?u.2497 ⊢ ∀ {α β : Type ?u.2498}, mapConst = map ∘ Function.const β [PROOFSTEP] intros [GOAL] case id_map γ : Type ?u.2497 ⊢ ∀ {α : Type ?u.2498} (x : Const γ α), id <$> x = x [PROOFSTEP] intros [GOAL] case comp_map γ : Type ?u.2497 ⊢ ∀ {α β γ_1 : Type ?u.2498} (g : α → β) (h : β → γ_1) (x : Const γ α), (h ∘ g) <$> x = h <$> g <$> x [PROOFSTEP] intros [GOAL] case map_const γ : Type ?u.2497 α✝ β✝ : Type ?u.2498 ⊢ mapConst = map ∘ Function.const β✝ [PROOFSTEP] rfl [GOAL] case id_map γ : Type ?u.2497 α✝ : Type ?u.2498 x✝ : Const γ α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] rfl [GOAL] case comp_map γ : Type ?u.2497 α✝ β✝ γ✝ : Type ?u.2498 g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : Const γ α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] rfl [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Functor F inst✝² : Functor G inst✝¹ : LawfulFunctor F inst✝ : LawfulFunctor G α β γ : Type v x : F (G α) ⊢ Comp.map id (mk x) = mk x [PROOFSTEP] simp [Comp.map, Functor.map_id] [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Functor F inst✝² : Functor G inst✝¹ : LawfulFunctor F inst✝ : LawfulFunctor G α β γ : Type v x : F (G α) ⊢ mk (mk x) = mk x [PROOFSTEP] rfl -- porting note: `rfl` wasn't needed in mathlib3 [GOAL] F : Type u → Type w G : Type v → Type u inst✝³ : Functor F inst✝² : Functor G inst✝¹ : LawfulFunctor F inst✝ : LawfulFunctor G α β γ : Type v g' : α → β h : β → γ x : F (G α) ⊢ Comp.map (h ∘ g') (mk x) = Comp.map h (Comp.map g' (mk x)) [PROOFSTEP] simp [Comp.map, Comp.mk, Functor.map_comp_map, functor_norm] -- porting note: `Comp.mk` wasn't needed in mathlib3
{"mathlib_filename": "Mathlib.Control.Functor", "llama_tokens": 2951}
[GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ ⊢ Injective boxes [PROOFSTEP] rintro ⟨s₁, h₁, h₁'⟩ ⟨s₂, h₂, h₂'⟩ (rfl : s₁ = s₂) [GOAL] case mk.mk ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ s₁ : Finset (Box ι) h₁ : ∀ (J : Box ι), J ∈ s₁ → J ≤ I h₁' : Set.Pairwise (↑s₁) (Disjoint on Box.toSet) h₂ : ∀ (J : Box ι), J ∈ s₁ → J ≤ I h₂' : Set.Pairwise (↑s₁) (Disjoint on Box.toSet) ⊢ { boxes := s₁, le_of_mem' := h₁, pairwiseDisjoint := h₁' } = { boxes := s₁, le_of_mem' := h₂, pairwiseDisjoint := h₂' } [PROOFSTEP] rfl [GOAL] ι : Type u_1 I✝ J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I✝ x : ι → ℝ I J : Box ι h : J ≤ I ⊢ ∀ (J_1 : Box ι), J_1 ∈ {J} → J_1 ≤ I [PROOFSTEP] simpa [GOAL] ι : Type u_1 I✝ J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I✝ x : ι → ℝ I J : Box ι h : J ≤ I ⊢ Set.Pairwise (↑{J}) (Disjoint on Box.toSet) [PROOFSTEP] simp [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ ⊢ ∀ (a b : Prepartition I), a ≤ b → b ≤ a → a = b [PROOFSTEP] suffices : ∀ {π₁ π₂ : Prepartition I}, π₁ ≤ π₂ → π₂ ≤ π₁ → π₁.boxes ⊆ π₂.boxes [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ this : ∀ {π₁ π₂ : Prepartition I}, π₁ ≤ π₂ → π₂ ≤ π₁ → π₁.boxes ⊆ π₂.boxes ⊢ ∀ (a b : Prepartition I), a ≤ b → b ≤ a → a = b case this ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ ⊢ ∀ {π₁ π₂ : Prepartition I}, π₁ ≤ π₂ → π₂ ≤ π₁ → π₁.boxes ⊆ π₂.boxes [PROOFSTEP] exact fun π₁ π₂ h₁ h₂ => injective_boxes (Subset.antisymm (this h₁ h₂) (this h₂ h₁)) [GOAL] case this ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ ⊢ ∀ {π₁ π₂ : Prepartition I}, π₁ ≤ π₂ → π₂ ≤ π₁ → π₁.boxes ⊆ π₂.boxes [PROOFSTEP] intro π₁ π₂ h₁ h₂ J hJ [GOAL] case this ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ π₁ π₂ : Prepartition I h₁ : π₁ ≤ π₂ h₂ : π₂ ≤ π₁ J : Box ι hJ : J ∈ π₁.boxes ⊢ J ∈ π₂.boxes [PROOFSTEP] rcases h₁ hJ with ⟨J', hJ', hle⟩ [GOAL] case this.intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ π₁ π₂ : Prepartition I h₁ : π₁ ≤ π₂ h₂ : π₂ ≤ π₁ J : Box ι hJ : J ∈ π₁.boxes J' : Box ι hJ' : J' ∈ π₂ hle : J ≤ J' ⊢ J ∈ π₂.boxes [PROOFSTEP] rcases h₂ hJ' with ⟨J'', hJ'', hle'⟩ [GOAL] case this.intro.intro.intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ π₁ π₂ : Prepartition I h₁ : π₁ ≤ π₂ h₂ : π₂ ≤ π₁ J : Box ι hJ : J ∈ π₁.boxes J' : Box ι hJ' : J' ∈ π₂ hle : J ≤ J' J'' : Box ι hJ'' : J'' ∈ π₁ hle' : J' ≤ J'' ⊢ J ∈ π₂.boxes [PROOFSTEP] obtain rfl : J = J'' [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ π₁ π₂ : Prepartition I h₁ : π₁ ≤ π₂ h₂ : π₂ ≤ π₁ J : Box ι hJ : J ∈ π₁.boxes J' : Box ι hJ' : J' ∈ π₂ hle : J ≤ J' J'' : Box ι hJ'' : J'' ∈ π₁ hle' : J' ≤ J'' ⊢ J = J'' case this.intro.intro.intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ π₁ π₂ : Prepartition I h₁ : π₁ ≤ π₂ h₂ : π₂ ≤ π₁ J : Box ι hJ : J ∈ π₁.boxes J' : Box ι hJ' : J' ∈ π₂ hle : J ≤ J' hJ'' : J ∈ π₁ hle' : J' ≤ J ⊢ J ∈ π₂.boxes [PROOFSTEP] exact π₁.eq_of_le hJ hJ'' (hle.trans hle') [GOAL] case this.intro.intro.intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ π₁ π₂ : Prepartition I h₁ : π₁ ≤ π₂ h₂ : π₂ ≤ π₁ J : Box ι hJ : J ∈ π₁.boxes J' : Box ι hJ' : J' ∈ π₂ hle : J ≤ J' hJ'' : J ∈ π₁ hle' : J' ≤ J ⊢ J ∈ π₂.boxes [PROOFSTEP] obtain rfl : J' = J [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ π₁ π₂ : Prepartition I h₁ : π₁ ≤ π₂ h₂ : π₂ ≤ π₁ J : Box ι hJ : J ∈ π₁.boxes J' : Box ι hJ' : J' ∈ π₂ hle : J ≤ J' hJ'' : J ∈ π₁ hle' : J' ≤ J ⊢ J' = J case this.intro.intro.intro.intro ι : Type u_1 I J J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ π₁ π₂ : Prepartition I h₁ : π₁ ≤ π₂ h₂ : π₂ ≤ π₁ J' : Box ι hJ' : J' ∈ π₂ hJ : J' ∈ π₁.boxes hle : J' ≤ J' hJ'' : J' ∈ π₁ hle' : J' ≤ J' ⊢ J' ∈ π₂.boxes [PROOFSTEP] exact le_antisymm ‹_› ‹_› [GOAL] case this.intro.intro.intro.intro ι : Type u_1 I J J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ π₁ π₂ : Prepartition I h₁ : π₁ ≤ π₂ h₂ : π₂ ≤ π₁ J' : Box ι hJ' : J' ∈ π₂ hJ : J' ∈ π₁.boxes hle : J' ≤ J' hJ'' : J' ∈ π₁ hle' : J' ≤ J' ⊢ J' ∈ π₂.boxes [PROOFSTEP] assumption [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ π : Prepartition I J : Box ι hJ : J ∈ π ⊢ I ∈ ⊤ [PROOFSTEP] simp [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ ⊢ InjOn (fun J => {i | Box.lower J i = x i}) {J | J ∈ π ∧ x ∈ ↑Box.Icc J} [PROOFSTEP] rintro J₁ ⟨h₁, hx₁⟩ J₂ ⟨h₂, hx₂⟩ (H : {i | J₁.lower i = x i} = {i | J₂.lower i = x i}) [GOAL] case intro.intro ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ H : {i | Box.lower J₁ i = x i} = {i | Box.lower J₂ i = x i} ⊢ J₁ = J₂ [PROOFSTEP] suffices ∀ i, (Ioc (J₁.lower i) (J₁.upper i) ∩ Ioc (J₂.lower i) (J₂.upper i)).Nonempty by choose y hy₁ hy₂ using this exact π.eq_of_mem_of_mem h₁ h₂ hy₁ hy₂ [GOAL] ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ H : {i | Box.lower J₁ i = x i} = {i | Box.lower J₂ i = x i} this : ∀ (i : ι), Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)) ⊢ J₁ = J₂ [PROOFSTEP] choose y hy₁ hy₂ using this [GOAL] ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ H : {i | Box.lower J₁ i = x i} = {i | Box.lower J₂ i = x i} y : ι → ℝ hy₁ : ∀ (i : ι), y i ∈ Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) hy₂ : ∀ (i : ι), y i ∈ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i) ⊢ J₁ = J₂ [PROOFSTEP] exact π.eq_of_mem_of_mem h₁ h₂ hy₁ hy₂ [GOAL] case intro.intro ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ H : {i | Box.lower J₁ i = x i} = {i | Box.lower J₂ i = x i} ⊢ ∀ (i : ι), Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)) [PROOFSTEP] intro i [GOAL] case intro.intro ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ H : {i | Box.lower J₁ i = x i} = {i | Box.lower J₂ i = x i} i : ι ⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)) [PROOFSTEP] simp only [Set.ext_iff, mem_setOf] at H [GOAL] case intro.intro ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ i : ι H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1 ⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)) [PROOFSTEP] cases' (hx₁.1 i).eq_or_lt with hi₁ hi₁ [GOAL] case intro.intro.inl ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ i : ι H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1 hi₁ : Box.lower J₁ i = x i ⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)) [PROOFSTEP] have hi₂ : J₂.lower i = x i := (H _).1 hi₁ [GOAL] case intro.intro.inl ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ i : ι H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1 hi₁ : Box.lower J₁ i = x i hi₂ : Box.lower J₂ i = x i ⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)) [PROOFSTEP] have H₁ : x i < J₁.upper i := by simpa only [hi₁] using J₁.lower_lt_upper i [GOAL] ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ i : ι H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1 hi₁ : Box.lower J₁ i = x i hi₂ : Box.lower J₂ i = x i ⊢ x i < Box.upper J₁ i [PROOFSTEP] simpa only [hi₁] using J₁.lower_lt_upper i [GOAL] case intro.intro.inl ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ i : ι H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1 hi₁ : Box.lower J₁ i = x i hi₂ : Box.lower J₂ i = x i H₁ : x i < Box.upper J₁ i ⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)) [PROOFSTEP] have H₂ : x i < J₂.upper i := by simpa only [hi₂] using J₂.lower_lt_upper i [GOAL] ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ i : ι H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1 hi₁ : Box.lower J₁ i = x i hi₂ : Box.lower J₂ i = x i H₁ : x i < Box.upper J₁ i ⊢ x i < Box.upper J₂ i [PROOFSTEP] simpa only [hi₂] using J₂.lower_lt_upper i [GOAL] case intro.intro.inl ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ i : ι H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1 hi₁ : Box.lower J₁ i = x i hi₂ : Box.lower J₂ i = x i H₁ : x i < Box.upper J₁ i H₂ : x i < Box.upper J₂ i ⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)) [PROOFSTEP] rw [Ioc_inter_Ioc, hi₁, hi₂, sup_idem, Set.nonempty_Ioc] [GOAL] case intro.intro.inl ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ i : ι H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1 hi₁ : Box.lower J₁ i = x i hi₂ : Box.lower J₂ i = x i H₁ : x i < Box.upper J₁ i H₂ : x i < Box.upper J₂ i ⊢ x i < Box.upper J₁ i ⊓ Box.upper J₂ i [PROOFSTEP] exact lt_min H₁ H₂ [GOAL] case intro.intro.inr ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ i : ι H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1 hi₁ : Box.lower J₁ i < x i ⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)) [PROOFSTEP] have hi₂ : J₂.lower i < x i := (hx₂.1 i).lt_of_ne (mt (H _).2 hi₁.ne) [GOAL] case intro.intro.inr ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ x : ι → ℝ J₁ : Box ι h₁ : J₁ ∈ π hx₁ : x ∈ ↑Box.Icc J₁ J₂ : Box ι h₂ : J₂ ∈ π hx₂ : x ∈ ↑Box.Icc J₂ i : ι H : ∀ (x_1 : ι), Box.lower J₁ x_1 = x x_1 ↔ Box.lower J₂ x_1 = x x_1 hi₁ : Box.lower J₁ i < x i hi₂ : Box.lower J₂ i < x i ⊢ Set.Nonempty (Set.Ioc (Box.lower J₁ i) (Box.upper J₁ i) ∩ Set.Ioc (Box.lower J₂ i) (Box.upper J₂ i)) [PROOFSTEP] exact ⟨x i, ⟨hi₁, hx₁.2 i⟩, ⟨hi₂, hx₂.2 i⟩⟩ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ inst✝ : Fintype ι x : ι → ℝ ⊢ card (filter (fun J => x ∈ ↑Box.Icc J) π.boxes) ≤ 2 ^ Fintype.card ι [PROOFSTEP] rw [← Fintype.card_set] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ inst✝ : Fintype ι x : ι → ℝ ⊢ card (filter (fun J => x ∈ ↑Box.Icc J) π.boxes) ≤ Fintype.card (Set ι) [PROOFSTEP] refine' Finset.card_le_card_of_inj_on (fun J : Box ι => {i | J.lower i = x i}) (fun _ _ => Finset.mem_univ _) _ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ inst✝ : Fintype ι x : ι → ℝ ⊢ ∀ (a₁ : Box ι), a₁ ∈ filter (fun J => x ∈ ↑Box.Icc J) π.boxes → ∀ (a₂ : Box ι), a₂ ∈ filter (fun J => x ∈ ↑Box.Icc J) π.boxes → (fun J => {i | Box.lower J i = x i}) a₁ = (fun J => {i | Box.lower J i = x i}) a₂ → a₁ = a₂ [PROOFSTEP] simpa only [Finset.mem_filter] using π.injOn_setOf_mem_Icc_setOf_lower_eq x [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ ⊢ x ∈ Prepartition.iUnion π ↔ ∃ J, J ∈ π ∧ x ∈ J [PROOFSTEP] convert Set.mem_iUnion₂ [GOAL] case h.e'_2.h.e'_2.h.a ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ x✝ : Box ι ⊢ x✝ ∈ π ∧ x ∈ x✝ ↔ ∃ j, x ∈ ↑x✝ [PROOFSTEP] rw [Box.mem_coe, exists_prop] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ h : J ≤ I ⊢ Prepartition.iUnion (single I J h) = ↑J [PROOFSTEP] simp [iUnion_def] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ ⊢ Prepartition.iUnion ⊤ = ↑I [PROOFSTEP] simp [Prepartition.iUnion] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ ⊢ Prepartition.iUnion π₁ = ∅ ↔ π₁ = ⊥ [PROOFSTEP] simp [← injective_boxes.eq_iff, Finset.ext_iff, Prepartition.iUnion, imp_false] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ ⊢ π₁ ≤ π₂ ↔ (∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J') ∧ Prepartition.iUnion π₁ ⊆ Prepartition.iUnion π₂ [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ ⊢ π₁ ≤ π₂ → (∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J') ∧ Prepartition.iUnion π₁ ⊆ Prepartition.iUnion π₂ [PROOFSTEP] refine' fun H => ⟨fun J hJ J' hJ' Hne => _, iUnion_mono H⟩ [GOAL] case mp ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ H : π₁ ≤ π₂ J : Box ι hJ : J ∈ π₁ J' : Box ι hJ' : J' ∈ π₂ Hne : Set.Nonempty (↑J ∩ ↑J') ⊢ J ≤ J' [PROOFSTEP] rcases H hJ with ⟨J'', hJ'', Hle⟩ [GOAL] case mp.intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ H : π₁ ≤ π₂ J : Box ι hJ : J ∈ π₁ J' : Box ι hJ' : J' ∈ π₂ Hne : Set.Nonempty (↑J ∩ ↑J') J'' : Box ι hJ'' : J'' ∈ π₂ Hle : J ≤ J'' ⊢ J ≤ J' [PROOFSTEP] rcases Hne with ⟨x, hx, hx'⟩ [GOAL] case mp.intro.intro.intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ H : π₁ ≤ π₂ J : Box ι hJ : J ∈ π₁ J' : Box ι hJ' : J' ∈ π₂ J'' : Box ι hJ'' : J'' ∈ π₂ Hle : J ≤ J'' x : ι → ℝ hx : x ∈ ↑J hx' : x ∈ ↑J' ⊢ J ≤ J' [PROOFSTEP] rwa [π₂.eq_of_mem_of_mem hJ' hJ'' hx' (Hle hx)] [GOAL] case mpr ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ ⊢ (∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J') ∧ Prepartition.iUnion π₁ ⊆ Prepartition.iUnion π₂ → π₁ ≤ π₂ [PROOFSTEP] rintro ⟨H, HU⟩ J hJ [GOAL] case mpr.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ H : ∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J' HU : Prepartition.iUnion π₁ ⊆ Prepartition.iUnion π₂ J : Box ι hJ : J ∈ π₁ ⊢ ∃ I', I' ∈ π₂ ∧ J ≤ I' [PROOFSTEP] simp only [Set.subset_def, mem_iUnion] at HU [GOAL] case mpr.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ H : ∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J' J : Box ι hJ : J ∈ π₁ HU : ∀ (x : ι → ℝ), (∃ J, J ∈ π₁ ∧ x ∈ J) → ∃ J, J ∈ π₂ ∧ x ∈ J ⊢ ∃ I', I' ∈ π₂ ∧ J ≤ I' [PROOFSTEP] rcases HU J.upper ⟨J, hJ, J.upper_mem⟩ with ⟨J₂, hJ₂, hx⟩ [GOAL] case mpr.intro.intro.intro ι : Type u_1 I J✝ J₁ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ H : ∀ (J : Box ι), J ∈ π₁ → ∀ (J' : Box ι), J' ∈ π₂ → Set.Nonempty (↑J ∩ ↑J') → J ≤ J' J : Box ι hJ : J ∈ π₁ HU : ∀ (x : ι → ℝ), (∃ J, J ∈ π₁ ∧ x ∈ J) → ∃ J, J ∈ π₂ ∧ x ∈ J J₂ : Box ι hJ₂ : J₂ ∈ π₂ hx : J.upper ∈ J₂ ⊢ ∃ I', I' ∈ π₂ ∧ J ≤ I' [PROOFSTEP] exact ⟨J₂, hJ₂, H _ hJ _ hJ₂ ⟨_, J.upper_mem, hx⟩⟩ [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi : (J : Box ι) → Prepartition J J : Box ι hJ : J ∈ Finset.biUnion π.boxes fun J => (πi J).boxes ⊢ J ≤ I [PROOFSTEP] simp only [Finset.mem_biUnion, exists_prop, mem_boxes] at hJ [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi : (J : Box ι) → Prepartition J J : Box ι hJ : ∃ a, a ∈ π ∧ J ∈ πi a ⊢ J ≤ I [PROOFSTEP] rcases hJ with ⟨J', hJ', hJ⟩ [GOAL] case intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi : (J : Box ι) → Prepartition J J J' : Box ι hJ' : J' ∈ π hJ : J ∈ πi J' ⊢ J ≤ I [PROOFSTEP] exact ((πi J').le_of_mem hJ).trans (π.le_of_mem hJ') [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi : (J : Box ι) → Prepartition J ⊢ Set.Pairwise (↑(Finset.biUnion π.boxes fun J => (πi J).boxes)) (Disjoint on Box.toSet) [PROOFSTEP] simp only [Set.Pairwise, Finset.mem_coe, Finset.mem_biUnion] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi : (J : Box ι) → Prepartition J ⊢ ∀ ⦃x : Box ι⦄, (∃ a, a ∈ π.boxes ∧ x ∈ (πi a).boxes) → ∀ ⦃y : Box ι⦄, (∃ a, a ∈ π.boxes ∧ y ∈ (πi a).boxes) → x ≠ y → (Disjoint on Box.toSet) x y [PROOFSTEP] rintro J₁' ⟨J₁, hJ₁, hJ₁'⟩ J₂' ⟨J₂, hJ₂, hJ₂'⟩ Hne [GOAL] case intro.intro.intro.intro ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi : (J : Box ι) → Prepartition J J₁' J₁ : Box ι hJ₁ : J₁ ∈ π.boxes hJ₁' : J₁' ∈ (πi J₁).boxes J₂' J₂ : Box ι hJ₂ : J₂ ∈ π.boxes hJ₂' : J₂' ∈ (πi J₂).boxes Hne : J₁' ≠ J₂' ⊢ (Disjoint on Box.toSet) J₁' J₂' [PROOFSTEP] rw [Function.onFun, Set.disjoint_left] [GOAL] case intro.intro.intro.intro ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi : (J : Box ι) → Prepartition J J₁' J₁ : Box ι hJ₁ : J₁ ∈ π.boxes hJ₁' : J₁' ∈ (πi J₁).boxes J₂' J₂ : Box ι hJ₂ : J₂ ∈ π.boxes hJ₂' : J₂' ∈ (πi J₂).boxes Hne : J₁' ≠ J₂' ⊢ ∀ ⦃a : ι → ℝ⦄, a ∈ ↑J₁' → ¬a ∈ ↑J₂' [PROOFSTEP] rintro x hx₁ hx₂ [GOAL] case intro.intro.intro.intro ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ πi : (J : Box ι) → Prepartition J J₁' J₁ : Box ι hJ₁ : J₁ ∈ π.boxes hJ₁' : J₁' ∈ (πi J₁).boxes J₂' J₂ : Box ι hJ₂ : J₂ ∈ π.boxes hJ₂' : J₂' ∈ (πi J₂).boxes Hne : J₁' ≠ J₂' x : ι → ℝ hx₁ : x ∈ ↑J₁' hx₂ : x ∈ ↑J₂' ⊢ False [PROOFSTEP] apply Hne [GOAL] case intro.intro.intro.intro ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ πi : (J : Box ι) → Prepartition J J₁' J₁ : Box ι hJ₁ : J₁ ∈ π.boxes hJ₁' : J₁' ∈ (πi J₁).boxes J₂' J₂ : Box ι hJ₂ : J₂ ∈ π.boxes hJ₂' : J₂' ∈ (πi J₂).boxes Hne : J₁' ≠ J₂' x : ι → ℝ hx₁ : x ∈ ↑J₁' hx₂ : x ∈ ↑J₂' ⊢ J₁' = J₂' [PROOFSTEP] obtain rfl : J₁ = J₂ [GOAL] ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ πi : (J : Box ι) → Prepartition J J₁' J₁ : Box ι hJ₁ : J₁ ∈ π.boxes hJ₁' : J₁' ∈ (πi J₁).boxes J₂' J₂ : Box ι hJ₂ : J₂ ∈ π.boxes hJ₂' : J₂' ∈ (πi J₂).boxes Hne : J₁' ≠ J₂' x : ι → ℝ hx₁ : x ∈ ↑J₁' hx₂ : x ∈ ↑J₂' ⊢ J₁ = J₂ case intro.intro.intro.intro ι : Type u_1 I J J₁✝ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ πi : (J : Box ι) → Prepartition J J₁' J₁ : Box ι hJ₁ : J₁ ∈ π.boxes hJ₁' : J₁' ∈ (πi J₁).boxes J₂' : Box ι Hne : J₁' ≠ J₂' x : ι → ℝ hx₁ : x ∈ ↑J₁' hx₂ : x ∈ ↑J₂' hJ₂ : J₁ ∈ π.boxes hJ₂' : J₂' ∈ (πi J₁).boxes ⊢ J₁' = J₂' [PROOFSTEP] exact π.eq_of_mem_of_mem hJ₁ hJ₂ ((πi J₁).le_of_mem hJ₁' hx₁) ((πi J₂).le_of_mem hJ₂' hx₂) [GOAL] case intro.intro.intro.intro ι : Type u_1 I J J₁✝ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ πi : (J : Box ι) → Prepartition J J₁' J₁ : Box ι hJ₁ : J₁ ∈ π.boxes hJ₁' : J₁' ∈ (πi J₁).boxes J₂' : Box ι Hne : J₁' ≠ J₂' x : ι → ℝ hx₁ : x ∈ ↑J₁' hx₂ : x ∈ ↑J₂' hJ₂ : J₁ ∈ π.boxes hJ₂' : J₂' ∈ (πi J₁).boxes ⊢ J₁' = J₂' [PROOFSTEP] exact (πi J₁).eq_of_mem_of_mem hJ₁' hJ₂' hx₁ hx₂ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J ⊢ J ∈ biUnion π πi ↔ ∃ J', J' ∈ π ∧ J ∈ πi J' [PROOFSTEP] simp [biUnion] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J ⊢ (biUnion π fun x => ⊤) = π [PROOFSTEP] ext [GOAL] case h ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J J✝ : Box ι ⊢ (J✝ ∈ biUnion π fun x => ⊤) ↔ J✝ ∈ π [PROOFSTEP] simp [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J h : π₁ = π₂ hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J ⊢ biUnion π₁ πi₁ = biUnion π₂ πi₂ [PROOFSTEP] subst π₂ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J ⊢ biUnion π₁ πi₁ = biUnion π₁ πi₂ [PROOFSTEP] ext J [GOAL] case h ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J J : Box ι ⊢ J ∈ biUnion π₁ πi₁ ↔ J ∈ biUnion π₁ πi₂ [PROOFSTEP] simp only [mem_biUnion] [GOAL] case h ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J J : Box ι ⊢ (∃ J', J' ∈ π₁ ∧ J ∈ πi₁ J') ↔ ∃ J', J' ∈ π₁ ∧ J ∈ πi₂ J' [PROOFSTEP] constructor [GOAL] case h.mp ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J J : Box ι ⊢ (∃ J', J' ∈ π₁ ∧ J ∈ πi₁ J') → ∃ J', J' ∈ π₁ ∧ J ∈ πi₂ J' [PROOFSTEP] exact fun ⟨J', h₁, h₂⟩ => ⟨J', h₁, hi J' h₁ ▸ h₂⟩ [GOAL] case h.mpr ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hi : ∀ (J : Box ι), J ∈ π₁ → πi₁ J = πi₂ J J : Box ι ⊢ (∃ J', J' ∈ π₁ ∧ J ∈ πi₂ J') → ∃ J', J' ∈ π₁ ∧ J ∈ πi₁ J' [PROOFSTEP] exact fun ⟨J', h₁, h₂⟩ => ⟨J', h₁, hi J' h₁ ▸ h₂⟩ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J ⊢ Prepartition.iUnion (biUnion π πi) = ⋃ (J : Box ι) (_ : J ∈ π), Prepartition.iUnion (πi J) [PROOFSTEP] simp [Prepartition.iUnion] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ : (J : Box ι) → Prepartition J M : Type u_2 inst✝ : AddCommMonoid M π : Prepartition I πi : (J : Box ι) → Prepartition J f : Box ι → M ⊢ ∑ J in Finset.biUnion π.boxes fun J => (πi J).boxes, f J = ∑ J in π.boxes, ∑ J' in (πi J).boxes, f J' [PROOFSTEP] refine' Finset.sum_biUnion fun J₁ h₁ J₂ h₂ hne => Finset.disjoint_left.2 fun J' h₁' h₂' => _ [GOAL] ι : Type u_1 I J J₁✝ J₂✝ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ : (J : Box ι) → Prepartition J M : Type u_2 inst✝ : AddCommMonoid M π : Prepartition I πi : (J : Box ι) → Prepartition J f : Box ι → M J₁ : Box ι h₁ : J₁ ∈ ↑π.boxes J₂ : Box ι h₂ : J₂ ∈ ↑π.boxes hne : J₁ ≠ J₂ J' : Box ι h₁' : J' ∈ (fun J => (πi J).boxes) J₁ h₂' : J' ∈ (fun J => (πi J).boxes) J₂ ⊢ False [PROOFSTEP] exact hne (π.eq_of_le_of_le h₁ h₂ ((πi J₁).le_of_mem h₁') ((πi J₂).le_of_mem h₂')) [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hJ : J ∈ biUnion π πi ⊢ biUnionIndex π πi J ∈ π [PROOFSTEP] rw [biUnionIndex, dif_pos hJ] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hJ : J ∈ biUnion π πi ⊢ Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J') ∈ π [PROOFSTEP] exact (π.mem_biUnion.1 hJ).choose_spec.1 [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J J : Box ι ⊢ biUnionIndex π πi J ≤ I [PROOFSTEP] by_cases hJ : J ∈ π.biUnion πi [GOAL] case pos ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J J : Box ι hJ : J ∈ biUnion π πi ⊢ biUnionIndex π πi J ≤ I [PROOFSTEP] exact π.le_of_mem (π.biUnionIndex_mem hJ) [GOAL] case neg ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J J : Box ι hJ : ¬J ∈ biUnion π πi ⊢ biUnionIndex π πi J ≤ I [PROOFSTEP] rw [biUnionIndex, dif_neg hJ] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hJ : J ∈ biUnion π πi ⊢ J ∈ πi (biUnionIndex π πi J) [PROOFSTEP] convert (π.mem_biUnion.1 hJ).choose_spec.2 [GOAL] case h.e'_2.h.e'_2 ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hJ : J ∈ biUnion π πi ⊢ biUnionIndex π πi J = Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J') [PROOFSTEP] exact dif_pos hJ [GOAL] case h.e'_3.e'_2 ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hJ : J ∈ biUnion π πi e_2✝ : Prepartition (biUnionIndex π πi J) = Prepartition (Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J')) ⊢ biUnionIndex π πi J = Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J') [PROOFSTEP] exact dif_pos hJ [GOAL] case h.e'_5.e'_1 ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J hJ : J ∈ biUnion π πi e_2✝ : Prepartition (biUnionIndex π πi J) = Prepartition (Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J')) ⊢ biUnionIndex π πi J = Exists.choose (_ : ∃ J', J' ∈ π ∧ J ∈ πi J') [PROOFSTEP] exact dif_pos hJ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J πi' : Box ι → (J : Box ι) → Prepartition J ⊢ (biUnion π fun J => biUnion (πi J) (πi' J)) = biUnion (biUnion π πi) fun J => πi' (biUnionIndex π πi J) J [PROOFSTEP] ext J [GOAL] case h ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J πi' : Box ι → (J : Box ι) → Prepartition J J : Box ι ⊢ (J ∈ biUnion π fun J => biUnion (πi J) (πi' J)) ↔ J ∈ biUnion (biUnion π πi) fun J => πi' (biUnionIndex π πi J) J [PROOFSTEP] simp only [mem_biUnion, exists_prop] [GOAL] case h ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J πi' : Box ι → (J : Box ι) → Prepartition J J : Box ι ⊢ (∃ J', J' ∈ π ∧ ∃ J'_1, J'_1 ∈ πi J' ∧ J ∈ πi' J' J'_1) ↔ ∃ J', (∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1) ∧ J ∈ πi' (biUnionIndex π πi J') J' [PROOFSTEP] constructor [GOAL] case h.mp ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J πi' : Box ι → (J : Box ι) → Prepartition J J : Box ι ⊢ (∃ J', J' ∈ π ∧ ∃ J'_1, J'_1 ∈ πi J' ∧ J ∈ πi' J' J'_1) → ∃ J', (∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1) ∧ J ∈ πi' (biUnionIndex π πi J') J' [PROOFSTEP] rintro ⟨J₁, hJ₁, J₂, hJ₂, hJ⟩ [GOAL] case h.mp.intro.intro.intro.intro ι : Type u_1 I J✝ J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J πi' : Box ι → (J : Box ι) → Prepartition J J J₁ : Box ι hJ₁ : J₁ ∈ π J₂ : Box ι hJ₂ : J₂ ∈ πi J₁ hJ : J ∈ πi' J₁ J₂ ⊢ ∃ J', (∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1) ∧ J ∈ πi' (biUnionIndex π πi J') J' [PROOFSTEP] refine' ⟨J₂, ⟨J₁, hJ₁, hJ₂⟩, _⟩ [GOAL] case h.mp.intro.intro.intro.intro ι : Type u_1 I J✝ J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J πi' : Box ι → (J : Box ι) → Prepartition J J J₁ : Box ι hJ₁ : J₁ ∈ π J₂ : Box ι hJ₂ : J₂ ∈ πi J₁ hJ : J ∈ πi' J₁ J₂ ⊢ J ∈ πi' (biUnionIndex π πi J₂) J₂ [PROOFSTEP] rwa [π.biUnionIndex_of_mem hJ₁ hJ₂] [GOAL] case h.mpr ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J πi' : Box ι → (J : Box ι) → Prepartition J J : Box ι ⊢ (∃ J', (∃ J'_1, J'_1 ∈ π ∧ J' ∈ πi J'_1) ∧ J ∈ πi' (biUnionIndex π πi J') J') → ∃ J', J' ∈ π ∧ ∃ J'_1, J'_1 ∈ πi J' ∧ J ∈ πi' J' J'_1 [PROOFSTEP] rintro ⟨J₁, ⟨J₂, hJ₂, hJ₁⟩, hJ⟩ [GOAL] case h.mpr.intro.intro.intro.intro ι : Type u_1 I J✝ J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J πi' : Box ι → (J : Box ι) → Prepartition J J J₁ : Box ι hJ : J ∈ πi' (biUnionIndex π πi J₁) J₁ J₂ : Box ι hJ₂ : J₂ ∈ π hJ₁ : J₁ ∈ πi J₂ ⊢ ∃ J', J' ∈ π ∧ ∃ J'_1, J'_1 ∈ πi J' ∧ J ∈ πi' J' J'_1 [PROOFSTEP] refine' ⟨J₂, hJ₂, J₁, hJ₁, _⟩ [GOAL] case h.mpr.intro.intro.intro.intro ι : Type u_1 I J✝ J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J πi' : Box ι → (J : Box ι) → Prepartition J J J₁ : Box ι hJ : J ∈ πi' (biUnionIndex π πi J₁) J₁ J₂ : Box ι hJ₂ : J₂ ∈ π hJ₁ : J₁ ∈ πi J₂ ⊢ J ∈ πi' J₂ J₁ [PROOFSTEP] rwa [π.biUnionIndex_of_mem hJ₂ hJ₁] at hJ [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint J : Box ι hJ : J ∈ ↑eraseNone boxes ⊢ J ≤ I [PROOFSTEP] rw [mem_eraseNone] at hJ [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint J : Box ι hJ : some J ∈ boxes ⊢ J ≤ I [PROOFSTEP] simpa only [WithBot.some_eq_coe, WithBot.coe_le_coe] using le_of_mem _ hJ [GOAL] ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint J₁ : Box ι h₁ : J₁ ∈ ↑(↑eraseNone boxes) J₂ : Box ι h₂ : J₂ ∈ ↑(↑eraseNone boxes) hne : J₁ ≠ J₂ ⊢ (Disjoint on Box.toSet) J₁ J₂ [PROOFSTEP] simp only [mem_coe, mem_eraseNone] at h₁ h₂ [GOAL] ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint J₁ J₂ : Box ι hne : J₁ ≠ J₂ h₁ : some J₁ ∈ boxes h₂ : some J₂ ∈ boxes ⊢ (Disjoint on Box.toSet) J₁ J₂ [PROOFSTEP] exact Box.disjoint_coe.1 (pairwise_disjoint h₁ h₂ (mt Option.some_inj.1 hne)) [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint ⊢ Prepartition.iUnion (ofWithBot boxes le_of_mem pairwise_disjoint) = ⋃ (J : WithBot (Box ι)) (_ : J ∈ boxes), ↑J [PROOFSTEP] suffices ⋃ (J : Box ι) (_ : ↑J ∈ boxes), ↑J = ⋃ J ∈ boxes, (J : Set (ι → ℝ)) by simpa [ofWithBot, Prepartition.iUnion] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint this : ⋃ (J : Box ι) (_ : ↑J ∈ boxes), ↑J = ⋃ (J : WithBot (Box ι)) (_ : J ∈ boxes), ↑J ⊢ Prepartition.iUnion (ofWithBot boxes le_of_mem pairwise_disjoint) = ⋃ (J : WithBot (Box ι)) (_ : J ∈ boxes), ↑J [PROOFSTEP] simpa [ofWithBot, Prepartition.iUnion] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint ⊢ ⋃ (J : Box ι) (_ : ↑J ∈ boxes), ↑J = ⋃ (J : WithBot (Box ι)) (_ : J ∈ boxes), ↑J [PROOFSTEP] simp only [← Box.biUnion_coe_eq_coe, @iUnion_comm _ _ (Box ι), @iUnion_comm _ _ (@Eq _ _ _), iUnion_iUnion_eq_right] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint H : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≠ ⊥ → ∃ J', J' ∈ π ∧ J ≤ ↑J' ⊢ ofWithBot boxes le_of_mem pairwise_disjoint ≤ π [PROOFSTEP] have : ∀ J : Box ι, ↑J ∈ boxes → ∃ J' ∈ π, J ≤ J' := fun J hJ => by simpa only [WithBot.coe_le_coe] using H J hJ WithBot.coe_ne_bot [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint H : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≠ ⊥ → ∃ J', J' ∈ π ∧ J ≤ ↑J' J : Box ι hJ : ↑J ∈ boxes ⊢ ∃ J', J' ∈ π ∧ J ≤ J' [PROOFSTEP] simpa only [WithBot.coe_le_coe] using H J hJ WithBot.coe_ne_bot [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint H : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≠ ⊥ → ∃ J', J' ∈ π ∧ J ≤ ↑J' this : ∀ (J : Box ι), ↑J ∈ boxes → ∃ J', J' ∈ π ∧ J ≤ J' ⊢ ofWithBot boxes le_of_mem pairwise_disjoint ≤ π [PROOFSTEP] simpa [ofWithBot, le_def] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint H : ∀ (J : Box ι), J ∈ π → ∃ J', J' ∈ boxes ∧ ↑J ≤ J' ⊢ π ≤ ofWithBot boxes le_of_mem pairwise_disjoint [PROOFSTEP] intro J hJ [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint H : ∀ (J : Box ι), J ∈ π → ∃ J', J' ∈ boxes ∧ ↑J ≤ J' J : Box ι hJ : J ∈ π ⊢ ∃ I', I' ∈ ofWithBot boxes le_of_mem pairwise_disjoint ∧ J ≤ I' [PROOFSTEP] rcases H J hJ with ⟨J', J'mem, hle⟩ [GOAL] case intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint H : ∀ (J : Box ι), J ∈ π → ∃ J', J' ∈ boxes ∧ ↑J ≤ J' J : Box ι hJ : J ∈ π J' : WithBot (Box ι) J'mem : J' ∈ boxes hle : ↑J ≤ J' ⊢ ∃ I', I' ∈ ofWithBot boxes le_of_mem pairwise_disjoint ∧ J ≤ I' [PROOFSTEP] lift J' to Box ι using ne_bot_of_le_ne_bot WithBot.coe_ne_bot hle [GOAL] case intro.intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J boxes : Finset (WithBot (Box ι)) le_of_mem : ∀ (J : WithBot (Box ι)), J ∈ boxes → J ≤ ↑I pairwise_disjoint : Set.Pairwise (↑boxes) Disjoint H : ∀ (J : Box ι), J ∈ π → ∃ J', J' ∈ boxes ∧ ↑J ≤ J' J : Box ι hJ : J ∈ π J' : Box ι J'mem : ↑J' ∈ boxes hle : ↑J ≤ ↑J' ⊢ ∃ I', I' ∈ ofWithBot boxes le_of_mem pairwise_disjoint ∧ J ≤ I' [PROOFSTEP] exact ⟨J', mem_ofWithBot.2 J'mem, WithBot.coe_le_coe.1 hle⟩ [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I J : Box ι J' : WithBot (Box ι) hJ' : J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π.boxes ⊢ J' ≤ ↑J [PROOFSTEP] rcases Finset.mem_image.1 hJ' with ⟨J', -, rfl⟩ [GOAL] case intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I J J' : Box ι hJ' : ↑J ⊓ ↑J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π.boxes ⊢ ↑J ⊓ ↑J' ≤ ↑J [PROOFSTEP] exact inf_le_left [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I J : Box ι ⊢ Set.Pairwise (↑(Finset.image (fun J' => ↑J ⊓ ↑J') π.boxes)) Disjoint [PROOFSTEP] simp only [Set.Pairwise, onFun, Finset.mem_coe, Finset.mem_image] [GOAL] ι : Type u_1 I J✝ J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I J : Box ι ⊢ ∀ ⦃x : WithBot (Box ι)⦄, (∃ a, a ∈ π.boxes ∧ ↑J ⊓ ↑a = x) → ∀ ⦃y : WithBot (Box ι)⦄, (∃ a, a ∈ π.boxes ∧ ↑J ⊓ ↑a = y) → x ≠ y → Disjoint x y [PROOFSTEP] rintro _ ⟨J₁, h₁, rfl⟩ _ ⟨J₂, h₂, rfl⟩ Hne [GOAL] case intro.intro.intro.intro ι : Type u_1 I J✝ J₁✝ J₂✝ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I J J₁ : Box ι h₁ : J₁ ∈ π.boxes J₂ : Box ι h₂ : J₂ ∈ π.boxes Hne : ↑J ⊓ ↑J₁ ≠ ↑J ⊓ ↑J₂ ⊢ Disjoint (↑J ⊓ ↑J₁) (↑J ⊓ ↑J₂) [PROOFSTEP] have : J₁ ≠ J₂ := by rintro rfl exact Hne rfl [GOAL] ι : Type u_1 I J✝ J₁✝ J₂✝ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I J J₁ : Box ι h₁ : J₁ ∈ π.boxes J₂ : Box ι h₂ : J₂ ∈ π.boxes Hne : ↑J ⊓ ↑J₁ ≠ ↑J ⊓ ↑J₂ ⊢ J₁ ≠ J₂ [PROOFSTEP] rintro rfl [GOAL] ι : Type u_1 I J✝ J₁✝ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I J J₁ : Box ι h₁ h₂ : J₁ ∈ π.boxes Hne : ↑J ⊓ ↑J₁ ≠ ↑J ⊓ ↑J₁ ⊢ False [PROOFSTEP] exact Hne rfl [GOAL] case intro.intro.intro.intro ι : Type u_1 I J✝ J₁✝ J₂✝ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I J J₁ : Box ι h₁ : J₁ ∈ π.boxes J₂ : Box ι h₂ : J₂ ∈ π.boxes Hne : ↑J ⊓ ↑J₁ ≠ ↑J ⊓ ↑J₂ this : J₁ ≠ J₂ ⊢ Disjoint (↑J ⊓ ↑J₁) (↑J ⊓ ↑J₂) [PROOFSTEP] exact ((Box.disjoint_coe.2 <| π.disjoint_coe_of_mem h₁ h₂ this).inf_left' _).inf_right' _ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J ⊢ J₁ ∈ restrict π J ↔ ∃ J', J' ∈ π ∧ ↑J₁ = ↑J ⊓ ↑J' [PROOFSTEP] simp [restrict, eq_comm] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J ⊢ J₁ ∈ restrict π J ↔ ∃ J', J' ∈ π ∧ ↑J₁ = ↑J ∩ ↑J' [PROOFSTEP] simp only [mem_restrict, ← Box.withBotCoe_inj, Box.coe_inf, Box.coe_coe] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π₁ π₂ : Prepartition I Hle : π₁ ≤ π₂ ⊢ restrict π₁ J ≤ restrict π₂ J [PROOFSTEP] refine' ofWithBot_mono fun J₁ hJ₁ hne => _ [GOAL] ι : Type u_1 I J J₁✝ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π₁ π₂ : Prepartition I Hle : π₁ ≤ π₂ J₁ : WithBot (Box ι) hJ₁ : J₁ ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π₁.boxes hne : J₁ ≠ ⊥ ⊢ ∃ J', J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π₂.boxes ∧ J₁ ≤ J' [PROOFSTEP] rw [Finset.mem_image] at hJ₁ [GOAL] ι : Type u_1 I J J₁✝ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π₁ π₂ : Prepartition I Hle : π₁ ≤ π₂ J₁ : WithBot (Box ι) hJ₁ : ∃ a, a ∈ π₁.boxes ∧ ↑J ⊓ ↑a = J₁ hne : J₁ ≠ ⊥ ⊢ ∃ J', J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π₂.boxes ∧ J₁ ≤ J' [PROOFSTEP] rcases hJ₁ with ⟨J₁, hJ₁, rfl⟩ [GOAL] case intro.intro ι : Type u_1 I J J₁✝ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π₁ π₂ : Prepartition I Hle : π₁ ≤ π₂ J₁ : Box ι hJ₁ : J₁ ∈ π₁.boxes hne : ↑J ⊓ ↑J₁ ≠ ⊥ ⊢ ∃ J', J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π₂.boxes ∧ ↑J ⊓ ↑J₁ ≤ J' [PROOFSTEP] rcases Hle hJ₁ with ⟨J₂, hJ₂, hle⟩ [GOAL] case intro.intro.intro.intro ι : Type u_1 I J J₁✝ J₂✝ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π₁ π₂ : Prepartition I Hle : π₁ ≤ π₂ J₁ : Box ι hJ₁ : J₁ ∈ π₁.boxes hne : ↑J ⊓ ↑J₁ ≠ ⊥ J₂ : Box ι hJ₂ : J₂ ∈ π₂ hle : J₁ ≤ J₂ ⊢ ∃ J', J' ∈ Finset.image (fun J' => ↑J ⊓ ↑J') π₂.boxes ∧ ↑J ⊓ ↑J₁ ≤ J' [PROOFSTEP] exact ⟨_, Finset.mem_image_of_mem _ hJ₂, inf_le_inf_left _ <| WithBot.coe_le_coe.2 hle⟩ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I h : I ≤ J ⊢ (restrict π J).boxes = π.boxes [PROOFSTEP] simp only [restrict, ofWithBot, eraseNone_eq_biUnion] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I h : I ≤ J ⊢ Finset.biUnion (Finset.image (fun J' => ↑J ⊓ ↑J') π.boxes) Option.toFinset = π.boxes [PROOFSTEP] refine' Finset.image_biUnion.trans _ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I h : I ≤ J ⊢ (Finset.biUnion π.boxes fun a => Option.toFinset (↑J ⊓ ↑a)) = π.boxes [PROOFSTEP] refine' (Finset.biUnion_congr rfl _).trans Finset.biUnion_singleton_eq_self [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I h : I ≤ J ⊢ ∀ (a : Box ι), a ∈ π.boxes → Option.toFinset (↑J ⊓ ↑a) = {a} [PROOFSTEP] intro J' hJ' [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I h : I ≤ J J' : Box ι hJ' : J' ∈ π.boxes ⊢ Option.toFinset (↑J ⊓ ↑J') = {J'} [PROOFSTEP] rw [inf_of_le_right, ← WithBot.some_eq_coe, Option.toFinset_some] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I h : I ≤ J J' : Box ι hJ' : J' ∈ π.boxes ⊢ ↑J' ≤ ↑J [PROOFSTEP] exact WithBot.coe_le_coe.2 ((π.le_of_mem hJ').trans h) [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J ⊢ Prepartition.iUnion (restrict π J) = ↑J ∩ Prepartition.iUnion π [PROOFSTEP] simp [restrict, ← inter_iUnion, ← iUnion_def] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J hJ : J ∈ π ⊢ restrict (biUnion π πi) J = πi J [PROOFSTEP] refine' (eq_of_boxes_subset_iUnion_superset (fun J₁ h₁ => _) _).symm [GOAL] case refine'_1 ι : Type u_1 I J J₁✝ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J hJ : J ∈ π J₁ : Box ι h₁ : J₁ ∈ (πi J).boxes ⊢ J₁ ∈ (restrict (biUnion π πi) J).boxes [PROOFSTEP] refine' (mem_restrict _).2 ⟨J₁, π.mem_biUnion.2 ⟨J, hJ, h₁⟩, (inf_of_le_right _).symm⟩ [GOAL] case refine'_1 ι : Type u_1 I J J₁✝ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J hJ : J ∈ π J₁ : Box ι h₁ : J₁ ∈ (πi J).boxes ⊢ ↑J₁ ≤ ↑J [PROOFSTEP] exact WithBot.coe_le_coe.2 (le_of_mem _ h₁) [GOAL] case refine'_2 ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J hJ : J ∈ π ⊢ Prepartition.iUnion (restrict (biUnion π πi) J) ⊆ Prepartition.iUnion (πi J) [PROOFSTEP] simp only [iUnion_restrict, iUnion_biUnion, Set.subset_def, Set.mem_inter_iff, Set.mem_iUnion] [GOAL] case refine'_2 ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J hJ : J ∈ π ⊢ ∀ (x : ι → ℝ), (x ∈ ↑J ∧ ∃ i i_1, x ∈ Prepartition.iUnion (πi i)) → x ∈ Prepartition.iUnion (πi J) [PROOFSTEP] rintro x ⟨hxJ, J₁, h₁, hx⟩ [GOAL] case refine'_2.intro.intro.intro ι : Type u_1 I J J₁✝ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J hJ : J ∈ π x : ι → ℝ hxJ : x ∈ ↑J J₁ : Box ι h₁ : J₁ ∈ π hx : x ∈ Prepartition.iUnion (πi J₁) ⊢ x ∈ Prepartition.iUnion (πi J) [PROOFSTEP] obtain rfl : J = J₁ [GOAL] ι : Type u_1 I J J₁✝ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J hJ : J ∈ π x : ι → ℝ hxJ : x ∈ ↑J J₁ : Box ι h₁ : J₁ ∈ π hx : x ∈ Prepartition.iUnion (πi J₁) ⊢ J = J₁ case refine'_2.intro.intro.intro ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J hJ : J ∈ π x : ι → ℝ hxJ : x ∈ ↑J h₁ : J ∈ π hx : x ∈ Prepartition.iUnion (πi J) ⊢ x ∈ Prepartition.iUnion (πi J) [PROOFSTEP] exact π.eq_of_mem_of_mem hJ h₁ hxJ (iUnion_subset _ hx) [GOAL] case refine'_2.intro.intro.intro ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x✝ : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J hJ : J ∈ π x : ι → ℝ hxJ : x ∈ ↑J h₁ : J ∈ π hx : x ∈ Prepartition.iUnion (πi J) ⊢ x ∈ Prepartition.iUnion (πi J) [PROOFSTEP] exact hx [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I ⊢ biUnion π πi ≤ π' ↔ ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I ⊢ biUnion π πi ≤ π' → ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J [PROOFSTEP] intro H J hJ [GOAL] case mpr ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I ⊢ (∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J) → biUnion π πi ≤ π' [PROOFSTEP] intro H J hJ [GOAL] case mp ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : biUnion π πi ≤ π' J : Box ι hJ : J ∈ π ⊢ πi J ≤ restrict π' J [PROOFSTEP] rw [← π.restrict_biUnion πi hJ] [GOAL] case mp ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : biUnion π πi ≤ π' J : Box ι hJ : J ∈ π ⊢ restrict (biUnion π πi) J ≤ restrict π' J [PROOFSTEP] exact restrict_mono H [GOAL] case mpr ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J J : Box ι hJ : J ∈ biUnion π πi ⊢ ∃ I', I' ∈ π' ∧ J ≤ I' [PROOFSTEP] rw [mem_biUnion] at hJ [GOAL] case mpr ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J J : Box ι hJ : ∃ J', J' ∈ π ∧ J ∈ πi J' ⊢ ∃ I', I' ∈ π' ∧ J ≤ I' [PROOFSTEP] rcases hJ with ⟨J₁, h₁, hJ⟩ [GOAL] case mpr.intro.intro ι : Type u_1 I J✝ J₁✝ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J J J₁ : Box ι h₁ : J₁ ∈ π hJ : J ∈ πi J₁ ⊢ ∃ I', I' ∈ π' ∧ J ≤ I' [PROOFSTEP] rcases H J₁ h₁ hJ with ⟨J₂, h₂, Hle⟩ [GOAL] case mpr.intro.intro.intro.intro ι : Type u_1 I J✝ J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J J J₁ : Box ι h₁ : J₁ ∈ π hJ : J ∈ πi J₁ J₂ : Box ι h₂ : J₂ ∈ restrict π' J₁ Hle : J ≤ J₂ ⊢ ∃ I', I' ∈ π' ∧ J ≤ I' [PROOFSTEP] rcases π'.mem_restrict.mp h₂ with ⟨J₃, h₃, H⟩ [GOAL] case mpr.intro.intro.intro.intro.intro.intro ι : Type u_1 I J✝ J₁✝ J₂✝ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H✝ : ∀ (J : Box ι), J ∈ π → πi J ≤ restrict π' J J J₁ : Box ι h₁ : J₁ ∈ π hJ : J ∈ πi J₁ J₂ : Box ι h₂ : J₂ ∈ restrict π' J₁ Hle : J ≤ J₂ J₃ : Box ι h₃ : J₃ ∈ π' H : ↑J₂ = ↑J₁ ⊓ ↑J₃ ⊢ ∃ I', I' ∈ π' ∧ J ≤ I' [PROOFSTEP] exact ⟨J₃, h₃, Hle.trans <| WithBot.coe_le_coe.1 <| H.trans_le inf_le_right⟩ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I ⊢ π' ≤ biUnion π πi ↔ π' ≤ π ∧ ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J [PROOFSTEP] refine' ⟨fun H => ⟨H.trans (π.biUnion_le πi), fun J hJ => _⟩, _⟩ [GOAL] case refine'_1 ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : π' ≤ biUnion π πi J : Box ι hJ : J ∈ π ⊢ restrict π' J ≤ πi J [PROOFSTEP] rw [← π.restrict_biUnion πi hJ] [GOAL] case refine'_1 ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : π' ≤ biUnion π πi J : Box ι hJ : J ∈ π ⊢ restrict π' J ≤ restrict (biUnion π πi) J [PROOFSTEP] exact restrict_mono H [GOAL] case refine'_2 ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I ⊢ (π' ≤ π ∧ ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J) → π' ≤ biUnion π πi [PROOFSTEP] rintro ⟨H, Hi⟩ J' hJ' [GOAL] case refine'_2.intro ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : π' ≤ π Hi : ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J J' : Box ι hJ' : J' ∈ π' ⊢ ∃ I', I' ∈ biUnion π πi ∧ J' ≤ I' [PROOFSTEP] rcases H hJ' with ⟨J, hJ, hle⟩ [GOAL] case refine'_2.intro.intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : π' ≤ π Hi : ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J J' : Box ι hJ' : J' ∈ π' J : Box ι hJ : J ∈ π hle : J' ≤ J ⊢ ∃ I', I' ∈ biUnion π πi ∧ J' ≤ I' [PROOFSTEP] have : J' ∈ π'.restrict J := π'.mem_restrict.2 ⟨J', hJ', (inf_of_le_right <| WithBot.coe_le_coe.2 hle).symm⟩ [GOAL] case refine'_2.intro.intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : π' ≤ π Hi : ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J J' : Box ι hJ' : J' ∈ π' J : Box ι hJ : J ∈ π hle : J' ≤ J this : J' ∈ restrict π' J ⊢ ∃ I', I' ∈ biUnion π πi ∧ J' ≤ I' [PROOFSTEP] rcases Hi J hJ this with ⟨Ji, hJi, hlei⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi✝ πi₁ πi₂ πi : (J : Box ι) → Prepartition J π' : Prepartition I H : π' ≤ π Hi : ∀ (J : Box ι), J ∈ π → restrict π' J ≤ πi J J' : Box ι hJ' : J' ∈ π' J : Box ι hJ : J ∈ π hle : J' ≤ J this : J' ∈ restrict π' J Ji : Box ι hJi : Ji ∈ πi J hlei : J' ≤ Ji ⊢ ∃ I', I' ∈ biUnion π πi ∧ J' ≤ I' [PROOFSTEP] exact ⟨Ji, π.mem_biUnion.2 ⟨J, hJ, hJi⟩, hlei⟩ [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π₁ π₂ : Prepartition I ⊢ J ∈ π₁ ⊓ π₂ ↔ ∃ J₁, J₁ ∈ π₁ ∧ ∃ J₂, J₂ ∈ π₂ ∧ ↑J = ↑J₁ ⊓ ↑J₂ [PROOFSTEP] simp only [inf_def, mem_biUnion, mem_restrict] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π₁ π₂ : Prepartition I ⊢ Prepartition.iUnion (π₁ ⊓ π₂) = Prepartition.iUnion π₁ ∩ Prepartition.iUnion π₂ [PROOFSTEP] simp only [inf_def, iUnion_biUnion, iUnion_restrict, ← iUnion_inter, ← iUnion_def] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J p : Box ι → Prop hp : ∀ (J : Box ι), J ∈ π → p J ⊢ filter π p = π [PROOFSTEP] ext J [GOAL] case h ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J p : Box ι → Prop hp : ∀ (J : Box ι), J ∈ π → p J J : Box ι ⊢ J ∈ filter π p ↔ J ∈ π [PROOFSTEP] simpa using hp J [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I p : Box ι → Prop ⊢ Prepartition.iUnion (filter π fun J => ¬p J) = Prepartition.iUnion π \ Prepartition.iUnion (filter π p) [PROOFSTEP] simp only [Prepartition.iUnion] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I p : Box ι → Prop ⊢ ⋃ (J : Box ι) (_ : J ∈ filter π fun J => ¬p J), ↑J = (⋃ (J : Box ι) (_ : J ∈ π), ↑J) \ ⋃ (J : Box ι) (_ : J ∈ filter π p), ↑J [PROOFSTEP] convert (@Set.biUnion_diff_biUnion_eq _ (Box ι) π.boxes (π.filter p).boxes (↑) _).symm [GOAL] case h.e'_2.h.e'_3.h.pq.a.a ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I p : Box ι → Prop x✝ : Box ι ⊢ (x✝ ∈ filter π fun J => ¬p J) ↔ x✝ ∈ ↑π.boxes \ ↑(filter π p).boxes [PROOFSTEP] simp (config := { contextual := true }) [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I p : Box ι → Prop ⊢ PairwiseDisjoint (↑π.boxes ∪ ↑(filter π p).boxes) Box.toSet [PROOFSTEP] rw [Set.PairwiseDisjoint] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I p : Box ι → Prop ⊢ Set.Pairwise (↑π.boxes ∪ ↑(filter π p).boxes) (Disjoint on Box.toSet) [PROOFSTEP] convert π.pairwiseDisjoint [GOAL] case h.e'_2 ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I p : Box ι → Prop ⊢ ↑π.boxes ∪ ↑(filter π p).boxes = ↑π.boxes [PROOFSTEP] rw [Set.union_eq_left_iff_subset, filter_boxes, coe_filter] [GOAL] case h.e'_2 ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I p : Box ι → Prop ⊢ {x | x ∈ π.boxes ∧ p x} ⊆ ↑π.boxes [PROOFSTEP] exact fun _ ⟨h, _⟩ => h [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J α : Type u_2 M : Type u_3 inst✝ : AddCommMonoid M π : Prepartition I f : Box ι → α g : Box ι → M ⊢ ∑ y in Finset.image f π.boxes, ∑ J in (filter π fun J => f J = y).boxes, g J = ∑ J in π.boxes, g J [PROOFSTEP] convert sum_fiberwise_of_maps_to (fun _ => Finset.mem_image_of_mem f) g [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁✝ π₂✝ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π₁ π₂ : Prepartition I h : Disjoint (Prepartition.iUnion π₁) (Prepartition.iUnion π₂) this : ∀ (J₁ : Box ι), J₁ ∈ π₁ → ∀ (J₂ : Box ι), J₂ ∈ π₂ → J₁ ≠ J₂ → Disjoint ↑J₁ ↑J₂ ⊢ Set.Pairwise (↑(π₁.boxes ∪ π₂.boxes)) (Disjoint on Box.toSet) [PROOFSTEP] simpa [pairwise_union_of_symmetric (symmetric_disjoint.comap _), pairwiseDisjoint] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J h : Disjoint (Prepartition.iUnion π₁) (Prepartition.iUnion π₂) ⊢ Prepartition.iUnion (disjUnion π₁ π₂ h) = Prepartition.iUnion π₁ ∪ Prepartition.iUnion π₂ [PROOFSTEP] simp [disjUnion, Prepartition.iUnion, iUnion_or, iUnion_union_distrib] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π✝ π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J π : Prepartition I ⊢ IsPartition π ↔ Prepartition.iUnion π = ↑I [PROOFSTEP] simp_rw [IsPartition, Set.Subset.antisymm_iff, π.iUnion_subset, true_and_iff, Set.subset_def, mem_iUnion, Box.mem_coe] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J h : J ≤ I ⊢ IsPartition (single I J h) ↔ J = I [PROOFSTEP] simp [isPartition_iff_iUnion_eq] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J h : IsPartition π hx : x ∈ I ⊢ ∃! J x_1, x ∈ J [PROOFSTEP] rcases h x hx with ⟨J, h, hx⟩ [GOAL] case intro.intro ι : Type u_1 I J✝ J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J h✝ : IsPartition π hx✝ : x ∈ I J : Box ι h : J ∈ π hx : x ∈ J ⊢ ∃! J x_1, x ∈ J [PROOFSTEP] exact ExistsUnique.intro₂ J h hx fun J' h' hx' => π.eq_of_mem_of_mem h' h hx' hx [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J h : IsPartition π hJ : J ≤ I ⊢ Prepartition.iUnion (restrict π J) = ↑J [PROOFSTEP] simp [h.iUnion_eq, hJ] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J h₁ : IsPartition π₁ h₂ : IsPartition π₂ ⊢ Prepartition.iUnion (π₁ ⊓ π₂) = ↑I [PROOFSTEP] simp [h₁.iUnion_eq, h₂.iUnion_eq] [GOAL] ι : Type u_1 I J J₁ J₂ : Box ι π π₁ π₂ : Prepartition I x : ι → ℝ πi πi₁ πi₂ : (J : Box ι) → Prepartition J h : Prepartition.iUnion π₂ = ↑I \ Prepartition.iUnion π₁ ⊢ Prepartition.iUnion π₁ ∪ Prepartition.iUnion π₂ = ↑I [PROOFSTEP] simp [h, π₁.iUnion_subset]
{"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Partition.Basic", "llama_tokens": 32436}
{"mathlib_filename": "Mathlib.Control.ULift", "llama_tokens": 0}
[GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ ⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) m = 𝓕 ↑f ↑m [PROOFSTEP] let e : C(ℝ, ℂ) := (fourier (-m)).comp ⟨((↑) : ℝ → UnitAddCircle), continuous_quotient_mk'⟩ [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) ⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) m = 𝓕 ↑f ↑m [PROOFSTEP] have neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖(e * g).restrict K‖ = ‖g.restrict K‖ := by have : ∀ x : ℝ, ‖e x‖ = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m • x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) ⊢ ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ [PROOFSTEP] have : ∀ x : ℝ, ‖e x‖ = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m • x)) [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) this : ∀ (x : ℝ), ‖↑e x‖ = 1 ⊢ ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ [PROOFSTEP] intro K g [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) this : ∀ (x : ℝ), ‖↑e x‖ = 1 K : Compacts ℝ g : C(ℝ, ℂ) ⊢ ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ [PROOFSTEP] simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ ⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) m = 𝓕 ↑f ↑m [PROOFSTEP] have eadd : ∀ (n : ℤ), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ ⊢ ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e [PROOFSTEP] intro n [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ n : ℤ ⊢ ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e [PROOFSTEP] ext1 x [GOAL] case h f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ n : ℤ x : ℝ ⊢ ↑(ContinuousMap.comp e (ContinuousMap.addRight ↑n)) x = ↑e x [PROOFSTEP] have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) [GOAL] case h f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ n : ℤ x : ℝ this : Periodic (↑e) 1 ⊢ ↑(ContinuousMap.comp e (ContinuousMap.addRight ↑n)) x = ↑e x [PROOFSTEP] simpa only [mul_one] using this.int_mul n x [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) m = 𝓕 ↑f ↑m [PROOFSTEP] calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (∑' n : ℤ, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, ℂ) evaluated at x into pointwise sum of values. _ = ∫ x in (0 : ℝ)..1, ∑' n : ℤ, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = ∑' n : ℤ, ∫ x in (0 : ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = ∑' n : ℤ, ∫ x in (0 : ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊢ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊢ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) m = ∫ (x : ℝ) in 0 ..1, ↑e x * ↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x [PROOFSTEP] simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, ℂ) evaluated at x into pointwise sum of values. [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ ∫ (x : ℝ) in 0 ..1, ↑e x * ↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x = ∫ (x : ℝ) in 0 ..1, ∑' (n : ℤ), ↑(e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x [PROOFSTEP] simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ ∫ (x : ℝ) in 0 ..1, ∑' (n : ℤ), ↑(e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x = ∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, ↑(e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x [PROOFSTEP] refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ Summable fun i => ‖ContinuousMap.restrict (↑{ carrier := uIcc 0 1, isCompact' := (_ : IsCompact (uIcc 0 1)) }) (e * ContinuousMap.comp f (ContinuousMap.addRight ↑i))‖ [PROOFSTEP] convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 [GOAL] case h.e'_5 f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ (fun i => ‖ContinuousMap.restrict (↑{ carrier := uIcc 0 1, isCompact' := (_ : IsCompact (uIcc 0 1)) }) (e * ContinuousMap.comp f (ContinuousMap.addRight ↑i))‖) = fun n => ‖ContinuousMap.restrict (↑{ carrier := uIcc 0 1, isCompact' := (_ : IsCompact (uIcc 0 1)) }) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ [PROOFSTEP] exact funext fun n => neK _ _ [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ ∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, ↑(e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x = ∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, ↑(ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n)) x [PROOFSTEP] simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊢ [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)) (ContinuousMap.addRight ↑n) = ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) ⊢ ∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, ↑(ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x = ∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, ↑(ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)) (ContinuousMap.addRight ↑n) * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x [PROOFSTEP] simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ ∑' (n : ℤ), ∫ (x : ℝ) in 0 ..1, ↑(ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n)) x = ∫ (x : ℝ), ↑e x * ↑f x [PROOFSTEP] suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ Integrable ↑(e * f) [PROOFSTEP] apply integrable_of_summable_norm_Icc [GOAL] case hf f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n))‖ [PROOFSTEP] convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 [GOAL] case h.e'_5 f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ (fun n => ‖ContinuousMap.restrict (Icc 0 1) (ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n))‖) = fun n => ‖ContinuousMap.restrict (↑{ carrier := Icc 0 1, isCompact' := (_ : IsCompact (Icc 0 1)) }) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ [PROOFSTEP] simp_rw [mul_comp] at eadd ⊢ [GOAL] case h.e'_5 f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)) (ContinuousMap.addRight ↑n) = ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) ⊢ (fun n => ‖ContinuousMap.restrict (Icc 0 1) (ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)) (ContinuousMap.addRight ↑n) * ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖) = fun n => ‖ContinuousMap.restrict (↑{ carrier := Icc 0 1, isCompact' := (_ : IsCompact (Icc 0 1)) }) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ [PROOFSTEP] simp_rw [eadd] [GOAL] case h.e'_5 f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)) (ContinuousMap.addRight ↑n) = ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) ⊢ (fun n => ‖ContinuousMap.restrict (Icc 0 1) (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) * ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖) = fun n => ‖ContinuousMap.restrict (↑{ carrier := Icc 0 1, isCompact' := (_ : IsCompact (Icc 0 1)) }) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ [PROOFSTEP] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ ∫ (x : ℝ), ↑e x * ↑f x = 𝓕 ↑f ↑m [PROOFSTEP] rw [fourierIntegral_eq_integral_exp_smul] [GOAL] f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊢ ∫ (x : ℝ), ↑e x * ↑f x = ∫ (v : ℝ), Complex.exp (↑(-2 * π * v * ↑m) * I) • ↑f v [PROOFSTEP] congr 1 with x : 1 [GOAL] case e_f.h f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e x : ℝ ⊢ ↑e x * ↑f x = Complex.exp (↑(-2 * π * x * ↑m) * I) • ↑f x [PROOFSTEP] rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] [GOAL] case e_f.h f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e x : ℝ ⊢ Complex.exp (2 * ↑π * I * ↑(-m) * ↑x / ↑1) * ↑f x = Complex.exp (↑(-2 * π * x * ↑m) * I) * ↑f x [PROOFSTEP] congr 2 [GOAL] case e_f.h.e_a.e_z f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e x : ℝ ⊢ 2 * ↑π * I * ↑(-m) * ↑x / ↑1 = ↑(-2 * π * x * ↑m) * I [PROOFSTEP] push_cast [GOAL] case e_f.h.e_a.e_z f : C(ℝ, ℂ) hf : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ m : ℤ e : C(ℝ, ℂ) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : ∀ (K : Compacts ℝ) (g : C(ℝ, ℂ)), ‖ContinuousMap.restrict (↑K) (e * g)‖ = ‖ContinuousMap.restrict (↑K) g‖ eadd : ∀ (n : ℤ), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e x : ℝ ⊢ 2 * ↑π * I * -↑m * ↑x / 1 = -2 * ↑π * ↑x * ↑m * I [PROOFSTEP] ring [GOAL] f : C(ℝ, ℂ) h_norm : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ h_sum : Summable fun n => 𝓕 ↑f ↑n ⊢ ∑' (n : ℤ), ↑f ↑n = ∑' (n : ℤ), 𝓕 ↑f ↑n [PROOFSTEP] let F : C(UnitAddCircle, ℂ) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ [GOAL] f : C(ℝ, ℂ) h_norm : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ h_sum : Summable fun n => 𝓕 ↑f ↑n F : C(UnitAddCircle, ℂ) := ContinuousMap.mk (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) ⊢ ∑' (n : ℤ), ↑f ↑n = ∑' (n : ℤ), 𝓕 ↑f ↑n [PROOFSTEP] have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ [GOAL] f : C(ℝ, ℂ) h_norm : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ h_sum : Summable fun n => 𝓕 ↑f ↑n F : C(UnitAddCircle, ℂ) := ContinuousMap.mk (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) ⊢ Summable (fourierCoeff ↑F) [PROOFSTEP] convert h_sum [GOAL] case h.e'_5.h f : C(ℝ, ℂ) h_norm : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ h_sum : Summable fun n => 𝓕 ↑f ↑n F : C(UnitAddCircle, ℂ) := ContinuousMap.mk (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) x✝ : ℤ ⊢ fourierCoeff (↑F) x✝ = 𝓕 ↑f ↑x✝ [PROOFSTEP] exact Real.fourierCoeff_tsum_comp_add h_norm _ [GOAL] f : C(ℝ, ℂ) h_norm : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ h_sum : Summable fun n => 𝓕 ↑f ↑n F : C(UnitAddCircle, ℂ) := ContinuousMap.mk (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) this : Summable (fourierCoeff ↑F) ⊢ ∑' (n : ℤ), ↑f ↑n = ∑' (n : ℤ), 𝓕 ↑f ↑n [PROOFSTEP] convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 [GOAL] case h.e'_2 f : C(ℝ, ℂ) h_norm : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ h_sum : Summable fun n => 𝓕 ↑f ↑n F : C(UnitAddCircle, ℂ) := ContinuousMap.mk (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) this : Summable (fourierCoeff ↑F) ⊢ ∑' (n : ℤ), ↑f ↑n = ↑F 0 [PROOFSTEP] have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq [GOAL] case h.e'_2 f : C(ℝ, ℂ) h_norm : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ h_sum : Summable fun n => 𝓕 ↑f ↑n F : C(UnitAddCircle, ℂ) := ContinuousMap.mk (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) this✝ : Summable (fourierCoeff ↑F) this : ∑' (b : ℤ), ↑(ContinuousMap.comp f (ContinuousMap.addRight ↑b)) 0 = ↑(∑' (b : ℤ), ContinuousMap.comp f (ContinuousMap.addRight ↑b)) 0 ⊢ ∑' (n : ℤ), ↑f ↑n = ↑F 0 [PROOFSTEP] simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this [GOAL] case h.e'_3 f : C(ℝ, ℂ) h_norm : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ h_sum : Summable fun n => 𝓕 ↑f ↑n F : C(UnitAddCircle, ℂ) := ContinuousMap.mk (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) this : Summable (fourierCoeff ↑F) ⊢ ∑' (n : ℤ), 𝓕 ↑f ↑n = ∑' (b : ℤ), fourierCoeff (↑F) b • ↑(fourier b) 0 [PROOFSTEP] congr 1 with n : 1 [GOAL] case h.e'_3.e_f.h f : C(ℝ, ℂ) h_norm : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ h_sum : Summable fun n => 𝓕 ↑f ↑n F : C(UnitAddCircle, ℂ) := ContinuousMap.mk (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) this : Summable (fourierCoeff ↑F) n : ℤ ⊢ 𝓕 ↑f ↑n = fourierCoeff (↑F) n • ↑(fourier n) 0 [PROOFSTEP] rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] [GOAL] case h.e'_3.e_f.h f : C(ℝ, ℂ) h_norm : ∀ (K : Compacts ℝ), Summable fun n => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))‖ h_sum : Summable fun n => 𝓕 ↑f ↑n F : C(UnitAddCircle, ℂ) := ContinuousMap.mk (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) this : Summable (fourierCoeff ↑F) n : ℤ ⊢ fourierCoeff (Periodic.lift (_ : Periodic (↑(∑' (n : ℤ), ContinuousMap.comp f (ContinuousMap.addRight (n • 1)))) 1)) n = fourierCoeff (↑F) n [PROOFSTEP] rfl [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ ⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atTop] fun x => |x| ^ (-b) [PROOFSTEP] have claim : ∀ x : ℝ, max 0 (-2 * R) < x → ∀ y : ℝ, x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | h) · exact add_pos_of_pos_of_nonneg hx.1 h · rw [← sub_lt_iff_lt_add, zero_sub] refine' lt_trans _ hx.2 rwa [neg_mul, neg_lt_neg_iff, two_mul, add_lt_iff_neg_left] have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≤ (x + R) ^ (-b) := by rw [rpow_neg hy'.le, rpow_neg hxR.le, inv_le_inv (rpow_pos_of_pos hy' _) (rpow_pos_of_pos hxR _)] exact rpow_le_rpow hxR.le hy hb.le refine' this.trans _ rw [← mul_rpow one_half_pos.le hx.1.le, rpow_neg (mul_pos one_half_pos hx.1).le, rpow_neg hxR.le] refine' inv_le_inv_of_le (rpow_pos_of_pos (mul_pos one_half_pos hx.1) _) _ exact rpow_le_rpow (mul_pos one_half_pos hx.1).le (by linarith) hb.le [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ ⊢ ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) [PROOFSTEP] intro x hx y hy [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : max 0 (-2 * R) < x y : ℝ hy : x + R ≤ y ⊢ y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) [PROOFSTEP] rw [max_lt_iff] at hx [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y ⊢ y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) [PROOFSTEP] have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | h) · exact add_pos_of_pos_of_nonneg hx.1 h · rw [← sub_lt_iff_lt_add, zero_sub] refine' lt_trans _ hx.2 rwa [neg_mul, neg_lt_neg_iff, two_mul, add_lt_iff_neg_left] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y ⊢ 0 < x + R [PROOFSTEP] rcases le_or_lt 0 R with (h | h) [GOAL] case inl E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y h : 0 ≤ R ⊢ 0 < x + R [PROOFSTEP] exact add_pos_of_pos_of_nonneg hx.1 h [GOAL] case inr E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y h : R < 0 ⊢ 0 < x + R [PROOFSTEP] rw [← sub_lt_iff_lt_add, zero_sub] [GOAL] case inr E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y h : R < 0 ⊢ -R < x [PROOFSTEP] refine' lt_trans _ hx.2 [GOAL] case inr E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y h : R < 0 ⊢ -R < -2 * R [PROOFSTEP] rwa [neg_mul, neg_lt_neg_iff, two_mul, add_lt_iff_neg_left] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y hxR : 0 < x + R ⊢ y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) [PROOFSTEP] have hy' : 0 < y := hxR.trans_le hy [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y hxR : 0 < x + R hy' : 0 < y ⊢ y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) [PROOFSTEP] have : y ^ (-b) ≤ (x + R) ^ (-b) := by rw [rpow_neg hy'.le, rpow_neg hxR.le, inv_le_inv (rpow_pos_of_pos hy' _) (rpow_pos_of_pos hxR _)] exact rpow_le_rpow hxR.le hy hb.le [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y hxR : 0 < x + R hy' : 0 < y ⊢ y ^ (-b) ≤ (x + R) ^ (-b) [PROOFSTEP] rw [rpow_neg hy'.le, rpow_neg hxR.le, inv_le_inv (rpow_pos_of_pos hy' _) (rpow_pos_of_pos hxR _)] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y hxR : 0 < x + R hy' : 0 < y ⊢ (x + R) ^ b ≤ y ^ b [PROOFSTEP] exact rpow_le_rpow hxR.le hy hb.le [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y hxR : 0 < x + R hy' : 0 < y this : y ^ (-b) ≤ (x + R) ^ (-b) ⊢ y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) [PROOFSTEP] refine' this.trans _ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y hxR : 0 < x + R hy' : 0 < y this : y ^ (-b) ≤ (x + R) ^ (-b) ⊢ (x + R) ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) [PROOFSTEP] rw [← mul_rpow one_half_pos.le hx.1.le, rpow_neg (mul_pos one_half_pos hx.1).le, rpow_neg hxR.le] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y hxR : 0 < x + R hy' : 0 < y this : y ^ (-b) ≤ (x + R) ^ (-b) ⊢ ((x + R) ^ b)⁻¹ ≤ ((1 / 2 * x) ^ b)⁻¹ [PROOFSTEP] refine' inv_le_inv_of_le (rpow_pos_of_pos (mul_pos one_half_pos hx.1) _) _ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y hxR : 0 < x + R hy' : 0 < y this : y ^ (-b) ≤ (x + R) ^ (-b) ⊢ (1 / 2 * x) ^ b ≤ (x + R) ^ b [PROOFSTEP] exact rpow_le_rpow (mul_pos one_half_pos hx.1).le (by linarith) hb.le [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≤ y hxR : 0 < x + R hy' : 0 < y this : y ^ (-b) ≤ (x + R) ^ (-b) ⊢ 1 / 2 * x ≤ x + R [PROOFSTEP] linarith [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) ⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atTop] fun x => |x| ^ (-b) [PROOFSTEP] obtain ⟨c, hc, hc'⟩ := hf.exists_pos [GOAL] case intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c hc' : IsBigOWith c atTop ↑f fun x => |x| ^ (-b) ⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atTop] fun x => |x| ^ (-b) [PROOFSTEP] simp only [IsBigO, IsBigOWith, eventually_atTop] at hc' ⊢ [GOAL] case intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c hc' : ∃ a, ∀ (b_1 : ℝ), b_1 ≥ a → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ ⊢ ∃ c a, ∀ (b_1 : ℝ), b_1 ≥ a → ‖‖ContinuousMap.restrict (Icc (b_1 + R) (b_1 + S)) f‖‖ ≤ c * ‖|b_1| ^ (-b)‖ [PROOFSTEP] obtain ⟨d, hd⟩ := hc' [GOAL] case intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ ⊢ ∃ c a, ∀ (b_1 : ℝ), b_1 ≥ a → ‖‖ContinuousMap.restrict (Icc (b_1 + R) (b_1 + S)) f‖‖ ≤ c * ‖|b_1| ^ (-b)‖ [PROOFSTEP] refine' ⟨c * (1 / 2) ^ (-b), ⟨max (1 + max 0 (-2 * R)) (d - R), fun x hx => _⟩⟩ [GOAL] case intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : x ≥ max (1 + max 0 (-2 * R)) (d - R) ⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖ [PROOFSTEP] rw [ge_iff_le, max_le_iff] at hx [GOAL] case intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x ⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖ [PROOFSTEP] have hx' : max 0 (-2 * R) < x := by linarith [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x ⊢ max 0 (-2 * R) < x [PROOFSTEP] linarith [GOAL] case intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : max 0 (-2 * R) < x ⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖ [PROOFSTEP] rw [max_lt_iff] at hx' [GOAL] case intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : 0 < x ∧ -2 * R < x ⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖ [PROOFSTEP] rw [norm_norm, ContinuousMap.norm_le _ (mul_nonneg (mul_nonneg hc.le <| rpow_nonneg_of_nonneg one_half_pos.le _) (norm_nonneg _))] [GOAL] case intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : 0 < x ∧ -2 * R < x ⊢ ∀ (x_1 : ↑(Icc (x + R) (x + S))), ‖↑(ContinuousMap.restrict (Icc (x + R) (x + S)) f) x_1‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖ [PROOFSTEP] refine' fun y => (hd y.1 (by linarith [hx.1, y.2.1])).trans _ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : 0 < x ∧ -2 * R < x y : ↑(Icc (x + R) (x + S)) ⊢ ↑y ≥ d [PROOFSTEP] linarith [hx.1, y.2.1] [GOAL] case intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : 0 < x ∧ -2 * R < x y : ↑(Icc (x + R) (x + S)) ⊢ c * ‖|↑y| ^ (-b)‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖ [PROOFSTEP] have A : ∀ x : ℝ, 0 ≤ |x| ^ (-b) := fun x => by positivity [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x✝ : ℝ hx : 1 + max 0 (-2 * R) ≤ x✝ ∧ d - R ≤ x✝ hx' : 0 < x✝ ∧ -2 * R < x✝ y : ↑(Icc (x✝ + R) (x✝ + S)) x : ℝ ⊢ 0 ≤ |x| ^ (-b) [PROOFSTEP] positivity [GOAL] case intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : 0 < x ∧ -2 * R < x y : ↑(Icc (x + R) (x + S)) A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b) ⊢ c * ‖|↑y| ^ (-b)‖ ≤ c * (1 / 2) ^ (-b) * ‖|x| ^ (-b)‖ [PROOFSTEP] rw [mul_assoc, mul_le_mul_left hc, norm_of_nonneg (A _), norm_of_nonneg (A _)] [GOAL] case intro.intro.intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : 0 < x ∧ -2 * R < x y : ↑(Icc (x + R) (x + S)) A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b) ⊢ |↑y| ^ (-b) ≤ (1 / 2) ^ (-b) * |x| ^ (-b) [PROOFSTEP] convert claim x (by linarith only [hx.1]) y.1 y.2.1 [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : 0 < x ∧ -2 * R < x y : ↑(Icc (x + R) (x + S)) A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b) ⊢ max 0 (-2 * R) < x [PROOFSTEP] linarith only [hx.1] [GOAL] case h.e'_3.h.e'_5 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : 0 < x ∧ -2 * R < x y : ↑(Icc (x + R) (x + S)) A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b) ⊢ |↑y| = ↑y [PROOFSTEP] apply abs_of_nonneg [GOAL] case h.e'_3.h.e'_5.h E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : 0 < x ∧ -2 * R < x y : ↑(Icc (x + R) (x + S)) A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b) ⊢ 0 ≤ ↑y [PROOFSTEP] linarith [y.2.1] [GOAL] case h.e'_4.h.e'_6.h.e'_5 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ claim : ∀ (x : ℝ), max 0 (-2 * R) < x → ∀ (y : ℝ), x + R ≤ y → y ^ (-b) ≤ (1 / 2) ^ (-b) * x ^ (-b) c : ℝ hc : 0 < c d : ℝ hd : ∀ (b_1 : ℝ), b_1 ≥ d → ‖↑f b_1‖ ≤ c * ‖|b_1| ^ (-b)‖ x : ℝ hx : 1 + max 0 (-2 * R) ≤ x ∧ d - R ≤ x hx' : 0 < x ∧ -2 * R < x y : ↑(Icc (x + R) (x + S)) A : ∀ (x : ℝ), 0 ≤ |x| ^ (-b) ⊢ |x| = x [PROOFSTEP] exact abs_of_pos hx'.1 [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ ⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b) [PROOFSTEP] have h1 : IsBigO atTop (f.comp (ContinuousMap.mk _ continuous_neg)) fun x : ℝ => |x| ^ (-b) := by convert hf.comp_tendsto tendsto_neg_atTop_atBot using 1 ext1 x; simp only [Function.comp_apply, abs_neg] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ ⊢ ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) [PROOFSTEP] convert hf.comp_tendsto tendsto_neg_atTop_atBot using 1 [GOAL] case h.e'_8 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ ⊢ (fun x => |x| ^ (-b)) = (fun x => |x| ^ (-b)) ∘ Neg.neg [PROOFSTEP] ext1 x [GOAL] case h.e'_8.h E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S x : ℝ ⊢ |x| ^ (-b) = ((fun x => |x| ^ (-b)) ∘ Neg.neg) x [PROOFSTEP] simp only [Function.comp_apply, abs_neg] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) ⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b) [PROOFSTEP] have h2 := (isBigO_norm_Icc_restrict_atTop hb h1 (-S) (-R)).comp_tendsto tendsto_neg_atBot_atTop [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] ((fun x => |x| ^ (-b)) ∘ Neg.neg) ⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b) [PROOFSTEP] have : (fun x : ℝ => |x| ^ (-b)) ∘ Neg.neg = fun x : ℝ => |x| ^ (-b) := by ext1 x; simp only [Function.comp_apply, abs_neg] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] ((fun x => |x| ^ (-b)) ∘ Neg.neg) ⊢ (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) [PROOFSTEP] ext1 x [GOAL] case h E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] ((fun x => |x| ^ (-b)) ∘ Neg.neg) x : ℝ ⊢ ((fun x => |x| ^ (-b)) ∘ Neg.neg) x = |x| ^ (-b) [PROOFSTEP] simp only [Function.comp_apply, abs_neg] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] ((fun x => |x| ^ (-b)) ∘ Neg.neg) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) ⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b) [PROOFSTEP] rw [this] at h2 [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) ⊢ (fun x => ‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖) =O[atBot] fun x => |x| ^ (-b) [PROOFSTEP] refine' (isBigO_of_le _ fun x => _).trans h2 [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x : ℝ ⊢ ‖‖ContinuousMap.restrict (Icc (x + R) (x + S)) f‖‖ ≤ ‖((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) x‖ [PROOFSTEP] rw [norm_norm, Function.comp_apply, norm_norm, ContinuousMap.norm_le _ (norm_nonneg _)] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x : ℝ ⊢ ∀ (x_1 : ↑(Icc (x + R) (x + S))), ‖↑(ContinuousMap.restrict (Icc (x + R) (x + S)) f) x_1‖ ≤ ‖ContinuousMap.restrict (Icc (-x + -S) (-x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖ [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case mk E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ ‖↑(ContinuousMap.restrict (Icc (x✝ + R) (x✝ + S)) f) { val := x, property := hx }‖ ≤ ‖ContinuousMap.restrict (Icc (-x✝ + -S) (-x✝ + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖ [PROOFSTEP] rw [ContinuousMap.restrict_apply_mk] [GOAL] case mk E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ ‖↑f x‖ ≤ ‖ContinuousMap.restrict (Icc (-x✝ + -S) (-x✝ + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖ [PROOFSTEP] refine' (le_of_eq _).trans (ContinuousMap.norm_coe_le_norm _ ⟨-x, _⟩) [GOAL] case mk.refine'_1 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ ‖↑f x‖ = ‖↑(ContinuousMap.restrict (Icc (-x✝ + -S) (-x✝ + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))) { val := -x, property := ?mk.refine'_2 }‖ case mk.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R) [PROOFSTEP] rw [ContinuousMap.restrict_apply_mk, ContinuousMap.comp_apply, ContinuousMap.coe_mk, ContinuousMap.coe_mk, neg_neg] [GOAL] case mk.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R) case mk.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R) case mk.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R) case mk.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R) case mk.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R) case mk.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ -x ∈ Icc (-x✝ + -S) (-x✝ + -R) [PROOFSTEP] exact ⟨by linarith [hx.2], by linarith [hx.1]⟩ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ -x✝ + -S ≤ -x [PROOFSTEP] linarith [hx.2] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[atBot] fun x => |x| ^ (-b) R S : ℝ h1 : ↑(ContinuousMap.comp f (ContinuousMap.mk fun a => -a)) =O[atTop] fun x => |x| ^ (-b) h2 : ((fun x => ‖ContinuousMap.restrict (Icc (x + -S) (x + -R)) (ContinuousMap.comp f (ContinuousMap.mk fun a => -a))‖) ∘ Neg.neg) =O[atBot] fun x => |x| ^ (-b) this : (fun x => |x| ^ (-b)) ∘ Neg.neg = fun x => |x| ^ (-b) x✝ x : ℝ hx : x ∈ Icc (x✝ + R) (x✝ + S) ⊢ -x ≤ -x✝ + -R [PROOFSTEP] linarith [hx.1] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ ⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[cocompact ℝ] fun x => |x| ^ (-b) [PROOFSTEP] obtain ⟨r, hr⟩ := K.isCompact.bounded.subset_ball 0 [GOAL] case intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Metric.closedBall 0 r ⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[cocompact ℝ] fun x => |x| ^ (-b) [PROOFSTEP] rw [closedBall_eq_Icc, zero_add, zero_sub] at hr [GOAL] case intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r ⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[cocompact ℝ] fun x => |x| ^ (-b) [PROOFSTEP] have : ∀ x : ℝ, ‖(f.comp (ContinuousMap.addRight x)).restrict K‖ ≤ ‖f.restrict (Icc (x - r) (x + r))‖ := by intro x rw [ContinuousMap.norm_le _ (norm_nonneg _)] rintro ⟨y, hy⟩ refine' (le_of_eq _).trans (ContinuousMap.norm_coe_le_norm _ ⟨y + x, _⟩) · simp_rw [ContinuousMap.restrict_apply, ContinuousMap.comp_apply, ContinuousMap.coe_addRight] · exact ⟨by linarith [(hr hy).1], by linarith [(hr hy).2]⟩ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r ⊢ ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ [PROOFSTEP] intro x [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r x : ℝ ⊢ ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ [PROOFSTEP] rw [ContinuousMap.norm_le _ (norm_nonneg _)] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r x : ℝ ⊢ ∀ (x_1 : ↑↑K), ‖↑(ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))) x_1‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ [PROOFSTEP] rintro ⟨y, hy⟩ [GOAL] case mk E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r x y : ℝ hy : y ∈ ↑K ⊢ ‖↑(ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))) { val := y, property := hy }‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ [PROOFSTEP] refine' (le_of_eq _).trans (ContinuousMap.norm_coe_le_norm _ ⟨y + x, _⟩) [GOAL] case mk.refine'_1 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r x y : ℝ hy : y ∈ ↑K ⊢ ‖↑(ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))) { val := y, property := hy }‖ = ‖↑(ContinuousMap.restrict (Icc (x - r) (x + r)) f) { val := y + x, property := ?mk.refine'_2 }‖ [PROOFSTEP] simp_rw [ContinuousMap.restrict_apply, ContinuousMap.comp_apply, ContinuousMap.coe_addRight] [GOAL] case mk.refine'_2 E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r x y : ℝ hy : y ∈ ↑K ⊢ y + x ∈ Icc (x - r) (x + r) [PROOFSTEP] exact ⟨by linarith [(hr hy).1], by linarith [(hr hy).2]⟩ [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r x y : ℝ hy : y ∈ ↑K ⊢ x - r ≤ y + x [PROOFSTEP] linarith [(hr hy).1] [GOAL] E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r x y : ℝ hy : y ∈ ↑K ⊢ y + x ≤ x + r [PROOFSTEP] linarith [(hr hy).2] [GOAL] case intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ↑f =O[cocompact ℝ] fun x => |x| ^ (-b) K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r this : ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ ⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[cocompact ℝ] fun x => |x| ^ (-b) [PROOFSTEP] simp_rw [cocompact_eq, isBigO_sup] at hf ⊢ [GOAL] case intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r this : ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b) ⊢ ((fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[atBot] fun x => |x| ^ (-b)) ∧ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[atTop] fun x => |x| ^ (-b) [PROOFSTEP] constructor [GOAL] case intro.left E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r this : ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b) ⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[atBot] fun x => |x| ^ (-b) [PROOFSTEP] refine' (isBigO_of_le atBot _).trans (isBigO_norm_Icc_restrict_atBot hb hf.1 (-r) r) [GOAL] case intro.left E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r this : ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b) ⊢ ∀ (x : ℝ), ‖‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖‖ ≤ ‖‖ContinuousMap.restrict (Icc (x + -r) (x + r)) f‖‖ [PROOFSTEP] simp_rw [norm_norm] [GOAL] case intro.left E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r this : ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b) ⊢ ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x + -r) (x + r)) f‖ [PROOFSTEP] exact this [GOAL] case intro.right E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r this : ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b) ⊢ (fun x => ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖) =O[atTop] fun x => |x| ^ (-b) [PROOFSTEP] refine' (isBigO_of_le atTop _).trans (isBigO_norm_Icc_restrict_atTop hb hf.2 (-r) r) [GOAL] case intro.right E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r this : ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b) ⊢ ∀ (x : ℝ), ‖‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖‖ ≤ ‖‖ContinuousMap.restrict (Icc (x + -r) (x + r)) f‖‖ [PROOFSTEP] simp_rw [norm_norm] [GOAL] case intro.right E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b K : Compacts ℝ r : ℝ hr : ↑K ⊆ Icc (-r) r this : ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x - r) (x + r)) f‖ hf : (↑f =O[atBot] fun x => |x| ^ (-b)) ∧ ↑f =O[atTop] fun x => |x| ^ (-b) ⊢ ∀ (x : ℝ), ‖ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight x))‖ ≤ ‖ContinuousMap.restrict (Icc (x + -r) (x + r)) f‖ [PROOFSTEP] exact this [GOAL] f g : SchwartzMap ℝ ℂ hfg : 𝓕 ↑f = ↑g ⊢ ∑' (n : ℤ), ↑f ↑n = ∑' (n : ℤ), ↑g ↑n [PROOFSTEP] simp_rw [← hfg] [GOAL] f g : SchwartzMap ℝ ℂ hfg : 𝓕 ↑f = ↑g ⊢ ∑' (n : ℤ), ↑f ↑n = ∑' (n : ℤ), 𝓕 ↑f ↑n [PROOFSTEP] rw [Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay f.continuous one_lt_two (f.isBigO_cocompact_rpow (-2))] [GOAL] f g : SchwartzMap ℝ ℂ hfg : 𝓕 ↑f = ↑g ⊢ 𝓕 ↑f =O[cocompact ℝ] fun x => |x| ^ (-2) [PROOFSTEP] rw [hfg] [GOAL] f g : SchwartzMap ℝ ℂ hfg : 𝓕 ↑f = ↑g ⊢ ↑g =O[cocompact ℝ] fun x => |x| ^ (-2) [PROOFSTEP] exact g.isBigO_cocompact_rpow (-2)
{"mathlib_filename": "Mathlib.Analysis.Fourier.PoissonSummation", "llama_tokens": 34100}
{"mathlib_filename": "Mathlib.Control.Random", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Control.Bitraversable.Basic", "llama_tokens": 0}
[GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β✝ : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α₀ α₁ α₂ β : Type u f : α₀ → F α₁ f' : α₁ → G α₂ x : t α₀ β ⊢ Comp.mk (tfst f' <$> tfst f x) = tfst (Comp.mk ∘ map f' ∘ f) x [PROOFSTEP] rw [← comp_bitraverse] [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β✝ : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α₀ α₁ α₂ β : Type u f : α₀ → F α₁ f' : α₁ → G α₂ x : t α₀ β ⊢ bitraverse (Comp.mk ∘ map f' ∘ f) (Comp.mk ∘ map pure ∘ pure) x = tfst (Comp.mk ∘ map f' ∘ f) x [PROOFSTEP] simp only [Function.comp, tfst, map_pure, Pure.pure] [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α₀ α₁ β₀ β₁ : Type u f : α₀ → F α₁ f' : β₀ → G β₁ x : t α₀ β₀ ⊢ Comp.mk (tfst f <$> tsnd f' x) = bitraverse (Comp.mk ∘ pure ∘ f) (Comp.mk ∘ map pure ∘ f') x [PROOFSTEP] rw [← comp_bitraverse] [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α₀ α₁ β₀ β₁ : Type u f : α₀ → F α₁ f' : β₀ → G β₁ x : t α₀ β₀ ⊢ bitraverse (Comp.mk ∘ map f ∘ pure) (Comp.mk ∘ map pure ∘ f') x = bitraverse (Comp.mk ∘ pure ∘ f) (Comp.mk ∘ map pure ∘ f') x [PROOFSTEP] simp only [Function.comp, map_pure] [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α₀ α₁ β₀ β₁ : Type u f : α₀ → F α₁ f' : β₀ → G β₁ x : t α₀ β₀ ⊢ Comp.mk (tsnd f' <$> tfst f x) = bitraverse (Comp.mk ∘ map pure ∘ f) (Comp.mk ∘ pure ∘ f') x [PROOFSTEP] rw [← comp_bitraverse] [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α₀ α₁ β₀ β₁ : Type u f : α₀ → F α₁ f' : β₀ → G β₁ x : t α₀ β₀ ⊢ bitraverse (Comp.mk ∘ map pure ∘ f) (Comp.mk ∘ map f' ∘ pure) x = bitraverse (Comp.mk ∘ map pure ∘ f) (Comp.mk ∘ pure ∘ f') x [PROOFSTEP] simp only [Function.comp, map_pure] [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β₀ β₁ β₂ : Type u g : β₀ → F β₁ g' : β₁ → G β₂ x : t α β₀ ⊢ Comp.mk (tsnd g' <$> tsnd g x) = tsnd (Comp.mk ∘ map g' ∘ g) x [PROOFSTEP] rw [← comp_bitraverse] [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β₀ β₁ β₂ : Type u g : β₀ → F β₁ g' : β₁ → G β₂ x : t α β₀ ⊢ bitraverse (Comp.mk ∘ map pure ∘ pure) (Comp.mk ∘ map g' ∘ g) x = tsnd (Comp.mk ∘ map g' ∘ g) x [PROOFSTEP] simp only [Function.comp, map_pure] [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β₀ β₁ β₂ : Type u g : β₀ → F β₁ g' : β₁ → G β₂ x : t α β₀ ⊢ bitraverse (fun x => Comp.mk (pure (pure x))) (fun x => Comp.mk (g' <$> g x)) x = tsnd (fun x => Comp.mk (g' <$> g x)) x [PROOFSTEP] rfl [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β✝ : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α α' β : Type u f : α → α' x : t α β ⊢ tfst (pure ∘ f) x = pure (fst f x) [PROOFSTEP] apply bitraverse_eq_bimap_id [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t β✝ : Type u F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulBitraversable t inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β β' : Type u f : β → β' x : t α β ⊢ tsnd (pure ∘ f) x = pure (snd f x) [PROOFSTEP] apply bitraverse_eq_bimap_id
{"mathlib_filename": "Mathlib.Control.Bitraversable.Lemmas", "llama_tokens": 2268}
[GOAL] F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G η η' : ApplicativeTransformation F G h : (fun {α} => app η α) = fun {α} => app η' α ⊢ η = η' [PROOFSTEP] cases η [GOAL] case mk F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G η' : ApplicativeTransformation F G app✝ : (α : Type u) → F α → G α preserves_pure'✝ : ∀ {α : Type u} (x : α), app✝ α (pure x) = pure x preserves_seq'✝ : ∀ {α β : Type u} (x : F (α → β)) (y : F α), app✝ β (Seq.seq x fun x => y) = Seq.seq (app✝ (α → β) x) fun x => app✝ α y h : (fun {α} => app { app := app✝, preserves_pure' := preserves_pure'✝, preserves_seq' := preserves_seq'✝ } α) = fun {α} => app η' α ⊢ { app := app✝, preserves_pure' := preserves_pure'✝, preserves_seq' := preserves_seq'✝ } = η' [PROOFSTEP] cases η' [GOAL] case mk.mk F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G app✝¹ : (α : Type u) → F α → G α preserves_pure'✝¹ : ∀ {α : Type u} (x : α), app✝¹ α (pure x) = pure x preserves_seq'✝¹ : ∀ {α β : Type u} (x : F (α → β)) (y : F α), app✝¹ β (Seq.seq x fun x => y) = Seq.seq (app✝¹ (α → β) x) fun x => app✝¹ α y app✝ : (α : Type u) → F α → G α preserves_pure'✝ : ∀ {α : Type u} (x : α), app✝ α (pure x) = pure x preserves_seq'✝ : ∀ {α β : Type u} (x : F (α → β)) (y : F α), app✝ β (Seq.seq x fun x => y) = Seq.seq (app✝ (α → β) x) fun x => app✝ α y h : (fun {α} => app { app := app✝¹, preserves_pure' := preserves_pure'✝¹, preserves_seq' := preserves_seq'✝¹ } α) = fun {α} => app { app := app✝, preserves_pure' := preserves_pure'✝, preserves_seq' := preserves_seq'✝ } α ⊢ { app := app✝¹, preserves_pure' := preserves_pure'✝¹, preserves_seq' := preserves_seq'✝¹ } = { app := app✝, preserves_pure' := preserves_pure'✝, preserves_seq' := preserves_seq'✝ } [PROOFSTEP] congr [GOAL] F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G η η' : ApplicativeTransformation F G h : ∀ (α : Type u) (x : F α), (fun {α} => app η α) x = (fun {α} => app η' α) x ⊢ η = η' [PROOFSTEP] apply coe_inj [GOAL] case h F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G η η' : ApplicativeTransformation F G h : ∀ (α : Type u) (x : F α), (fun {α} => app η α) x = (fun {α} => app η' α) x ⊢ (fun {α} => app η α) = fun {α} => app η' α [PROOFSTEP] ext1 α [GOAL] case h.h F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G η η' : ApplicativeTransformation F G h : ∀ (α : Type u) (x : F α), (fun {α} => app η α) x = (fun {α} => app η' α) x α : Type u ⊢ app η α = app η' α [PROOFSTEP] exact funext (h α) [GOAL] F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β : Type u x : α → β y : F α ⊢ (fun {α} => app η α) (x <$> y) = x <$> (fun {α} => app η α) y [PROOFSTEP] rw [← pure_seq, η.preserves_seq, preserves_pure, pure_seq] [GOAL] F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β : Type u x : α → β ⊢ (fun {α} => app η α) ∘ Functor.map x = Functor.map x ∘ fun {α} => app η α [PROOFSTEP] ext y [GOAL] case h F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β : Type u x : α → β y : F α ⊢ ((fun {α} => app η α) ∘ Functor.map x) y = (Functor.map x ∘ fun {α} => app η α) y [PROOFSTEP] exact preserves_map η x y [GOAL] F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G ⊢ ∀ {α : Type u} (x : α), (fun α => id) α (pure x) = pure x [PROOFSTEP] simp [GOAL] F : Type u → Type v inst✝³ : Applicative F inst✝² : LawfulApplicative F G : Type u → Type w inst✝¹ : Applicative G inst✝ : LawfulApplicative G α✝ β✝ : Type u x : F (α✝ → β✝) y : F α✝ ⊢ (fun α => id) β✝ (Seq.seq x fun x => y) = Seq.seq ((fun α => id) (α✝ → β✝) x) fun x => (fun α => id) α✝ y [PROOFSTEP] simp [GOAL] F : Type u → Type v inst✝⁵ : Applicative F inst✝⁴ : LawfulApplicative F G : Type u → Type w inst✝³ : Applicative G inst✝² : LawfulApplicative G H : Type u → Type s inst✝¹ : Applicative H inst✝ : LawfulApplicative H η' : ApplicativeTransformation G H η : ApplicativeTransformation F G α✝ : Type u x : α✝ ⊢ (fun α x => (fun {α} => app η' α) ((fun {α} => app η α) x)) α✝ (pure x) = pure x [PROOFSTEP] simp only [preserves_pure] [GOAL] F : Type u → Type v inst✝⁵ : Applicative F inst✝⁴ : LawfulApplicative F G : Type u → Type w inst✝³ : Applicative G inst✝² : LawfulApplicative G H : Type u → Type s inst✝¹ : Applicative H inst✝ : LawfulApplicative H η' : ApplicativeTransformation G H η : ApplicativeTransformation F G α✝ β✝ : Type u x : F (α✝ → β✝) y : F α✝ ⊢ (fun α x => (fun {α} => app η' α) ((fun {α} => app η α) x)) β✝ (Seq.seq x fun x => y) = Seq.seq ((fun α x => (fun {α} => app η' α) ((fun {α} => app η α) x)) (α✝ → β✝) x) fun x => (fun α x => (fun {α} => app η' α) ((fun {α} => app η α) x)) α✝ y [PROOFSTEP] simp only [preserves_seq] [GOAL] ⊢ LawfulTraversable Id [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 ⊢ ∀ {α β : Type ?u.11560}, mapConst = map ∘ const β [PROOFSTEP] intros [GOAL] case refine'_2 ⊢ ∀ {α : Type ?u.11560} (x : Id α), id <$> x = x [PROOFSTEP] intros [GOAL] case refine'_3 ⊢ ∀ {α β γ : Type ?u.11560} (g : α → β) (h : β → γ) (x : Id α), (h ∘ g) <$> x = h <$> g <$> x [PROOFSTEP] intros [GOAL] case refine'_4 ⊢ ∀ {α : Type ?u.11560} (x : Id α), traverse pure x = x [PROOFSTEP] intros [GOAL] case refine'_5 ⊢ ∀ {F G : Type ?u.11560 → Type ?u.11560} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α β γ : Type ?u.11560} (f : β → F γ) (g : α → G β) (x : Id α), traverse (Comp.mk ∘ map f ∘ g) x = Comp.mk (traverse f <$> traverse g x) [PROOFSTEP] intros [GOAL] case refine'_6 ⊢ ∀ {α β : Type ?u.11560} (f : α → β) (x : Id α), traverse (pure ∘ f) x = id.mk (f <$> x) [PROOFSTEP] intros [GOAL] case refine'_7 ⊢ ∀ {F G : Type ?u.11560 → Type ?u.11560} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α β : Type ?u.11560} (f : α → F β) (x : Id α), (fun {α} => ApplicativeTransformation.app η α) (traverse f x) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x [PROOFSTEP] intros [GOAL] case refine'_1 α✝ β✝ : Type ?u.11560 ⊢ mapConst = map ∘ const β✝ [PROOFSTEP] rfl [GOAL] case refine'_2 α✝ : Type ?u.11560 x✝ : Id α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] rfl [GOAL] case refine'_3 α✝ β✝ γ✝ : Type ?u.11560 g✝ : α✝ → β✝ h✝ : β✝ → γ✝ x✝ : Id α✝ ⊢ (h✝ ∘ g✝) <$> x✝ = h✝ <$> g✝ <$> x✝ [PROOFSTEP] rfl [GOAL] case refine'_4 α✝ : Type ?u.11560 x✝ : Id α✝ ⊢ traverse pure x✝ = x✝ [PROOFSTEP] rfl [GOAL] case refine'_5 F✝ G✝ : Type ?u.11560 → Type ?u.11560 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type ?u.11560 f✝ : β✝ → F✝ γ✝ g✝ : α✝ → G✝ β✝ x✝ : Id α✝ ⊢ traverse (Comp.mk ∘ map f✝ ∘ g✝) x✝ = Comp.mk (traverse f✝ <$> traverse g✝ x✝) [PROOFSTEP] rfl [GOAL] case refine'_6 α✝ β✝ : Type ?u.11560 f✝ : α✝ → β✝ x✝ : Id α✝ ⊢ traverse (pure ∘ f✝) x✝ = id.mk (f✝ <$> x✝) [PROOFSTEP] rfl [GOAL] case refine'_7 F✝ G✝ : Type ?u.11560 → Type ?u.11560 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ β✝ : Type ?u.11560 f✝ : α✝ → F✝ β✝ x✝ : Id α✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (traverse f✝ x✝) = traverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) x✝ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Control.Traversable.Basic", "llama_tokens": 4325}
[GOAL] α : Type ?u.3 ⊢ (fun {α β} e => ↑(uniqueCongr e)) (Equiv.refl α) = id [PROOFSTEP] simp [GOAL] ⊢ ∀ {α β γ : Type ?u.3} (k : α ≃ β) (h : β ≃ γ), (fun {α β} e => ↑(uniqueCongr e)) (k.trans h) = (fun {α β} e => ↑(uniqueCongr e)) h ∘ (fun {α β} e => ↑(uniqueCongr e)) k [PROOFSTEP] simp [GOAL] α : Type ?u.3738 ⊢ (fun {α β} e p => (e.symm.trans p).trans e) (Equiv.refl α) = id [PROOFSTEP] ext [GOAL] case h.H α : Type ?u.3738 x✝¹ : Perm α x✝ : α ⊢ ↑((fun {α β} e p => (e.symm.trans p).trans e) (Equiv.refl α) x✝¹) x✝ = ↑(id x✝¹) x✝ [PROOFSTEP] simp [GOAL] α✝ β✝ γ✝ : Type ?u.3738 x✝¹ : α✝ ≃ β✝ x✝ : β✝ ≃ γ✝ ⊢ (fun {α β} e p => (e.symm.trans p).trans e) (x✝¹.trans x✝) = (fun {α β} e p => (e.symm.trans p).trans e) x✝ ∘ (fun {α β} e p => (e.symm.trans p).trans e) x✝¹ [PROOFSTEP] ext [GOAL] case h.H α✝ β✝ γ✝ : Type ?u.3738 x✝³ : α✝ ≃ β✝ x✝² : β✝ ≃ γ✝ x✝¹ : Perm α✝ x✝ : γ✝ ⊢ ↑((fun {α β} e p => (e.symm.trans p).trans e) (x✝³.trans x✝²) x✝¹) x✝ = ↑(((fun {α β} e p => (e.symm.trans p).trans e) x✝² ∘ (fun {α β} e p => (e.symm.trans p).trans e) x✝³) x✝¹) x✝ [PROOFSTEP] simp [GOAL] α : Type ?u.6374 ⊢ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) (Equiv.refl α) = id [PROOFSTEP] ext [GOAL] case h.a α : Type ?u.6374 x✝ : Finset α a✝ : α ⊢ a✝ ∈ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) (Equiv.refl α) x✝ ↔ a✝ ∈ id x✝ [PROOFSTEP] simp [GOAL] α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ ⊢ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) (k.trans h) = (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) h ∘ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) k [PROOFSTEP] ext _ a [GOAL] case h.a α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ x✝ : Finset α✝ a : γ✝ ⊢ a ∈ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) (k.trans h) x✝ ↔ a ∈ ((fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) h ∘ (fun {α β} e s => Finset.map (Equiv.toEmbedding e) s) k) x✝ [PROOFSTEP] simp [GOAL] case h.a α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ x✝ : Finset α✝ a : γ✝ ⊢ (∃ a_1, a_1 ∈ x✝ ∧ ↑h (↑k a_1) = a) ↔ ↑k.symm (↑h.symm a) ∈ x✝ [PROOFSTEP] constructor [GOAL] case h.a.mp α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ x✝ : Finset α✝ a : γ✝ ⊢ (∃ a_1, a_1 ∈ x✝ ∧ ↑h (↑k a_1) = a) → ↑k.symm (↑h.symm a) ∈ x✝ [PROOFSTEP] intro h' [GOAL] case h.a.mpr α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ x✝ : Finset α✝ a : γ✝ ⊢ ↑k.symm (↑h.symm a) ∈ x✝ → ∃ a_2, a_2 ∈ x✝ ∧ ↑h (↑k a_2) = a [PROOFSTEP] intro h' [GOAL] case h.a.mp α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ x✝ : Finset α✝ a : γ✝ h' : ∃ a_1, a_1 ∈ x✝ ∧ ↑h (↑k a_1) = a ⊢ ↑k.symm (↑h.symm a) ∈ x✝ [PROOFSTEP] let ⟨a, ha₁, ha₂⟩ := h' [GOAL] case h.a.mp α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ x✝ : Finset α✝ a✝ : γ✝ h' : ∃ a, a ∈ x✝ ∧ ↑h (↑k a) = a✝ a : α✝ ha₁ : a ∈ x✝ ha₂ : ↑h (↑k a) = a✝ ⊢ ↑k.symm (↑h.symm a✝) ∈ x✝ [PROOFSTEP] rw [← ha₂] [GOAL] case h.a.mp α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ x✝ : Finset α✝ a✝ : γ✝ h' : ∃ a, a ∈ x✝ ∧ ↑h (↑k a) = a✝ a : α✝ ha₁ : a ∈ x✝ ha₂ : ↑h (↑k a) = a✝ ⊢ ↑k.symm (↑h.symm (↑h (↑k a))) ∈ x✝ [PROOFSTEP] simp [GOAL] case h.a.mp α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ x✝ : Finset α✝ a✝ : γ✝ h' : ∃ a, a ∈ x✝ ∧ ↑h (↑k a) = a✝ a : α✝ ha₁ : a ∈ x✝ ha₂ : ↑h (↑k a) = a✝ ⊢ a ∈ x✝ [PROOFSTEP] apply ha₁ [GOAL] case h.a.mpr α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ x✝ : Finset α✝ a : γ✝ h' : ↑k.symm (↑h.symm a) ∈ x✝ ⊢ ∃ a_1, a_1 ∈ x✝ ∧ ↑h (↑k a_1) = a [PROOFSTEP] exists (Equiv.symm k) ((Equiv.symm h) a) [GOAL] case h.a.mpr α✝ β✝ γ✝ : Type ?u.6374 k : α✝ ≃ β✝ h : β✝ ≃ γ✝ x✝ : Finset α✝ a : γ✝ h' : ↑k.symm (↑h.symm a) ∈ x✝ ⊢ ↑k.symm (↑h.symm a) ∈ x✝ ∧ ↑h (↑k (↑k.symm (↑h.symm a))) = a [PROOFSTEP] simp [h'] [GOAL] α : Type ?u.9577 ⊢ (fun {α β} e s => Fintype.ofBijective ↑e (_ : Function.Bijective ↑e)) (Equiv.refl α) = id [PROOFSTEP] ext [GOAL] case h α : Type ?u.9577 x✝ : Fintype α ⊢ (fun {α β} e s => Fintype.ofBijective ↑e (_ : Function.Bijective ↑e)) (Equiv.refl α) x✝ = id x✝ [PROOFSTEP] simp [GOAL] ⊢ ∀ {α β γ : Type ?u.9577} (k : α ≃ β) (h : β ≃ γ), (fun {α β} e s => Fintype.ofBijective ↑e (_ : Function.Bijective ↑e)) (k.trans h) = (fun {α β} e s => Fintype.ofBijective ↑e (_ : Function.Bijective ↑e)) h ∘ (fun {α β} e s => Fintype.ofBijective ↑e (_ : Function.Bijective ↑e)) k [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Control.EquivFunctor.Instances", "llama_tokens": 3078}
[GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f✝ : β → γ α✝ β✝ : Type u f : Id (α✝ → β✝) x : Id α✝ ⊢ pure (Seq.seq f fun x_1 => x) = Seq.seq (pure f) fun x_1 => pure x [PROOFSTEP] simp only [map_pure, seq_pure] [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f✝ : β → γ α✝ β✝ : Type u f : Id (α✝ → β✝) x : Id α✝ ⊢ pure (Seq.seq f fun x_1 => x) = pure (f x) [PROOFSTEP] rfl [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β x : t α ⊢ map f <$> traverse g x = traverse (map f ∘ g) x [PROOFSTEP] rw [map_eq_traverse_id f] [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β x : t α ⊢ traverse (pure ∘ f) <$> traverse g x = traverse (map f ∘ g) x [PROOFSTEP] refine' (comp_traverse (pure ∘ f) g x).symm.trans _ [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β x : t α ⊢ traverse (Comp.mk ∘ map (pure ∘ f) ∘ g) x = traverse (map f ∘ g) x [PROOFSTEP] congr [GOAL] case h.e_4.h t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β x : t α ⊢ Comp.instApplicativeComp = inst✝³ [PROOFSTEP] apply Comp.applicative_comp_id [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g✝ : α → F β h : β → G γ f✝ : β → γ x✝ : t β f : β → F γ g : α → β x : t α ⊢ traverse f (g <$> x) = traverse (f ∘ g) x [PROOFSTEP] rw [@map_eq_traverse_id t _ _ _ _ g] [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g✝ : α → F β h : β → G γ f✝ : β → γ x✝ : t β f : β → F γ g : α → β x : t α ⊢ traverse f (traverse (pure ∘ g) x) = traverse (f ∘ g) x [PROOFSTEP] refine' (comp_traverse (G := Id) f (pure ∘ g) x).symm.trans _ [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g✝ : α → F β h : β → G γ f✝ : β → γ x✝ : t β f : β → F γ g : α → β x : t α ⊢ traverse (Comp.mk ∘ map f ∘ pure ∘ g) x = traverse (f ∘ g) x [PROOFSTEP] congr [GOAL] case h.e_4.h t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g✝ : α → F β h : β → G γ f✝ : β → γ x✝ : t β f : β → F γ g : α → β x : t α ⊢ Comp.instApplicativeComp = inst✝³ [PROOFSTEP] apply Comp.applicative_id_comp [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β x : t α ⊢ traverse pure x = pure x [PROOFSTEP] have : traverse pure x = pure (traverse (m := Id) pure x) := (naturality (PureTransformation F) pure x).symm [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β x : t α this : traverse pure x = pure (traverse pure x) ⊢ traverse pure x = pure x [PROOFSTEP] rwa [id_traverse] at this [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β x : t α ⊢ sequence (pure <$> x) = pure x [PROOFSTEP] simp [sequence, traverse_map, id_traverse] [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β x : t (F (G α)) ⊢ sequence (Comp.mk <$> x) = Comp.mk (sequence <$> sequence x) [PROOFSTEP] simp [sequence, traverse_map] [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β x : t (F (G α)) ⊢ traverse Comp.mk x = Comp.mk (traverse id <$> traverse id x) [PROOFSTEP] rw [← comp_traverse] [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β x : t (F (G α)) ⊢ traverse Comp.mk x = traverse (Comp.mk ∘ map id ∘ id) x [PROOFSTEP] simp [map_id] [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x✝ : t β η : ApplicativeTransformation F G x : t (F α) ⊢ (fun {α} => ApplicativeTransformation.app η α) (sequence x) = sequence ((fun {α} => ApplicativeTransformation.app η α) <$> x) [PROOFSTEP] simp [sequence, naturality, traverse_map] [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x : t β ⊢ traverse pure = pure [PROOFSTEP] ext [GOAL] case h t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f : β → γ x : t β x✝ : t α ⊢ traverse pure x✝ = pure x✝ [PROOFSTEP] exact id_traverse _ [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g✝ : α → F β h✝ : β → G γ f : β → γ x : t β g : α → F β h : β → G γ ⊢ traverse (Comp.mk ∘ map h ∘ g) = Comp.mk ∘ map (traverse h) ∘ traverse g [PROOFSTEP] ext [GOAL] case h t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g✝ : α → F β h✝ : β → G γ f : β → γ x : t β g : α → F β h : β → G γ x✝ : t α ⊢ traverse (Comp.mk ∘ map h ∘ g) x✝ = (Comp.mk ∘ map (traverse h) ∘ traverse g) x✝ [PROOFSTEP] exact comp_traverse _ _ _ [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f✝ : β → γ x : t β f : β → γ ⊢ traverse (pure ∘ f) = pure ∘ map f [PROOFSTEP] ext [GOAL] case h t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f✝ : β → γ x : t β f : β → γ x✝ : t β ⊢ traverse (pure ∘ f) x✝ = (pure ∘ map f) x✝ [PROOFSTEP] exact traverse_eq_map_id _ _ [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g✝ : α → F β h✝ : β → G γ f : β → γ x : t β g : α → β h : β → G γ ⊢ traverse (h ∘ g) = traverse h ∘ map g [PROOFSTEP] ext [GOAL] case h t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g✝ : α → F β h✝ : β → G γ f : β → γ x : t β g : α → β h : β → G γ x✝ : t α ⊢ traverse (h ∘ g) x✝ = (traverse h ∘ map g) x✝ [PROOFSTEP] rw [comp_apply, traverse_map] [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g✝ : α → F β h✝ : β → G γ f : β → γ x : t β g : α → G β h : β → γ ⊢ traverse (map h ∘ g) = map (map h) ∘ traverse g [PROOFSTEP] ext [GOAL] case h t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g✝ : α → F β h✝ : β → G γ f : β → γ x : t β g : α → G β h : β → γ x✝ : t α ⊢ traverse (map h ∘ g) x✝ = (map (map h) ∘ traverse g) x✝ [PROOFSTEP] rw [comp_apply, map_traverse] [GOAL] t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f✝ : β → γ x : t β η : ApplicativeTransformation F G f : α → F β ⊢ traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) = (fun {α} => ApplicativeTransformation.app η α) ∘ traverse f [PROOFSTEP] ext [GOAL] case h t : Type u → Type u inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : LawfulApplicative F inst✝¹ : Applicative G inst✝ : LawfulApplicative G α β γ : Type u g : α → F β h : β → G γ f✝ : β → γ x : t β η : ApplicativeTransformation F G f : α → F β x✝ : t α ⊢ traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x✝ = ((fun {α} => ApplicativeTransformation.app η α) ∘ traverse f) x✝ [PROOFSTEP] rw [comp_apply, naturality]
{"mathlib_filename": "Mathlib.Control.Traversable.Lemmas", "llama_tokens": 5678}
[GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c ⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) - (integral (Box.face I i) ⊥ (f ∘ Fin.insertNth i (Box.upper I i)) BoxAdditiveMap.volume - integral (Box.face I i) ⊥ (f ∘ Fin.insertNth i (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤ 2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j) [PROOFSTEP] set e : ℝ → (Fin n → ℝ) → (Fin (n + 1) → ℝ) := i.insertNth (α := fun _ ↦ ℝ) /- **Plan of the proof**. The difference of the integrals of the affine function `fun y ↦ a + f' (y - x)` over the faces `x i = I.upper i` and `x i = I.lower i` is equal to the volume of `I` multiplied by `f' (Pi.single i 1)`, so it suffices to show that the integral of `f y - a - f' (y - x)` over each of these faces is less than or equal to `ε * c * vol I`. We integrate a function of the norm `≤ ε * diam I.Icc` over a box of volume `∏ j ≠ i, (I.upper j - I.lower j)`. Since `diam I.Icc ≤ c * (I.upper i - I.lower i)`, we get the required estimate. -/ [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i ⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) - (integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume - integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤ 2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j) [PROOFSTEP] have Hl : I.lower i ∈ Icc (I.lower i) (I.upper i) := Set.left_mem_Icc.2 (I.lower_le_upper i) [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) ⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) - (integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume - integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤ 2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j) [PROOFSTEP] have Hu : I.upper i ∈ Icc (I.lower i) (I.upper i) := Set.right_mem_Icc.2 (I.lower_le_upper i) [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) ⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) - (integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume - integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤ 2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j) [PROOFSTEP] have Hi : ∀ x ∈ Icc (I.lower i) (I.upper i), Integrable.{0, u, u} (I.face i) ⊥ (f ∘ e x) BoxAdditiveMap.volume := fun x hx => integrable_of_continuousOn _ (Box.continuousOn_face_Icc hfc hx) volume [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume ⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) - (integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume - integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤ 2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j) [PROOFSTEP] have : ∀ y ∈ Box.Icc (I.face i), ‖f' (Pi.single i (I.upper i - I.lower i)) - (f (e (I.upper i) y) - f (e (I.lower i) y))‖ ≤ 2 * ε * diam (Box.Icc I) := fun y hy ↦ by set g := fun y => f y - a - f' (y - x) with hg change ∀ y ∈ (Box.Icc I), ‖g y‖ ≤ ε * ‖y - x‖ at hε clear_value g; obtain rfl : f = fun y => a + f' (y - x) + g y := by simp [hg] convert_to ‖g (e (I.lower i) y) - g (e (I.upper i) y)‖ ≤ _ · congr 1 have := Fin.insertNth_sub_same (α := fun _ ↦ ℝ) i (I.upper i) (I.lower i) y simp only [← this, f'.map_sub]; abel · have : ∀ z ∈ Icc (I.lower i) (I.upper i), e z y ∈ (Box.Icc I) := fun z hz => I.mapsTo_insertNth_face_Icc hz hy replace hε : ∀ y ∈ (Box.Icc I), ‖g y‖ ≤ ε * diam (Box.Icc I) · intro y hy refine' (hε y hy).trans (mul_le_mul_of_nonneg_left _ h0.le) rw [← dist_eq_norm] exact dist_le_diam_of_mem I.isCompact_Icc.bounded hy hxI rw [two_mul, add_mul] exact norm_sub_le_of_le (hε _ (this _ Hl)) (hε _ (this _ Hu)) [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) ⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) [PROOFSTEP] set g := fun y => f y - a - f' (y - x) with hg [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E := fun y => f y - a - ↑f' (y - x) hg : g = fun y => f y - a - ↑f' (y - x) ⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) [PROOFSTEP] change ∀ y ∈ (Box.Icc I), ‖g y‖ ≤ ε * ‖y - x‖ at hε [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E := fun y => f y - a - ↑f' (y - x) hg : g = fun y => f y - a - ↑f' (y - x) hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ ⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) [PROOFSTEP] clear_value g [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hg : g = fun y => f y - a - ↑f' (y - x) hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ ⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) [PROOFSTEP] obtain rfl : f = fun y => a + f' (y - x) + g y := by simp [hg] [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hg : g = fun y => f y - a - ↑f' (y - x) hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ ⊢ f = fun y => a + ↑f' (y - x) + g y [PROOFSTEP] simp [hg] [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) ⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - ((fun y => a + ↑f' (y - x) + g y) (e (Box.upper I i) y) - (fun y => a + ↑f' (y - x) + g y) (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) [PROOFSTEP] convert_to ‖g (e (I.lower i) y) - g (e (I.upper i) y)‖ ≤ _ [GOAL] case h.e'_3 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) ⊢ ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - ((fun y => a + ↑f' (y - x) + g y) (e (Box.upper I i) y) - (fun y => a + ↑f' (y - x) + g y) (e (Box.lower I i) y))‖ = ‖g (e (Box.lower I i) y) - g (e (Box.upper I i) y)‖ [PROOFSTEP] congr 1 [GOAL] case h.e'_3.e_a E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) ⊢ ↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - ((fun y => a + ↑f' (y - x) + g y) (e (Box.upper I i) y) - (fun y => a + ↑f' (y - x) + g y) (e (Box.lower I i) y)) = g (e (Box.lower I i) y) - g (e (Box.upper I i) y) [PROOFSTEP] have := Fin.insertNth_sub_same (α := fun _ ↦ ℝ) i (I.upper i) (I.lower i) y [GOAL] case h.e'_3.e_a E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) this : Fin.insertNth i (Box.upper I i) y - Fin.insertNth i (Box.lower I i) y = Pi.single i (Box.upper I i - Box.lower I i) ⊢ ↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - ((fun y => a + ↑f' (y - x) + g y) (e (Box.upper I i) y) - (fun y => a + ↑f' (y - x) + g y) (e (Box.lower I i) y)) = g (e (Box.lower I i) y) - g (e (Box.upper I i) y) [PROOFSTEP] simp only [← this, f'.map_sub] [GOAL] case h.e'_3.e_a E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) this : Fin.insertNth i (Box.upper I i) y - Fin.insertNth i (Box.lower I i) y = Pi.single i (Box.upper I i - Box.lower I i) ⊢ ↑f' (Fin.insertNth i (Box.upper I i) y) - ↑f' (Fin.insertNth i (Box.lower I i) y) - (a + (↑f' (Fin.insertNth i (Box.upper I i) y) - ↑f' x) + g (Fin.insertNth i (Box.upper I i) y) - (a + (↑f' (Fin.insertNth i (Box.lower I i) y) - ↑f' x) + g (Fin.insertNth i (Box.lower I i) y))) = g (Fin.insertNth i (Box.lower I i) y) - g (Fin.insertNth i (Box.upper I i) y) [PROOFSTEP] abel [GOAL] case h.e'_3.e_a E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) this : Fin.insertNth i (Box.upper I i) y - Fin.insertNth i (Box.lower I i) y = Pi.single i (Box.upper I i - Box.lower I i) ⊢ ↑f' (Fin.insertNth i (Box.upper I i) y) - ↑f' (Fin.insertNth i (Box.lower I i) y) - (a + (↑f' (Fin.insertNth i (Box.upper I i) y) - ↑f' x) + g (Fin.insertNth i (Box.upper I i) y) - (a + (↑f' (Fin.insertNth i (Box.lower I i) y) - ↑f' x) + g (Fin.insertNth i (Box.lower I i) y))) = g (Fin.insertNth i (Box.lower I i) y) - g (Fin.insertNth i (Box.upper I i) y) [PROOFSTEP] abel [GOAL] case convert_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) ⊢ ‖g (e (Box.lower I i) y) - g (e (Box.upper I i) y)‖ ≤ 2 * ε * diam (↑Box.Icc I) [PROOFSTEP] have : ∀ z ∈ Icc (I.lower i) (I.upper i), e z y ∈ (Box.Icc I) := fun z hz => I.mapsTo_insertNth_face_Icc hz hy [GOAL] case convert_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y ∈ ↑Box.Icc I ⊢ ‖g (e (Box.lower I i) y) - g (e (Box.upper I i) y)‖ ≤ 2 * ε * diam (↑Box.Icc I) [PROOFSTEP] replace hε : ∀ y ∈ (Box.Icc I), ‖g y‖ ≤ ε * diam (Box.Icc I) [GOAL] case hε E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y ∈ ↑Box.Icc I ⊢ ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * diam (↑Box.Icc I) [PROOFSTEP] intro y hy [GOAL] case hε E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y✝ : Fin n → ℝ hy✝ : y✝ ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y✝ ∈ ↑Box.Icc I y : Fin (n + 1) → ℝ hy : y ∈ ↑Box.Icc I ⊢ ‖g y‖ ≤ ε * diam (↑Box.Icc I) [PROOFSTEP] refine' (hε y hy).trans (mul_le_mul_of_nonneg_left _ h0.le) [GOAL] case hε E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y✝ : Fin n → ℝ hy✝ : y✝ ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y✝ ∈ ↑Box.Icc I y : Fin (n + 1) → ℝ hy : y ∈ ↑Box.Icc I ⊢ ‖y - x‖ ≤ diam (↑Box.Icc I) [PROOFSTEP] rw [← dist_eq_norm] [GOAL] case hε E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y✝ : Fin n → ℝ hy✝ : y✝ ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * ‖y - x‖ hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y✝ ∈ ↑Box.Icc I y : Fin (n + 1) → ℝ hy : y ∈ ↑Box.Icc I ⊢ dist y x ≤ diam (↑Box.Icc I) [PROOFSTEP] exact dist_le_diam_of_mem I.isCompact_Icc.bounded hy hxI [GOAL] case convert_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y ∈ ↑Box.Icc I hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * diam (↑Box.Icc I) ⊢ ‖g (e (Box.lower I i) y) - g (e (Box.upper I i) y)‖ ≤ 2 * ε * diam (↑Box.Icc I) [PROOFSTEP] rw [two_mul, add_mul] [GOAL] case convert_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f' : (Fin (n + 1) → ℝ) →L[ℝ] E x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) g : (Fin (n + 1) → ℝ) → E hfc : ContinuousOn (fun y => a + ↑f' (y - x) + g y) (↑Box.Icc I) Hi : ∀ (x_1 : ℝ), x_1 ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ ((fun y => a + ↑f' (y - x) + g y) ∘ e x_1) BoxAdditiveMap.volume hg : g = fun y => (fun y => a + ↑f' (y - x) + g y) y - a - ↑f' (y - x) this : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower I i) (Box.upper I i) → e z y ∈ ↑Box.Icc I hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖g y‖ ≤ ε * diam (↑Box.Icc I) ⊢ ‖g (e (Box.lower I i) y) - g (e (Box.upper I i) y)‖ ≤ ε * diam (↑Box.Icc I) + ε * diam (↑Box.Icc I) [PROOFSTEP] exact norm_sub_le_of_le (hε _ (this _ Hl)) (hε _ (this _ Hu)) [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume this : ∀ (y : Fin n → ℝ), y ∈ ↑Box.Icc (Box.face I i) → ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) ⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) - (integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume - integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ ≤ 2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j) [PROOFSTEP] calc ‖(∏ j, (I.upper j - I.lower j)) • f' (Pi.single i 1) - (integral (I.face i) ⊥ (f ∘ e (I.upper i)) BoxAdditiveMap.volume - integral (I.face i) ⊥ (f ∘ e (I.lower i)) BoxAdditiveMap.volume)‖ = ‖integral.{0, u, u} (I.face i) ⊥ (fun x : Fin n → ℝ => f' (Pi.single i (I.upper i - I.lower i)) - (f (e (I.upper i) x) - f (e (I.lower i) x))) BoxAdditiveMap.volume‖ := by rw [← integral_sub (Hi _ Hu) (Hi _ Hl), ← Box.volume_face_mul i, mul_smul, ← Box.volume_apply, ← BoxAdditiveMap.toSMul_apply, ← integral_const, ← BoxAdditiveMap.volume, ← integral_sub (integrable_const _) ((Hi _ Hu).sub (Hi _ Hl))] simp only [(· ∘ ·), Pi.sub_def, ← f'.map_smul, ← Pi.single_smul', smul_eq_mul, mul_one] _ ≤ (volume (I.face i : Set (Fin n → ℝ))).toReal * (2 * ε * c * (I.upper i - I.lower i)) := by -- The hard part of the estimate was done above, here we just replace `diam I.Icc` -- with `c * (I.upper i - I.lower i)` refine' norm_integral_le_of_le_const (fun y hy => (this y hy).trans _) volume rw [mul_assoc (2 * ε)] exact mul_le_mul_of_nonneg_left (I.diam_Icc_le_of_distortion_le i hc) (mul_nonneg zero_le_two h0.le) _ = 2 * ε * c * ∏ j, (I.upper j - I.lower j) := by rw [← Measure.toBoxAdditive_apply, Box.volume_apply, ← I.volume_face_mul i] ac_rfl [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume this : ∀ (y : Fin n → ℝ), y ∈ ↑Box.Icc (Box.face I i) → ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) ⊢ ‖(∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j)) • ↑f' (Pi.single i 1) - (integral (Box.face I i) ⊥ (f ∘ e (Box.upper I i)) BoxAdditiveMap.volume - integral (Box.face I i) ⊥ (f ∘ e (Box.lower I i)) BoxAdditiveMap.volume)‖ = ‖integral (Box.face I i) ⊥ (fun x => ↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) x) - f (e (Box.lower I i) x))) BoxAdditiveMap.volume‖ [PROOFSTEP] rw [← integral_sub (Hi _ Hu) (Hi _ Hl), ← Box.volume_face_mul i, mul_smul, ← Box.volume_apply, ← BoxAdditiveMap.toSMul_apply, ← integral_const, ← BoxAdditiveMap.volume, ← integral_sub (integrable_const _) ((Hi _ Hu).sub (Hi _ Hl))] [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume this : ∀ (y : Fin n → ℝ), y ∈ ↑Box.Icc (Box.face I i) → ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) ⊢ ‖integral (Box.face I i) ⊥ ((fun x => (Box.upper I i - Box.lower I i) • ↑f' (Pi.single i 1)) - (f ∘ e (Box.upper I i) - f ∘ e (Box.lower I i))) BoxAdditiveMap.volume‖ = ‖integral (Box.face I i) ⊥ (fun x => ↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) x) - f (e (Box.lower I i) x))) BoxAdditiveMap.volume‖ [PROOFSTEP] simp only [(· ∘ ·), Pi.sub_def, ← f'.map_smul, ← Pi.single_smul', smul_eq_mul, mul_one] [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume this : ∀ (y : Fin n → ℝ), y ∈ ↑Box.Icc (Box.face I i) → ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) ⊢ ‖integral (Box.face I i) ⊥ (fun x => ↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) x) - f (e (Box.lower I i) x))) BoxAdditiveMap.volume‖ ≤ ENNReal.toReal (↑↑volume ↑(Box.face I i)) * (2 * ε * ↑c * (Box.upper I i - Box.lower I i)) [PROOFSTEP] refine' norm_integral_le_of_le_const (fun y hy => (this y hy).trans _) volume [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume this : ∀ (y : Fin n → ℝ), y ∈ ↑Box.Icc (Box.face I i) → ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) ⊢ 2 * ε * diam (↑Box.Icc I) ≤ 2 * ε * ↑c * (Box.upper I i - Box.lower I i) [PROOFSTEP] rw [mul_assoc (2 * ε)] [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume this : ∀ (y : Fin n → ℝ), y ∈ ↑Box.Icc (Box.face I i) → ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) y : Fin n → ℝ hy : y ∈ ↑Box.Icc (Box.face I i) ⊢ 2 * ε * diam (↑Box.Icc I) ≤ 2 * ε * (↑c * (Box.upper I i - Box.lower I i)) [PROOFSTEP] exact mul_le_mul_of_nonneg_left (I.diam_Icc_le_of_distortion_le i hc) (mul_nonneg zero_le_two h0.le) [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume this : ∀ (y : Fin n → ℝ), y ∈ ↑Box.Icc (Box.face I i) → ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) ⊢ ENNReal.toReal (↑↑volume ↑(Box.face I i)) * (2 * ε * ↑c * (Box.upper I i - Box.lower I i)) = 2 * ε * ↑c * ∏ j : Fin (n + 1), (Box.upper I j - Box.lower I j) [PROOFSTEP] rw [← Measure.toBoxAdditive_apply, Box.volume_apply, ← I.volume_face_mul i] [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) →L[ℝ] E hfc : ContinuousOn f (↑Box.Icc I) x : Fin (n + 1) → ℝ hxI : x ∈ ↑Box.Icc I a : E ε : ℝ h0 : 0 < ε hε : ∀ (y : Fin (n + 1) → ℝ), y ∈ ↑Box.Icc I → ‖f y - a - ↑f' (y - x)‖ ≤ ε * ‖y - x‖ c : ℝ≥0 hc : Box.distortion I ≤ c e : ℝ → (Fin n → ℝ) → Fin (n + 1) → ℝ := Fin.insertNth i Hl : Box.lower I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hu : Box.upper I i ∈ Set.Icc (Box.lower I i) (Box.upper I i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → Integrable (Box.face I i) ⊥ (f ∘ e x) BoxAdditiveMap.volume this : ∀ (y : Fin n → ℝ), y ∈ ↑Box.Icc (Box.face I i) → ‖↑f' (Pi.single i (Box.upper I i - Box.lower I i)) - (f (e (Box.upper I i) y) - f (e (Box.lower I i) y))‖ ≤ 2 * ε * diam (↑Box.Icc I) ⊢ (∏ i_1 : Fin n, (Box.upper (Box.face I i) i_1 - Box.lower (Box.face I i) i_1)) * (2 * ε * ↑c * (Box.upper I i - Box.lower I i)) = 2 * ε * ↑c * ((∏ j : Fin n, (Box.upper (Box.face I i) j - Box.lower (Box.face I i) j)) * (Box.upper I i - Box.lower I i)) [PROOFSTEP] ac_rfl [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) ⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume (integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x)) BoxAdditiveMap.volume - integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x)) BoxAdditiveMap.volume) [PROOFSTEP] have Hc : ContinuousOn f (Box.Icc I) := fun x hx ↦ by by_cases hxs : x ∈ s exacts [Hs x hxs, (Hd x ⟨hx, hxs⟩).continuousWithinAt] [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ⊢ ContinuousWithinAt f (↑Box.Icc I) x [PROOFSTEP] by_cases hxs : x ∈ s [GOAL] case pos E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I hxs : x ∈ s ⊢ ContinuousWithinAt f (↑Box.Icc I) x case neg E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I hxs : ¬x ∈ s ⊢ ContinuousWithinAt f (↑Box.Icc I) x [PROOFSTEP] exacts [Hs x hxs, (Hd x ⟨hx, hxs⟩).continuousWithinAt] [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) ⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume (integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x)) BoxAdditiveMap.volume - integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x)) BoxAdditiveMap.volume) [PROOFSTEP] set fI : ℝ → Box (Fin n) → E := fun y J => integral.{0, u, u} J GP (fun x => f (i.insertNth y x)) BoxAdditiveMap.volume [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume ⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume (integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x)) BoxAdditiveMap.volume - integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x)) BoxAdditiveMap.volume) [PROOFSTEP] set fb : Icc (I.lower i) (I.upper i) → Fin n →ᵇᵃ[↑(I.face i)] E := fun x => (integrable_of_continuousOn GP (Box.continuousOn_face_Icc Hc x.2) volume).toBoxAdditive [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) ⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume (integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x)) BoxAdditiveMap.volume - integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x)) BoxAdditiveMap.volume) [PROOFSTEP] set F : Fin (n + 1) →ᵇᵃ[I] E := BoxAdditiveMap.upperSubLower I i fI fb fun x _ J => rfl [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) ⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume (integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x)) BoxAdditiveMap.volume - integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x)) BoxAdditiveMap.volume) [PROOFSTEP] change HasIntegral I GP (fun x => f' x (Pi.single i 1)) _ (F I) [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) ⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1)) BoxAdditiveMap.volume (↑F I) [PROOFSTEP] refine' HasIntegral.of_le_Henstock_of_forall_isLittleO gp_le _ _ _ s hs _ _ [GOAL] case refine'_1 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) ⊢ Fin (n + 1) →ᵇᵃ[↑I] ℝ [PROOFSTEP] exact (volume : Measure (Fin (n + 1) → ℝ)).toBoxAdditive.restrict _ le_top [GOAL] case refine'_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) ⊢ ∀ (J : Box (Fin (n + 1))), 0 ≤ ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J [PROOFSTEP] exact fun J => ENNReal.toReal_nonneg [GOAL] case refine'_3 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) ⊢ ∀ (c : ℝ≥0) (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box (Fin (n + 1))), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (GP.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε [PROOFSTEP] intro c x hx ε ε0 [GOAL] case refine'_3 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 ⊢ ∃ δ, δ > 0 ∧ ∀ (J : Box (Fin (n + 1))), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (GP.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε [PROOFSTEP] have : ∀ᶠ δ in 𝓝[>] (0 : ℝ), δ ∈ Ioc (0 : ℝ) (1 / 2) ∧ (∀ᵉ (y₁ ∈ closedBall x δ ∩ (Box.Icc I)) (y₂ ∈ closedBall x δ ∩ (Box.Icc I)), ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖f' x (Pi.single i 1)‖ ≤ ε / 2 := by refine' .and _ (.and _ _) · exact Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, one_half_pos⟩ · rcases((nhdsWithin_hasBasis nhds_basis_closedBall _).tendsto_iff nhds_basis_closedBall).1 (Hs x hx.2) _ (half_pos <| half_pos ε0) with ⟨δ₁, δ₁0, hδ₁⟩ filter_upwards [Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, δ₁0⟩] with δ hδ y₁ hy₁ y₂ hy₂ have : closedBall x δ ∩ (Box.Icc I) ⊆ closedBall x δ₁ ∩ (Box.Icc I) := inter_subset_inter_left _ (closedBall_subset_closedBall hδ.2) rw [← dist_eq_norm] calc dist (f y₁) (f y₂) ≤ dist (f y₁) (f x) + dist (f y₂) (f x) := dist_triangle_right _ _ _ _ ≤ ε / 2 / 2 + ε / 2 / 2 := (add_le_add (hδ₁ _ <| this hy₁) (hδ₁ _ <| this hy₂)) _ = ε / 2 := add_halves _ · have : ContinuousWithinAt (fun δ : ℝ => (2 * δ) ^ (n + 1) * ‖f' x (Pi.single i 1)‖) (Ioi 0) 0 := ((continuousWithinAt_id.const_mul _).pow _).mul_const _ refine' this.eventually (ge_mem_nhds _) simpa using half_pos ε0 [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 ⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 [PROOFSTEP] refine' .and _ (.and _ _) [GOAL] case refine'_1 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 ⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) [PROOFSTEP] exact Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, one_half_pos⟩ [GOAL] case refine'_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 ⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 [PROOFSTEP] rcases((nhdsWithin_hasBasis nhds_basis_closedBall _).tendsto_iff nhds_basis_closedBall).1 (Hs x hx.2) _ (half_pos <| half_pos ε0) with ⟨δ₁, δ₁0, hδ₁⟩ [GOAL] case refine'_2.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 δ₁ : ℝ δ₁0 : 0 < δ₁ hδ₁ : ∀ (x_1 : Fin (n + 1) → ℝ), x_1 ∈ closedBall x δ₁ ∩ ↑Box.Icc I → f x_1 ∈ closedBall (f x) (ε / 2 / 2) ⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 [PROOFSTEP] filter_upwards [Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, δ₁0⟩] with δ hδ y₁ hy₁ y₂ hy₂ [GOAL] case h E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 δ₁ : ℝ δ₁0 : 0 < δ₁ hδ₁ : ∀ (x_1 : Fin (n + 1) → ℝ), x_1 ∈ closedBall x δ₁ ∩ ↑Box.Icc I → f x_1 ∈ closedBall (f x) (ε / 2 / 2) δ : ℝ hδ : δ ∈ Set.Ioc 0 δ₁ y₁ : Fin (n + 1) → ℝ hy₁ : y₁ ∈ closedBall x δ ∩ ↑Box.Icc I y₂ : Fin (n + 1) → ℝ hy₂ : y₂ ∈ closedBall x δ ∩ ↑Box.Icc I ⊢ ‖f y₁ - f y₂‖ ≤ ε / 2 [PROOFSTEP] have : closedBall x δ ∩ (Box.Icc I) ⊆ closedBall x δ₁ ∩ (Box.Icc I) := inter_subset_inter_left _ (closedBall_subset_closedBall hδ.2) [GOAL] case h E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 δ₁ : ℝ δ₁0 : 0 < δ₁ hδ₁ : ∀ (x_1 : Fin (n + 1) → ℝ), x_1 ∈ closedBall x δ₁ ∩ ↑Box.Icc I → f x_1 ∈ closedBall (f x) (ε / 2 / 2) δ : ℝ hδ : δ ∈ Set.Ioc 0 δ₁ y₁ : Fin (n + 1) → ℝ hy₁ : y₁ ∈ closedBall x δ ∩ ↑Box.Icc I y₂ : Fin (n + 1) → ℝ hy₂ : y₂ ∈ closedBall x δ ∩ ↑Box.Icc I this : closedBall x δ ∩ ↑Box.Icc I ⊆ closedBall x δ₁ ∩ ↑Box.Icc I ⊢ ‖f y₁ - f y₂‖ ≤ ε / 2 [PROOFSTEP] rw [← dist_eq_norm] [GOAL] case h E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 δ₁ : ℝ δ₁0 : 0 < δ₁ hδ₁ : ∀ (x_1 : Fin (n + 1) → ℝ), x_1 ∈ closedBall x δ₁ ∩ ↑Box.Icc I → f x_1 ∈ closedBall (f x) (ε / 2 / 2) δ : ℝ hδ : δ ∈ Set.Ioc 0 δ₁ y₁ : Fin (n + 1) → ℝ hy₁ : y₁ ∈ closedBall x δ ∩ ↑Box.Icc I y₂ : Fin (n + 1) → ℝ hy₂ : y₂ ∈ closedBall x δ ∩ ↑Box.Icc I this : closedBall x δ ∩ ↑Box.Icc I ⊆ closedBall x δ₁ ∩ ↑Box.Icc I ⊢ dist (f y₁) (f y₂) ≤ ε / 2 [PROOFSTEP] calc dist (f y₁) (f y₂) ≤ dist (f y₁) (f x) + dist (f y₂) (f x) := dist_triangle_right _ _ _ _ ≤ ε / 2 / 2 + ε / 2 / 2 := (add_le_add (hδ₁ _ <| this hy₁) (hδ₁ _ <| this hy₂)) _ = ε / 2 := add_halves _ [GOAL] case refine'_3 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 ⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 [PROOFSTEP] have : ContinuousWithinAt (fun δ : ℝ => (2 * δ) ^ (n + 1) * ‖f' x (Pi.single i 1)‖) (Ioi 0) 0 := ((continuousWithinAt_id.const_mul _).pow _).mul_const _ [GOAL] case refine'_3 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ContinuousWithinAt (fun δ => (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖) (Set.Ioi 0) 0 ⊢ ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 [PROOFSTEP] refine' this.eventually (ge_mem_nhds _) [GOAL] case refine'_3 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ContinuousWithinAt (fun δ => (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖) (Set.Ioi 0) 0 ⊢ (fun δ => (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖) 0 < ε / 2 [PROOFSTEP] simpa using half_pos ε0 [GOAL] case refine'_3 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 ⊢ ∃ δ, δ > 0 ∧ ∀ (J : Box (Fin (n + 1))), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (GP.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε [PROOFSTEP] rcases this.exists with ⟨δ, ⟨hδ0, hδ12⟩, hdfδ, hδ⟩ [GOAL] case refine'_3.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 ⊢ ∃ δ, δ > 0 ∧ ∀ (J : Box (Fin (n + 1))), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (GP.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε [PROOFSTEP] refine' ⟨δ, hδ0, fun J hJI hJδ _ _ => add_halves ε ▸ _⟩ [GOAL] case refine'_3.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c ⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2 [PROOFSTEP] have Hl : J.lower i ∈ Icc (J.lower i) (J.upper i) := Set.left_mem_Icc.2 (J.lower_le_upper i) [GOAL] case refine'_3.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) ⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2 [PROOFSTEP] have Hu : J.upper i ∈ Icc (J.lower i) (J.upper i) := Set.right_mem_Icc.2 (J.lower_le_upper i) [GOAL] case refine'_3.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) ⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2 [PROOFSTEP] have Hi : ∀ x ∈ Icc (J.lower i) (J.upper i), Integrable.{0, u, u} (J.face i) GP (fun y => f (i.insertNth x y)) BoxAdditiveMap.volume := fun x hx => integrable_of_continuousOn _ (Box.continuousOn_face_Icc (Hc.mono <| Box.le_iff_Icc.1 hJI) hx) volume [GOAL] case refine'_3.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume ⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2 [PROOFSTEP] have hJδ' : Box.Icc J ⊆ closedBall x δ ∩ (Box.Icc I) := subset_inter hJδ (Box.le_iff_Icc.1 hJI) [GOAL] case refine'_3.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I ⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2 [PROOFSTEP] have Hmaps : ∀ z ∈ Icc (J.lower i) (J.upper i), MapsTo (i.insertNth z) (Box.Icc (J.face i)) (closedBall x δ ∩ (Box.Icc I)) := fun z hz => (J.mapsTo_insertNth_face_Icc hz).mono Subset.rfl hJδ' [GOAL] case refine'_3.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε / 2 + ε / 2 [PROOFSTEP] simp only [dist_eq_norm] [GOAL] case refine'_3.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ ‖↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1)) - ↑(BoxAdditiveMap.upperSubLower I i (fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume) (fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))) (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)) J‖ ≤ ε / 2 + ε / 2 [PROOFSTEP] dsimp [GOAL] case refine'_3.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ ‖↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1)) - (integral (Box.face J i) GP (fun x => f (Fin.insertNth i (Box.upper J i) x)) BoxAdditiveMap.volume - integral (Box.face J i) GP (fun x => f (Fin.insertNth i (Box.lower J i) x)) BoxAdditiveMap.volume)‖ ≤ ε / 2 + ε / 2 [PROOFSTEP] rw [← integral_sub (Hi _ Hu) (Hi _ Hl)] [GOAL] case refine'_3.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ ‖↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1)) - integral (Box.face J i) GP ((fun y => f (Fin.insertNth i (Box.upper J i) y)) - fun y => f (Fin.insertNth i (Box.lower J i) y)) BoxAdditiveMap.volume‖ ≤ ε / 2 + ε / 2 [PROOFSTEP] refine' (norm_sub_le _ _).trans (add_le_add _ _) [GOAL] case refine'_3.intro.intro.intro.intro.refine'_1 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ ‖↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))‖ ≤ ε / 2 [PROOFSTEP] simp_rw [BoxAdditiveMap.volume_apply, norm_smul, Real.norm_eq_abs, abs_prod] [GOAL] case refine'_3.intro.intro.intro.intro.refine'_1 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ (∏ x : Fin (n + 1), |Box.upper J x - Box.lower J x|) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 [PROOFSTEP] refine' (mul_le_mul_of_nonneg_right _ <| norm_nonneg _).trans hδ [GOAL] case refine'_3.intro.intro.intro.intro.refine'_1 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ ∏ x : Fin (n + 1), |Box.upper J x - Box.lower J x| ≤ (2 * δ) ^ (n + 1) [PROOFSTEP] have : ∀ j, |J.upper j - J.lower j| ≤ 2 * δ := fun j ↦ calc dist (J.upper j) (J.lower j) ≤ dist J.upper J.lower := dist_le_pi_dist _ _ _ _ ≤ dist J.upper x + dist J.lower x := (dist_triangle_right _ _ _) _ ≤ δ + δ := (add_le_add (hJδ J.upper_mem_Icc) (hJδ J.lower_mem_Icc)) _ = 2 * δ := (two_mul δ).symm [GOAL] case refine'_3.intro.intro.intro.intro.refine'_1 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this✝ : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) this : ∀ (j : Fin (n + 1)), |Box.upper J j - Box.lower J j| ≤ 2 * δ ⊢ ∏ x : Fin (n + 1), |Box.upper J x - Box.lower J x| ≤ (2 * δ) ^ (n + 1) [PROOFSTEP] calc ∏ j, |J.upper j - J.lower j| ≤ ∏ j : Fin (n + 1), 2 * δ := prod_le_prod (fun _ _ => abs_nonneg _) fun j _ => this j _ = (2 * δ) ^ (n + 1) := by simp [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this✝ : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) this : ∀ (j : Fin (n + 1)), |Box.upper J j - Box.lower J j| ≤ 2 * δ ⊢ ∏ j : Fin (n + 1), 2 * δ = (2 * δ) ^ (n + 1) [PROOFSTEP] simp [GOAL] case refine'_3.intro.intro.intro.intro.refine'_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ ‖integral (Box.face J i) GP ((fun y => f (Fin.insertNth i (Box.upper J i) y)) - fun y => f (Fin.insertNth i (Box.lower J i) y)) BoxAdditiveMap.volume‖ ≤ ε / 2 [PROOFSTEP] refine' (norm_integral_le_of_le_const (fun y hy => hdfδ _ (Hmaps _ Hu hy) _ (Hmaps _ Hl hy)) volume).trans _ [GOAL] case refine'_3.intro.intro.intro.intro.refine'_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ ENNReal.toReal (↑↑volume ↑(Box.face J i)) * (ε / 2) ≤ ε / 2 [PROOFSTEP] refine' (mul_le_mul_of_nonneg_right _ (half_pos ε0).le).trans_eq (one_mul _) [GOAL] case refine'_3.intro.intro.intro.intro.refine'_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ ENNReal.toReal (↑↑volume ↑(Box.face J i)) ≤ 1 [PROOFSTEP] rw [Box.coe_eq_pi, Real.volume_pi_Ioc_toReal (Box.lower_le_upper _)] [GOAL] case refine'_3.intro.intro.intro.intro.refine'_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝¹ : x ∈ ↑Box.Icc J x✝ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) ⊢ ∏ i_1 : Fin n, (Box.upper (Box.face J i) i_1 - Box.lower (Box.face J i) i_1) ≤ 1 [PROOFSTEP] refine' prod_le_one (fun _ _ => sub_nonneg.2 <| Box.lower_le_upper _ _) fun j _ => _ [GOAL] case refine'_3.intro.intro.intro.intro.refine'_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I ∩ s ε : ℝ ε0 : ε > 0 this : ∀ᶠ (δ : ℝ) in 𝓝[Set.Ioi 0] 0, δ ∈ Set.Ioc 0 (1 / 2) ∧ (∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2) ∧ (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 δ : ℝ hδ0 : 0 < δ hδ12 : δ ≤ 1 / 2 hdfδ : ∀ (y₁ : Fin (n + 1) → ℝ), y₁ ∈ closedBall x δ ∩ ↑Box.Icc I → ∀ (y₂ : Fin (n + 1) → ℝ), y₂ ∈ closedBall x δ ∩ ↑Box.Icc I → ‖f y₁ - f y₂‖ ≤ ε / 2 hδ : (2 * δ) ^ (n + 1) * ‖↑(f' x) (Pi.single i 1)‖ ≤ ε / 2 J : Box (Fin (n + 1)) hJI : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ x✝² : x ∈ ↑Box.Icc J x✝¹ : GP.bDistortion = true → Box.distortion J ≤ c Hl : Box.lower J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hu : Box.upper J i ∈ Set.Icc (Box.lower J i) (Box.upper J i) Hi : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower J i) (Box.upper J i) → Integrable (Box.face J i) GP (fun y => f (Fin.insertNth i x y)) BoxAdditiveMap.volume hJδ' : ↑Box.Icc J ⊆ closedBall x δ ∩ ↑Box.Icc I Hmaps : ∀ (z : ℝ), z ∈ Set.Icc (Box.lower J i) (Box.upper J i) → MapsTo (Fin.insertNth i z) (↑Box.Icc (Box.face J i)) (closedBall x δ ∩ ↑Box.Icc I) j : Fin n x✝ : j ∈ Finset.univ ⊢ Box.upper (Box.face J i) j - Box.lower (Box.face J i) j ≤ 1 [PROOFSTEP] calc J.upper (i.succAbove j) - J.lower (i.succAbove j) ≤ dist (J.upper (i.succAbove j)) (J.lower (i.succAbove j)) := le_abs_self _ _ ≤ dist J.upper J.lower := (dist_le_pi_dist J.upper J.lower (i.succAbove j)) _ ≤ dist J.upper x + dist J.lower x := (dist_triangle_right _ _ _) _ ≤ δ + δ := (add_le_add (hJδ J.upper_mem_Icc) (hJδ J.lower_mem_Icc)) _ ≤ 1 / 2 + 1 / 2 := (add_le_add hδ12 hδ12) _ = 1 := add_halves 1 [GOAL] case refine'_4 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) ⊢ ∀ (c : ℝ≥0) (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box (Fin (n + 1))), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (GP.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J [PROOFSTEP] intro c x hx ε ε0 [GOAL] case refine'_4 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I \ s ε : ℝ ε0 : ε > 0 ⊢ ∃ δ, δ > 0 ∧ ∀ (J : Box (Fin (n + 1))), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (GP.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J [PROOFSTEP] rcases exists_pos_mul_lt ε0 (2 * c) with ⟨ε', ε'0, hlt⟩ [GOAL] case refine'_4.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I \ s ε : ℝ ε0 : ε > 0 ε' : ℝ ε'0 : 0 < ε' hlt : 2 * ↑c * ε' < ε ⊢ ∃ δ, δ > 0 ∧ ∀ (J : Box (Fin (n + 1))), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (GP.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J [PROOFSTEP] rcases(nhdsWithin_hasBasis nhds_basis_closedBall _).mem_iff.1 ((Hd x hx).def ε'0) with ⟨δ, δ0, Hδ⟩ [GOAL] case refine'_4.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I \ s ε : ℝ ε0 : ε > 0 ε' : ℝ ε'0 : 0 < ε' hlt : 2 * ↑c * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1} ⊢ ∃ δ, δ > 0 ∧ ∀ (J : Box (Fin (n + 1))), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (GP.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J [PROOFSTEP] refine' ⟨δ, δ0, fun J hle hJδ hxJ hJc => _⟩ [GOAL] case refine'_4.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I \ s ε : ℝ ε0 : ε > 0 ε' : ℝ ε'0 : 0 < ε' hlt : 2 * ↑c * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1} J : Box (Fin (n + 1)) hle : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ hxJ : x ∈ ↑Box.Icc J hJc : GP.bDistortion = true → Box.distortion J ≤ c ⊢ dist (↑(↑BoxAdditiveMap.volume J) (↑(f' x) (Pi.single i 1))) (↑F J) ≤ ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J [PROOFSTEP] simp only [BoxAdditiveMap.volume_apply, Box.volume_apply, dist_eq_norm] [GOAL] case refine'_4.intro.intro.intro.intro E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I \ s ε : ℝ ε0 : ε > 0 ε' : ℝ ε'0 : 0 < ε' hlt : 2 * ↑c * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1} J : Box (Fin (n + 1)) hle : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ hxJ : x ∈ ↑Box.Icc J hJc : GP.bDistortion = true → Box.distortion J ≤ c ⊢ ‖(∏ j : Fin (n + 1), (Box.upper J j - Box.lower J j)) • ↑(f' x) (Pi.single i 1) - ↑(BoxAdditiveMap.upperSubLower I i (fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume) (fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume)))) (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J)) J‖ ≤ ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J [PROOFSTEP] refine' (norm_volume_sub_integral_face_upper_sub_lower_smul_le _ (Hc.mono <| Box.le_iff_Icc.1 hle) hxJ ε'0 (fun y hy => Hδ _) (hJc rfl)).trans _ [GOAL] case refine'_4.intro.intro.intro.intro.refine'_1 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I \ s ε : ℝ ε0 : ε > 0 ε' : ℝ ε'0 : 0 < ε' hlt : 2 * ↑c * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1} J : Box (Fin (n + 1)) hle : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ hxJ : x ∈ ↑Box.Icc J hJc : GP.bDistortion = true → Box.distortion J ≤ c y : Fin (n + 1) → ℝ hy : y ∈ ↑Box.Icc J ⊢ y ∈ closedBall x δ ∩ ↑Box.Icc I [PROOFSTEP] exact ⟨hJδ hy, Box.le_iff_Icc.1 hle hy⟩ [GOAL] case refine'_4.intro.intro.intro.intro.refine'_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I \ s ε : ℝ ε0 : ε > 0 ε' : ℝ ε'0 : 0 < ε' hlt : 2 * ↑c * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1} J : Box (Fin (n + 1)) hle : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ hxJ : x ∈ ↑Box.Icc J hJc : GP.bDistortion = true → Box.distortion J ≤ c ⊢ 2 * ε' * ↑c * ∏ j : Fin (n + 1), (Box.upper J j - Box.lower J j) ≤ ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J [PROOFSTEP] rw [mul_right_comm (2 : ℝ), ← Box.volume_apply] [GOAL] case refine'_4.intro.intro.intro.intro.refine'_2 E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) Hc : ContinuousOn f (↑Box.Icc I) fI : ℝ → Box (Fin n) → E := fun y J => integral J GP (fun x => f (Fin.insertNth i y x)) BoxAdditiveMap.volume fb : ↑(Set.Icc (Box.lower I i) (Box.upper I i)) → Fin n →ᵇᵃ[↑(Box.face I i)] E := fun x => Integrable.toBoxAdditive (_ : Integrable (Box.face I i) GP (f ∘ Fin.insertNth i ↑x) (BoxAdditiveMap.toSMul (Measure.toBoxAdditive volume))) F : Fin (n + 1) →ᵇᵃ[↑I] E := BoxAdditiveMap.upperSubLower I i fI fb (_ : ∀ (x : ℝ), x ∈ Set.Icc (Box.lower I i) (Box.upper I i) → ∀ (J : Box (Fin n)), fI x J = fI x J) c : ℝ≥0 x : Fin (n + 1) → ℝ hx : x ∈ ↑Box.Icc I \ s ε : ℝ ε0 : ε > 0 ε' : ℝ ε'0 : 0 < ε' hlt : 2 * ↑c * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : closedBall x δ ∩ ↑Box.Icc I ⊆ {x_1 | (fun x_2 => ‖f x_2 - f x - ↑(f' x) (x_2 - x)‖ ≤ ε' * ‖x_2 - x‖) x_1} J : Box (Fin (n + 1)) hle : J ≤ I hJδ : ↑Box.Icc J ⊆ closedBall x δ hxJ : x ∈ ↑Box.Icc J hJc : GP.bDistortion = true → Box.distortion J ≤ c ⊢ 2 * ↑c * ε' * ↑(Measure.toBoxAdditive volume) J ≤ ε * ↑(BoxAdditiveMap.restrict (Measure.toBoxAdditive volume) ↑I (_ : ↑I ≤ ⊤)) J [PROOFSTEP] exact mul_le_mul_of_nonneg_right hlt.le ENNReal.toReal_nonneg [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i : Fin (n + 1) f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x ⊢ HasIntegral I GP (fun x => ∑ i : Fin (n + 1), ↑(f' x) (Pi.single i 1) i) BoxAdditiveMap.volume (∑ i : Fin (n + 1), (integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x) i) BoxAdditiveMap.volume - integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x) i) BoxAdditiveMap.volume)) [PROOFSTEP] refine HasIntegral.sum fun i _ => ?_ [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ContinuousWithinAt f (↑Box.Icc I) x Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → HasFDerivWithinAt f (f' x) (↑Box.Icc I) x i : Fin (n + 1) x✝ : i ∈ Finset.univ ⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1) i) BoxAdditiveMap.volume (integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x) i) BoxAdditiveMap.volume - integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x) i) BoxAdditiveMap.volume) [PROOFSTEP] simp only [hasFDerivWithinAt_pi', continuousWithinAt_pi] at Hd Hs [GOAL] E : Type u inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E n : ℕ inst✝ : CompleteSpace E I : Box (Fin (n + 1)) i✝ : Fin (n + 1) f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E s : Set (Fin (n + 1) → ℝ) hs : Set.Countable s i : Fin (n + 1) x✝ : i ∈ Finset.univ Hd : ∀ (x : Fin (n + 1) → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (i : Fin (n + 1)), HasFDerivWithinAt (fun x => f x i) (ContinuousLinearMap.comp (ContinuousLinearMap.proj i) (f' x)) (↑Box.Icc I) x Hs : ∀ (x : Fin (n + 1) → ℝ), x ∈ s → ∀ (i : Fin (n + 1)), ContinuousWithinAt (fun y => f y i) (↑Box.Icc I) x ⊢ HasIntegral I GP (fun x => ↑(f' x) (Pi.single i 1) i) BoxAdditiveMap.volume (integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.upper I i) x) i) BoxAdditiveMap.volume - integral (Box.face I i) GP (fun x => f (Fin.insertNth i (Box.lower I i) x) i) BoxAdditiveMap.volume) [PROOFSTEP] exact hasIntegral_GP_pderiv I _ _ s hs (fun x hx => Hs x hx i) (fun x hx => Hd x hx i) i
{"mathlib_filename": "Mathlib.Analysis.BoxIntegral.DivergenceTheorem", "llama_tokens": 73705}
{"mathlib_filename": "Mathlib.Control.Monad.Basic", "llama_tokens": 0}
[GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t α : Type u x : t' α ⊢ Equiv.map eqv id x = x [PROOFSTEP] simp [Equiv.map, id_map] [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t α β γ : Type u g : α → β h : β → γ x : t' α ⊢ Equiv.map eqv (h ∘ g) x = Equiv.map eqv h (Equiv.map eqv g x) [PROOFSTEP] simp [Equiv.map] [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t α β γ : Type u g : α → β h : β → γ x : t' α ⊢ (h ∘ g) <$> ↑(eqv α).symm x = h <$> g <$> ↑(eqv α).symm x [PROOFSTEP] apply comp_map [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t F : Functor t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f ⊢ LawfulFunctor t' [PROOFSTEP] have : F = Equiv.functor eqv := by cases F dsimp [Equiv.functor] congr <;> ext <;> dsimp only <;> [rw [← h₀]; rw [← h₁]] <;> rfl [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t F : Functor t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f ⊢ F = Equiv.functor eqv [PROOFSTEP] cases F [GOAL] case mk t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f ⊢ { map := map✝, mapConst := mapConst✝ } = Equiv.functor eqv [PROOFSTEP] dsimp [Equiv.functor] [GOAL] case mk t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f ⊢ { map := map✝, mapConst := mapConst✝ } = { map := fun {α β} => Equiv.map eqv, mapConst := fun {α β} => Equiv.map eqv ∘ Function.const β } [PROOFSTEP] congr <;> ext <;> dsimp only <;> [rw [← h₀]; rw [← h₁]] [GOAL] case mk t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f ⊢ { map := map✝, mapConst := mapConst✝ } = { map := fun {α β} => Equiv.map eqv, mapConst := fun {α β} => Equiv.map eqv ∘ Function.const β } [PROOFSTEP] congr [GOAL] case mk.e_map t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f ⊢ map✝ = fun {α β} => Equiv.map eqv [PROOFSTEP] ext [GOAL] case mk.e_mapConst t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f ⊢ mapConst✝ = fun {α β} => Equiv.map eqv ∘ Function.const β [PROOFSTEP] ext [GOAL] case mk.e_map.h.h.h.h t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f x✝³ x✝² : Type u x✝¹ : x✝³ → x✝² x✝ : t' x✝³ ⊢ map✝ x✝¹ x✝ = Equiv.map eqv x✝¹ x✝ [PROOFSTEP] dsimp only [GOAL] case mk.e_mapConst.h.h.h.h t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f x✝³ x✝² : Type u x✝¹ : x✝³ x✝ : t' x✝² ⊢ mapConst✝ x✝¹ x✝ = (fun {α β} => Equiv.map eqv ∘ Function.const β) x✝¹ x✝ [PROOFSTEP] dsimp only [GOAL] case mk.e_map.h.h.h.h t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f x✝³ x✝² : Type u x✝¹ : x✝³ → x✝² x✝ : t' x✝³ ⊢ map✝ x✝¹ x✝ = Equiv.map eqv x✝¹ x✝ [PROOFSTEP] rw [← h₀] [GOAL] case mk.e_mapConst.h.h.h.h t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f x✝³ x✝² : Type u x✝¹ : x✝³ x✝ : t' x✝² ⊢ mapConst✝ x✝¹ x✝ = (Equiv.map eqv ∘ Function.const x✝²) x✝¹ x✝ [PROOFSTEP] rw [← h₁] [GOAL] case mk.e_map.h.h.h.h t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f x✝³ x✝² : Type u x✝¹ : x✝³ → x✝² x✝ : t' x✝³ ⊢ map✝ x✝¹ x✝ = x✝¹ <$> x✝ [PROOFSTEP] rfl [GOAL] case mk.e_mapConst.h.h.h.h t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t map✝ : {α β : Type u} → (α → β) → t' α → t' β mapConst✝ : {α β : Type u} → α → t' β → t' α h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f x✝³ x✝² : Type u x✝¹ : x✝³ x✝ : t' x✝² ⊢ mapConst✝ x✝¹ x✝ = mapConst x✝¹ x✝ [PROOFSTEP] rfl [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t F : Functor t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f this : F = Equiv.functor eqv ⊢ LawfulFunctor t' [PROOFSTEP] subst this [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹ : Functor t inst✝ : LawfulFunctor t h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f ⊢ LawfulFunctor t' [PROOFSTEP] exact Equiv.lawfulFunctor eqv [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u x : t' α ⊢ Equiv.traverse eqv pure x = x [PROOFSTEP] simp [Equiv.traverse] [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u f : α → β x : t' α ⊢ Equiv.traverse eqv (pure ∘ f) x = pure (Equiv.map eqv f x) [PROOFSTEP] simp [Equiv.traverse, traverse_eq_map_id, functor_norm] [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u f : α → β x : t' α ⊢ ↑(eqv β) (id.mk (f <$> ↑(eqv α).symm x)) = Equiv.map eqv f x [PROOFSTEP] rfl [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u f : β → F γ g : α → G β x : t' α ⊢ Equiv.traverse eqv (Comp.mk ∘ map f ∘ g) x = Comp.mk (Equiv.traverse eqv f <$> Equiv.traverse eqv g x) [PROOFSTEP] simp [Equiv.traverse, comp_traverse, functor_norm] [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u f : β → F γ g : α → G β x : t' α ⊢ Comp.mk (((fun x => ↑(eqv γ) <$> x) ∘ traverse f) <$> traverse g (↑(eqv α).symm x)) = Comp.mk (((fun x => ↑(eqv γ) <$> traverse f (↑(eqv β).symm x)) ∘ ↑(eqv β)) <$> traverse g (↑(eqv α).symm x)) [PROOFSTEP] congr [GOAL] case e_x.e_a t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u f : β → F γ g : α → G β x : t' α ⊢ (fun x => ↑(eqv γ) <$> x) ∘ traverse f = (fun x => ↑(eqv γ) <$> traverse f (↑(eqv β).symm x)) ∘ ↑(eqv β) [PROOFSTEP] ext [GOAL] case e_x.e_a.h t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u f : β → F γ g : α → G β x : t' α x✝ : t β ⊢ ((fun x => ↑(eqv γ) <$> x) ∘ traverse f) x✝ = ((fun x => ↑(eqv γ) <$> traverse f (↑(eqv β).symm x)) ∘ ↑(eqv β)) x✝ [PROOFSTEP] simp [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁵ : Traversable t inst✝⁴ : LawfulTraversable t F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u f : α → F β x : t' α ⊢ (fun {α} => ApplicativeTransformation.app η α) (Equiv.traverse eqv f x) = Equiv.traverse eqv ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x [PROOFSTEP] simp only [Equiv.traverse, functor_norm] [GOAL] t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁶ : Traversable t inst✝⁵ : LawfulTraversable t F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulApplicative F inst✝¹ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f ⊢ LawfulTraversable t' [PROOFSTEP] refine' { toLawfulFunctor := Equiv.lawfulFunctor' eqv @h₀ @h₁ .. } [GOAL] case refine'_1 t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁶ : Traversable t inst✝⁵ : LawfulTraversable t F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulApplicative F inst✝¹ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f ⊢ ∀ {α : Type u} (x : t' α), traverse pure x = x [PROOFSTEP] intros [GOAL] case refine'_2 t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁶ : Traversable t inst✝⁵ : LawfulTraversable t F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulApplicative F inst✝¹ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f ⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α β γ : Type u} (f : β → F γ) (g : α → G β) (x : t' α), traverse (Comp.mk ∘ map f ∘ g) x = Comp.mk (traverse f <$> traverse g x) [PROOFSTEP] intros [GOAL] case refine'_3 t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁶ : Traversable t inst✝⁵ : LawfulTraversable t F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulApplicative F inst✝¹ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f ⊢ ∀ {α β : Type u} (f : α → β) (x : t' α), traverse (pure ∘ f) x = id.mk (f <$> x) [PROOFSTEP] intros [GOAL] case refine'_4 t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁶ : Traversable t inst✝⁵ : LawfulTraversable t F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulApplicative F inst✝¹ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f ⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α β : Type u} (f : α → F β) (x : t' α), (fun {α} => ApplicativeTransformation.app η α) (traverse f x) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x [PROOFSTEP] intros [GOAL] case refine'_1 t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁶ : Traversable t inst✝⁵ : LawfulTraversable t F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulApplicative F inst✝¹ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f α✝ : Type u x✝ : t' α✝ ⊢ traverse pure x✝ = x✝ [PROOFSTEP] rw [h₂, Equiv.id_traverse] [GOAL] case refine'_2 t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹⁰ : Traversable t inst✝⁹ : LawfulTraversable t F G : Type u → Type u inst✝⁸ : Applicative F inst✝⁷ : Applicative G inst✝⁶ : LawfulApplicative F inst✝⁵ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝⁴ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type u f✝ : β✝ → F✝ γ✝ g✝ : α✝ → G✝ β✝ x✝ : t' α✝ ⊢ traverse (Comp.mk ∘ map f✝ ∘ g✝) x✝ = Comp.mk (traverse f✝ <$> traverse g✝ x✝) [PROOFSTEP] rw [h₂, Equiv.comp_traverse, h₂] [GOAL] case refine'_2 t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹⁰ : Traversable t inst✝⁹ : LawfulTraversable t F G : Type u → Type u inst✝⁸ : Applicative F inst✝⁷ : Applicative G inst✝⁶ : LawfulApplicative F inst✝⁵ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝⁴ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type u f✝ : β✝ → F✝ γ✝ g✝ : α✝ → G✝ β✝ x✝ : t' α✝ ⊢ Comp.mk (Equiv.traverse eqv f✝ <$> Equiv.traverse eqv g✝ x✝) = Comp.mk (Equiv.traverse eqv f✝ <$> traverse g✝ x✝) [PROOFSTEP] congr [GOAL] case refine'_2.e_x.e_a t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹⁰ : Traversable t inst✝⁹ : LawfulTraversable t F G : Type u → Type u inst✝⁸ : Applicative F inst✝⁷ : Applicative G inst✝⁶ : LawfulApplicative F inst✝⁵ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝⁴ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type u f✝ : β✝ → F✝ γ✝ g✝ : α✝ → G✝ β✝ x✝ : t' α✝ ⊢ Equiv.traverse eqv g✝ x✝ = traverse g✝ x✝ [PROOFSTEP] rw [h₂] [GOAL] case refine'_3 t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁶ : Traversable t inst✝⁵ : LawfulTraversable t F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulApplicative F inst✝¹ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f α✝ β✝ : Type u f✝ : α✝ → β✝ x✝ : t' α✝ ⊢ traverse (pure ∘ f✝) x✝ = id.mk (f✝ <$> x✝) [PROOFSTEP] rw [h₂, Equiv.traverse_eq_map_id, h₀] [GOAL] case refine'_3 t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝⁶ : Traversable t inst✝⁵ : LawfulTraversable t F G : Type u → Type u inst✝⁴ : Applicative F inst✝³ : Applicative G inst✝² : LawfulApplicative F inst✝¹ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f α✝ β✝ : Type u f✝ : α✝ → β✝ x✝ : t' α✝ ⊢ pure (Equiv.map eqv f✝ x✝) = id.mk (Equiv.map eqv f✝ x✝) [PROOFSTEP] rfl [GOAL] case refine'_4 t t' : Type u → Type u eqv : (α : Type u) → t α ≃ t' α inst✝¹⁰ : Traversable t inst✝⁹ : LawfulTraversable t F G : Type u → Type u inst✝⁸ : Applicative F inst✝⁷ : Applicative G inst✝⁶ : LawfulApplicative F inst✝⁵ : LawfulApplicative G η : ApplicativeTransformation F G α β γ : Type u inst✝⁴ : Traversable t' h₀ : ∀ {α β : Type u} (f : α → β), map f = Equiv.map eqv f h₁ : ∀ {α β : Type u} (f : β), mapConst f = (Equiv.map eqv ∘ Function.const α) f h₂ : ∀ {F : Type u → Type u} [inst : Applicative F] [inst_1 : LawfulApplicative F] {α β : Type u} (f : α → F β), traverse f = Equiv.traverse eqv f F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ β✝ : Type u f✝ : α✝ → F✝ β✝ x✝ : t' α✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (traverse f✝ x✝) = traverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) x✝ [PROOFSTEP] rw [h₂, Equiv.naturality, h₂]
{"mathlib_filename": "Mathlib.Control.Traversable.Equiv", "llama_tokens": 10730}
[GOAL] τ : Type u_1 α : Type u_2 ϕ : τ → α → α s : Set α ⊢ IsInvariant ϕ s ↔ ∀ (t : τ), ϕ t '' s ⊆ s [PROOFSTEP] simp_rw [IsInvariant, mapsTo'] [GOAL] τ : Type u_1 inst✝³ : AddMonoid τ inst✝² : TopologicalSpace τ inst✝¹ : ContinuousAdd τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α f₁ : τ → α → α cont'✝¹ : Continuous (uncurry f₁) map_add'✝¹ : ∀ (t₁ t₂ : τ) (x : α), f₁ (t₁ + t₂) x = f₁ t₁ (f₁ t₂ x) map_zero'✝¹ : ∀ (x : α), f₁ 0 x = x f₂ : τ → α → α cont'✝ : Continuous (uncurry f₂) map_add'✝ : ∀ (t₁ t₂ : τ) (x : α), f₂ (t₁ + t₂) x = f₂ t₁ (f₂ t₂ x) map_zero'✝ : ∀ (x : α), f₂ 0 x = x h : ∀ (t : τ) (x : α), toFun { toFun := f₁, cont' := cont'✝¹, map_add' := map_add'✝¹, map_zero' := map_zero'✝¹ } t x = toFun { toFun := f₂, cont' := cont'✝, map_add' := map_add'✝, map_zero' := map_zero'✝ } t x ⊢ { toFun := f₁, cont' := cont'✝¹, map_add' := map_add'✝¹, map_zero' := map_zero'✝¹ } = { toFun := f₂, cont' := cont'✝, map_add' := map_add'✝, map_zero' := map_zero'✝ } [PROOFSTEP] congr [GOAL] case e_toFun τ : Type u_1 inst✝³ : AddMonoid τ inst✝² : TopologicalSpace τ inst✝¹ : ContinuousAdd τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α f₁ : τ → α → α cont'✝¹ : Continuous (uncurry f₁) map_add'✝¹ : ∀ (t₁ t₂ : τ) (x : α), f₁ (t₁ + t₂) x = f₁ t₁ (f₁ t₂ x) map_zero'✝¹ : ∀ (x : α), f₁ 0 x = x f₂ : τ → α → α cont'✝ : Continuous (uncurry f₂) map_add'✝ : ∀ (t₁ t₂ : τ) (x : α), f₂ (t₁ + t₂) x = f₂ t₁ (f₂ t₂ x) map_zero'✝ : ∀ (x : α), f₂ 0 x = x h : ∀ (t : τ) (x : α), toFun { toFun := f₁, cont' := cont'✝¹, map_add' := map_add'✝¹, map_zero' := map_zero'✝¹ } t x = toFun { toFun := f₂, cont' := cont'✝, map_add' := map_add'✝, map_zero' := map_zero'✝ } t x ⊢ f₁ = f₂ [PROOFSTEP] funext [GOAL] case e_toFun.h.h τ : Type u_1 inst✝³ : AddMonoid τ inst✝² : TopologicalSpace τ inst✝¹ : ContinuousAdd τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α f₁ : τ → α → α cont'✝¹ : Continuous (uncurry f₁) map_add'✝¹ : ∀ (t₁ t₂ : τ) (x : α), f₁ (t₁ + t₂) x = f₁ t₁ (f₁ t₂ x) map_zero'✝¹ : ∀ (x : α), f₁ 0 x = x f₂ : τ → α → α cont'✝ : Continuous (uncurry f₂) map_add'✝ : ∀ (t₁ t₂ : τ) (x : α), f₂ (t₁ + t₂) x = f₂ t₁ (f₂ t₂ x) map_zero'✝ : ∀ (x : α), f₂ 0 x = x h : ∀ (t : τ) (x : α), toFun { toFun := f₁, cont' := cont'✝¹, map_add' := map_add'✝¹, map_zero' := map_zero'✝¹ } t x = toFun { toFun := f₂, cont' := cont'✝, map_add' := map_add'✝, map_zero' := map_zero'✝ } t x x✝¹ : τ x✝ : α ⊢ f₁ x✝¹ x✝ = f₂ x✝¹ x✝ [PROOFSTEP] exact h _ _ [GOAL] τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α s : Set α h : ∀ (t : τ), toFun ϕ t '' s ⊆ s t : τ x✝ : α hx : x✝ ∈ s ⊢ toFun ϕ t (toFun ϕ (-t) x✝) = x✝ [PROOFSTEP] simp [← map_add] [GOAL] τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α s : Set α h : ∀ (t : τ), toFun ϕ t '' s = s t : τ ⊢ toFun ϕ t '' s ⊆ s [PROOFSTEP] rw [h t] [GOAL] τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α x✝² x✝¹ : τ x✝ : α ⊢ (fun t => toFun ϕ (-t)) (x✝² + x✝¹) x✝ = (fun t => toFun ϕ (-t)) x✝² ((fun t => toFun ϕ (-t)) x✝¹ x✝) [PROOFSTEP] dsimp [GOAL] τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α x✝² x✝¹ : τ x✝ : α ⊢ toFun ϕ (-(x✝² + x✝¹)) x✝ = toFun ϕ (-x✝²) (toFun ϕ (-x✝¹) x✝) [PROOFSTEP] rw [neg_add, map_add] [GOAL] τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α x✝ : α ⊢ (fun t => toFun ϕ (-t)) 0 x✝ = x✝ [PROOFSTEP] dsimp [GOAL] τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α x✝ : α ⊢ toFun ϕ (-0) x✝ = x✝ [PROOFSTEP] rw [neg_zero, map_zero_apply] [GOAL] τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α t : τ ⊢ Continuous (toFun ϕ t) [PROOFSTEP] rw [← curry_uncurry ϕ.toFun] [GOAL] τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α t : τ ⊢ Continuous (curry (uncurry ϕ.toFun) t) [PROOFSTEP] apply continuous_curry [GOAL] case h τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α t : τ ⊢ Continuous (uncurry ϕ.toFun) [PROOFSTEP] exact ϕ.cont' [GOAL] τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α t : τ x : α ⊢ toFun ϕ (-t) (toFun ϕ t x) = x [PROOFSTEP] rw [← map_add, neg_add_self, map_zero_apply] [GOAL] τ : Type u_1 inst✝³ : AddCommGroup τ inst✝² : TopologicalSpace τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α ϕ : Flow τ α t : τ x : α ⊢ toFun ϕ t (toFun ϕ (-t) x) = x [PROOFSTEP] rw [← map_add, add_neg_self, map_zero_apply]
{"mathlib_filename": "Mathlib.Dynamics.Flow", "llama_tokens": 2881}
[GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ sinh (dist z w / 2) = dist ↑z ↑w / (2 * sqrt (im z * im w)) [PROOFSTEP] rw [dist_eq, mul_div_cancel_left (arsinh _) two_ne_zero, sinh_arsinh] [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ cosh (dist z w / 2) = dist (↑z) (↑(starRingEnd ℂ) ↑w) / (2 * sqrt (im z * im w)) [PROOFSTEP] have H₁ : (2 ^ 2 : ℝ) = 4 := by norm_num1 [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ 2 ^ 2 = 4 [PROOFSTEP] norm_num1 [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ H₁ : 2 ^ 2 = 4 ⊢ cosh (dist z w / 2) = dist (↑z) (↑(starRingEnd ℂ) ↑w) / (2 * sqrt (im z * im w)) [PROOFSTEP] have H₂ : 0 < z.im * w.im := mul_pos z.im_pos w.im_pos [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ H₁ : 2 ^ 2 = 4 H₂ : 0 < im z * im w ⊢ cosh (dist z w / 2) = dist (↑z) (↑(starRingEnd ℂ) ↑w) / (2 * sqrt (im z * im w)) [PROOFSTEP] have H₃ : 0 < 2 * sqrt (z.im * w.im) := mul_pos two_pos (sqrt_pos.2 H₂) [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ H₁ : 2 ^ 2 = 4 H₂ : 0 < im z * im w H₃ : 0 < 2 * sqrt (im z * im w) ⊢ cosh (dist z w / 2) = dist (↑z) (↑(starRingEnd ℂ) ↑w) / (2 * sqrt (im z * im w)) [PROOFSTEP] rw [← sq_eq_sq (cosh_pos _).le (div_nonneg dist_nonneg H₃.le), cosh_sq', sinh_half_dist, div_pow, div_pow, one_add_div (pow_ne_zero 2 H₃.ne'), mul_pow, sq_sqrt H₂.le, H₁] [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ H₁ : 2 ^ 2 = 4 H₂ : 0 < im z * im w H₃ : 0 < 2 * sqrt (im z * im w) ⊢ (4 * (im z * im w) + dist ↑z ↑w ^ 2) / (4 * (im z * im w)) = dist (↑z) (↑(starRingEnd ℂ) ↑w) ^ 2 / (4 * (im z * im w)) [PROOFSTEP] congr 1 [GOAL] case e_a z✝ w✝ : ℍ r R : ℝ z w : ℍ H₁ : 2 ^ 2 = 4 H₂ : 0 < im z * im w H₃ : 0 < 2 * sqrt (im z * im w) ⊢ 4 * (im z * im w) + dist ↑z ↑w ^ 2 = dist (↑z) (↑(starRingEnd ℂ) ↑w) ^ 2 [PROOFSTEP] simp only [Complex.dist_eq, Complex.sq_abs, Complex.normSq_sub, Complex.normSq_conj, Complex.conj_conj, Complex.mul_re, Complex.conj_re, Complex.conj_im, coe_im] [GOAL] case e_a z✝ w✝ : ℍ r R : ℝ z w : ℍ H₁ : 2 ^ 2 = 4 H₂ : 0 < im z * im w H₃ : 0 < 2 * sqrt (im z * im w) ⊢ 4 * (im z * im w) + (↑Complex.normSq ↑z + ↑Complex.normSq ↑w - 2 * ((↑z).re * (↑w).re - im z * -im w)) = ↑Complex.normSq ↑z + ↑Complex.normSq ↑w - 2 * ((↑z).re * (↑w).re - im z * im w) [PROOFSTEP] ring [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ tanh (dist z w / 2) = dist ↑z ↑w / dist (↑z) (↑(starRingEnd ℂ) ↑w) [PROOFSTEP] rw [tanh_eq_sinh_div_cosh, sinh_half_dist, cosh_half_dist, div_div_div_comm, div_self, div_one] [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ 2 * sqrt (im z * im w) ≠ 0 [PROOFSTEP] exact (mul_pos (zero_lt_two' ℝ) (sqrt_pos.2 <| mul_pos z.im_pos w.im_pos)).ne' [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ exp (dist z w / 2) = (dist ↑z ↑w + dist (↑z) (↑(starRingEnd ℂ) ↑w)) / (2 * sqrt (im z * im w)) [PROOFSTEP] rw [← sinh_add_cosh, sinh_half_dist, cosh_half_dist, add_div] [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ cosh (dist z w) = 1 + dist ↑z ↑w ^ 2 / (2 * im z * im w) [PROOFSTEP] rw [dist_eq, cosh_two_mul, cosh_sq', add_assoc, ← two_mul, sinh_arsinh, div_pow, mul_pow, sq_sqrt (mul_pos z.im_pos w.im_pos).le, sq (2 : ℝ), mul_assoc, ← mul_div_assoc, mul_assoc, mul_div_mul_left _ _ (two_ne_zero' ℝ)] [GOAL] z w : ℍ r R : ℝ a b c : ℍ ⊢ sinh ((dist a b + dist b c) / 2) = (dist ↑a ↑b * dist (↑c) (↑(starRingEnd ℂ) ↑b) + dist ↑b ↑c * dist (↑a) (↑(starRingEnd ℂ) ↑b)) / (2 * sqrt (im a * im c) * dist (↑b) (↑(starRingEnd ℂ) ↑b)) [PROOFSTEP] simp only [add_div _ _ (2 : ℝ), sinh_add, sinh_half_dist, cosh_half_dist, div_mul_div_comm] [GOAL] z w : ℍ r R : ℝ a b c : ℍ ⊢ dist ↑a ↑b * dist (↑b) (↑(starRingEnd ℂ) ↑c) / (2 * sqrt (im a * im b) * (2 * sqrt (im b * im c))) + dist (↑a) (↑(starRingEnd ℂ) ↑b) * dist ↑b ↑c / (2 * sqrt (im a * im b) * (2 * sqrt (im b * im c))) = (dist ↑a ↑b * dist (↑c) (↑(starRingEnd ℂ) ↑b) + dist ↑b ↑c * dist (↑a) (↑(starRingEnd ℂ) ↑b)) / (2 * sqrt (im a * im c) * dist (↑b) (↑(starRingEnd ℂ) ↑b)) [PROOFSTEP] rw [← add_div, Complex.dist_self_conj, coe_im, abs_of_pos b.im_pos, mul_comm (dist (b : ℂ) _), dist_comm (b : ℂ), Complex.dist_conj_comm, mul_mul_mul_comm, mul_mul_mul_comm _ _ _ b.im] [GOAL] z w : ℍ r R : ℝ a b c : ℍ ⊢ (dist ↑a ↑b * dist (↑c) (↑(starRingEnd ℂ) ↑b) + dist (↑a) (↑(starRingEnd ℂ) ↑b) * dist ↑b ↑c) / (2 * 2 * (sqrt (im a * im b) * sqrt (im b * im c))) = (dist ↑a ↑b * dist (↑c) (↑(starRingEnd ℂ) ↑b) + dist (↑a) (↑(starRingEnd ℂ) ↑b) * dist ↑b ↑c) / (2 * 2 * (sqrt (im a * im c) * im b)) [PROOFSTEP] congr 2 [GOAL] case e_a.e_a z w : ℍ r R : ℝ a b c : ℍ ⊢ sqrt (im a * im b) * sqrt (im b * im c) = sqrt (im a * im c) * im b [PROOFSTEP] rw [sqrt_mul, sqrt_mul, sqrt_mul, mul_comm (sqrt a.im), mul_mul_mul_comm, mul_self_sqrt, mul_comm] [GOAL] case e_a.e_a z w : ℍ r R : ℝ a b c : ℍ ⊢ 0 ≤ im b [PROOFSTEP] exact (im_pos _).le [GOAL] case e_a.e_a.hx z w : ℍ r R : ℝ a b c : ℍ ⊢ 0 ≤ im a [PROOFSTEP] exact (im_pos _).le [GOAL] case e_a.e_a.hx z w : ℍ r R : ℝ a b c : ℍ ⊢ 0 ≤ im b [PROOFSTEP] exact (im_pos _).le [GOAL] case e_a.e_a.hx z w : ℍ r R : ℝ a b c : ℍ ⊢ 0 ≤ im a [PROOFSTEP] exact (im_pos _).le [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ dist z w = dist w z [PROOFSTEP] simp only [dist_eq, dist_comm (z : ℂ), mul_comm] [GOAL] z w : ℍ r R : ℝ ⊢ dist z w ≤ r ↔ dist ↑z ↑w / (2 * sqrt (im z * im w)) ≤ sinh (r / 2) [PROOFSTEP] rw [← div_le_div_right (zero_lt_two' ℝ), ← sinh_le_sinh, sinh_half_dist] [GOAL] z w : ℍ r R : ℝ ⊢ dist z w = r ↔ dist ↑z ↑w / (2 * sqrt (im z * im w)) = sinh (r / 2) [PROOFSTEP] rw [← div_left_inj' (two_ne_zero' ℝ), ← sinh_inj, sinh_half_dist] [GOAL] z w : ℍ r R : ℝ hr : 0 ≤ r ⊢ dist z w = r ↔ dist ↑z ↑w ^ 2 / (4 * im z * im w) = sinh (r / 2) ^ 2 [PROOFSTEP] rw [dist_eq_iff_eq_sinh, ← sq_eq_sq, div_pow, mul_pow, sq_sqrt, mul_assoc] [GOAL] z w : ℍ r R : ℝ hr : 0 ≤ r ⊢ dist ↑z ↑w ^ 2 / (2 ^ 2 * (im z * im w)) = sinh (r / 2) ^ 2 ↔ dist ↑z ↑w ^ 2 / (4 * (im z * im w)) = sinh (r / 2) ^ 2 [PROOFSTEP] norm_num [GOAL] z w : ℍ r R : ℝ hr : 0 ≤ r ⊢ 0 ≤ im z * im w [PROOFSTEP] exact (mul_pos z.im_pos w.im_pos).le [GOAL] case ha z w : ℍ r R : ℝ hr : 0 ≤ r ⊢ 0 ≤ dist ↑z ↑w / (2 * sqrt (im z * im w)) [PROOFSTEP] exact div_nonneg dist_nonneg (mul_nonneg zero_le_two <| sqrt_nonneg _) [GOAL] case hb z w : ℍ r R : ℝ hr : 0 ≤ r ⊢ 0 ≤ sinh (r / 2) [PROOFSTEP] exact sinh_nonneg_iff.2 (div_nonneg hr zero_le_two) [GOAL] z w : ℍ r R : ℝ a b c : ℍ ⊢ dist a c ≤ dist a b + dist b c [PROOFSTEP] rw [dist_le_iff_le_sinh, sinh_half_dist_add_dist, div_mul_eq_div_div _ _ (dist _ _), le_div_iff, div_mul_eq_mul_div] [GOAL] z w : ℍ r R : ℝ a b c : ℍ ⊢ dist ↑a ↑c * dist (↑b) (↑(starRingEnd ℂ) ↑b) / (2 * sqrt (im a * im c)) ≤ (dist ↑a ↑b * dist (↑c) (↑(starRingEnd ℂ) ↑b) + dist ↑b ↑c * dist (↑a) (↑(starRingEnd ℂ) ↑b)) / (2 * sqrt (im a * im c)) [PROOFSTEP] exact div_le_div_of_le (mul_nonneg zero_le_two (sqrt_nonneg _)) (EuclideanGeometry.mul_dist_le_mul_dist_add_mul_dist (a : ℂ) b c (conj (b : ℂ))) [GOAL] z w : ℍ r R : ℝ a b c : ℍ ⊢ 0 < dist (↑b) (↑(starRingEnd ℂ) ↑b) [PROOFSTEP] rw [dist_comm, dist_pos, Ne.def, Complex.conj_eq_iff_im] [GOAL] z w : ℍ r R : ℝ a b c : ℍ ⊢ ¬(↑b).im = 0 [PROOFSTEP] exact b.im_ne_zero [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ dist z w ≤ dist ↑z ↑w / sqrt (im z * im w) [PROOFSTEP] rw [dist_le_iff_le_sinh, ← div_mul_eq_div_div_swap, self_le_sinh_iff] [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ 0 ≤ dist ↑z ↑w / (2 * sqrt (im z * im w)) [PROOFSTEP] exact div_nonneg dist_nonneg (mul_nonneg zero_le_two (sqrt_nonneg _)) [GOAL] z✝ w : ℍ r R : ℝ z : ℍ ⊢ dist z z = 0 [PROOFSTEP] rw [dist_eq, dist_self, zero_div, arsinh_zero, mul_zero] [GOAL] z w : ℍ r R : ℝ x✝¹ x✝ : ℍ ⊢ (fun x y => ↑{ val := 2 * arsinh (↑(let src := Complex.abs; { toAddGroupSeminorm := { toFun := src.toFun, map_zero' := Complex.instNormedAddCommGroupComplex.proof_1, add_le' := (_ : ∀ (x y : ℂ), MulHom.toFun src.toMulHom (x + y) ≤ MulHom.toFun src.toMulHom x + MulHom.toFun src.toMulHom y), neg' := Complex.instNormedAddCommGroupComplex.proof_2 }, eq_zero_of_map_eq_zero' := Complex.instNormedAddCommGroupComplex.proof_3 }).toAddGroupSeminorm (↑x - ↑y) / (2 * sqrt (im x * im y))), property := (_ : 0 ≤ 2 * arsinh (↑(let src := Complex.abs; { toAddGroupSeminorm := { toFun := src.toFun, map_zero' := Complex.instNormedAddCommGroupComplex.proof_1, add_le' := (_ : ∀ (x y : ℂ), MulHom.toFun src.toMulHom (x + y) ≤ MulHom.toFun src.toMulHom x + MulHom.toFun src.toMulHom y), neg' := Complex.instNormedAddCommGroupComplex.proof_2 }, eq_zero_of_map_eq_zero' := Complex.instNormedAddCommGroupComplex.proof_3 }).toAddGroupSeminorm (↑x - ↑y) / (2 * sqrt (im x * im y)))) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ h : dist z w = 0 ⊢ z = w [PROOFSTEP] simpa [dist_eq, Real.sqrt_eq_zero', (mul_pos z.im_pos w.im_pos).not_le, ext_iff] using h [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ Real.cosh (dist z w) = ((re z - re w) ^ 2 + im z ^ 2 + im w ^ 2) / (2 * im z * im w) [PROOFSTEP] have H : 0 < 2 * z.im * w.im := mul_pos (mul_pos two_pos z.im_pos) w.im_pos [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ H : 0 < 2 * im z * im w ⊢ Real.cosh (dist z w) = ((re z - re w) ^ 2 + im z ^ 2 + im w ^ 2) / (2 * im z * im w) [PROOFSTEP] field_simp [cosh_dist, Complex.dist_eq, Complex.sq_abs, normSq_apply, H, H.ne'] [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ H : 0 < 2 * im z * im w ⊢ 2 * im z * im w + ((re z - re w) * (re z - re w) + (im z - im w) * (im z - im w)) = (re z - re w) ^ 2 + im z ^ 2 + im w ^ 2 [PROOFSTEP] ring [GOAL] z✝ w : ℍ r R : ℝ z : ℍ ⊢ im (center z 0) = im z [PROOFSTEP] rw [center_im, Real.cosh_zero, mul_one] [GOAL] z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ ⊢ dist ↑z ↑(center w r) ^ 2 = 2 * im z * im w * (Real.cosh (dist z w) - Real.cosh r) + (im w * Real.sinh r) ^ 2 [PROOFSTEP] have H : 2 * z.im * w.im ≠ 0 := by apply_rules [mul_ne_zero, two_ne_zero, im_ne_zero] [GOAL] z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ ⊢ 2 * im z * im w ≠ 0 [PROOFSTEP] apply_rules [mul_ne_zero, two_ne_zero, im_ne_zero] [GOAL] z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ H : 2 * im z * im w ≠ 0 ⊢ dist ↑z ↑(center w r) ^ 2 = 2 * im z * im w * (Real.cosh (dist z w) - Real.cosh r) + (im w * Real.sinh r) ^ 2 [PROOFSTEP] simp only [Complex.dist_eq, Complex.sq_abs, normSq_apply, coe_re, coe_im, center_re, center_im, cosh_dist', mul_div_cancel' _ H, sub_sq z.im, mul_pow, Real.cosh_sq, sub_re, sub_im, mul_sub, ← sq] [GOAL] z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ H : 2 * im z * im w ≠ 0 ⊢ (re z - re w) ^ 2 + (im z ^ 2 - 2 * im z * (im w * Real.cosh r) + im w ^ 2 * (Real.sinh r ^ 2 + 1)) = (re z - re w) ^ 2 + im z ^ 2 + im w ^ 2 - 2 * im z * im w * Real.cosh r + im w ^ 2 * Real.sinh r ^ 2 [PROOFSTEP] ring [GOAL] z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ ⊢ dist ↑z ↑(center w r) = sqrt (2 * im z * im w * (Real.cosh (dist z w) - Real.cosh r) + (im w * Real.sinh r) ^ 2) [PROOFSTEP] rw [← sqrt_sq dist_nonneg, dist_coe_center_sq] [GOAL] z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ ⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r) [PROOFSTEP] letI := metricSpaceAux [GOAL] z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ this : MetricSpace ℍ := metricSpaceAux ⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r) [PROOFSTEP] cases' lt_or_le r 0 with hr₀ hr₀ [GOAL] case inl z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ this : MetricSpace ℍ := metricSpaceAux hr₀ : r < 0 ⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r) [PROOFSTEP] trans Ordering.gt [GOAL] z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ this : MetricSpace ℍ := metricSpaceAux hr₀ : r < 0 ⊢ cmp (dist z w) r = Ordering.gt z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ this : MetricSpace ℍ := metricSpaceAux hr₀ : r < 0 ⊢ Ordering.gt = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r) [PROOFSTEP] exacts [(hr₀.trans_le dist_nonneg).cmp_eq_gt, ((mul_neg_of_pos_of_neg w.im_pos (sinh_neg_iff.2 hr₀)).trans_le dist_nonneg).cmp_eq_gt.symm] [GOAL] case inr z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ this : MetricSpace ℍ := metricSpaceAux hr₀ : 0 ≤ r ⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r) [PROOFSTEP] have hr₀' : 0 ≤ w.im * Real.sinh r := mul_nonneg w.im_pos.le (sinh_nonneg_iff.2 hr₀) [GOAL] case inr z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ this : MetricSpace ℍ := metricSpaceAux hr₀ : 0 ≤ r hr₀' : 0 ≤ im w * Real.sinh r ⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r) [PROOFSTEP] have hzw₀ : 0 < 2 * z.im * w.im := mul_pos (mul_pos two_pos z.im_pos) w.im_pos [GOAL] case inr z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ this : MetricSpace ℍ := metricSpaceAux hr₀ : 0 ≤ r hr₀' : 0 ≤ im w * Real.sinh r hzw₀ : 0 < 2 * im z * im w ⊢ cmp (dist z w) r = cmp (dist ↑z ↑(center w r)) (im w * Real.sinh r) [PROOFSTEP] simp only [← cosh_strictMonoOn.cmp_map_eq dist_nonneg hr₀, ← (@strictMonoOn_pow ℝ _ _ two_pos).cmp_map_eq dist_nonneg hr₀', dist_coe_center_sq] [GOAL] case inr z✝ w✝ : ℍ r✝ R : ℝ z w : ℍ r : ℝ this : MetricSpace ℍ := metricSpaceAux hr₀ : 0 ≤ r hr₀' : 0 ≤ im w * Real.sinh r hzw₀ : 0 < 2 * im z * im w ⊢ cmp (Real.cosh (dist z w)) (Real.cosh r) = cmp (2 * im z * im w * (Real.cosh (dist z w) - Real.cosh r) + (im w * Real.sinh r) ^ 2) ((im w * Real.sinh r) ^ 2) [PROOFSTEP] rw [← cmp_mul_pos_left hzw₀, ← cmp_sub_zero, ← mul_sub, ← cmp_add_right, zero_add] [GOAL] z✝ w : ℍ r✝ R : ℝ z : ℍ r : ℝ ⊢ dist ↑z ↑(center z r) = im z * (Real.cosh r - 1) [PROOFSTEP] rw [dist_of_re_eq (z.center_re r).symm, dist_comm, Real.dist_eq, mul_sub, mul_one] [GOAL] z✝ w : ℍ r✝ R : ℝ z : ℍ r : ℝ ⊢ |(↑(center z r)).im - (↑z).im| = im z * Real.cosh r - im z [PROOFSTEP] exact abs_of_nonneg (sub_nonneg.2 <| le_mul_of_one_le_right z.im_pos.le (one_le_cosh _)) [GOAL] z w : ℍ r R : ℝ h : re z = re w ⊢ dist z w = dist (log (im z)) (log (im w)) [PROOFSTEP] have h₀ : 0 < z.im / w.im := div_pos z.im_pos w.im_pos [GOAL] z w : ℍ r R : ℝ h : re z = re w h₀ : 0 < im z / im w ⊢ dist z w = dist (log (im z)) (log (im w)) [PROOFSTEP] rw [dist_eq_iff_dist_coe_center_eq, Real.dist_eq, ← abs_sinh, ← log_div z.im_ne_zero w.im_ne_zero, sinh_log h₀, dist_of_re_eq, coe_im, coe_im, center_im, cosh_abs, cosh_log h₀, inv_div] <;> [skip; exact h] [GOAL] z w : ℍ r R : ℝ h : re z = re w h₀ : 0 < im z / im w ⊢ dist z w = dist (log (im z)) (log (im w)) [PROOFSTEP] rw [dist_eq_iff_dist_coe_center_eq, Real.dist_eq, ← abs_sinh, ← log_div z.im_ne_zero w.im_ne_zero, sinh_log h₀, dist_of_re_eq, coe_im, coe_im, center_im, cosh_abs, cosh_log h₀, inv_div] [GOAL] z w : ℍ r R : ℝ h : re z = re w h₀ : 0 < im z / im w ⊢ dist (im z) (im w * ((im z / im w + im w / im z) / 2)) = im w * |(im z / im w - im w / im z) / 2| [PROOFSTEP] skip [GOAL] z w : ℍ r R : ℝ h : re z = re w h₀ : 0 < im z / im w ⊢ (↑z).re = (↑(center w |log (im z / im w)|)).re [PROOFSTEP] exact h [GOAL] z w : ℍ r R : ℝ h : re z = re w h₀ : 0 < im z / im w ⊢ dist (im z) (im w * ((im z / im w + im w / im z) / 2)) = im w * |(im z / im w - im w / im z) / 2| [PROOFSTEP] nth_rw 4 [← abs_of_pos w.im_pos] [GOAL] z w : ℍ r R : ℝ h : re z = re w h₀ : 0 < im z / im w ⊢ dist (im z) (im w * ((im z / im w + im w / im z) / 2)) = |im w| * |(im z / im w - im w / im z) / 2| [PROOFSTEP] simp only [← _root_.abs_mul, coe_im, Real.dist_eq] [GOAL] z w : ℍ r R : ℝ h : re z = re w h₀ : 0 < im z / im w ⊢ |im z - im w * ((im z / im w + im w / im z) / 2)| = |im w * ((im z / im w - im w / im z) / 2)| [PROOFSTEP] congr 1 [GOAL] case e_a z w : ℍ r R : ℝ h : re z = re w h₀ : 0 < im z / im w ⊢ im z - im w * ((im z / im w + im w / im z) / 2) = im w * ((im z / im w - im w / im z) / 2) [PROOFSTEP] field_simp [z.im_pos, w.im_pos, z.im_ne_zero, w.im_ne_zero] [GOAL] case e_a z w : ℍ r R : ℝ h : re z = re w h₀ : 0 < im z / im w ⊢ im z * (im w * im z * 2) - im w * (im z * im z + im w * im w) = im w * (im z * im z - im w * im w) [PROOFSTEP] ring [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ dist ↑(mk { re := 0, im := im z } (_ : 0 < im z)) ↑(mk { re := 0, im := im w } (_ : 0 < im w)) ≤ dist ↑z ↑w [PROOFSTEP] simpa [sqrt_sq_eq_abs] using Complex.abs_im_le_abs (z - w) [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ im z ≤ im w * Real.exp (dist z w) [PROOFSTEP] rw [← div_le_iff' w.im_pos, ← exp_log z.im_pos, ← exp_log w.im_pos, ← Real.exp_sub, exp_le_exp] [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ log (im z) - log (im w) ≤ dist z w [PROOFSTEP] exact (le_abs_self _).trans (dist_log_im_le z w) [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ dist ↑z ↑(center w (dist z w)) + dist ↑w ↑(center w (dist z w)) = im w * (Real.exp (dist z w) - 1) [PROOFSTEP] rw [dist_center_dist, dist_self_center, ← mul_add, ← add_sub_assoc, Real.sinh_add_cosh] [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ im w * (1 - Real.exp (-dist z w)) = dist ↑z ↑(center w (dist z w)) - dist ↑w ↑(center w (dist z w)) [PROOFSTEP] rw [dist_center_dist, dist_self_center, ← Real.cosh_sub_sinh] [GOAL] z✝ w✝ : ℍ r R : ℝ z w : ℍ ⊢ im w * (1 - (Real.cosh (dist z w) - Real.sinh (dist z w))) = im w * Real.sinh (dist z w) - im w * (Real.cosh (dist z w) - 1) [PROOFSTEP] ring [GOAL] z w : ℍ r R : ℝ ⊢ instTopologicalSpaceUpperHalfPlane = UniformSpace.toTopologicalSpace [PROOFSTEP] refine' le_antisymm (continuous_id_iff_le.1 _) _ [GOAL] case refine'_1 z w : ℍ r R : ℝ ⊢ Continuous id [PROOFSTEP] refine' (@continuous_iff_continuous_dist ℍ ℍ metricSpaceAux.toPseudoMetricSpace _ _).2 _ [GOAL] case refine'_1 z w : ℍ r R : ℝ ⊢ Continuous fun x => dist (id x.fst) (id x.snd) [PROOFSTEP] have : ∀ x : ℍ × ℍ, 2 * Real.sqrt (x.1.im * x.2.im) ≠ 0 := fun x => mul_ne_zero two_ne_zero (Real.sqrt_pos.2 <| mul_pos x.1.im_pos x.2.im_pos).ne' [GOAL] case refine'_1 z w : ℍ r R : ℝ this : ∀ (x : ℍ × ℍ), 2 * sqrt (im x.fst * im x.snd) ≠ 0 ⊢ Continuous fun x => dist (id x.fst) (id x.snd) [PROOFSTEP] apply_rules [Continuous.div, Continuous.mul, continuous_const, Continuous.arsinh, Continuous.dist, continuous_coe.comp, continuous_fst, continuous_snd, Real.continuous_sqrt.comp, continuous_im.comp] [GOAL] case refine'_2 z w : ℍ r R : ℝ ⊢ UniformSpace.toTopologicalSpace ≤ instTopologicalSpaceUpperHalfPlane [PROOFSTEP] letI : MetricSpace ℍ := metricSpaceAux [GOAL] case refine'_2 z w : ℍ r R : ℝ this : MetricSpace ℍ := metricSpaceAux ⊢ UniformSpace.toTopologicalSpace ≤ instTopologicalSpaceUpperHalfPlane [PROOFSTEP] refine' le_of_nhds_le_nhds fun z => _ [GOAL] case refine'_2 z✝ w : ℍ r R : ℝ this : MetricSpace ℍ := metricSpaceAux z : ℍ ⊢ 𝓝 z ≤ 𝓝 z [PROOFSTEP] rw [nhds_induced] [GOAL] case refine'_2 z✝ w : ℍ r R : ℝ this : MetricSpace ℍ := metricSpaceAux z : ℍ ⊢ 𝓝 z ≤ comap Subtype.val (𝓝 ↑z) [PROOFSTEP] refine' (nhds_basis_ball.le_basis_iff (nhds_basis_ball.comap _)).2 fun R hR => _ [GOAL] case refine'_2 z✝ w : ℍ r R✝ : ℝ this : MetricSpace ℍ := metricSpaceAux z : ℍ R : ℝ hR : 0 < R ⊢ ∃ i, 0 < i ∧ ball z i ⊆ Subtype.val ⁻¹' ball (↑z) R [PROOFSTEP] have h₁ : 1 < R / im z + 1 := lt_add_of_pos_left _ (div_pos hR z.im_pos) [GOAL] case refine'_2 z✝ w : ℍ r R✝ : ℝ this : MetricSpace ℍ := metricSpaceAux z : ℍ R : ℝ hR : 0 < R h₁ : 1 < R / im z + 1 ⊢ ∃ i, 0 < i ∧ ball z i ⊆ Subtype.val ⁻¹' ball (↑z) R [PROOFSTEP] have h₀ : 0 < R / im z + 1 := one_pos.trans h₁ [GOAL] case refine'_2 z✝ w : ℍ r R✝ : ℝ this : MetricSpace ℍ := metricSpaceAux z : ℍ R : ℝ hR : 0 < R h₁ : 1 < R / im z + 1 h₀ : 0 < R / im z + 1 ⊢ ∃ i, 0 < i ∧ ball z i ⊆ Subtype.val ⁻¹' ball (↑z) R [PROOFSTEP] refine' ⟨log (R / im z + 1), Real.log_pos h₁, _⟩ [GOAL] case refine'_2 z✝ w : ℍ r R✝ : ℝ this : MetricSpace ℍ := metricSpaceAux z : ℍ R : ℝ hR : 0 < R h₁ : 1 < R / im z + 1 h₀ : 0 < R / im z + 1 ⊢ ball z (log (R / im z + 1)) ⊆ Subtype.val ⁻¹' ball (↑z) R [PROOFSTEP] refine' fun w hw => (dist_coe_le w z).trans_lt _ [GOAL] case refine'_2 z✝ w✝ : ℍ r R✝ : ℝ this : MetricSpace ℍ := metricSpaceAux z : ℍ R : ℝ hR : 0 < R h₁ : 1 < R / im z + 1 h₀ : 0 < R / im z + 1 w : ℍ hw : w ∈ ball z (log (R / im z + 1)) ⊢ im z * (Real.exp (dist w z) - 1) < R [PROOFSTEP] rwa [← lt_div_iff' z.im_pos, sub_lt_iff_lt_add, ← Real.lt_log_iff_exp_lt h₀] [GOAL] z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ h : dist w ↑(center z r) ≤ im z * Real.sinh r ⊢ dist (↑(center z r)) w ≤ im z * Real.sinh r [PROOFSTEP] rwa [dist_comm] [GOAL] z✝ w : ℍ r✝ R : ℝ z : ℍ r : ℝ ⊢ UpperHalfPlane.coe '' closedBall z r = closedBall (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] ext w [GOAL] case h z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ ⊢ w ∈ UpperHalfPlane.coe '' closedBall z r ↔ w ∈ closedBall (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] constructor [GOAL] case h.mp z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ ⊢ w ∈ UpperHalfPlane.coe '' closedBall z r → w ∈ closedBall (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] rintro ⟨w, hw, rfl⟩ [GOAL] case h.mp.intro.intro z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℍ hw : w ∈ closedBall z r ⊢ ↑w ∈ closedBall (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] exact dist_le_iff_dist_coe_center_le.1 hw [GOAL] case h.mpr z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ ⊢ w ∈ closedBall (↑(center z r)) (im z * Real.sinh r) → w ∈ UpperHalfPlane.coe '' closedBall z r [PROOFSTEP] intro hw [GOAL] case h.mpr z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ hw : w ∈ closedBall (↑(center z r)) (im z * Real.sinh r) ⊢ w ∈ UpperHalfPlane.coe '' closedBall z r [PROOFSTEP] lift w to ℍ using im_pos_of_dist_center_le hw [GOAL] case h.mpr.intro z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℍ hw : ↑w ∈ closedBall (↑(center z r)) (im z * Real.sinh r) ⊢ ↑w ∈ UpperHalfPlane.coe '' closedBall z r [PROOFSTEP] exact mem_image_of_mem _ (dist_le_iff_dist_coe_center_le.2 hw) [GOAL] z✝ w : ℍ r✝ R : ℝ z : ℍ r : ℝ ⊢ UpperHalfPlane.coe '' ball z r = ball (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] ext w [GOAL] case h z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ ⊢ w ∈ UpperHalfPlane.coe '' ball z r ↔ w ∈ ball (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] constructor [GOAL] case h.mp z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ ⊢ w ∈ UpperHalfPlane.coe '' ball z r → w ∈ ball (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] rintro ⟨w, hw, rfl⟩ [GOAL] case h.mp.intro.intro z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℍ hw : w ∈ ball z r ⊢ ↑w ∈ ball (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] exact dist_lt_iff_dist_coe_center_lt.1 hw [GOAL] case h.mpr z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ ⊢ w ∈ ball (↑(center z r)) (im z * Real.sinh r) → w ∈ UpperHalfPlane.coe '' ball z r [PROOFSTEP] intro hw [GOAL] case h.mpr z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ hw : w ∈ ball (↑(center z r)) (im z * Real.sinh r) ⊢ w ∈ UpperHalfPlane.coe '' ball z r [PROOFSTEP] lift w to ℍ using im_pos_of_dist_center_le (ball_subset_closedBall hw) [GOAL] case h.mpr.intro z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℍ hw : ↑w ∈ ball (↑(center z r)) (im z * Real.sinh r) ⊢ ↑w ∈ UpperHalfPlane.coe '' ball z r [PROOFSTEP] exact mem_image_of_mem _ (dist_lt_iff_dist_coe_center_lt.2 hw) [GOAL] z✝ w : ℍ r✝ R : ℝ z : ℍ r : ℝ ⊢ UpperHalfPlane.coe '' sphere z r = sphere (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] ext w [GOAL] case h z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ ⊢ w ∈ UpperHalfPlane.coe '' sphere z r ↔ w ∈ sphere (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] constructor [GOAL] case h.mp z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ ⊢ w ∈ UpperHalfPlane.coe '' sphere z r → w ∈ sphere (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] rintro ⟨w, hw, rfl⟩ [GOAL] case h.mp.intro.intro z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℍ hw : w ∈ sphere z r ⊢ ↑w ∈ sphere (↑(center z r)) (im z * Real.sinh r) [PROOFSTEP] exact dist_eq_iff_dist_coe_center_eq.1 hw [GOAL] case h.mpr z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ ⊢ w ∈ sphere (↑(center z r)) (im z * Real.sinh r) → w ∈ UpperHalfPlane.coe '' sphere z r [PROOFSTEP] intro hw [GOAL] case h.mpr z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℂ hw : w ∈ sphere (↑(center z r)) (im z * Real.sinh r) ⊢ w ∈ UpperHalfPlane.coe '' sphere z r [PROOFSTEP] lift w to ℍ using im_pos_of_dist_center_le (sphere_subset_closedBall hw) [GOAL] case h.mpr.intro z✝ w✝ : ℍ r✝ R : ℝ z : ℍ r : ℝ w : ℍ hw : ↑w ∈ sphere (↑(center z r)) (im z * Real.sinh r) ⊢ ↑w ∈ UpperHalfPlane.coe '' sphere z r [PROOFSTEP] exact mem_image_of_mem _ (dist_eq_iff_dist_coe_center_eq.2 hw) [GOAL] z w : ℍ r R : ℝ ⊢ ProperSpace ℍ [PROOFSTEP] refine' ⟨fun z r => _⟩ [GOAL] z✝ w : ℍ r✝ R : ℝ z : ℍ r : ℝ ⊢ IsCompact (closedBall z r) [PROOFSTEP] rw [← inducing_subtype_val.isCompact_iff (f := ((↑) : ℍ → ℂ)), image_coe_closedBall] [GOAL] z✝ w : ℍ r✝ R : ℝ z : ℍ r : ℝ ⊢ IsCompact (closedBall (↑(center z r)) (im z * Real.sinh r)) [PROOFSTEP] apply isCompact_closedBall [GOAL] z w : ℍ r R a : ℝ ⊢ Isometry fun y => mk { re := a, im := Real.exp y } (_ : 0 < Real.exp y) [PROOFSTEP] refine' Isometry.of_dist_eq fun y₁ y₂ => _ [GOAL] z w : ℍ r R a y₁ y₂ : ℝ ⊢ dist (mk { re := a, im := Real.exp y₁ } (_ : 0 < Real.exp y₁)) (mk { re := a, im := Real.exp y₂ } (_ : 0 < Real.exp y₂)) = dist y₁ y₂ [PROOFSTEP] rw [dist_of_re_eq] [GOAL] z w : ℍ r R a y₁ y₂ : ℝ ⊢ dist (log (im (mk { re := a, im := Real.exp y₁ } (_ : 0 < Real.exp y₁)))) (log (im (mk { re := a, im := Real.exp y₂ } (_ : 0 < Real.exp y₂)))) = dist y₁ y₂ z w : ℍ r R a y₁ y₂ : ℝ ⊢ re (mk { re := a, im := Real.exp y₁ } (_ : 0 < Real.exp y₁)) = re (mk { re := a, im := Real.exp y₂ } (_ : 0 < Real.exp y₂)) [PROOFSTEP] exacts [congr_arg₂ _ (log_exp _) (log_exp _), rfl] [GOAL] z w : ℍ r R a : ℝ y₁ y₂ : ℍ ⊢ dist ((fun x x_1 => x +ᵥ x_1) a y₁) ((fun x x_1 => x +ᵥ x_1) a y₂) = dist y₁ y₂ [PROOFSTEP] simp only [dist_eq, coe_vadd, vadd_im, dist_add_left] [GOAL] z w : ℍ r R : ℝ a : { x // 0 < x } ⊢ Isometry ((fun x x_1 => x • x_1) a) [PROOFSTEP] refine' Isometry.of_dist_eq fun y₁ y₂ => _ [GOAL] z w : ℍ r R : ℝ a : { x // 0 < x } y₁ y₂ : ℍ ⊢ dist ((fun x x_1 => x • x_1) a y₁) ((fun x x_1 => x • x_1) a y₂) = dist y₁ y₂ [PROOFSTEP] simp only [dist_eq, coe_pos_real_smul, pos_real_im] [GOAL] z w : ℍ r R : ℝ a : { x // 0 < x } y₁ y₂ : ℍ ⊢ 2 * arsinh (dist (↑a • ↑y₁) (↑a • ↑y₂) / (2 * sqrt (↑a * im y₁ * (↑a * im y₂)))) = 2 * arsinh (dist ↑y₁ ↑y₂ / (2 * sqrt (im y₁ * im y₂))) [PROOFSTEP] congr 2 [GOAL] case e_a.e_x z w : ℍ r R : ℝ a : { x // 0 < x } y₁ y₂ : ℍ ⊢ dist (↑a • ↑y₁) (↑a • ↑y₂) / (2 * sqrt (↑a * im y₁ * (↑a * im y₂))) = dist ↑y₁ ↑y₂ / (2 * sqrt (im y₁ * im y₂)) [PROOFSTEP] rw [dist_smul₀, mul_mul_mul_comm, Real.sqrt_mul (mul_self_nonneg _), Real.sqrt_mul_self_eq_abs, Real.norm_eq_abs, mul_left_comm] [GOAL] case e_a.e_x z w : ℍ r R : ℝ a : { x // 0 < x } y₁ y₂ : ℍ ⊢ |↑a| * dist ↑y₁ ↑y₂ / (|↑a| * (2 * sqrt (im y₁ * im y₂))) = dist ↑y₁ ↑y₂ / (2 * sqrt (im y₁ * im y₂)) [PROOFSTEP] exact mul_div_mul_left _ _ (mt _root_.abs_eq_zero.1 a.2.ne') [GOAL] z w : ℍ r R : ℝ g : SL(2, ℝ) ⊢ Isometry fun x => g • x [PROOFSTEP] have h₀ : Isometry (fun z => ModularGroup.S • z : ℍ → ℍ) := Isometry.of_dist_eq fun y₁ y₂ => by have h₁ : 0 ≤ im y₁ * im y₂ := mul_nonneg y₁.property.le y₂.property.le have h₂ : Complex.abs (y₁ * y₂) ≠ 0 := by simp [y₁.ne_zero, y₂.ne_zero] simp only [dist_eq, modular_S_smul, inv_neg, neg_div, div_mul_div_comm, coe_mk, mk_im, div_one, Complex.inv_im, Complex.neg_im, coe_im, neg_neg, Complex.normSq_neg, mul_eq_mul_left_iff, Real.arsinh_inj, bit0_eq_zero, one_ne_zero, or_false_iff, dist_neg_neg, mul_neg, neg_mul, dist_inv_inv₀ y₁.ne_zero y₂.ne_zero, ← AbsoluteValue.map_mul, ← Complex.normSq_mul, Real.sqrt_div h₁, ← Complex.abs_apply, mul_div (2 : ℝ), div_div_div_comm, div_self h₂, Complex.norm_eq_abs] [GOAL] z w : ℍ r R : ℝ g : SL(2, ℝ) y₁ y₂ : ℍ ⊢ dist (ModularGroup.S • y₁) (ModularGroup.S • y₂) = dist y₁ y₂ [PROOFSTEP] have h₁ : 0 ≤ im y₁ * im y₂ := mul_nonneg y₁.property.le y₂.property.le [GOAL] z w : ℍ r R : ℝ g : SL(2, ℝ) y₁ y₂ : ℍ h₁ : 0 ≤ im y₁ * im y₂ ⊢ dist (ModularGroup.S • y₁) (ModularGroup.S • y₂) = dist y₁ y₂ [PROOFSTEP] have h₂ : Complex.abs (y₁ * y₂) ≠ 0 := by simp [y₁.ne_zero, y₂.ne_zero] [GOAL] z w : ℍ r R : ℝ g : SL(2, ℝ) y₁ y₂ : ℍ h₁ : 0 ≤ im y₁ * im y₂ ⊢ ↑Complex.abs (↑y₁ * ↑y₂) ≠ 0 [PROOFSTEP] simp [y₁.ne_zero, y₂.ne_zero] [GOAL] z w : ℍ r R : ℝ g : SL(2, ℝ) y₁ y₂ : ℍ h₁ : 0 ≤ im y₁ * im y₂ h₂ : ↑Complex.abs (↑y₁ * ↑y₂) ≠ 0 ⊢ dist (ModularGroup.S • y₁) (ModularGroup.S • y₂) = dist y₁ y₂ [PROOFSTEP] simp only [dist_eq, modular_S_smul, inv_neg, neg_div, div_mul_div_comm, coe_mk, mk_im, div_one, Complex.inv_im, Complex.neg_im, coe_im, neg_neg, Complex.normSq_neg, mul_eq_mul_left_iff, Real.arsinh_inj, bit0_eq_zero, one_ne_zero, or_false_iff, dist_neg_neg, mul_neg, neg_mul, dist_inv_inv₀ y₁.ne_zero y₂.ne_zero, ← AbsoluteValue.map_mul, ← Complex.normSq_mul, Real.sqrt_div h₁, ← Complex.abs_apply, mul_div (2 : ℝ), div_div_div_comm, div_self h₂, Complex.norm_eq_abs] [GOAL] z w : ℍ r R : ℝ g : SL(2, ℝ) h₀ : Isometry fun z => ModularGroup.S • z ⊢ Isometry fun x => g • x [PROOFSTEP] by_cases hc : g 1 0 = 0 [GOAL] case pos z w : ℍ r R : ℝ g : SL(2, ℝ) h₀ : Isometry fun z => ModularGroup.S • z hc : ↑g 1 0 = 0 ⊢ Isometry fun x => g • x [PROOFSTEP] obtain ⟨u, v, h⟩ := exists_SL2_smul_eq_of_apply_zero_one_eq_zero g hc [GOAL] case pos.intro.intro z w : ℍ r R : ℝ g : SL(2, ℝ) h₀ : Isometry fun z => ModularGroup.S • z hc : ↑g 1 0 = 0 u : { x // 0 < x } v : ℝ h : (fun x x_1 => x • x_1) g = (fun z => v +ᵥ z) ∘ fun z => u • z ⊢ Isometry fun x => g • x [PROOFSTEP] dsimp only at h [GOAL] case pos.intro.intro z w : ℍ r R : ℝ g : SL(2, ℝ) h₀ : Isometry fun z => ModularGroup.S • z hc : ↑g 1 0 = 0 u : { x // 0 < x } v : ℝ h : (fun x => g • x) = (fun z => v +ᵥ z) ∘ fun z => u • z ⊢ Isometry fun x => g • x [PROOFSTEP] rw [h] [GOAL] case pos.intro.intro z w : ℍ r R : ℝ g : SL(2, ℝ) h₀ : Isometry fun z => ModularGroup.S • z hc : ↑g 1 0 = 0 u : { x // 0 < x } v : ℝ h : (fun x => g • x) = (fun z => v +ᵥ z) ∘ fun z => u • z ⊢ Isometry ((fun z => v +ᵥ z) ∘ fun z => u • z) [PROOFSTEP] exact (isometry_real_vadd v).comp (isometry_pos_mul u) [GOAL] case neg z w : ℍ r R : ℝ g : SL(2, ℝ) h₀ : Isometry fun z => ModularGroup.S • z hc : ¬↑g 1 0 = 0 ⊢ Isometry fun x => g • x [PROOFSTEP] obtain ⟨u, v, w, h⟩ := exists_SL2_smul_eq_of_apply_zero_one_ne_zero g hc [GOAL] case neg.intro.intro.intro z w✝ : ℍ r R : ℝ g : SL(2, ℝ) h₀ : Isometry fun z => ModularGroup.S • z hc : ¬↑g 1 0 = 0 u : { x // 0 < x } v w : ℝ h : (fun x x_1 => x • x_1) g = (fun x x_1 => x +ᵥ x_1) w ∘ (fun x x_1 => x • x_1) ModularGroup.S ∘ (fun x x_1 => x +ᵥ x_1) v ∘ (fun x x_1 => x • x_1) u ⊢ Isometry fun x => g • x [PROOFSTEP] dsimp only at h [GOAL] case neg.intro.intro.intro z w✝ : ℍ r R : ℝ g : SL(2, ℝ) h₀ : Isometry fun z => ModularGroup.S • z hc : ¬↑g 1 0 = 0 u : { x // 0 < x } v w : ℝ h : (fun x => g • x) = (fun x => w +ᵥ x) ∘ (fun x => ModularGroup.S • x) ∘ (fun x => v +ᵥ x) ∘ fun x => u • x ⊢ Isometry fun x => g • x [PROOFSTEP] rw [h] [GOAL] case neg.intro.intro.intro z w✝ : ℍ r R : ℝ g : SL(2, ℝ) h₀ : Isometry fun z => ModularGroup.S • z hc : ¬↑g 1 0 = 0 u : { x // 0 < x } v w : ℝ h : (fun x => g • x) = (fun x => w +ᵥ x) ∘ (fun x => ModularGroup.S • x) ∘ (fun x => v +ᵥ x) ∘ fun x => u • x ⊢ Isometry ((fun x => w +ᵥ x) ∘ (fun x => ModularGroup.S • x) ∘ (fun x => v +ᵥ x) ∘ fun x => u • x) [PROOFSTEP] exact (isometry_real_vadd w).comp (h₀.comp <| (isometry_real_vadd v).comp <| isometry_pos_mul u)
{"mathlib_filename": "Mathlib.Analysis.Complex.UpperHalfPlane.Metric", "llama_tokens": 17559}
[GOAL] t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ LawfulBitraversable Prod [PROOFSTEP] constructor [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {α β : Type ?u.941} (x : α × β), bitraverse pure pure x = pure x [PROOFSTEP] intros [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {F G : Type ?u.941 → Type ?u.941} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type ?u.941} (f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : α × α'), bitraverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (Functor.Comp.mk ∘ Functor.map f' ∘ g') x = Functor.Comp.mk (bitraverse f f' <$> bitraverse g g' x) [PROOFSTEP] intros [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {α α' β β' : Type ?u.941} (f : α → β) (f' : α' → β') (x : α × α'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x) [PROOFSTEP] intros [GOAL] case binaturality t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {F G : Type ?u.941 → Type ?u.941} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type ?u.941} (f : α → F β) (f' : α' → F β') (x : α × α'), (fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) = bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) ((fun {α} => ApplicativeTransformation.app η α) ∘ f') x [PROOFSTEP] intros [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ β✝ : Type ?u.941 x✝ : α✝ × β✝ ⊢ bitraverse pure pure x✝ = pure x✝ [PROOFSTEP] casesm _ × _ [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.941 → Type ?u.941 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.941 f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ x✝ : α✝ × α'✝ ⊢ bitraverse (Functor.Comp.mk ∘ Functor.map f✝ ∘ g✝) (Functor.Comp.mk ∘ Functor.map f'✝ ∘ g'✝) x✝ = Functor.Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝) [PROOFSTEP] casesm _ × _ [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type ?u.941 f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : α✝ × α'✝ ⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝) [PROOFSTEP] casesm _ × _ [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.941 → Type ?u.941 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type ?u.941 f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : α✝ × α'✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) = bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝ [PROOFSTEP] casesm _ × _ [GOAL] case id_bitraverse.mk t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ β✝ : Type ?u.941 fst✝ : α✝ snd✝ : β✝ ⊢ bitraverse pure pure (fst✝, snd✝) = pure (fst✝, snd✝) [PROOFSTEP] simp [bitraverse, Prod.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case comp_bitraverse.mk t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.941 → Type ?u.941 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.941 f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ fst✝ : α✝ snd✝ : α'✝ ⊢ bitraverse (Functor.Comp.mk ∘ Functor.map f✝ ∘ g✝) (Functor.Comp.mk ∘ Functor.map f'✝ ∘ g'✝) (fst✝, snd✝) = Functor.Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ (fst✝, snd✝)) [PROOFSTEP] simp [bitraverse, Prod.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case bitraverse_eq_bimap_id.mk t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type ?u.941 f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ fst✝ : α✝ snd✝ : α'✝ ⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) (fst✝, snd✝) = pure (bimap f✝ f'✝ (fst✝, snd✝)) [PROOFSTEP] simp [bitraverse, Prod.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case binaturality.mk t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.941 → Type ?u.941 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type ?u.941 f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ fst✝ : α✝ snd✝ : α'✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ (fst✝, snd✝)) = bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) (fst✝, snd✝) [PROOFSTEP] simp [bitraverse, Prod.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case id_bitraverse.mk t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ β✝ : Type ?u.941 fst✝ : α✝ snd✝ : β✝ ⊢ (Seq.seq (Prod.mk fst✝) fun x => snd✝) = (fst✝, snd✝) [PROOFSTEP] rfl [GOAL] case comp_bitraverse.mk t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.941 → Type ?u.941 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.941 f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ fst✝ : α✝ snd✝ : α'✝ ⊢ Functor.Comp.mk (Seq.seq (((fun x => x ∘ f'✝) ∘ (fun x x_1 => Seq.seq x fun x => x_1) ∘ (fun x => Prod.mk <$> x) ∘ f✝) <$> g✝ fst✝) fun x => g'✝ snd✝) = Functor.Comp.mk (Seq.seq (((fun x => (fun x => Seq.seq (Prod.mk <$> f✝ x.fst) fun x_1 => f'✝ x.snd) ∘ x) ∘ Prod.mk) <$> g✝ fst✝) fun x => g'✝ snd✝) [PROOFSTEP] rfl [GOAL] case bitraverse_eq_bimap_id.mk t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type ?u.941 f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ fst✝ : α✝ snd✝ : α'✝ ⊢ (Seq.seq (Prod.mk (f✝ fst✝)) fun x => f'✝ snd✝) = bimap f✝ f'✝ (fst✝, snd✝) [PROOFSTEP] rfl [GOAL] t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ LawfulBitraversable Sum [PROOFSTEP] constructor [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {α β : Type ?u.14627} (x : α ⊕ β), bitraverse pure pure x = pure x [PROOFSTEP] intros [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {F G : Type ?u.14627 → Type ?u.14627} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type ?u.14627} (f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : α ⊕ α'), bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x) [PROOFSTEP] intros [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {α α' β β' : Type ?u.14627} (f : α → β) (f' : α' → β') (x : α ⊕ α'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x) [PROOFSTEP] intros [GOAL] case binaturality t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {F G : Type ?u.14627 → Type ?u.14627} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type ?u.14627} (f : α → F β) (f' : α' → F β') (x : α ⊕ α'), (fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) = bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) ((fun {α} => ApplicativeTransformation.app η α) ∘ f') x [PROOFSTEP] intros [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ β✝ : Type ?u.14627 x✝ : α✝ ⊕ β✝ ⊢ bitraverse pure pure x✝ = pure x✝ [PROOFSTEP] casesm _ ⊕ _ [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.14627 → Type ?u.14627 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.14627 f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ x✝ : α✝ ⊕ α'✝ ⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) x✝ = Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝) [PROOFSTEP] casesm _ ⊕ _ [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type ?u.14627 f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : α✝ ⊕ α'✝ ⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝) [PROOFSTEP] casesm _ ⊕ _ [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.14627 → Type ?u.14627 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type ?u.14627 f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : α✝ ⊕ α'✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) = bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝ [PROOFSTEP] casesm _ ⊕ _ [GOAL] case id_bitraverse.inl t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ β✝ : Type ?u.14627 val✝ : α✝ ⊢ bitraverse pure pure (Sum.inl val✝) = pure (Sum.inl val✝) [PROOFSTEP] simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case id_bitraverse.inr t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ β✝ : Type ?u.14627 val✝ : β✝ ⊢ bitraverse pure pure (Sum.inr val✝) = pure (Sum.inr val✝) [PROOFSTEP] simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case comp_bitraverse.inl t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.14627 → Type ?u.14627 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.14627 f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ val✝ : α✝ ⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) (Sum.inl val✝) = Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ (Sum.inl val✝)) [PROOFSTEP] simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case comp_bitraverse.inr t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.14627 → Type ?u.14627 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.14627 f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ val✝ : α'✝ ⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) (Sum.inr val✝) = Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ (Sum.inr val✝)) [PROOFSTEP] simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case bitraverse_eq_bimap_id.inl t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type ?u.14627 f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ val✝ : α✝ ⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) (Sum.inl val✝) = pure (bimap f✝ f'✝ (Sum.inl val✝)) [PROOFSTEP] simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case bitraverse_eq_bimap_id.inr t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type ?u.14627 f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ val✝ : α'✝ ⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) (Sum.inr val✝) = pure (bimap f✝ f'✝ (Sum.inr val✝)) [PROOFSTEP] simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case binaturality.inl t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.14627 → Type ?u.14627 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type ?u.14627 f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ val✝ : α✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ (Sum.inl val✝)) = bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) (Sum.inl val✝) [PROOFSTEP] simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case binaturality.inr t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.14627 → Type ?u.14627 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type ?u.14627 f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ val✝ : α'✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ (Sum.inr val✝)) = bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) (Sum.inr val✝) [PROOFSTEP] simp [bitraverse, Sum.bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case comp_bitraverse.inl t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.14627 → Type ?u.14627 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.14627 f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ val✝ : α✝ ⊢ Comp.mk (((fun x => Sum.inl <$> x) ∘ f✝) <$> g✝ val✝) = Comp.mk (((fun x => match x with | Sum.inl x => Sum.inl <$> f✝ x | Sum.inr x => Sum.inr <$> f'✝ x) ∘ Sum.inl) <$> g✝ val✝) [PROOFSTEP] rfl [GOAL] case comp_bitraverse.inr t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.14627 → Type ?u.14627 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.14627 f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ val✝ : α'✝ ⊢ Comp.mk (((fun x => Sum.inr <$> x) ∘ f'✝) <$> g'✝ val✝) = Comp.mk (((fun x => match x with | Sum.inl x => Sum.inl <$> f✝ x | Sum.inr x => Sum.inr <$> f'✝ x) ∘ Sum.inr) <$> g'✝ val✝) [PROOFSTEP] rfl [GOAL] case bitraverse_eq_bimap_id.inl t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type ?u.14627 f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ val✝ : α✝ ⊢ Sum.inl (f✝ val✝) = bimap f✝ f'✝ (Sum.inl val✝) [PROOFSTEP] rfl [GOAL] case bitraverse_eq_bimap_id.inr t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type ?u.14627 f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ val✝ : α'✝ ⊢ Sum.inr (f'✝ val✝) = bimap f✝ f'✝ (Sum.inr val✝) [PROOFSTEP] rfl [GOAL] t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ LawfulBitraversable Const [PROOFSTEP] constructor [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {α β : Type ?u.21603} (x : Const α β), bitraverse pure pure x = pure x [PROOFSTEP] intros [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {F G : Type ?u.21603 → Type ?u.21603} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type ?u.21603} (f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : Const α α'), bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x) [PROOFSTEP] intros [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {α α' β β' : Type ?u.21603} (f : α → β) (f' : α' → β') (x : Const α α'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x) [PROOFSTEP] intros [GOAL] case binaturality t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F ⊢ ∀ {F G : Type ?u.21603 → Type ?u.21603} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type ?u.21603} (f : α → F β) (f' : α' → F β') (x : Const α α'), (fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) = bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) ((fun {α} => ApplicativeTransformation.app η α) ∘ f') x [PROOFSTEP] intros [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ β✝ : Type ?u.21603 x✝ : Const α✝ β✝ ⊢ bitraverse pure pure x✝ = pure x✝ [PROOFSTEP] simp [bitraverse, Const.bitraverse, functor_norm] [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.21603 → Type ?u.21603 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type ?u.21603 f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ x✝ : Const α✝ α'✝ ⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) x✝ = Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝) [PROOFSTEP] simp [bitraverse, Const.bitraverse, functor_norm] [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type ?u.21603 f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : Const α✝ α'✝ ⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝) [PROOFSTEP] simp [bitraverse, Const.bitraverse, functor_norm] [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.21603 → Type ?u.21603 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type ?u.21603 f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : Const α✝ α'✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) = bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝ [PROOFSTEP] simp [bitraverse, Const.bitraverse, functor_norm] [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type ?u.21603 f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : Const α✝ α'✝ ⊢ f✝ x✝ = bimap f✝ f'✝ x✝ [PROOFSTEP] rfl [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type ?u.21603 → Type ?u.21603 inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type ?u.21603 f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : Const α✝ α'✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (f✝ x✝) = (fun {α} => ApplicativeTransformation.app η✝ α) (f✝ x✝) [PROOFSTEP] rfl [GOAL] t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t ⊢ LawfulBitraversable (_root_.flip t) [PROOFSTEP] constructor [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t ⊢ ∀ {α β : Type u} (x : _root_.flip t α β), bitraverse pure pure x = pure x [PROOFSTEP] intros [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t ⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : _root_.flip t α α'), bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x) [PROOFSTEP] intros [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t ⊢ ∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : _root_.flip t α α'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x) [PROOFSTEP] intros [GOAL] case binaturality t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t ⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β) (f' : α' → F β') (x : _root_.flip t α α'), (fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) = bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) ((fun {α} => ApplicativeTransformation.app η α) ∘ f') x [PROOFSTEP] intros [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α✝ β✝ : Type u x✝ : _root_.flip t α✝ β✝ ⊢ bitraverse pure pure x✝ = pure x✝ [PROOFSTEP] casesm LawfulBitraversable t [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝⁶ : Bitraversable t F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : LawfulBitraversable t F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type u f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ x✝ : _root_.flip t α✝ α'✝ ⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) x✝ = Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝) [PROOFSTEP] casesm LawfulBitraversable t [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : _root_.flip t α✝ α'✝ ⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝) [PROOFSTEP] casesm LawfulBitraversable t [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁶ : Bitraversable t F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : LawfulBitraversable t F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : _root_.flip t α✝ α'✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) = bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝ [PROOFSTEP] casesm LawfulBitraversable t [GOAL] case id_bitraverse.mk t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ β✝ : Type u x✝ : _root_.flip t α✝ β✝ toLawfulBifunctor✝ : LawfulBifunctor t id_bitraverse✝ : ∀ {α β : Type u} (x : t α β), bitraverse pure pure x = pure x comp_bitraverse✝ : ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : t α α'), bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x) bitraverse_eq_bimap_id✝ : ∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : t α α'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x) binaturality✝ : ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β) (f' : α' → F β') (x : t α α'), (fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) = bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) ((fun {α} => ApplicativeTransformation.app η α) ∘ f') x ⊢ bitraverse pure pure x✝ = pure x✝ [PROOFSTEP] apply_assumption only [*] [GOAL] case comp_bitraverse.mk t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type u f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ x✝ : _root_.flip t α✝ α'✝ toLawfulBifunctor✝ : LawfulBifunctor t id_bitraverse✝ : ∀ {α β : Type u} (x : t α β), bitraverse pure pure x = pure x comp_bitraverse✝ : ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : t α α'), bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x) bitraverse_eq_bimap_id✝ : ∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : t α α'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x) binaturality✝ : ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β) (f' : α' → F β') (x : t α α'), (fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) = bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) ((fun {α} => ApplicativeTransformation.app η α) ∘ f') x ⊢ bitraverse (Comp.mk ∘ map f✝ ∘ g✝) (Comp.mk ∘ map f'✝ ∘ g'✝) x✝ = Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝) [PROOFSTEP] apply_assumption only [*] [GOAL] case bitraverse_eq_bimap_id.mk t : Type u → Type u → Type u inst✝¹ : Bitraversable t F : Type u → Type u inst✝ : Applicative F α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : _root_.flip t α✝ α'✝ toLawfulBifunctor✝ : LawfulBifunctor t id_bitraverse✝ : ∀ {α β : Type u} (x : t α β), bitraverse pure pure x = pure x comp_bitraverse✝ : ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : t α α'), bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x) bitraverse_eq_bimap_id✝ : ∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : t α α'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x) binaturality✝ : ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β) (f' : α' → F β') (x : t α α'), (fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) = bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) ((fun {α} => ApplicativeTransformation.app η α) ∘ f') x ⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝) [PROOFSTEP] apply_assumption only [*] [GOAL] case binaturality.mk t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F : Type u → Type u inst✝⁴ : Applicative F F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : _root_.flip t α✝ α'✝ toLawfulBifunctor✝ : LawfulBifunctor t id_bitraverse✝ : ∀ {α β : Type u} (x : t α β), bitraverse pure pure x = pure x comp_bitraverse✝ : ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : t α α'), bitraverse (Comp.mk ∘ map f ∘ g) (Comp.mk ∘ map f' ∘ g') x = Comp.mk (bitraverse f f' <$> bitraverse g g' x) bitraverse_eq_bimap_id✝ : ∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : t α α'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x) binaturality✝ : ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β) (f' : α' → F β') (x : t α α'), (fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) = bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) ((fun {α} => ApplicativeTransformation.app η α) ∘ f') x ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) = bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝ [PROOFSTEP] apply_assumption only [*] [GOAL] t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α : Type u ⊢ LawfulTraversable (t α) [PROOFSTEP] constructor [GOAL] case id_traverse t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α : Type u ⊢ ∀ {α_1 : Type u} (x : t α α_1), traverse pure x = x [PROOFSTEP] intros [GOAL] case comp_traverse t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α : Type u ⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α_1 β γ : Type u} (f : β → F γ) (g : α_1 → G β) (x : t α α_1), traverse (Comp.mk ∘ map f ∘ g) x = Comp.mk (traverse f <$> traverse g x) [PROOFSTEP] intros [GOAL] case traverse_eq_map_id t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α : Type u ⊢ ∀ {α_1 β : Type u} (f : α_1 → β) (x : t α α_1), traverse (pure ∘ f) x = id.mk (f <$> x) [PROOFSTEP] intros [GOAL] case naturality t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α : Type u ⊢ ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α_1 β : Type u} (f : α_1 → F β) (x : t α α_1), (fun {α} => ApplicativeTransformation.app η α) (traverse f x) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x [PROOFSTEP] intros [GOAL] case id_traverse t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α α✝ : Type u x✝ : t α α✝ ⊢ traverse pure x✝ = x✝ [PROOFSTEP] simp [traverse, comp_tsnd, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case comp_traverse t : Type u → Type u → Type u inst✝⁶ : Bitraversable t F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : LawfulBitraversable t α : Type u F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type u f✝ : β✝ → F✝ γ✝ g✝ : α✝ → G✝ β✝ x✝ : t α α✝ ⊢ traverse (Comp.mk ∘ map f✝ ∘ g✝) x✝ = Comp.mk (traverse f✝ <$> traverse g✝ x✝) [PROOFSTEP] simp [traverse, comp_tsnd, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case traverse_eq_map_id t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α α✝ β✝ : Type u f✝ : α✝ → β✝ x✝ : t α α✝ ⊢ traverse (pure ∘ f✝) x✝ = id.mk (f✝ <$> x✝) [PROOFSTEP] simp [traverse, comp_tsnd, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case naturality t : Type u → Type u → Type u inst✝⁶ : Bitraversable t F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : LawfulBitraversable t α : Type u F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ β✝ : Type u f✝ : α✝ → F✝ β✝ x✝ : t α α✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (traverse f✝ x✝) = traverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) x✝ [PROOFSTEP] simp [traverse, comp_tsnd, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case traverse_eq_map_id t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α α✝ β✝ : Type u f✝ : α✝ → β✝ x✝ : t α α✝ ⊢ tsnd (pure ∘ f✝) x✝ = id.mk (f✝ <$> x✝) [PROOFSTEP] simp [tsnd_eq_snd_id] [GOAL] case traverse_eq_map_id t : Type u → Type u → Type u inst✝² : Bitraversable t F : Type u → Type u inst✝¹ : Applicative F inst✝ : LawfulBitraversable t α α✝ β✝ : Type u f✝ : α✝ → β✝ x✝ : t α α✝ ⊢ Bifunctor.snd f✝ x✝ = id.mk (f✝ <$> x✝) [PROOFSTEP] rfl [GOAL] case naturality t : Type u → Type u → Type u inst✝⁶ : Bitraversable t F : Type u → Type u inst✝⁵ : Applicative F inst✝⁴ : LawfulBitraversable t α : Type u F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ β✝ : Type u f✝ : α✝ → F✝ β✝ x✝ : t α α✝ ⊢ ApplicativeTransformation.app η✝ (t α β✝) (tsnd f✝ x✝) = tsnd (ApplicativeTransformation.app η✝ β✝ ∘ f✝) x✝ [PROOFSTEP] simp [tsnd, binaturality, Function.comp, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F G : Type u → Type u inst✝⁴ : Traversable F inst✝³ : Traversable G inst✝² : LawfulTraversable F inst✝¹ : LawfulTraversable G inst✝ : LawfulBitraversable t ⊢ LawfulBitraversable (bicompl t F G) [PROOFSTEP] constructor [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F G : Type u → Type u inst✝⁴ : Traversable F inst✝³ : Traversable G inst✝² : LawfulTraversable F inst✝¹ : LawfulTraversable G inst✝ : LawfulBitraversable t ⊢ ∀ {α β : Type u} (x : bicompl t F G α β), bitraverse pure pure x = pure x [PROOFSTEP] intros [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F G : Type u → Type u inst✝⁴ : Traversable F inst✝³ : Traversable G inst✝² : LawfulTraversable F inst✝¹ : LawfulTraversable G inst✝ : LawfulBitraversable t ⊢ ∀ {F_1 G_1 : Type u → Type u} [inst : Applicative F_1] [inst_1 : Applicative G_1] [inst_2 : LawfulApplicative F_1] [inst_3 : LawfulApplicative G_1] {α α' β β' γ γ' : Type u} (f : β → F_1 γ) (f' : β' → F_1 γ') (g : α → G_1 β) (g' : α' → G_1 β') (x : bicompl t F G α α'), bitraverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (Functor.Comp.mk ∘ Functor.map f' ∘ g') x = Functor.Comp.mk (bitraverse f f' <$> bitraverse g g' x) [PROOFSTEP] intros [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F G : Type u → Type u inst✝⁴ : Traversable F inst✝³ : Traversable G inst✝² : LawfulTraversable F inst✝¹ : LawfulTraversable G inst✝ : LawfulBitraversable t ⊢ ∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : bicompl t F G α α'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x) [PROOFSTEP] intros [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F G : Type u → Type u inst✝⁴ : Traversable F inst✝³ : Traversable G inst✝² : LawfulTraversable F inst✝¹ : LawfulTraversable G inst✝ : LawfulBitraversable t ⊢ ∀ {F_1 G_1 : Type u → Type u} [inst : Applicative F_1] [inst_1 : Applicative G_1] [inst_2 : LawfulApplicative F_1] [inst_3 : LawfulApplicative G_1] (η : ApplicativeTransformation F_1 G_1) {α α' β β' : Type u} (f : α → F_1 β) (f' : α' → F_1 β') (x : bicompl t F G α α'), (fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) = bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) ((fun {α} => ApplicativeTransformation.app η α) ∘ f') x [PROOFSTEP] intros [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F G : Type u → Type u inst✝⁴ : Traversable F inst✝³ : Traversable G inst✝² : LawfulTraversable F inst✝¹ : LawfulTraversable G inst✝ : LawfulBitraversable t α✝ β✝ : Type u x✝ : bicompl t F G α✝ β✝ ⊢ bitraverse pure pure x✝ = pure x✝ [PROOFSTEP] simp [bitraverse, Bicompl.bitraverse, bimap, traverse_id, bitraverse_id_id, comp_bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝⁹ : Bitraversable t F G : Type u → Type u inst✝⁸ : Traversable F inst✝⁷ : Traversable G inst✝⁶ : LawfulTraversable F inst✝⁵ : LawfulTraversable G inst✝⁴ : LawfulBitraversable t F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type u f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ x✝ : bicompl t F G α✝ α'✝ ⊢ bitraverse (Functor.Comp.mk ∘ Functor.map f✝ ∘ g✝) (Functor.Comp.mk ∘ Functor.map f'✝ ∘ g'✝) x✝ = Functor.Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝) [PROOFSTEP] simp [bitraverse, Bicompl.bitraverse, bimap, traverse_id, bitraverse_id_id, comp_bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F G : Type u → Type u inst✝⁴ : Traversable F inst✝³ : Traversable G inst✝² : LawfulTraversable F inst✝¹ : LawfulTraversable G inst✝ : LawfulBitraversable t α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : bicompl t F G α✝ α'✝ ⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝) [PROOFSTEP] simp [bitraverse, Bicompl.bitraverse, bimap, traverse_id, bitraverse_id_id, comp_bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁹ : Bitraversable t F G : Type u → Type u inst✝⁸ : Traversable F inst✝⁷ : Traversable G inst✝⁶ : LawfulTraversable F inst✝⁵ : LawfulTraversable G inst✝⁴ : LawfulBitraversable t F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : bicompl t F G α✝ α'✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) = bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝ [PROOFSTEP] simp [bitraverse, Bicompl.bitraverse, bimap, traverse_id, bitraverse_id_id, comp_bitraverse, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝⁵ : Bitraversable t F G : Type u → Type u inst✝⁴ : Traversable F inst✝³ : Traversable G inst✝² : LawfulTraversable F inst✝¹ : LawfulTraversable G inst✝ : LawfulBitraversable t α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : bicompl t F G α✝ α'✝ ⊢ bitraverse (traverse (pure ∘ f✝)) (traverse (pure ∘ f'✝)) x✝ = bimap (Functor.map f✝) (Functor.map f'✝) x✝ [PROOFSTEP] simp [traverse_eq_map_id', bitraverse_eq_bimap_id] [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁹ : Bitraversable t F G : Type u → Type u inst✝⁸ : Traversable F inst✝⁷ : Traversable G inst✝⁶ : LawfulTraversable F inst✝⁵ : LawfulTraversable G inst✝⁴ : LawfulBitraversable t F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : bicompl t F G α✝ α'✝ ⊢ ApplicativeTransformation.app η✝ (bicompl t F G β✝ β'✝) (bitraverse (traverse f✝) (traverse f'✝) x✝) = bitraverse (traverse (ApplicativeTransformation.app η✝ β✝ ∘ f✝)) (traverse (ApplicativeTransformation.app η✝ β'✝ ∘ f'✝)) x✝ [PROOFSTEP] dsimp only [bicompl] [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁹ : Bitraversable t F G : Type u → Type u inst✝⁸ : Traversable F inst✝⁷ : Traversable G inst✝⁶ : LawfulTraversable F inst✝⁵ : LawfulTraversable G inst✝⁴ : LawfulBitraversable t F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : bicompl t F G α✝ α'✝ ⊢ ApplicativeTransformation.app η✝ (t (F β✝) (G β'✝)) (bitraverse (traverse f✝) (traverse f'✝) x✝) = bitraverse (traverse (ApplicativeTransformation.app η✝ β✝ ∘ f✝)) (traverse (ApplicativeTransformation.app η✝ β'✝ ∘ f'✝)) x✝ [PROOFSTEP] simp [binaturality, naturality_pf] [GOAL] t : Type u → Type u → Type u inst✝³ : Bitraversable t F : Type u → Type u inst✝² : Traversable F inst✝¹ : LawfulTraversable F inst✝ : LawfulBitraversable t ⊢ LawfulBitraversable (bicompr F t) [PROOFSTEP] constructor [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝³ : Bitraversable t F : Type u → Type u inst✝² : Traversable F inst✝¹ : LawfulTraversable F inst✝ : LawfulBitraversable t ⊢ ∀ {α β : Type u} (x : bicompr F t α β), bitraverse pure pure x = pure x [PROOFSTEP] intros [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝³ : Bitraversable t F : Type u → Type u inst✝² : Traversable F inst✝¹ : LawfulTraversable F inst✝ : LawfulBitraversable t ⊢ ∀ {F_1 G : Type u → Type u} [inst : Applicative F_1] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F_1] [inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F_1 γ) (f' : β' → F_1 γ') (g : α → G β) (g' : α' → G β') (x : bicompr F t α α'), bitraverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (Functor.Comp.mk ∘ Functor.map f' ∘ g') x = Functor.Comp.mk (bitraverse f f' <$> bitraverse g g' x) [PROOFSTEP] intros [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝³ : Bitraversable t F : Type u → Type u inst✝² : Traversable F inst✝¹ : LawfulTraversable F inst✝ : LawfulBitraversable t ⊢ ∀ {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : bicompr F t α α'), bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x) [PROOFSTEP] intros [GOAL] case binaturality t : Type u → Type u → Type u inst✝³ : Bitraversable t F : Type u → Type u inst✝² : Traversable F inst✝¹ : LawfulTraversable F inst✝ : LawfulBitraversable t ⊢ ∀ {F_1 G : Type u → Type u} [inst : Applicative F_1] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F_1] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F_1 G) {α α' β β' : Type u} (f : α → F_1 β) (f' : α' → F_1 β') (x : bicompr F t α α'), (fun {α} => ApplicativeTransformation.app η α) (bitraverse f f' x) = bitraverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) ((fun {α} => ApplicativeTransformation.app η α) ∘ f') x [PROOFSTEP] intros [GOAL] case id_bitraverse t : Type u → Type u → Type u inst✝³ : Bitraversable t F : Type u → Type u inst✝² : Traversable F inst✝¹ : LawfulTraversable F inst✝ : LawfulBitraversable t α✝ β✝ : Type u x✝ : bicompr F t α✝ β✝ ⊢ bitraverse pure pure x✝ = pure x✝ [PROOFSTEP] simp [bitraverse, Bicompr.bitraverse, bitraverse_id_id, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case comp_bitraverse t : Type u → Type u → Type u inst✝⁷ : Bitraversable t F : Type u → Type u inst✝⁶ : Traversable F inst✝⁵ : LawfulTraversable F inst✝⁴ : LawfulBitraversable t F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ α'✝ β✝ β'✝ γ✝ γ'✝ : Type u f✝ : β✝ → F✝ γ✝ f'✝ : β'✝ → F✝ γ'✝ g✝ : α✝ → G✝ β✝ g'✝ : α'✝ → G✝ β'✝ x✝ : bicompr F t α✝ α'✝ ⊢ bitraverse (Functor.Comp.mk ∘ Functor.map f✝ ∘ g✝) (Functor.Comp.mk ∘ Functor.map f'✝ ∘ g'✝) x✝ = Functor.Comp.mk (bitraverse f✝ f'✝ <$> bitraverse g✝ g'✝ x✝) [PROOFSTEP] simp [bitraverse, Bicompr.bitraverse, bitraverse_id_id, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝³ : Bitraversable t F : Type u → Type u inst✝² : Traversable F inst✝¹ : LawfulTraversable F inst✝ : LawfulBitraversable t α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : bicompr F t α✝ α'✝ ⊢ bitraverse (pure ∘ f✝) (pure ∘ f'✝) x✝ = pure (bimap f✝ f'✝ x✝) [PROOFSTEP] simp [bitraverse, Bicompr.bitraverse, bitraverse_id_id, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁷ : Bitraversable t F : Type u → Type u inst✝⁶ : Traversable F inst✝⁵ : LawfulTraversable F inst✝⁴ : LawfulBitraversable t F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : bicompr F t α✝ α'✝ ⊢ (fun {α} => ApplicativeTransformation.app η✝ α) (bitraverse f✝ f'✝ x✝) = bitraverse ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f✝) ((fun {α} => ApplicativeTransformation.app η✝ α) ∘ f'✝) x✝ [PROOFSTEP] simp [bitraverse, Bicompr.bitraverse, bitraverse_id_id, functor_norm, -ApplicativeTransformation.app_eq_coe] [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝³ : Bitraversable t F : Type u → Type u inst✝² : Traversable F inst✝¹ : LawfulTraversable F inst✝ : LawfulBitraversable t α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : bicompr F t α✝ α'✝ ⊢ traverse (bitraverse (pure ∘ f✝) (pure ∘ f'✝)) x✝ = bimap f✝ f'✝ x✝ [PROOFSTEP] simp [bitraverse_eq_bimap_id', traverse_eq_map_id'] [GOAL] case bitraverse_eq_bimap_id t : Type u → Type u → Type u inst✝³ : Bitraversable t F : Type u → Type u inst✝² : Traversable F inst✝¹ : LawfulTraversable F inst✝ : LawfulBitraversable t α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → β✝ f'✝ : α'✝ → β'✝ x✝ : bicompr F t α✝ α'✝ ⊢ bimap f✝ f'✝ <$> x✝ = bimap f✝ f'✝ x✝ [PROOFSTEP] rfl [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁷ : Bitraversable t F : Type u → Type u inst✝⁶ : Traversable F inst✝⁵ : LawfulTraversable F inst✝⁴ : LawfulBitraversable t F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : bicompr F t α✝ α'✝ ⊢ ApplicativeTransformation.app η✝ (bicompr F t β✝ β'✝) (traverse (bitraverse f✝ f'✝) x✝) = traverse (bitraverse (ApplicativeTransformation.app η✝ β✝ ∘ f✝) (ApplicativeTransformation.app η✝ β'✝ ∘ f'✝)) x✝ [PROOFSTEP] dsimp only [bicompr] [GOAL] case binaturality t : Type u → Type u → Type u inst✝⁷ : Bitraversable t F : Type u → Type u inst✝⁶ : Traversable F inst✝⁵ : LawfulTraversable F inst✝⁴ : LawfulBitraversable t F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η✝ : ApplicativeTransformation F✝ G✝ α✝ α'✝ β✝ β'✝ : Type u f✝ : α✝ → F✝ β✝ f'✝ : α'✝ → F✝ β'✝ x✝ : bicompr F t α✝ α'✝ ⊢ ApplicativeTransformation.app η✝ (F (t β✝ β'✝)) (traverse (bitraverse f✝ f'✝) x✝) = traverse (bitraverse (ApplicativeTransformation.app η✝ β✝ ∘ f✝) (ApplicativeTransformation.app η✝ β'✝ ∘ f'✝)) x✝ [PROOFSTEP] simp [naturality, binaturality']
{"mathlib_filename": "Mathlib.Control.Bitraversable.Instances", "llama_tokens": 27010}
[GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f✝ g✝ : G → E f'✝ g'✝ : G →L[ℝ] E s✝ : Set G x✝ : G n : ℕ∞ f g : ℝ → E f' g' : E s : Set ℝ x : ℝ hf : HasDerivWithinAt f f' s x hg : HasDerivWithinAt g g' s x ⊢ HasDerivWithinAt (fun t => Inner.inner (f t) (g t)) (Inner.inner (f x) g' + Inner.inner f' (g x)) s x [PROOFSTEP] simpa using (hf.hasFDerivWithinAt.inner 𝕜 hg.hasFDerivWithinAt).hasDerivWithinAt [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f✝ g✝ : G → E f'✝ g'✝ : G →L[ℝ] E s : Set G x✝ : G n : ℕ∞ f g : ℝ → E f' g' : E x : ℝ ⊢ HasDerivAt f f' x → HasDerivAt g g' x → HasDerivAt (fun t => Inner.inner (f t) (g t)) (Inner.inner (f x) g' + Inner.inner f' (g x)) x [PROOFSTEP] simpa only [← hasDerivWithinAt_univ] using HasDerivWithinAt.inner 𝕜 [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ hf : DifferentiableAt ℝ f x hg : DifferentiableAt ℝ g x y : G ⊢ ↑(fderiv ℝ (fun t => inner (f t) (g t)) x) y = inner (f x) (↑(fderiv ℝ g x) y) + inner (↑(fderiv ℝ f x) y) (g x) [PROOFSTEP] rw [(hf.hasFDerivAt.inner 𝕜 hg.hasFDerivAt).fderiv] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ hf : DifferentiableAt ℝ f x hg : DifferentiableAt ℝ g x y : G ⊢ ↑(ContinuousLinearMap.comp (fderivInnerClm 𝕜 (f x, g x)) (ContinuousLinearMap.prod (fderiv ℝ f x) (fderiv ℝ g x))) y = inner (f x) (↑(fderiv ℝ g x) y) + inner (↑(fderiv ℝ f x) y) (g x) [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ ⊢ ContDiff ℝ n fun x => ‖x‖ ^ 2 [PROOFSTEP] convert (reClm : 𝕜 →L[ℝ] ℝ).contDiff.comp ((contDiff_id (E := E)).inner 𝕜 (contDiff_id (E := E))) [GOAL] case h.e'_10.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ x✝ : E ⊢ ‖x✝‖ ^ 2 = (↑reClm ∘ fun x => inner (id x) (id x)) x✝ [PROOFSTEP] exact (inner_self_eq_norm_sq _).symm [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x✝ : G n : ℕ∞ x : E hx : x ≠ 0 ⊢ ContDiffAt ℝ n Norm.norm x [PROOFSTEP] have : ‖id x‖ ^ 2 ≠ 0 := pow_ne_zero 2 (norm_pos_iff.2 hx).ne' [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x✝ : G n : ℕ∞ x : E hx : x ≠ 0 this : ‖id x‖ ^ 2 ≠ 0 ⊢ ContDiffAt ℝ n Norm.norm x [PROOFSTEP] simpa only [id, sqrt_sq, norm_nonneg] using (contDiffAt_id.norm_sq 𝕜).sqrt this [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ hf : ContDiffAt ℝ n f x hg : ContDiffAt ℝ n g x hne : f x ≠ g x ⊢ ContDiffAt ℝ n (fun y => Dist.dist (f y) (g y)) x [PROOFSTEP] simp only [dist_eq_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ hf : ContDiffAt ℝ n f x hg : ContDiffAt ℝ n g x hne : f x ≠ g x ⊢ ContDiffAt ℝ n (fun y => ‖f y - g y‖) x [PROOFSTEP] exact (hf.sub hg).norm 𝕜 (sub_ne_zero.2 hne) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ hf : ContDiffWithinAt ℝ n f s x hg : ContDiffWithinAt ℝ n g s x hne : f x ≠ g x ⊢ ContDiffWithinAt ℝ n (fun y => Dist.dist (f y) (g y)) s x [PROOFSTEP] simp only [dist_eq_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ hf : ContDiffWithinAt ℝ n f s x hg : ContDiffWithinAt ℝ n g s x hne : f x ≠ g x ⊢ ContDiffWithinAt ℝ n (fun y => ‖f y - g y‖) s x [PROOFSTEP] exact (hf.sub hg).norm 𝕜 (sub_ne_zero.2 hne) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x✝ : G n : ℕ∞ x : F ⊢ HasStrictFDerivAt (fun x => ‖x‖ ^ 2) (2 • ↑(innerSL ℝ) x) x [PROOFSTEP] simp only [sq, ← @inner_self_eq_norm_mul_norm ℝ] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x✝ : G n : ℕ∞ x : F ⊢ HasStrictFDerivAt (fun x => ↑re (inner x x)) (2 • ↑(innerSL ℝ) x) x [PROOFSTEP] convert (hasStrictFDerivAt_id x).inner ℝ (hasStrictFDerivAt_id x) [GOAL] case h.e'_10.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x✝ : G n : ℕ∞ x : F e_7✝ : normedAddCommGroup = NonUnitalNormedRing.toNormedAddCommGroup he✝ : InnerProductSpace.toNormedSpace = NormedAlgebra.toNormedSpace' ⊢ 2 • ↑(innerSL ℝ) x = ContinuousLinearMap.comp (fderivInnerClm ℝ (id x, id x)) (ContinuousLinearMap.prod (ContinuousLinearMap.id ℝ F) (ContinuousLinearMap.id ℝ F)) [PROOFSTEP] ext y [GOAL] case h.e'_10.h.h.h 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x✝ : G n : ℕ∞ x : F e_7✝ : normedAddCommGroup = NonUnitalNormedRing.toNormedAddCommGroup he✝ : InnerProductSpace.toNormedSpace = NormedAlgebra.toNormedSpace' y : F ⊢ ↑(2 • ↑(innerSL ℝ) x) y = ↑(ContinuousLinearMap.comp (fderivInnerClm ℝ (id x, id x)) (ContinuousLinearMap.prod (ContinuousLinearMap.id ℝ F) (ContinuousLinearMap.id ℝ F))) y [PROOFSTEP] simp [two_smul, real_inner_comm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ hf : DifferentiableAt ℝ f x hg : DifferentiableAt ℝ g x hne : f x ≠ g x ⊢ DifferentiableAt ℝ (fun y => Dist.dist (f y) (g y)) x [PROOFSTEP] simp only [dist_eq_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ hf : DifferentiableAt ℝ f x hg : DifferentiableAt ℝ g x hne : f x ≠ g x ⊢ DifferentiableAt ℝ (fun y => ‖f y - g y‖) x [PROOFSTEP] exact (hf.sub hg).norm 𝕜 (sub_ne_zero.2 hne) [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ hf : DifferentiableWithinAt ℝ f s x hg : DifferentiableWithinAt ℝ g s x hne : f x ≠ g x ⊢ DifferentiableWithinAt ℝ (fun y => Dist.dist (f y) (g y)) s x [PROOFSTEP] simp only [dist_eq_norm] [GOAL] 𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝⁷ : IsROrC 𝕜 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : InnerProductSpace 𝕜 E inst✝⁴ : NormedAddCommGroup F inst✝³ : InnerProductSpace ℝ F inst✝² : NormedSpace ℝ E G : Type u_4 inst✝¹ : NormedAddCommGroup G inst✝ : NormedSpace ℝ G f g : G → E f' g' : G →L[ℝ] E s : Set G x : G n : ℕ∞ hf : DifferentiableWithinAt ℝ f s x hg : DifferentiableWithinAt ℝ g s x hne : f x ≠ g x ⊢ DifferentiableWithinAt ℝ (fun y => ‖f y - g y‖) s x [PROOFSTEP] exact (hf.sub hg).norm 𝕜 (sub_ne_zero.2 hne) [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ DifferentiableWithinAt 𝕜 f t y ↔ ∀ (i : ι), DifferentiableWithinAt 𝕜 (fun x => f x i) t y [PROOFSTEP] rw [← (EuclideanSpace.equiv ι 𝕜).comp_differentiableWithinAt_iff, differentiableWithinAt_pi] [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ (∀ (i : ι), DifferentiableWithinAt 𝕜 (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) t y) ↔ ∀ (i : ι), DifferentiableWithinAt 𝕜 (fun x => f x i) t y [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ DifferentiableAt 𝕜 f y ↔ ∀ (i : ι), DifferentiableAt 𝕜 (fun x => f x i) y [PROOFSTEP] rw [← (EuclideanSpace.equiv ι 𝕜).comp_differentiableAt_iff, differentiableAt_pi] [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ (∀ (i : ι), DifferentiableAt 𝕜 (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) y) ↔ ∀ (i : ι), DifferentiableAt 𝕜 (fun x => f x i) y [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ DifferentiableOn 𝕜 f t ↔ ∀ (i : ι), DifferentiableOn 𝕜 (fun x => f x i) t [PROOFSTEP] rw [← (EuclideanSpace.equiv ι 𝕜).comp_differentiableOn_iff, differentiableOn_pi] [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ (∀ (i : ι), DifferentiableOn 𝕜 (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) t) ↔ ∀ (i : ι), DifferentiableOn 𝕜 (fun x => f x i) t [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ Differentiable 𝕜 f ↔ ∀ (i : ι), Differentiable 𝕜 fun x => f x i [PROOFSTEP] rw [← (EuclideanSpace.equiv ι 𝕜).comp_differentiable_iff, differentiable_pi] [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ (∀ (i : ι), Differentiable 𝕜 fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) ↔ ∀ (i : ι), Differentiable 𝕜 fun x => f x i [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ HasStrictFDerivAt f f' y ↔ ∀ (i : ι), HasStrictFDerivAt (fun x => f x i) (comp (EuclideanSpace.proj i) f') y [PROOFSTEP] rw [← (EuclideanSpace.equiv ι 𝕜).comp_hasStrictFDerivAt_iff, hasStrictFDerivAt_pi'] [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ (∀ (i : ι), HasStrictFDerivAt (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) (comp (proj i) (comp (↑(EuclideanSpace.equiv ι 𝕜)) f')) y) ↔ ∀ (i : ι), HasStrictFDerivAt (fun x => f x i) (comp (EuclideanSpace.proj i) f') y [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ HasFDerivWithinAt f f' t y ↔ ∀ (i : ι), HasFDerivWithinAt (fun x => f x i) (comp (EuclideanSpace.proj i) f') t y [PROOFSTEP] rw [← (EuclideanSpace.equiv ι 𝕜).comp_hasFDerivWithinAt_iff, hasFDerivWithinAt_pi'] [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H ⊢ (∀ (i : ι), HasFDerivWithinAt (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) (comp (proj i) (comp (↑(EuclideanSpace.equiv ι 𝕜)) f')) t y) ↔ ∀ (i : ι), HasFDerivWithinAt (fun x => f x i) (comp (EuclideanSpace.proj i) f') t y [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H n : ℕ∞ ⊢ ContDiffWithinAt 𝕜 n f t y ↔ ∀ (i : ι), ContDiffWithinAt 𝕜 n (fun x => f x i) t y [PROOFSTEP] rw [← (EuclideanSpace.equiv ι 𝕜).comp_contDiffWithinAt_iff, contDiffWithinAt_pi] [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H n : ℕ∞ ⊢ (∀ (i : ι), ContDiffWithinAt 𝕜 n (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) t y) ↔ ∀ (i : ι), ContDiffWithinAt 𝕜 n (fun x => f x i) t y [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H n : ℕ∞ ⊢ ContDiffAt 𝕜 n f y ↔ ∀ (i : ι), ContDiffAt 𝕜 n (fun x => f x i) y [PROOFSTEP] rw [← (EuclideanSpace.equiv ι 𝕜).comp_contDiffAt_iff, contDiffAt_pi] [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H n : ℕ∞ ⊢ (∀ (i : ι), ContDiffAt 𝕜 n (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) y) ↔ ∀ (i : ι), ContDiffAt 𝕜 n (fun x => f x i) y [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H n : ℕ∞ ⊢ ContDiffOn 𝕜 n f t ↔ ∀ (i : ι), ContDiffOn 𝕜 n (fun x => f x i) t [PROOFSTEP] rw [← (EuclideanSpace.equiv ι 𝕜).comp_contDiffOn_iff, contDiffOn_pi] [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H n : ℕ∞ ⊢ (∀ (i : ι), ContDiffOn 𝕜 n (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) t) ↔ ∀ (i : ι), ContDiffOn 𝕜 n (fun x => f x i) t [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H n : ℕ∞ ⊢ ContDiff 𝕜 n f ↔ ∀ (i : ι), ContDiff 𝕜 n fun x => f x i [PROOFSTEP] rw [← (EuclideanSpace.equiv ι 𝕜).comp_contDiff_iff, contDiff_pi] [GOAL] 𝕜 : Type u_1 ι : Type u_2 H : Type u_3 inst✝³ : IsROrC 𝕜 inst✝² : NormedAddCommGroup H inst✝¹ : NormedSpace 𝕜 H inst✝ : Fintype ι f : H → EuclideanSpace 𝕜 ι f' : H →L[𝕜] EuclideanSpace 𝕜 ι t : Set H y : H n : ℕ∞ ⊢ (∀ (i : ι), ContDiff 𝕜 n fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) ↔ ∀ (i : ι), ContDiff 𝕜 n fun x => f x i [PROOFSTEP] rfl [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E ⊢ ContDiff ℝ n ↑univUnitBall [PROOFSTEP] suffices ContDiff ℝ n fun x : E => ((1 : ℝ) + ‖x‖ ^ 2).sqrt⁻¹ from this.smul contDiff_id [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E ⊢ ContDiff ℝ n fun x => (sqrt (1 + ‖x‖ ^ 2))⁻¹ [PROOFSTEP] have h : ∀ x : E, (0 : ℝ) < (1 : ℝ) + ‖x‖ ^ 2 := fun x => by positivity [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E x : E ⊢ 0 < 1 + ‖x‖ ^ 2 [PROOFSTEP] positivity [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E h : ∀ (x : E), 0 < 1 + ‖x‖ ^ 2 ⊢ ContDiff ℝ n fun x => (sqrt (1 + ‖x‖ ^ 2))⁻¹ [PROOFSTEP] refine' ContDiff.inv _ fun x => Real.sqrt_ne_zero'.mpr (h x) [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E h : ∀ (x : E), 0 < 1 + ‖x‖ ^ 2 ⊢ ContDiff ℝ n fun x => sqrt (1 + ‖x‖ ^ 2) [PROOFSTEP] exact (contDiff_const.add <| contDiff_norm_sq ℝ).sqrt fun x => (h x).ne' [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E y : E hy : y ∈ ball 0 1 ⊢ ContDiffWithinAt ℝ n (↑(LocalHomeomorph.symm univUnitBall)) (ball 0 1) y [PROOFSTEP] apply ContDiffAt.contDiffWithinAt [GOAL] case h n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E y : E hy : y ∈ ball 0 1 ⊢ ContDiffAt ℝ n (↑(LocalHomeomorph.symm univUnitBall)) y [PROOFSTEP] suffices ContDiffAt ℝ n (fun y : E => ((1 : ℝ) - ‖y‖ ^ 2).sqrt⁻¹) y from this.smul contDiffAt_id [GOAL] case h n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E y : E hy : y ∈ ball 0 1 ⊢ ContDiffAt ℝ n (fun y => (sqrt (1 - ‖y‖ ^ 2))⁻¹) y [PROOFSTEP] have h : (0 : ℝ) < (1 : ℝ) - ‖(y : E)‖ ^ 2 := by rwa [mem_ball_zero_iff, ← _root_.abs_one, ← abs_norm, ← sq_lt_sq, one_pow, ← sub_pos] at hy [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E y : E hy : y ∈ ball 0 1 ⊢ 0 < 1 - ‖y‖ ^ 2 [PROOFSTEP] rwa [mem_ball_zero_iff, ← _root_.abs_one, ← abs_norm, ← sq_lt_sq, one_pow, ← sub_pos] at hy [GOAL] case h n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E y : E hy : y ∈ ball 0 1 h : 0 < 1 - ‖y‖ ^ 2 ⊢ ContDiffAt ℝ n (fun y => (sqrt (1 - ‖y‖ ^ 2))⁻¹) y [PROOFSTEP] refine' ContDiffAt.inv _ (Real.sqrt_ne_zero'.mpr h) [GOAL] case h n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E y : E hy : y ∈ ball 0 1 h : 0 < 1 - ‖y‖ ^ 2 ⊢ ContDiffAt ℝ n (fun y => sqrt (1 - ‖y‖ ^ 2)) y [PROOFSTEP] refine' (contDiffAt_sqrt h.ne').comp y _ [GOAL] case h n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E y : E hy : y ∈ ball 0 1 h : 0 < 1 - ‖y‖ ^ 2 ⊢ ContDiffAt ℝ n (fun y => 1 - ‖y‖ ^ 2) y [PROOFSTEP] exact contDiffAt_const.sub (contDiff_norm_sq ℝ).contDiffAt [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E c : E r : ℝ ⊢ ContDiff ℝ n ↑(univBall c r) [PROOFSTEP] unfold univBall [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E c : E r : ℝ ⊢ ContDiff ℝ n ↑(if h : 0 < r then LocalHomeomorph.trans' univUnitBall (unitBallBall c r h) (_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target) else Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c))) [PROOFSTEP] split_ifs with h [GOAL] case pos n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E c : E r : ℝ h : 0 < r ⊢ ContDiff ℝ n ↑(LocalHomeomorph.trans' univUnitBall (unitBallBall c r h) (_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target)) [PROOFSTEP] exact (contDiff_unitBallBall h).comp contDiff_univUnitBall [GOAL] case neg n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E c : E r : ℝ h : ¬0 < r ⊢ ContDiff ℝ n ↑(Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c))) [PROOFSTEP] exact contDiff_id.add contDiff_const [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E c : E r : ℝ ⊢ ContDiffOn ℝ n (↑(LocalHomeomorph.symm (univBall c r))) (ball c r) [PROOFSTEP] unfold univBall [GOAL] n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E c : E r : ℝ ⊢ ContDiffOn ℝ n (↑(LocalHomeomorph.symm (if h : 0 < r then LocalHomeomorph.trans' univUnitBall (unitBallBall c r h) (_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target) else Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c))))) (ball c r) [PROOFSTEP] split_ifs with h [GOAL] case pos n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E c : E r : ℝ h : 0 < r ⊢ ContDiffOn ℝ n (↑(LocalHomeomorph.symm (LocalHomeomorph.trans' univUnitBall (unitBallBall c r h) (_ : univUnitBall.toLocalEquiv.target = univUnitBall.toLocalEquiv.target)))) (ball c r) [PROOFSTEP] refine contDiffOn_univUnitBall_symm.comp (contDiff_unitBallBall_symm h).contDiffOn ?_ [GOAL] case pos n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E c : E r : ℝ h : 0 < r ⊢ ball c r ⊆ (fun x => ↑(LocalEquiv.symm (unitBallBall c r h).toLocalEquiv) x) ⁻¹' ball 0 1 [PROOFSTEP] rw [← unitBallBall_source c r h, ← unitBallBall_target c r h] [GOAL] case pos n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E c : E r : ℝ h : 0 < r ⊢ (unitBallBall c r h).toLocalEquiv.target ⊆ (fun x => ↑(LocalEquiv.symm (unitBallBall c r h).toLocalEquiv) x) ⁻¹' (unitBallBall c r h).toLocalEquiv.source [PROOFSTEP] apply LocalHomeomorph.symm_mapsTo [GOAL] case neg n : ℕ∞ E : Type u_1 inst✝¹ : NormedAddCommGroup E inst✝ : InnerProductSpace ℝ E c : E r : ℝ h : ¬0 < r ⊢ ContDiffOn ℝ n (↑(LocalHomeomorph.symm (Homeomorph.toLocalHomeomorph (IsometryEquiv.toHomeomorph (IsometryEquiv.vaddConst c))))) (ball c r) [PROOFSTEP] exact contDiffOn_id.sub contDiffOn_const
{"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.Calculus", "llama_tokens": 12361}
[GOAL] r : Type u m : Type u → Type v α β γ ω : Type w x y : ContT r m α h : ∀ (f : α → m r), run x f = run y f ⊢ x = y [PROOFSTEP] unfold ContT [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w x y : ContT r m α h : ∀ (f : α → m r), run x f = run y f ⊢ x = y [PROOFSTEP] ext [GOAL] case h r : Type u m : Type u → Type v α β γ ω : Type w x y : ContT r m α h : ∀ (f : α → m r), run x f = run y f x✝ : α → m r ⊢ x x✝ = y x✝ [PROOFSTEP] apply h [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w ⊢ ∀ {α : Type ?u.3230} (x : ContT r m α), id <$> x = x [PROOFSTEP] intros [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w α✝ : Type ?u.3230 x✝ : ContT r m α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] rfl [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w ⊢ ∀ {α β : Type ?u.3230} (x : α) (f : α → ContT r m β), pure x >>= f = f x [PROOFSTEP] intros [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w α✝ β✝ : Type ?u.3230 x✝ : α✝ f✝ : α✝ → ContT r m β✝ ⊢ pure x✝ >>= f✝ = f✝ x✝ [PROOFSTEP] ext [GOAL] case h r : Type u m : Type u → Type v α β γ ω : Type w α✝ β✝ : Type ?u.3230 x✝ : α✝ f✝¹ : α✝ → ContT r m β✝ f✝ : β✝ → m r ⊢ run (pure x✝ >>= f✝¹) f✝ = run (f✝¹ x✝) f✝ [PROOFSTEP] rfl [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w ⊢ ∀ {α β γ : Type ?u.3230} (x : ContT r m α) (f : α → ContT r m β) (g : β → ContT r m γ), x >>= f >>= g = x >>= fun x => f x >>= g [PROOFSTEP] intros [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w α✝ β✝ γ✝ : Type ?u.3230 x✝ : ContT r m α✝ f✝ : α✝ → ContT r m β✝ g✝ : β✝ → ContT r m γ✝ ⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] ext [GOAL] case h r : Type u m : Type u → Type v α β γ ω : Type w α✝ β✝ γ✝ : Type ?u.3230 x✝ : ContT r m α✝ f✝¹ : α✝ → ContT r m β✝ g✝ : β✝ → ContT r m γ✝ f✝ : γ✝ → m r ⊢ run (x✝ >>= f✝¹ >>= g✝) f✝ = run (x✝ >>= fun x => f✝¹ x >>= g✝) f✝ [PROOFSTEP] rfl [GOAL] r : Type u m : Type u → Type v α✝ β✝ γ ω : Type w inst✝¹ : Monad m inst✝ : LawfulMonad m α β : Type u x : m α f : α → m β ⊢ monadLift (x >>= f) = monadLift x >>= monadLift ∘ f [PROOFSTEP] ext [GOAL] case h r : Type u m : Type u → Type v α✝ β✝ γ ω : Type w inst✝¹ : Monad m inst✝ : LawfulMonad m α β : Type u x : m α f : α → m β f✝ : β → m r ⊢ run (monadLift (x >>= f)) f✝ = run (monadLift x >>= monadLift ∘ f) f✝ [PROOFSTEP] simp only [monadLift, MonadLift.monadLift, (· ∘ ·), (· >>= ·), bind_assoc, id.def, run, ContT.monadLift] [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w ⊢ ∀ {α ω γ : Type ?u.4864} (cmd : ContT r m α) (next : Label ω (ContT r m) γ → α → ContT r m ω), (callCC fun f => cmd >>= next f) = do let x ← cmd callCC fun f => next f x [PROOFSTEP] intros [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w α✝ ω✝ γ✝ : Type ?u.4864 cmd✝ : ContT r m α✝ next✝ : Label ω✝ (ContT r m) γ✝ → α✝ → ContT r m ω✝ ⊢ (callCC fun f => cmd✝ >>= next✝ f) = do let x ← cmd✝ callCC fun f => next✝ f x [PROOFSTEP] ext [GOAL] case h r : Type u m : Type u → Type v α β γ ω : Type w α✝ ω✝ γ✝ : Type ?u.4864 cmd✝ : ContT r m α✝ next✝ : Label ω✝ (ContT r m) γ✝ → α✝ → ContT r m ω✝ f✝ : ω✝ → m r ⊢ run (callCC fun f => cmd✝ >>= next✝ f) f✝ = run (do let x ← cmd✝ callCC fun f => next✝ f x) f✝ [PROOFSTEP] rfl [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w ⊢ ∀ {α : Type ?u.4864} (β : Type ?u.4864) (x : α) (dead : Label α (ContT r m) β → β → ContT r m α), (callCC fun f => goto f x >>= dead f) = pure x [PROOFSTEP] intros [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w α✝ β✝ : Type ?u.4864 x✝ : α✝ dead✝ : Label α✝ (ContT r m) β✝ → β✝ → ContT r m α✝ ⊢ (callCC fun f => goto f x✝ >>= dead✝ f) = pure x✝ [PROOFSTEP] ext [GOAL] case h r : Type u m : Type u → Type v α β γ ω : Type w α✝ β✝ : Type ?u.4864 x✝ : α✝ dead✝ : Label α✝ (ContT r m) β✝ → β✝ → ContT r m α✝ f✝ : α✝ → m r ⊢ run (callCC fun f => goto f x✝ >>= dead✝ f) f✝ = run (pure x✝) f✝ [PROOFSTEP] rfl [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w ⊢ ∀ {α β : Type ?u.4864} (dummy : ContT r m α), (callCC fun x => dummy) = dummy [PROOFSTEP] intros [GOAL] r : Type u m : Type u → Type v α β γ ω : Type w α✝ β✝ : Type ?u.4864 dummy✝ : ContT r m α✝ ⊢ (callCC fun x => dummy✝) = dummy✝ [PROOFSTEP] ext [GOAL] case h r : Type u m : Type u → Type v α β γ ω : Type w α✝ β✝ : Type ?u.4864 dummy✝ : ContT r m α✝ f✝ : α✝ → m r ⊢ run (callCC fun x => dummy✝) f✝ = run dummy✝ f✝ [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝ : Monad m α β ε : Type u x : Label (Except ε α) m β i : α ⊢ goto (mkLabel x) i = mk (Except.ok <$> goto x (Except.ok i)) [PROOFSTEP] cases x [GOAL] case mk m : Type u → Type v inst✝ : Monad m α β ε : Type u i : α apply✝ : Except ε α → m β ⊢ goto (mkLabel { apply := apply✝ }) i = mk (Except.ok <$> goto { apply := apply✝ } (Except.ok i)) [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α ω γ : Type u} (cmd : ExceptT ε m α) (next : Label ω (ExceptT ε m) γ → α → ExceptT ε m ω), (callCC fun f => cmd >>= next f) = do let x ← cmd callCC fun f => next f x [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : ExceptT ε m α✝ next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝ ⊢ (callCC fun f => cmd✝ >>= next✝ f) = do let x ← cmd✝ callCC fun f => next✝ f x [PROOFSTEP] simp [callCC, ExceptT.callCC, callCC_bind_right] [GOAL] m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : ExceptT ε m α✝ next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝ ⊢ (ExceptT.mk do let x ← ExceptT.run cmd✝ callCC fun f => match x with | Except.ok x => ExceptT.run (next✝ (ExceptT.mkLabel f) x) | Except.error e => pure (Except.error e)) = do let x ← cmd✝ ExceptT.mk (callCC fun x_1 => ExceptT.run (next✝ (ExceptT.mkLabel x_1) x)) [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : ExceptT ε m α✝ next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝ ⊢ ExceptT.run (ExceptT.mk do let x ← ExceptT.run cmd✝ callCC fun f => match x with | Except.ok x => ExceptT.run (next✝ (ExceptT.mkLabel f) x) | Except.error e => pure (Except.error e)) = ExceptT.run do let x ← cmd✝ ExceptT.mk (callCC fun x_1 => ExceptT.run (next✝ (ExceptT.mkLabel x_1) x)) [PROOFSTEP] dsimp [GOAL] case h m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : ExceptT ε m α✝ next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝ ⊢ (do let x ← ExceptT.run cmd✝ callCC fun f => match x with | Except.ok x => ExceptT.run (next✝ (ExceptT.mkLabel f) x) | Except.error e => pure (Except.error e)) = do let x ← ExceptT.run cmd✝ match x with | Except.ok x => callCC fun x_1 => ExceptT.run (next✝ (ExceptT.mkLabel x_1) x) | Except.error e => pure (Except.error e) [PROOFSTEP] congr with ⟨⟩ [GOAL] case h.e_a.h.error m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : ExceptT ε m α✝ next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝ a✝ : ε ⊢ (callCC fun f => match Except.error a✝ with | Except.ok x => ExceptT.run (next✝ (ExceptT.mkLabel f) x) | Except.error e => pure (Except.error e)) = match Except.error a✝ with | Except.ok x => callCC fun x_1 => ExceptT.run (next✝ (ExceptT.mkLabel x_1) x) | Except.error e => pure (Except.error e) [PROOFSTEP] simp [ExceptT.bindCont, @callCC_dummy m _] [GOAL] case h.e_a.h.ok m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : ExceptT ε m α✝ next✝ : Label ω✝ (ExceptT ε m) γ✝ → α✝ → ExceptT ε m ω✝ a✝ : α✝ ⊢ (callCC fun f => match Except.ok a✝ with | Except.ok x => ExceptT.run (next✝ (ExceptT.mkLabel f) x) | Except.error e => pure (Except.error e)) = match Except.ok a✝ with | Except.ok x => callCC fun x_1 => ExceptT.run (next✝ (ExceptT.mkLabel x_1) x) | Except.error e => pure (Except.error e) [PROOFSTEP] simp [ExceptT.bindCont, @callCC_dummy m _] [GOAL] m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α : Type u} (β : Type u) (x : α) (dead : Label α (ExceptT ε m) β → β → ExceptT ε m α), (callCC fun f => goto f x >>= dead f) = pure x [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (ExceptT ε m) β✝ → β✝ → ExceptT ε m α✝ ⊢ (callCC fun f => goto f x✝ >>= dead✝ f) = pure x✝ [PROOFSTEP] simp [callCC, ExceptT.callCC, callCC_bind_right, ExceptT.goto_mkLabel, map_eq_bind_pure_comp, bind_assoc, @callCC_bind_left m _, Function.comp] [GOAL] m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (ExceptT ε m) β✝ → β✝ → ExceptT ε m α✝ ⊢ ExceptT.mk (pure (Except.ok x✝)) = pure x✝ [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (ExceptT ε m) β✝ → β✝ → ExceptT ε m α✝ ⊢ ExceptT.run (ExceptT.mk (pure (Except.ok x✝))) = ExceptT.run (pure x✝) [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α β : Type u} (dummy : ExceptT ε m α), (callCC fun x => dummy) = dummy [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : ExceptT ε m α✝ ⊢ (callCC fun x => dummy✝) = dummy✝ [PROOFSTEP] simp [callCC, ExceptT.callCC, @callCC_dummy m _] [GOAL] m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : ExceptT ε m α✝ ⊢ ExceptT.mk (ExceptT.run dummy✝) = dummy✝ [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m ε : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : ExceptT ε m α✝ ⊢ ExceptT.run (ExceptT.mk (ExceptT.run dummy✝)) = ExceptT.run dummy✝ [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α ω γ : Type u} (cmd : OptionT m α) (next : Label ω (OptionT m) γ → α → OptionT m ω), (callCC fun f => cmd >>= next f) = do let x ← cmd callCC fun f => next f x [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : OptionT m α✝ next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝ ⊢ (callCC fun f => cmd✝ >>= next✝ f) = do let x ← cmd✝ callCC fun f => next✝ f x [PROOFSTEP] simp [callCC, OptionT.callCC, callCC_bind_right] [GOAL] m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : OptionT m α✝ next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝ ⊢ (OptionT.mk do let x ← OptionT.run cmd✝ callCC fun f => match x with | some a => OptionT.run (next✝ (OptionT.mkLabel f) a) | none => pure none) = do let x ← cmd✝ OptionT.mk (callCC fun x_1 => OptionT.run (next✝ (OptionT.mkLabel x_1) x)) [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : OptionT m α✝ next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝ ⊢ OptionT.run (OptionT.mk do let x ← OptionT.run cmd✝ callCC fun f => match x with | some a => OptionT.run (next✝ (OptionT.mkLabel f) a) | none => pure none) = OptionT.run do let x ← cmd✝ OptionT.mk (callCC fun x_1 => OptionT.run (next✝ (OptionT.mkLabel x_1) x)) [PROOFSTEP] dsimp [GOAL] case h m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : OptionT m α✝ next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝ ⊢ (do let x ← OptionT.run cmd✝ callCC fun f => match x with | some a => OptionT.run (next✝ (OptionT.mkLabel f) a) | none => pure none) = do let x ← OptionT.run cmd✝ match x with | some a => callCC fun x => OptionT.run (next✝ (OptionT.mkLabel x) a) | none => pure none [PROOFSTEP] congr with ⟨⟩ [GOAL] case h.e_a.h.none m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : OptionT m α✝ next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝ ⊢ (callCC fun f => match none with | some a => OptionT.run (next✝ (OptionT.mkLabel f) a) | none => pure none) = match none with | some a => callCC fun x => OptionT.run (next✝ (OptionT.mkLabel x) a) | none => pure none [PROOFSTEP] simp [@callCC_dummy m _] [GOAL] case h.e_a.h.some m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : OptionT m α✝ next✝ : Label ω✝ (OptionT m) γ✝ → α✝ → OptionT m ω✝ val✝ : α✝ ⊢ (callCC fun f => match some val✝ with | some a => OptionT.run (next✝ (OptionT.mkLabel f) a) | none => pure none) = match some val✝ with | some a => callCC fun x => OptionT.run (next✝ (OptionT.mkLabel x) a) | none => pure none [PROOFSTEP] simp [@callCC_dummy m _] [GOAL] m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α : Type u} (β : Type u) (x : α) (dead : Label α (OptionT m) β → β → OptionT m α), (callCC fun f => goto f x >>= dead f) = pure x [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (OptionT m) β✝ → β✝ → OptionT m α✝ ⊢ (callCC fun f => goto f x✝ >>= dead✝ f) = pure x✝ [PROOFSTEP] simp [callCC, OptionT.callCC, callCC_bind_right, OptionT.goto_mkLabel, map_eq_bind_pure_comp, bind_assoc, @callCC_bind_left m _, Function.comp] [GOAL] m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (OptionT m) β✝ → β✝ → OptionT m α✝ ⊢ OptionT.mk (pure (some x✝)) = pure x✝ [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (OptionT m) β✝ → β✝ → OptionT m α✝ ⊢ OptionT.run (OptionT.mk (pure (some x✝))) = OptionT.run (pure x✝) [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α β : Type u} (dummy : OptionT m α), (callCC fun x => dummy) = dummy [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : OptionT m α✝ ⊢ (callCC fun x => dummy✝) = dummy✝ [PROOFSTEP] simp [callCC, OptionT.callCC, @callCC_dummy m _] [GOAL] m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : OptionT m α✝ ⊢ OptionT.mk (OptionT.run dummy✝) = dummy✝ [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : OptionT m α✝ ⊢ OptionT.run (OptionT.mk (OptionT.run dummy✝)) = OptionT.run dummy✝ [PROOFSTEP] rfl /- Porting note: In Lean 3, `One ω` is required for `MonadLift (WriterT ω m)`. In Lean 4, `EmptyCollection ω` or `Monoid ω` is required. So we give definitions for the both instances. -/ [GOAL] m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β ω : Type u inst✝ : EmptyCollection ω x : Label (α × ω) m β i : α ⊢ goto (mkLabel x) i = monadLift (goto x (i, ∅)) [PROOFSTEP] cases x [GOAL] case mk m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β ω : Type u inst✝ : EmptyCollection ω i : α apply✝ : α × ω → m β ⊢ goto (mkLabel { apply := apply✝ }) i = monadLift (goto { apply := apply✝ } (i, ∅)) [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β ω : Type u inst✝ : Monoid ω x : Label (α × ω) m β i : α ⊢ goto (mkLabel' x) i = monadLift (goto x (i, 1)) [PROOFSTEP] cases x [GOAL] case mk m : Type u → Type v inst✝¹ : Monad m α : Type u_1 β ω : Type u inst✝ : Monoid ω i : α apply✝ : α × ω → m β ⊢ goto (mkLabel' { apply := apply✝ }) i = monadLift (goto { apply := apply✝ } (i, 1)) [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝ : Monad m α β σ : Type u x : Label (α × σ) m (β × σ) i : α ⊢ goto (mkLabel x) i = StateT.mk fun s => goto x (i, s) [PROOFSTEP] cases x [GOAL] case mk m : Type u → Type v inst✝ : Monad m α β σ : Type u i : α apply✝ : α × σ → m (β × σ) ⊢ goto (mkLabel { apply := apply✝ }) i = StateT.mk fun s => goto { apply := apply✝ } (i, s) [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α ω γ : Type u} (cmd : StateT σ m α) (next : Label ω (StateT σ m) γ → α → StateT σ m ω), (callCC fun f => cmd >>= next f) = do let x ← cmd callCC fun f => next f x [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : StateT σ m α✝ next✝ : Label ω✝ (StateT σ m) γ✝ → α✝ → StateT σ m ω✝ ⊢ (callCC fun f => cmd✝ >>= next✝ f) = do let x ← cmd✝ callCC fun f => next✝ f x [PROOFSTEP] simp [callCC, StateT.callCC, callCC_bind_right] [GOAL] m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : StateT σ m α✝ next✝ : Label ω✝ (StateT σ m) γ✝ → α✝ → StateT σ m ω✝ ⊢ (StateT.mk fun r => do let x ← StateT.run cmd✝ r callCC fun f => StateT.run (next✝ (StateT.mkLabel f) x.fst) x.snd) = do let x ← cmd✝ StateT.mk fun r => callCC fun f' => StateT.run (next✝ (StateT.mkLabel f') x) r [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : StateT σ m α✝ next✝ : Label ω✝ (StateT σ m) γ✝ → α✝ → StateT σ m ω✝ s✝ : σ ⊢ StateT.run (StateT.mk fun r => do let x ← StateT.run cmd✝ r callCC fun f => StateT.run (next✝ (StateT.mkLabel f) x.fst) x.snd) s✝ = StateT.run (do let x ← cmd✝ StateT.mk fun r => callCC fun f' => StateT.run (next✝ (StateT.mkLabel f') x) r) s✝ [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α : Type u} (β : Type u) (x : α) (dead : Label α (StateT σ m) β → β → StateT σ m α), (callCC fun f => goto f x >>= dead f) = pure x [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (StateT σ m) β✝ → β✝ → StateT σ m α✝ ⊢ (callCC fun f => goto f x✝ >>= dead✝ f) = pure x✝ [PROOFSTEP] simp [callCC, StateT.callCC, callCC_bind_left, StateT.goto_mkLabel] [GOAL] m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (StateT σ m) β✝ → β✝ → StateT σ m α✝ ⊢ (StateT.mk fun r => pure (x✝, r)) = pure x✝ [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (StateT σ m) β✝ → β✝ → StateT σ m α✝ s✝ : σ ⊢ StateT.run (StateT.mk fun r => pure (x✝, r)) s✝ = StateT.run (pure x✝) s✝ [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α β : Type u} (dummy : StateT σ m α), (callCC fun x => dummy) = dummy [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : StateT σ m α✝ ⊢ (callCC fun x => dummy✝) = dummy✝ [PROOFSTEP] simp [callCC, StateT.callCC, callCC_bind_right, @callCC_dummy m _] [GOAL] m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : StateT σ m α✝ ⊢ (StateT.mk fun r => StateT.run dummy✝ r) = dummy✝ [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m σ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : StateT σ m α✝ s✝ : σ ⊢ StateT.run (StateT.mk fun r => StateT.run dummy✝ r) s✝ = StateT.run dummy✝ s✝ [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝ : Monad m α : Type u_1 ρ β : Type u x : Label α m β i : α ⊢ goto (mkLabel ρ x) i = monadLift (goto x i) [PROOFSTEP] cases x [GOAL] case mk m : Type u → Type v inst✝ : Monad m α : Type u_1 ρ β : Type u i : α apply✝ : α → m β ⊢ goto (mkLabel ρ { apply := apply✝ }) i = monadLift (goto { apply := apply✝ } i) [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α ω γ : Type u} (cmd : ReaderT ρ m α) (next : Label ω (ReaderT ρ m) γ → α → ReaderT ρ m ω), (callCC fun f => cmd >>= next f) = do let x ← cmd callCC fun f => next f x [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : ReaderT ρ m α✝ next✝ : Label ω✝ (ReaderT ρ m) γ✝ → α✝ → ReaderT ρ m ω✝ ⊢ (callCC fun f => cmd✝ >>= next✝ f) = do let x ← cmd✝ callCC fun f => next✝ f x [PROOFSTEP] simp [callCC, ReaderT.callCC, callCC_bind_right] [GOAL] m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : ReaderT ρ m α✝ next✝ : Label ω✝ (ReaderT ρ m) γ✝ → α✝ → ReaderT ρ m ω✝ ⊢ (ReaderT.mk fun r => do let x ← ReaderT.run cmd✝ r callCC fun f => ReaderT.run (next✝ (ReaderT.mkLabel ρ f) x) r) = do let x ← cmd✝ ReaderT.mk fun r => callCC fun f' => ReaderT.run (next✝ (ReaderT.mkLabel ρ f') x) r [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ ω✝ γ✝ : Type u cmd✝ : ReaderT ρ m α✝ next✝ : Label ω✝ (ReaderT ρ m) γ✝ → α✝ → ReaderT ρ m ω✝ ctx✝ : ρ ⊢ ReaderT.run (ReaderT.mk fun r => do let x ← ReaderT.run cmd✝ r callCC fun f => ReaderT.run (next✝ (ReaderT.mkLabel ρ f) x) r) ctx✝ = ReaderT.run (do let x ← cmd✝ ReaderT.mk fun r => callCC fun f' => ReaderT.run (next✝ (ReaderT.mkLabel ρ f') x) r) ctx✝ [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α : Type u} (β : Type u) (x : α) (dead : Label α (ReaderT ρ m) β → β → ReaderT ρ m α), (callCC fun f => goto f x >>= dead f) = pure x [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (ReaderT ρ m) β✝ → β✝ → ReaderT ρ m α✝ ⊢ (callCC fun f => goto f x✝ >>= dead✝ f) = pure x✝ [PROOFSTEP] simp [callCC, ReaderT.callCC, callCC_bind_left, ReaderT.goto_mkLabel] [GOAL] m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (ReaderT ρ m) β✝ → β✝ → ReaderT ρ m α✝ ⊢ (ReaderT.mk fun r => pure x✝) = pure x✝ [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u x✝ : α✝ dead✝ : Label α✝ (ReaderT ρ m) β✝ → β✝ → ReaderT ρ m α✝ ctx✝ : ρ ⊢ ReaderT.run (ReaderT.mk fun r => pure x✝) ctx✝ = ReaderT.run (pure x✝) ctx✝ [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m ⊢ ∀ {α β : Type u} (dummy : ReaderT ρ m α), (callCC fun x => dummy) = dummy [PROOFSTEP] intros [GOAL] m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : ReaderT ρ m α✝ ⊢ (callCC fun x => dummy✝) = dummy✝ [PROOFSTEP] simp [callCC, ReaderT.callCC, @callCC_dummy m _] [GOAL] m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : ReaderT ρ m α✝ ⊢ (ReaderT.mk fun r => ReaderT.run dummy✝ r) = dummy✝ [PROOFSTEP] ext [GOAL] case h m : Type u → Type v inst✝² : Monad m ρ : Type u inst✝¹ : MonadCont m inst✝ : LawfulMonadCont m α✝ β✝ : Type u dummy✝ : ReaderT ρ m α✝ ctx✝ : ρ ⊢ ReaderT.run (ReaderT.mk fun r => ReaderT.run dummy✝ r) ctx✝ = ReaderT.run dummy✝ ctx✝ [PROOFSTEP] rfl [GOAL] m : Type u → Type v inst✝ : Monad m m₁ : Type u₀ → Type v₀ m₂ : Type u₁ → Type v₁ α₁ r₁ : Type u₀ α₂ r₂ : Type u₁ F : m₁ r₁ ≃ m₂ r₂ G : α₁ ≃ α₂ f : ContT r₁ m₁ α₁ ⊢ (fun f r => ↑F.symm (f fun x => ↑F (r (↑G.symm x)))) ((fun f r => ↑F (f fun x => ↑F.symm (r (↑G x)))) f) = f [PROOFSTEP] funext r [GOAL] case h m : Type u → Type v inst✝ : Monad m m₁ : Type u₀ → Type v₀ m₂ : Type u₁ → Type v₁ α₁ r₁ : Type u₀ α₂ r₂ : Type u₁ F : m₁ r₁ ≃ m₂ r₂ G : α₁ ≃ α₂ f : ContT r₁ m₁ α₁ r : α₁ → m₁ r₁ ⊢ (fun f r => ↑F.symm (f fun x => ↑F (r (↑G.symm x)))) ((fun f r => ↑F (f fun x => ↑F.symm (r (↑G x)))) f) r = f r [PROOFSTEP] simp [GOAL] m : Type u → Type v inst✝ : Monad m m₁ : Type u₀ → Type v₀ m₂ : Type u₁ → Type v₁ α₁ r₁ : Type u₀ α₂ r₂ : Type u₁ F : m₁ r₁ ≃ m₂ r₂ G : α₁ ≃ α₂ f : ContT r₂ m₂ α₂ ⊢ (fun f r => ↑F (f fun x => ↑F.symm (r (↑G x)))) ((fun f r => ↑F.symm (f fun x => ↑F (r (↑G.symm x)))) f) = f [PROOFSTEP] funext r [GOAL] case h m : Type u → Type v inst✝ : Monad m m₁ : Type u₀ → Type v₀ m₂ : Type u₁ → Type v₁ α₁ r₁ : Type u₀ α₂ r₂ : Type u₁ F : m₁ r₁ ≃ m₂ r₂ G : α₁ ≃ α₂ f : ContT r₂ m₂ α₂ r : α₂ → m₂ r₂ ⊢ (fun f r => ↑F (f fun x => ↑F.symm (r (↑G x)))) ((fun f r => ↑F.symm (f fun x => ↑F (r (↑G.symm x)))) f) r = f r [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Control.Monad.Cont", "llama_tokens": 13923}
[GOAL] n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P✝ : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F P : F α → Prop q : F β → Prop f : α ⟹ β g : β ⟹ α h₀ : f ⊚ g = TypeVec.id h₁ : ∀ (u : F α), P u ↔ q (f <$$> u) ⊢ (∃ u, P u) ↔ ∃ u, q u [PROOFSTEP] constructor [GOAL] case mp n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P✝ : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F P : F α → Prop q : F β → Prop f : α ⟹ β g : β ⟹ α h₀ : f ⊚ g = TypeVec.id h₁ : ∀ (u : F α), P u ↔ q (f <$$> u) ⊢ (∃ u, P u) → ∃ u, q u [PROOFSTEP] rintro ⟨u, h₂⟩ [GOAL] case mpr n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P✝ : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F P : F α → Prop q : F β → Prop f : α ⟹ β g : β ⟹ α h₀ : f ⊚ g = TypeVec.id h₁ : ∀ (u : F α), P u ↔ q (f <$$> u) ⊢ (∃ u, q u) → ∃ u, P u [PROOFSTEP] rintro ⟨u, h₂⟩ [GOAL] case mp.intro n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P✝ : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F P : F α → Prop q : F β → Prop f : α ⟹ β g : β ⟹ α h₀ : f ⊚ g = TypeVec.id h₁ : ∀ (u : F α), P u ↔ q (f <$$> u) u : F α h₂ : P u ⊢ ∃ u, q u [PROOFSTEP] refine ⟨f <$$> u, ?_⟩ [GOAL] case mp.intro n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P✝ : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F P : F α → Prop q : F β → Prop f : α ⟹ β g : β ⟹ α h₀ : f ⊚ g = TypeVec.id h₁ : ∀ (u : F α), P u ↔ q (f <$$> u) u : F α h₂ : P u ⊢ q (f <$$> u) [PROOFSTEP] apply (h₁ u).mp h₂ [GOAL] case mpr.intro n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P✝ : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F P : F α → Prop q : F β → Prop f : α ⟹ β g : β ⟹ α h₀ : f ⊚ g = TypeVec.id h₁ : ∀ (u : F α), P u ↔ q (f <$$> u) u : F β h₂ : q u ⊢ ∃ u, P u [PROOFSTEP] refine ⟨g <$$> u, ?_⟩ [GOAL] case mpr.intro n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P✝ : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F P : F α → Prop q : F β → Prop f : α ⟹ β g : β ⟹ α h₀ : f ⊚ g = TypeVec.id h₁ : ∀ (u : F α), P u ↔ q (f <$$> u) u : F β h₂ : q u ⊢ P (g <$$> u) [PROOFSTEP] apply (h₁ _).mpr _ [GOAL] n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P✝ : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F P : F α → Prop q : F β → Prop f : α ⟹ β g : β ⟹ α h₀ : f ⊚ g = TypeVec.id h₁ : ∀ (u : F α), P u ↔ q (f <$$> u) u : F β h₂ : q u ⊢ q (f <$$> g <$$> u) [PROOFSTEP] simp only [MvFunctor.map_map, h₀, LawfulMvFunctor.id_map, h₂] [GOAL] n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F x : F α ⊢ ∀ (u : F fun i => Subtype ((fun i x => ofRepeat (P i x)) i)), (fun i => Subtype.val) <$$> u = x ↔ subtypeVal P <$$> toSubtype P <$$> u = x [PROOFSTEP] simp [MvFunctor.map_map] [GOAL] n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F x y : F α ⊢ ∀ (u : F fun i => { p // (fun i x y => ofRepeat (R i (prod.mk i x y))) i p.fst p.snd }), (fun i t => (↑t).fst) <$$> u = x ∧ (fun i t => (↑t).snd) <$$> u = y ↔ (prod.fst ⊚ subtypeVal R) <$$> toSubtype' R <$$> u = x ∧ (prod.snd ⊚ subtypeVal R) <$$> toSubtype' R <$$> u = y [PROOFSTEP] simp only [map_map, comp_assoc, subtypeVal_toSubtype'] [GOAL] n : ℕ α β γ : TypeVec n F : TypeVec n → Type v inst✝¹ : MvFunctor F P : α ⟹ TypeVec.repeat n Prop R : α ⊗ α ⟹ TypeVec.repeat n Prop inst✝ : LawfulMvFunctor F x y : F α ⊢ ∀ (u : F fun i => { p // (fun i x y => ofRepeat (R i (prod.mk i x y))) i p.fst p.snd }), (fun i t => (↑t).fst) <$$> u = x ∧ (fun i t => (↑t).snd) <$$> u = y ↔ (prod.fst ⊚ fun i x => prod.mk i (↑x).fst (↑x).snd) <$$> u = x ∧ (prod.snd ⊚ fun i x => prod.mk i (↑x).fst (↑x).snd) <$$> u = y [PROOFSTEP] simp [comp] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α✝ : TypeVec n β : Type u pp : β → Prop x✝ : ℕ α : TypeVec x✝ i : Fin2 x✝ x : (fun i => { p_1 // ofRepeat (PredLast' α pp i p_1) }) (Fin2.fs i) ⊢ ofRepeat (PredLast' α pp (Fin2.fs i) ↑x) = PredLast α pp ↑x [PROOFSTEP] simp only [PredLast] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α✝ : TypeVec n β : Type u pp : β → Prop x✝ : ℕ α : TypeVec x✝ i : Fin2 x✝ x : (fun i => { p_1 // ofRepeat (PredLast' α pp i p_1) }) (Fin2.fs i) ⊢ ofRepeat (PredLast' α pp (Fin2.fs i) ↑x) = True [PROOFSTEP] erw [const_iff_true] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α✝ : TypeVec n β : Type u pp : β → Prop x✝ : ℕ α : TypeVec x✝ i : Fin2 x✝ x : (fun i => { p_1 // PredLast α pp p_1 }) (Fin2.fs i) ⊢ PredLast α pp ↑x = ofRepeat (PredLast' α pp (Fin2.fs i) ↑x) [PROOFSTEP] simp only [PredLast] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α✝ : TypeVec n β : Type u pp : β → Prop x✝ : ℕ α : TypeVec x✝ i : Fin2 x✝ x : (fun i => { p_1 // PredLast α pp p_1 }) (Fin2.fs i) ⊢ True = ofRepeat (PredLast' α pp (Fin2.fs i) ↑x) [PROOFSTEP] erw [const_iff_true] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x : F (α ::: β) ⊢ LiftP' (PredLast' α P) x ↔ LiftP (PredLast α P) x [PROOFSTEP] dsimp only [LiftP, LiftP'] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x : F (α ::: β) ⊢ (∃ u, (fun i => Subtype.val) <$$> u = x) ↔ ∃ u, (fun i => Subtype.val) <$$> u = x [PROOFSTEP] apply exists_iff_exists_of_mono F (f _ n α) (g _ n α) [GOAL] case h₀ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x : F (α ::: β) ⊢ MvFunctor.f P n α ⊚ MvFunctor.g P n α = TypeVec.id [PROOFSTEP] ext i ⟨x, _⟩ [GOAL] case h₀.a.h.mk.a n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x✝ : F (α ::: β) i : Fin2 (n + 1) x : (α ::: β) i property✝ : PredLast α P x ⊢ ↑((MvFunctor.f P n α ⊚ MvFunctor.g P n α) i { val := x, property := property✝ }) = ↑(TypeVec.id i { val := x, property := property✝ }) [PROOFSTEP] cases i [GOAL] case h₀.a.h.mk.a.fz n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x✝ : F (α ::: β) x : (α ::: β) Fin2.fz property✝ : PredLast α P x ⊢ ↑((MvFunctor.f P n α ⊚ MvFunctor.g P n α) Fin2.fz { val := x, property := property✝ }) = ↑(TypeVec.id Fin2.fz { val := x, property := property✝ }) [PROOFSTEP] rfl [GOAL] case h₀.a.h.mk.a.fs n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x✝ : F (α ::: β) a✝ : Fin2 (Nat.add n 0) x : (α ::: β) (Fin2.fs a✝) property✝ : PredLast α P x ⊢ ↑((MvFunctor.f P n α ⊚ MvFunctor.g P n α) (Fin2.fs a✝) { val := x, property := property✝ }) = ↑(TypeVec.id (Fin2.fs a✝) { val := x, property := property✝ }) [PROOFSTEP] rfl [GOAL] case h₁ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x : F (α ::: β) ⊢ ∀ (u : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) }), (fun i => Subtype.val) <$$> u = x ↔ (fun i => Subtype.val) <$$> MvFunctor.f P n α <$$> u = x [PROOFSTEP] intros [GOAL] case h₁ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) } ⊢ (fun i => Subtype.val) <$$> u✝ = x ↔ (fun i => Subtype.val) <$$> MvFunctor.f P n α <$$> u✝ = x [PROOFSTEP] rw [MvFunctor.map_map] [GOAL] case h₁ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) } ⊢ (fun i => Subtype.val) <$$> u✝ = x ↔ ((fun i => Subtype.val) ⊚ MvFunctor.f P n α) <$$> u✝ = x [PROOFSTEP] dsimp [(· ⊚ ·)] [GOAL] case h₁ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) } ⊢ (fun i => Subtype.val) <$$> u✝ = x ↔ (fun i x => ↑(MvFunctor.f P n α i x)) <$$> u✝ = x [PROOFSTEP] suffices (fun i => Subtype.val) = (fun i x => (MvFunctor.f P n α i x).val) by rw [this]; [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) } this : (fun i => Subtype.val) = fun i x => ↑(MvFunctor.f P n α i x) ⊢ (fun i => Subtype.val) <$$> u✝ = x ↔ (fun i x => ↑(MvFunctor.f P n α i x)) <$$> u✝ = x [PROOFSTEP] rw [this] [GOAL] case h₁ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) } ⊢ (fun i => Subtype.val) = fun i x => ↑(MvFunctor.f P n α i x) [PROOFSTEP] ext i ⟨x, _⟩ [GOAL] case h₁.h.h.mk n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x✝ : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) } i : Fin2 (n + 1) x : (α ::: β) i property✝ : ofRepeat (PredLast' α P i x) ⊢ ↑{ val := x, property := property✝ } = ↑(MvFunctor.f P n α i { val := x, property := property✝ }) [PROOFSTEP] cases i [GOAL] case h₁.h.h.mk.fz n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x✝ : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) } x : (α ::: β) Fin2.fz property✝ : ofRepeat (PredLast' α P Fin2.fz x) ⊢ ↑{ val := x, property := property✝ } = ↑(MvFunctor.f P n α Fin2.fz { val := x, property := property✝ }) [PROOFSTEP] rfl [GOAL] case h₁.h.h.mk.fs n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β✝ : Type u pp : β✝ → Prop β : Type u P : β → Prop x✝ : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (PredLast' α P i p_1) } a✝ : Fin2 (Nat.add n 0) x : (α ::: β) (Fin2.fs a✝) property✝ : ofRepeat (PredLast' α P (Fin2.fs a✝) x) ⊢ ↑{ val := x, property := property✝ } = ↑(MvFunctor.f P n α (Fin2.fs a✝) { val := x, property := property✝ }) [PROOFSTEP] rfl [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α✝ : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ : ℕ α : TypeVec x✝ i : Fin2 x✝ x : (fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }) (Fin2.fs i) ⊢ ofRepeat (RelLast' α rr (Fin2.fs i) (prod.mk (Fin2.fs i) (↑x).fst (↑x).snd)) = RelLast α rr (↑x).fst (↑x).snd [PROOFSTEP] simp only [RelLast] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α✝ : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ : ℕ α : TypeVec x✝ i : Fin2 x✝ x : (fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }) (Fin2.fs i) ⊢ ofRepeat (RelLast' α rr (Fin2.fs i) (prod.mk (Fin2.fs i) (↑x).fst (↑x).snd)) = ((↑x).fst = (↑x).snd) [PROOFSTEP] erw [repeatEq_iff_eq] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α✝ : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ : ℕ α : TypeVec x✝ i : Fin2 x✝ x : (fun i => { p_1 // RelLast α rr p_1.fst p_1.snd }) (Fin2.fs i) ⊢ RelLast α rr (↑x).fst (↑x).snd = ofRepeat (RelLast' α rr (Fin2.fs i) (prod.mk (Fin2.fs i) (↑x).fst (↑x).snd)) [PROOFSTEP] simp only [RelLast] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α✝ : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ : ℕ α : TypeVec x✝ i : Fin2 x✝ x : (fun i => { p_1 // RelLast α rr p_1.fst p_1.snd }) (Fin2.fs i) ⊢ ((↑x).fst = (↑x).snd) = ofRepeat (RelLast' α rr (Fin2.fs i) (prod.mk (Fin2.fs i) (↑x).fst (↑x).snd)) [PROOFSTEP] erw [repeatEq_iff_eq] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) ⊢ LiftR' (RelLast' α rr) x y ↔ LiftR (fun {i} => RelLast α rr) x y [PROOFSTEP] dsimp only [LiftR, LiftR'] [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) ⊢ (∃ u, (fun i t => (↑t).fst) <$$> u = x ∧ (fun i t => (↑t).snd) <$$> u = y) ↔ ∃ u, (fun i t => (↑t).fst) <$$> u = x ∧ (fun i t => (↑t).snd) <$$> u = y [PROOFSTEP] apply exists_iff_exists_of_mono F (f' rr _ _) (g' rr _ _) [GOAL] case h₀ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) ⊢ MvFunctor.f' rr n α ⊚ MvFunctor.g' rr n α = TypeVec.id [PROOFSTEP] ext i ⟨x, _⟩ : 2 [GOAL] case h₀.a.h.mk n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ y : F (α ::: β) i : Fin2 (n + 1) x : (α ::: β) i × (α ::: β) i property✝ : RelLast α rr x.fst x.snd ⊢ (MvFunctor.f' rr n α ⊚ MvFunctor.g' rr n α) i { val := x, property := property✝ } = TypeVec.id i { val := x, property := property✝ } [PROOFSTEP] cases i [GOAL] case h₀.a.h.mk.fz n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ y : F (α ::: β) x : (α ::: β) Fin2.fz × (α ::: β) Fin2.fz property✝ : RelLast α rr x.fst x.snd ⊢ (MvFunctor.f' rr n α ⊚ MvFunctor.g' rr n α) Fin2.fz { val := x, property := property✝ } = TypeVec.id Fin2.fz { val := x, property := property✝ } [PROOFSTEP] rfl [GOAL] case h₀.a.h.mk.fs n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ y : F (α ::: β) a✝ : Fin2 (Nat.add n 0) x : (α ::: β) (Fin2.fs a✝) × (α ::: β) (Fin2.fs a✝) property✝ : RelLast α rr x.fst x.snd ⊢ (MvFunctor.f' rr n α ⊚ MvFunctor.g' rr n α) (Fin2.fs a✝) { val := x, property := property✝ } = TypeVec.id (Fin2.fs a✝) { val := x, property := property✝ } [PROOFSTEP] rfl [GOAL] case h₁ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) ⊢ ∀ (u : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) }), (fun i t => (↑t).fst) <$$> u = x ∧ (fun i t => (↑t).snd) <$$> u = y ↔ (fun i t => (↑t).fst) <$$> MvFunctor.f' rr n α <$$> u = x ∧ (fun i t => (↑t).snd) <$$> MvFunctor.f' rr n α <$$> u = y [PROOFSTEP] intros [GOAL] case h₁ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } ⊢ (fun i t => (↑t).fst) <$$> u✝ = x ∧ (fun i t => (↑t).snd) <$$> u✝ = y ↔ (fun i t => (↑t).fst) <$$> MvFunctor.f' rr n α <$$> u✝ = x ∧ (fun i t => (↑t).snd) <$$> MvFunctor.f' rr n α <$$> u✝ = y [PROOFSTEP] simp [MvFunctor.map_map, (· ⊚ ·)] -- porting note: proof was -- rw [MvFunctor.map_map, MvFunctor.map_map, (· ⊚ ·), (· ⊚ ·)] -- congr <;> ext i ⟨x, _⟩ <;> cases i <;> rfl [GOAL] case h₁ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } ⊢ (fun i t => (↑t).fst) <$$> u✝ = x ∧ (fun i t => (↑t).snd) <$$> u✝ = y ↔ (fun i x => (↑(MvFunctor.f' rr n α i x)).fst) <$$> u✝ = x ∧ (fun i x => (↑(MvFunctor.f' rr n α i x)).snd) <$$> u✝ = y [PROOFSTEP] suffices (fun i t => t.val.fst) = ((fun i x => (MvFunctor.f' rr n α i x).val.fst)) ∧ (fun i t => t.val.snd) = ((fun i x => (MvFunctor.f' rr n α i x).val.snd)) by rcases this with ⟨left, right⟩ rw [left, right]; [GOAL] n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } this : ((fun i t => (↑t).fst) = fun i x => (↑(MvFunctor.f' rr n α i x)).fst) ∧ (fun i t => (↑t).snd) = fun i x => (↑(MvFunctor.f' rr n α i x)).snd ⊢ (fun i t => (↑t).fst) <$$> u✝ = x ∧ (fun i t => (↑t).snd) <$$> u✝ = y ↔ (fun i x => (↑(MvFunctor.f' rr n α i x)).fst) <$$> u✝ = x ∧ (fun i x => (↑(MvFunctor.f' rr n α i x)).snd) <$$> u✝ = y [PROOFSTEP] rcases this with ⟨left, right⟩ [GOAL] case intro n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } left : (fun i t => (↑t).fst) = fun i x => (↑(MvFunctor.f' rr n α i x)).fst right : (fun i t => (↑t).snd) = fun i x => (↑(MvFunctor.f' rr n α i x)).snd ⊢ (fun i t => (↑t).fst) <$$> u✝ = x ∧ (fun i t => (↑t).snd) <$$> u✝ = y ↔ (fun i x => (↑(MvFunctor.f' rr n α i x)).fst) <$$> u✝ = x ∧ (fun i x => (↑(MvFunctor.f' rr n α i x)).snd) <$$> u✝ = y [PROOFSTEP] rw [left, right] [GOAL] case h₁ n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } ⊢ ((fun i t => (↑t).fst) = fun i x => (↑(MvFunctor.f' rr n α i x)).fst) ∧ (fun i t => (↑t).snd) = fun i x => (↑(MvFunctor.f' rr n α i x)).snd [PROOFSTEP] constructor [GOAL] case h₁.left n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } ⊢ (fun i t => (↑t).fst) = fun i x => (↑(MvFunctor.f' rr n α i x)).fst [PROOFSTEP] ext i ⟨x, _⟩ [GOAL] case h₁.right n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } ⊢ (fun i t => (↑t).snd) = fun i x => (↑(MvFunctor.f' rr n α i x)).snd [PROOFSTEP] ext i ⟨x, _⟩ [GOAL] case h₁.left.h.h.mk n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } i : Fin2 (n + 1) x : (α ::: β) i × (α ::: β) i property✝ : ofRepeat (RelLast' α rr i (prod.mk i x.fst x.snd)) ⊢ (↑{ val := x, property := property✝ }).fst = (↑(MvFunctor.f' rr n α i { val := x, property := property✝ })).fst [PROOFSTEP] cases i [GOAL] case h₁.right.h.h.mk n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } i : Fin2 (n + 1) x : (α ::: β) i × (α ::: β) i property✝ : ofRepeat (RelLast' α rr i (prod.mk i x.fst x.snd)) ⊢ (↑{ val := x, property := property✝ }).snd = (↑(MvFunctor.f' rr n α i { val := x, property := property✝ })).snd [PROOFSTEP] cases i [GOAL] case h₁.left.h.h.mk.fz n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } x : (α ::: β) Fin2.fz × (α ::: β) Fin2.fz property✝ : ofRepeat (RelLast' α rr Fin2.fz (prod.mk Fin2.fz x.fst x.snd)) ⊢ (↑{ val := x, property := property✝ }).fst = (↑(MvFunctor.f' rr n α Fin2.fz { val := x, property := property✝ })).fst [PROOFSTEP] rfl [GOAL] case h₁.left.h.h.mk.fs n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } a✝ : Fin2 (Nat.add n 0) x : (α ::: β) (Fin2.fs a✝) × (α ::: β) (Fin2.fs a✝) property✝ : ofRepeat (RelLast' α rr (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x.fst x.snd)) ⊢ (↑{ val := x, property := property✝ }).fst = (↑(MvFunctor.f' rr n α (Fin2.fs a✝) { val := x, property := property✝ })).fst [PROOFSTEP] rfl [GOAL] case h₁.right.h.h.mk.fz n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } x : (α ::: β) Fin2.fz × (α ::: β) Fin2.fz property✝ : ofRepeat (RelLast' α rr Fin2.fz (prod.mk Fin2.fz x.fst x.snd)) ⊢ (↑{ val := x, property := property✝ }).snd = (↑(MvFunctor.f' rr n α Fin2.fz { val := x, property := property✝ })).snd [PROOFSTEP] rfl [GOAL] case h₁.right.h.h.mk.fs n : ℕ F : TypeVec (n + 1) → Type u_1 inst✝¹ : MvFunctor F inst✝ : LawfulMvFunctor F α : TypeVec n β : Type u pp : β → Prop rr : β → β → Prop x✝ y : F (α ::: β) u✝ : F fun i => { p_1 // ofRepeat (RelLast' α rr i (prod.mk i p_1.fst p_1.snd)) } a✝ : Fin2 (Nat.add n 0) x : (α ::: β) (Fin2.fs a✝) × (α ::: β) (Fin2.fs a✝) property✝ : ofRepeat (RelLast' α rr (Fin2.fs a✝) (prod.mk (Fin2.fs a✝) x.fst x.snd)) ⊢ (↑{ val := x, property := property✝ }).snd = (↑(MvFunctor.f' rr n α (Fin2.fs a✝) { val := x, property := property✝ })).snd [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Control.Functor.Multivariate", "llama_tokens": 12408}
[GOAL] M : Type u → Type v inst✝² : Monad M ω α β : Type u inst✝¹ : Monoid ω inst✝ : LawfulMonad M ⊢ ∀ {α : Type u} (x : WriterT ω M α), id <$> x = x [PROOFSTEP] intros [GOAL] M : Type u → Type v inst✝² : Monad M ω α β : Type u inst✝¹ : Monoid ω inst✝ : LawfulMonad M α✝ : Type u x✝ : WriterT ω M α✝ ⊢ id <$> x✝ = x✝ [PROOFSTEP] simp [Functor.map, WriterT.mk] [GOAL] M : Type u → Type v inst✝² : Monad M ω α β : Type u inst✝¹ : Monoid ω inst✝ : LawfulMonad M ⊢ ∀ {α β : Type u} (x : α) (f : α → WriterT ω M β), pure x >>= f = f x [PROOFSTEP] intros [GOAL] M : Type u → Type v inst✝² : Monad M ω α β : Type u inst✝¹ : Monoid ω inst✝ : LawfulMonad M α✝ β✝ : Type u x✝ : α✝ f✝ : α✝ → WriterT ω M β✝ ⊢ pure x✝ >>= f✝ = f✝ x✝ [PROOFSTEP] simp [Bind.bind, Pure.pure, WriterT.mk] [GOAL] M : Type u → Type v inst✝² : Monad M ω α β : Type u inst✝¹ : Monoid ω inst✝ : LawfulMonad M ⊢ ∀ {α β γ : Type u} (x : WriterT ω M α) (f : α → WriterT ω M β) (g : β → WriterT ω M γ), x >>= f >>= g = x >>= fun x => f x >>= g [PROOFSTEP] intros [GOAL] M : Type u → Type v inst✝² : Monad M ω α β : Type u inst✝¹ : Monoid ω inst✝ : LawfulMonad M α✝ β✝ γ✝ : Type u x✝ : WriterT ω M α✝ f✝ : α✝ → WriterT ω M β✝ g✝ : β✝ → WriterT ω M γ✝ ⊢ x✝ >>= f✝ >>= g✝ = x✝ >>= fun x => f✝ x >>= g✝ [PROOFSTEP] simp [Bind.bind, mul_assoc, WriterT.mk, ← bind_pure_comp] [GOAL] M : Type u → Type v inst✝² : Monad M ω α β : Type u inst✝¹ : Monoid ω inst✝ : LawfulMonad M ⊢ ∀ {α β : Type u} (f : α → β) (x : WriterT ω M α), (do let y ← x pure (f y)) = f <$> x [PROOFSTEP] intros [GOAL] M : Type u → Type v inst✝² : Monad M ω α β : Type u inst✝¹ : Monoid ω inst✝ : LawfulMonad M α✝ β✝ : Type u f✝ : α✝ → β✝ x✝ : WriterT ω M α✝ ⊢ (do let y ← x✝ pure (f✝ y)) = f✝ <$> x✝ [PROOFSTEP] simp [Bind.bind, Functor.map, Pure.pure, WriterT.mk, bind_pure_comp]
{"mathlib_filename": "Mathlib.Control.Monad.Writer", "llama_tokens": 1088}
[GOAL] F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 x : Option α ⊢ Option.traverse pure x = x [PROOFSTEP] cases x [GOAL] case none F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 ⊢ Option.traverse pure none = none [PROOFSTEP] rfl [GOAL] case some F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 val✝ : α ⊢ Option.traverse pure (some val✝) = some val✝ [PROOFSTEP] rfl [GOAL] F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β x : Option α ⊢ Option.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) x = Comp.mk (Option.traverse f <$> Option.traverse g x) [PROOFSTEP] cases x [GOAL] case none F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β ⊢ Option.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) none = Comp.mk (Option.traverse f <$> Option.traverse g none) [PROOFSTEP] simp! [functor_norm] [GOAL] case some F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β val✝ : α ⊢ Option.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) (some val✝) = Comp.mk (Option.traverse f <$> Option.traverse g (some val✝)) [PROOFSTEP] simp! [functor_norm] [GOAL] case none F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β ⊢ pure none = Comp.mk (pure (pure none)) [PROOFSTEP] rfl [GOAL] case some F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β val✝ : α ⊢ Comp.mk (((fun x => some <$> x) ∘ f) <$> g val✝) = Comp.mk ((Option.traverse f ∘ some) <$> g val✝) [PROOFSTEP] rfl [GOAL] F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u_1 f : α → β x : Option α ⊢ Option.traverse (pure ∘ f) x = pure (f <$> x) [PROOFSTEP] cases x [GOAL] case none F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u_1 f : α → β ⊢ Option.traverse (pure ∘ f) none = pure (f <$> none) [PROOFSTEP] rfl [GOAL] case some F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u_1 f : α → β val✝ : α ⊢ Option.traverse (pure ∘ f) (some val✝) = pure (f <$> some val✝) [PROOFSTEP] rfl [GOAL] F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α : Type u_1 β : Type u f : α → F β x : Option α ⊢ (fun {α} => ApplicativeTransformation.app η α) (Option.traverse f x) = Option.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x [PROOFSTEP] cases' x with x [GOAL] case none F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α : Type u_1 β : Type u f : α → F β ⊢ (fun {α} => ApplicativeTransformation.app η α) (Option.traverse f none) = Option.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) none [PROOFSTEP] simp! [*, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq, ApplicativeTransformation.preserves_pure] [GOAL] case some F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α : Type u_1 β : Type u f : α → F β x : α ⊢ (fun {α} => ApplicativeTransformation.app η α) (Option.traverse f (some x)) = Option.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (some x) [PROOFSTEP] simp! [*, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq, ApplicativeTransformation.preserves_pure] [GOAL] F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 xs : List α ⊢ List.traverse pure xs = xs [PROOFSTEP] induction xs [GOAL] case nil F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 ⊢ List.traverse pure [] = [] [PROOFSTEP] simp! [*, List.traverse, functor_norm] [GOAL] case cons F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 head✝ : α tail✝ : List α tail_ih✝ : List.traverse pure tail✝ = tail✝ ⊢ List.traverse pure (head✝ :: tail✝) = head✝ :: tail✝ [PROOFSTEP] simp! [*, List.traverse, functor_norm] [GOAL] case cons F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 head✝ : α tail✝ : List α tail_ih✝ : List.traverse pure tail✝ = tail✝ ⊢ (Seq.seq (cons head✝) fun x => tail✝) = head✝ :: tail✝ [PROOFSTEP] rfl [GOAL] F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β x : List α ⊢ List.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) x = Comp.mk (List.traverse f <$> List.traverse g x) [PROOFSTEP] induction x [GOAL] case nil F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β ⊢ List.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) [] = Comp.mk (List.traverse f <$> List.traverse g []) [PROOFSTEP] simp! [*, functor_norm] [GOAL] case cons F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β head✝ : α tail✝ : List α tail_ih✝ : List.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) tail✝ = Comp.mk (List.traverse f <$> List.traverse g tail✝) ⊢ List.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) (head✝ :: tail✝) = Comp.mk (List.traverse f <$> List.traverse g (head✝ :: tail✝)) [PROOFSTEP] simp! [*, functor_norm] [GOAL] case nil F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β ⊢ pure [] = Comp.mk (pure (pure [])) [PROOFSTEP] rfl [GOAL] case cons F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u f : β → F γ g : α → G β head✝ : α tail✝ : List α tail_ih✝ : List.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) tail✝ = Comp.mk (List.traverse f <$> List.traverse g tail✝) ⊢ Comp.mk (Seq.seq (((fun x => x ∘ List.traverse f) ∘ (fun x x_1 => Seq.seq x fun x => x_1) ∘ (fun x => cons <$> x) ∘ f) <$> g head✝) fun x => List.traverse g tail✝) = Comp.mk (Seq.seq (((fun x => List.traverse f ∘ x) ∘ cons) <$> g head✝) fun x => List.traverse g tail✝) [PROOFSTEP] rfl [GOAL] F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u_1 f : α → β x : List α ⊢ List.traverse (pure ∘ f) x = pure (f <$> x) [PROOFSTEP] induction x [GOAL] case nil F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u_1 f : α → β ⊢ List.traverse (pure ∘ f) [] = pure (f <$> []) [PROOFSTEP] simp! [*, functor_norm] [GOAL] case cons F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u_1 f : α → β head✝ : α tail✝ : List α tail_ih✝ : List.traverse (pure ∘ f) tail✝ = pure (f <$> tail✝) ⊢ List.traverse (pure ∘ f) (head✝ :: tail✝) = pure (f <$> (head✝ :: tail✝)) [PROOFSTEP] simp! [*, functor_norm] [GOAL] case cons F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u_1 f : α → β head✝ : α tail✝ : List α tail_ih✝ : List.traverse (pure ∘ f) tail✝ = pure (f <$> tail✝) ⊢ (Seq.seq (cons (f head✝)) fun x => map f tail✝) = f head✝ :: map f tail✝ [PROOFSTEP] rfl [GOAL] F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α : Type u_1 β : Type u f : α → F β x : List α ⊢ (fun {α} => ApplicativeTransformation.app η α) (List.traverse f x) = List.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x [PROOFSTEP] induction x [GOAL] case nil F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α : Type u_1 β : Type u f : α → F β ⊢ (fun {α} => ApplicativeTransformation.app η α) (List.traverse f []) = List.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) [] [PROOFSTEP] simp! [*, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq, ApplicativeTransformation.preserves_pure] [GOAL] case cons F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α : Type u_1 β : Type u f : α → F β head✝ : α tail✝ : List α tail_ih✝ : (fun {α} => ApplicativeTransformation.app η α) (List.traverse f tail✝) = List.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) tail✝ ⊢ (fun {α} => ApplicativeTransformation.app η α) (List.traverse f (head✝ :: tail✝)) = List.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (head✝ :: tail✝) [PROOFSTEP] simp! [*, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq, ApplicativeTransformation.preserves_pure] [GOAL] F G : Type u → Type u inst✝² : Applicative F inst✝¹ : Applicative G α' β' : Type u f : α' → F β' inst✝ : LawfulApplicative F bs : List α' ⊢ traverse f ([] ++ bs) = Seq.seq ((fun x x_1 => x ++ x_1) <$> traverse f []) fun x => traverse f bs [PROOFSTEP] simp [functor_norm] [GOAL] F G : Type u → Type u inst✝² : Applicative F inst✝¹ : Applicative G α' β' : Type u f : α' → F β' inst✝ : LawfulApplicative F a : α' as bs : List α' ⊢ traverse f (a :: as ++ bs) = Seq.seq ((fun x x_1 => x ++ x_1) <$> traverse f (a :: as)) fun x => traverse f bs [PROOFSTEP] simp [traverse_append as bs, functor_norm] [GOAL] F G : Type u → Type u inst✝² : Applicative F inst✝¹ : Applicative G α' β' : Type u f : α' → F β' inst✝ : LawfulApplicative F a : α' as bs : List α' ⊢ (Seq.seq (Seq.seq (((fun x => x ∘ fun x x_1 => x ++ x_1) ∘ Function.comp ∘ fun x x_1 => x :: x_1) <$> f a) fun x => traverse f as) fun x => traverse f bs) = Seq.seq (Seq.seq (((fun x => (fun x x_1 => x ++ x_1) ∘ x) ∘ fun x x_1 => x :: x_1) <$> f a) fun x => traverse f as) fun x => traverse f bs [PROOFSTEP] congr [GOAL] F G : Type u → Type u inst✝² : Applicative F inst✝¹ : Applicative G α' β' : Type u f✝ : α' → F β' inst✝ : LawfulApplicative F f : α' → Set β' ⊢ [] ∈ traverse f [] ↔ Forall₂ (fun b a => b ∈ f a) [] [] [PROOFSTEP] simp [GOAL] F G : Type u → Type u inst✝² : Applicative F inst✝¹ : Applicative G α' β' : Type u f✝ : α' → F β' inst✝ : LawfulApplicative F f : α' → Set β' a : α' as : List α' ⊢ [] ∈ traverse f (a :: as) ↔ Forall₂ (fun b a => b ∈ f a) [] (a :: as) [PROOFSTEP] simp [GOAL] F G : Type u → Type u inst✝² : Applicative F inst✝¹ : Applicative G α' β' : Type u f✝ : α' → F β' inst✝ : LawfulApplicative F f : α' → Set β' b : β' bs : List β' ⊢ b :: bs ∈ traverse f [] ↔ Forall₂ (fun b a => b ∈ f a) (b :: bs) [] [PROOFSTEP] simp [GOAL] F G : Type u → Type u inst✝² : Applicative F inst✝¹ : Applicative G α' β' : Type u f✝ : α' → F β' inst✝ : LawfulApplicative F f : α' → Set β' a : α' as : List α' b : β' bs : List β' ⊢ b :: bs ∈ traverse f (a :: as) ↔ Forall₂ (fun b a => b ∈ f a) (b :: bs) (a :: as) [PROOFSTEP] simp [mem_traverse as bs] [GOAL] σ : Type u F G : Type u → Type u inst✝¹ : Applicative F inst✝ : Applicative G α β γ : Type u g : α → β f : β → G γ x : σ ⊕ α ⊢ Sum.traverse f (g <$> x) = Sum.traverse (f ∘ g) x [PROOFSTEP] cases x [GOAL] case inl σ : Type u F G : Type u → Type u inst✝¹ : Applicative F inst✝ : Applicative G α β γ : Type u g : α → β f : β → G γ val✝ : σ ⊢ Sum.traverse f (g <$> inl val✝) = Sum.traverse (f ∘ g) (inl val✝) [PROOFSTEP] simp [Sum.traverse, id_map, functor_norm] [GOAL] case inr σ : Type u F G : Type u → Type u inst✝¹ : Applicative F inst✝ : Applicative G α β γ : Type u g : α → β f : β → G γ val✝ : α ⊢ Sum.traverse f (g <$> inr val✝) = Sum.traverse (f ∘ g) (inr val✝) [PROOFSTEP] simp [Sum.traverse, id_map, functor_norm] [GOAL] case inl σ : Type u F G : Type u → Type u inst✝¹ : Applicative F inst✝ : Applicative G α β γ : Type u g : α → β f : β → G γ val✝ : σ ⊢ (match g <$> inl val✝ with | inl x => pure (inl x) | inr x => inr <$> f x) = pure (inl val✝) [PROOFSTEP] rfl [GOAL] case inr σ : Type u F G : Type u → Type u inst✝¹ : Applicative F inst✝ : Applicative G α β γ : Type u g : α → β f : β → G γ val✝ : α ⊢ (match g <$> inr val✝ with | inl x => pure (inl x) | inr x => inr <$> f x) = inr <$> f (g val✝) [PROOFSTEP] rfl [GOAL] σ✝ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G σ α : Type u_1 x : σ ⊕ α ⊢ Sum.traverse pure x = x [PROOFSTEP] cases x [GOAL] case inl σ✝ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G σ α : Type u_1 val✝ : σ ⊢ Sum.traverse pure (inl val✝) = inl val✝ [PROOFSTEP] rfl [GOAL] case inr σ✝ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G σ α : Type u_1 val✝ : α ⊢ Sum.traverse pure (inr val✝) = inr val✝ [PROOFSTEP] rfl [GOAL] σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type u f : β → F γ g : α → G β x : σ ⊕ α ⊢ Sum.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) x = Comp.mk (Sum.traverse f <$> Sum.traverse g x) [PROOFSTEP] cases x [GOAL] case inl σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type u f : β → F γ g : α → G β val✝ : σ ⊢ Sum.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) (inl val✝) = Comp.mk (Sum.traverse f <$> Sum.traverse g (inl val✝)) [PROOFSTEP] simp! [Sum.traverse, map_id, functor_norm] [GOAL] case inr σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type u f : β → F γ g : α → G β val✝ : α ⊢ Sum.traverse (Comp.mk ∘ (fun x x_1 => x <$> x_1) f ∘ g) (inr val✝) = Comp.mk (Sum.traverse f <$> Sum.traverse g (inr val✝)) [PROOFSTEP] simp! [Sum.traverse, map_id, functor_norm] [GOAL] case inl σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type u f : β → F γ g : α → G β val✝ : σ ⊢ pure (inl val✝) = Comp.mk (pure (pure (inl val✝))) [PROOFSTEP] rfl [GOAL] case inr σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β γ : Type u f : β → F γ g : α → G β val✝ : α ⊢ Comp.mk (((fun x => inr <$> x) ∘ f) <$> g val✝) = Comp.mk ((Sum.traverse f ∘ inr) <$> g val✝) [PROOFSTEP] rfl [GOAL] σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u f : α → β x : σ ⊕ α ⊢ Sum.traverse (pure ∘ f) x = pure (f <$> x) [PROOFSTEP] induction x [GOAL] case inl σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u f : α → β val✝ : σ ⊢ Sum.traverse (pure ∘ f) (inl val✝) = pure (f <$> inl val✝) [PROOFSTEP] simp! [*, functor_norm] [GOAL] case inr σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u f : α → β val✝ : α ⊢ Sum.traverse (pure ∘ f) (inr val✝) = pure (f <$> inr val✝) [PROOFSTEP] simp! [*, functor_norm] [GOAL] case inl σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u f : α → β val✝ : σ ⊢ inl val✝ = f <$> inl val✝ [PROOFSTEP] rfl [GOAL] case inr σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α β : Type u f : α → β val✝ : α ⊢ inr (f val✝) = f <$> inr val✝ [PROOFSTEP] rfl [GOAL] σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u g : α → G β f : β → γ x : σ ⊕ α ⊢ (fun x x_1 => x <$> x_1) f <$> Sum.traverse g x = Sum.traverse ((fun x x_1 => x <$> x_1) f ∘ g) x [PROOFSTEP] cases x [GOAL] case inl σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u g : α → G β f : β → γ val✝ : σ ⊢ (fun x x_1 => x <$> x_1) f <$> Sum.traverse g (inl val✝) = Sum.traverse ((fun x x_1 => x <$> x_1) f ∘ g) (inl val✝) [PROOFSTEP] simp [Sum.traverse, id_map, functor_norm] [GOAL] case inr σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u g : α → G β f : β → γ val✝ : α ⊢ (fun x x_1 => x <$> x_1) f <$> Sum.traverse g (inr val✝) = Sum.traverse ((fun x x_1 => x <$> x_1) f ∘ g) (inr val✝) [PROOFSTEP] simp [Sum.traverse, id_map, functor_norm] [GOAL] case inl σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u g : α → G β f : β → γ val✝ : σ ⊢ pure (f <$> inl val✝) = pure (inl val✝) [PROOFSTEP] congr [GOAL] case inr σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G α : Type u_1 β γ : Type u g : α → G β f : β → γ val✝ : α ⊢ ((fun x => f <$> x) ∘ inr) <$> g val✝ = (inr ∘ f) <$> g val✝ [PROOFSTEP] congr [GOAL] σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α : Type u_1 β : Type u f : α → F β x : σ ⊕ α ⊢ (fun {α} => ApplicativeTransformation.app η α) (Sum.traverse f x) = Sum.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x [PROOFSTEP] cases x [GOAL] case inl σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α : Type u_1 β : Type u f : α → F β val✝ : σ ⊢ (fun {α} => ApplicativeTransformation.app η α) (Sum.traverse f (inl val✝)) = Sum.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (inl val✝) [PROOFSTEP] simp! [Sum.traverse, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq, ApplicativeTransformation.preserves_pure] [GOAL] case inr σ : Type u F G : Type u → Type u inst✝³ : Applicative F inst✝² : Applicative G inst✝¹ : LawfulApplicative F inst✝ : LawfulApplicative G η : ApplicativeTransformation F G α : Type u_1 β : Type u f : α → F β val✝ : α ⊢ (fun {α} => ApplicativeTransformation.app η α) (Sum.traverse f (inr val✝)) = Sum.traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (inr val✝) [PROOFSTEP] simp! [Sum.traverse, functor_norm, ApplicativeTransformation.preserves_map, ApplicativeTransformation.preserves_seq, ApplicativeTransformation.preserves_pure]
{"mathlib_filename": "Mathlib.Control.Traversable.Instances", "llama_tokens": 9933}
[GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hn : IsPeriodicPt f n x hm : IsPeriodicPt f m x ⊢ IsPeriodicPt f (n + m) x [PROOFSTEP] rw [IsPeriodicPt, iterate_add] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hn : IsPeriodicPt f n x hm : IsPeriodicPt f m x ⊢ IsFixedPt (f^[n] ∘ f^[m]) x [PROOFSTEP] exact hn.comp hm [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hn : IsPeriodicPt f (n + m) x hm : IsPeriodicPt f m x ⊢ IsPeriodicPt f n x [PROOFSTEP] rw [IsPeriodicPt, iterate_add] at hn [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hn : IsFixedPt (f^[n] ∘ f^[m]) x hm : IsPeriodicPt f m x ⊢ IsPeriodicPt f n x [PROOFSTEP] exact hn.left_of_comp hm [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hn : IsPeriodicPt f (n + m) x hm : IsPeriodicPt f n x ⊢ IsPeriodicPt f m x [PROOFSTEP] rw [add_comm] at hn [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hn : IsPeriodicPt f (m + n) x hm : IsPeriodicPt f n x ⊢ IsPeriodicPt f m x [PROOFSTEP] exact hn.left_of_add hm [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m x hn : IsPeriodicPt f n x ⊢ IsPeriodicPt f (m - n) x [PROOFSTEP] cases' le_total n m with h h [GOAL] case inl α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m x hn : IsPeriodicPt f n x h : n ≤ m ⊢ IsPeriodicPt f (m - n) x [PROOFSTEP] refine' left_of_add _ hn [GOAL] case inl α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m x hn : IsPeriodicPt f n x h : n ≤ m ⊢ IsPeriodicPt f (m - n + n) x [PROOFSTEP] rwa [tsub_add_cancel_of_le h] [GOAL] case inr α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m x hn : IsPeriodicPt f n x h : m ≤ n ⊢ IsPeriodicPt f (m - n) x [PROOFSTEP] rw [tsub_eq_zero_iff_le.mpr h] [GOAL] case inr α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m x hn : IsPeriodicPt f n x h : m ≤ n ⊢ IsPeriodicPt f 0 x [PROOFSTEP] apply isPeriodicPt_zero [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n✝ : ℕ hm : IsPeriodicPt f m x n : ℕ ⊢ IsPeriodicPt f (m * n) x [PROOFSTEP] simp only [IsPeriodicPt, iterate_mul, hm.isFixedPt.iterate n] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n✝ : ℕ hm : IsPeriodicPt f m x n : ℕ ⊢ IsPeriodicPt f (n * m) x [PROOFSTEP] simp only [mul_comm n, hm.mul_const n] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n : ℕ hf : IsPeriodicPt f n x m : ℕ ⊢ IsPeriodicPt f^[m] n x [PROOFSTEP] rw [IsPeriodicPt, ← iterate_mul, mul_comm, iterate_mul] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n : ℕ hf : IsPeriodicPt f n x m : ℕ ⊢ IsFixedPt f^[n]^[m] x [PROOFSTEP] exact hf.isFixedPt.iterate m [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ g : α → α hco : Function.Commute f g hf : IsPeriodicPt f n x hg : IsPeriodicPt g n x ⊢ IsPeriodicPt (f ∘ g) n x [PROOFSTEP] rw [IsPeriodicPt, hco.comp_iterate] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ g : α → α hco : Function.Commute f g hf : IsPeriodicPt f n x hg : IsPeriodicPt g n x ⊢ IsFixedPt (f^[n] ∘ g^[n]) x [PROOFSTEP] exact IsFixedPt.comp hf hg [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ g : α → α hco : Function.Commute f g hfg : IsPeriodicPt (f ∘ g) n x hg : IsPeriodicPt g n x ⊢ IsPeriodicPt f n x [PROOFSTEP] rw [IsPeriodicPt, hco.comp_iterate] at hfg [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ g : α → α hco : Function.Commute f g hfg : IsFixedPt (f^[n] ∘ g^[n]) x hg : IsPeriodicPt g n x ⊢ IsPeriodicPt f n x [PROOFSTEP] exact hfg.left_of_comp hg [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n : ℕ h : IsPeriodicPt f n x m : ℕ ⊢ f^[m % n] x = f^[m] x [PROOFSTEP] conv_rhs => rw [← Nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n : ℕ h : IsPeriodicPt f n x m : ℕ | f^[m] x [PROOFSTEP] rw [← Nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n : ℕ h : IsPeriodicPt f n x m : ℕ | f^[m] x [PROOFSTEP] rw [← Nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n : ℕ h : IsPeriodicPt f n x m : ℕ | f^[m] x [PROOFSTEP] rw [← Nat.mod_add_div m n, iterate_add_apply, (h.mul_const _).eq] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m x hn : IsPeriodicPt f n x ⊢ IsPeriodicPt f (Nat.gcd m n) x [PROOFSTEP] revert hm hn [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ IsPeriodicPt f m x → IsPeriodicPt f n x → IsPeriodicPt f (Nat.gcd m n) x [PROOFSTEP] refine' Nat.gcd.induction m n (fun n _ hn => _) fun m n _ ih hm hn => _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n✝ n : ℕ x✝ : IsPeriodicPt f 0 x hn : IsPeriodicPt f n x ⊢ IsPeriodicPt f (Nat.gcd 0 n) x [PROOFSTEP] rwa [Nat.gcd_zero_left] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n✝ m n : ℕ x✝ : 0 < m ih : IsPeriodicPt f (n % m) x → IsPeriodicPt f m x → IsPeriodicPt f (Nat.gcd (n % m) m) x hm : IsPeriodicPt f m x hn : IsPeriodicPt f n x ⊢ IsPeriodicPt f (Nat.gcd m n) x [PROOFSTEP] rw [Nat.gcd_rec] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n✝ m n : ℕ x✝ : 0 < m ih : IsPeriodicPt f (n % m) x → IsPeriodicPt f m x → IsPeriodicPt f (Nat.gcd (n % m) m) x hm : IsPeriodicPt f m x hn : IsPeriodicPt f n x ⊢ IsPeriodicPt f (Nat.gcd (n % m) m) x [PROOFSTEP] exact ih (hn.mod hm) hm [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hx : IsPeriodicPt f n x hy : IsPeriodicPt f n y hn : 0 < n h : f x = f y ⊢ x = y [PROOFSTEP] rw [← hx.eq, ← hy.eq, ← iterate_pred_comp_of_pos f hn, comp_apply, comp_apply, h] [GOAL] α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n✝ : ℕ f : α → α n : ℕ hn : 0 < n x : α hx : x ∈ ptsOfPeriod f n ⊢ f (f^[Nat.pred n] x) = x [PROOFSTEP] rw [← comp_apply (f := f), comp_iterate_pred_of_pos f hn, hx.eq] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hx : x ∈ periodicPts f hm : IsPeriodicPt f m (f^[n] x) ⊢ IsPeriodicPt f m x [PROOFSTEP] rcases hx with ⟨r, hr, hr'⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m (f^[n] x) r : ℕ hr : r > 0 hr' : IsPeriodicPt f r x ⊢ IsPeriodicPt f m x [PROOFSTEP] suffices n ≤ (n / r + 1) * r by -- porting note: convert used to unfold IsPeriodicPt change _ = _ convert (hm.apply_iterate ((n / r + 1) * r - n)).eq <;> rw [← iterate_add_apply, Nat.sub_add_cancel this, iterate_mul, (hr'.iterate _).eq] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m (f^[n] x) r : ℕ hr : r > 0 hr' : IsPeriodicPt f r x this : n ≤ (n / r + 1) * r ⊢ IsPeriodicPt f m x [PROOFSTEP] change _ = _ [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m (f^[n] x) r : ℕ hr : r > 0 hr' : IsPeriodicPt f r x this : n ≤ (n / r + 1) * r ⊢ f^[m] x = x [PROOFSTEP] convert (hm.apply_iterate ((n / r + 1) * r - n)).eq [GOAL] case h.e'_2.h.e'_4 α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m (f^[n] x) r : ℕ hr : r > 0 hr' : IsPeriodicPt f r x this : n ≤ (n / r + 1) * r ⊢ x = f^[(n / r + 1) * r - n] (f^[n] x) [PROOFSTEP] rw [← iterate_add_apply, Nat.sub_add_cancel this, iterate_mul, (hr'.iterate _).eq] [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m (f^[n] x) r : ℕ hr : r > 0 hr' : IsPeriodicPt f r x this : n ≤ (n / r + 1) * r ⊢ x = f^[(n / r + 1) * r - n] (f^[n] x) [PROOFSTEP] rw [← iterate_add_apply, Nat.sub_add_cancel this, iterate_mul, (hr'.iterate _).eq] [GOAL] case intro.intro α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m (f^[n] x) r : ℕ hr : r > 0 hr' : IsPeriodicPt f r x ⊢ n ≤ (n / r + 1) * r [PROOFSTEP] rw [add_mul, one_mul] [GOAL] case intro.intro α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hm : IsPeriodicPt f m (f^[n] x) r : ℕ hr : r > 0 hr' : IsPeriodicPt f r x ⊢ n ≤ n / r * r + r [PROOFSTEP] exact (Nat.lt_div_mul_add hr).le [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x✝ y : α m n : ℕ x : α ⊢ x ∈ ⋃ (n : ℕ) (_ : n > 0), ptsOfPeriod f n ↔ x ∈ periodicPts f [PROOFSTEP] simp [mem_periodicPts] [GOAL] α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ f : α → α x : α ⊢ IsPeriodicPt f (minimalPeriod f x) x [PROOFSTEP] delta minimalPeriod [GOAL] α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ f : α → α x : α ⊢ IsPeriodicPt f (if h : x ∈ periodicPts f then Nat.find h else 0) x [PROOFSTEP] split_ifs with hx [GOAL] case pos α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ f : α → α x : α hx : x ∈ periodicPts f ⊢ IsPeriodicPt f (Nat.find hx) x [PROOFSTEP] exact (Nat.find_spec hx).2 [GOAL] case neg α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ f : α → α x : α hx : ¬x ∈ periodicPts f ⊢ IsPeriodicPt f 0 x [PROOFSTEP] exact isPeriodicPt_zero f x [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ f^[n + minimalPeriod f x] x = f^[n] x [PROOFSTEP] rw [iterate_add_apply] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ f^[n] (f^[minimalPeriod f x] x) = f^[n] x [PROOFSTEP] congr [GOAL] case e_a α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ f^[minimalPeriod f x] x = x [PROOFSTEP] exact isPeriodicPt_minimalPeriod f x [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hx : x ∈ periodicPts f ⊢ 0 < minimalPeriod f x [PROOFSTEP] simp only [minimalPeriod, dif_pos hx, (Nat.find_spec hx).1.lt] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hx : ¬x ∈ periodicPts f ⊢ minimalPeriod f x = 0 [PROOFSTEP] simp only [minimalPeriod, dif_neg hx] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : ¬x ∈ periodicPts f ⊢ ¬0 < minimalPeriod f x [PROOFSTEP] simp only [minimalPeriod, dif_neg h, lt_irrefl 0, not_false_iff] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ minimalPeriod f x = 0 ↔ ¬x ∈ periodicPts f [PROOFSTEP] rw [← minimalPeriod_pos_iff_mem_periodicPts, not_lt, nonpos_iff_eq_zero] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hn : 0 < n hx : IsPeriodicPt f n x ⊢ minimalPeriod f x ≤ n [PROOFSTEP] rw [minimalPeriod, dif_pos (mk_mem_periodicPts hn hx)] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hn : 0 < n hx : IsPeriodicPt f n x ⊢ Nat.find (_ : x ∈ periodicPts f) ≤ n [PROOFSTEP] exact Nat.find_min' (mk_mem_periodicPts hn hx) ⟨hn, hx⟩ [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ minimalPeriod f (f^[n] x) = minimalPeriod f x [PROOFSTEP] apply (IsPeriodicPt.minimalPeriod_le (minimalPeriod_pos_of_mem_periodicPts hx) _).antisymm ((isPeriodicPt_of_mem_periodicPts_of_isPeriodicPt_iterate hx (isPeriodicPt_minimalPeriod f _)).minimalPeriod_le (minimalPeriod_pos_of_mem_periodicPts _)) [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ IsPeriodicPt f (minimalPeriod f x) (f^[n] x) [PROOFSTEP] exact (isPeriodicPt_minimalPeriod f x).apply_iterate n [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ f^[n] x ∈ periodicPts f [PROOFSTEP] rcases hx with ⟨m, hm, hx⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n✝ n m : ℕ hm : m > 0 hx : IsPeriodicPt f m x ⊢ f^[n] x ∈ periodicPts f [PROOFSTEP] exact ⟨m, hm, hx.apply_iterate n⟩ [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n✝ m n : ℕ hm : m < minimalPeriod f x hmn : f^[m] x = f^[n] x ⊢ m ≤ n [PROOFSTEP] by_contra' hmn' [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n✝ m n : ℕ hm : m < minimalPeriod f x hmn : f^[m] x = f^[n] x hmn' : n < m ⊢ False [PROOFSTEP] rw [← Nat.add_sub_of_le hmn'.le, add_comm, iterate_add_apply] at hmn [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n✝ m n : ℕ hm : m < minimalPeriod f x hmn : f^[m - n] (f^[n] x) = f^[n] x hmn' : n < m ⊢ False [PROOFSTEP] exact ((IsPeriodicPt.minimalPeriod_le (tsub_pos_of_lt hmn') (isPeriodicPt_of_mem_periodicPts_of_isPeriodicPt_iterate (minimalPeriod_pos_iff_mem_periodicPts.1 ((zero_le m).trans_lt hm)) hmn)).trans (Nat.sub_le m n)).not_lt hm [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ minimalPeriod f x = 1 ↔ IsFixedPt f x [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : minimalPeriod f x = 1 ⊢ IsFixedPt f x [PROOFSTEP] rw [← iterate_one f] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : minimalPeriod f x = 1 ⊢ IsFixedPt f^[1] x [PROOFSTEP] refine' Function.IsPeriodicPt.isFixedPt _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : minimalPeriod f x = 1 ⊢ IsPeriodicPt f 1 x [PROOFSTEP] rw [← h] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : minimalPeriod f x = 1 ⊢ IsPeriodicPt f (minimalPeriod f x) x [PROOFSTEP] exact isPeriodicPt_minimalPeriod f x [GOAL] case refine'_2 α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : IsFixedPt f x ⊢ minimalPeriod f x = 1 [PROOFSTEP] exact ((h.isPeriodicPt 1).minimalPeriod_le Nat.one_pos).antisymm (Nat.succ_le_of_lt ((h.isPeriodicPt 1).minimalPeriod_pos Nat.one_pos)) [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y✝ : α m n : ℕ g : β → β y : β ⊢ minimalPeriod f x = minimalPeriod g y ↔ ∀ (n : ℕ), IsPeriodicPt f n x ↔ IsPeriodicPt g n y [PROOFSTEP] simp_rw [isPeriodicPt_iff_minimalPeriod_dvd, dvd_right_iff_eq] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n p k : ℕ hp : Fact (Nat.Prime p) hk : ¬IsPeriodicPt f (p ^ k) x hk1 : IsPeriodicPt f (p ^ (k + 1)) x ⊢ minimalPeriod f x = p ^ (k + 1) [PROOFSTEP] apply Nat.eq_prime_pow_of_dvd_least_prime_pow hp.out [GOAL] case h₁ α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n p k : ℕ hp : Fact (Nat.Prime p) hk : ¬IsPeriodicPt f (p ^ k) x hk1 : IsPeriodicPt f (p ^ (k + 1)) x ⊢ ¬minimalPeriod f x ∣ p ^ k [PROOFSTEP] rwa [← isPeriodicPt_iff_minimalPeriod_dvd] [GOAL] case h₂ α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n p k : ℕ hp : Fact (Nat.Prime p) hk : ¬IsPeriodicPt f (p ^ k) x hk1 : IsPeriodicPt f (p ^ (k + 1)) x ⊢ minimalPeriod f x ∣ p ^ (k + 1) [PROOFSTEP] rwa [← isPeriodicPt_iff_minimalPeriod_dvd] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ g : α → α h : Function.Commute f g ⊢ minimalPeriod (f ∘ g) x ∣ lcm (minimalPeriod f x) (minimalPeriod g x) [PROOFSTEP] rw [← isPeriodicPt_iff_minimalPeriod_dvd] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ g : α → α h : Function.Commute f g ⊢ IsPeriodicPt (f ∘ g) (lcm (minimalPeriod f x) (minimalPeriod g x)) x [PROOFSTEP] exact (isPeriodicPt_minimalPeriod f x).comp_lcm h (isPeriodicPt_minimalPeriod g x) [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ g : α → α h : Function.Commute f g hco : coprime (minimalPeriod f x) (minimalPeriod g x) ⊢ minimalPeriod (f ∘ g) x = minimalPeriod f x * minimalPeriod g x [PROOFSTEP] apply h.minimalPeriod_of_comp_dvd_mul.antisymm [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ g : α → α h : Function.Commute f g hco : coprime (minimalPeriod f x) (minimalPeriod g x) ⊢ minimalPeriod f x * minimalPeriod g x ∣ minimalPeriod (f ∘ g) x [PROOFSTEP] suffices : ∀ {f g : α → α}, Commute f g → coprime (minimalPeriod f x) (minimalPeriod g x) → minimalPeriod f x ∣ minimalPeriod (f ∘ g) x [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ g : α → α h : Function.Commute f g hco : coprime (minimalPeriod f x) (minimalPeriod g x) this : ∀ {f g : α → α}, Function.Commute f g → coprime (minimalPeriod f x) (minimalPeriod g x) → minimalPeriod f x ∣ minimalPeriod (f ∘ g) x ⊢ minimalPeriod f x * minimalPeriod g x ∣ minimalPeriod (f ∘ g) x [PROOFSTEP] exact hco.mul_dvd_of_dvd_of_dvd (this h hco) (h.comp_eq.symm ▸ this h.symm hco.symm) [GOAL] case this α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ g : α → α h : Function.Commute f g hco : coprime (minimalPeriod f x) (minimalPeriod g x) ⊢ ∀ {f g : α → α}, Function.Commute f g → coprime (minimalPeriod f x) (minimalPeriod g x) → minimalPeriod f x ∣ minimalPeriod (f ∘ g) x [PROOFSTEP] intro f g h hco [GOAL] case this α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x y : α m n : ℕ g✝ : α → α h✝ : Function.Commute f✝ g✝ hco✝ : coprime (minimalPeriod f✝ x) (minimalPeriod g✝ x) f g : α → α h : Function.Commute f g hco : coprime (minimalPeriod f x) (minimalPeriod g x) ⊢ minimalPeriod f x ∣ minimalPeriod (f ∘ g) x [PROOFSTEP] refine' hco.dvd_of_dvd_mul_left (IsPeriodicPt.left_of_comp h _ _).minimalPeriod_dvd [GOAL] case this.refine'_1 α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x y : α m n : ℕ g✝ : α → α h✝ : Function.Commute f✝ g✝ hco✝ : coprime (minimalPeriod f✝ x) (minimalPeriod g✝ x) f g : α → α h : Function.Commute f g hco : coprime (minimalPeriod f x) (minimalPeriod g x) ⊢ IsPeriodicPt (f ∘ g) (minimalPeriod g x * minimalPeriod (f ∘ g) x) x [PROOFSTEP] exact (isPeriodicPt_minimalPeriod _ _).const_mul _ [GOAL] case this.refine'_2 α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x y : α m n : ℕ g✝ : α → α h✝ : Function.Commute f✝ g✝ hco✝ : coprime (minimalPeriod f✝ x) (minimalPeriod g✝ x) f g : α → α h : Function.Commute f g hco : coprime (minimalPeriod f x) (minimalPeriod g x) ⊢ IsPeriodicPt g (minimalPeriod g x * minimalPeriod (f ∘ g) x) x [PROOFSTEP] exact (isPeriodicPt_minimalPeriod _ _).mul_const _ [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : 0 < gcd (minimalPeriod f x) n ⊢ minimalPeriod f^[n] x = minimalPeriod f x / gcd (minimalPeriod f x) n [PROOFSTEP] apply Nat.dvd_antisymm [GOAL] case a α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : 0 < gcd (minimalPeriod f x) n ⊢ minimalPeriod f^[n] x ∣ minimalPeriod f x / gcd (minimalPeriod f x) n [PROOFSTEP] apply IsPeriodicPt.minimalPeriod_dvd [GOAL] case a.hx α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : 0 < gcd (minimalPeriod f x) n ⊢ IsPeriodicPt f^[n] (minimalPeriod f x / gcd (minimalPeriod f x) n) x [PROOFSTEP] rw [IsPeriodicPt, IsFixedPt, ← iterate_mul, ← Nat.mul_div_assoc _ (gcd_dvd_left _ _), mul_comm, Nat.mul_div_assoc _ (gcd_dvd_right _ _), mul_comm, iterate_mul] [GOAL] case a.hx α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : 0 < gcd (minimalPeriod f x) n ⊢ f^[n / gcd (minimalPeriod f x) n]^[minimalPeriod f x] x = x [PROOFSTEP] exact (isPeriodicPt_minimalPeriod f x).iterate _ [GOAL] case a α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : 0 < gcd (minimalPeriod f x) n ⊢ minimalPeriod f x / gcd (minimalPeriod f x) n ∣ minimalPeriod f^[n] x [PROOFSTEP] apply coprime.dvd_of_dvd_mul_right (coprime_div_gcd_div_gcd h) [GOAL] case a α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : 0 < gcd (minimalPeriod f x) n ⊢ minimalPeriod f x / gcd (minimalPeriod f x) n ∣ minimalPeriod f^[n] x * (n / gcd (minimalPeriod f x) n) [PROOFSTEP] apply Nat.dvd_of_mul_dvd_mul_right h [GOAL] case a α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : 0 < gcd (minimalPeriod f x) n ⊢ minimalPeriod f x / gcd (minimalPeriod f x) n * gcd (minimalPeriod f x) n ∣ minimalPeriod f^[n] x * (n / gcd (minimalPeriod f x) n) * gcd (minimalPeriod f x) n [PROOFSTEP] rw [Nat.div_mul_cancel (gcd_dvd_left _ _), mul_assoc, Nat.div_mul_cancel (gcd_dvd_right _ _), mul_comm] [GOAL] case a α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : 0 < gcd (minimalPeriod f x) n ⊢ minimalPeriod f x ∣ n * minimalPeriod f^[n] x [PROOFSTEP] apply IsPeriodicPt.minimalPeriod_dvd [GOAL] case a.hx α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : 0 < gcd (minimalPeriod f x) n ⊢ IsPeriodicPt f (n * minimalPeriod f^[n] x) x [PROOFSTEP] rw [IsPeriodicPt, IsFixedPt, iterate_mul] [GOAL] case a.hx α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ h : 0 < gcd (minimalPeriod f x) n ⊢ f^[n]^[minimalPeriod f^[n] x] x = x [PROOFSTEP] exact isPeriodicPt_minimalPeriod _ _ [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ Cycle.length (periodicOrbit f x) = minimalPeriod f x [PROOFSTEP] rw [periodicOrbit, Cycle.length_coe, List.length_map, List.length_range] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ periodicOrbit f x = Cycle.nil ↔ ¬x ∈ periodicPts f [PROOFSTEP] simp [periodicOrbit] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ minimalPeriod f x = 0 ↔ ¬x ∈ periodicPts f [PROOFSTEP] exact minimalPeriod_eq_zero_iff_nmem_periodicPts [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hx : x ∈ periodicPts f ⊢ y ∈ periodicOrbit f x ↔ ∃ n, f^[n] x = y [PROOFSTEP] simp only [periodicOrbit, Cycle.mem_coe_iff, List.mem_map, List.mem_range] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hx : x ∈ periodicPts f ⊢ (∃ a, a < minimalPeriod f x ∧ f^[a] x = y) ↔ ∃ n, f^[n] x = y [PROOFSTEP] use fun ⟨a, _, ha'⟩ => ⟨a, ha'⟩ [GOAL] case mpr α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ hx : x ∈ periodicPts f ⊢ (∃ n, f^[n] x = y) → ∃ a, a < minimalPeriod f x ∧ f^[a] x = y [PROOFSTEP] rintro ⟨n, rfl⟩ [GOAL] case mpr.intro α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ ∃ a, a < minimalPeriod f x ∧ f^[a] x = f^[n] x [PROOFSTEP] use n % minimalPeriod f x, mod_lt _ (minimalPeriod_pos_of_mem_periodicPts hx) [GOAL] case right α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ f^[n % minimalPeriod f x] x = f^[n] x [PROOFSTEP] rw [iterate_mod_minimalPeriod_eq] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ Cycle.Nodup (periodicOrbit f x) [PROOFSTEP] rw [periodicOrbit, Cycle.nodup_coe_iff, List.nodup_map_iff_inj_on (List.nodup_range _)] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n : ℕ ⊢ ∀ (x_1 : ℕ), x_1 ∈ List.range (minimalPeriod f x) → ∀ (y : ℕ), y ∈ List.range (minimalPeriod f x) → f^[x_1] x = f^[y] x → x_1 = y [PROOFSTEP] intro m hm n hn hmn [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n✝ m : ℕ hm : m ∈ List.range (minimalPeriod f x) n : ℕ hn : n ∈ List.range (minimalPeriod f x) hmn : f^[m] x = f^[n] x ⊢ m = n [PROOFSTEP] rw [List.mem_range] at hm hn [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m✝ n✝ m : ℕ hm : m < minimalPeriod f x n : ℕ hn : n < minimalPeriod f x hmn : f^[m] x = f^[n] x ⊢ m = n [PROOFSTEP] rwa [eq_iff_lt_minimalPeriod_of_iterate_eq hm hn] at hmn [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ List.rotate (List.map (fun n => f^[n] x) (List.range (minimalPeriod f x))) n = List.map (fun n_1 => f^[n_1] (f^[n] x)) (List.range (minimalPeriod f (f^[n] x))) [PROOFSTEP] apply List.ext_nthLe _ fun m _ _ => _ [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ List.length (List.rotate (List.map (fun n => f^[n] x) (List.range (minimalPeriod f x))) n) = List.length (List.map (fun n_1 => f^[n_1] (f^[n] x)) (List.range (minimalPeriod f (f^[n] x)))) [PROOFSTEP] simp [minimalPeriod_apply_iterate hx] [GOAL] α : Type u_1 β : Type u_2 f fa : α → α fb : β → β x y : α m n✝ : ℕ hx : x ∈ periodicPts f n : ℕ ⊢ ∀ (m : ℕ) (x_1 : m < List.length (List.rotate (List.map (fun n => f^[n] x) (List.range (minimalPeriod f x))) n)) (x_2 : m < List.length (List.map (fun n_1 => f^[n_1] (f^[n] x)) (List.range (minimalPeriod f (f^[n] x))))), List.nthLe (List.rotate (List.map (fun n => f^[n] x) (List.range (minimalPeriod f x))) n) m x_1 = List.nthLe (List.map (fun n_1 => f^[n_1] (f^[n] x)) (List.range (minimalPeriod f (f^[n] x)))) m x_2 [PROOFSTEP] simp [List.nthLe_rotate, iterate_add_apply] [GOAL] α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α ⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] by_cases hx : x ∈ periodicPts f [GOAL] case pos α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f ⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] have hx' := minimalPeriod_pos_of_mem_periodicPts hx [GOAL] case pos α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x ⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] have hM := Nat.sub_add_cancel (succ_le_iff.2 hx') [GOAL] case pos α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x ⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] rw [periodicOrbit, ← Cycle.map_coe, Cycle.chain_map, ← hM, Cycle.chain_range_succ] [GOAL] case pos α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x ⊢ (r (f^[minimalPeriod f x - succ 0] x) (f^[0] x) ∧ ∀ (m : ℕ), m < minimalPeriod f x - succ 0 → r (f^[m] x) (f^[succ m] x)) ↔ ∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] refine' ⟨_, fun H => ⟨_, fun m hm => H _ (hm.trans (Nat.lt_succ_self _))⟩⟩ [GOAL] case pos.refine'_1 α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x ⊢ (r (f^[minimalPeriod f x - succ 0] x) (f^[0] x) ∧ ∀ (m : ℕ), m < minimalPeriod f x - succ 0 → r (f^[m] x) (f^[succ m] x)) → ∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] rintro ⟨hr, H⟩ n hn [GOAL] case pos.refine'_1.intro α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n✝ : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x hr : r (f^[minimalPeriod f x - succ 0] x) (f^[0] x) H : ∀ (m : ℕ), m < minimalPeriod f x - succ 0 → r (f^[m] x) (f^[succ m] x) n : ℕ hn : n < minimalPeriod f x - succ 0 + succ 0 ⊢ r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] cases' eq_or_lt_of_le (lt_succ_iff.1 hn) with hM' hM' [GOAL] case pos.refine'_1.intro.inl α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n✝ : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x hr : r (f^[minimalPeriod f x - succ 0] x) (f^[0] x) H : ∀ (m : ℕ), m < minimalPeriod f x - succ 0 → r (f^[m] x) (f^[succ m] x) n : ℕ hn : n < minimalPeriod f x - succ 0 + succ 0 hM' : n = minimalPeriod f x - succ 0 ⊢ r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] rwa [hM', hM, iterate_minimalPeriod] [GOAL] case pos.refine'_1.intro.inr α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n✝ : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x hr : r (f^[minimalPeriod f x - succ 0] x) (f^[0] x) H : ∀ (m : ℕ), m < minimalPeriod f x - succ 0 → r (f^[m] x) (f^[succ m] x) n : ℕ hn : n < minimalPeriod f x - succ 0 + succ 0 hM' : n < minimalPeriod f x - succ 0 ⊢ r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] exact H _ hM' [GOAL] case pos.refine'_2 α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x H : ∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x) ⊢ r (f^[minimalPeriod f x - succ 0] x) (f^[0] x) [PROOFSTEP] rw [iterate_zero_apply] [GOAL] case pos.refine'_2 α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x H : ∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x) ⊢ r (f^[minimalPeriod f x - succ 0] x) x [PROOFSTEP] nth_rw 3 [← @iterate_minimalPeriod α f x] [GOAL] case pos.refine'_2 α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x H : ∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x) ⊢ r (f^[minimalPeriod f x - succ 0] x) (f^[minimalPeriod f x] x) [PROOFSTEP] nth_rw 2 [← hM] [GOAL] case pos.refine'_2 α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f hx' : 0 < minimalPeriod f x hM : minimalPeriod f x - succ 0 + succ 0 = minimalPeriod f x H : ∀ (n : ℕ), n < minimalPeriod f x - succ 0 + succ 0 → r (f^[n] x) (f^[n + 1] x) ⊢ r (f^[minimalPeriod f x - succ 0] x) (f^[minimalPeriod f x - succ 0 + succ 0] x) [PROOFSTEP] exact H _ (Nat.lt_succ_self _) [GOAL] case neg α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : ¬x ∈ periodicPts f ⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] rw [periodicOrbit_eq_nil_of_not_periodic_pt hx, minimalPeriod_eq_zero_of_nmem_periodicPts hx] [GOAL] case neg α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : ¬x ∈ periodicPts f ⊢ Cycle.Chain r Cycle.nil ↔ ∀ (n : ℕ), n < 0 → r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f ⊢ Cycle.Chain r (periodicOrbit f x) ↔ ∀ (n : ℕ), r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] rw [periodicOrbit_chain r] [GOAL] α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f ⊢ (∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x)) ↔ ∀ (n : ℕ), r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] refine' ⟨fun H n => _, fun H n _ => H n⟩ [GOAL] α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n✝ : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f H : ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x) n : ℕ ⊢ r (f^[n] x) (f^[n + 1] x) [PROOFSTEP] rw [iterate_succ_apply, ← iterate_mod_minimalPeriod_eq, ← iterate_mod_minimalPeriod_eq (n := n), ← iterate_succ_apply, minimalPeriod_apply hx] [GOAL] α : Type u_1 β : Type u_2 f✝ fa : α → α fb : β → β x✝ y : α m n✝ : ℕ r : α → α → Prop f : α → α x : α hx : x ∈ periodicPts f H : ∀ (n : ℕ), n < minimalPeriod f x → r (f^[n] x) (f^[n + 1] x) n : ℕ ⊢ r (f^[n % minimalPeriod f x] x) (f^[succ (n % minimalPeriod f x)] x) [PROOFSTEP] exact H _ (mod_lt _ (minimalPeriod_pos_of_mem_periodicPts hx)) [GOAL] α : Type u_1 β : Type u_2 f✝ : α → α g✝ : β → β x : α × β a : α b : β m n✝ : ℕ f : α → α g : β → β n : ℕ ⊢ (Prod.map f g)^[n] = Prod.map f^[n] g^[n] [PROOFSTEP] induction n [GOAL] case zero α : Type u_1 β : Type u_2 f✝ : α → α g✝ : β → β x : α × β a : α b : β m n : ℕ f : α → α g : β → β ⊢ (Prod.map f g)^[Nat.zero] = Prod.map f^[Nat.zero] g^[Nat.zero] [PROOFSTEP] simp [*, Prod.map_comp_map] [GOAL] case succ α : Type u_1 β : Type u_2 f✝ : α → α g✝ : β → β x : α × β a : α b : β m n : ℕ f : α → α g : β → β n✝ : ℕ n_ih✝ : (Prod.map f g)^[n✝] = Prod.map f^[n✝] g^[n✝] ⊢ (Prod.map f g)^[Nat.succ n✝] = Prod.map f^[Nat.succ n✝] g^[Nat.succ n✝] [PROOFSTEP] simp [*, Prod.map_comp_map] [GOAL] α : Type u_1 β : Type u_2 f : α → α g : β → β x✝ : α × β a : α b : β m n : ℕ x : α × β ⊢ IsPeriodicPt (Prod.map f g) n x ↔ IsPeriodicPt f n x.fst ∧ IsPeriodicPt g n x.snd [PROOFSTEP] simp [IsPeriodicPt] [GOAL] α : Type u_1 β : Type u_2 f✝ : α → α g✝ : β → β x✝ : α × β a : α b : β m n : ℕ f : α → α g : β → β x : α × β ⊢ ∀ (c : ℕ), minimalPeriod (Prod.map f g) x ∣ c ↔ Nat.lcm (minimalPeriod f x.fst) (minimalPeriod g x.snd) ∣ c [PROOFSTEP] cases x [GOAL] case mk α : Type u_1 β : Type u_2 f✝ : α → α g✝ : β → β x : α × β a : α b : β m n : ℕ f : α → α g : β → β fst✝ : α snd✝ : β ⊢ ∀ (c : ℕ), minimalPeriod (Prod.map f g) (fst✝, snd✝) ∣ c ↔ Nat.lcm (minimalPeriod f (fst✝, snd✝).fst) (minimalPeriod g (fst✝, snd✝).snd) ∣ c [PROOFSTEP] simp [← isPeriodicPt_iff_minimalPeriod_dvd, Nat.lcm_dvd_iff] [GOAL] α : Type u_1 β : Type u_2 f : α → α g : β → β x : α × β a : α b : β m n : ℕ ⊢ minimalPeriod f x.fst ∣ minimalPeriod (Prod.map f g) x [PROOFSTEP] rw [minimalPeriod_prod_map] [GOAL] α : Type u_1 β : Type u_2 f : α → α g : β → β x : α × β a : α b : β m n : ℕ ⊢ minimalPeriod f x.fst ∣ Nat.lcm (minimalPeriod f x.fst) (minimalPeriod g x.snd) [PROOFSTEP] exact Nat.dvd_lcm_left _ _ [GOAL] α : Type u_1 β : Type u_2 f : α → α g : β → β x : α × β a : α b : β m n : ℕ ⊢ minimalPeriod g x.snd ∣ minimalPeriod (Prod.map f g) x [PROOFSTEP] rw [minimalPeriod_prod_map] [GOAL] α : Type u_1 β : Type u_2 f : α → α g : β → β x : α × β a : α b : β m n : ℕ ⊢ minimalPeriod g x.snd ∣ Nat.lcm (minimalPeriod f x.fst) (minimalPeriod g x.snd) [PROOFSTEP] exact Nat.dvd_lcm_right _ _ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β n : ℕ ⊢ a ^ n • b = b ↔ minimalPeriod ((fun x x_1 => x • x_1) a) b ∣ n [PROOFSTEP] rw [← isPeriodicPt_iff_minimalPeriod_dvd, IsPeriodicPt, IsFixedPt, smul_iterate] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β n : ℤ ⊢ a ^ n • b = b ↔ ↑(minimalPeriod ((fun x x_1 => x • x_1) a) b) ∣ n [PROOFSTEP] cases n [GOAL] case ofNat α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β a✝ : ℕ ⊢ a ^ Int.ofNat a✝ • b = b ↔ ↑(minimalPeriod ((fun x x_1 => x • x_1) a) b) ∣ Int.ofNat a✝ [PROOFSTEP] rw [Int.ofNat_eq_coe, zpow_ofNat, Int.coe_nat_dvd, pow_smul_eq_iff_minimalPeriod_dvd] [GOAL] case negSucc α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β a✝ : ℕ ⊢ a ^ Int.negSucc a✝ • b = b ↔ ↑(minimalPeriod ((fun x x_1 => x • x_1) a) b) ∣ Int.negSucc a✝ [PROOFSTEP] rw [Int.negSucc_coe, zpow_neg, zpow_ofNat, inv_smul_eq_iff, eq_comm, dvd_neg, Int.coe_nat_dvd, pow_smul_eq_iff_minimalPeriod_dvd] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β n : ℕ ⊢ a ^ (n % minimalPeriod ((fun x x_1 => x • x_1) a) b) • b = a ^ n • b [PROOFSTEP] conv_rhs => rw [← Nat.mod_add_div n (minimalPeriod ((· • ·) a) b), pow_add, mul_smul, pow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β n : ℕ | a ^ n • b [PROOFSTEP] rw [← Nat.mod_add_div n (minimalPeriod ((· • ·) a) b), pow_add, mul_smul, pow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β n : ℕ | a ^ n • b [PROOFSTEP] rw [← Nat.mod_add_div n (minimalPeriod ((· • ·) a) b), pow_add, mul_smul, pow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β n : ℕ | a ^ n • b [PROOFSTEP] rw [← Nat.mod_add_div n (minimalPeriod ((· • ·) a) b), pow_add, mul_smul, pow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β n : ℤ ⊢ a ^ (n % ↑(minimalPeriod ((fun x x_1 => x • x_1) a) b)) • b = a ^ n • b [PROOFSTEP] conv_rhs => rw [← Int.emod_add_ediv n (minimalPeriod ((a • ·)) b), zpow_add, mul_smul, zpow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β n : ℤ | a ^ n • b [PROOFSTEP] rw [← Int.emod_add_ediv n (minimalPeriod ((a • ·)) b), zpow_add, mul_smul, zpow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β n : ℤ | a ^ n • b [PROOFSTEP] rw [← Int.emod_add_ediv n (minimalPeriod ((a • ·)) b), zpow_add, mul_smul, zpow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Group α inst✝ : MulAction α β a : α b : β n : ℤ | a ^ n • b [PROOFSTEP] rw [← Int.emod_add_ediv n (minimalPeriod ((a • ·)) b), zpow_add, mul_smul, zpow_smul_eq_iff_minimalPeriod_dvd.mpr (dvd_mul_right _ _)]
{"mathlib_filename": "Mathlib.Dynamics.PeriodicPts", "llama_tokens": 20096}
[GOAL] α : Type u_1 X : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : Nonempty X inst✝¹ : MeasurableSpace X s : Set X inst✝ : HasCountableSeparatingOn X MeasurableSet s f : α → α g : α → X h : QuasiErgodic f hs : ∀ᵐ (x : α) ∂μ, g x ∈ s hgm : NullMeasurable g hg_eq : g ∘ f =ᵐ[μ] g ⊢ ∃ c, g =ᵐ[μ] const α c [PROOFSTEP] refine exists_eventuallyEq_const_of_eventually_mem_of_forall_separating MeasurableSet hs ?_ [GOAL] α : Type u_1 X : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : Nonempty X inst✝¹ : MeasurableSpace X s : Set X inst✝ : HasCountableSeparatingOn X MeasurableSet s f : α → α g : α → X h : QuasiErgodic f hs : ∀ᵐ (x : α) ∂μ, g x ∈ s hgm : NullMeasurable g hg_eq : g ∘ f =ᵐ[μ] g ⊢ ∀ (U : Set X), MeasurableSet U → (∀ᵐ (x : α) ∂μ, g x ∈ U) ∨ ∀ᵐ (x : α) ∂μ, ¬g x ∈ U [PROOFSTEP] refine fun U hU ↦ h.ae_mem_or_ae_nmem₀ (s := g ⁻¹' U) (hgm hU) ?_b [GOAL] case _b α : Type u_1 X : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : Nonempty X inst✝¹ : MeasurableSpace X s : Set X inst✝ : HasCountableSeparatingOn X MeasurableSet s f : α → α g : α → X h : QuasiErgodic f hs : ∀ᵐ (x : α) ∂μ, g x ∈ s hgm : NullMeasurable g hg_eq : g ∘ f =ᵐ[μ] g U : Set X hU : MeasurableSet U ⊢ f ⁻¹' (g ⁻¹' U) =ᵐ[μ] g ⁻¹' U [PROOFSTEP] refine (hg_eq.mono fun x hx ↦ ?_).set_eq [GOAL] case _b α : Type u_1 X : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : Nonempty X inst✝¹ : MeasurableSpace X s : Set X inst✝ : HasCountableSeparatingOn X MeasurableSet s f : α → α g : α → X h : QuasiErgodic f hs : ∀ᵐ (x : α) ∂μ, g x ∈ s hgm : NullMeasurable g hg_eq : g ∘ f =ᵐ[μ] g U : Set X hU : MeasurableSet U x : α hx : (g ∘ f) x = g x ⊢ x ∈ f ⁻¹' (g ⁻¹' U) ↔ x ∈ g ⁻¹' U [PROOFSTEP] rw [← preimage_comp, mem_preimage, mem_preimage, hx] [GOAL] α : Type u_1 X : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : Nonempty X inst✝¹ : MeasurableSpace X inst✝ : HasCountableSeparatingOn X MeasurableSet univ f : α → α g : α → X h : PreErgodic f hgm : Measurable g hg_eq : g ∘ f = g U : Set X hU : MeasurableSet U ⊢ f ⁻¹' (g ⁻¹' U) = g ⁻¹' U [PROOFSTEP] rw [← preimage_comp, hg_eq] [GOAL] α : Type u_1 X : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : TopologicalSpace X inst✝¹ : MetrizableSpace X inst✝ : Nonempty X f : α → α g : α → X h : QuasiErgodic f hgm : AEStronglyMeasurable g μ hg_eq : g ∘ f =ᵐ[μ] g ⊢ ∃ c, g =ᵐ[μ] const α c [PROOFSTEP] borelize X [GOAL] α : Type u_1 X : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : TopologicalSpace X inst✝¹ : MetrizableSpace X inst✝ : Nonempty X f : α → α g : α → X h : QuasiErgodic f hgm : AEStronglyMeasurable g μ hg_eq : g ∘ f =ᵐ[μ] g this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X ⊢ ∃ c, g =ᵐ[μ] const α c [PROOFSTEP] rcases hgm.isSeparable_ae_range with ⟨t, ht, hgt⟩ [GOAL] case intro.intro α : Type u_1 X : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : TopologicalSpace X inst✝¹ : MetrizableSpace X inst✝ : Nonempty X f : α → α g : α → X h : QuasiErgodic f hgm : AEStronglyMeasurable g μ hg_eq : g ∘ f =ᵐ[μ] g this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X t : Set X ht : IsSeparable t hgt : ∀ᵐ (x : α) ∂μ, g x ∈ t ⊢ ∃ c, g =ᵐ[μ] const α c [PROOFSTEP] haveI := ht.secondCountableTopology [GOAL] case intro.intro α : Type u_1 X : Type u_2 inst✝³ : MeasurableSpace α μ : Measure α inst✝² : TopologicalSpace X inst✝¹ : MetrizableSpace X inst✝ : Nonempty X f : α → α g : α → X h : QuasiErgodic f hgm : AEStronglyMeasurable g μ hg_eq : g ∘ f =ᵐ[μ] g this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X t : Set X ht : IsSeparable t hgt : ∀ᵐ (x : α) ∂μ, g x ∈ t this : SecondCountableTopology ↑t ⊢ ∃ c, g =ᵐ[μ] const α c [PROOFSTEP] exact h.ae_eq_const_of_ae_eq_comp_of_ae_range₀ hgt hgm.aemeasurable.nullMeasurable hg_eq
{"mathlib_filename": "Mathlib.Dynamics.Ergodic.Function", "llama_tokens": 1981}
[GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) ⊢ E →ₗ[ℝ] E →ₗ[ℝ] ℝ [PROOFSTEP] let z : AlternatingMap ℝ E ℝ (Fin 0) ≃ₗ[ℝ] ℝ := AlternatingMap.constLinearEquivOfIsEmpty.symm [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) z : AlternatingMap ℝ E ℝ (Fin 0) ≃ₗ[ℝ] ℝ := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty ⊢ E →ₗ[ℝ] E →ₗ[ℝ] ℝ [PROOFSTEP] let y : AlternatingMap ℝ E ℝ (Fin 1) →ₗ[ℝ] E →ₗ[ℝ] ℝ := LinearMap.llcomp ℝ E (AlternatingMap ℝ E ℝ (Fin 0)) ℝ z ∘ₗ AlternatingMap.curryLeftLinearMap [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) z : AlternatingMap ℝ E ℝ (Fin 0) ≃ₗ[ℝ] ℝ := LinearEquiv.symm AlternatingMap.constLinearEquivOfIsEmpty y : AlternatingMap ℝ E ℝ (Fin 1) →ₗ[ℝ] E →ₗ[ℝ] ℝ := LinearMap.comp (↑(LinearMap.llcomp ℝ E (AlternatingMap ℝ E ℝ (Fin 0)) ℝ) ↑z) AlternatingMap.curryLeftLinearMap ⊢ E →ₗ[ℝ] E →ₗ[ℝ] ℝ [PROOFSTEP] exact y ∘ₗ AlternatingMap.curryLeftLinearMap (R' := ℝ) o.volumeForm [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(areaForm o) x) y = ↑(volumeForm o) ![x, y] [PROOFSTEP] simp [areaForm] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ↑(↑(areaForm o) x) x = 0 [PROOFSTEP] rw [areaForm_to_volumeForm] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ↑(volumeForm o) ![x, x] = 0 [PROOFSTEP] refine' o.volumeForm.map_eq_zero_of_eq ![x, x] _ (_ : (0 : Fin 2) ≠ 1) [GOAL] case refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ Matrix.vecCons x ![x] 0 = Matrix.vecCons x ![x] 1 [PROOFSTEP] simp [GOAL] case refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ 0 ≠ 1 [PROOFSTEP] norm_num [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(areaForm o) x) y = -↑(↑(areaForm o) y) x [PROOFSTEP] simp only [areaForm_to_volumeForm] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(volumeForm o) ![x, y] = -↑(volumeForm o) ![y, x] [PROOFSTEP] convert o.volumeForm.map_swap ![y, x] (_ : (0 : Fin 2) ≠ 1) [GOAL] case h.e'_2.h.e'_6 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ![x, y] = ![y, x] ∘ ↑(Equiv.swap 0 1) [PROOFSTEP] ext i [GOAL] case h.e'_2.h.e'_6.h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E i : Fin (Nat.succ 1) ⊢ Matrix.vecCons x ![y] i = (![y, x] ∘ ↑(Equiv.swap 0 1)) i [PROOFSTEP] fin_cases i [GOAL] case h.e'_2.h.e'_6.h.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < Nat.succ 1) } = (![y, x] ∘ ↑(Equiv.swap 0 1)) { val := 0, isLt := (_ : 0 < Nat.succ 1) } [PROOFSTEP] rfl [GOAL] case h.e'_2.h.e'_6.h.tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < Nat.succ 1) 1) } = (![y, x] ∘ ↑(Equiv.swap 0 1)) { val := 1, isLt := (_ : (fun a => a < Nat.succ 1) 1) } [PROOFSTEP] rfl [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ 0 ≠ 1 [PROOFSTEP] norm_num [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) ⊢ areaForm (-o) = -areaForm o [PROOFSTEP] ext x y [GOAL] case h.h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(areaForm (-o)) x) y = ↑(↑(-areaForm o) x) y [PROOFSTEP] simp [areaForm_to_volumeForm] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ |↑(↑(areaForm o) x) y| ≤ ‖x‖ * ‖y‖ [PROOFSTEP] simpa [areaForm_to_volumeForm, Fin.prod_univ_succ] using o.abs_volumeForm_apply_le ![x, y] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(areaForm o) x) y ≤ ‖x‖ * ‖y‖ [PROOFSTEP] simpa [areaForm_to_volumeForm, Fin.prod_univ_succ] using o.volumeForm_apply_le ![x, y] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E h : inner x y = 0 ⊢ |↑(↑(areaForm o) x) y| = ‖x‖ * ‖y‖ [PROOFSTEP] rw [o.areaForm_to_volumeForm, o.abs_volumeForm_apply_of_pairwise_orthogonal] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E h : inner x y = 0 ⊢ (Finset.prod Finset.univ fun i => ‖Matrix.vecCons x ![y] i‖) = ‖x‖ * ‖y‖ [PROOFSTEP] simp [Fin.prod_univ_succ] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E h : inner x y = 0 ⊢ Pairwise fun i j => inner (Matrix.vecCons x ![y] i) (Matrix.vecCons x ![y] j) = 0 [PROOFSTEP] intro i j hij [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E h : inner x y = 0 i j : Fin 2 hij : i ≠ j ⊢ inner (Matrix.vecCons x ![y] i) (Matrix.vecCons x ![y] j) = 0 [PROOFSTEP] fin_cases i [GOAL] case head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E h : inner x y = 0 j : Fin 2 hij : { val := 0, isLt := (_ : 0 < 2) } ≠ j ⊢ inner (Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < 2) }) (Matrix.vecCons x ![y] j) = 0 [PROOFSTEP] fin_cases j [GOAL] case tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E h : inner x y = 0 j : Fin 2 hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ j ⊢ inner (Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) (Matrix.vecCons x ![y] j) = 0 [PROOFSTEP] fin_cases j [GOAL] case head.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E h : inner x y = 0 hij : { val := 0, isLt := (_ : 0 < 2) } ≠ { val := 0, isLt := (_ : 0 < 2) } ⊢ inner (Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < 2) }) (Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < 2) }) = 0 [PROOFSTEP] simp_all [GOAL] case head.tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E h : inner x y = 0 hij : { val := 0, isLt := (_ : 0 < 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 2) 1) } ⊢ inner (Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < 2) }) (Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) = 0 [PROOFSTEP] simpa using h [GOAL] case tail.head.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E h : inner x y = 0 hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ { val := 0, isLt := (_ : 0 < 2) } ⊢ inner (Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) (Matrix.vecCons x ![y] { val := 0, isLt := (_ : 0 < 2) }) = 0 [PROOFSTEP] simpa [real_inner_comm] using h [GOAL] case tail.head.tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E h : inner x y = 0 hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 2) 1) } ⊢ inner (Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) (Matrix.vecCons x ![y] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) = 0 [PROOFSTEP] simp_all [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ ↑(↑(areaForm (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y = ↑(↑(areaForm o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y) [PROOFSTEP] have : φ.symm ∘ ![x, y] = ![φ.symm x, φ.symm y] := by ext i fin_cases i <;> rfl [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ ↑(LinearIsometryEquiv.symm φ) ∘ ![x, y] = ![↑(LinearIsometryEquiv.symm φ) x, ↑(LinearIsometryEquiv.symm φ) y] [PROOFSTEP] ext i [GOAL] case h E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F i : Fin (Nat.succ (Nat.succ 0)) ⊢ (↑(LinearIsometryEquiv.symm φ) ∘ ![x, y]) i = Matrix.vecCons (↑(LinearIsometryEquiv.symm φ) x) ![↑(LinearIsometryEquiv.symm φ) y] i [PROOFSTEP] fin_cases i [GOAL] case h.head E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ (↑(LinearIsometryEquiv.symm φ) ∘ ![x, y]) { val := 0, isLt := (_ : 0 < Nat.succ (Nat.succ 0)) } = Matrix.vecCons (↑(LinearIsometryEquiv.symm φ) x) ![↑(LinearIsometryEquiv.symm φ) y] { val := 0, isLt := (_ : 0 < Nat.succ (Nat.succ 0)) } [PROOFSTEP] rfl [GOAL] case h.tail.head E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ (↑(LinearIsometryEquiv.symm φ) ∘ ![x, y]) { val := 1, isLt := (_ : (fun a => a < Nat.succ (Nat.succ 0)) 1) } = Matrix.vecCons (↑(LinearIsometryEquiv.symm φ) x) ![↑(LinearIsometryEquiv.symm φ) y] { val := 1, isLt := (_ : (fun a => a < Nat.succ (Nat.succ 0)) 1) } [PROOFSTEP] rfl [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F this : ↑(LinearIsometryEquiv.symm φ) ∘ ![x, y] = ![↑(LinearIsometryEquiv.symm φ) x, ↑(LinearIsometryEquiv.symm φ) y] ⊢ ↑(↑(areaForm (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y = ↑(↑(areaForm o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y) [PROOFSTEP] simp [areaForm_to_volumeForm, volumeForm_map, this] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x y : E ⊢ ↑(↑(areaForm o) (↑φ x)) (↑φ y) = ↑(↑(areaForm o) x) y [PROOFSTEP] convert o.areaForm_map φ (φ x) (φ y) [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x y : E ⊢ o = ↑(map (Fin 2) φ.toLinearEquiv) o [PROOFSTEP] symm [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x y : E ⊢ ↑(map (Fin 2) φ.toLinearEquiv) o = o [PROOFSTEP] rwa [← o.map_eq_iff_det_pos φ.toLinearEquiv] at hφ [GOAL] case h.e'_2.h.e'_5.h.e'_5.h.e'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x y : E ⊢ Fintype.card (Fin 2) = finrank ℝ E [PROOFSTEP] rw [@Fact.out (finrank ℝ E = 2), Fintype.card_fin] [GOAL] case h.e'_3.h.e'_5.h.e'_6 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x y : E ⊢ x = ↑(LinearIsometryEquiv.symm φ) (↑φ x) [PROOFSTEP] simp [GOAL] case h.e'_3.h.e'_6 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x y : E ⊢ y = ↑(LinearIsometryEquiv.symm φ) (↑φ y) [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner (↑(rightAngleRotationAux₁ o) x) y = ↑(↑(areaForm o) x) y [PROOFSTEP] simp only [rightAngleRotationAux₁, LinearEquiv.trans_symm, LinearIsometryEquiv.toLinearEquiv_symm, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, LinearEquiv.trans_apply, LinearIsometryEquiv.coe_toLinearEquiv] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner (↑(LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ E)) (↑(LinearEquiv.symm (LinearEquiv.symm LinearMap.toContinuousLinearMap)) (↑(areaForm o) x))) y = ↑(↑(areaForm o) x) y [PROOFSTEP] rw [InnerProductSpace.toDual_symm_apply] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(LinearEquiv.symm (LinearEquiv.symm LinearMap.toContinuousLinearMap)) (↑(areaForm o) x)) y = ↑(↑(areaForm o) x) y [PROOFSTEP] norm_cast [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner x (↑(rightAngleRotationAux₁ o) y) = -↑(↑(areaForm o) x) y [PROOFSTEP] rw [real_inner_comm] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner (↑(rightAngleRotationAux₁ o) y) x = -↑(↑(areaForm o) x) y [PROOFSTEP] simp [o.areaForm_swap y x] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E ⊢ ‖↑{ toAddHom := src✝.toAddHom, map_smul' := (_ : ∀ (r : ℝ) (x : E), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id ℝ) r • AddHom.toFun src✝.toAddHom x) } x‖ = ‖x‖ [PROOFSTEP] dsimp [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E ⊢ ‖↑(rightAngleRotationAux₁ o) x‖ = ‖x‖ [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E ⊢ ‖↑(rightAngleRotationAux₁ o) x‖ ≤ ‖x‖ [PROOFSTEP] cases' eq_or_lt_of_le (norm_nonneg (o.rightAngleRotationAux₁ x)) with h h [GOAL] case refine'_1.inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E h : 0 = ‖↑(rightAngleRotationAux₁ o) x‖ ⊢ ‖↑(rightAngleRotationAux₁ o) x‖ ≤ ‖x‖ [PROOFSTEP] rw [← h] [GOAL] case refine'_1.inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E h : 0 = ‖↑(rightAngleRotationAux₁ o) x‖ ⊢ 0 ≤ ‖x‖ [PROOFSTEP] positivity [GOAL] case refine'_1.inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E h : 0 < ‖↑(rightAngleRotationAux₁ o) x‖ ⊢ ‖↑(rightAngleRotationAux₁ o) x‖ ≤ ‖x‖ [PROOFSTEP] refine' le_of_mul_le_mul_right _ h [GOAL] case refine'_1.inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E h : 0 < ‖↑(rightAngleRotationAux₁ o) x‖ ⊢ ‖↑(rightAngleRotationAux₁ o) x‖ * ‖↑(rightAngleRotationAux₁ o) x‖ ≤ ‖x‖ * ‖↑(rightAngleRotationAux₁ o) x‖ [PROOFSTEP] rw [← real_inner_self_eq_norm_mul_norm, o.inner_rightAngleRotationAux₁_left] [GOAL] case refine'_1.inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E h : 0 < ‖↑(rightAngleRotationAux₁ o) x‖ ⊢ ↑(↑(areaForm o) x) (↑(rightAngleRotationAux₁ o) x) ≤ ‖x‖ * ‖↑(rightAngleRotationAux₁ o) x‖ [PROOFSTEP] exact o.areaForm_le x (o.rightAngleRotationAux₁ x) [GOAL] case refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E ⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖ [PROOFSTEP] let K : Submodule ℝ E := ℝ ∙ x [GOAL] case refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} ⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖ [PROOFSTEP] have : Nontrivial Kᗮ := by apply @FiniteDimensional.nontrivial_of_finrank_pos ℝ have : finrank ℝ K ≤ Finset.card { x } := by rw [← Set.toFinset_singleton] exact finrank_span_le_card ({ x } : Set E) have : Finset.card { x } = 1 := Finset.card_singleton x have : finrank ℝ K + finrank ℝ Kᗮ = finrank ℝ E := K.finrank_add_finrank_orthogonal have : finrank ℝ E = 2 := Fact.out linarith [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} ⊢ Nontrivial { x // x ∈ Kᗮ } [PROOFSTEP] apply @FiniteDimensional.nontrivial_of_finrank_pos ℝ [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} ⊢ 0 < finrank ℝ { x // x ∈ Kᗮ } [PROOFSTEP] have : finrank ℝ K ≤ Finset.card { x } := by rw [← Set.toFinset_singleton] exact finrank_span_le_card ({ x } : Set E) [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} ⊢ finrank ℝ { x // x ∈ K } ≤ Finset.card {x} [PROOFSTEP] rw [← Set.toFinset_singleton] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} ⊢ finrank ℝ { x // x ∈ K } ≤ Finset.card (Set.toFinset {x}) [PROOFSTEP] exact finrank_span_le_card ({ x } : Set E) [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this : finrank ℝ { x // x ∈ K } ≤ Finset.card {x} ⊢ 0 < finrank ℝ { x // x ∈ Kᗮ } [PROOFSTEP] have : Finset.card { x } = 1 := Finset.card_singleton x [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this✝ : finrank ℝ { x // x ∈ K } ≤ Finset.card {x} this : Finset.card {x} = 1 ⊢ 0 < finrank ℝ { x // x ∈ Kᗮ } [PROOFSTEP] have : finrank ℝ K + finrank ℝ Kᗮ = finrank ℝ E := K.finrank_add_finrank_orthogonal [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this✝¹ : finrank ℝ { x // x ∈ K } ≤ Finset.card {x} this✝ : Finset.card {x} = 1 this : finrank ℝ { x // x ∈ K } + finrank ℝ { x // x ∈ Kᗮ } = finrank ℝ E ⊢ 0 < finrank ℝ { x // x ∈ Kᗮ } [PROOFSTEP] have : finrank ℝ E = 2 := Fact.out [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this✝² : finrank ℝ { x // x ∈ K } ≤ Finset.card {x} this✝¹ : Finset.card {x} = 1 this✝ : finrank ℝ { x // x ∈ K } + finrank ℝ { x // x ∈ Kᗮ } = finrank ℝ E this : finrank ℝ E = 2 ⊢ 0 < finrank ℝ { x // x ∈ Kᗮ } [PROOFSTEP] linarith [GOAL] case refine'_2 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this : Nontrivial { x // x ∈ Kᗮ } ⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖ [PROOFSTEP] obtain ⟨w, hw₀⟩ : ∃ w : Kᗮ, w ≠ 0 := exists_ne 0 [GOAL] case refine'_2.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this : Nontrivial { x // x ∈ Kᗮ } w : { x // x ∈ Kᗮ } hw₀ : w ≠ 0 ⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖ [PROOFSTEP] have hw' : ⟪x, (w : E)⟫ = 0 := Submodule.mem_orthogonal_singleton_iff_inner_right.mp w.2 [GOAL] case refine'_2.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this : Nontrivial { x // x ∈ Kᗮ } w : { x // x ∈ Kᗮ } hw₀ : w ≠ 0 hw' : inner x ↑w = 0 ⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖ [PROOFSTEP] have hw : (w : E) ≠ 0 := fun h => hw₀ (Submodule.coe_eq_zero.mp h) [GOAL] case refine'_2.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this : Nontrivial { x // x ∈ Kᗮ } w : { x // x ∈ Kᗮ } hw₀ : w ≠ 0 hw' : inner x ↑w = 0 hw : ↑w ≠ 0 ⊢ ‖x‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖ [PROOFSTEP] refine' le_of_mul_le_mul_right _ (by rwa [norm_pos_iff] : 0 < ‖(w : E)‖) [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this : Nontrivial { x // x ∈ Kᗮ } w : { x // x ∈ Kᗮ } hw₀ : w ≠ 0 hw' : inner x ↑w = 0 hw : ↑w ≠ 0 ⊢ 0 < ‖↑w‖ [PROOFSTEP] rwa [norm_pos_iff] [GOAL] case refine'_2.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this : Nontrivial { x // x ∈ Kᗮ } w : { x // x ∈ Kᗮ } hw₀ : w ≠ 0 hw' : inner x ↑w = 0 hw : ↑w ≠ 0 ⊢ ‖x‖ * ‖↑w‖ ≤ ‖↑(rightAngleRotationAux₁ o) x‖ * ‖↑w‖ [PROOFSTEP] rw [← o.abs_areaForm_of_orthogonal hw'] [GOAL] case refine'_2.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this : Nontrivial { x // x ∈ Kᗮ } w : { x // x ∈ Kᗮ } hw₀ : w ≠ 0 hw' : inner x ↑w = 0 hw : ↑w ≠ 0 ⊢ |↑(↑(areaForm o) x) ↑w| ≤ ‖↑(rightAngleRotationAux₁ o) x‖ * ‖↑w‖ [PROOFSTEP] rw [← o.inner_rightAngleRotationAux₁_left x w] [GOAL] case refine'_2.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) src✝ : E →ₗ[ℝ] E := rightAngleRotationAux₁ o x : E K : Submodule ℝ E := Submodule.span ℝ {x} this : Nontrivial { x // x ∈ Kᗮ } w : { x // x ∈ Kᗮ } hw₀ : w ≠ 0 hw' : inner x ↑w = 0 hw : ↑w ≠ 0 ⊢ |inner (↑(rightAngleRotationAux₁ o) x) ↑w| ≤ ‖↑(rightAngleRotationAux₁ o) x‖ * ‖↑w‖ [PROOFSTEP] exact abs_real_inner_le_norm (o.rightAngleRotationAux₁ x) w [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ↑(rightAngleRotationAux₁ o) (↑(rightAngleRotationAux₁ o) x) = -x [PROOFSTEP] apply ext_inner_left ℝ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ∀ (v : (fun x => E) (↑(rightAngleRotationAux₁ o) x)), inner v (↑(rightAngleRotationAux₁ o) (↑(rightAngleRotationAux₁ o) x)) = inner v (-x) [PROOFSTEP] intro y [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E y : (fun x => E) (↑(rightAngleRotationAux₁ o) x) ⊢ inner y (↑(rightAngleRotationAux₁ o) (↑(rightAngleRotationAux₁ o) x)) = inner y (-x) [PROOFSTEP] have : ⟪o.rightAngleRotationAux₁ y, o.rightAngleRotationAux₁ x⟫ = ⟪y, x⟫ := LinearIsometry.inner_map_map o.rightAngleRotationAux₂ y x [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E y : (fun x => E) (↑(rightAngleRotationAux₁ o) x) this : inner (↑(rightAngleRotationAux₁ o) y) (↑(rightAngleRotationAux₁ o) x) = inner y x ⊢ inner y (↑(rightAngleRotationAux₁ o) (↑(rightAngleRotationAux₁ o) x)) = inner y (-x) [PROOFSTEP] rw [o.inner_rightAngleRotationAux₁_right, ← o.inner_rightAngleRotationAux₁_left, this, inner_neg_right] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) ⊢ LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id [PROOFSTEP] ext [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x✝ : E ⊢ ↑(LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o)) x✝ = ↑LinearMap.id x✝ [PROOFSTEP] simp [rightAngleRotationAux₂] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) ⊢ LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id [PROOFSTEP] ext [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x✝ : E ⊢ ↑(LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap) x✝ = ↑LinearMap.id x✝ [PROOFSTEP] simp [rightAngleRotationAux₂] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner (↑(rightAngleRotation o) x) y = ↑(↑(areaForm o) x) y [PROOFSTEP] rw [rightAngleRotation] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner (↑(LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o) (_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id) (_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id)) x) y = ↑(↑(areaForm o) x) y [PROOFSTEP] exact o.inner_rightAngleRotationAux₁_left x y [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner x (↑(rightAngleRotation o) y) = -↑(↑(areaForm o) x) y [PROOFSTEP] rw [rightAngleRotation] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner x (↑(LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o) (_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id) (_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id)) y) = -↑(↑(areaForm o) x) y [PROOFSTEP] exact o.inner_rightAngleRotationAux₁_right x y [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ↑(rightAngleRotation o) (↑(rightAngleRotation o) x) = -x [PROOFSTEP] rw [rightAngleRotation] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ↑(LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o) (_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id) (_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id)) (↑(LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o) (_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id) (_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id)) x) = -x [PROOFSTEP] exact o.rightAngleRotationAux₁_rightAngleRotationAux₁ x [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) ⊢ LinearIsometryEquiv.symm (rightAngleRotation o) = LinearIsometryEquiv.trans (rightAngleRotation o) (LinearIsometryEquiv.neg ℝ) [PROOFSTEP] rw [rightAngleRotation] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) ⊢ LinearIsometryEquiv.symm (LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o) (_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id) (_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id)) = LinearIsometryEquiv.trans (LinearIsometryEquiv.ofLinearIsometry (rightAngleRotationAux₂ o) (-rightAngleRotationAux₁ o) (_ : LinearMap.comp (rightAngleRotationAux₂ o).toLinearMap (-rightAngleRotationAux₁ o) = LinearMap.id) (_ : LinearMap.comp (-rightAngleRotationAux₁ o) (rightAngleRotationAux₂ o).toLinearMap = LinearMap.id)) (LinearIsometryEquiv.neg ℝ) [PROOFSTEP] exact LinearIsometryEquiv.toLinearIsometry_injective rfl [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ inner (↑(rightAngleRotation o) x) x = 0 [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner x (↑(rightAngleRotation o) y) = -inner (↑(rightAngleRotation o) x) y [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner (↑(rightAngleRotation o) x) y = -inner x (↑(rightAngleRotation o) y) [PROOFSTEP] simp [o.inner_rightAngleRotation_swap x y] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(areaForm o) (↑(rightAngleRotation o) x)) y = -inner x y [PROOFSTEP] rw [← o.inner_comp_rightAngleRotation, o.inner_rightAngleRotation_right, neg_neg] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(areaForm o) x) (↑(rightAngleRotation o) y) = inner x y [PROOFSTEP] rw [← o.inner_rightAngleRotation_left, o.inner_comp_rightAngleRotation] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(areaForm o) (↑(rightAngleRotation o) x)) (↑(rightAngleRotation o) y) = ↑(↑(areaForm o) x) y [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) ⊢ LinearIsometryEquiv.trans (rightAngleRotation o) (rightAngleRotation o) = LinearIsometryEquiv.neg ℝ [PROOFSTEP] ext [GOAL] case h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x✝ : E ⊢ ↑(LinearIsometryEquiv.trans (rightAngleRotation o) (rightAngleRotation o)) x✝ = ↑(LinearIsometryEquiv.neg ℝ) x✝ [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ↑(rightAngleRotation (-o)) x = -↑(rightAngleRotation o) x [PROOFSTEP] apply ext_inner_right ℝ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ∀ (v : E), inner (↑(rightAngleRotation (-o)) x) v = inner (-↑(rightAngleRotation o) x) v [PROOFSTEP] intro y [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ inner (↑(rightAngleRotation (-o)) x) y = inner (-↑(rightAngleRotation o) x) y [PROOFSTEP] rw [inner_rightAngleRotation_left] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(areaForm (-o)) x) y = inner (-↑(rightAngleRotation o) x) y [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x : F ⊢ ↑(rightAngleRotation (↑(map (Fin 2) φ.toLinearEquiv) o)) x = ↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x)) [PROOFSTEP] apply ext_inner_right ℝ [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x : F ⊢ ∀ (v : F), inner (↑(rightAngleRotation (↑(map (Fin 2) φ.toLinearEquiv) o)) x) v = inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) v [PROOFSTEP] intro y [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ inner (↑(rightAngleRotation (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y = inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) y [PROOFSTEP] rw [inner_rightAngleRotation_left] [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ ↑(↑(areaForm (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y = inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) y [PROOFSTEP] trans ⟪J (φ.symm x), φ.symm y⟫ [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ ↑(↑(areaForm (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y = inner (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y) [PROOFSTEP] simp [o.areaForm_map] [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ inner (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y) = inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) y [PROOFSTEP] trans ⟪φ (J (φ.symm x)), φ (φ.symm y)⟫ [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ inner (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y) = inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) (↑φ (↑(LinearIsometryEquiv.symm φ) y)) [PROOFSTEP] rw [φ.inner_map_map] [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) (↑φ (↑(LinearIsometryEquiv.symm φ) y)) = inner (↑φ (↑(rightAngleRotation o) (↑(LinearIsometryEquiv.symm φ) x))) y [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x : E ⊢ ↑φ (↑(rightAngleRotation o) x) = ↑(rightAngleRotation o) (↑φ x) [PROOFSTEP] convert (o.rightAngleRotation_map φ (φ x)).symm [GOAL] case h.e'_2.h.e'_6.h.e'_6 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x : E ⊢ x = ↑(LinearIsometryEquiv.symm φ) (↑φ x) [PROOFSTEP] simp [GOAL] case h.e'_3.h.e'_5.h.e'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x : E ⊢ o = ↑(map (Fin 2) φ.toLinearEquiv) o [PROOFSTEP] symm [GOAL] case h.e'_3.h.e'_5.h.e'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x : E ⊢ ↑(map (Fin 2) φ.toLinearEquiv) o = o [PROOFSTEP] rwa [← o.map_eq_iff_det_pos φ.toLinearEquiv] at hφ [GOAL] case h.e'_3.h.e'_5.h.e'_5 E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x : E ⊢ Fintype.card (Fin 2) = finrank ℝ E [PROOFSTEP] rw [@Fact.out (finrank ℝ E = 2), Fintype.card_fin] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 i : Fin 2 ⊢ Matrix.vecCons x ![↑(rightAngleRotation o) x] i ≠ 0 [PROOFSTEP] fin_cases i [GOAL] case head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 ⊢ Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) } ≠ 0 [PROOFSTEP] simp [hx] [GOAL] case tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 ⊢ Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ 0 [PROOFSTEP] simp [hx] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 ⊢ ∀ (i j : Fin 2), i ≠ j → inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] i) (Matrix.vecCons x ![↑(rightAngleRotation o) x] j) = 0 [PROOFSTEP] intro i j hij [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 i j : Fin 2 hij : i ≠ j ⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] i) (Matrix.vecCons x ![↑(rightAngleRotation o) x] j) = 0 [PROOFSTEP] fin_cases i [GOAL] case head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 j : Fin 2 hij : { val := 0, isLt := (_ : 0 < 2) } ≠ j ⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) }) (Matrix.vecCons x ![↑(rightAngleRotation o) x] j) = 0 [PROOFSTEP] fin_cases j [GOAL] case tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 j : Fin 2 hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ j ⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) (Matrix.vecCons x ![↑(rightAngleRotation o) x] j) = 0 [PROOFSTEP] fin_cases j [GOAL] case head.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 hij : { val := 0, isLt := (_ : 0 < 2) } ≠ { val := 0, isLt := (_ : 0 < 2) } ⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) }) (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) }) = 0 [PROOFSTEP] simp_all [GOAL] case head.tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 hij : { val := 0, isLt := (_ : 0 < 2) } ≠ { val := 1, isLt := (_ : (fun a => a < 2) 1) } ⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) }) (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) = 0 [PROOFSTEP] simp_all [GOAL] case tail.head.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ { val := 0, isLt := (_ : 0 < 2) } ⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 0, isLt := (_ : 0 < 2) }) = 0 [PROOFSTEP] simp_all [GOAL] case tail.head.tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : x ≠ 0 hij : { val := 1, isLt := (_ : (fun a => a < 2) 1) } ≠ { val := 1, isLt := (_ : (fun a => a < 2) 1) } ⊢ inner (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) (Matrix.vecCons x ![↑(rightAngleRotation o) x] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) = 0 [PROOFSTEP] simp_all [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ⊢ inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a = ‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : a = 0 ⊢ inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a = ‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x [PROOFSTEP] simp [ha] [GOAL] case neg E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a = ‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x [PROOFSTEP] apply (o.basisRightAngleRotation a ha).ext [GOAL] case neg E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ ∀ (i : Fin 2), ↑(inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a) (↑(basisRightAngleRotation o a ha) i) = ↑(‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x) (↑(basisRightAngleRotation o a ha) i) [PROOFSTEP] intro i [GOAL] case neg E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 i : Fin 2 ⊢ ↑(inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a) (↑(basisRightAngleRotation o a ha) i) = ↑(‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x) (↑(basisRightAngleRotation o a ha) i) [PROOFSTEP] fin_cases i [GOAL] case neg.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ ↑(inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a) (↑(basisRightAngleRotation o a ha) { val := 0, isLt := (_ : 0 < 2) }) = ↑(‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x) (↑(basisRightAngleRotation o a ha) { val := 0, isLt := (_ : 0 < 2) }) [PROOFSTEP] simp only [Fin.mk_zero, coe_basisRightAngleRotation, Matrix.cons_val_zero, LinearMap.add_apply, LinearMap.smul_apply, innerₛₗ_apply, real_inner_self_eq_norm_sq, smul_eq_mul, areaForm_apply_self, mul_zero, add_zero, Real.rpow_two, real_inner_comm] [GOAL] case neg.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ inner a x * ‖a‖ ^ 2 = ‖a‖ ^ 2 * inner a x [PROOFSTEP] ring [GOAL] case neg.tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ ↑(inner a x • ↑(innerₛₗ ℝ) a + ↑(↑(areaForm o) a) x • ↑(areaForm o) a) (↑(basisRightAngleRotation o a ha) { val := 1, isLt := (_ : (fun a => a < 2) 1) }) = ↑(‖a‖ ^ 2 • ↑(innerₛₗ ℝ) x) (↑(basisRightAngleRotation o a ha) { val := 1, isLt := (_ : (fun a => a < 2) 1) }) [PROOFSTEP] simp only [Fin.mk_one, coe_basisRightAngleRotation, Matrix.cons_val_one, Matrix.head_cons, LinearMap.add_apply, LinearMap.smul_apply, innerₛₗ_apply, inner_rightAngleRotation_right, areaForm_apply_self, neg_zero, smul_eq_mul, mul_zero, areaForm_rightAngleRotation_right, real_inner_self_eq_norm_sq, zero_add, Real.rpow_two, mul_neg] [GOAL] case neg.tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ ↑(↑(areaForm o) a) x * ‖a‖ ^ 2 = -(‖a‖ ^ 2 * ↑(↑(areaForm o) x) a) [PROOFSTEP] rw [o.areaForm_swap] [GOAL] case neg.tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ -↑(↑(areaForm o) x) a * ‖a‖ ^ 2 = -(‖a‖ ^ 2 * ↑(↑(areaForm o) x) a) [PROOFSTEP] ring [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a b : E ⊢ inner a b ^ 2 + ↑(↑(areaForm o) a) b ^ 2 = ‖a‖ ^ 2 * ‖b‖ ^ 2 [PROOFSTEP] simpa [sq, real_inner_self_eq_norm_sq] using o.inner_mul_inner_add_areaForm_mul_areaForm a b b [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ⊢ inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a = ‖a‖ ^ 2 • ↑(areaForm o) x [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : a = 0 ⊢ inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a = ‖a‖ ^ 2 • ↑(areaForm o) x [PROOFSTEP] simp [ha] [GOAL] case neg E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a = ‖a‖ ^ 2 • ↑(areaForm o) x [PROOFSTEP] apply (o.basisRightAngleRotation a ha).ext [GOAL] case neg E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ ∀ (i : Fin 2), ↑(inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a) (↑(basisRightAngleRotation o a ha) i) = ↑(‖a‖ ^ 2 • ↑(areaForm o) x) (↑(basisRightAngleRotation o a ha) i) [PROOFSTEP] intro i [GOAL] case neg E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 i : Fin 2 ⊢ ↑(inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a) (↑(basisRightAngleRotation o a ha) i) = ↑(‖a‖ ^ 2 • ↑(areaForm o) x) (↑(basisRightAngleRotation o a ha) i) [PROOFSTEP] fin_cases i [GOAL] case neg.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ ↑(inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a) (↑(basisRightAngleRotation o a ha) { val := 0, isLt := (_ : 0 < 2) }) = ↑(‖a‖ ^ 2 • ↑(areaForm o) x) (↑(basisRightAngleRotation o a ha) { val := 0, isLt := (_ : 0 < 2) }) [PROOFSTEP] simp only [o.areaForm_swap a x, neg_smul, sub_neg_eq_add, Fin.mk_zero, coe_basisRightAngleRotation, Matrix.cons_val_zero, LinearMap.add_apply, LinearMap.smul_apply, areaForm_apply_self, smul_eq_mul, mul_zero, innerₛₗ_apply, real_inner_self_eq_norm_sq, zero_add, Real.rpow_two] [GOAL] case neg.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ ↑(↑(areaForm o) x) a * ‖a‖ ^ 2 = ‖a‖ ^ 2 * ↑(↑(areaForm o) x) a [PROOFSTEP] ring [GOAL] case neg.tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ ↑(inner a x • ↑(areaForm o) a - ↑(↑(areaForm o) a) x • ↑(innerₛₗ ℝ) a) (↑(basisRightAngleRotation o a ha) { val := 1, isLt := (_ : (fun a => a < 2) 1) }) = ↑(‖a‖ ^ 2 • ↑(areaForm o) x) (↑(basisRightAngleRotation o a ha) { val := 1, isLt := (_ : (fun a => a < 2) 1) }) [PROOFSTEP] simp only [Fin.mk_one, coe_basisRightAngleRotation, Matrix.cons_val_one, Matrix.head_cons, LinearMap.sub_apply, LinearMap.smul_apply, areaForm_rightAngleRotation_right, real_inner_self_eq_norm_sq, smul_eq_mul, innerₛₗ_apply, inner_rightAngleRotation_right, areaForm_apply_self, neg_zero, mul_zero, sub_zero, Real.rpow_two, real_inner_comm] [GOAL] case neg.tail.head E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x : E ha : ¬a = 0 ⊢ inner a x * ‖a‖ ^ 2 = ‖a‖ ^ 2 * inner a x [PROOFSTEP] ring [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 ↔ SameRay ℝ x y [PROOFSTEP] by_cases hx : x = 0 [GOAL] case pos E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : x = 0 ⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 ↔ SameRay ℝ x y [PROOFSTEP] simp [hx] [GOAL] case neg E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 ⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 ↔ SameRay ℝ x y [PROOFSTEP] constructor [GOAL] case neg.mp E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 ⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 → SameRay ℝ x y [PROOFSTEP] let a : ℝ := (o.basisRightAngleRotation x hx).repr y 0 [GOAL] case neg.mp E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 ⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 → SameRay ℝ x y [PROOFSTEP] let b : ℝ := (o.basisRightAngleRotation x hx).repr y 1 [GOAL] case neg.mp E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 ⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 → SameRay ℝ x y [PROOFSTEP] suffices ↑0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → SameRay ℝ x (a • x + b • J x) by rw [← (o.basisRightAngleRotation x hx).sum_repr y] simp only [Fin.sum_univ_succ, coe_basisRightAngleRotation, Matrix.cons_val_zero, Fin.succ_zero_eq_one', Fintype.univ_of_isEmpty, Finset.sum_empty, areaForm_apply_self, map_smul, map_add, real_inner_smul_right, inner_add_right, Matrix.cons_val_one, Matrix.head_cons, Algebra.id.smul_eq_mul, areaForm_rightAngleRotation_right, mul_zero, add_zero, zero_add, neg_zero, inner_rightAngleRotation_right, real_inner_self_eq_norm_sq] exact this [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 this : 0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x) ⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 → SameRay ℝ x y [PROOFSTEP] rw [← (o.basisRightAngleRotation x hx).sum_repr y] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 this : 0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x) ⊢ 0 ≤ inner x (Finset.sum Finset.univ fun i => ↑(↑(basisRightAngleRotation o x hx).repr y) i • ↑(basisRightAngleRotation o x hx) i) ∧ ↑(↑(areaForm o) x) (Finset.sum Finset.univ fun i => ↑(↑(basisRightAngleRotation o x hx).repr y) i • ↑(basisRightAngleRotation o x hx) i) = 0 → SameRay ℝ x (Finset.sum Finset.univ fun i => ↑(↑(basisRightAngleRotation o x hx).repr y) i • ↑(basisRightAngleRotation o x hx) i) [PROOFSTEP] simp only [Fin.sum_univ_succ, coe_basisRightAngleRotation, Matrix.cons_val_zero, Fin.succ_zero_eq_one', Fintype.univ_of_isEmpty, Finset.sum_empty, areaForm_apply_self, map_smul, map_add, real_inner_smul_right, inner_add_right, Matrix.cons_val_one, Matrix.head_cons, Algebra.id.smul_eq_mul, areaForm_rightAngleRotation_right, mul_zero, add_zero, zero_add, neg_zero, inner_rightAngleRotation_right, real_inner_self_eq_norm_sq] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 this : 0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x) ⊢ 0 ≤ ↑(↑(basisRightAngleRotation o x hx).repr y) 0 * ‖x‖ ^ 2 ∧ ↑(↑(basisRightAngleRotation o x hx).repr y) 1 * ‖x‖ ^ 2 = 0 → SameRay ℝ x (↑(↑(basisRightAngleRotation o x hx).repr y) 0 • x + ↑(↑(basisRightAngleRotation o x hx).repr y) 1 • ↑(rightAngleRotation o) x) [PROOFSTEP] exact this [GOAL] case neg.mp E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 ⊢ 0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x) [PROOFSTEP] rintro ⟨ha, hb⟩ [GOAL] case neg.mp.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 ha : 0 ≤ a * ‖x‖ ^ 2 hb : b * ‖x‖ ^ 2 = 0 ⊢ SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x) [PROOFSTEP] have hx' : 0 < ‖x‖ := by simpa using hx [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 ha : 0 ≤ a * ‖x‖ ^ 2 hb : b * ‖x‖ ^ 2 = 0 ⊢ 0 < ‖x‖ [PROOFSTEP] simpa using hx [GOAL] case neg.mp.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 ha : 0 ≤ a * ‖x‖ ^ 2 hb : b * ‖x‖ ^ 2 = 0 hx' : 0 < ‖x‖ ⊢ SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x) [PROOFSTEP] have ha' : 0 ≤ a := nonneg_of_mul_nonneg_left ha (by positivity) [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 ha : 0 ≤ a * ‖x‖ ^ 2 hb : b * ‖x‖ ^ 2 = 0 hx' : 0 < ‖x‖ ⊢ 0 < ‖x‖ ^ 2 [PROOFSTEP] positivity [GOAL] case neg.mp.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 ha : 0 ≤ a * ‖x‖ ^ 2 hb : b * ‖x‖ ^ 2 = 0 hx' : 0 < ‖x‖ ha' : 0 ≤ a ⊢ SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x) [PROOFSTEP] have hb' : b = 0 := eq_zero_of_ne_zero_of_mul_right_eq_zero (pow_ne_zero 2 hx'.ne') hb [GOAL] case neg.mp.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 a : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 0 b : ℝ := ↑(↑(basisRightAngleRotation o x hx).repr y) 1 ha : 0 ≤ a * ‖x‖ ^ 2 hb : b * ‖x‖ ^ 2 = 0 hx' : 0 < ‖x‖ ha' : 0 ≤ a hb' : b = 0 ⊢ SameRay ℝ x (a • x + b • ↑(rightAngleRotation o) x) [PROOFSTEP] simpa [hb'] using SameRay.sameRay_nonneg_smul_right x ha' [GOAL] case neg.mpr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 ⊢ SameRay ℝ x y → 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 [PROOFSTEP] intro h [GOAL] case neg.mpr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ¬x = 0 h : SameRay ℝ x y ⊢ 0 ≤ inner x y ∧ ↑(↑(areaForm o) x) y = 0 [PROOFSTEP] obtain ⟨r, hr, rfl⟩ := h.exists_nonneg_left hx [GOAL] case neg.mpr.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : ¬x = 0 r : ℝ hr : 0 ≤ r h : SameRay ℝ x (r • x) ⊢ 0 ≤ inner x (r • x) ∧ ↑(↑(areaForm o) x) (r • x) = 0 [PROOFSTEP] simp only [inner_smul_right, real_inner_self_eq_norm_sq, LinearMap.map_smulₛₗ, areaForm_apply_self, Algebra.id.smul_eq_mul, mul_zero, eq_self_iff_true, and_true_iff] [GOAL] case neg.mpr.intro.intro E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E hx : ¬x = 0 r : ℝ hr : 0 ≤ r h : SameRay ℝ x (r • x) ⊢ 0 ≤ r * ‖x‖ ^ 2 [PROOFSTEP] positivity [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(kahler o) x) y = ↑(starRingEnd ((fun x => ℂ) x)) (↑(↑(kahler o) y) x) [PROOFSTEP] have : ∀ r : ℝ, Complex.ofReal' r = @IsROrC.ofReal ℂ _ r := fun r => rfl [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E this : ∀ (r : ℝ), ↑r = ↑r ⊢ ↑(↑(kahler o) x) y = ↑(starRingEnd ((fun x => ℂ) x)) (↑(↑(kahler o) y) x) [PROOFSTEP] simp only [kahler_apply_apply] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E this : ∀ (r : ℝ), ↑r = ↑r ⊢ ↑(inner x y) + ↑(↑(areaForm o) x) y • Complex.I = ↑(starRingEnd ℂ) (↑(inner y x) + ↑(↑(areaForm o) y) x • Complex.I) [PROOFSTEP] rw [real_inner_comm, areaForm_swap] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E this : ∀ (r : ℝ), ↑r = ↑r ⊢ ↑(inner y x) + -↑(↑(areaForm o) y) x • Complex.I = ↑(starRingEnd ℂ) (↑(inner y x) + ↑(↑(areaForm o) y) x • Complex.I) [PROOFSTEP] simp [this] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ↑(↑(kahler o) x) x = ↑(‖x‖ ^ 2) [PROOFSTEP] simp [kahler_apply_apply, real_inner_self_eq_norm_sq] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(kahler o) (↑(rightAngleRotation o) x)) y = -Complex.I * ↑(↑(kahler o) x) y [PROOFSTEP] simp only [o.areaForm_rightAngleRotation_left, o.inner_rightAngleRotation_left, o.kahler_apply_apply, Complex.ofReal_neg, Complex.real_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(↑(areaForm o) x) y) + -↑(inner x y) * Complex.I = -Complex.I * (↑(inner x y) + ↑(↑(↑(areaForm o) x) y) * Complex.I) [PROOFSTEP] linear_combination ω x y * Complex.I_sq [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(kahler o) x) (↑(rightAngleRotation o) y) = Complex.I * ↑(↑(kahler o) x) y [PROOFSTEP] simp only [o.areaForm_rightAngleRotation_right, o.inner_rightAngleRotation_right, o.kahler_apply_apply, Complex.ofReal_neg, Complex.real_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ -↑(↑(↑(areaForm o) x) y) + ↑(inner x y) * Complex.I = Complex.I * (↑(inner x y) + ↑(↑(↑(areaForm o) x) y) * Complex.I) [PROOFSTEP] linear_combination -ω x y * Complex.I_sq [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(kahler o) (↑(rightAngleRotation o) x)) (↑(rightAngleRotation o) y) = ↑(↑(kahler o) x) y [PROOFSTEP] simp only [kahler_rightAngleRotation_left, kahler_rightAngleRotation_right] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ Complex.I * (-Complex.I * ↑(↑(kahler o) x) y) = ↑(↑(kahler o) x) y [PROOFSTEP] linear_combination -o.kahler x y * Complex.I_sq [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ -(Complex.I * (Complex.I * ↑(↑(kahler o) x) y)) = ↑(↑(kahler o) x) y [PROOFSTEP] linear_combination -o.kahler x y * Complex.I_sq [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(kahler (-o)) x) y = ↑(starRingEnd ((fun x => ℂ) y)) (↑(↑(kahler o) x) y) [PROOFSTEP] have : ∀ r : ℝ, Complex.ofReal' r = @IsROrC.ofReal ℂ _ r := fun r => rfl [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E this : ∀ (r : ℝ), ↑r = ↑r ⊢ ↑(↑(kahler (-o)) x) y = ↑(starRingEnd ((fun x => ℂ) y)) (↑(↑(kahler o) x) y) [PROOFSTEP] simp [kahler_apply_apply, this] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ ↑(↑(kahler o) x) a * ↑(↑(kahler o) a) y = ↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y [PROOFSTEP] trans (↑(‖a‖ ^ 2) : ℂ) * o.kahler x y [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ ↑(↑(kahler o) x) a * ↑(↑(kahler o) a) y = ↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y [PROOFSTEP] ext [GOAL] case a E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ (↑(↑(kahler o) x) a * ↑(↑(kahler o) a) y).re = (↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y).re [PROOFSTEP] simp only [o.kahler_apply_apply, Complex.add_im, Complex.add_re, Complex.I_im, Complex.I_re, Complex.mul_im, Complex.mul_re, Complex.ofReal_im, Complex.ofReal_re, Complex.real_smul] [GOAL] case a E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ (inner x a + (↑(↑(areaForm o) x) a * 0 - 0 * 1)) * (inner a y + (↑(↑(areaForm o) a) y * 0 - 0 * 1)) - (0 + (↑(↑(areaForm o) x) a * 1 + 0 * 0)) * (0 + (↑(↑(areaForm o) a) y * 1 + 0 * 0)) = ‖a‖ ^ 2 * (inner x y + (↑(↑(areaForm o) x) y * 0 - 0 * 1)) - 0 * (0 + (↑(↑(areaForm o) x) y * 1 + 0 * 0)) [PROOFSTEP] rw [real_inner_comm a x, o.areaForm_swap x a] [GOAL] case a E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ (inner a x + (-↑(↑(areaForm o) a) x * 0 - 0 * 1)) * (inner a y + (↑(↑(areaForm o) a) y * 0 - 0 * 1)) - (0 + (-↑(↑(areaForm o) a) x * 1 + 0 * 0)) * (0 + (↑(↑(areaForm o) a) y * 1 + 0 * 0)) = ‖a‖ ^ 2 * (inner x y + (↑(↑(areaForm o) x) y * 0 - 0 * 1)) - 0 * (0 + (↑(↑(areaForm o) x) y * 1 + 0 * 0)) [PROOFSTEP] linear_combination o.inner_mul_inner_add_areaForm_mul_areaForm a x y [GOAL] case a E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ (↑(↑(kahler o) x) a * ↑(↑(kahler o) a) y).im = (↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y).im [PROOFSTEP] simp only [o.kahler_apply_apply, Complex.add_im, Complex.add_re, Complex.I_im, Complex.I_re, Complex.mul_im, Complex.mul_re, Complex.ofReal_im, Complex.ofReal_re, Complex.real_smul] [GOAL] case a E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ (inner x a + (↑(↑(areaForm o) x) a * 0 - 0 * 1)) * (0 + (↑(↑(areaForm o) a) y * 1 + 0 * 0)) + (0 + (↑(↑(areaForm o) x) a * 1 + 0 * 0)) * (inner a y + (↑(↑(areaForm o) a) y * 0 - 0 * 1)) = ‖a‖ ^ 2 * (0 + (↑(↑(areaForm o) x) y * 1 + 0 * 0)) + 0 * (inner x y + (↑(↑(areaForm o) x) y * 0 - 0 * 1)) [PROOFSTEP] rw [real_inner_comm a x, o.areaForm_swap x a] [GOAL] case a E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ (inner a x + (-↑(↑(areaForm o) a) x * 0 - 0 * 1)) * (0 + (↑(↑(areaForm o) a) y * 1 + 0 * 0)) + (0 + (-↑(↑(areaForm o) a) x * 1 + 0 * 0)) * (inner a y + (↑(↑(areaForm o) a) y * 0 - 0 * 1)) = ‖a‖ ^ 2 * (0 + (↑(↑(areaForm o) x) y * 1 + 0 * 0)) + 0 * (inner x y + (↑(↑(areaForm o) x) y * 0 - 0 * 1)) [PROOFSTEP] linear_combination o.inner_mul_areaForm_sub a x y [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) a x y : E ⊢ ↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y = ↑(‖a‖ ^ 2) * ↑(↑(kahler o) x) y [PROOFSTEP] norm_cast [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑Complex.normSq (↑(↑(kahler o) x) y) = ‖x‖ ^ 2 * ‖y‖ ^ 2 [PROOFSTEP] simpa [kahler_apply_apply, Complex.normSq, sq] using o.inner_sq_add_areaForm_sq x y [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑Complex.abs (↑(↑(kahler o) x) y) = ‖x‖ * ‖y‖ [PROOFSTEP] rw [← sq_eq_sq, Complex.sq_abs] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑Complex.normSq (↑(↑(kahler o) x) y) = (‖x‖ * ‖y‖) ^ 2 [PROOFSTEP] linear_combination o.normSq_kahler x y [GOAL] case ha E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ 0 ≤ ↑Complex.abs (↑(↑(kahler o) x) y) [PROOFSTEP] positivity [GOAL] case hb E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ 0 ≤ ‖x‖ * ‖y‖ [PROOFSTEP] positivity [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ‖↑(↑(kahler o) x) y‖ = ‖x‖ * ‖y‖ [PROOFSTEP] simpa using o.abs_kahler x y [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ↑(↑(kahler o) x) y = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] have : ‖x‖ * ‖y‖ = 0 := by simpa [hx] using (o.norm_kahler x y).symm [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ↑(↑(kahler o) x) y = 0 ⊢ ‖x‖ * ‖y‖ = 0 [PROOFSTEP] simpa [hx] using (o.norm_kahler x y).symm [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ↑(↑(kahler o) x) y = 0 this : ‖x‖ * ‖y‖ = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] cases' eq_zero_or_eq_zero_of_mul_eq_zero this with h h [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ↑(↑(kahler o) x) y = 0 this : ‖x‖ * ‖y‖ = 0 h : ‖x‖ = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] left [GOAL] case inl.h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ↑(↑(kahler o) x) y = 0 this : ‖x‖ * ‖y‖ = 0 h : ‖x‖ = 0 ⊢ x = 0 [PROOFSTEP] simpa using h [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ↑(↑(kahler o) x) y = 0 this : ‖x‖ * ‖y‖ = 0 h : ‖y‖ = 0 ⊢ x = 0 ∨ y = 0 [PROOFSTEP] right [GOAL] case inr.h E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : ↑(↑(kahler o) x) y = 0 this : ‖x‖ * ‖y‖ = 0 h : ‖y‖ = 0 ⊢ y = 0 [PROOFSTEP] simpa using h [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(kahler o) x) y = 0 ↔ x = 0 ∨ y = 0 [PROOFSTEP] refine' ⟨o.eq_zero_or_eq_zero_of_kahler_eq_zero, _⟩ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ x = 0 ∨ y = 0 → ↑(↑(kahler o) x) y = 0 [PROOFSTEP] rintro (rfl | rfl) [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) y : E ⊢ ↑(↑(kahler o) 0) y = 0 [PROOFSTEP] simp [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ↑(↑(kahler o) x) 0 = 0 [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : x ≠ 0 hy : y ≠ 0 ⊢ ↑(↑(kahler o) x) y ≠ 0 [PROOFSTEP] apply mt o.eq_zero_or_eq_zero_of_kahler_eq_zero [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E hx : x ≠ 0 hy : y ≠ 0 ⊢ ¬(x = 0 ∨ y = 0) [PROOFSTEP] tauto [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(kahler o) x) y ≠ 0 ↔ x ≠ 0 ∧ y ≠ 0 [PROOFSTEP] refine' ⟨_, fun h => o.kahler_ne_zero h.1 h.2⟩ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ↑(↑(kahler o) x) y ≠ 0 → x ≠ 0 ∧ y ≠ 0 [PROOFSTEP] contrapose [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ ¬(x ≠ 0 ∧ y ≠ 0) → ¬↑(↑(kahler o) x) y ≠ 0 [PROOFSTEP] simp only [not_and_or, Classical.not_not, kahler_apply_apply, Complex.real_smul] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x y : E ⊢ x = 0 ∨ y = 0 → ↑(inner x y) + ↑(↑(↑(areaForm o) x) y) * Complex.I = 0 [PROOFSTEP] rintro (rfl | rfl) [GOAL] case inl E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) y : E ⊢ ↑(inner 0 y) + ↑(↑(↑(areaForm o) 0) y) * Complex.I = 0 [PROOFSTEP] simp [GOAL] case inr E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) x : E ⊢ ↑(inner x 0) + ↑(↑(↑(areaForm o) x) 0) * Complex.I = 0 [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace ℝ E inst✝² : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) F : Type u_2 inst✝¹ : NormedAddCommGroup F inst✝ : InnerProductSpace ℝ F hF : Fact (finrank ℝ F = 2) φ : E ≃ₗᵢ[ℝ] F x y : F ⊢ ↑(↑(kahler (↑(map (Fin 2) φ.toLinearEquiv) o)) x) y = ↑(↑(kahler o) (↑(LinearIsometryEquiv.symm φ) x)) (↑(LinearIsometryEquiv.symm φ) y) [PROOFSTEP] simp [kahler_apply_apply, areaForm_map] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) φ : E ≃ₗᵢ[ℝ] E hφ : 0 < ↑LinearMap.det ↑φ.toLinearEquiv x y : E ⊢ ↑(↑(kahler o) (↑φ x)) (↑φ y) = ↑(↑(kahler o) x) y [PROOFSTEP] simp [kahler_apply_apply, o.areaForm_comp_linearIsometryEquiv φ hφ] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) w z : ℂ ⊢ ↑(↑(Orientation.areaForm Complex.orientation) w) z = (↑(starRingEnd ℂ) w * z).im [PROOFSTEP] let o := Complex.orientation [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o✝ : Orientation ℝ E (Fin 2) w z : ℂ o : Orientation ℝ ℂ (Fin 2) := Complex.orientation ⊢ ↑(↑(Orientation.areaForm Complex.orientation) w) z = (↑(starRingEnd ℂ) w * z).im [PROOFSTEP] simp only [o.areaForm_to_volumeForm, o.volumeForm_robust Complex.orthonormalBasisOneI rfl, (Basis.det_apply), Matrix.det_fin_two, (Basis.toMatrix_apply), toBasis_orthonormalBasisOneI, Matrix.cons_val_zero, coe_basisOneI_repr, Matrix.cons_val_one, Matrix.head_cons, mul_im, conj_re, conj_im] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o✝ : Orientation ℝ E (Fin 2) w z : ℂ o : Orientation ℝ ℂ (Fin 2) := Complex.orientation ⊢ w.re * z.im - z.re * w.im = w.re * z.im + -w.im * z.re [PROOFSTEP] ring [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) z : ℂ ⊢ ↑(Orientation.rightAngleRotation Complex.orientation) z = I * z [PROOFSTEP] apply ext_inner_right ℝ [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) z : ℂ ⊢ ∀ (v : ℂ), inner (↑(Orientation.rightAngleRotation Complex.orientation) z) v = inner (I * z) v [PROOFSTEP] intro w [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) z w : ℂ ⊢ inner (↑(Orientation.rightAngleRotation Complex.orientation) z) w = inner (I * z) w [PROOFSTEP] rw [Orientation.inner_rightAngleRotation_left] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) z w : ℂ ⊢ ↑(↑(Orientation.areaForm Complex.orientation) z) w = inner (I * z) w [PROOFSTEP] simp only [Complex.areaForm, Complex.inner, mul_re, mul_im, conj_re, conj_im, map_mul, conj_I, neg_re, neg_im, I_re, I_im] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) z w : ℂ ⊢ z.re * w.im + -z.im * w.re = (-0 * z.re - -1 * -z.im) * w.re - (-0 * -z.im + -1 * z.re) * w.im [PROOFSTEP] ring [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) w z : ℂ ⊢ ↑(↑(Orientation.kahler Complex.orientation) w) z = ↑(starRingEnd ℂ) w * z [PROOFSTEP] rw [Orientation.kahler_apply_apply] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) w z : ℂ ⊢ ↑(inner w z) + ↑(↑(Orientation.areaForm Complex.orientation) w) z • I = ↑(starRingEnd ℂ) w * z [PROOFSTEP] ext1 [GOAL] case a E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) w z : ℂ ⊢ (↑(inner w z) + ↑(↑(Orientation.areaForm Complex.orientation) w) z • I).re = (↑(starRingEnd ℂ) w * z).re [PROOFSTEP] simp [GOAL] case a E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) w z : ℂ ⊢ (↑(inner w z) + ↑(↑(Orientation.areaForm Complex.orientation) w) z • I).im = (↑(starRingEnd ℂ) w * z).im [PROOFSTEP] simp [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) f : E ≃ₗᵢ[ℝ] ℂ hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation x y : E ⊢ ↑(↑(areaForm o) x) y = (↑(starRingEnd ℂ) (↑f x) * ↑f y).im [PROOFSTEP] rw [← Complex.areaForm, ← hf, areaForm_map (hF := _)] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) f : E ≃ₗᵢ[ℝ] ℂ hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation x y : E ⊢ ↑(↑(areaForm o) x) y = ↑(↑(areaForm o) (↑(LinearIsometryEquiv.symm f) (↑f x))) (↑(LinearIsometryEquiv.symm f) (↑f y)) [PROOFSTEP] iterate 2 rw [LinearIsometryEquiv.symm_apply_apply] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) f : E ≃ₗᵢ[ℝ] ℂ hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation x y : E ⊢ ↑(↑(areaForm o) x) y = ↑(↑(areaForm o) (↑(LinearIsometryEquiv.symm f) (↑f x))) (↑(LinearIsometryEquiv.symm f) (↑f y)) [PROOFSTEP] rw [LinearIsometryEquiv.symm_apply_apply] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) f : E ≃ₗᵢ[ℝ] ℂ hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation x y : E ⊢ ↑(↑(areaForm o) x) y = ↑(↑(areaForm o) x) (↑(LinearIsometryEquiv.symm f) (↑f y)) [PROOFSTEP] rw [LinearIsometryEquiv.symm_apply_apply] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) f : E ≃ₗᵢ[ℝ] ℂ hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation x : E ⊢ ↑f (↑(rightAngleRotation o) x) = I * ↑f x [PROOFSTEP] rw [← Complex.rightAngleRotation, ← hf, rightAngleRotation_map (hF := _), LinearIsometryEquiv.symm_apply_apply] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) f : E ≃ₗᵢ[ℝ] ℂ hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation x y : E ⊢ ↑(↑(kahler o) x) y = ↑(starRingEnd ℂ) (↑f x) * ↑f y [PROOFSTEP] rw [← Complex.kahler, ← hf, kahler_map (hF := _)] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) f : E ≃ₗᵢ[ℝ] ℂ hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation x y : E ⊢ ↑(↑(kahler o) x) y = ↑(↑(kahler o) (↑(LinearIsometryEquiv.symm f) (↑f x))) (↑(LinearIsometryEquiv.symm f) (↑f y)) [PROOFSTEP] iterate 2 rw [LinearIsometryEquiv.symm_apply_apply] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) f : E ≃ₗᵢ[ℝ] ℂ hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation x y : E ⊢ ↑(↑(kahler o) x) y = ↑(↑(kahler o) (↑(LinearIsometryEquiv.symm f) (↑f x))) (↑(LinearIsometryEquiv.symm f) (↑f y)) [PROOFSTEP] rw [LinearIsometryEquiv.symm_apply_apply] [GOAL] E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : InnerProductSpace ℝ E inst✝ : Fact (finrank ℝ E = 2) o : Orientation ℝ E (Fin 2) f : E ≃ₗᵢ[ℝ] ℂ hf : ↑(map (Fin 2) f.toLinearEquiv) o = Complex.orientation x y : E ⊢ ↑(↑(kahler o) x) y = ↑(↑(kahler o) x) (↑(LinearIsometryEquiv.symm f) (↑f y)) [PROOFSTEP] rw [LinearIsometryEquiv.symm_apply_apply]
{"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.TwoDim", "llama_tokens": 41954}
[GOAL] M : Type u_1 G : Type u_2 α : Type u_3 inst✝⁵ : Monoid M inst✝⁴ : Group G inst✝³ : TopologicalSpace α inst✝² : MulAction M α inst✝¹ : MulAction G α inst✝ : ContinuousConstSMul M α ⊢ IsMinimal M α ↔ ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ [PROOFSTEP] constructor [GOAL] case mp M : Type u_1 G : Type u_2 α : Type u_3 inst✝⁵ : Monoid M inst✝⁴ : Group G inst✝³ : TopologicalSpace α inst✝² : MulAction M α inst✝¹ : MulAction G α inst✝ : ContinuousConstSMul M α ⊢ IsMinimal M α → ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ [PROOFSTEP] intro _ _ [GOAL] case mp M : Type u_1 G : Type u_2 α : Type u_3 inst✝⁵ : Monoid M inst✝⁴ : Group G inst✝³ : TopologicalSpace α inst✝² : MulAction M α inst✝¹ : MulAction G α inst✝ : ContinuousConstSMul M α a✝ : IsMinimal M α s✝ : Set α ⊢ IsClosed s✝ → (∀ (c : M), c • s✝ ⊆ s✝) → s✝ = ∅ ∨ s✝ = univ [PROOFSTEP] exact eq_empty_or_univ_of_smul_invariant_closed M [GOAL] case mpr M : Type u_1 G : Type u_2 α : Type u_3 inst✝⁵ : Monoid M inst✝⁴ : Group G inst✝³ : TopologicalSpace α inst✝² : MulAction M α inst✝¹ : MulAction G α inst✝ : ContinuousConstSMul M α ⊢ (∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ) → IsMinimal M α [PROOFSTEP] refine' fun H ↦ ⟨fun _ ↦ dense_iff_closure_eq.2 <| (H _ _ _).resolve_left _⟩ [GOAL] case mpr.refine'_1 M : Type u_1 G : Type u_2 α : Type u_3 inst✝⁵ : Monoid M inst✝⁴ : Group G inst✝³ : TopologicalSpace α inst✝² : MulAction M α inst✝¹ : MulAction G α inst✝ : ContinuousConstSMul M α H : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ x✝ : α ⊢ IsClosed (closure (orbit M x✝)) case mpr.refine'_2 M : Type u_1 G : Type u_2 α : Type u_3 inst✝⁵ : Monoid M inst✝⁴ : Group G inst✝³ : TopologicalSpace α inst✝² : MulAction M α inst✝¹ : MulAction G α inst✝ : ContinuousConstSMul M α H : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ x✝ : α ⊢ ∀ (c : M), c • closure (orbit M x✝) ⊆ closure (orbit M x✝) case mpr.refine'_3 M : Type u_1 G : Type u_2 α : Type u_3 inst✝⁵ : Monoid M inst✝⁴ : Group G inst✝³ : TopologicalSpace α inst✝² : MulAction M α inst✝¹ : MulAction G α inst✝ : ContinuousConstSMul M α H : ∀ (s : Set α), IsClosed s → (∀ (c : M), c • s ⊆ s) → s = ∅ ∨ s = univ x✝ : α ⊢ ¬closure (orbit M x✝) = ∅ [PROOFSTEP] exacts [isClosed_closure, fun _ ↦ smul_closure_orbit_subset _ _, (orbit_nonempty _).closure.ne_empty]
{"mathlib_filename": "Mathlib.Dynamics.Minimal", "llama_tokens": 1232}
[GOAL] α : Type u β : Type v f fa g : α → α x✝ y : α fb : β → β m n k : ℕ e : Perm α x : α hx : IsFixedPt f x ⊢ IsFixedPt f (f x) [PROOFSTEP] convert hx [GOAL] α : Type u β : Type v f fa g : α → α x y : α fb : β → β m n✝ k : ℕ e : Perm α s : Set α h : IsFixedPt (Set.preimage f) s n : ℕ ⊢ IsFixedPt (Set.preimage f^[n]) s [PROOFSTEP] rw [Set.preimage_iterate_eq] [GOAL] α : Type u β : Type v f fa g : α → α x y : α fb : β → β m n✝ k : ℕ e : Perm α s : Set α h : IsFixedPt (Set.preimage f) s n : ℕ ⊢ IsFixedPt (Set.preimage f)^[n] s [PROOFSTEP] exact h.iterate n [GOAL] α : Type u β : Type v f fa g : α → α x y : α fb : β → β m n✝ k : ℕ e : Perm α h : IsFixedPt (↑e) x n : ℕ ⊢ IsFixedPt (↑(e ^ n)) x [PROOFSTEP] rw [Equiv.Perm.coe_pow] [GOAL] α : Type u β : Type v f fa g : α → α x y : α fb : β → β m n✝ k : ℕ e : Perm α h : IsFixedPt (↑e) x n : ℕ ⊢ IsFixedPt (↑e)^[n] x [PROOFSTEP] exact h.iterate _ [GOAL] α✝ : Type u β : Type v f✝ fa g : α✝ → α✝ x✝ y : α✝ fb : β → β m n k : ℕ e : Perm α✝ α : Type u_1 f : α → α x : α ⊢ x ∈ fixedPoints f ↔ f x = x [PROOFSTEP] rfl [GOAL] α : Type u β : Type v f fa g : α → α x y : α fb : β → β m n k : ℕ e : Perm α x✝ : α ⊢ x✝ ∈ fixedPoints id ↔ x✝ ∈ Set.univ [PROOFSTEP] simpa using isFixedPt_id _ [GOAL] α : Type u β : Type v f fa g : α → α x y : α fb : β → β m n k : ℕ e : Perm α h : Function.Commute f g ⊢ Set.InvOn f g (fixedPoints (f ∘ g)) (fixedPoints (f ∘ g)) [PROOFSTEP] simpa only [h.comp_eq] using Function.invOn_fixedPoints_comp f g [GOAL] α : Type u β : Type v f fa g : α → α x y : α fb : β → β m n k : ℕ e : Perm α h : Function.Commute f g ⊢ Set.BijOn f (fixedPoints (f ∘ g)) (fixedPoints (f ∘ g)) [PROOFSTEP] simpa only [h.comp_eq] using bijOn_fixedPoints_comp g f [GOAL] α : Type u β : Type v f fa g : α → α x y : α fb : β → β m n k : ℕ e : Perm α h : Function.Commute f g ⊢ Set.BijOn g (fixedPoints (f ∘ g)) (fixedPoints (f ∘ g)) [PROOFSTEP] simpa only [h.comp_eq] using bijOn_fixedPoints_comp f g
{"mathlib_filename": "Mathlib.Dynamics.FixedPoints.Basic", "llama_tokens": 1048}
[GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : T2Space α f : α → α x y : α hy : Tendsto (fun n => f^[n] x) atTop (𝓝 y) hf : ContinuousAt f y ⊢ IsFixedPt f y [PROOFSTEP] refine' tendsto_nhds_unique ((tendsto_add_atTop_iff_nat 1).1 _) hy [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : T2Space α f : α → α x y : α hy : Tendsto (fun n => f^[n] x) atTop (𝓝 y) hf : ContinuousAt f y ⊢ Tendsto (fun n => f^[n + 1] x) atTop (𝓝 (f y)) [PROOFSTEP] simp only [iterate_succ' f] [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : T2Space α f : α → α x y : α hy : Tendsto (fun n => f^[n] x) atTop (𝓝 y) hf : ContinuousAt f y ⊢ Tendsto (fun n => (f ∘ f^[n]) x) atTop (𝓝 (f y)) [PROOFSTEP] exact hf.tendsto.comp hy
{"mathlib_filename": "Mathlib.Dynamics.FixedPoints.Topology", "llama_tokens": 370}
[GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 ⊢ ∃ᶠ (m : ℕ) in atTop, ↑↑μ (s ∩ f^[m] ⁻¹' s) ≠ 0 [PROOFSTEP] by_contra H [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 H : ¬∃ᶠ (m : ℕ) in atTop, ↑↑μ (s ∩ f^[m] ⁻¹' s) ≠ 0 ⊢ False [PROOFSTEP] simp only [not_frequently, eventually_atTop, Ne.def, Classical.not_not] at H [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 H : ∃ a, ∀ (b : ℕ), b ≥ a → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 ⊢ False [PROOFSTEP] rcases H with ⟨N, hN⟩ [GOAL] case intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N : ℕ hN : ∀ (b : ℕ), b ≥ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 ⊢ False [PROOFSTEP] induction' N with N ihN [GOAL] case intro.zero ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N : ℕ hN✝ : ∀ (b : ℕ), b ≥ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 hN : ∀ (b : ℕ), b ≥ Nat.zero → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 ⊢ False [PROOFSTEP] apply h0 [GOAL] case intro.zero ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N : ℕ hN✝ : ∀ (b : ℕ), b ≥ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 hN : ∀ (b : ℕ), b ≥ Nat.zero → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 ⊢ ↑↑μ s = 0 [PROOFSTEP] simpa using hN 0 le_rfl [GOAL] case intro.succ ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ ihN : (∀ (b : ℕ), b ≥ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0) → False hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 ⊢ False [PROOFSTEP] rw [imp_false] at ihN [GOAL] case intro.succ ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ ihN : ¬∀ (b : ℕ), b ≥ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 ⊢ False [PROOFSTEP] push_neg at ihN [GOAL] case intro.succ ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 ihN : ∃ b, b ≥ N ∧ ↑↑μ (s ∩ f^[b] ⁻¹' s) ≠ 0 ⊢ False [PROOFSTEP] rcases ihN with ⟨n, hn, hμn⟩ [GOAL] case intro.succ.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 ⊢ False [PROOFSTEP] set T := s ∩ ⋃ n ≥ N + 1, f^[n] ⁻¹' s [GOAL] case intro.succ.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s ⊢ False [PROOFSTEP] have hT : MeasurableSet T := hs.inter (MeasurableSet.biUnion (to_countable _) fun _ _ => hf.measurable.iterate _ hs) [GOAL] case intro.succ.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s hT : MeasurableSet T ⊢ False [PROOFSTEP] have hμT : μ T = 0 := by convert (measure_biUnion_null_iff <| to_countable _).2 hN rw [← inter_iUnion₂] rfl [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s hT : MeasurableSet T ⊢ ↑↑μ T = 0 [PROOFSTEP] convert (measure_biUnion_null_iff <| to_countable _).2 hN [GOAL] case h.e'_2.h.e'_3 ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s hT : MeasurableSet T ⊢ T = ⋃ (i : ℕ) (_ : i ∈ fun i => Nat.le (Nat.succ N) i), s ∩ f^[i] ⁻¹' s [PROOFSTEP] rw [← inter_iUnion₂] [GOAL] case h.e'_2.h.e'_3 ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s hT : MeasurableSet T ⊢ T = s ∩ ⋃ (i : ℕ) (_ : i ∈ fun i => Nat.le (Nat.succ N) i), f^[i] ⁻¹' s [PROOFSTEP] rfl [GOAL] case intro.succ.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s hT : MeasurableSet T hμT : ↑↑μ T = 0 ⊢ False [PROOFSTEP] have : μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0 := by rwa [measure_diff_null hμT] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s hT : MeasurableSet T hμT : ↑↑μ T = 0 ⊢ ↑↑μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0 [PROOFSTEP] rwa [measure_diff_null hμT] [GOAL] case intro.succ.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s hT : MeasurableSet T hμT : ↑↑μ T = 0 this : ↑↑μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0 ⊢ False [PROOFSTEP] rcases hf.exists_mem_image_mem ((hs.inter (hf.measurable.iterate n hs)).diff hT) this with ⟨x, ⟨⟨hxs, _⟩, hxT⟩, m, hm0, ⟨_, hxm⟩, _⟩ [GOAL] case intro.succ.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s hT : MeasurableSet T hμT : ↑↑μ T = 0 this : ↑↑μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0 x : α hxT : ¬x ∈ T hxs : x ∈ s right✝¹ : x ∈ f^[n] ⁻¹' s m : ℕ hm0 : m ≠ 0 right✝ : ¬f^[m] x ∈ T left✝ : f^[m] x ∈ s hxm : f^[m] x ∈ f^[n] ⁻¹' s ⊢ False [PROOFSTEP] refine' hxT ⟨hxs, mem_iUnion₂.2 ⟨n + m, _, _⟩⟩ [GOAL] case intro.succ.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s hT : MeasurableSet T hμT : ↑↑μ T = 0 this : ↑↑μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0 x : α hxT : ¬x ∈ T hxs : x ∈ s right✝¹ : x ∈ f^[n] ⁻¹' s m : ℕ hm0 : m ≠ 0 right✝ : ¬f^[m] x ∈ T left✝ : f^[m] x ∈ s hxm : f^[m] x ∈ f^[n] ⁻¹' s ⊢ n + m ≥ N + 1 [PROOFSTEP] exact add_le_add hn (Nat.one_le_of_lt <| pos_iff_ne_zero.2 hm0) [GOAL] case intro.succ.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s h0 : ↑↑μ s ≠ 0 N✝ : ℕ hN✝ : ∀ (b : ℕ), b ≥ N✝ → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 N : ℕ hN : ∀ (b : ℕ), b ≥ Nat.succ N → ↑↑μ (s ∩ f^[b] ⁻¹' s) = 0 n : ℕ hn : n ≥ N hμn : ↑↑μ (s ∩ f^[n] ⁻¹' s) ≠ 0 T : Set α := s ∩ ⋃ (n : ℕ) (_ : n ≥ N + 1), f^[n] ⁻¹' s hT : MeasurableSet T hμT : ↑↑μ T = 0 this : ↑↑μ ((s ∩ f^[n] ⁻¹' s) \ T) ≠ 0 x : α hxT : ¬x ∈ T hxs : x ∈ s right✝¹ : x ∈ f^[n] ⁻¹' s m : ℕ hm0 : m ≠ 0 right✝ : ¬f^[m] x ∈ T left✝ : f^[m] x ∈ s hxm : f^[m] x ∈ f^[n] ⁻¹' s ⊢ x ∈ f^[n + m] ⁻¹' s [PROOFSTEP] rwa [Set.mem_preimage, ← iterate_add_apply] at hxm [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s n : ℕ ⊢ ↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0 [PROOFSTEP] by_contra H [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s n : ℕ H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0 ⊢ False [PROOFSTEP] have : MeasurableSet (s ∩ {x | ∀ m ≥ n, f^[m] x ∉ s}) := by simp only [setOf_forall, ← compl_setOf] exact hs.inter (MeasurableSet.biInter (to_countable _) fun m _ => hf.measurable.iterate m hs.compl) [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s n : ℕ H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0 ⊢ MeasurableSet (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s}) [PROOFSTEP] simp only [setOf_forall, ← compl_setOf] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s n : ℕ H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0 ⊢ MeasurableSet (s ∩ ⋂ (i : ℕ) (_ : i ≥ n), {a | f^[i] a ∈ s}ᶜ) [PROOFSTEP] exact hs.inter (MeasurableSet.biInter (to_countable _) fun m _ => hf.measurable.iterate m hs.compl) [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s n : ℕ H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0 this : MeasurableSet (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s}) ⊢ False [PROOFSTEP] rcases(hf.exists_gt_measure_inter_ne_zero this H) n with ⟨m, hmn, hm⟩ [GOAL] case intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s n : ℕ H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0 this : MeasurableSet (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s}) m : ℕ hmn : m > n hm : ↑↑μ (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} ∩ f^[m] ⁻¹' (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s})) ≠ 0 ⊢ False [PROOFSTEP] rcases nonempty_of_measure_ne_zero hm with ⟨x, ⟨_, hxn⟩, hxm, -⟩ [GOAL] case intro.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s n : ℕ H : ¬↑↑μ {x | x ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} = 0 this : MeasurableSet (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s}) m : ℕ hmn : m > n hm : ↑↑μ (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} ∩ f^[m] ⁻¹' (s ∩ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s})) ≠ 0 x : α left✝ : x ∈ s hxn : x ∈ {x | ∀ (m : ℕ), m ≥ n → ¬f^[m] x ∈ s} hxm : f^[m] x ∈ s ⊢ False [PROOFSTEP] exact hxn m hmn.lt.le hxm [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s ⊢ ∀ᵐ (x : α) ∂μ, x ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s [PROOFSTEP] simp only [frequently_atTop, @forall_swap (_ ∈ s), ae_all_iff] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s ⊢ ∀ (i : ℕ), ∀ᵐ (a : α) ∂μ, a ∈ s → ∃ b, b ≥ i ∧ f^[b] a ∈ s [PROOFSTEP] intro n [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s n : ℕ ⊢ ∀ᵐ (a : α) ∂μ, a ∈ s → ∃ b, b ≥ n ∧ f^[b] a ∈ s [PROOFSTEP] filter_upwards [measure_zero_iff_ae_nmem.1 (hf.measure_mem_forall_ge_image_not_mem_eq_zero hs n)] [GOAL] case h ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s n : ℕ ⊢ ∀ (a : α), ¬(a ∈ s ∧ ∀ (m : ℕ), m ≥ n → ¬f^[m] a ∈ s) → a ∈ s → ∃ b, b ≥ n ∧ f^[b] a ∈ s [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s ⊢ ∀ᵐ (x : α) ∂μ, ∀ (k : ℕ), f^[k] x ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s [PROOFSTEP] refine' ae_all_iff.2 fun k => _ [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s k : ℕ ⊢ ∀ᵐ (a : α) ∂μ, f^[k] a ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] a ∈ s [PROOFSTEP] refine' (hf.ae_mem_imp_frequently_image_mem (hf.measurable.iterate k hs)).mono fun x hx hk => _ [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s k : ℕ x : α hx : x ∈ f^[k] ⁻¹' s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ f^[k] ⁻¹' s hk : f^[k] x ∈ s ⊢ ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s [PROOFSTEP] rw [← map_add_atTop_eq_nat k, frequently_map] [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s k : ℕ x : α hx : x ∈ f^[k] ⁻¹' s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ f^[k] ⁻¹' s hk : f^[k] x ∈ s ⊢ ∃ᶠ (a : ℕ) in atTop, f^[a + k] x ∈ s [PROOFSTEP] refine' (hx hk).mono fun n hn => _ [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ hs : MeasurableSet s k : ℕ x : α hx : x ∈ f^[k] ⁻¹' s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ f^[k] ⁻¹' s hk : f^[k] x ∈ s n : ℕ hn : f^[n] x ∈ f^[k] ⁻¹' s ⊢ f^[n + k] x ∈ s [PROOFSTEP] rwa [add_comm, iterate_add_apply] [GOAL] ι : Type u_1 α : Type u_2 inst✝³ : MeasurableSpace α f✝ : α → α s : Set α μ✝ : Measure α inst✝² : TopologicalSpace α inst✝¹ : SecondCountableTopology α inst✝ : OpensMeasurableSpace α f : α → α μ : Measure α h : Conservative f μ ⊢ ∀ᵐ (x : α) ∂μ, ∀ (s : Set α), s ∈ 𝓝 x → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s [PROOFSTEP] have : ∀ s ∈ countableBasis α, ∀ᵐ x ∂μ, x ∈ s → ∃ᶠ n in atTop, f^[n] x ∈ s := fun s hs => h.ae_mem_imp_frequently_image_mem (isOpen_of_mem_countableBasis hs).measurableSet [GOAL] ι : Type u_1 α : Type u_2 inst✝³ : MeasurableSpace α f✝ : α → α s : Set α μ✝ : Measure α inst✝² : TopologicalSpace α inst✝¹ : SecondCountableTopology α inst✝ : OpensMeasurableSpace α f : α → α μ : Measure α h : Conservative f μ this : ∀ (s : Set α), s ∈ countableBasis α → ∀ᵐ (x : α) ∂μ, x ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s ⊢ ∀ᵐ (x : α) ∂μ, ∀ (s : Set α), s ∈ 𝓝 x → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s [PROOFSTEP] refine' ((ae_ball_iff <| countable_countableBasis α).2 this).mono fun x hx s hs => _ [GOAL] ι : Type u_1 α : Type u_2 inst✝³ : MeasurableSpace α f✝ : α → α s✝ : Set α μ✝ : Measure α inst✝² : TopologicalSpace α inst✝¹ : SecondCountableTopology α inst✝ : OpensMeasurableSpace α f : α → α μ : Measure α h : Conservative f μ this : ∀ (s : Set α), s ∈ countableBasis α → ∀ᵐ (x : α) ∂μ, x ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s x : α hx : ∀ (i : Set α), i ∈ countableBasis α → x ∈ i → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ i s : Set α hs : s ∈ 𝓝 x ⊢ ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s [PROOFSTEP] rcases(isBasis_countableBasis α).mem_nhds_iff.1 hs with ⟨o, hoS, hxo, hos⟩ [GOAL] case intro.intro.intro ι : Type u_1 α : Type u_2 inst✝³ : MeasurableSpace α f✝ : α → α s✝ : Set α μ✝ : Measure α inst✝² : TopologicalSpace α inst✝¹ : SecondCountableTopology α inst✝ : OpensMeasurableSpace α f : α → α μ : Measure α h : Conservative f μ this : ∀ (s : Set α), s ∈ countableBasis α → ∀ᵐ (x : α) ∂μ, x ∈ s → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s x : α hx : ∀ (i : Set α), i ∈ countableBasis α → x ∈ i → ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ i s : Set α hs : s ∈ 𝓝 x o : Set α hoS : o ∈ countableBasis α hxo : x ∈ o hos : o ⊆ s ⊢ ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s [PROOFSTEP] exact (hx o hoS hxo).mono fun n hn => hos hn [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ n : ℕ ⊢ Conservative f^[n] μ [PROOFSTEP] cases' n with n [GOAL] case zero ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ ⊢ Conservative f^[Nat.zero] μ [PROOFSTEP] exact Conservative.id μ [GOAL] case succ ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Conservative f μ n : ℕ ⊢ Conservative f^[Nat.succ n] μ [PROOFSTEP] refine' ⟨hf.1.iterate _, fun s hs hs0 => _⟩ [GOAL] case succ ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 ⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s [PROOFSTEP] rcases(hf.frequently_ae_mem_and_frequently_image_mem hs hs0).exists with ⟨x, _, hx⟩ /- We take a point `x ∈ s` such that `f^[k] x ∈ s` for infinitely many values of `k`, then we choose two of these values `k < l` such that `k ≡ l [MOD (n + 1)]`. Then `f^[k] x ∈ s` and `f^[n + 1]^[(l - k) / (n + 1)] (f^[k] x) = f^[l] x ∈ s`. -/ [GOAL] case succ.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : ∃ᶠ (n : ℕ) in atTop, f^[n] x ∈ s ⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s [PROOFSTEP] rw [Nat.frequently_atTop_iff_infinite] at hx [GOAL] case succ.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} ⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s [PROOFSTEP] rcases Nat.exists_lt_modEq_of_infinite hx n.succ_pos with ⟨k, hk, l, hl, hkl, hn⟩ [GOAL] case succ.intro.intro.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} k : ℕ hk : k ∈ {n | f^[n] x ∈ s} l : ℕ hl : l ∈ {n | f^[n] x ∈ s} hkl : k < l hn : k ≡ l [MOD Nat.succ n] ⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s [PROOFSTEP] set m := (l - k) / (n + 1) [GOAL] case succ.intro.intro.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} k : ℕ hk : k ∈ {n | f^[n] x ∈ s} l : ℕ hl : l ∈ {n | f^[n] x ∈ s} hkl : k < l hn : k ≡ l [MOD Nat.succ n] m : ℕ := (l - k) / (n + 1) ⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s [PROOFSTEP] have : (n + 1) * m = l - k := by apply Nat.mul_div_cancel' exact (Nat.modEq_iff_dvd' hkl.le).1 hn [GOAL] ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} k : ℕ hk : k ∈ {n | f^[n] x ∈ s} l : ℕ hl : l ∈ {n | f^[n] x ∈ s} hkl : k < l hn : k ≡ l [MOD Nat.succ n] m : ℕ := (l - k) / (n + 1) ⊢ (n + 1) * m = l - k [PROOFSTEP] apply Nat.mul_div_cancel' [GOAL] case H ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} k : ℕ hk : k ∈ {n | f^[n] x ∈ s} l : ℕ hl : l ∈ {n | f^[n] x ∈ s} hkl : k < l hn : k ≡ l [MOD Nat.succ n] m : ℕ := (l - k) / (n + 1) ⊢ n + 1 ∣ l - k [PROOFSTEP] exact (Nat.modEq_iff_dvd' hkl.le).1 hn [GOAL] case succ.intro.intro.intro.intro.intro.intro.intro ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} k : ℕ hk : k ∈ {n | f^[n] x ∈ s} l : ℕ hl : l ∈ {n | f^[n] x ∈ s} hkl : k < l hn : k ≡ l [MOD Nat.succ n] m : ℕ := (l - k) / (n + 1) this : (n + 1) * m = l - k ⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[Nat.succ n]^[m] x ∈ s [PROOFSTEP] refine' ⟨f^[k] x, hk, m, _, _⟩ [GOAL] case succ.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} k : ℕ hk : k ∈ {n | f^[n] x ∈ s} l : ℕ hl : l ∈ {n | f^[n] x ∈ s} hkl : k < l hn : k ≡ l [MOD Nat.succ n] m : ℕ := (l - k) / (n + 1) this : (n + 1) * m = l - k ⊢ m ≠ 0 [PROOFSTEP] intro hm [GOAL] case succ.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} k : ℕ hk : k ∈ {n | f^[n] x ∈ s} l : ℕ hl : l ∈ {n | f^[n] x ∈ s} hkl : k < l hn : k ≡ l [MOD Nat.succ n] m : ℕ := (l - k) / (n + 1) this : (n + 1) * m = l - k hm : m = 0 ⊢ False [PROOFSTEP] rw [hm, mul_zero, eq_comm, tsub_eq_zero_iff_le] at this [GOAL] case succ.intro.intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} k : ℕ hk : k ∈ {n | f^[n] x ∈ s} l : ℕ hl : l ∈ {n | f^[n] x ∈ s} hkl : k < l hn : k ≡ l [MOD Nat.succ n] m : ℕ := (l - k) / (n + 1) this : l ≤ k hm : m = 0 ⊢ False [PROOFSTEP] exact this.not_lt hkl [GOAL] case succ.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} k : ℕ hk : k ∈ {n | f^[n] x ∈ s} l : ℕ hl : l ∈ {n | f^[n] x ∈ s} hkl : k < l hn : k ≡ l [MOD Nat.succ n] m : ℕ := (l - k) / (n + 1) this : (n + 1) * m = l - k ⊢ f^[Nat.succ n]^[m] (f^[k] x) ∈ s [PROOFSTEP] rwa [← iterate_mul, this, ← iterate_add_apply, tsub_add_cancel_of_le] [GOAL] case succ.intro.intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u_1 α : Type u_2 inst✝ : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α hf : Conservative f μ n : ℕ s : Set α hs : MeasurableSet s hs0 : ↑↑μ s ≠ 0 x : α left✝ : x ∈ s hx : Set.Infinite {n | f^[n] x ∈ s} k : ℕ hk : k ∈ {n | f^[n] x ∈ s} l : ℕ hl : l ∈ {n | f^[n] x ∈ s} hkl : k < l hn : k ≡ l [MOD Nat.succ n] m : ℕ := (l - k) / (n + 1) this : (n + 1) * m = l - k ⊢ k ≤ l [PROOFSTEP] exact hkl.le
{"mathlib_filename": "Mathlib.Dynamics.Ergodic.Conservative", "llama_tokens": 14246}
[GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α m : τ → τ f₁ f₂ : Filter τ hf : Tendsto m f₁ f₂ ⊢ ω f₁ (fun t x => ϕ (m t) x) s ⊆ ω f₂ ϕ s [PROOFSTEP] refine' iInter₂_mono' fun u hu ↦ ⟨m ⁻¹' u, tendsto_def.mp hf _ hu, _⟩ [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α m : τ → τ f₁ f₂ : Filter τ hf : Tendsto m f₁ f₂ u : Set τ hu : u ∈ f₂ ⊢ closure (image2 (fun t x => ϕ (m t) x) (m ⁻¹' u) s) ⊆ closure (image2 ϕ u s) [PROOFSTEP] rw [← image2_image_left] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α m : τ → τ f₁ f₂ : Filter τ hf : Tendsto m f₁ f₂ u : Set τ hu : u ∈ f₂ ⊢ closure (image2 ϕ ((fun t => m t) '' (m ⁻¹' u)) s) ⊆ closure (image2 ϕ u s) [PROOFSTEP] exact closure_mono (image2_subset (image_preimage_subset _ _) Subset.rfl) [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f✝ : Filter τ ϕ✝ : τ → α → β s s₁ s₂ : Set α α' : Type u_5 β' : Type u_6 inst✝ : TopologicalSpace β' f : Filter τ ϕ : τ → α → β ϕ' : τ → α' → β' ga : α → α' s' : Set α' hs : MapsTo ga s s' gb : β → β' hg : ∀ᶠ (t : τ) in f, EqOn (gb ∘ ϕ t) (ϕ' t ∘ ga) s hgc : Continuous gb ⊢ MapsTo gb (ω f ϕ s) (ω f ϕ' s') [PROOFSTEP] simp only [omegaLimit_def, mem_iInter, MapsTo] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f✝ : Filter τ ϕ✝ : τ → α → β s s₁ s₂ : Set α α' : Type u_5 β' : Type u_6 inst✝ : TopologicalSpace β' f : Filter τ ϕ : τ → α → β ϕ' : τ → α' → β' ga : α → α' s' : Set α' hs : MapsTo ga s s' gb : β → β' hg : ∀ᶠ (t : τ) in f, EqOn (gb ∘ ϕ t) (ϕ' t ∘ ga) s hgc : Continuous gb ⊢ ∀ ⦃x : β⦄, (∀ (i : Set τ), i ∈ f → x ∈ closure (image2 ϕ i s)) → ∀ (i : Set τ), i ∈ f → gb x ∈ closure (image2 ϕ' i s') [PROOFSTEP] intro y hy u hu [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f✝ : Filter τ ϕ✝ : τ → α → β s s₁ s₂ : Set α α' : Type u_5 β' : Type u_6 inst✝ : TopologicalSpace β' f : Filter τ ϕ : τ → α → β ϕ' : τ → α' → β' ga : α → α' s' : Set α' hs : MapsTo ga s s' gb : β → β' hg : ∀ᶠ (t : τ) in f, EqOn (gb ∘ ϕ t) (ϕ' t ∘ ga) s hgc : Continuous gb y : β hy : ∀ (i : Set τ), i ∈ f → y ∈ closure (image2 ϕ i s) u : Set τ hu : u ∈ f ⊢ gb y ∈ closure (image2 ϕ' u s') [PROOFSTEP] refine' map_mem_closure hgc (hy _ (inter_mem hu hg)) (forall_image2_iff.2 fun t ht x hx ↦ _) [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f✝ : Filter τ ϕ✝ : τ → α → β s s₁ s₂ : Set α α' : Type u_5 β' : Type u_6 inst✝ : TopologicalSpace β' f : Filter τ ϕ : τ → α → β ϕ' : τ → α' → β' ga : α → α' s' : Set α' hs : MapsTo ga s s' gb : β → β' hg : ∀ᶠ (t : τ) in f, EqOn (gb ∘ ϕ t) (ϕ' t ∘ ga) s hgc : Continuous gb y : β hy : ∀ (i : Set τ), i ∈ f → y ∈ closure (image2 ϕ i s) u : Set τ hu : u ∈ f t : τ ht : t ∈ u ∩ {x | (fun t => EqOn (gb ∘ ϕ t) (ϕ' t ∘ ga) s) x} x : α hx : x ∈ s ⊢ gb (ϕ t x) ∈ image2 ϕ' u s' [PROOFSTEP] calc gb (ϕ t x) = ϕ' t (ga x) := ht.2 hx _ ∈ image2 ϕ' u s' := mem_image2_of_mem ht.1 (hs hx) [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f✝ : Filter τ ϕ✝ : τ → α → β s s₁ s₂ : Set α α' : Type u_5 ϕ : τ → α' → β f : Filter τ g : α → α' ⊢ ω f ϕ (g '' s) = ω f (fun t x => ϕ t (g x)) s [PROOFSTEP] simp only [omegaLimit, image2_image_right] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ y ∈ ω f ϕ s ↔ ∀ (n : Set β), n ∈ 𝓝 y → ∃ᶠ (t : τ) in f, Set.Nonempty (s ∩ ϕ t ⁻¹' n) [PROOFSTEP] simp_rw [frequently_iff, omegaLimit_def, mem_iInter, mem_closure_iff_nhds] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ (∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s)) ↔ ∀ (n : Set β), n ∈ 𝓝 y → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n) [PROOFSTEP] constructor [GOAL] case mp τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ (∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s)) → ∀ (n : Set β), n ∈ 𝓝 y → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n) [PROOFSTEP] intro h _ hn _ hu [GOAL] case mp τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β h : ∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s) n✝ : Set β hn : n✝ ∈ 𝓝 y U✝ : Set τ hu : U✝ ∈ f ⊢ ∃ x, x ∈ U✝ ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n✝) [PROOFSTEP] rcases h _ hu _ hn with ⟨_, _, _, _, ht, hx, hϕtx⟩ [GOAL] case mp.intro.intro.intro.intro.intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β h : ∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s) n✝ : Set β hn : n✝ ∈ 𝓝 y U✝ : Set τ hu : U✝ ∈ f w✝² : β left✝ : w✝² ∈ n✝ w✝¹ : τ w✝ : α ht : w✝¹ ∈ U✝ hx : w✝ ∈ s hϕtx : ϕ w✝¹ w✝ = w✝² ⊢ ∃ x, x ∈ U✝ ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n✝) [PROOFSTEP] exact ⟨_, ht, _, hx, by rwa [mem_preimage, hϕtx]⟩ [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β h : ∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s) n✝ : Set β hn : n✝ ∈ 𝓝 y U✝ : Set τ hu : U✝ ∈ f w✝² : β left✝ : w✝² ∈ n✝ w✝¹ : τ w✝ : α ht : w✝¹ ∈ U✝ hx : w✝ ∈ s hϕtx : ϕ w✝¹ w✝ = w✝² ⊢ w✝ ∈ ϕ w✝¹ ⁻¹' n✝ [PROOFSTEP] rwa [mem_preimage, hϕtx] [GOAL] case mpr τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ (∀ (n : Set β), n ∈ 𝓝 y → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n)) → ∀ (i : Set τ), i ∈ f → ∀ (t : Set β), t ∈ 𝓝 y → Set.Nonempty (t ∩ image2 ϕ i s) [PROOFSTEP] intro h _ hu _ hn [GOAL] case mpr τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β h : ∀ (n : Set β), n ∈ 𝓝 y → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n) i✝ : Set τ hu : i✝ ∈ f t✝ : Set β hn : t✝ ∈ 𝓝 y ⊢ Set.Nonempty (t✝ ∩ image2 ϕ i✝ s) [PROOFSTEP] rcases h _ hn hu with ⟨_, ht, _, hx, hϕtx⟩ [GOAL] case mpr.intro.intro.intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β h : ∀ (n : Set β), n ∈ 𝓝 y → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (s ∩ ϕ x ⁻¹' n) i✝ : Set τ hu : i✝ ∈ f t✝ : Set β hn : t✝ ∈ 𝓝 y w✝¹ : τ ht : w✝¹ ∈ i✝ w✝ : α hx : w✝ ∈ s hϕtx : w✝ ∈ ϕ w✝¹ ⁻¹' t✝ ⊢ Set.Nonempty (t✝ ∩ image2 ϕ i✝ s) [PROOFSTEP] exact ⟨_, hϕtx, _, _, ht, hx, rfl⟩ [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ y ∈ ω f ϕ s ↔ ∀ (n : Set β), n ∈ 𝓝 y → ∃ᶠ (t : τ) in f, Set.Nonempty (ϕ t '' s ∩ n) [PROOFSTEP] simp_rw [mem_omegaLimit_iff_frequently, image_inter_nonempty_iff] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α x : α y : β ⊢ y ∈ ω f ϕ {x} ↔ MapClusterPt y f fun t => ϕ t x [PROOFSTEP] simp_rw [mem_omegaLimit_iff_frequently, mapClusterPt_iff, singleton_inter_nonempty, mem_preimage] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α ⊢ ω f ϕ (s₁ ∪ s₂) = ω f ϕ s₁ ∪ ω f ϕ s₂ [PROOFSTEP] ext y [GOAL] case h τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ y ∈ ω f ϕ (s₁ ∪ s₂) ↔ y ∈ ω f ϕ s₁ ∪ ω f ϕ s₂ [PROOFSTEP] constructor [GOAL] case h.mp τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ y ∈ ω f ϕ (s₁ ∪ s₂) → y ∈ ω f ϕ s₁ ∪ ω f ϕ s₂ [PROOFSTEP] simp only [mem_union, mem_omegaLimit_iff_frequently, union_inter_distrib_right, union_nonempty, frequently_or_distrib] [GOAL] case h.mp τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ (∀ (n : Set β), n ∈ 𝓝 y → (∃ᶠ (x : τ) in f, Set.Nonempty (s₁ ∩ ϕ x ⁻¹' n)) ∨ ∃ᶠ (x : τ) in f, Set.Nonempty (s₂ ∩ ϕ x ⁻¹' n)) → (∀ (n : Set β), n ∈ 𝓝 y → ∃ᶠ (t : τ) in f, Set.Nonempty (s₁ ∩ ϕ t ⁻¹' n)) ∨ ∀ (n : Set β), n ∈ 𝓝 y → ∃ᶠ (t : τ) in f, Set.Nonempty (s₂ ∩ ϕ t ⁻¹' n) [PROOFSTEP] contrapose! [GOAL] case h.mp τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ ((∃ n, n ∈ 𝓝 y ∧ ¬∃ᶠ (t : τ) in f, Set.Nonempty (s₁ ∩ ϕ t ⁻¹' n)) ∧ ∃ n, n ∈ 𝓝 y ∧ ¬∃ᶠ (t : τ) in f, Set.Nonempty (s₂ ∩ ϕ t ⁻¹' n)) → ∃ n, n ∈ 𝓝 y ∧ (¬∃ᶠ (x : τ) in f, Set.Nonempty (s₁ ∩ ϕ x ⁻¹' n)) ∧ ¬∃ᶠ (x : τ) in f, Set.Nonempty (s₂ ∩ ϕ x ⁻¹' n) [PROOFSTEP] simp only [not_frequently, not_nonempty_iff_eq_empty, ← subset_empty_iff] [GOAL] case h.mp τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ ((∃ n, n ∈ 𝓝 y ∧ ∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n ⊆ ∅) ∧ ∃ n, n ∈ 𝓝 y ∧ ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n ⊆ ∅) → ∃ n, n ∈ 𝓝 y ∧ (∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n ⊆ ∅) ∧ ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n ⊆ ∅ [PROOFSTEP] rintro ⟨⟨n₁, hn₁, h₁⟩, ⟨n₂, hn₂, h₂⟩⟩ [GOAL] case h.mp.intro.intro.intro.intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β n₁ : Set β hn₁ : n₁ ∈ 𝓝 y h₁ : ∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n₁ ⊆ ∅ n₂ : Set β hn₂ : n₂ ∈ 𝓝 y h₂ : ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n₂ ⊆ ∅ ⊢ ∃ n, n ∈ 𝓝 y ∧ (∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n ⊆ ∅) ∧ ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n ⊆ ∅ [PROOFSTEP] refine' ⟨n₁ ∩ n₂, inter_mem hn₁ hn₂, h₁.mono fun t ↦ _, h₂.mono fun t ↦ _⟩ [GOAL] case h.mp.intro.intro.intro.intro.intro.refine'_1 τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β n₁ : Set β hn₁ : n₁ ∈ 𝓝 y h₁ : ∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n₁ ⊆ ∅ n₂ : Set β hn₂ : n₂ ∈ 𝓝 y h₂ : ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n₂ ⊆ ∅ t : τ ⊢ s₁ ∩ ϕ t ⁻¹' n₁ ⊆ ∅ → s₁ ∩ ϕ t ⁻¹' (n₁ ∩ n₂) ⊆ ∅ case h.mp.intro.intro.intro.intro.intro.refine'_2 τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β n₁ : Set β hn₁ : n₁ ∈ 𝓝 y h₁ : ∀ᶠ (x : τ) in f, s₁ ∩ ϕ x ⁻¹' n₁ ⊆ ∅ n₂ : Set β hn₂ : n₂ ∈ 𝓝 y h₂ : ∀ᶠ (x : τ) in f, s₂ ∩ ϕ x ⁻¹' n₂ ⊆ ∅ t : τ ⊢ s₂ ∩ ϕ t ⁻¹' n₂ ⊆ ∅ → s₂ ∩ ϕ t ⁻¹' (n₁ ∩ n₂) ⊆ ∅ [PROOFSTEP] exacts [Subset.trans <| inter_subset_inter_right _ <| preimage_mono <| inter_subset_left _ _, Subset.trans <| inter_subset_inter_right _ <| preimage_mono <| inter_subset_right _ _] [GOAL] case h.mpr τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β ⊢ y ∈ ω f ϕ s₁ ∪ ω f ϕ s₂ → y ∈ ω f ϕ (s₁ ∪ s₂) [PROOFSTEP] rintro (hy | hy) [GOAL] case h.mpr.inl τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β hy : y ∈ ω f ϕ s₁ ⊢ y ∈ ω f ϕ (s₁ ∪ s₂) case h.mpr.inr τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α y : β hy : y ∈ ω f ϕ s₂ ⊢ y ∈ ω f ϕ (s₁ ∪ s₂) [PROOFSTEP] exacts [omegaLimit_mono_right _ _ (subset_union_left _ _) hy, omegaLimit_mono_right _ _ (subset_union_right _ _) hy] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α p : ι → Set α ⊢ ⋃ (i : ι), ω f ϕ (p i) ⊆ ω f ϕ (⋃ (i : ι), p i) [PROOFSTEP] rw [iUnion_subset_iff] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α p : ι → Set α ⊢ ∀ (i : ι), ω f ϕ (p i) ⊆ ω f ϕ (⋃ (i : ι), p i) [PROOFSTEP] exact fun i ↦ omegaLimit_mono_right _ _ (subset_iUnion _ _) [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α v : Set τ hv : v ∈ f ⊢ ω f ϕ s = ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s) [PROOFSTEP] rw [omegaLimit_eq_biInter_inter _ _ _ hv] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α v : Set τ hv : v ∈ f ⊢ ⋂ (u : Set τ) (_ : u ∈ f), closure (image2 ϕ (u ∩ v) s) = ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s) [PROOFSTEP] apply biInter_eq_iInter [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α u : Set τ hu : u ∈ f ⊢ ω f ϕ s ⊆ closure (image2 ϕ u s) [PROOFSTEP] rw [omegaLimit_eq_iInter] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α u : Set τ hu : u ∈ f ⊢ ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u) s) ⊆ closure (image2 ϕ u s) [PROOFSTEP] intro _ hx [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α u : Set τ hu : u ∈ f a✝ : β hx : a✝ ∈ ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u) s) ⊢ a✝ ∈ closure (image2 ϕ u s) [PROOFSTEP] rw [mem_iInter] at hx [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α u : Set τ hu : u ∈ f a✝ : β hx : ∀ (i : ↑f.sets), a✝ ∈ closure (image2 ϕ (↑i) s) ⊢ a✝ ∈ closure (image2 ϕ u s) [PROOFSTEP] exact hx ⟨u, hu⟩ [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c hc₂ : ∃ v, v ∈ f ∧ closure (image2 ϕ v s) ⊆ c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] rcases hc₂ with ⟨v, hv₁, hv₂⟩ [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] let k := closure (image2 ϕ v s) [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] have hk : IsCompact (k \ n) := IsCompact.diff (isCompact_of_isClosed_subset hc₁ isClosed_closure hv₂) hn₁ [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] let j u := (closure (image2 ϕ (u ∩ v) s))ᶜ [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] have hj₁ : ∀ u ∈ f, IsOpen (j u) := fun _ _ ↦ isOpen_compl_iff.mpr isClosed_closure [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] have hj₂ : k \ n ⊆ ⋃ u ∈ f, j u := by have : ⋃ u ∈ f, j u = ⋃ u : (↥f.sets), j u := biUnion_eq_iUnion _ _ rw [this, diff_subset_comm, diff_iUnion] rw [omegaLimit_eq_iInter_inter _ _ _ hv₁] at hn₂ simp_rw [diff_compl] rw [← inter_iInter] exact Subset.trans (inter_subset_right _ _) hn₂ [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) ⊢ k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u [PROOFSTEP] have : ⋃ u ∈ f, j u = ⋃ u : (↥f.sets), j u := biUnion_eq_iUnion _ _ [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) this : ⋃ (u : Set τ) (_ : u ∈ f), j u = ⋃ (u : ↑f.sets), j ↑u ⊢ k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u [PROOFSTEP] rw [this, diff_subset_comm, diff_iUnion] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) this : ⋃ (u : Set τ) (_ : u ∈ f), j u = ⋃ (u : ↑f.sets), j ↑u ⊢ ⋂ (i : ↑f.sets), k \ j ↑i ⊆ n [PROOFSTEP] rw [omegaLimit_eq_iInter_inter _ _ _ hv₁] at hn₂ [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n v : Set τ hn₂ : ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s) ⊆ n hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) this : ⋃ (u : Set τ) (_ : u ∈ f), j u = ⋃ (u : ↑f.sets), j ↑u ⊢ ⋂ (i : ↑f.sets), k \ j ↑i ⊆ n [PROOFSTEP] simp_rw [diff_compl] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n v : Set τ hn₂ : ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s) ⊆ n hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) this : ⋃ (u : Set τ) (_ : u ∈ f), j u = ⋃ (u : ↑f.sets), j ↑u ⊢ ⋂ (i : ↑f.sets), closure (image2 ϕ v s) ∩ closure (image2 ϕ (↑i ∩ v) s) ⊆ n [PROOFSTEP] rw [← inter_iInter] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n v : Set τ hn₂ : ⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s) ⊆ n hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) this : ⋃ (u : Set τ) (_ : u ∈ f), j u = ⋃ (u : ↑f.sets), j ↑u ⊢ closure (image2 ϕ v s) ∩ ⋂ (i : ↑f.sets), closure (image2 ϕ (↑i ∩ v) s) ⊆ n [PROOFSTEP] exact Subset.trans (inter_subset_right _ _) hn₂ [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] rcases hk.elim_finite_subcover_image hj₁ hj₂ with ⟨g, hg₁ : ∀ u ∈ g, u ∈ f, hg₂, hg₃⟩ [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] let w := (⋂ u ∈ g, u) ∩ v [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] have hw₂ : w ∈ f := by simpa [*] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v ⊢ w ∈ f [PROOFSTEP] simpa [*] [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] have hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ := by apply Subset.trans hg₃ simp only [iUnion_subset_iff, compl_subset_compl] intros u hu mono refine' iInter_subset_of_subset u (iInter_subset_of_subset hu _) all_goals exact Subset.rfl [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f ⊢ k \ n ⊆ (closure (image2 ϕ w s))ᶜ [PROOFSTEP] apply Subset.trans hg₃ [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f ⊢ ⋃ (i : Set τ) (_ : i ∈ g), j i ⊆ (closure (image2 ϕ w s))ᶜ [PROOFSTEP] simp only [iUnion_subset_iff, compl_subset_compl] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f ⊢ ∀ (i : Set τ), i ∈ g → closure (image2 ϕ ((⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v) s) ⊆ closure (image2 ϕ (i ∩ v) s) [PROOFSTEP] intros u hu [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f u : Set τ hu : u ∈ g ⊢ closure (image2 ϕ ((⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v) s) ⊆ closure (image2 ϕ (u ∩ v) s) [PROOFSTEP] mono [GOAL] case h.hs.h₁ τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f u : Set τ hu : u ∈ g ⊢ ⋂ (u : Set τ) (_ : u ∈ g), u ⊆ u case h.hs.h₂ τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f u : Set τ hu : u ∈ g ⊢ v ⊆ v case h.ht τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f u : Set τ hu : u ∈ g ⊢ s ⊆ s [PROOFSTEP] refine' iInter_subset_of_subset u (iInter_subset_of_subset hu _) [GOAL] case h.hs.h₁ τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f u : Set τ hu : u ∈ g ⊢ u ⊆ u case h.hs.h₂ τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f u : Set τ hu : u ∈ g ⊢ v ⊆ v case h.ht τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f u : Set τ hu : u ∈ g ⊢ s ⊆ s [PROOFSTEP] all_goals exact Subset.rfl [GOAL] case h.hs.h₁ τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f u : Set τ hu : u ∈ g ⊢ u ⊆ u [PROOFSTEP] exact Subset.rfl [GOAL] case h.hs.h₂ τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f u : Set τ hu : u ∈ g ⊢ v ⊆ v [PROOFSTEP] exact Subset.rfl [GOAL] case h.ht τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f u : Set τ hu : u ∈ g ⊢ s ⊆ s [PROOFSTEP] exact Subset.rfl [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] have hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ := by simp only [compl_subset_compl] exact closure_mono (image2_subset (inter_subset_right _ _) Subset.rfl) [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ ⊢ kᶜ ⊆ (closure (image2 ϕ w s))ᶜ [PROOFSTEP] simp only [compl_subset_compl] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ ⊢ closure (image2 ϕ ((⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v) s) ⊆ closure (image2 ϕ v s) [PROOFSTEP] exact closure_mono (image2_subset (inter_subset_right _ _) Subset.rfl) [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] have hnc : nᶜ ⊆ k \ n ∪ kᶜ := by rw [union_comm, ← inter_subset, diff_eq, inter_comm] [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ ⊢ nᶜ ⊆ k \ n ∪ kᶜ [PROOFSTEP] rw [union_comm, ← inter_subset, diff_eq, inter_comm] [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ hnc : nᶜ ⊆ k \ n ∪ kᶜ ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] have hw : closure (image2 ϕ w s) ⊆ n := compl_subset_compl.mp (Subset.trans hnc (union_subset hw₃ hw₄)) [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α c : Set β hc₁ : IsCompact c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c k : Set β := closure (image2 ϕ v s) hk : IsCompact (k \ n) j : Set τ → Set β := fun u => (closure (image2 ϕ (u ∩ v) s))ᶜ hj₁ : ∀ (u : Set τ), u ∈ f → IsOpen (j u) hj₂ : k \ n ⊆ ⋃ (u : Set τ) (_ : u ∈ f), j u g : Set (Set τ) hg₁ : ∀ (u : Set τ), u ∈ g → u ∈ f hg₂ : Set.Finite g hg₃ : k \ n ⊆ ⋃ (i : Set τ) (_ : i ∈ g), j i w : Set τ := (⋂ (u : Set τ) (_ : u ∈ g), u) ∩ v hw₂ : w ∈ f hw₃ : k \ n ⊆ (closure (image2 ϕ w s))ᶜ hw₄ : kᶜ ⊆ (closure (image2 ϕ w s))ᶜ hnc : nᶜ ⊆ k \ n ∪ kᶜ hw : closure (image2 ϕ w s) ⊆ n ⊢ ∃ u, u ∈ f ∧ closure (image2 ϕ u s) ⊆ n [PROOFSTEP] exact ⟨_, hw₂, hw⟩ [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : T2Space β c : Set β hc₁ : IsCompact c hc₂ : ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n ⊢ ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s n [PROOFSTEP] rcases eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset f ϕ s hc₁ hc₂ hn₁ hn₂ with ⟨u, hu_mem, hu⟩ [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : T2Space β c : Set β hc₁ : IsCompact c hc₂ : ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n u : Set τ hu_mem : u ∈ f hu : closure (image2 ϕ u s) ⊆ n ⊢ ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s n [PROOFSTEP] refine' mem_of_superset hu_mem fun t ht x hx ↦ _ [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : T2Space β c : Set β hc₁ : IsCompact c hc₂ : ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s c n : Set β hn₁ : IsOpen n hn₂ : ω f ϕ s ⊆ n u : Set τ hu_mem : u ∈ f hu : closure (image2 ϕ u s) ⊆ n t : τ ht : t ∈ u x : α hx : x ∈ s ⊢ ϕ t x ∈ n [PROOFSTEP] exact hu (subset_closure <| mem_image2_of_mem ht hx) [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : CompactSpace β v : Set β hv₁ : IsOpen v hv₂ : ω f ϕ s ⊆ v ⊢ ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s v [PROOFSTEP] rcases eventually_closure_subset_of_isOpen_of_omegaLimit_subset f ϕ s hv₁ hv₂ with ⟨u, hu_mem, hu⟩ [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : CompactSpace β v : Set β hv₁ : IsOpen v hv₂ : ω f ϕ s ⊆ v u : Set τ hu_mem : u ∈ f hu : closure (image2 ϕ u s) ⊆ v ⊢ ∀ᶠ (t : τ) in f, MapsTo (ϕ t) s v [PROOFSTEP] refine' mem_of_superset hu_mem fun t ht x hx ↦ _ [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : CompactSpace β v : Set β hv₁ : IsOpen v hv₂ : ω f ϕ s ⊆ v u : Set τ hu_mem : u ∈ f hu : closure (image2 ϕ u s) ⊆ v t : τ ht : t ∈ u x : α hx : x ∈ s ⊢ ϕ t x ∈ v [PROOFSTEP] exact hu (subset_closure <| mem_image2_of_mem ht hx) [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hc₂ : ∃ v, v ∈ f ∧ closure (image2 ϕ v s) ⊆ c hs : Set.Nonempty s ⊢ Set.Nonempty (ω f ϕ s) [PROOFSTEP] rcases hc₂ with ⟨v, hv₁, hv₂⟩ [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c ⊢ Set.Nonempty (ω f ϕ s) [PROOFSTEP] rw [omegaLimit_eq_iInter_inter _ _ _ hv₁] [GOAL] case intro.intro τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c ⊢ Set.Nonempty (⋂ (u : ↑f.sets), closure (image2 ϕ (↑u ∩ v) s)) [PROOFSTEP] apply IsCompact.nonempty_iInter_of_directed_nonempty_compact_closed [GOAL] case intro.intro.hZd τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c ⊢ Directed (fun x x_1 => x ⊇ x_1) fun i => closure (image2 ϕ (↑i ∩ v) s) [PROOFSTEP] rintro ⟨u₁, hu₁⟩ ⟨u₂, hu₂⟩ [GOAL] case intro.intro.hZd.mk.mk τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c u₁ : Set τ hu₁ : u₁ ∈ f.sets u₂ : Set τ hu₂ : u₂ ∈ f.sets ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁, property := hu₁ }) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₂, property := hu₂ }) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) z) [PROOFSTEP] use⟨u₁ ∩ u₂, inter_mem hu₁ hu₂⟩ [GOAL] case h τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c u₁ : Set τ hu₁ : u₁ ∈ f.sets u₂ : Set τ hu₂ : u₂ ∈ f.sets ⊢ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁, property := hu₁ }) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) }) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₂, property := hu₂ }) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) }) [PROOFSTEP] constructor [GOAL] case h.left τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c u₁ : Set τ hu₁ : u₁ ∈ f.sets u₂ : Set τ hu₂ : u₂ ∈ f.sets ⊢ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁, property := hu₁ }) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) }) case h.right τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c u₁ : Set τ hu₁ : u₁ ∈ f.sets u₂ : Set τ hu₂ : u₂ ∈ f.sets ⊢ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₂, property := hu₂ }) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) }) [PROOFSTEP] all_goals exact closure_mono (image2_subset (inter_subset_inter_left _ (by simp)) Subset.rfl) [GOAL] case h.left τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c u₁ : Set τ hu₁ : u₁ ∈ f.sets u₂ : Set τ hu₂ : u₂ ∈ f.sets ⊢ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁, property := hu₁ }) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) }) [PROOFSTEP] exact closure_mono (image2_subset (inter_subset_inter_left _ (by simp)) Subset.rfl) [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c u₁ : Set τ hu₁ : u₁ ∈ f.sets u₂ : Set τ hu₂ : u₂ ∈ f.sets ⊢ ↑{ val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) } ⊆ ↑{ val := u₁, property := hu₁ } [PROOFSTEP] simp [GOAL] case h.right τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c u₁ : Set τ hu₁ : u₁ ∈ f.sets u₂ : Set τ hu₂ : u₂ ∈ f.sets ⊢ (fun x x_1 => x ⊇ x_1) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₂, property := hu₂ }) ((fun i => closure (image2 ϕ (↑i ∩ v) s)) { val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) }) [PROOFSTEP] exact closure_mono (image2_subset (inter_subset_inter_left _ (by simp)) Subset.rfl) [GOAL] τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c u₁ : Set τ hu₁ : u₁ ∈ f.sets u₂ : Set τ hu₂ : u₂ ∈ f.sets ⊢ ↑{ val := u₁ ∩ u₂, property := (_ : u₁ ∩ u₂ ∈ f) } ⊆ ↑{ val := u₂, property := hu₂ } [PROOFSTEP] simp [GOAL] case intro.intro.hZn τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c ⊢ ∀ (i : ↑f.sets), Set.Nonempty (closure (image2 ϕ (↑i ∩ v) s)) [PROOFSTEP] intro u [GOAL] case intro.intro.hZn τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c u : ↑f.sets ⊢ Set.Nonempty (closure (image2 ϕ (↑u ∩ v) s)) [PROOFSTEP] have hn : (image2 ϕ (u ∩ v) s).Nonempty := Nonempty.image2 (Filter.nonempty_of_mem (inter_mem u.prop hv₁)) hs [GOAL] case intro.intro.hZn τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c u : ↑f.sets hn : Set.Nonempty (image2 ϕ (↑u ∩ v) s) ⊢ Set.Nonempty (closure (image2 ϕ (↑u ∩ v) s)) [PROOFSTEP] exact hn.mono subset_closure [GOAL] case intro.intro.hZc τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c ⊢ ∀ (i : ↑f.sets), IsCompact (closure (image2 ϕ (↑i ∩ v) s)) [PROOFSTEP] intro [GOAL] case intro.intro.hZc τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c i✝ : ↑f.sets ⊢ IsCompact (closure (image2 ϕ (↑i✝ ∩ v) s)) [PROOFSTEP] apply isCompact_of_isClosed_subset hc₁ isClosed_closure [GOAL] case intro.intro.hZc τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c i✝ : ↑f.sets ⊢ closure (image2 ϕ (↑i✝ ∩ v) s) ⊆ c [PROOFSTEP] calc _ ⊆ closure (image2 ϕ v s) := closure_mono (image2_subset (inter_subset_right _ _) Subset.rfl) _ ⊆ c := hv₂ [GOAL] case intro.intro.hZcl τ : Type u_1 α : Type u_2 β : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace β f : Filter τ ϕ : τ → α → β s s₁ s₂ : Set α inst✝ : NeBot f c : Set β hc₁ : IsCompact c hs : Set.Nonempty s v : Set τ hv₁ : v ∈ f hv₂ : closure (image2 ϕ v s) ⊆ c ⊢ ∀ (i : ↑f.sets), IsClosed (closure (image2 ϕ (↑i ∩ v) s)) [PROOFSTEP] exact fun _ ↦ isClosed_closure [GOAL] τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddMonoid τ inst✝¹ : ContinuousAdd τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f ⊢ IsInvariant ϕ.toFun (ω f ϕ.toFun s) [PROOFSTEP] refine' fun t ↦ MapsTo.mono_right _ (omegaLimit_subset_of_tendsto ϕ s (hf t)) [GOAL] τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddMonoid τ inst✝¹ : ContinuousAdd τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f t : τ ⊢ MapsTo (toFun ϕ t) (ω f ϕ.toFun s) (ω f (fun t_1 x => toFun ϕ ((fun x x_1 => x + x_1) t t_1) x) s) [PROOFSTEP] exact mapsTo_omegaLimit _ (mapsTo_id _) (fun t' x ↦ (ϕ.map_add _ _ _).symm) (continuous_const.flow ϕ continuous_id) [GOAL] τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddMonoid τ inst✝¹ : ContinuousAdd τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α t : τ ht : Tendsto (fun x => x + t) f f ⊢ ω f ϕ.toFun (toFun ϕ t '' s) ⊆ ω f ϕ.toFun s [PROOFSTEP] simp only [omegaLimit_image_eq, ← map_add] [GOAL] τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddMonoid τ inst✝¹ : ContinuousAdd τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α t : τ ht : Tendsto (fun x => x + t) f f ⊢ ω f (fun t_1 x => toFun ϕ (t_1 + t) x) s ⊆ ω f ϕ.toFun s [PROOFSTEP] exact omegaLimit_subset_of_tendsto ϕ s ht [GOAL] τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto (fun x => x + t) f f t : τ ⊢ ω f ϕ.toFun s = ω f ϕ.toFun (toFun ϕ (-t) '' (toFun ϕ t '' s)) [PROOFSTEP] simp [image_image, ← map_add] [GOAL] τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f ⊢ ω f ϕ.toFun (ω f ϕ.toFun s) ⊆ ω f ϕ.toFun s [PROOFSTEP] simp only [subset_def, mem_omegaLimit_iff_frequently₂, frequently_iff] [GOAL] τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f ⊢ ∀ (x : α), (∀ (n : Set α), n ∈ 𝓝 x → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n)) → ∀ (n : Set α), n ∈ 𝓝 x → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' s ∩ n) [PROOFSTEP] intro _ h [GOAL] τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f x✝ : α h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n) ⊢ ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' s ∩ n) [PROOFSTEP] rintro n hn u hu [GOAL] τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f x✝ : α h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n) n : Set α hn : n ∈ 𝓝 x✝ u : Set τ hu : u ∈ f ⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n) [PROOFSTEP] rcases mem_nhds_iff.mp hn with ⟨o, ho₁, ho₂, ho₃⟩ [GOAL] case intro.intro.intro τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f x✝ : α h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n) n : Set α hn : n ∈ 𝓝 x✝ u : Set τ hu : u ∈ f o : Set α ho₁ : o ⊆ n ho₂ : IsOpen o ho₃ : x✝ ∈ o ⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n) [PROOFSTEP] rcases h o (IsOpen.mem_nhds ho₂ ho₃) hu with ⟨t, _ht₁, ht₂⟩ [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f x✝ : α h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n) n : Set α hn : n ∈ 𝓝 x✝ u : Set τ hu : u ∈ f o : Set α ho₁ : o ⊆ n ho₂ : IsOpen o ho₃ : x✝ ∈ o t : τ _ht₁ : t ∈ u ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o) ⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n) [PROOFSTEP] have l₁ : (ω f ϕ s ∩ o).Nonempty := ht₂.mono (inter_subset_inter_left _ ((isInvariant_iff_image _ _).mp (isInvariant_omegaLimit _ _ _ hf) _)) [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f x✝ : α h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n) n : Set α hn : n ∈ 𝓝 x✝ u : Set τ hu : u ∈ f o : Set α ho₁ : o ⊆ n ho₂ : IsOpen o ho₃ : x✝ ∈ o t : τ _ht₁ : t ∈ u ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o) l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o) ⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n) [PROOFSTEP] have l₂ : (closure (image2 ϕ u s) ∩ o).Nonempty := l₁.mono fun b hb ↦ ⟨omegaLimit_subset_closure_fw_image _ _ _ hu hb.1, hb.2⟩ [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f x✝ : α h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n) n : Set α hn : n ∈ 𝓝 x✝ u : Set τ hu : u ∈ f o : Set α ho₁ : o ⊆ n ho₂ : IsOpen o ho₃ : x✝ ∈ o t : τ _ht₁ : t ∈ u ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o) l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o) l₂ : Set.Nonempty (closure (image2 ϕ.toFun u s) ∩ o) ⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n) [PROOFSTEP] have l₃ : (o ∩ image2 ϕ u s).Nonempty := by rcases l₂ with ⟨b, hb₁, hb₂⟩ exact mem_closure_iff_nhds.mp hb₁ o (IsOpen.mem_nhds ho₂ hb₂) [GOAL] τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f x✝ : α h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n) n : Set α hn : n ∈ 𝓝 x✝ u : Set τ hu : u ∈ f o : Set α ho₁ : o ⊆ n ho₂ : IsOpen o ho₃ : x✝ ∈ o t : τ _ht₁ : t ∈ u ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o) l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o) l₂ : Set.Nonempty (closure (image2 ϕ.toFun u s) ∩ o) ⊢ Set.Nonempty (o ∩ image2 ϕ.toFun u s) [PROOFSTEP] rcases l₂ with ⟨b, hb₁, hb₂⟩ [GOAL] case intro.intro τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f x✝ : α h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n) n : Set α hn : n ∈ 𝓝 x✝ u : Set τ hu : u ∈ f o : Set α ho₁ : o ⊆ n ho₂ : IsOpen o ho₃ : x✝ ∈ o t : τ _ht₁ : t ∈ u ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o) l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o) b : α hb₁ : b ∈ closure (image2 ϕ.toFun u s) hb₂ : b ∈ o ⊢ Set.Nonempty (o ∩ image2 ϕ.toFun u s) [PROOFSTEP] exact mem_closure_iff_nhds.mp hb₁ o (IsOpen.mem_nhds ho₂ hb₂) [GOAL] case intro.intro.intro.intro.intro τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f x✝ : α h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n) n : Set α hn : n ∈ 𝓝 x✝ u : Set τ hu : u ∈ f o : Set α ho₁ : o ⊆ n ho₂ : IsOpen o ho₃ : x✝ ∈ o t : τ _ht₁ : t ∈ u ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o) l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o) l₂ : Set.Nonempty (closure (image2 ϕ.toFun u s) ∩ o) l₃ : Set.Nonempty (o ∩ image2 ϕ.toFun u s) ⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n) [PROOFSTEP] rcases l₃ with ⟨ϕra, ho, ⟨_, _, hr, ha, hϕra⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro τ : Type u_1 inst✝³ : TopologicalSpace τ inst✝² : AddCommGroup τ inst✝¹ : TopologicalAddGroup τ α : Type u_2 inst✝ : TopologicalSpace α f : Filter τ ϕ : Flow τ α s : Set α hf : ∀ (t : τ), Tendsto ((fun x x_1 => x + x_1) t) f f x✝ : α h : ∀ (n : Set α), n ∈ 𝓝 x✝ → ∀ {U : Set τ}, U ∈ f → ∃ x, x ∈ U ∧ Set.Nonempty (toFun ϕ x '' ω f ϕ.toFun s ∩ n) n : Set α hn : n ∈ 𝓝 x✝ u : Set τ hu : u ∈ f o : Set α ho₁ : o ⊆ n ho₂ : IsOpen o ho₃ : x✝ ∈ o t : τ _ht₁ : t ∈ u ht₂ : Set.Nonempty (toFun ϕ t '' ω f ϕ.toFun s ∩ o) l₁ : Set.Nonempty (ω f ϕ.toFun s ∩ o) l₂ : Set.Nonempty (closure (image2 ϕ.toFun u s) ∩ o) ϕra : α ho : ϕra ∈ o w✝¹ : τ w✝ : α hr : w✝¹ ∈ u ha : w✝ ∈ s hϕra : toFun ϕ w✝¹ w✝ = ϕra ⊢ ∃ x, x ∈ u ∧ Set.Nonempty (toFun ϕ x '' s ∩ n) [PROOFSTEP] exact ⟨_, hr, ϕra, ⟨_, ha, hϕra⟩, ho₁ ho⟩
{"mathlib_filename": "Mathlib.Dynamics.OmegaLimit", "llama_tokens": 33571}
[GOAL] R : Type u_1 α : Type u_2 M : Type u_3 inst✝² : DivisionSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : α → α g : α → M x : α ⊢ birkhoffAverage R f g 0 x = 0 [PROOFSTEP] simp [birkhoffAverage] [GOAL] R : Type u_1 α : Type u_2 M : Type u_3 inst✝² : DivisionSemiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M f : α → α g : α → M x : α ⊢ birkhoffAverage R f g 1 x = g x [PROOFSTEP] simp [birkhoffAverage] [GOAL] R : Type u_1 α : Type u_2 M : Type u_3 inst✝⁶ : DivisionSemiring R inst✝⁵ : AddCommMonoid M inst✝⁴ : Module R M S : Type u_4 F : Type u_5 N : Type u_6 inst✝³ : DivisionSemiring S inst✝² : AddCommMonoid N inst✝¹ : Module S N inst✝ : AddMonoidHomClass F M N g' : F f : α → α g : α → M n : ℕ x : α ⊢ ↑g' (birkhoffAverage R f g n x) = birkhoffAverage S f (↑g' ∘ g) n x [PROOFSTEP] simp only [birkhoffAverage, map_inv_nat_cast_smul g' R S, map_birkhoffSum] [GOAL] R : Type u_1 α : Type u_2 M : Type u_3 inst✝⁴ : DivisionSemiring R inst✝³ : AddCommMonoid M inst✝² : Module R M S : Type u_4 inst✝¹ : DivisionSemiring S inst✝ : Module S M ⊢ birkhoffAverage R = birkhoffAverage S [PROOFSTEP] ext [GOAL] case h.h.h.h R : Type u_1 α : Type u_2 M : Type u_3 inst✝⁴ : DivisionSemiring R inst✝³ : AddCommMonoid M inst✝² : Module R M S : Type u_4 inst✝¹ : DivisionSemiring S inst✝ : Module S M x✝³ : α → α x✝² : α → M x✝¹ : ℕ x✝ : α ⊢ birkhoffAverage R x✝³ x✝² x✝¹ x✝ = birkhoffAverage S x✝³ x✝² x✝¹ x✝ [PROOFSTEP] apply birkhoffAverage_congr_ring [GOAL] R : Type u_1 α : Type u_2 M : Type u_3 inst✝³ : DivisionSemiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : CharZero R f : α → α x : α h : IsFixedPt f x g : α → M n : ℕ hn : n ≠ 0 ⊢ birkhoffAverage R f g n x = g x [PROOFSTEP] rw [birkhoffAverage, h.birkhoffSum_eq, nsmul_eq_smul_cast R, inv_smul_smul₀] [GOAL] case hc R : Type u_1 α : Type u_2 M : Type u_3 inst✝³ : DivisionSemiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : CharZero R f : α → α x : α h : IsFixedPt f x g : α → M n : ℕ hn : n ≠ 0 ⊢ ↑n ≠ 0 [PROOFSTEP] rwa [Nat.cast_ne_zero] [GOAL] M : Type u_2 α : Type u_3 R : Type u_1 inst✝² : DivisionRing R inst✝¹ : AddCommGroup M inst✝ : Module R M f : α → α g : α → M n : ℕ x : α ⊢ birkhoffAverage R f g n (f x) - birkhoffAverage R f g n x = (↑n)⁻¹ • (g (f^[n] x) - g x) [PROOFSTEP] simp only [birkhoffAverage, birkhoffSum_apply_sub_birkhoffSum, ← smul_sub]
{"mathlib_filename": "Mathlib.Dynamics.BirkhoffSum.Average", "llama_tokens": 1232}
{"mathlib_filename": "Mathlib.Tactic.LeftRight", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.ComputeDegree", "llama_tokens": 0}
[GOAL] α : Type u_1 M : Type u_2 inst✝ : AddCommMonoid M f : α → α g : α → M m n : ℕ x : α ⊢ birkhoffSum f g (m + n) x = birkhoffSum f g m x + birkhoffSum f g n (f^[m] x) [PROOFSTEP] simp_rw [birkhoffSum, sum_range_add, add_comm m, iterate_add_apply] [GOAL] α : Type u_1 M : Type u_2 inst✝ : AddCommMonoid M f : α → α x : α h : IsFixedPt f x g : α → M n : ℕ ⊢ birkhoffSum f g n x = n • g x [PROOFSTEP] simp [birkhoffSum, (h.iterate _).eq] [GOAL] α : Type u_1 G : Type u_2 inst✝ : AddCommGroup G f : α → α g : α → G n : ℕ x : α ⊢ birkhoffSum f g n (f x) - birkhoffSum f g n x = g (f^[n] x) - g x [PROOFSTEP] rw [← sub_eq_iff_eq_add.2 (birkhoffSum_succ f g n x), ← sub_eq_iff_eq_add.2 (birkhoffSum_succ' f g n x), ← sub_add, ← sub_add, sub_add_comm]
{"mathlib_filename": "Mathlib.Dynamics.BirkhoffSum.Basic", "llama_tokens": 393}
{"mathlib_filename": "Mathlib.Tactic.Propose", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa✝ : Measure α μb✝ : Measure β μc : Measure γ μd : Measure δ e : α ≃ᵐ β μa : Measure α μb : Measure β h : MeasurePreserving ↑e ⊢ map (↑(MeasurableEquiv.symm e)) μb = μa [PROOFSTEP] rw [← h.map_eq, map_map e.symm.measurable e.measurable, e.symm_comp_self, map_id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ f : α → β hf : MeasurePreserving f s : Set β hs : MeasurableSet s ⊢ map f (Measure.restrict μa (f ⁻¹' s)) = Measure.restrict μb s [PROOFSTEP] rw [← hf.map_eq, restrict_map hf.measurable hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ f : α → β hf : MeasurePreserving f h₂ : MeasurableEmbedding f s : Set β ⊢ map f (Measure.restrict μa (f ⁻¹' s)) = Measure.restrict μb s [PROOFSTEP] rw [← hf.map_eq, h₂.restrict_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ f : α → β hf : MeasurePreserving f h₂ : MeasurableEmbedding f s : Set α ⊢ MeasurePreserving f [PROOFSTEP] simpa only [Set.preimage_image_eq _ h₂.injective] using hf.restrict_preimage_emb h₂ (f '' s) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ f : α → β hf : MeasurePreserving f h₂ : MeasurableEmbedding f g : β → γ ⊢ AEMeasurable (g ∘ f) ↔ AEMeasurable g [PROOFSTEP] rw [← hf.map_eq, h₂.aemeasurable_map_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ g : β → γ f : α → β hg : MeasurePreserving g hf : MeasurePreserving f ⊢ map (g ∘ f) μa = μc [PROOFSTEP] rw [← map_map hg.1 hf.1, hf.2, hg.2] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ g : α → β e : β ≃ᵐ γ h : MeasurePreserving ↑e ⊢ MeasurePreserving (↑e ∘ g) ↔ MeasurePreserving g [PROOFSTEP] refine' ⟨fun hg => _, fun hg => h.comp hg⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ g : α → β e : β ≃ᵐ γ h : MeasurePreserving ↑e hg : MeasurePreserving (↑e ∘ g) ⊢ MeasurePreserving g [PROOFSTEP] convert (MeasurePreserving.symm e h).comp hg [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ g : α → β e : β ≃ᵐ γ h : MeasurePreserving ↑e hg : MeasurePreserving (↑e ∘ g) ⊢ g = ↑(MeasurableEquiv.symm e) ∘ ↑e ∘ g [PROOFSTEP] simp [← Function.comp.assoc e.symm e g] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ g : α → β e : γ ≃ᵐ α h : MeasurePreserving ↑e ⊢ MeasurePreserving (g ∘ ↑e) ↔ MeasurePreserving g [PROOFSTEP] refine' ⟨fun hg => _, fun hg => hg.comp h⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ g : α → β e : γ ≃ᵐ α h : MeasurePreserving ↑e hg : MeasurePreserving (g ∘ ↑e) ⊢ MeasurePreserving g [PROOFSTEP] convert hg.comp (MeasurePreserving.symm e h) [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ g : α → β e : γ ≃ᵐ α h : MeasurePreserving ↑e hg : MeasurePreserving (g ∘ ↑e) ⊢ g = (g ∘ ↑e) ∘ ↑(MeasurableEquiv.symm e) [PROOFSTEP] simp [Function.comp.assoc g e e.symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : MeasurableSpace α inst✝³ : MeasurableSpace β inst✝² : MeasurableSpace γ inst✝¹ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ f : α → β hf : MeasurePreserving f inst✝ : SigmaFinite μb ⊢ SigmaFinite (map f μa) [PROOFSTEP] rwa [hf.map_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ f : α → β hf : MeasurePreserving f s : Set β hs : MeasurableSet s ⊢ ↑↑μa (f ⁻¹' s) = ↑↑μb s [PROOFSTEP] rw [← hf.map_eq, map_apply hf.1 hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ f : α → β hf : MeasurePreserving f hfe : MeasurableEmbedding f s : Set β ⊢ ↑↑μa (f ⁻¹' s) = ↑↑μb s [PROOFSTEP] rw [← hf.map_eq, hfe.map_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ ⊢ ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s)) [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s ⊢ ↑↑μ (s ∆ (f^[Nat.zero] ⁻¹' s)) ≤ Nat.zero • ↑↑μ (s ∆ (f ⁻¹' s)) case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ ih : ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s)) ⊢ ↑↑μ (s ∆ (f^[Nat.succ n] ⁻¹' s)) ≤ Nat.succ n • ↑↑μ (s ∆ (f ⁻¹' s)) [PROOFSTEP] simp [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ ih : ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s)) ⊢ ↑↑μ (s ∆ (f^[Nat.succ n] ⁻¹' s)) ≤ Nat.succ n • ↑↑μ (s ∆ (f ⁻¹' s)) [PROOFSTEP] simp only [add_smul, one_smul, ← n.add_one] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ ih : ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s)) ⊢ ↑↑μ (s ∆ (f^[n + 1] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s)) + ↑↑μ (s ∆ (f ⁻¹' s)) [PROOFSTEP] refine' le_trans (measure_symmDiff_le s (f^[n] ⁻¹' s) (f^[n + 1] ⁻¹' s)) (add_le_add ih _) [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ ih : ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s)) ⊢ ↑↑μ ((f^[n] ⁻¹' s) ∆ (f^[n + 1] ⁻¹' s)) ≤ ↑↑μ (s ∆ (f ⁻¹' s)) [PROOFSTEP] replace hs : MeasurableSet (s ∆ (f ⁻¹' s)) := hs.symmDiff $ hf.measurable hs [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f n : ℕ ih : ↑↑μ (s ∆ (f^[n] ⁻¹' s)) ≤ n • ↑↑μ (s ∆ (f ⁻¹' s)) hs : MeasurableSet (s ∆ (f ⁻¹' s)) ⊢ ↑↑μ ((f^[n] ⁻¹' s) ∆ (f^[n + 1] ⁻¹' s)) ≤ ↑↑μ (s ∆ (f ⁻¹' s)) [PROOFSTEP] rw [iterate_succ', preimage_comp, ← preimage_symmDiff, (hf.iterate n).measure_preimage hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ hvol : ↑↑μ univ < ↑n * ↑↑μ s ⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s [PROOFSTEP] have A : ∀ m, MeasurableSet (f^[m] ⁻¹' s) := fun m => (hf.iterate m).measurable hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ hvol : ↑↑μ univ < ↑n * ↑↑μ s A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s) ⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s [PROOFSTEP] have B : ∀ m, μ (f^[m] ⁻¹' s) = μ s := fun m => (hf.iterate m).measure_preimage hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ hvol : ↑↑μ univ < ↑n * ↑↑μ s A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s) B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s ⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s [PROOFSTEP] have : μ (Set.univ : Set α) < (Finset.range n).sum fun m => μ (f^[m] ⁻¹' s) := by simpa only [B, nsmul_eq_mul, Finset.sum_const, Finset.card_range] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ hvol : ↑↑μ univ < ↑n * ↑↑μ s A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s) B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s ⊢ ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s) [PROOFSTEP] simpa only [B, nsmul_eq_mul, Finset.sum_const, Finset.card_range] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ hvol : ↑↑μ univ < ↑n * ↑↑μ s A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s) B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s this : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s) ⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s [PROOFSTEP] rcases exists_nonempty_inter_of_measure_univ_lt_sum_measure μ (fun m _ => A m) this with ⟨i, hi, j, hj, hij, x, hxi, hxj⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ hvol : ↑↑μ univ < ↑n * ↑↑μ s A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s) B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s this : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s) i : ℕ hi : i ∈ Finset.range n j : ℕ hj : j ∈ Finset.range n hij : i ≠ j x : α hxi : x ∈ f^[i] ⁻¹' s hxj : x ∈ f^[j] ⁻¹' s ⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s [PROOFSTEP] wlog hlt : i < j generalizing i j [GOAL] case intro.intro.intro.intro.intro.intro.intro.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ hvol : ↑↑μ univ < ↑n * ↑↑μ s A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s) B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s this✝ : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s) i : ℕ hi : i ∈ Finset.range n j : ℕ hj : j ∈ Finset.range n hij : i ≠ j x : α hxi : x ∈ f^[i] ⁻¹' s hxj : x ∈ f^[j] ⁻¹' s this : ∀ (i : ℕ), i ∈ Finset.range n → ∀ (j : ℕ), j ∈ Finset.range n → i ≠ j → x ∈ f^[i] ⁻¹' s → x ∈ f^[j] ⁻¹' s → i < j → ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s hlt : ¬i < j ⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s [PROOFSTEP] exact this j hj i hi hij.symm hxj hxi (hij.lt_or_lt.resolve_left hlt) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ hvol : ↑↑μ univ < ↑n * ↑↑μ s A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s) B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s this : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s) x : α i : ℕ hi : i ∈ Finset.range n j : ℕ hj : j ∈ Finset.range n hij : i ≠ j hxi : x ∈ f^[i] ⁻¹' s hxj : x ∈ f^[j] ⁻¹' s hlt : i < j ⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s [PROOFSTEP] simp only [Set.mem_preimage, Finset.mem_range] at hi hj hxi hxj [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ hvol : ↑↑μ univ < ↑n * ↑↑μ s A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s) B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s this : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s) x : α i j : ℕ hij : i ≠ j hlt : i < j hi : i < n hj : j < n hxi : f^[i] x ∈ s hxj : f^[j] x ∈ s ⊢ ∃ x, x ∈ s ∧ ∃ m, m ∈ Ioo 0 n ∧ f^[m] x ∈ s [PROOFSTEP] refine' ⟨f^[i] x, hxi, j - i, ⟨tsub_pos_of_lt hlt, lt_of_le_of_lt (j.sub_le i) hj⟩, _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α hf : MeasurePreserving f hs : MeasurableSet s n : ℕ hvol : ↑↑μ univ < ↑n * ↑↑μ s A : ∀ (m : ℕ), MeasurableSet (f^[m] ⁻¹' s) B : ∀ (m : ℕ), ↑↑μ (f^[m] ⁻¹' s) = ↑↑μ s this : ↑↑μ univ < Finset.sum (Finset.range n) fun m => ↑↑μ (f^[m] ⁻¹' s) x : α i j : ℕ hij : i ≠ j hlt : i < j hi : i < n hj : j < n hxi : f^[i] x ∈ s hxj : f^[j] x ∈ s ⊢ f^[j - i] (f^[i] x) ∈ s [PROOFSTEP] rwa [← iterate_add_apply, tsub_add_cancel_of_le hlt.le] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : MeasurableSpace α inst✝³ : MeasurableSpace β inst✝² : MeasurableSpace γ inst✝¹ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α inst✝ : IsFiniteMeasure μ hf : MeasurePreserving f hs : MeasurableSet s hs' : ↑↑μ s ≠ 0 ⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[m] x ∈ s [PROOFSTEP] rcases ENNReal.exists_nat_mul_gt hs' (measure_ne_top μ (Set.univ : Set α)) with ⟨N, hN⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : MeasurableSpace α inst✝³ : MeasurableSpace β inst✝² : MeasurableSpace γ inst✝¹ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α inst✝ : IsFiniteMeasure μ hf : MeasurePreserving f hs : MeasurableSet s hs' : ↑↑μ s ≠ 0 N : ℕ hN : ↑↑μ univ < ↑N * ↑↑μ s ⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[m] x ∈ s [PROOFSTEP] rcases hf.exists_mem_image_mem_of_volume_lt_mul_volume hs hN with ⟨x, hx, m, hm, hmx⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁴ : MeasurableSpace α inst✝³ : MeasurableSpace β inst✝² : MeasurableSpace γ inst✝¹ : MeasurableSpace δ μa : Measure α μb : Measure β μc : Measure γ μd : Measure δ μ : Measure α f : α → α s : Set α inst✝ : IsFiniteMeasure μ hf : MeasurePreserving f hs : MeasurableSet s hs' : ↑↑μ s ≠ 0 N : ℕ hN : ↑↑μ univ < ↑N * ↑↑μ s x : α hx : x ∈ s m : ℕ hm : m ∈ Ioo 0 N hmx : f^[m] x ∈ s ⊢ ∃ x, x ∈ s ∧ ∃ m x_1, f^[m] x ∈ s [PROOFSTEP] exact ⟨x, hx, m, hm.1.ne', hmx⟩
{"mathlib_filename": "Mathlib.Dynamics.Ergodic.MeasurePreserving", "llama_tokens": 9508}
{"mathlib_filename": "Mathlib.Tactic.SudoSetOption", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Linarith", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Inhabit", "llama_tokens": 0}
[GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : PreErgodic f hs : MeasurableSet s hs' : f ⁻¹' s = s ⊢ ↑↑μ s = 0 ∨ ↑↑μ sᶜ = 0 [PROOFSTEP] simpa using hf.ae_empty_or_univ hs hs' [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α inst✝ : IsProbabilityMeasure μ hf : PreErgodic f hs : MeasurableSet s hs' : f ⁻¹' s = s ⊢ ↑↑μ s = 0 ∨ ↑↑μ s = 1 [PROOFSTEP] simpa [hs] using hf.measure_self_or_compl_eq_zero hs hs' [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β hg : MeasurePreserving g hf : PreErgodic f f' : β → β h_comm : g ∘ f = f' ∘ g ⊢ ∀ ⦃s : Set β⦄, MeasurableSet s → f' ⁻¹' s = s → s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ [PROOFSTEP] intro s hs₀ hs₁ [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β hg : MeasurePreserving g hf : PreErgodic f f' : β → β h_comm : g ∘ f = f' ∘ g s : Set β hs₀ : MeasurableSet s hs₁ : f' ⁻¹' s = s ⊢ s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ [PROOFSTEP] replace hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s [GOAL] case hs₁ α : Type u_1 m : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β hg : MeasurePreserving g hf : PreErgodic f f' : β → β h_comm : g ∘ f = f' ∘ g s : Set β hs₀ : MeasurableSet s hs₁ : f' ⁻¹' s = s ⊢ f ⁻¹' (g ⁻¹' s) = g ⁻¹' s [PROOFSTEP] rw [← preimage_comp, h_comm, preimage_comp, hs₁] [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β hg : MeasurePreserving g hf : PreErgodic f f' : β → β h_comm : g ∘ f = f' ∘ g s : Set β hs₀ : MeasurableSet s hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s ⊢ s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ [PROOFSTEP] cases' hf.ae_empty_or_univ (hg.measurable hs₀) hs₁ with hs₂ hs₂ <;> [left; right] [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β hg : MeasurePreserving g hf : PreErgodic f f' : β → β h_comm : g ∘ f = f' ∘ g s : Set β hs₀ : MeasurableSet s hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s ⊢ s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ [PROOFSTEP] cases' hf.ae_empty_or_univ (hg.measurable hs₀) hs₁ with hs₂ hs₂ [GOAL] case inl α : Type u_1 m : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β hg : MeasurePreserving g hf : PreErgodic f f' : β → β h_comm : g ∘ f = f' ∘ g s : Set β hs₀ : MeasurableSet s hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s hs₂ : g ⁻¹' s =ᶠ[ae μ] ∅ ⊢ s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ [PROOFSTEP] left [GOAL] case inr α : Type u_1 m : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β hg : MeasurePreserving g hf : PreErgodic f f' : β → β h_comm : g ∘ f = f' ∘ g s : Set β hs₀ : MeasurableSet s hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s hs₂ : g ⁻¹' s =ᶠ[ae μ] univ ⊢ s =ᶠ[ae μ'] ∅ ∨ s =ᶠ[ae μ'] univ [PROOFSTEP] right [GOAL] case inl.h α : Type u_1 m : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β hg : MeasurePreserving g hf : PreErgodic f f' : β → β h_comm : g ∘ f = f' ∘ g s : Set β hs₀ : MeasurableSet s hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s hs₂ : g ⁻¹' s =ᶠ[ae μ] ∅ ⊢ s =ᶠ[ae μ'] ∅ [PROOFSTEP] simpa only [ae_eq_empty, hg.measure_preimage hs₀] using hs₂ [GOAL] case inr.h α : Type u_1 m : MeasurableSpace α f : α → α s✝ : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β hg : MeasurePreserving g hf : PreErgodic f f' : β → β h_comm : g ∘ f = f' ∘ g s : Set β hs₀ : MeasurableSet s hs₁ : f ⁻¹' (g ⁻¹' s) = g ⁻¹' s hs₂ : g ⁻¹' s =ᶠ[ae μ] univ ⊢ s =ᶠ[ae μ'] univ [PROOFSTEP] simpa only [ae_eq_univ, ← preimage_compl, hg.measure_preimage hs₀.compl] using hs₂ [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β e : α ≃ᵐ β h : MeasurePreserving ↑e ⊢ PreErgodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ PreErgodic f [PROOFSTEP] refine' ⟨fun hf => preErgodic_of_preErgodic_conjugate (h.symm e) hf _, fun hf => preErgodic_of_preErgodic_conjugate h hf _⟩ [GOAL] case refine'_1 α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β e : α ≃ᵐ β h : MeasurePreserving ↑e hf : PreErgodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ⊢ ↑(MeasurableEquiv.symm e) ∘ ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = f ∘ ↑(MeasurableEquiv.symm e) [PROOFSTEP] change (e.symm ∘ e) ∘ f ∘ e.symm = f ∘ e.symm [GOAL] case refine'_1 α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β e : α ≃ᵐ β h : MeasurePreserving ↑e hf : PreErgodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ⊢ (↑(MeasurableEquiv.symm e) ∘ ↑e) ∘ f ∘ ↑(MeasurableEquiv.symm e) = f ∘ ↑(MeasurableEquiv.symm e) [PROOFSTEP] rw [MeasurableEquiv.symm_comp_self, comp.left_id] [GOAL] case refine'_2 α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β e : α ≃ᵐ β h : MeasurePreserving ↑e hf : PreErgodic f ⊢ ↑e ∘ f = (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ∘ ↑e [PROOFSTEP] change e ∘ f = e ∘ f ∘ e.symm ∘ e [GOAL] case refine'_2 α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β e : α ≃ᵐ β h : MeasurePreserving ↑e hf : PreErgodic f ⊢ ↑e ∘ f = ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) ∘ ↑e [PROOFSTEP] rw [MeasurableEquiv.symm_comp_self, comp.right_id] [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β e : α ≃ᵐ β h : MeasurePreserving ↑e ⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f [PROOFSTEP] have : MeasurePreserving (e ∘ f ∘ e.symm) μ' μ' ↔ MeasurePreserving f μ μ := by rw [h.comp_left_iff, (MeasurePreserving.symm e h).comp_right_iff] [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β e : α ≃ᵐ β h : MeasurePreserving ↑e ⊢ MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f [PROOFSTEP] rw [h.comp_left_iff, (MeasurePreserving.symm e h).comp_right_iff] [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β e : α ≃ᵐ β h : MeasurePreserving ↑e this : MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f ⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f [PROOFSTEP] replace h : PreErgodic (e ∘ f ∘ e.symm) μ' ↔ PreErgodic f μ := h.preErgodic_conjugate_iff [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α β : Type u_2 m' : MeasurableSpace β μ' : Measure β s' : Set β g : α → β e : α ≃ᵐ β this : MeasurePreserving (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ MeasurePreserving f h : PreErgodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ PreErgodic f ⊢ Ergodic (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) ↔ Ergodic f [PROOFSTEP] exact ⟨fun hf => { this.mp hf.toMeasurePreserving, h.mp hf.toPreErgodic with }, fun hf => { this.mpr hf.toMeasurePreserving, h.mpr hf.toPreErgodic with }⟩ [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : QuasiErgodic f hs : MeasurableSet s hs' : f ⁻¹' s =ᶠ[ae μ] s ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] obtain ⟨t, h₀, h₁, h₂⟩ := hf.toQuasiMeasurePreserving.exists_preimage_eq_of_preimage_ae hs hs' [GOAL] case intro.intro.intro α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : QuasiErgodic f hs : MeasurableSet s hs' : f ⁻¹' s =ᶠ[ae μ] s t : Set α h₀ : MeasurableSet t h₁ : t =ᶠ[ae μ] s h₂ : f ⁻¹' t = t ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] rcases hf.ae_empty_or_univ h₀ h₂ with (h₃ | h₃) <;> [left; right] [GOAL] case intro.intro.intro α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : QuasiErgodic f hs : MeasurableSet s hs' : f ⁻¹' s =ᶠ[ae μ] s t : Set α h₀ : MeasurableSet t h₁ : t =ᶠ[ae μ] s h₂ : f ⁻¹' t = t ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] rcases hf.ae_empty_or_univ h₀ h₂ with (h₃ | h₃) [GOAL] case intro.intro.intro.inl α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : QuasiErgodic f hs : MeasurableSet s hs' : f ⁻¹' s =ᶠ[ae μ] s t : Set α h₀ : MeasurableSet t h₁ : t =ᶠ[ae μ] s h₂ : f ⁻¹' t = t h₃ : t =ᶠ[ae μ] ∅ ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] left [GOAL] case intro.intro.intro.inr α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : QuasiErgodic f hs : MeasurableSet s hs' : f ⁻¹' s =ᶠ[ae μ] s t : Set α h₀ : MeasurableSet t h₁ : t =ᶠ[ae μ] s h₂ : f ⁻¹' t = t h₃ : t =ᶠ[ae μ] univ ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] right [GOAL] case intro.intro.intro.inl.h α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : QuasiErgodic f hs : MeasurableSet s hs' : f ⁻¹' s =ᶠ[ae μ] s t : Set α h₀ : MeasurableSet t h₁ : t =ᶠ[ae μ] s h₂ : f ⁻¹' t = t h₃ : t =ᶠ[ae μ] ∅ ⊢ s =ᶠ[ae μ] ∅ [PROOFSTEP] exact ae_eq_trans h₁.symm h₃ [GOAL] case intro.intro.intro.inr.h α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : QuasiErgodic f hs : MeasurableSet s hs' : f ⁻¹' s =ᶠ[ae μ] s t : Set α h₀ : MeasurableSet t h₁ : t =ᶠ[ae μ] s h₂ : f ⁻¹' t = t h₃ : t =ᶠ[ae μ] univ ⊢ s =ᶠ[ae μ] univ [PROOFSTEP] exact ae_eq_trans h₁.symm h₃ [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : QuasiErgodic f hsm : NullMeasurableSet s hs : f ⁻¹' s =ᶠ[ae μ] s ⊢ s =ᶠ[ae μ] univ → ∀ᵐ (x : α) ∂μ, x ∈ s [PROOFSTEP] simp [mem_ae_iff] [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : QuasiErgodic f hsm : NullMeasurableSet s hs : f ⁻¹' s =ᶠ[ae μ] s ⊢ s =ᶠ[ae μ] ∅ → ∀ᵐ (x : α) ∂μ, ¬x ∈ s [PROOFSTEP] simp [ae_iff] [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Ergodic f hs : MeasurableSet s hs' : f ⁻¹' s ≤ᶠ[ae μ] s h_fin : ↑↑μ s ≠ ⊤ ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] refine' hf.quasiErgodic.ae_empty_or_univ' hs _ [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Ergodic f hs : MeasurableSet s hs' : f ⁻¹' s ≤ᶠ[ae μ] s h_fin : ↑↑μ s ≠ ⊤ ⊢ f ⁻¹' s =ᶠ[ae μ] s [PROOFSTEP] refine' ae_eq_of_ae_subset_of_measure_ge hs' (hf.measure_preimage hs).symm.le _ h_fin [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Ergodic f hs : MeasurableSet s hs' : f ⁻¹' s ≤ᶠ[ae μ] s h_fin : ↑↑μ s ≠ ⊤ ⊢ MeasurableSet (f ⁻¹' s) [PROOFSTEP] exact measurableSet_preimage hf.measurable hs [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Ergodic f hs : MeasurableSet s hs' : s ≤ᶠ[ae μ] f ⁻¹' s h_fin : ↑↑μ s ≠ ⊤ ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] replace h_fin : μ (f ⁻¹' s) ≠ ∞ [GOAL] case h_fin α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Ergodic f hs : MeasurableSet s hs' : s ≤ᶠ[ae μ] f ⁻¹' s h_fin : ↑↑μ s ≠ ⊤ ⊢ ↑↑μ (f ⁻¹' s) ≠ ⊤ [PROOFSTEP] rwa [hf.measure_preimage hs] [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Ergodic f hs : MeasurableSet s hs' : s ≤ᶠ[ae μ] f ⁻¹' s h_fin : ↑↑μ (f ⁻¹' s) ≠ ⊤ ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] refine' hf.quasiErgodic.ae_empty_or_univ' hs _ [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Ergodic f hs : MeasurableSet s hs' : s ≤ᶠ[ae μ] f ⁻¹' s h_fin : ↑↑μ (f ⁻¹' s) ≠ ⊤ ⊢ f ⁻¹' s =ᶠ[ae μ] s [PROOFSTEP] exact (ae_eq_of_ae_subset_of_measure_ge hs' (hf.measure_preimage hs).le hs h_fin).symm [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Ergodic f hs : MeasurableSet s hs' : f '' s ≤ᶠ[ae μ] s h_fin : ↑↑μ s ≠ ⊤ ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] replace hs' : s ≤ᵐ[μ] f ⁻¹' s := (HasSubset.Subset.eventuallyLE (subset_preimage_image f s)).trans (hf.quasiMeasurePreserving.preimage_mono_ae hs') [GOAL] α : Type u_1 m : MeasurableSpace α f : α → α s : Set α μ : Measure α hf : Ergodic f hs : MeasurableSet s h_fin : ↑↑μ s ≠ ⊤ hs' : s ≤ᶠ[ae μ] f ⁻¹' s ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] exact ae_empty_or_univ_of_ae_le_preimage' hf hs hs' h_fin
{"mathlib_filename": "Mathlib.Dynamics.Ergodic.Ergodic", "llama_tokens": 6958}
{"mathlib_filename": "Mathlib.Tactic.Recover", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.SimpIntro", "llama_tokens": 0}
[GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J ⊢ integralSum f vol (Prepartition.biUnionTagged π πi) = ∑ J in π.boxes, integralSum f vol (πi J) [PROOFSTEP] refine (π.sum_biUnion_boxes _ _).trans <| sum_congr rfl fun J hJ => sum_congr rfl fun J' hJ' => ?_ [GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π : Prepartition I πi : (J : Box ι) → TaggedPrepartition J J : Box ι hJ : J ∈ π.boxes J' : Box ι hJ' : J' ∈ (πi J).boxes ⊢ ↑(↑vol J') (f (tag (Prepartition.biUnionTagged π πi) J')) = ↑(↑vol J') (f (tag (πi J) J')) [PROOFSTEP] rw [π.tag_biUnionTagged hJ hJ'] [GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π : TaggedPrepartition I πi : (J : Box ι) → Prepartition J hπi : ∀ (J : Box ι), J ∈ π → Prepartition.IsPartition (πi J) ⊢ integralSum f vol (biUnionPrepartition π πi) = integralSum f vol π [PROOFSTEP] refine' (π.sum_biUnion_boxes _ _).trans (sum_congr rfl fun J hJ => _) [GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π : TaggedPrepartition I πi : (J : Box ι) → Prepartition J hπi : ∀ (J : Box ι), J ∈ π → Prepartition.IsPartition (πi J) J : Box ι hJ : J ∈ π.boxes ⊢ ∑ J' in (πi J).boxes, ↑(↑vol J') (f (tag (biUnionPrepartition π πi) J')) = ↑(↑vol J) (f (tag π J)) [PROOFSTEP] calc (∑ J' in (πi J).boxes, vol J' (f (π.tag <| π.toPrepartition.biUnionIndex πi J'))) = ∑ J' in (πi J).boxes, vol J' (f (π.tag J)) := sum_congr rfl fun J' hJ' => by rw [Prepartition.biUnionIndex_of_mem _ hJ hJ'] _ = vol J (f (π.tag J)) := (vol.map ⟨⟨fun g : E →L[ℝ] F => g (f (π.tag J)), rfl⟩, fun _ _ => rfl⟩).sum_partition_boxes le_top (hπi J hJ) [GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π : TaggedPrepartition I πi : (J : Box ι) → Prepartition J hπi : ∀ (J : Box ι), J ∈ π → Prepartition.IsPartition (πi J) J : Box ι hJ : J ∈ π.boxes J' : Box ι hJ' : J' ∈ (πi J).boxes ⊢ ↑(↑vol J') (f (tag π (Prepartition.biUnionIndex π.toPrepartition πi J'))) = ↑(↑vol J') (f (tag π J)) [PROOFSTEP] rw [Prepartition.biUnionIndex_of_mem _ hJ hJ'] [GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π₁ π₂ : TaggedPrepartition I h₁ : IsPartition π₁ h₂ : IsPartition π₂ ⊢ integralSum f vol π₁ - integralSum f vol π₂ = ∑ J in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes, (↑(↑vol J) (f (tag (infPrepartition π₁ π₂.toPrepartition) J)) - ↑(↑vol J) (f (tag (infPrepartition π₂ π₁.toPrepartition) J))) [PROOFSTEP] rw [← integralSum_inf_partition f vol π₁ h₂, ← integralSum_inf_partition f vol π₂ h₁, integralSum, integralSum, Finset.sum_sub_distrib] [GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π₁ π₂ : TaggedPrepartition I h₁ : IsPartition π₁ h₂ : IsPartition π₂ ⊢ ∑ J in (infPrepartition π₁ π₂.toPrepartition).toPrepartition.boxes, ↑(↑vol J) (f (tag (infPrepartition π₁ π₂.toPrepartition) J)) - ∑ J in (infPrepartition π₂ π₁.toPrepartition).toPrepartition.boxes, ↑(↑vol J) (f (tag (infPrepartition π₂ π₁.toPrepartition) J)) = ∑ x in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes, ↑(↑vol x) (f (tag (infPrepartition π₁ π₂.toPrepartition) x)) - ∑ x in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes, ↑(↑vol x) (f (tag (infPrepartition π₂ π₁.toPrepartition) x)) [PROOFSTEP] simp only [infPrepartition_toPrepartition, inf_comm] [GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π₁ π₂ : TaggedPrepartition I h : Disjoint (TaggedPrepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) ⊢ integralSum f vol (TaggedPrepartition.disjUnion π₁ π₂ h) = integralSum f vol π₁ + integralSum f vol π₂ [PROOFSTEP] refine' (Prepartition.sum_disj_union_boxes h _).trans (congr_arg₂ (· + ·) (sum_congr rfl fun J hJ => _) (sum_congr rfl fun J hJ => _)) [GOAL] case refine'_1 ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π₁ π₂ : TaggedPrepartition I h : Disjoint (TaggedPrepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) J : Box ι hJ : J ∈ π₁.boxes ⊢ ↑(↑vol J) (f (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J)) = ↑(↑vol J) (f (tag π₁ J)) [PROOFSTEP] rw [disjUnion_tag_of_mem_left _ hJ] [GOAL] case refine'_2 ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π₁ π₂ : TaggedPrepartition I h : Disjoint (TaggedPrepartition.iUnion π₁) (TaggedPrepartition.iUnion π₂) J : Box ι hJ : J ∈ π₂.boxes ⊢ ↑(↑vol J) (f (tag (TaggedPrepartition.disjUnion π₁ π₂ h) J)) = ↑(↑vol J) (f (tag π₂ J)) [PROOFSTEP] rw [disjUnion_tag_of_mem_right _ hJ] [GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π : TaggedPrepartition I ⊢ integralSum (f + g) vol π = integralSum f vol π + integralSum g vol π [PROOFSTEP] simp only [integralSum, Pi.add_apply, (vol _).map_add, Finset.sum_add_distrib] [GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π : TaggedPrepartition I ⊢ integralSum (-f) vol π = -integralSum f vol π [PROOFSTEP] simp only [integralSum, Pi.neg_apply, (vol _).map_neg, Finset.sum_neg_distrib] [GOAL] ι : Type u E : Type v F : Type w inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I c : ℝ f : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F π : TaggedPrepartition I ⊢ integralSum (c • f) vol π = c • integralSum f vol π [PROOFSTEP] simp only [integralSum, Finset.smul_sum, Pi.smul_apply, ContinuousLinearMap.map_smul] [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F ⊢ (∀ (ib : ℝ), 0 < ib → ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall y ib) ↔ ∀ (ε : ℝ), ε > 0 → ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ ε [PROOFSTEP] simp [@forall_swap ℝ≥0 (TaggedPrepartition I)] [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F a : ℝ h : ∀ (ε : ℝ), 0 < ε → ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ a * ε ⊢ HasIntegral I l f vol y [PROOFSTEP] refine' hasIntegral_iff.2 fun ε hε => _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F a : ℝ h : ∀ (ε : ℝ), 0 < ε → ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ a * ε ε : ℝ hε : ε > 0 ⊢ ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ ε [PROOFSTEP] rcases exists_pos_mul_lt hε a with ⟨ε', hε', ha⟩ [GOAL] case intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F a : ℝ h : ∀ (ε : ℝ), 0 < ε → ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ a * ε ε : ℝ hε : ε > 0 ε' : ℝ hε' : 0 < ε' ha : a * ε' < ε ⊢ ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ ε [PROOFSTEP] rcases h ε' hε' with ⟨r, hr, H⟩ [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F a : ℝ h : ∀ (ε : ℝ), 0 < ε → ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ a * ε ε : ℝ hε : ε > 0 ε' : ℝ hε' : 0 < ε' ha : a * ε' < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) hr : ∀ (c : ℝ≥0), RCond l (r c) H : ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ a * ε' ⊢ ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) y ≤ ε [PROOFSTEP] exact ⟨r, hr, fun c π hπ hπp => (H c π hπ hπp).trans ha.le⟩ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝ : CompleteSpace F ⊢ Integrable I l f vol ↔ ∀ (ε : ℝ), ε > 0 → ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I), MemBaseSet l I c₁ (r c₁) π₁ → IsPartition π₁ → MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε [PROOFSTEP] rw [integrable_iff_cauchy, cauchy_map_iff', (l.hasBasis_toFilteriUnion_top _).prod_self.tendsto_iff uniformity_basis_dist_le] [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝ : CompleteSpace F ⊢ (∀ (ib : ℝ), 0 < ib → ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I × TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} ×ˢ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → (integralSum f vol x.fst, integralSum f vol x.snd) ∈ {p | dist p.fst p.snd ≤ ib}) ↔ ∀ (ε : ℝ), ε > 0 → ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I), MemBaseSet l I c₁ (r c₁) π₁ → IsPartition π₁ → MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε [PROOFSTEP] refine' forall₂_congr fun ε _ => exists_congr fun r => _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝ : CompleteSpace F ε : ℝ x✝ : 0 < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) ⊢ ((∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (x : TaggedPrepartition I × TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (r c) π ∧ IsPartition π} ×ˢ {π | ∃ c, MemBaseSet l I c (r c) π ∧ IsPartition π} → (integralSum f vol x.fst, integralSum f vol x.snd) ∈ {p | dist p.fst p.snd ≤ ε}) ↔ (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I), MemBaseSet l I c₁ (r c₁) π₁ → IsPartition π₁ → MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε [PROOFSTEP] simp only [exists_prop, Prod.forall, Set.mem_iUnion, exists_imp, prod_mk_mem_set_prod_eq, and_imp, mem_inter_iff, mem_setOf_eq] [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝ : CompleteSpace F ε : ℝ x✝ : 0 < ε r : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) ⊢ ((∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (a b : TaggedPrepartition I) (x : ℝ≥0), MemBaseSet l I x (r x) a → IsPartition a → ∀ (x : ℝ≥0), MemBaseSet l I x (r x) b → IsPartition b → dist (integralSum f vol a) (integralSum f vol b) ≤ ε) ↔ (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I), MemBaseSet l I c₁ (r c₁) π₁ → IsPartition π₁ → MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε [PROOFSTEP] exact and_congr Iff.rfl ⟨fun H c₁ c₂ π₁ π₂ h₁ hU₁ h₂ hU₂ => H π₁ π₂ c₁ h₁ hU₁ c₂ h₂ hU₂, fun H π₁ π₂ c₁ h₁ hU₁ c₂ h₂ hU₂ => H c₁ c₂ π₁ π₂ h₁ hU₁ h₂ hU₂⟩ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F h : Integrable I l f vol ⊢ HasIntegral I l f vol (integral I l f vol) [PROOFSTEP] rw [integral, dif_pos h] [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F h : Integrable I l f vol ⊢ HasIntegral I l f vol (Exists.choose h) [PROOFSTEP] exact Classical.choose_spec h [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F h : HasIntegral I l f vol y h' : HasIntegral I l g vol y' ⊢ HasIntegral I l (f + g) vol (y + y') [PROOFSTEP] simpa only [HasIntegral, ← integralSum_add] using h.add h' [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hf : HasIntegral I l f vol y ⊢ HasIntegral I l (-f) vol (-y) [PROOFSTEP] simpa only [HasIntegral, ← integralSum_neg] using hf.neg [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F h : ¬Integrable I l f vol ⊢ integral I l (-f) vol = -integral I l f vol [PROOFSTEP] rw [integral, integral, dif_neg h, dif_neg (mt Integrable.of_neg h), neg_zero] [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F h : HasIntegral I l f vol y h' : HasIntegral I l g vol y' ⊢ HasIntegral I l (f - g) vol (y - y') [PROOFSTEP] simpa only [sub_eq_add_neg] using h.add h'.neg [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F ⊢ HasIntegral I l (fun x => 0) vol 0 [PROOFSTEP] simpa only [← (vol I).map_zero] using hasIntegral_const (0 : E) [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f✝ g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F α : Type u_1 s : Finset α f : α → (ι → ℝ) → E g : α → F h : ∀ (i : α), i ∈ s → HasIntegral I l (f i) vol (g i) ⊢ HasIntegral I l (fun x => ∑ i in s, f i x) vol (∑ i in s, g i) [PROOFSTEP] induction' s using Finset.induction_on with a s ha ihs [GOAL] case empty ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f✝ g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F α : Type u_1 s : Finset α f : α → (ι → ℝ) → E g : α → F h✝ : ∀ (i : α), i ∈ s → HasIntegral I l (f i) vol (g i) h : ∀ (i : α), i ∈ ∅ → HasIntegral I l (f i) vol (g i) ⊢ HasIntegral I l (fun x => ∑ i in ∅, f i x) vol (∑ i in ∅, g i) [PROOFSTEP] simp [hasIntegral_zero] [GOAL] case insert ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f✝ g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F α : Type u_1 s✝ : Finset α f : α → (ι → ℝ) → E g : α → F h✝ : ∀ (i : α), i ∈ s✝ → HasIntegral I l (f i) vol (g i) a : α s : Finset α ha : ¬a ∈ s ihs : (∀ (i : α), i ∈ s → HasIntegral I l (f i) vol (g i)) → HasIntegral I l (fun x => ∑ i in s, f i x) vol (∑ i in s, g i) h : ∀ (i : α), i ∈ insert a s → HasIntegral I l (f i) vol (g i) ⊢ HasIntegral I l (fun x => ∑ i in insert a s, f i x) vol (∑ i in insert a s, g i) [PROOFSTEP] simp only [Finset.sum_insert ha] [GOAL] case insert ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f✝ g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F α : Type u_1 s✝ : Finset α f : α → (ι → ℝ) → E g : α → F h✝ : ∀ (i : α), i ∈ s✝ → HasIntegral I l (f i) vol (g i) a : α s : Finset α ha : ¬a ∈ s ihs : (∀ (i : α), i ∈ s → HasIntegral I l (f i) vol (g i)) → HasIntegral I l (fun x => ∑ i in s, f i x) vol (∑ i in s, g i) h : ∀ (i : α), i ∈ insert a s → HasIntegral I l (f i) vol (g i) ⊢ HasIntegral I l (fun x => f a x + ∑ i in s, f i x) vol (g a + ∑ i in s, g i) [PROOFSTEP] rw [Finset.forall_mem_insert] at h [GOAL] case insert ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f✝ g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F α : Type u_1 s✝ : Finset α f : α → (ι → ℝ) → E g : α → F h✝ : ∀ (i : α), i ∈ s✝ → HasIntegral I l (f i) vol (g i) a : α s : Finset α ha : ¬a ∈ s ihs : (∀ (i : α), i ∈ s → HasIntegral I l (f i) vol (g i)) → HasIntegral I l (fun x => ∑ i in s, f i x) vol (∑ i in s, g i) h : HasIntegral I l (f a) vol (g a) ∧ ∀ (x : α), x ∈ s → HasIntegral I l (f x) vol (g x) ⊢ HasIntegral I l (fun x => f a x + ∑ i in s, f i x) vol (g a + ∑ i in s, g i) [PROOFSTEP] exact h.1.add (ihs h.2) [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hf : HasIntegral I l f vol y c : ℝ ⊢ HasIntegral I l (c • f) vol (c • y) [PROOFSTEP] simpa only [HasIntegral, ← integralSum_smul] using (tendsto_const_nhds : Tendsto _ _ (𝓝 c)).smul hf [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c : ℝ hf : Integrable I l (c • f) vol hc : c ≠ 0 ⊢ Integrable I l f vol [PROOFSTEP] simpa [inv_smul_smul₀ hc] using hf.smul c⁻¹ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c : ℝ ⊢ integral I l (fun x => c • f x) vol = c • integral I l f vol [PROOFSTEP] rcases eq_or_ne c 0 with (rfl | hc) [GOAL] case inl ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F ⊢ integral I l (fun x => 0 • f x) vol = 0 • integral I l f vol [PROOFSTEP] simp only [zero_smul, integral_zero] [GOAL] case inr ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c : ℝ hc : c ≠ 0 ⊢ integral I l (fun x => c • f x) vol = c • integral I l f vol [PROOFSTEP] by_cases hf : Integrable I l f vol [GOAL] case pos ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c : ℝ hc : c ≠ 0 hf : Integrable I l f vol ⊢ integral I l (fun x => c • f x) vol = c • integral I l f vol [PROOFSTEP] exact (hf.hasIntegral.smul c).integral_eq [GOAL] case neg ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c : ℝ hc : c ≠ 0 hf : ¬Integrable I l f vol ⊢ integral I l (fun x => c • f x) vol = c • integral I l f vol [PROOFSTEP] have : ¬Integrable I l (fun x => c • f x) vol := mt (fun h => h.of_smul hc) hf [GOAL] case neg ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c : ℝ hc : c ≠ 0 hf : ¬Integrable I l f vol this : ¬Integrable I l (fun x => c • f x) vol ⊢ integral I l (fun x => c • f x) vol = c • integral I l f vol [PROOFSTEP] rw [integral, integral, dif_neg hf, dif_neg this, smul_zero] [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hg : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → 0 ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ⊢ 0 ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] by_cases hgi : Integrable I l g μ.toBoxAdditive.toSMul [GOAL] case pos ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hg : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → 0 ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hgi : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) ⊢ 0 ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] refine ge_of_tendsto' hgi.hasIntegral fun π => sum_nonneg fun J _ => ?_ [GOAL] case pos ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hg : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → 0 ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hgi : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π : TaggedPrepartition I J : Box ι x✝ : J ∈ π.boxes ⊢ 0 ≤ ↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (g (tag π J)) [PROOFSTEP] exact mul_nonneg ENNReal.toReal_nonneg (hg _ <| π.tag_mem_Icc _) [GOAL] case neg ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hg : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → 0 ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hgi : ¬Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) ⊢ 0 ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] rw [integral, dif_neg hgi] [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) ⊢ ‖integral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))‖ ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] by_cases hfi : Integrable.{u, v, v} I l f μ.toBoxAdditive.toSMul [GOAL] case pos ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfi : Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) ⊢ ‖integral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))‖ ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] refine' le_of_tendsto_of_tendsto' hfi.hasIntegral.norm hg.hasIntegral fun π => _ [GOAL] case pos ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfi : Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π : TaggedPrepartition I ⊢ ‖integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π‖ ≤ integralSum g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π [PROOFSTEP] refine' norm_sum_le_of_le _ fun J _ => _ [GOAL] case pos ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfi : Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π : TaggedPrepartition I J : Box ι x✝ : J ∈ π.boxes ⊢ ‖↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (f (tag π J))‖ ≤ ↑(↑(BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) J) (g (tag π J)) [PROOFSTEP] simp only [BoxAdditiveMap.toSMul_apply, norm_smul, smul_eq_mul, Real.norm_eq_abs, μ.toBoxAdditive_apply, abs_of_nonneg ENNReal.toReal_nonneg] [GOAL] case pos ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfi : Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π : TaggedPrepartition I J : Box ι x✝ : J ∈ π.boxes ⊢ ENNReal.toReal (↑↑μ ↑J) * ‖f (tag π J)‖ ≤ ENNReal.toReal (↑↑μ ↑J) * g (tag π J) [PROOFSTEP] exact mul_le_mul_of_nonneg_left (hle _ <| π.tag_mem_Icc _) ENNReal.toReal_nonneg [GOAL] case neg ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfi : ¬Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) ⊢ ‖integral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))‖ ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] rw [integral, dif_neg hfi, norm_zero] [GOAL] case neg ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F g : (ι → ℝ) → ℝ hle : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ g x μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ hg : Integrable I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) hfi : ¬Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) ⊢ 0 ≤ integral I l g (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] exact integral_nonneg (fun x hx => (norm_nonneg _).trans (hle x hx)) μ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c : ℝ hc : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ‖f x‖ ≤ c μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ⊢ ‖integral I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ))‖ ≤ ENNReal.toReal (↑↑μ ↑I) * c [PROOFSTEP] simpa only [integral_const] using norm_integral_le_of_norm_le hc μ (integrable_const c) [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c✝ c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol ε : ℝ c : ℝ≥0 ⊢ RCond l (convergenceR h ε c) [PROOFSTEP] rw [convergenceR] [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c✝ c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol ε : ℝ c : ℝ≥0 ⊢ RCond l (dite (0 < ε) (fun hε => Exists.choose (_ : ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) (integral I l f vol) ≤ ε)) (fun hε x x => { val := 1, property := convergenceR.proof_3 }) c) [PROOFSTEP] split_ifs with h₀ [GOAL] case pos ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c✝ c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol ε : ℝ c : ℝ≥0 h₀ : 0 < ε ⊢ RCond l (Exists.choose (_ : ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) (integral I l f vol) ≤ ε) c) case neg ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c✝ c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol ε : ℝ c : ℝ≥0 h₀ : ¬0 < ε ⊢ RCond l ((fun x x => { val := 1, property := convergenceR.proof_3 }) c) [PROOFSTEP] exacts [(hasIntegral_iff.1 h.hasIntegral ε h₀).choose_spec.1 _, fun _ x => rfl] [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol h₀ : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π hπp : IsPartition π ⊢ dist (integralSum f vol π) (integral I l f vol) ≤ ε [PROOFSTEP] rw [convergenceR, dif_pos h₀] at hπ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol h₀ : 0 < ε hπ : MemBaseSet l I c (Exists.choose (_ : ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c : ℝ≥0) (π : TaggedPrepartition I), MemBaseSet l I c (r c) π → IsPartition π → dist (integralSum f vol π) (integral I l f vol) ≤ ε) c) π hπp : IsPartition π ⊢ dist (integralSum f vol π) (integral I l f vol) ≤ ε [PROOFSTEP] exact (hasIntegral_iff.1 h.hasIntegral ε h₀).choose_spec.2 c _ hπ hπp [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol hpos₁ : 0 < ε₁ hpos₂ : 0 < ε₂ h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁ h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂ HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ ⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂ [PROOFSTEP] rcases h₁.exists_common_compl h₂ HU with ⟨π, hπU, hπc₁, hπc₂⟩ [GOAL] case intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol hpos₁ : 0 < ε₁ hpos₂ : 0 < ε₂ h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁ h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂ HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ π : Prepartition I hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁ hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂ ⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂ [PROOFSTEP] set r : ℝⁿ → Ioi (0 : ℝ) := fun x => min (h.convergenceR ε₁ c₁ x) (h.convergenceR ε₂ c₂ x) [GOAL] case intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol hpos₁ : 0 < ε₁ hpos₂ : 0 < ε₂ h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁ h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂ HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ π : Prepartition I hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁ hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂ r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x) ⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂ [PROOFSTEP] have hr : l.RCond r := (h.convergenceR_cond _ c₁).min (h.convergenceR_cond _ c₂) [GOAL] case intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol hpos₁ : 0 < ε₁ hpos₂ : 0 < ε₂ h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁ h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂ HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ π : Prepartition I hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁ hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂ r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x) hr : RCond l r ⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂ [PROOFSTEP] set πr := π.toSubordinate r [GOAL] case intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol hpos₁ : 0 < ε₁ hpos₂ : 0 < ε₂ h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁ h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂ HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ π : Prepartition I hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁ hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂ r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x) hr : RCond l r πr : TaggedPrepartition I := Prepartition.toSubordinate π r ⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂ [PROOFSTEP] have H₁ : dist (integralSum f vol (π₁.unionComplToSubordinate π hπU r)) (integral I l f vol) ≤ ε₁ := h.dist_integralSum_integral_le_of_memBaseSet hpos₁ (h₁.unionComplToSubordinate (fun _ _ => min_le_left _ _) hπU hπc₁) (isPartition_unionComplToSubordinate _ _ _ _) [GOAL] case intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol hpos₁ : 0 < ε₁ hpos₂ : 0 < ε₂ h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁ h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂ HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ π : Prepartition I hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁ hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂ r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x) hr : RCond l r πr : TaggedPrepartition I := Prepartition.toSubordinate π r H₁ : dist (integralSum f vol (unionComplToSubordinate π₁ π hπU r)) (integral I l f vol) ≤ ε₁ ⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂ [PROOFSTEP] rw [HU] at hπU [GOAL] case intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol hpos₁ : 0 < ε₁ hpos₂ : 0 < ε₂ h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁ h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂ HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ π : Prepartition I hπU✝ : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₂ hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁ hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂ r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x) hr : RCond l r πr : TaggedPrepartition I := Prepartition.toSubordinate π r H₁ : dist (integralSum f vol (unionComplToSubordinate π₁ π hπU✝ r)) (integral I l f vol) ≤ ε₁ ⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂ [PROOFSTEP] have H₂ : dist (integralSum f vol (π₂.unionComplToSubordinate π hπU r)) (integral I l f vol) ≤ ε₂ := h.dist_integralSum_integral_le_of_memBaseSet hpos₂ (h₂.unionComplToSubordinate (fun _ _ => min_le_right _ _) hπU hπc₂) (isPartition_unionComplToSubordinate _ _ _ _) [GOAL] case intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol hpos₁ : 0 < ε₁ hpos₂ : 0 < ε₂ h₁ : MemBaseSet l I c₁ (convergenceR h ε₁ c₁) π₁ h₂ : MemBaseSet l I c₂ (convergenceR h ε₂ c₂) π₂ HU : TaggedPrepartition.iUnion π₁ = TaggedPrepartition.iUnion π₂ π : Prepartition I hπU✝ : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₁ hπU : Prepartition.iUnion π = ↑I \ TaggedPrepartition.iUnion π₂ hπc₁ : l.bDistortion = true → Prepartition.distortion π ≤ c₁ hπc₂ : l.bDistortion = true → Prepartition.distortion π ≤ c₂ r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h ε₁ c₁ x) (convergenceR h ε₂ c₂ x) hr : RCond l r πr : TaggedPrepartition I := Prepartition.toSubordinate π r H₁ : dist (integralSum f vol (unionComplToSubordinate π₁ π hπU✝ r)) (integral I l f vol) ≤ ε₁ H₂ : dist (integralSum f vol (unionComplToSubordinate π₂ π hπU r)) (integral I l f vol) ≤ ε₂ ⊢ dist (integralSum f vol π₁) (integralSum f vol π₂) ≤ ε₁ + ε₂ [PROOFSTEP] simpa [unionComplToSubordinate] using (dist_triangle_right _ _ _).trans (add_le_add H₁ H₂) [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol ⊢ Tendsto (fun π => (integralSum f vol π.fst, integralSum f vol π.snd)) (toFilter l I ×ˢ toFilter l I ⊓ 𝓟 {π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd}) (𝓤 F) [PROOFSTEP] refine (((l.hasBasis_toFilter I).prod_self.inf_principal _).tendsto_iff uniformity_basis_dist_le).2 fun ε ε0 => ?_ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol ε : ℝ ε0 : 0 < ε ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I × TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π} ×ˢ {π | ∃ c, MemBaseSet l I c (ia c) π} ∩ {π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd} → (integralSum f vol x.fst, integralSum f vol x.snd) ∈ {p | dist p.fst p.snd ≤ ε} [PROOFSTEP] replace ε0 := half_pos ε0 [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol ε : ℝ ε0 : 0 < ε / 2 ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I × TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π} ×ˢ {π | ∃ c, MemBaseSet l I c (ia c) π} ∩ {π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd} → (integralSum f vol x.fst, integralSum f vol x.snd) ∈ {p | dist p.fst p.snd ≤ ε} [PROOFSTEP] use h.convergenceR (ε / 2), h.convergenceR_cond (ε / 2) [GOAL] case right ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol ε : ℝ ε0 : 0 < ε / 2 ⊢ ∀ (x : TaggedPrepartition I × TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π} ×ˢ {π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π} ∩ {π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd} → (integralSum f vol x.fst, integralSum f vol x.snd) ∈ {p | dist p.fst p.snd ≤ ε} [PROOFSTEP] rintro ⟨π₁, π₂⟩ ⟨⟨h₁, h₂⟩, hU⟩ [GOAL] case right.mk.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁✝ π₂✝ : TaggedPrepartition I h : Integrable I l f vol ε : ℝ ε0 : 0 < ε / 2 π₁ π₂ : TaggedPrepartition I hU : (π₁, π₂) ∈ {π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd} h₁ : (π₁, π₂).fst ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π} h₂ : (π₁, π₂).snd ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π} ⊢ (integralSum f vol (π₁, π₂).fst, integralSum f vol (π₁, π₂).snd) ∈ {p | dist p.fst p.snd ≤ ε} [PROOFSTEP] rw [← add_halves ε] [GOAL] case right.mk.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁✝ π₂✝ : TaggedPrepartition I h : Integrable I l f vol ε : ℝ ε0 : 0 < ε / 2 π₁ π₂ : TaggedPrepartition I hU : (π₁, π₂) ∈ {π | TaggedPrepartition.iUnion π.fst = TaggedPrepartition.iUnion π.snd} h₁ : (π₁, π₂).fst ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π} h₂ : (π₁, π₂).snd ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h (ε / 2) c) π} ⊢ (integralSum f vol (π₁, π₂).fst, integralSum f vol (π₁, π₂).snd) ∈ {p | dist p.fst p.snd ≤ ε / 2 + ε / 2} [PROOFSTEP] exact h.dist_integralSum_le_of_memBaseSet ε0 ε0 h₁.choose_spec h₂.choose_spec hU [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol π₀ : Prepartition I ⊢ Cauchy (Filter.map (integralSum f vol) (toFilteriUnion l I π₀)) [PROOFSTEP] refine' ⟨inferInstance, _⟩ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol π₀ : Prepartition I ⊢ Filter.map (integralSum f vol) (toFilteriUnion l I π₀) ×ˢ Filter.map (integralSum f vol) (toFilteriUnion l I π₀) ≤ 𝓤 F [PROOFSTEP] rw [prod_map_map_eq, ← toFilter_inf_iUnion_eq, ← prod_inf_prod, prod_principal_principal] [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I h : Integrable I l f vol π₀ : Prepartition I ⊢ Filter.map (fun p => (integralSum f vol p.fst, integralSum f vol p.snd)) (toFilter l I ×ˢ toFilter l I ⊓ 𝓟 ({π | TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} ×ˢ {π | TaggedPrepartition.iUnion π = Prepartition.iUnion π₀})) ≤ 𝓤 F [PROOFSTEP] exact h.tendsto_integralSum_toFilter_prod_self_inf_iUnion_eq_uniformity.mono_left (inf_le_inf_left _ <| principal_mono.2 fun π h => h.1.trans h.2.symm) [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol hJ : J ≤ I ⊢ ∃ y, HasIntegral J l f vol y ∧ Tendsto (integralSum f vol) (toFilteriUnion l I (Prepartition.single I J hJ)) (𝓝 y) [PROOFSTEP] refine (cauchy_map_iff_exists_tendsto.1 (h.cauchy_map_integralSum_toFilteriUnion (.single I J hJ))).imp fun y hy ↦ ⟨?_, hy⟩ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y✝ y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol hJ : J ≤ I y : F hy : Tendsto (integralSum f vol) (toFilteriUnion l I (Prepartition.single I J hJ)) (𝓝 y) ⊢ HasIntegral J l f vol y [PROOFSTEP] convert hy.comp (l.tendsto_embedBox_toFilteriUnion_top hJ) -- faster than `exact` here [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε [PROOFSTEP] refine' le_of_forall_pos_le_add fun δ δ0 => _ -- First we choose some constants. [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] set δ' : ℝ := δ / (π₀.boxes.card + 1) [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] have H0 : 0 < (π₀.boxes.card + 1 : ℝ) := Nat.cast_add_one_pos _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] have δ'0 : 0 < δ' := div_pos δ0 H0 [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] set C := max π₀.distortion π₀.compl.distortion [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] have : ∀ J ∈ π₀, ∃ πi : TaggedPrepartition J, πi.IsPartition ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ l.MemBaseSet J C (h.convergenceR δ' C) πi := by intro J hJ have Hle : J ≤ I := π₀.le_of_mem hJ have HJi : Integrable J l f vol := h.to_subbox Hle set r := fun x => min (h.convergenceR δ' C x) (HJi.convergenceR δ' C x) have hJd : J.distortion ≤ C := le_trans (Finset.le_sup hJ) (le_max_left _ _) rcases l.exists_memBaseSet_isPartition J hJd r with ⟨πJ, hC, hp⟩ have hC₁ : l.MemBaseSet J C (HJi.convergenceR δ' C) πJ := by refine' hC.mono J le_rfl le_rfl fun x _ => _; exact min_le_right _ _ have hC₂ : l.MemBaseSet J C (h.convergenceR δ' C) πJ := by refine' hC.mono J le_rfl le_rfl fun x _ => _; exact min_le_left _ _ exact ⟨πJ, hp, HJi.dist_integralSum_integral_le_of_memBaseSet δ'0 hC₁ hp, hC₂⟩ /- Now we combine these tagged partitions into a tagged prepartition of `I` that covers the same part of `I` as `π₀` and apply `BoxIntegral.dist_integralSum_le_of_memBaseSet` to `π` and this prepartition. -/ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) ⊢ ∀ (J : Box ι), J ∈ π₀ → ∃ πi, IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi [PROOFSTEP] intro J hJ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ ⊢ ∃ πi, IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi [PROOFSTEP] have Hle : J ≤ I := π₀.le_of_mem hJ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I ⊢ ∃ πi, IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi [PROOFSTEP] have HJi : Integrable J l f vol := h.to_subbox Hle [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I HJi : Integrable J l f vol ⊢ ∃ πi, IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi [PROOFSTEP] set r := fun x => min (h.convergenceR δ' C x) (HJi.convergenceR δ' C x) [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I HJi : Integrable J l f vol r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x) ⊢ ∃ πi, IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi [PROOFSTEP] have hJd : J.distortion ≤ C := le_trans (Finset.le_sup hJ) (le_max_left _ _) [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I HJi : Integrable J l f vol r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x) hJd : Box.distortion J ≤ C ⊢ ∃ πi, IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi [PROOFSTEP] rcases l.exists_memBaseSet_isPartition J hJd r with ⟨πJ, hC, hp⟩ [GOAL] case intro.intro ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I HJi : Integrable J l f vol r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x) hJd : Box.distortion J ≤ C πJ : TaggedPrepartition J hC : MemBaseSet l J C r πJ hp : IsPartition πJ ⊢ ∃ πi, IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi [PROOFSTEP] have hC₁ : l.MemBaseSet J C (HJi.convergenceR δ' C) πJ := by refine' hC.mono J le_rfl le_rfl fun x _ => _; exact min_le_right _ _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I HJi : Integrable J l f vol r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x) hJd : Box.distortion J ≤ C πJ : TaggedPrepartition J hC : MemBaseSet l J C r πJ hp : IsPartition πJ ⊢ MemBaseSet l J C (convergenceR HJi δ' C) πJ [PROOFSTEP] refine' hC.mono J le_rfl le_rfl fun x _ => _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I HJi : Integrable J l f vol r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x) hJd : Box.distortion J ≤ C πJ : TaggedPrepartition J hC : MemBaseSet l J C r πJ hp : IsPartition πJ x : ι → ℝ x✝ : x ∈ ↑Box.Icc J ⊢ r x ≤ convergenceR HJi δ' C x [PROOFSTEP] exact min_le_right _ _ [GOAL] case intro.intro ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I HJi : Integrable J l f vol r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x) hJd : Box.distortion J ≤ C πJ : TaggedPrepartition J hC : MemBaseSet l J C r πJ hp : IsPartition πJ hC₁ : MemBaseSet l J C (convergenceR HJi δ' C) πJ ⊢ ∃ πi, IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi [PROOFSTEP] have hC₂ : l.MemBaseSet J C (h.convergenceR δ' C) πJ := by refine' hC.mono J le_rfl le_rfl fun x _ => _; exact min_le_left _ _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I HJi : Integrable J l f vol r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x) hJd : Box.distortion J ≤ C πJ : TaggedPrepartition J hC : MemBaseSet l J C r πJ hp : IsPartition πJ hC₁ : MemBaseSet l J C (convergenceR HJi δ' C) πJ ⊢ MemBaseSet l J C (convergenceR h δ' C) πJ [PROOFSTEP] refine' hC.mono J le_rfl le_rfl fun x _ => _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I HJi : Integrable J l f vol r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x) hJd : Box.distortion J ≤ C πJ : TaggedPrepartition J hC : MemBaseSet l J C r πJ hp : IsPartition πJ hC₁ : MemBaseSet l J C (convergenceR HJi δ' C) πJ x : ι → ℝ x✝ : x ∈ ↑Box.Icc J ⊢ r x ≤ convergenceR h δ' C x [PROOFSTEP] exact min_le_left _ _ [GOAL] case intro.intro ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) J : Box ι hJ : J ∈ π₀ Hle : J ≤ I HJi : Integrable J l f vol r : (ι → ℝ) → ↑(Set.Ioi 0) := fun x => min (convergenceR h δ' C x) (convergenceR HJi δ' C x) hJd : Box.distortion J ≤ C πJ : TaggedPrepartition J hC : MemBaseSet l J C r πJ hp : IsPartition πJ hC₁ : MemBaseSet l J C (convergenceR HJi δ' C) πJ hC₂ : MemBaseSet l J C (convergenceR h δ' C) πJ ⊢ ∃ πi, IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi [PROOFSTEP] exact ⟨πJ, hp, HJi.dist_integralSum_integral_le_of_memBaseSet δ'0 hC₁ hp, hC₂⟩ /- Now we combine these tagged partitions into a tagged prepartition of `I` that covers the same part of `I` as `π₀` and apply `BoxIntegral.dist_integralSum_le_of_memBaseSet` to `π` and this prepartition. -/ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) this : ∀ (J : Box ι), J ∈ π₀ → ∃ πi, IsPartition πi ∧ dist (integralSum f vol πi) (integral J l f vol) ≤ δ' ∧ MemBaseSet l J C (convergenceR h δ' C) πi ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] choose! πi hπip hπiδ' hπiC using this [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) πi : (J : Box ι) → TaggedPrepartition J hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J) hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ' hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J) ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] have : l.MemBaseSet I C (h.convergenceR δ' C) (π₀.biUnionTagged πi) := biUnionTagged_memBaseSet hπiC hπip fun _ => le_max_right _ _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) πi : (J : Box ι) → TaggedPrepartition J hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J) hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ' hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J) this : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi) ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] have hU' : π.iUnion = (π₀.biUnionTagged πi).iUnion := hU.trans (Prepartition.iUnion_biUnion_partition _ hπip).symm [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) πi : (J : Box ι) → TaggedPrepartition J hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J) hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ' hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J) this : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi) hU' : TaggedPrepartition.iUnion π = TaggedPrepartition.iUnion (Prepartition.biUnionTagged π₀ πi) ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] have := h.dist_integralSum_le_of_memBaseSet h0 δ'0 hπ this hU' [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) πi : (J : Box ι) → TaggedPrepartition J hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J) hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ' hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J) this✝ : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi) hU' : TaggedPrepartition.iUnion π = TaggedPrepartition.iUnion (Prepartition.biUnionTagged π₀ πi) this : dist (integralSum f vol π) (integralSum f vol (Prepartition.biUnionTagged π₀ πi)) ≤ ε + δ' ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] rw [integralSum_biUnionTagged] at this [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) πi : (J : Box ι) → TaggedPrepartition J hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J) hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ' hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J) this✝ : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi) hU' : TaggedPrepartition.iUnion π = TaggedPrepartition.iUnion (Prepartition.biUnionTagged π₀ πi) this : dist (integralSum f vol π) (∑ J in π₀.boxes, integralSum f vol (πi J)) ≤ ε + δ' ⊢ dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε + δ [PROOFSTEP] calc dist (integralSum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ dist (integralSum f vol π) (∑ J in π₀.boxes, integralSum f vol (πi J)) + dist (∑ J in π₀.boxes, integralSum f vol (πi J)) (∑ J in π₀.boxes, integral J l f vol) := dist_triangle _ _ _ _ ≤ ε + δ' + ∑ _J in π₀.boxes, δ' := (add_le_add this (dist_sum_sum_le_of_le _ hπiδ')) _ = ε + δ := by field_simp [H0.ne']; ring [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) πi : (J : Box ι) → TaggedPrepartition J hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J) hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ' hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J) this✝ : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi) hU' : TaggedPrepartition.iUnion π = TaggedPrepartition.iUnion (Prepartition.biUnionTagged π₀ πi) this : dist (integralSum f vol π) (∑ J in π₀.boxes, integralSum f vol (πi J)) ≤ ε + δ' ⊢ ε + δ' + ∑ _J in π₀.boxes, δ' = ε + δ [PROOFSTEP] field_simp [H0.ne'] [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol h0 : 0 < ε hπ : MemBaseSet l I c (convergenceR h ε c) π π₀ : Prepartition I hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ δ : ℝ δ0 : 0 < δ δ' : ℝ := δ / (↑(card π₀.boxes) + 1) H0 : 0 < ↑(card π₀.boxes) + 1 δ'0 : 0 < δ' C : ℝ≥0 := max (Prepartition.distortion π₀) (Prepartition.distortion (Prepartition.compl π₀)) πi : (J : Box ι) → TaggedPrepartition J hπip : ∀ (J : Box ι), J ∈ π₀ → IsPartition (πi J) hπiδ' : ∀ (J : Box ι), J ∈ π₀ → dist (integralSum f vol (πi J)) (integral J l f vol) ≤ δ' hπiC : ∀ (J : Box ι), J ∈ π₀ → MemBaseSet l J C (convergenceR h δ' C) (πi J) this✝ : MemBaseSet l I C (convergenceR h δ' C) (Prepartition.biUnionTagged π₀ πi) hU' : TaggedPrepartition.iUnion π = TaggedPrepartition.iUnion (Prepartition.biUnionTagged π₀ πi) this : dist (integralSum f vol π) (∑ J in π₀.boxes, integralSum f vol (πi J)) ≤ ε + δ' ⊢ ε * (↑(card π₀.boxes) + 1) + δ + ↑(card π₀.boxes) * δ = (ε + δ) * (↑(card π₀.boxes) + 1) [PROOFSTEP] ring [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol π₀ : Prepartition I ⊢ Tendsto (integralSum f vol) (toFilteriUnion l I π₀) (𝓝 (∑ J in π₀.boxes, integral J l f vol)) [PROOFSTEP] refine' ((l.hasBasis_toFilteriUnion I π₀).tendsto_iff nhds_basis_closedBall).2 fun ε ε0 => _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol π₀ : Prepartition I ε : ℝ ε0 : 0 < ε ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} → integralSum f vol x ∈ closedBall (∑ J in π₀.boxes, integral J l f vol) ε [PROOFSTEP] refine' ⟨h.convergenceR ε, h.convergenceR_cond ε, _⟩ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol π₀ : Prepartition I ε : ℝ ε0 : 0 < ε ⊢ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (convergenceR h ε c) π ∧ TaggedPrepartition.iUnion π = Prepartition.iUnion π₀} → integralSum f vol x ∈ closedBall (∑ J in π₀.boxes, integral J l f vol) ε [PROOFSTEP] simp only [mem_inter_iff, Set.mem_iUnion, mem_setOf_eq] [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol π₀ : Prepartition I ε : ℝ ε0 : 0 < ε ⊢ ∀ (x : TaggedPrepartition I), (∃ c, MemBaseSet l I c (convergenceR h ε c) x ∧ TaggedPrepartition.iUnion x = Prepartition.iUnion π₀) → integralSum f vol x ∈ closedBall (∑ J in π₀.boxes, integral J l f vol) ε [PROOFSTEP] rintro π ⟨c, hc, hU⟩ [GOAL] case intro.intro ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c✝ c₁ c₂ : ℝ≥0 ε✝ ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol π₀ : Prepartition I ε : ℝ ε0 : 0 < ε π : TaggedPrepartition I c : ℝ≥0 hc : MemBaseSet l I c (convergenceR h ε c) π hU : TaggedPrepartition.iUnion π = Prepartition.iUnion π₀ ⊢ integralSum f vol π ∈ closedBall (∑ J in π₀.boxes, integral J l f vol) ε [PROOFSTEP] exact h.dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq ε0 hc hU [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁✝ π₂✝ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol π₁ π₂ : Prepartition I hU : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ ⊢ ∑ J in π₁.boxes, integral J l f vol = ∑ J in π₂.boxes, integral J l f vol [PROOFSTEP] refine' tendsto_nhds_unique (h.tendsto_integralSum_sum_integral π₁) _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁✝ π₂✝ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol π₁ π₂ : Prepartition I hU : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ ⊢ Tendsto (integralSum f vol) (toFilteriUnion l I π₁) (𝓝 (∑ J in π₂.boxes, integral J l f vol)) [PROOFSTEP] rw [l.toFilteriUnion_congr _ hU] [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁✝ π₂✝ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol π₁ π₂ : Prepartition I hU : Prepartition.iUnion π₁ = Prepartition.iUnion π₂ ⊢ Tendsto (integralSum f vol) (toFilteriUnion l I π₂) (𝓝 (∑ J in π₂.boxes, integral J l f vol)) [PROOFSTEP] exact h.tendsto_integralSum_sum_integral π₂ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol J : Box ι hJ : ↑J ≤ ↑I π : Prepartition J hπ : Prepartition.IsPartition π ⊢ ∑ Ji in π.boxes, (fun J => integral J l f vol) Ji = (fun J => integral J l f vol) J [PROOFSTEP] replace hπ := hπ.iUnion_eq [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol J : Box ι hJ : ↑J ≤ ↑I π : Prepartition J hπ : Prepartition.iUnion π = ↑J ⊢ ∑ Ji in π.boxes, (fun J => integral J l f vol) Ji = (fun J => integral J l f vol) J [PROOFSTEP] rw [← Prepartition.iUnion_top] at hπ [GOAL] ι : Type u E : Type v F : Type w inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℝ E inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝¹ : Fintype ι l : IntegrationParams f g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F c c₁ c₂ : ℝ≥0 ε ε₁ ε₂ : ℝ π₁ π₂ : TaggedPrepartition I inst✝ : CompleteSpace F h : Integrable I l f vol J : Box ι hJ : ↑J ≤ ↑I π : Prepartition J hπ : Prepartition.iUnion π = Prepartition.iUnion ⊤ ⊢ ∑ Ji in π.boxes, (fun J => integral J l f vol) Ji = (fun J => integral J l f vol) J [PROOFSTEP] rw [(h.to_subbox (WithTop.coe_le_coe.1 hJ)).sum_integral_congr hπ, Prepartition.top_boxes, sum_singleton] [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ ⊢ Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] have huc := I.isCompact_Icc.uniformContinuousOn_of_continuous hc [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : UniformContinuousOn f (↑Box.Icc I) ⊢ Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] rw [Metric.uniformContinuousOn_iff_le] at huc [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ⊢ Integrable I l f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) [PROOFSTEP] refine' integrable_iff_cauchy_basis.2 fun ε ε0 => _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ⊢ ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I), MemBaseSet l I c₁ (r c₁) π₁ → IsPartition π₁ → MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₁) (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₂) ≤ ε [PROOFSTEP] rcases exists_pos_mul_lt ε0 (μ.toBoxAdditive I) with ⟨ε', ε0', hε⟩ [GOAL] case intro.intro ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε ⊢ ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I), MemBaseSet l I c₁ (r c₁) π₁ → IsPartition π₁ → MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₁) (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₂) ≤ ε [PROOFSTEP] rcases huc ε' ε0' with ⟨δ, δ0 : 0 < δ, Hδ⟩ [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' ⊢ ∃ r, (∀ (c : ℝ≥0), RCond l (r c)) ∧ ∀ (c₁ c₂ : ℝ≥0) (π₁ π₂ : TaggedPrepartition I), MemBaseSet l I c₁ (r c₁) π₁ → IsPartition π₁ → MemBaseSet l I c₂ (r c₂) π₂ → IsPartition π₂ → dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₁) (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₂) ≤ ε [PROOFSTEP] refine' ⟨fun _ _ => ⟨δ / 2, half_pos δ0⟩, fun _ _ _ => rfl, fun c₁ c₂ π₁ π₂ h₁ h₁p h₂ h₂p => _⟩ [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ ⊢ dist (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₁) (integralSum f (BoxAdditiveMap.toSMul (Measure.toBoxAdditive μ)) π₂) ≤ ε [PROOFSTEP] simp only [dist_eq_norm, integralSum_sub_partitions _ _ h₁p h₂p, BoxAdditiveMap.toSMul_apply, ← smul_sub] [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ ⊢ ‖∑ x in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes, ↑(Measure.toBoxAdditive μ) x • (f (tag (infPrepartition π₁ π₂.toPrepartition) x) - f (tag (infPrepartition π₂ π₁.toPrepartition) x))‖ ≤ ε [PROOFSTEP] have : ∀ J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition, ‖μ.toBoxAdditive J • (f ((π₁.infPrepartition π₂.toPrepartition).tag J) - f ((π₂.infPrepartition π₁.toPrepartition).tag J))‖ ≤ μ.toBoxAdditive J * ε' := by intro J hJ have : 0 ≤ μ.toBoxAdditive J := ENNReal.toReal_nonneg rw [norm_smul, Real.norm_eq_abs, abs_of_nonneg this, ← dist_eq_norm] refine' mul_le_mul_of_nonneg_left _ this refine' Hδ _ (TaggedPrepartition.tag_mem_Icc _ _) _ (TaggedPrepartition.tag_mem_Icc _ _) _ rw [← add_halves δ] refine' (dist_triangle_left _ _ J.upper).trans (add_le_add (h₁.1 _ _ _) (h₂.1 _ _ _)) · exact Prepartition.biUnionIndex_mem _ hJ · exact Box.le_iff_Icc.1 (Prepartition.le_biUnionIndex _ hJ) J.upper_mem_Icc · rw [_root_.inf_comm] at hJ exact Prepartition.biUnionIndex_mem _ hJ · rw [_root_.inf_comm] at hJ exact Box.le_iff_Icc.1 (Prepartition.le_biUnionIndex _ hJ) J.upper_mem_Icc [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ ⊢ ∀ (J : Box ι), J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition → ‖↑(Measure.toBoxAdditive μ) J • (f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤ ↑(Measure.toBoxAdditive μ) J * ε' [PROOFSTEP] intro J hJ [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition ⊢ ‖↑(Measure.toBoxAdditive μ) J • (f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤ ↑(Measure.toBoxAdditive μ) J * ε' [PROOFSTEP] have : 0 ≤ μ.toBoxAdditive J := ENNReal.toReal_nonneg [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ ‖↑(Measure.toBoxAdditive μ) J • (f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤ ↑(Measure.toBoxAdditive μ) J * ε' [PROOFSTEP] rw [norm_smul, Real.norm_eq_abs, abs_of_nonneg this, ← dist_eq_norm] [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ ↑(Measure.toBoxAdditive μ) J * dist (f (tag (infPrepartition π₁ π₂.toPrepartition) J)) (f (tag (infPrepartition π₂ π₁.toPrepartition) J)) ≤ ↑(Measure.toBoxAdditive μ) J * ε' [PROOFSTEP] refine' mul_le_mul_of_nonneg_left _ this [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ dist (f (tag (infPrepartition π₁ π₂.toPrepartition) J)) (f (tag (infPrepartition π₂ π₁.toPrepartition) J)) ≤ ε' [PROOFSTEP] refine' Hδ _ (TaggedPrepartition.tag_mem_Icc _ _) _ (TaggedPrepartition.tag_mem_Icc _ _) _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ dist (tag (infPrepartition π₁ π₂.toPrepartition) J) (tag (infPrepartition π₂ π₁.toPrepartition) J) ≤ δ [PROOFSTEP] rw [← add_halves δ] [GOAL] ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ dist (tag (infPrepartition π₁ π₂.toPrepartition) J) (tag (infPrepartition π₂ π₁.toPrepartition) J) ≤ δ / 2 + δ / 2 [PROOFSTEP] refine' (dist_triangle_left _ _ J.upper).trans (add_le_add (h₁.1 _ _ _) (h₂.1 _ _ _)) [GOAL] case refine'_1 ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ Prepartition.biUnionIndex π₁.toPrepartition (fun J => Prepartition.restrict π₂.toPrepartition J) J ∈ π₁ [PROOFSTEP] exact Prepartition.biUnionIndex_mem _ hJ [GOAL] case refine'_2 ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ J.upper ∈ ↑Box.Icc (Prepartition.biUnionIndex π₁.toPrepartition (fun J => Prepartition.restrict π₂.toPrepartition J) J) [PROOFSTEP] exact Box.le_iff_Icc.1 (Prepartition.le_biUnionIndex _ hJ) J.upper_mem_Icc [GOAL] case refine'_3 ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ Prepartition.biUnionIndex π₂.toPrepartition (fun J => Prepartition.restrict π₁.toPrepartition J) J ∈ π₂ [PROOFSTEP] rw [_root_.inf_comm] at hJ [GOAL] case refine'_3 ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₂.toPrepartition ⊓ π₁.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ Prepartition.biUnionIndex π₂.toPrepartition (fun J => Prepartition.restrict π₁.toPrepartition J) J ∈ π₂ [PROOFSTEP] exact Prepartition.biUnionIndex_mem _ hJ [GOAL] case refine'_4 ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ J.upper ∈ ↑Box.Icc (Prepartition.biUnionIndex π₂.toPrepartition (fun J => Prepartition.restrict π₁.toPrepartition J) J) [PROOFSTEP] rw [_root_.inf_comm] at hJ [GOAL] case refine'_4 ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J✝ : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ J : Box ι hJ : J ∈ π₂.toPrepartition ⊓ π₁.toPrepartition this : 0 ≤ ↑(Measure.toBoxAdditive μ) J ⊢ J.upper ∈ ↑Box.Icc (Prepartition.biUnionIndex π₂.toPrepartition (fun J => Prepartition.restrict π₁.toPrepartition J) J) [PROOFSTEP] exact Box.le_iff_Icc.1 (Prepartition.le_biUnionIndex _ hJ) J.upper_mem_Icc [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ this : ∀ (J : Box ι), J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition → ‖↑(Measure.toBoxAdditive μ) J • (f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤ ↑(Measure.toBoxAdditive μ) J * ε' ⊢ ‖∑ x in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes, ↑(Measure.toBoxAdditive μ) x • (f (tag (infPrepartition π₁ π₂.toPrepartition) x) - f (tag (infPrepartition π₂ π₁.toPrepartition) x))‖ ≤ ε [PROOFSTEP] refine' (norm_sum_le_of_le _ this).trans _ [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ this : ∀ (J : Box ι), J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition → ‖↑(Measure.toBoxAdditive μ) J • (f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤ ↑(Measure.toBoxAdditive μ) J * ε' ⊢ ∑ b in (π₁.toPrepartition ⊓ π₂.toPrepartition).boxes, ↑(Measure.toBoxAdditive μ) b * ε' ≤ ε [PROOFSTEP] rw [← Finset.sum_mul, μ.toBoxAdditive.sum_partition_boxes le_top (h₁p.inf h₂p)] [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : NormedAddCommGroup F inst✝³ : NormedSpace ℝ F I✝ J : Box ι π : TaggedPrepartition I✝ inst✝² : Fintype ι l : IntegrationParams f✝ g : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F inst✝¹ : CompleteSpace E I : Box ι f : (ι → ℝ) → E hc : ContinuousOn f (↑Box.Icc I) μ : Measure (ι → ℝ) inst✝ : IsLocallyFiniteMeasure μ huc : ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε ε : ℝ ε0 : ε > 0 ε' : ℝ ε0' : 0 < ε' hε : ↑(Measure.toBoxAdditive μ) I * ε' < ε δ : ℝ δ0 : 0 < δ Hδ : ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (y : ι → ℝ), y ∈ ↑Box.Icc I → dist x y ≤ δ → dist (f x) (f y) ≤ ε' c₁ c₂ : ℝ≥0 π₁ π₂ : TaggedPrepartition I h₁ : MemBaseSet l I c₁ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₁) π₁ h₁p : IsPartition π₁ h₂ : MemBaseSet l I c₂ ((fun x x => { val := δ / 2, property := (_ : 0 < δ / 2) }) c₂) π₂ h₂p : IsPartition π₂ this : ∀ (J : Box ι), J ∈ π₁.toPrepartition ⊓ π₂.toPrepartition → ‖↑(Measure.toBoxAdditive μ) J • (f (tag (infPrepartition π₁ π₂.toPrepartition) J) - f (tag (infPrepartition π₂ π₁.toPrepartition) J))‖ ≤ ↑(Measure.toBoxAdditive μ) J * ε' ⊢ ↑(Measure.toBoxAdditive μ) I * ε' ≤ ε [PROOFSTEP] exact hε.le [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true H₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε H₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ⊢ HasIntegral I l f vol (↑g I) [PROOFSTEP] refine' ((l.hasBasis_toFilteriUnion_top _).tendsto_iff Metric.nhds_basis_closedBall).2 _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true H₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε H₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ⊢ ∀ (ib : ℝ), 0 < ib → ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ib [PROOFSTEP] intro ε ε0 [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true H₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε H₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε : ℝ ε0 : 0 < ε ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] simp only [← exists_prop, gt_iff_lt, Subtype.exists'] at H₁ H₂ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε H₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∃ x_1, ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑x_1 → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε H₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∃ x_1, ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑x_1 → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] choose! δ₁ Hδ₁ using H₁ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε H₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∃ x_1, ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑x_1 → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] choose! δ₂ Hδ₂ using H₂ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] have ε0' := half_pos ε0 [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] have H0 : 0 < (2 : ℝ) ^ Fintype.card ι := pow_pos zero_lt_two _ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] rcases hs.exists_pos_forall_sum_le (div_pos ε0' H0) with ⟨εs, hεs0, hεs⟩ [GOAL] case intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ i in t, εs i ≤ ε / 2 / 2 ^ Fintype.card ι ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] simp only [le_div_iff' H0, mul_sum] at hεs [GOAL] case intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] rcases exists_pos_mul_lt ε0' (B I) with ⟨ε', ε'0, hεI⟩ [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] set δ : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ) := fun c x => if x ∈ s then δ₁ c x (εs x) else (δ₂ c) x ε' [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' ⊢ ∃ ia, (∀ (c : ℝ≥0), RCond l (ia c)) ∧ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (ia c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] refine' ⟨δ, fun c => l.rCond_of_bRiemann_eq_false hl, _⟩ [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' ⊢ ∀ (x : TaggedPrepartition I), x ∈ {π | ∃ c, MemBaseSet l I c (δ c) π ∧ IsPartition π} → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] simp only [Set.mem_iUnion, mem_inter_iff, mem_setOf_eq] [GOAL] case intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' ⊢ ∀ (x : TaggedPrepartition I), (∃ c, MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') x ∧ IsPartition x) → integralSum f vol x ∈ closedBall (↑g I) ε [PROOFSTEP] rintro π ⟨c, hπδ, hπp⟩ -- Now we split the sum into two parts based on whether `π.tag J` belongs to `s` or not. [GOAL] case intro.intro.intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π ⊢ integralSum f vol π ∈ closedBall (↑g I) ε [PROOFSTEP] rw [← g.sum_partition_boxes le_rfl hπp, mem_closedBall, integralSum, ← sum_filter_add_sum_filter_not π.boxes fun J => π.tag J ∈ s, ← sum_filter_add_sum_filter_not π.boxes fun J => π.tag J ∈ s, ← add_halves ε] [GOAL] case intro.intro.intro.intro.intro.intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π ⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑(↑vol x) (f (tag π x)) + ∑ x in Finset.filter (fun x => ¬tag π x ∈ s) π.boxes, ↑(↑vol x) (f (tag π x))) (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑g x + ∑ x in Finset.filter (fun x => ¬tag π x ∈ s) π.boxes, ↑g x) ≤ ε / 2 + ε / 2 [PROOFSTEP] refine' dist_add_add_le_of_le _ _ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1 ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π ⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑(↑vol x) (f (tag π x))) (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑g x) ≤ ε / 2 [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | hsne) [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inl ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F ε : ℝ ε0 : 0 < ε δ₁ δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 π : TaggedPrepartition I c : ℝ≥0 hπp : IsPartition π hs : Set.Countable ∅ hlH : Set.Nonempty ∅ → l.bHenstock = true Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ ∅ → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ ∅ → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ ∅ → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ ∅ then δ₁ c x (εs x) else δ₂ c x ε' hπδ : MemBaseSet l I c (fun x => if x ∈ ∅ then δ₁ c x (εs x) else δ₂ c x ε') π ⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ ∅) π.boxes, ↑(↑vol x) (f (tag π x))) (∑ x in Finset.filter (fun J => tag π J ∈ ∅) π.boxes, ↑g x) ≤ ε / 2 [PROOFSTEP] simp [ε0'.le] /- For the boxes such that `π.tag J ∈ s`, we use the fact that at most `2 ^ #ι` boxes have the same tag. -/ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s ⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑(↑vol x) (f (tag π x))) (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑g x) ≤ ε / 2 [PROOFSTEP] specialize hlH hsne [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true ⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑(↑vol x) (f (tag π x))) (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑g x) ≤ ε / 2 [PROOFSTEP] have : ∀ J ∈ π.boxes.filter fun J => π.tag J ∈ s, dist (vol J (f <| π.tag J)) (g J) ≤ εs (π.tag J) := fun J hJ ↦ by rw [Finset.mem_filter] at hJ ; cases' hJ with hJ hJs refine' Hδ₁ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ (hεs0 _) _ (π.le_of_mem' _ hJ) _ (hπδ.2 hlH J hJ) fun hD => (Finset.le_sup hJ).trans (hπδ.3 hD) convert hπδ.1 J hJ using 3; exact (if_pos hJs).symm [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true J : Box ι hJ : J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes ⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) [PROOFSTEP] rw [Finset.mem_filter] at hJ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true J : Box ι hJ : J ∈ π.boxes ∧ tag π J ∈ s ⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) [PROOFSTEP] cases' hJ with hJ hJs [GOAL] case intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true J : Box ι hJ : J ∈ π.boxes hJs : tag π J ∈ s ⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) [PROOFSTEP] refine' Hδ₁ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ (hεs0 _) _ (π.le_of_mem' _ hJ) _ (hπδ.2 hlH J hJ) fun hD => (Finset.le_sup hJ).trans (hπδ.3 hD) [GOAL] case intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true J : Box ι hJ : J ∈ π.boxes hJs : tag π J ∈ s ⊢ ↑Box.Icc J ⊆ closedBall (tag π J) ↑(δ₁ c (tag π J) (εs (tag π J))) [PROOFSTEP] convert hπδ.1 J hJ using 3 [GOAL] case h.e'_4.h.e'_4.h.e'_3.h ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true J : Box ι hJ : J ∈ π.boxes hJs : tag π J ∈ s e_2✝ : (fun a => 0 < a) = fun x => x ∈ Set.Ioi 0 ⊢ δ₁ c (tag π J) (εs (tag π J)) = (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') (tag π J) [PROOFSTEP] exact (if_pos hJs).symm [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true this : ∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) ⊢ dist (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑(↑vol x) (f (tag π x))) (∑ x in Finset.filter (fun J => tag π J ∈ s) π.boxes, ↑g x) ≤ ε / 2 [PROOFSTEP] refine' (dist_sum_sum_le_of_le _ this).trans _ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true this : ∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) ⊢ ∑ b in Finset.filter (fun J => tag π J ∈ s) π.boxes, εs (tag π b) ≤ ε / 2 [PROOFSTEP] rw [sum_comp] [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true this : ∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) ⊢ ∑ b in Finset.image (fun b => tag π b) (Finset.filter (fun J => tag π J ∈ s) π.boxes), card (Finset.filter (fun a => tag π a = b) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) • εs b ≤ ε / 2 [PROOFSTEP] refine' (sum_le_sum _).trans (hεs _ _) [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_1 ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true this : ∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) ⊢ ∀ (i : ι → ℝ), i ∈ Finset.image (fun b => tag π b) (Finset.filter (fun J => tag π J ∈ s) π.boxes) → card (Finset.filter (fun a => tag π a = i) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) • εs i ≤ 2 ^ Fintype.card ι * εs i [PROOFSTEP] rintro b - [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_1 ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true this : ∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) b : ι → ℝ ⊢ card (Finset.filter (fun a => tag π a = b) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) • εs b ≤ 2 ^ Fintype.card ι * εs b [PROOFSTEP] rw [← Nat.cast_two, ← Nat.cast_pow, ← nsmul_eq_mul] [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_1 ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true this : ∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) b : ι → ℝ ⊢ card (Finset.filter (fun a => tag π a = b) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) • εs b ≤ 2 ^ Fintype.card ι • εs b [PROOFSTEP] refine' nsmul_le_nsmul (hεs0 _).le _ [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_1 ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true this : ∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) b : ι → ℝ ⊢ card (Finset.filter (fun a => tag π a = b) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) ≤ 2 ^ Fintype.card ι [PROOFSTEP] refine' (Finset.card_le_of_subset _).trans ((hπδ.isHenstock hlH).card_filter_tag_eq_le b) [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_1 ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true this : ∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) b : ι → ℝ ⊢ Finset.filter (fun a => tag π a = b) (Finset.filter (fun J => tag π J ∈ s) π.boxes) ⊆ Finset.filter (fun J => tag π J = b) π.boxes [PROOFSTEP] exact filter_subset_filter _ (filter_subset _ _) [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_2 ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true this : ∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) ⊢ ↑(Finset.image (fun b => tag π b) (Finset.filter (fun J => tag π J ∈ s) π.boxes)) ⊆ s [PROOFSTEP] rw [Finset.coe_image, Set.image_subset_iff] [GOAL] case intro.intro.intro.intro.intro.intro.refine'_1.inr.refine'_2 ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π hsne : Set.Nonempty s hlH : l.bHenstock = true this : ∀ (J : Box ι), J ∈ Finset.filter (fun J => tag π J ∈ s) π.boxes → dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ εs (tag π J) ⊢ ↑(Finset.filter (fun J => tag π J ∈ s) π.boxes) ⊆ (fun b => tag π b) ⁻¹' s [PROOFSTEP] exact fun J hJ => (Finset.mem_filter.1 hJ).2 /- Now we deal with boxes such that `π.tag J ∉ s`. In this case the estimate is straightforward. -/ -- porting note: avoided strange elaboration issues by rewriting using `calc` [GOAL] case intro.intro.intro.intro.intro.intro.refine'_2 ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π ⊢ dist (∑ x in Finset.filter (fun x => ¬tag π x ∈ s) π.boxes, ↑(↑vol x) (f (tag π x))) (∑ x in Finset.filter (fun x => ¬tag π x ∈ s) π.boxes, ↑g x) ≤ ε / 2 [PROOFSTEP] calc dist (∑ J in π.boxes.filter (¬tag π · ∈ s), vol J (f (tag π J))) (∑ J in π.boxes.filter (¬tag π · ∈ s), g J) ≤ ∑ J in π.boxes.filter (¬tag π · ∈ s), ε' * B J := dist_sum_sum_le_of_le _ fun J hJ ↦ by rw [Finset.mem_filter] at hJ ; cases' hJ with hJ hJs refine' Hδ₂ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ ε'0 _ (π.le_of_mem' _ hJ) _ (fun hH => hπδ.2 hH J hJ) fun hD => (Finset.le_sup hJ).trans (hπδ.3 hD) convert hπδ.1 J hJ using 3; exact (if_neg hJs).symm _ ≤ ∑ J in π.boxes, ε' * B J := (sum_le_sum_of_subset_of_nonneg (filter_subset _ _) fun _ _ _ ↦ mul_nonneg ε'0.le (hB0 _)) _ = B I * ε' := by rw [← mul_sum, B.sum_partition_boxes le_rfl hπp, mul_comm] _ ≤ ε / 2 := hεI.le [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π J : Box ι hJ : J ∈ Finset.filter (fun x => ¬tag π x ∈ s) π.boxes ⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ ε' * ↑B J [PROOFSTEP] rw [Finset.mem_filter] at hJ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π J : Box ι hJ : J ∈ π.boxes ∧ ¬tag π J ∈ s ⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ ε' * ↑B J [PROOFSTEP] cases' hJ with hJ hJs [GOAL] case intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π J : Box ι hJ : J ∈ π.boxes hJs : ¬tag π J ∈ s ⊢ dist (↑(↑vol J) (f (tag π J))) (↑g J) ≤ ε' * ↑B J [PROOFSTEP] refine' Hδ₂ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ ε'0 _ (π.le_of_mem' _ hJ) _ (fun hH => hπδ.2 hH J hJ) fun hD => (Finset.le_sup hJ).trans (hπδ.3 hD) [GOAL] case intro ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π J : Box ι hJ : J ∈ π.boxes hJs : ¬tag π J ∈ s ⊢ ↑Box.Icc J ⊆ closedBall (tag π J) ↑(δ₂ c (tag π J) ε') [PROOFSTEP] convert hπδ.1 J hJ using 3 [GOAL] case h.e'_4.h.e'_4.h.e'_3.h ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J✝ : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π J : Box ι hJ : J ∈ π.boxes hJs : ¬tag π J ∈ s e_2✝ : (fun a => 0 < a) = fun x => x ∈ Set.Ioi 0 ⊢ δ₂ c (tag π J) ε' = (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') (tag π J) [PROOFSTEP] exact (if_neg hJs).symm [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π✝ : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l.bRiemann = false B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s hlH : Set.Nonempty s → l.bHenstock = true ε : ℝ ε0 : 0 < ε δ₁ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₁ c x ε) → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε δ₂ : ℝ≥0 → (ι → ℝ) → ℝ → { a // 0 < a } Hδ₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), 0 < ε → ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x ↑(δ₂ c x ε) → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ε0' : 0 < ε / 2 H0 : 0 < 2 ^ Fintype.card ι εs : (ι → ℝ) → ℝ hεs0 : ∀ (i : ι → ℝ), 0 < εs i hεs : ∀ (t : Finset (ι → ℝ)), ↑t ⊆ s → ∑ x in t, 2 ^ Fintype.card ι * εs x ≤ ε / 2 ε' : ℝ ε'0 : 0 < ε' hεI : ↑B I * ε' < ε / 2 δ : ℝ≥0 → (ι → ℝ) → ↑(Set.Ioi 0) := fun c x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε' π : TaggedPrepartition I c : ℝ≥0 hπδ : MemBaseSet l I c (fun x => if x ∈ s then δ₁ c x (εs x) else δ₂ c x ε') π hπp : IsPartition π ⊢ ∑ J in π.boxes, ε' * ↑B J = ↑B I * ε' [PROOFSTEP] rw [← mul_sum, B.sum_partition_boxes le_rfl hπp, mul_comm] [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l ≤ Henstock B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s H₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε H₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ⊢ ¬(↑equivProd Henstock).snd.fst = false [PROOFSTEP] decide [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l ≤ Henstock B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s H₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε H₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J A : l.bHenstock = true ⊢ ¬(↑equivProd Henstock).fst = true [PROOFSTEP] decide [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F hl : l ≤ Henstock B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F s : Set (ι → ℝ) hs : Set.Countable s H₁ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I ∩ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε H₂ : ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → x ∈ ↑Box.Icc J → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J A : l.bHenstock = true ⊢ ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → (l.bHenstock = true → x ∈ ↑Box.Icc J) → (l.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J [PROOFSTEP] simpa only [A, true_imp_iff] using H₂ [GOAL] ι : Type u E : Type v F : Type w inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℝ F I J : Box ι π : TaggedPrepartition I inst✝ : Fintype ι l : IntegrationParams f g✝ : (ι → ℝ) → E vol : ι →ᵇᵃ[⊤] E →L[ℝ] F y y' : F B : ι →ᵇᵃ[↑I] ℝ hB0 : ∀ (J : Box ι), 0 ≤ ↑B J g : ι →ᵇᵃ[↑I] F H : ℝ≥0 → ∀ (x : ι → ℝ), x ∈ ↑Box.Icc I → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J ⊢ ∀ (c : ℝ≥0) (x : ι → ℝ), x ∈ ↑Box.Icc I \ ∅ → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (J : Box ι), J ≤ I → ↑Box.Icc J ⊆ closedBall x δ → (McShane.bHenstock = true → x ∈ ↑Box.Icc J) → (McShane.bDistortion = true → Box.distortion J ≤ c) → dist (↑(↑vol J) (f x)) (↑g J) ≤ ε * ↑B J [PROOFSTEP] simpa only [McShane, Bool.coe_sort_false, false_imp_iff, true_imp_iff, diff_empty] using H
{"mathlib_filename": "Mathlib.Analysis.BoxIntegral.Basic", "llama_tokens": 107440}
{"mathlib_filename": "Mathlib.Tactic.RestateAxiom", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Classical", "llama_tokens": 0}
[GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) hs : NullMeasurableSet s ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae volume] s hu₂ : Tendsto (addOrderOf ∘ u) l atTop ⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ [PROOFSTEP] set μ := (volume : Measure <| AddCircle T) [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T hu₂ : Tendsto (addOrderOf ∘ u) l atTop μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] set n : ι → ℕ := addOrderOf ∘ u [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] have hT₀ : 0 < T := hT.out [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] have hT₁ : ENNReal.ofReal T ≠ 0 := by simpa [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T ⊢ ENNReal.ofReal T ≠ 0 [PROOFSTEP] simpa [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 ⊢ s =ᶠ[ae μ] ∅ ∨ s =ᶠ[ae μ] univ [PROOFSTEP] rw [ae_eq_empty, ae_eq_univ_iff_measure_eq hs, AddCircle.measure_univ] [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 ⊢ ↑↑μ s = 0 ∨ ↑↑μ s = ENNReal.ofReal T [PROOFSTEP] cases' eq_or_ne (μ s) 0 with h h [GOAL] case inl T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s = 0 ⊢ ↑↑μ s = 0 ∨ ↑↑μ s = ENNReal.ofReal T [PROOFSTEP] exact Or.inl h [GOAL] case inr T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 ⊢ ↑↑μ s = 0 ∨ ↑↑μ s = ENNReal.ofReal T [PROOFSTEP] right [GOAL] case inr.h T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 ⊢ ↑↑μ s = ENNReal.ofReal T [PROOFSTEP] obtain ⟨d, -, hd⟩ : ∃ d, d ∈ s ∧ ∀ {ι'} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[>] 0) → (∀ᶠ j in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => μ (s ∩ closedBall (w j) (δ j)) / μ (closedBall (w j) (δ j))) l (𝓝 1) := exists_mem_of_measure_ne_zero_of_ae h (IsUnifLocDoublingMeasure.ae_tendsto_measure_inter_div μ s 1) [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) ⊢ ↑↑μ s = ENNReal.ofReal T [PROOFSTEP] let I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) ⊢ ↑↑μ s = ENNReal.ofReal T [PROOFSTEP] replace hd : Tendsto (fun j => μ (s ∩ I j) / μ (I j)) l (𝓝 1) [GOAL] case hd T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) ⊢ Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) [PROOFSTEP] let δ : ι → ℝ := fun j => T / (2 * ↑(n j)) [GOAL] case hd T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) ⊢ Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) [PROOFSTEP] have hδ₀ : ∀ᶠ j in l, 0 < δ j := (hu₂.eventually_gt_atTop 0).mono fun j hj => div_pos hT₀ <| by positivity [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) j : ι hj : 0 < n j ⊢ 0 < 2 * ↑(n j) [PROOFSTEP] positivity [GOAL] case hd T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j ⊢ Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) [PROOFSTEP] have hδ₁ : Tendsto δ l (𝓝[>] 0) := by refine' tendsto_nhdsWithin_iff.mpr ⟨_, hδ₀⟩ replace hu₂ : Tendsto (fun j => T⁻¹ * 2 * n j) l atTop := (tendsto_nat_cast_atTop_iff.mpr hu₂).const_mul_atTop (by positivity : 0 < T⁻¹ * 2) convert hu₂.inv_tendsto_atTop ext j simp only [Pi.inv_apply, mul_inv_rev, inv_inv, div_eq_inv_mul, ← mul_assoc] [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j ⊢ Tendsto δ l (𝓝[Ioi 0] 0) [PROOFSTEP] refine' tendsto_nhdsWithin_iff.mpr ⟨_, hδ₀⟩ [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j ⊢ Tendsto δ l (𝓝 0) [PROOFSTEP] replace hu₂ : Tendsto (fun j => T⁻¹ * 2 * n j) l atTop := (tendsto_nat_cast_atTop_iff.mpr hu₂).const_mul_atTop (by positivity : 0 < T⁻¹ * 2) [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j ⊢ 0 < T⁻¹ * 2 [PROOFSTEP] positivity [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j hu₂ : Tendsto (fun j => T⁻¹ * 2 * ↑(n j)) l atTop ⊢ Tendsto δ l (𝓝 0) [PROOFSTEP] convert hu₂.inv_tendsto_atTop [GOAL] case h.e'_3 T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j hu₂ : Tendsto (fun j => T⁻¹ * 2 * ↑(n j)) l atTop ⊢ δ = (fun j => T⁻¹ * 2 * ↑(n j))⁻¹ [PROOFSTEP] ext j [GOAL] case h.e'_3.h T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j hu₂ : Tendsto (fun j => T⁻¹ * 2 * ↑(n j)) l atTop j : ι ⊢ δ j = (fun j => T⁻¹ * 2 * ↑(n j))⁻¹ j [PROOFSTEP] simp only [Pi.inv_apply, mul_inv_rev, inv_inv, div_eq_inv_mul, ← mul_assoc] [GOAL] case hd T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j hδ₁ : Tendsto δ l (𝓝[Ioi 0] 0) ⊢ Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) [PROOFSTEP] have hw : ∀ᶠ j in l, d ∈ closedBall d (1 * δ j) := hδ₀.mono fun j hj => by simp only [comp_apply, one_mul, mem_closedBall, dist_self] apply hj.le [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j hδ₁ : Tendsto δ l (𝓝[Ioi 0] 0) j : ι hj : 0 < δ j ⊢ d ∈ closedBall d (1 * δ j) [PROOFSTEP] simp only [comp_apply, one_mul, mem_closedBall, dist_self] [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j hδ₁ : Tendsto δ l (𝓝[Ioi 0] 0) j : ι hj : 0 < δ j ⊢ 0 ≤ T / (2 * ↑(addOrderOf (u j))) [PROOFSTEP] apply hj.le [GOAL] case hd T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T hd : ∀ {ι' : Type ?u.5513} {l : Filter ι'} (w : ι' → AddCircle T) (δ : ι' → ℝ), Tendsto δ l (𝓝[Ioi 0] 0) → (∀ᶠ (j : ι') in l, d ∈ closedBall (w j) (1 * δ j)) → Tendsto (fun j => ↑↑μ (s ∩ closedBall (w j) (δ j)) / ↑↑μ (closedBall (w j) (δ j))) l (𝓝 1) I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) δ : ι → ℝ := fun j => T / (2 * ↑(n j)) hδ₀ : ∀ᶠ (j : ι) in l, 0 < δ j hδ₁ : Tendsto δ l (𝓝[Ioi 0] 0) hw : ∀ᶠ (j : ι) in l, d ∈ closedBall d (1 * δ j) ⊢ Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) [PROOFSTEP] exact hd _ δ hδ₁ hw [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) ⊢ ↑↑μ s = ENNReal.ofReal T [PROOFSTEP] suffices ∀ᶠ j in l, μ (s ∩ I j) / μ (I j) = μ s / ENNReal.ofReal T by replace hd := hd.congr' this rwa [tendsto_const_nhds_iff, ENNReal.div_eq_one_iff hT₁ ENNReal.ofReal_ne_top] at hd [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) this : ∀ᶠ (j : ι) in l, ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T ⊢ ↑↑μ s = ENNReal.ofReal T [PROOFSTEP] replace hd := hd.congr' this [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) this : ∀ᶠ (j : ι) in l, ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T hd : Tendsto (fun x => ↑↑μ s / ENNReal.ofReal T) l (𝓝 1) ⊢ ↑↑μ s = ENNReal.ofReal T [PROOFSTEP] rwa [tendsto_const_nhds_iff, ENNReal.div_eq_one_iff hT₁ ENNReal.ofReal_ne_top] at hd [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) ⊢ ∀ᶠ (j : ι) in l, ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T [PROOFSTEP] refine' (hu₂.eventually_gt_atTop 0).mono fun j hj => _ [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j ⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T [PROOFSTEP] have : addOrderOf (u j) = n j := rfl [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j ⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T [PROOFSTEP] have huj : IsOfFinAddOrder (u j) := addOrderOf_pos_iff.mp hj [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j huj : IsOfFinAddOrder (u j) ⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T [PROOFSTEP] have huj' : 1 ≤ (↑(n j) : ℝ) := by norm_cast [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j huj : IsOfFinAddOrder (u j) ⊢ 1 ≤ ↑(n j) [PROOFSTEP] norm_cast [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j huj : IsOfFinAddOrder (u j) huj' : 1 ≤ ↑(n j) ⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T [PROOFSTEP] have hI₀ : μ (I j) ≠ 0 := (measure_closedBall_pos _ d <| by positivity).ne.symm [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j huj : IsOfFinAddOrder (u j) huj' : 1 ≤ ↑(n j) ⊢ 0 < T / (2 * ↑(n j)) [PROOFSTEP] positivity [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j huj : IsOfFinAddOrder (u j) huj' : 1 ≤ ↑(n j) hI₀ : ↑↑μ (I j) ≠ 0 ⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T [PROOFSTEP] have hI₁ : μ (I j) ≠ ⊤ := measure_ne_top _ _ [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j huj : IsOfFinAddOrder (u j) huj' : 1 ≤ ↑(n j) hI₀ : ↑↑μ (I j) ≠ 0 hI₁ : ↑↑μ (I j) ≠ ⊤ ⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T [PROOFSTEP] have hI₂ : μ (I j) * ↑(n j) = ENNReal.ofReal T := by rw [volume_closedBall, mul_div, mul_div_mul_left T _ two_ne_zero, min_eq_right (div_le_self hT₀.le huj'), mul_comm, ← nsmul_eq_mul, ← ENNReal.ofReal_nsmul, nsmul_eq_mul, mul_div_cancel'] exact Nat.cast_ne_zero.mpr hj.ne' [GOAL] T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j huj : IsOfFinAddOrder (u j) huj' : 1 ≤ ↑(n j) hI₀ : ↑↑μ (I j) ≠ 0 hI₁ : ↑↑μ (I j) ≠ ⊤ ⊢ ↑↑μ (I j) * ↑(n j) = ENNReal.ofReal T [PROOFSTEP] rw [volume_closedBall, mul_div, mul_div_mul_left T _ two_ne_zero, min_eq_right (div_le_self hT₀.le huj'), mul_comm, ← nsmul_eq_mul, ← ENNReal.ofReal_nsmul, nsmul_eq_mul, mul_div_cancel'] [GOAL] case hb T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j huj : IsOfFinAddOrder (u j) huj' : 1 ≤ ↑(n j) hI₀ : ↑↑μ (I j) ≠ 0 hI₁ : ↑↑μ (I j) ≠ ⊤ ⊢ ↑(n j) ≠ 0 [PROOFSTEP] exact Nat.cast_ne_zero.mpr hj.ne' [GOAL] case inr.h.intro.intro T : ℝ hT : Fact (0 < T) s : Set (AddCircle T) ι : Type u_1 l : Filter ι inst✝ : NeBot l u : ι → AddCircle T μ : Measure (AddCircle T) := volume hs : NullMeasurableSet s hu₁ : ∀ (i : ι), u i +ᵥ s =ᶠ[ae μ] s n : ι → ℕ := addOrderOf ∘ u hu₂ : Tendsto n l atTop hT₀ : 0 < T hT₁ : ENNReal.ofReal T ≠ 0 h : ↑↑μ s ≠ 0 d : AddCircle T I : ι → Set (AddCircle T) := fun j => closedBall d (T / (2 * ↑(n j))) hd : Tendsto (fun j => ↑↑μ (s ∩ I j) / ↑↑μ (I j)) l (𝓝 1) j : ι hj : 0 < n j this : addOrderOf (u j) = n j huj : IsOfFinAddOrder (u j) huj' : 1 ≤ ↑(n j) hI₀ : ↑↑μ (I j) ≠ 0 hI₁ : ↑↑μ (I j) ≠ ⊤ hI₂ : ↑↑μ (I j) * ↑(n j) = ENNReal.ofReal T ⊢ ↑↑μ (s ∩ I j) / ↑↑μ (I j) = ↑↑μ s / ENNReal.ofReal T [PROOFSTEP] rw [ENNReal.div_eq_div_iff hT₁ ENNReal.ofReal_ne_top hI₀ hI₁, volume_of_add_preimage_eq s _ (u j) d huj (hu₁ j) closedBall_ae_eq_ball, nsmul_eq_mul, ← mul_assoc, this, hI₂] [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s ⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ [PROOFSTEP] let u : ℕ → AddCircle T := fun j => ↑((↑1 : ℝ) / ↑(n.natAbs ^ j) * T) [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) ⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ [PROOFSTEP] replace hn : 1 < n.natAbs := by rwa [Int.abs_eq_natAbs, Nat.one_lt_cast] at hn [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) ⊢ 1 < Int.natAbs n [PROOFSTEP] rwa [Int.abs_eq_natAbs, Nat.one_lt_cast] at hn [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n ⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ [PROOFSTEP] have hu₀ : ∀ j, addOrderOf (u j) = n.natAbs ^ j := fun j => by convert addOrderOf_div_of_gcd_eq_one (p := T) (m := 1) (pow_pos (pos_of_gt hn) j) (gcd_one_left _) norm_cast [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n j : ℕ ⊢ addOrderOf (u j) = Int.natAbs n ^ j [PROOFSTEP] convert addOrderOf_div_of_gcd_eq_one (p := T) (m := 1) (pow_pos (pos_of_gt hn) j) (gcd_one_left _) [GOAL] case h.e'_2.h.e'_3.h.h.e'_4.h.e'_5.h.e'_5 T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n j : ℕ e_1✝ : AddCircle T = (ℝ ⧸ AddSubgroup.zmultiples T) ⊢ 1 = ↑1 [PROOFSTEP] norm_cast [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j ⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ [PROOFSTEP] have hnu : ∀ j, n ^ j • u j = 0 := fun j => by rw [← addOrderOf_dvd_iff_zsmul_eq_zero, hu₀, Int.coe_nat_pow, Int.coe_natAbs, ← abs_pow, abs_dvd] [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j j : ℕ ⊢ n ^ j • u j = 0 [PROOFSTEP] rw [← addOrderOf_dvd_iff_zsmul_eq_zero, hu₀, Int.coe_nat_pow, Int.coe_natAbs, ← abs_pow, abs_dvd] [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j hnu : ∀ (j : ℕ), n ^ j • u j = 0 ⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ [PROOFSTEP] have hu₁ : ∀ j, (u j +ᵥ s : Set _) =ᵐ[volume] s := fun j => by rw [vadd_eq_self_of_preimage_zsmul_eq_self hs' (hnu j)] [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j hnu : ∀ (j : ℕ), n ^ j • u j = 0 j : ℕ ⊢ u j +ᵥ s =ᶠ[ae volume] s [PROOFSTEP] rw [vadd_eq_self_of_preimage_zsmul_eq_self hs' (hnu j)] [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j hnu : ∀ (j : ℕ), n ^ j • u j = 0 hu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s ⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ [PROOFSTEP] have hu₂ : Tendsto (fun j => addOrderOf <| u j) atTop atTop := by simp_rw [hu₀]; exact Nat.tendsto_pow_atTop_atTop_of_one_lt hn [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j hnu : ∀ (j : ℕ), n ^ j • u j = 0 hu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s ⊢ Tendsto (fun j => addOrderOf (u j)) atTop atTop [PROOFSTEP] simp_rw [hu₀] [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j hnu : ∀ (j : ℕ), n ^ j • u j = 0 hu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s ⊢ Tendsto (fun j => Int.natAbs n ^ j) atTop atTop [PROOFSTEP] exact Nat.tendsto_pow_atTop_atTop_of_one_lt hn [GOAL] T : ℝ hT : Fact (0 < T) n : ℤ hn✝ : 1 < |n| src✝ : MeasurePreserving fun g => n • g := measurePreserving_zsmul volume (Iff.mp abs_pos (lt_trans zero_lt_one hn✝)) s : Set (AddCircle T) hs : MeasurableSet s hs' : (fun y => n • y) ⁻¹' s = s u : ℕ → AddCircle T := fun j => ↑(1 / ↑(Int.natAbs n ^ j) * T) hn : 1 < Int.natAbs n hu₀ : ∀ (j : ℕ), addOrderOf (u j) = Int.natAbs n ^ j hnu : ∀ (j : ℕ), n ^ j • u j = 0 hu₁ : ∀ (j : ℕ), u j +ᵥ s =ᶠ[ae volume] s hu₂ : Tendsto (fun j => addOrderOf (u j)) atTop atTop ⊢ s =ᶠ[ae volume] ∅ ∨ s =ᶠ[ae volume] univ [PROOFSTEP] exact ae_empty_or_univ_of_forall_vadd_ae_eq_self hs.nullMeasurableSet hu₁ hu₂ [GOAL] T : ℝ hT : Fact (0 < T) n : ℕ hn : 1 < n ⊢ 1 < |↑n| [PROOFSTEP] simp [hn] [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ h : 1 < |n| ⊢ Ergodic fun y => n • y + x [PROOFSTEP] set f : AddCircle T → AddCircle T := fun y => n • y + x [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ h : 1 < |n| f : AddCircle T → AddCircle T := fun y => n • y + x ⊢ Ergodic f [PROOFSTEP] let e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x <| n - 1) [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ h : 1 < |n| f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) ⊢ Ergodic f [PROOFSTEP] have he : MeasurePreserving e volume volume := measurePreserving_add_left volume (DivisibleBy.div x <| n - 1) [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ h : 1 < |n| f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e ⊢ Ergodic f [PROOFSTEP] suffices e ∘ f ∘ e.symm = fun y => n • y by rw [← he.ergodic_conjugate_iff, this]; exact ergodic_zsmul h [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ h : 1 < |n| f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e this : ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = fun y => n • y ⊢ Ergodic f [PROOFSTEP] rw [← he.ergodic_conjugate_iff, this] [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ h : 1 < |n| f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e this : ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = fun y => n • y ⊢ Ergodic fun y => n • y [PROOFSTEP] exact ergodic_zsmul h [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ h : 1 < |n| f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e ⊢ ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = fun y => n • y [PROOFSTEP] replace h : n - 1 ≠ 0 [GOAL] case h T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ h : 1 < |n| f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e ⊢ n - 1 ≠ 0 [PROOFSTEP] rw [← abs_one] at h [GOAL] case h T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ h : |1| < |n| f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e ⊢ n - 1 ≠ 0 [PROOFSTEP] rw [sub_ne_zero] [GOAL] case h T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ h : |1| < |n| f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e ⊢ n ≠ 1 [PROOFSTEP] exact ne_of_apply_ne _ (ne_of_gt h) [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 ⊢ ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = fun y => n • y [PROOFSTEP] have hnx : n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1) := by conv_rhs => congr; rw [← DivisibleBy.div_cancel x h] rw [sub_smul, one_smul, sub_add_cancel] [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 ⊢ n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1) [PROOFSTEP] conv_rhs => congr; rw [← DivisibleBy.div_cancel x h] [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 | x + DivisibleBy.div x (n - 1) [PROOFSTEP] congr; rw [← DivisibleBy.div_cancel x h] [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 | x + DivisibleBy.div x (n - 1) [PROOFSTEP] congr; rw [← DivisibleBy.div_cancel x h] [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 | x + DivisibleBy.div x (n - 1) [PROOFSTEP] congr [GOAL] case a T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 | x case a T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 | DivisibleBy.div x (n - 1) [PROOFSTEP] rw [← DivisibleBy.div_cancel x h] [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 ⊢ n • DivisibleBy.div x (n - 1) = (n - 1) • DivisibleBy.div x (n - 1) + DivisibleBy.div x (n - 1) [PROOFSTEP] rw [sub_smul, one_smul, sub_add_cancel] [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 hnx : n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1) ⊢ ↑e ∘ f ∘ ↑(MeasurableEquiv.symm e) = fun y => n • y [PROOFSTEP] ext y [GOAL] case h T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 hnx : n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1) y : AddCircle T ⊢ (↑e ∘ f ∘ ↑(MeasurableEquiv.symm e)) y = n • y [PROOFSTEP] simp only [hnx, MeasurableEquiv.coe_addLeft, MeasurableEquiv.symm_addLeft, comp_apply, smul_add, zsmul_neg', neg_smul, neg_add_rev] [GOAL] case h T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 hnx : n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1) y : AddCircle T ⊢ DivisibleBy.div x (n - 1) + (-DivisibleBy.div x (n - 1) + -x + n • y + x) = n • y [PROOFSTEP] abel [GOAL] case h T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℤ f : AddCircle T → AddCircle T := fun y => n • y + x e : AddCircle T ≃ᵐ AddCircle T := MeasurableEquiv.addLeft (DivisibleBy.div x (n - 1)) he : MeasurePreserving ↑e h : n - 1 ≠ 0 hnx : n • DivisibleBy.div x (n - 1) = x + DivisibleBy.div x (n - 1) y : AddCircle T ⊢ DivisibleBy.div x (n - 1) + (-DivisibleBy.div x (n - 1) + -x + n • y + x) = n • y [PROOFSTEP] abel [GOAL] T : ℝ hT : Fact (0 < T) x : AddCircle T n : ℕ h : 1 < n ⊢ 1 < |↑n| [PROOFSTEP] simp [h]
{"mathlib_filename": "Mathlib.Dynamics.Ergodic.AddCircle", "llama_tokens": 23408}
{"mathlib_filename": "Mathlib.Tactic.Conv", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.DeriveToExpr", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.NormCast", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.LibrarySearch", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Monotonicity", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.SlimCheck", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Cache", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Have", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Tauto", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.ScopedNS", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Clear!", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Measurability", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.FinCases", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.NormNum", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Choose", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.MkIffOfInductiveProp", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Says", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.PPWithUniv", "llama_tokens": 0}
[GOAL] p : Sort u_1 a : ℤ n : ℕ hn : Nat.ble 1 n = true H : OnModCases n a 0 p ⊢ 0 ≤ toNat (a % ↑n) ∧ toNat (a % ↑n) < n ∧ a ≡ ↑(toNat (a % ↑n)) [ZMOD ↑n] [PROOFSTEP] have := ofNat_pos.2 <| Nat.le_of_ble_eq_true hn [GOAL] p : Sort u_1 a : ℤ n : ℕ hn : Nat.ble 1 n = true H : OnModCases n a 0 p this : 0 < ↑n ⊢ 0 ≤ toNat (a % ↑n) ∧ toNat (a % ↑n) < n ∧ a ≡ ↑(toNat (a % ↑n)) [ZMOD ↑n] [PROOFSTEP] have nonneg := emod_nonneg a <| Int.ne_of_gt this [GOAL] p : Sort u_1 a : ℤ n : ℕ hn : Nat.ble 1 n = true H : OnModCases n a 0 p this : 0 < ↑n nonneg : 0 ≤ a % ↑n ⊢ 0 ≤ toNat (a % ↑n) ∧ toNat (a % ↑n) < n ∧ a ≡ ↑(toNat (a % ↑n)) [ZMOD ↑n] [PROOFSTEP] refine ⟨Nat.zero_le _, ?_, ?_⟩ [GOAL] case refine_1 p : Sort u_1 a : ℤ n : ℕ hn : Nat.ble 1 n = true H : OnModCases n a 0 p this : 0 < ↑n nonneg : 0 ≤ a % ↑n ⊢ toNat (a % ↑n) < n [PROOFSTEP] rw [Int.toNat_lt nonneg] [GOAL] case refine_1 p : Sort u_1 a : ℤ n : ℕ hn : Nat.ble 1 n = true H : OnModCases n a 0 p this : 0 < ↑n nonneg : 0 ≤ a % ↑n ⊢ a % ↑n < ↑n [PROOFSTEP] exact Int.emod_lt_of_pos _ this [GOAL] case refine_2 p : Sort u_1 a : ℤ n : ℕ hn : Nat.ble 1 n = true H : OnModCases n a 0 p this : 0 < ↑n nonneg : 0 ≤ a % ↑n ⊢ a ≡ ↑(toNat (a % ↑n)) [ZMOD ↑n] [PROOFSTEP] rw [Int.ModEq, Int.toNat_of_nonneg nonneg, emod_emod]
{"mathlib_filename": "Mathlib.Tactic.ModCases", "llama_tokens": 770}
{"mathlib_filename": "Mathlib.Tactic.ByContra", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Recall", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.ToExpr", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.ApplyWith", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Spread", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.GuardHypNums", "llama_tokens": 0}
[GOAL] E : Type u_1 V : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E f : V → E inst✝⁴ : NormedAddCommGroup V inst✝³ : MeasurableSpace V inst✝² : BorelSpace V inst✝¹ : InnerProductSpace ℝ V inst✝ : FiniteDimensional ℝ V w : V ⊢ Integrable f ↔ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v [PROOFSTEP] have hL : Continuous fun p : V × V => BilinForm.toLin bilinFormOfRealInner p.1 p.2 := continuous_inner [GOAL] E : Type u_1 V : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E f : V → E inst✝⁴ : NormedAddCommGroup V inst✝³ : MeasurableSpace V inst✝² : BorelSpace V inst✝¹ : InnerProductSpace ℝ V inst✝ : FiniteDimensional ℝ V w : V hL : Continuous fun p => ↑(↑(↑BilinForm.toLin bilinFormOfRealInner) p.fst) p.snd ⊢ Integrable f ↔ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v [PROOFSTEP] rw [VectorFourier.fourier_integral_convergent_iff Real.continuous_fourierChar hL w] [GOAL] E : Type u_1 V : Type u_2 inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℂ E f : V → E inst✝⁴ : NormedAddCommGroup V inst✝³ : MeasurableSpace V inst✝² : BorelSpace V inst✝¹ : InnerProductSpace ℝ V inst✝ : FiniteDimensional ℝ V w : V hL : Continuous fun p => ↑(↑(↑BilinForm.toLin bilinFormOfRealInner) p.fst) p.snd ⊢ (Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-↑(↑(↑BilinForm.toLin bilinFormOfRealInner) v) w))) • f v) ↔ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v [PROOFSTEP] simp only [BilinForm.toLin_apply, bilinFormOfRealInner_apply] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) = -∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v [PROOFSTEP] have hiw : ⟪i w, w⟫ = 1 / 2 := by rw [inner_smul_left, inner_self_eq_norm_sq_to_K, IsROrC.ofReal_real_eq_id, id.def, IsROrC.conj_to_real, ← div_div, div_mul_cancel] rwa [Ne.def, sq_eq_zero_iff, norm_eq_zero] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 ⊢ inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 [PROOFSTEP] rw [inner_smul_left, inner_self_eq_norm_sq_to_K, IsROrC.ofReal_real_eq_id, id.def, IsROrC.conj_to_real, ← div_div, div_mul_cancel] [GOAL] case h E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 ⊢ ‖w‖ ^ 2 ≠ 0 [PROOFSTEP] rwa [Ne.def, sq_eq_zero_iff, norm_eq_zero] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) = -∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v [PROOFSTEP] have : (fun v : V => e[-⟪v, w⟫] • f (v + i w)) = fun v : V => (fun x : V => -e[-⟪x, w⟫] • f x) (v + i w) := by ext1 v simp_rw [inner_add_left, hiw, Real.fourierChar_apply, neg_add, mul_add, ofReal_add, add_mul, exp_add] have : 2 * π * -(1 / 2) = -π := by field_simp; ring rw [this, ofReal_neg, neg_mul, exp_neg, exp_pi_mul_I, inv_neg, inv_one, mul_neg_one, neg_neg] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 ⊢ (fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) = fun v => (fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) [PROOFSTEP] ext1 v [GOAL] case h E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 v : V ⊢ ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) = (fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) [PROOFSTEP] simp_rw [inner_add_left, hiw, Real.fourierChar_apply, neg_add, mul_add, ofReal_add, add_mul, exp_add] [GOAL] case h E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 v : V ⊢ exp (↑(2 * π * -inner v w) * I) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w) = -(exp (↑(2 * π * -inner v w) * I) * exp (↑(2 * π * -(1 / 2)) * I)) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w) [PROOFSTEP] have : 2 * π * -(1 / 2) = -π := by field_simp; ring [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 v : V ⊢ 2 * π * -(1 / 2) = -π [PROOFSTEP] field_simp [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 v : V ⊢ 2 * π = π * 2 [PROOFSTEP] ring [GOAL] case h E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 v : V this : 2 * π * -(1 / 2) = -π ⊢ exp (↑(2 * π * -inner v w) * I) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w) = -(exp (↑(2 * π * -inner v w) * I) * exp (↑(2 * π * -(1 / 2)) * I)) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w) [PROOFSTEP] rw [this, ofReal_neg, neg_mul, exp_neg, exp_pi_mul_I, inv_neg, inv_one, mul_neg_one, neg_neg] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 this : (fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) = fun v => (fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) = -∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v [PROOFSTEP] rw [this] -- Porting note: -- The next three lines had just been -- rw [integral_add_right_eq_self (fun (x : V) ↦ -(e[-⟪x, w⟫]) • f x) -- ((fun w ↦ (1 / (2 * ‖w‖ ^ (2 : ℕ))) • w) w)] -- Unfortunately now we need to specify `volume`, and call `dsimp`. [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 this : (fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) = fun v => (fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) ⊢ ∫ (v : V), (fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) = -∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v [PROOFSTEP] have := @integral_add_right_eq_self _ _ _ _ _ volume _ _ _ (fun (x : V) ↦ -(e[-⟪x, w⟫]) • f x) ((fun w ↦ (1 / (2 * ‖w‖ ^ (2 : ℕ))) • w) w) [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 this✝ : (fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) = fun v => (fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) this : ∫ (x : V), -↑(↑e (↑Multiplicative.ofAdd (-inner (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w))) • f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) = ∫ (x : V), -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x ⊢ ∫ (v : V), (fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) = -∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v [PROOFSTEP] erw [this] -- Porting note, we can avoid `erw` by first calling `dsimp at this ⊢`. [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hiw : inner ((fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w = 1 / 2 this✝ : (fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) = fun v => (fun x => -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x) (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) this : ∫ (x : V), -↑(↑e (↑Multiplicative.ofAdd (-inner (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) w))) • f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w) = ∫ (x : V), -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x ⊢ ∫ (x : V), -↑(↑e (↑Multiplicative.ofAdd (-inner x w))) • f x = -∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v [PROOFSTEP] simp only [neg_smul, integral_neg] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hf : Integrable f ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v = (1 / 2) • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • (f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)) [PROOFSTEP] simp_rw [smul_sub] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hf : Integrable f ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v = (1 / 2) • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v - ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w) [PROOFSTEP] rw [integral_sub, fourier_integral_half_period_translate hw, sub_eq_add_neg, neg_neg, ← two_smul ℂ _, ← @smul_assoc _ _ _ _ _ _ (IsScalarTower.left ℂ), smul_eq_mul] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hf : Integrable f ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v = (1 / 2 * 2) • ∫ (a : V), ↑(↑e (↑Multiplicative.ofAdd (-inner a w))) • f a case hf E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hf : Integrable f ⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v case hg E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hf : Integrable f ⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w) [PROOFSTEP] norm_num [GOAL] case hf E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hf : Integrable f ⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v case hg E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E w : V hw : w ≠ 0 hf : Integrable f ⊢ Integrable fun v => ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f (v + (1 / (2 * ‖w‖ ^ 2)) • w) [PROOFSTEP] exacts [(fourier_integrand_integrable w).mp hf, (fourier_integrand_integrable w).mp (hf.comp_add_right _)] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0) [PROOFSTEP] refine' NormedAddCommGroup.tendsto_nhds_zero.mpr fun ε hε => _ [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 ⊢ ∀ᶠ (x : V) in cocompact V, ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v x))) • f v‖ < ε [PROOFSTEP] suffices ∃ T : ℝ, ∀ w : V, T ≤ ‖w‖ → ‖∫ v : V, e[-⟪v, w⟫] • f v‖ < ε by simp_rw [← comap_dist_left_atTop_eq_cocompact (0 : V), eventually_comap, eventually_atTop, dist_eq_norm', sub_zero] exact let ⟨T, hT⟩ := this ⟨T, fun b hb v hv => hT v (hv.symm ▸ hb)⟩ [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 this : ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε ⊢ ∀ᶠ (x : V) in cocompact V, ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v x))) • f v‖ < ε [PROOFSTEP] simp_rw [← comap_dist_left_atTop_eq_cocompact (0 : V), eventually_comap, eventually_atTop, dist_eq_norm', sub_zero] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 this : ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε ⊢ ∃ a, ∀ (b : ℝ), b ≥ a → ∀ (a : V), ‖a‖ = b → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v a))) • f v‖ < ε [PROOFSTEP] exact let ⟨T, hT⟩ := this ⟨T, fun b hb v hv => hT v (hv.symm ▸ hb)⟩ [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 ⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] obtain ⟨R, -, hR_bd⟩ : ∃ R : ℝ, 0 < R ∧ ∀ x : V, R ≤ ‖x‖ → f x = 0 [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 ⊢ ∃ R, 0 < R ∧ ∀ (x : V), R ≤ ‖x‖ → f x = 0 case intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 ⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] exact hf2.exists_pos_le_norm [GOAL] case intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 ⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] let A := {v : V | ‖v‖ ≤ R + 1} [GOAL] case intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} ⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] have mA : MeasurableSet A := by suffices A = Metric.closedBall (0 : V) (R + 1) by rw [this] exact Metric.isClosed_ball.measurableSet simp_rw [Metric.closedBall, dist_eq_norm, sub_zero] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} ⊢ MeasurableSet A [PROOFSTEP] suffices A = Metric.closedBall (0 : V) (R + 1) by rw [this] exact Metric.isClosed_ball.measurableSet [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} this : A = Metric.closedBall 0 (R + 1) ⊢ MeasurableSet A [PROOFSTEP] rw [this] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} this : A = Metric.closedBall 0 (R + 1) ⊢ MeasurableSet (Metric.closedBall 0 (R + 1)) [PROOFSTEP] exact Metric.isClosed_ball.measurableSet [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} ⊢ A = Metric.closedBall 0 (R + 1) [PROOFSTEP] simp_rw [Metric.closedBall, dist_eq_norm, sub_zero] [GOAL] case intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A ⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] obtain ⟨B, hB_pos, hB_vol⟩ : ∃ B : ℝ≥0, 0 < B ∧ volume A ≤ B := by have hc : IsCompact A := by simpa only [Metric.closedBall, dist_eq_norm, sub_zero] using isCompact_closedBall (0 : V) _ let B₀ := volume A replace hc : B₀ < ⊤ := hc.measure_lt_top refine' ⟨B₀.toNNReal + 1, add_pos_of_nonneg_of_pos B₀.toNNReal.coe_nonneg one_pos, _⟩ rw [ENNReal.coe_add, ENNReal.coe_one, ENNReal.coe_toNNReal hc.ne] exact le_self_add [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A ⊢ ∃ B, 0 < B ∧ ↑↑volume A ≤ ↑B [PROOFSTEP] have hc : IsCompact A := by simpa only [Metric.closedBall, dist_eq_norm, sub_zero] using isCompact_closedBall (0 : V) _ [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A ⊢ IsCompact A [PROOFSTEP] simpa only [Metric.closedBall, dist_eq_norm, sub_zero] using isCompact_closedBall (0 : V) _ [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A hc : IsCompact A ⊢ ∃ B, 0 < B ∧ ↑↑volume A ≤ ↑B [PROOFSTEP] let B₀ := volume A [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A hc : IsCompact A B₀ : ℝ≥0∞ := ↑↑volume A ⊢ ∃ B, 0 < B ∧ ↑↑volume A ≤ ↑B [PROOFSTEP] replace hc : B₀ < ⊤ := hc.measure_lt_top [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B₀ : ℝ≥0∞ := ↑↑volume A hc : B₀ < ⊤ ⊢ ∃ B, 0 < B ∧ ↑↑volume A ≤ ↑B [PROOFSTEP] refine' ⟨B₀.toNNReal + 1, add_pos_of_nonneg_of_pos B₀.toNNReal.coe_nonneg one_pos, _⟩ [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B₀ : ℝ≥0∞ := ↑↑volume A hc : B₀ < ⊤ ⊢ ↑↑volume A ≤ ↑(ENNReal.toNNReal B₀ + 1) [PROOFSTEP] rw [ENNReal.coe_add, ENNReal.coe_one, ENNReal.coe_toNNReal hc.ne] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B₀ : ℝ≥0∞ := ↑↑volume A hc : B₀ < ⊤ ⊢ ↑↑volume A ≤ B₀ + 1 [PROOFSTEP] exact le_self_add [GOAL] case intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B ⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] obtain ⟨δ, hδ1, hδ2⟩ := Metric.uniformContinuous_iff.mp (hf2.uniformContinuous_of_continuous hf1) (ε / B) (div_pos hε hB_pos) [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B ⊢ ∃ T, ∀ (w : V), T ≤ ‖w‖ → ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] refine' ⟨1 / 2 + 1 / (2 * δ), fun w hw_bd => _⟩ [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ ⊢ ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] have hw_ne : w ≠ 0 := by contrapose! hw_bd; rw [hw_bd, norm_zero] exact add_pos one_half_pos (one_div_pos.mpr <| mul_pos two_pos hδ1) [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ ⊢ w ≠ 0 [PROOFSTEP] contrapose! hw_bd [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : w = 0 ⊢ ‖w‖ < 1 / 2 + 1 / (2 * δ) [PROOFSTEP] rw [hw_bd, norm_zero] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : w = 0 ⊢ 0 < 1 / 2 + 1 / (2 * δ) [PROOFSTEP] exact add_pos one_half_pos (one_div_pos.mpr <| mul_pos two_pos hδ1) [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 ⊢ ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] have hw'_nm : ‖i w‖ = 1 / (2 * ‖w‖) := by rw [norm_smul, norm_div, Real.norm_of_nonneg (mul_nonneg two_pos.le <| sq_nonneg _), norm_one, sq, ← div_div, ← div_div, ← div_div, div_mul_cancel _ (norm_eq_zero.not.mpr hw_ne)] --* Rewrite integral in terms of `f v - f (v + w')`. -- Porting note: this was -- rw [norm_eq_abs, ← Complex.ofReal_one, ← ofReal_bit0, ← of_real_div, -- Complex.abs_of_nonneg one_half_pos.le] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 ⊢ ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) [PROOFSTEP] rw [norm_smul, norm_div, Real.norm_of_nonneg (mul_nonneg two_pos.le <| sq_nonneg _), norm_one, sq, ← div_div, ← div_div, ← div_div, div_mul_cancel _ (norm_eq_zero.not.mpr hw_ne)] --* Rewrite integral in terms of `f v - f (v + w')`. -- Porting note: this was -- rw [norm_eq_abs, ← Complex.ofReal_one, ← ofReal_bit0, ← of_real_div, -- Complex.abs_of_nonneg one_half_pos.le] [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) ⊢ ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] have : ‖(1 / 2 : ℂ)‖ = 1 / 2 := by norm_num [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) ⊢ ‖1 / 2‖ = 1 / 2 [PROOFSTEP] norm_num [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this : ‖1 / 2‖ = 1 / 2 ⊢ ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v‖ < ε [PROOFSTEP] rw [fourier_integral_eq_half_sub_half_period_translate hw_ne (hf1.integrable_of_hasCompactSupport hf2), norm_smul, this] [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this : ‖1 / 2‖ = 1 / 2 ⊢ 1 / 2 * ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • (f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w))‖ < ε [PROOFSTEP] have : ε = 1 / 2 * (2 * ε) := by field_simp; rw [mul_comm] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this : ‖1 / 2‖ = 1 / 2 ⊢ ε = 1 / 2 * (2 * ε) [PROOFSTEP] field_simp [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this : ‖1 / 2‖ = 1 / 2 ⊢ ε * 2 = 2 * ε [PROOFSTEP] rw [mul_comm] [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) ⊢ 1 / 2 * ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • (f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w))‖ < ε [PROOFSTEP] rw [this, mul_lt_mul_left (one_half_pos : (0 : ℝ) < 1 / 2)] [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) ⊢ ‖∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • (f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w))‖ < 2 * ε [PROOFSTEP] refine' lt_of_le_of_lt (norm_integral_le_integral_norm _) _ [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) ⊢ ∫ (a : V), ‖↑(↑e (↑Multiplicative.ofAdd (-inner a w))) • (f a - f (a + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w))‖ < 2 * ε [PROOFSTEP] simp_rw [norm_smul, norm_eq_abs, abs_coe_circle, one_mul] --* Show integral can be taken over A only. [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) ⊢ ∫ (a : V), ‖f a - f (a + (1 / (2 * ‖w‖ ^ 2)) • w)‖ < 2 * ε [PROOFSTEP] have int_A : ∫ v : V, ‖f v - f (v + i w)‖ = ∫ v in A, ‖f v - f (v + i w)‖ := by refine' (set_integral_eq_integral_of_forall_compl_eq_zero fun v hv => _).symm dsimp only at hv simp only [mem_setOf, not_le] at hv rw [hR_bd v _, hR_bd (v + i w) _, sub_zero, norm_zero] · rw [← sub_neg_eq_add] refine' le_trans _ (norm_sub_norm_le _ _) rw [le_sub_iff_add_le, norm_neg] refine' le_trans _ hv.le rw [add_le_add_iff_left, hw'_nm, ← div_div] refine' (div_le_one <| norm_pos_iff.mpr hw_ne).mpr _ refine' le_trans (le_add_of_nonneg_right <| one_div_nonneg.mpr <| _) hw_bd exact (mul_pos (zero_lt_two' ℝ) hδ1).le · exact ((le_add_iff_nonneg_right _).mpr zero_le_one).trans hv.le [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) ⊢ ∫ (v : V), ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ [PROOFSTEP] refine' (set_integral_eq_integral_of_forall_compl_eq_zero fun v hv => _).symm [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : ¬v ∈ A ⊢ ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ = 0 [PROOFSTEP] dsimp only at hv [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : ¬v ∈ {v | ‖v‖ ≤ R + 1} ⊢ ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ = 0 [PROOFSTEP] simp only [mem_setOf, not_le] at hv [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : R + 1 < ‖v‖ ⊢ ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ = 0 [PROOFSTEP] rw [hR_bd v _, hR_bd (v + i w) _, sub_zero, norm_zero] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : R + 1 < ‖v‖ ⊢ R ≤ ‖v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ [PROOFSTEP] rw [← sub_neg_eq_add] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : R + 1 < ‖v‖ ⊢ R ≤ ‖v - -(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ [PROOFSTEP] refine' le_trans _ (norm_sub_norm_le _ _) [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : R + 1 < ‖v‖ ⊢ R ≤ ‖v‖ - ‖-(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ [PROOFSTEP] rw [le_sub_iff_add_le, norm_neg] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : R + 1 < ‖v‖ ⊢ R + ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ ≤ ‖v‖ [PROOFSTEP] refine' le_trans _ hv.le [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : R + 1 < ‖v‖ ⊢ R + ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ ≤ R + 1 [PROOFSTEP] rw [add_le_add_iff_left, hw'_nm, ← div_div] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : R + 1 < ‖v‖ ⊢ 1 / 2 / ‖w‖ ≤ 1 [PROOFSTEP] refine' (div_le_one <| norm_pos_iff.mpr hw_ne).mpr _ [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : R + 1 < ‖v‖ ⊢ 1 / 2 ≤ ‖w‖ [PROOFSTEP] refine' le_trans (le_add_of_nonneg_right <| one_div_nonneg.mpr <| _) hw_bd [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : R + 1 < ‖v‖ ⊢ 0 ≤ 2 * δ [PROOFSTEP] exact (mul_pos (zero_lt_two' ℝ) hδ1).le [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) v : V hv : R + 1 < ‖v‖ ⊢ R ≤ ‖v‖ [PROOFSTEP] exact ((le_add_iff_nonneg_right _).mpr zero_le_one).trans hv.le [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) int_A : ∫ (v : V), ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ∫ (a : V), ‖f a - f (a + (1 / (2 * ‖w‖ ^ 2)) • w)‖ < 2 * ε [PROOFSTEP] rw [int_A] [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) int_A : ∫ (v : V), ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε [PROOFSTEP] clear int_A [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) ⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε [PROOFSTEP] have bdA : ∀ v : V, v ∈ A → ‖‖f v - f (v + i w)‖‖ ≤ ε / B := by simp_rw [norm_norm] simp_rw [dist_eq_norm] at hδ2 refine' fun x _ => (hδ2 _).le rw [sub_add_cancel', norm_neg, hw'_nm, ← div_div, div_lt_iff (norm_pos_iff.mpr hw_ne), ← div_lt_iff' hδ1, div_div] refine' (lt_add_of_pos_left _ _).trans_le hw_bd exact one_half_pos [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) ⊢ ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B [PROOFSTEP] simp_rw [norm_norm] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) ⊢ ∀ (v : V), v ∈ {v | ‖v‖ ≤ R + 1} → ‖f v - f (v + (1 / (2 * ‖w‖ ^ 2)) • w)‖ ≤ ε / ↑B [PROOFSTEP] simp_rw [dist_eq_norm] at hδ2 [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) hδ2 : ∀ {a b : V}, ‖a - b‖ < δ → ‖f a - f b‖ < ε / ↑B ⊢ ∀ (v : V), v ∈ {v | ‖v‖ ≤ R + 1} → ‖f v - f (v + (1 / (2 * ‖w‖ ^ 2)) • w)‖ ≤ ε / ↑B [PROOFSTEP] refine' fun x _ => (hδ2 _).le [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) hδ2 : ∀ {a b : V}, ‖a - b‖ < δ → ‖f a - f b‖ < ε / ↑B x : V x✝ : x ∈ {v | ‖v‖ ≤ R + 1} ⊢ ‖x - (x + (1 / (2 * ‖w‖ ^ 2)) • w)‖ < δ [PROOFSTEP] rw [sub_add_cancel', norm_neg, hw'_nm, ← div_div, div_lt_iff (norm_pos_iff.mpr hw_ne), ← div_lt_iff' hδ1, div_div] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) hδ2 : ∀ {a b : V}, ‖a - b‖ < δ → ‖f a - f b‖ < ε / ↑B x : V x✝ : x ∈ {v | ‖v‖ ≤ R + 1} ⊢ 1 / (2 * δ) < ‖w‖ [PROOFSTEP] refine' (lt_add_of_pos_left _ _).trans_le hw_bd [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) hδ2 : ∀ {a b : V}, ‖a - b‖ < δ → ‖f a - f b‖ < ε / ↑B x : V x✝ : x ∈ {v | ‖v‖ ≤ R + 1} ⊢ 0 < 1 / 2 [PROOFSTEP] exact one_half_pos [GOAL] case intro.intro.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B ⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε [PROOFSTEP] have bdA2 := norm_set_integral_le_of_norm_le_const (hB_vol.trans_lt ENNReal.coe_lt_top) bdA ?_ [GOAL] case intro.intro.intro.intro.intro.intro.refine_2 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ‖∫ (x : V) in A, ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) ⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε case intro.intro.intro.intro.intro.intro.refine_1 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B ⊢ AEStronglyMeasurable (fun x => ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖) (Measure.restrict volume A) [PROOFSTEP] swap [GOAL] case intro.intro.intro.intro.intro.intro.refine_1 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B ⊢ AEStronglyMeasurable (fun x => ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖) (Measure.restrict volume A) [PROOFSTEP] apply Continuous.aestronglyMeasurable [GOAL] case intro.intro.intro.intro.intro.intro.refine_1.hf E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B ⊢ Continuous fun x => ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ [PROOFSTEP] exact continuous_norm.comp <| Continuous.sub hf1 <| Continuous.comp hf1 <| continuous_id'.add continuous_const [GOAL] case intro.intro.intro.intro.intro.intro.refine_2 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝ : ‖1 / 2‖ = 1 / 2 this : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ‖∫ (x : V) in A, ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) ⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε [PROOFSTEP] have : ‖_‖ = ∫ v : V in A, ‖f v - f (v + i w)‖ := Real.norm_of_nonneg (set_integral_nonneg mA fun x _ => norm_nonneg _) [GOAL] case intro.intro.intro.intro.intro.intro.refine_2 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝¹ : ‖1 / 2‖ = 1 / 2 this✝ : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ‖∫ (x : V) in A, ‖f x - f (x + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) this : ‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε [PROOFSTEP] rw [this] at bdA2 [GOAL] case intro.intro.intro.intro.intro.intro.refine_2 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝¹ : ‖1 / 2‖ = 1 / 2 this✝ : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) this : ‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ < 2 * ε [PROOFSTEP] refine' bdA2.trans_lt _ [GOAL] case intro.intro.intro.intro.intro.intro.refine_2 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝¹ : ‖1 / 2‖ = 1 / 2 this✝ : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) this : ‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ε / ↑B * ENNReal.toReal (↑↑volume A) < 2 * ε [PROOFSTEP] rw [div_mul_eq_mul_div, div_lt_iff (NNReal.coe_pos.mpr hB_pos), mul_comm (2 : ℝ), mul_assoc, mul_lt_mul_left hε] [GOAL] case intro.intro.intro.intro.intro.intro.refine_2 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝¹ : ‖1 / 2‖ = 1 / 2 this✝ : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) this : ‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ENNReal.toReal (↑↑volume A) < 2 * ↑B [PROOFSTEP] rw [← ENNReal.toReal_le_toReal] at hB_vol [GOAL] case intro.intro.intro.intro.intro.intro.refine_2 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ENNReal.toReal (↑↑volume A) ≤ ENNReal.toReal ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝¹ : ‖1 / 2‖ = 1 / 2 this✝ : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) this : ‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ENNReal.toReal (↑↑volume A) < 2 * ↑B [PROOFSTEP] refine' hB_vol.trans_lt _ [GOAL] case intro.intro.intro.intro.intro.intro.refine_2 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ENNReal.toReal (↑↑volume A) ≤ ENNReal.toReal ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝¹ : ‖1 / 2‖ = 1 / 2 this✝ : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) this : ‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ENNReal.toReal ↑B < 2 * ↑B [PROOFSTEP] rw [(by rfl : (↑B : ENNReal).toReal = ↑B), two_mul] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ENNReal.toReal (↑↑volume A) ≤ ENNReal.toReal ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝¹ : ‖1 / 2‖ = 1 / 2 this✝ : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) this : ‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ENNReal.toReal ↑B = ↑B [PROOFSTEP] rfl [GOAL] case intro.intro.intro.intro.intro.intro.refine_2 E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ENNReal.toReal (↑↑volume A) ≤ ENNReal.toReal ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝¹ : ‖1 / 2‖ = 1 / 2 this✝ : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) this : ‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ↑B < ↑B + ↑B [PROOFSTEP] exact lt_add_of_pos_left _ hB_pos [GOAL] case intro.intro.intro.intro.intro.intro.refine_2.ha E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝¹ : ‖1 / 2‖ = 1 / 2 this✝ : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) this : ‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ↑↑volume A ≠ ⊤ case intro.intro.intro.intro.intro.intro.refine_2.hb E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hf1 : Continuous f hf2 : HasCompactSupport f ε : ℝ hε : ε > 0 R : ℝ hR_bd : ∀ (x : V), R ≤ ‖x‖ → f x = 0 A : Set V := {v | ‖v‖ ≤ R + 1} mA : MeasurableSet A B : ℝ≥0 hB_pos : 0 < B hB_vol : ↑↑volume A ≤ ↑B δ : ℝ hδ1 : δ > 0 hδ2 : ∀ {a b : V}, dist a b < δ → dist (f a) (f b) < ε / ↑B w : V hw_bd : 1 / 2 + 1 / (2 * δ) ≤ ‖w‖ hw_ne : w ≠ 0 hw'_nm : ‖(fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w‖ = 1 / (2 * ‖w‖) this✝¹ : ‖1 / 2‖ = 1 / 2 this✝ : ε = 1 / 2 * (2 * ε) bdA : ∀ (v : V), v ∈ A → ‖‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ ≤ ε / ↑B bdA2 : ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ≤ ε / ↑B * ENNReal.toReal (↑↑volume A) this : ‖∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖‖ = ∫ (v : V) in A, ‖f v - f (v + (fun w => (1 / (2 * ‖w‖ ^ 2)) • w) w)‖ ⊢ ↑B ≠ ⊤ [PROOFSTEP] exacts [(hB_vol.trans_lt ENNReal.coe_lt_top).ne, ENNReal.coe_lt_top.ne] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0) [PROOFSTEP] by_cases hfi : Integrable f [GOAL] case pos E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0) case neg E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : ¬Integrable f ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0) [PROOFSTEP] swap [GOAL] case neg E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : ¬Integrable f ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0) [PROOFSTEP] convert tendsto_const_nhds (a := (0 : E)) with w [GOAL] case h.e.h.e'_3.h E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : ¬Integrable f w : V ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v = 0 [PROOFSTEP] apply integral_undef [GOAL] case h.e.h.e'_3.h.h E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : ¬Integrable f w : V ⊢ ¬Integrable fun a => ↑(↑e (↑Multiplicative.ofAdd (-inner a w))) • f a [PROOFSTEP] rwa [← fourier_integrand_integrable w] [GOAL] case pos E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) (cocompact V) (𝓝 0) [PROOFSTEP] refine' Metric.tendsto_nhds.mpr fun ε hε => _ [GOAL] case pos E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 ⊢ ∀ᶠ (x : V) in cocompact V, dist (∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v x))) • f v) 0 < ε [PROOFSTEP] obtain ⟨g, hg_supp, hfg, hg_cont, -⟩ := hfi.exists_hasCompactSupport_integral_sub_le (div_pos hε two_pos) [GOAL] case pos.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 g : V → E hg_supp : HasCompactSupport g hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2 hg_cont : Continuous g ⊢ ∀ᶠ (x : V) in cocompact V, dist (∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v x))) • f v) 0 < ε [PROOFSTEP] refine' ((Metric.tendsto_nhds.mp (tendsto_integral_exp_inner_smul_cocompact_of_continuous_compact_support hg_cont hg_supp)) _ (div_pos hε two_pos)).mp (eventually_of_forall fun w hI => _) [GOAL] case pos.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 g : V → E hg_supp : HasCompactSupport g hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2 hg_cont : Continuous g w : V hI : dist (∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) 0 < ε / 2 ⊢ dist (∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) 0 < ε [PROOFSTEP] rw [dist_eq_norm] at hI ⊢ [GOAL] case pos.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 g : V → E hg_supp : HasCompactSupport g hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2 hg_cont : Continuous g w : V hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2 ⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - 0‖ < ε [PROOFSTEP] have : ‖(∫ v, e[-⟪v, w⟫] • f v) - ∫ v, e[-⟪v, w⟫] • g v‖ ≤ ε / 2 := by refine' le_trans _ hfg simp_rw [← integral_sub ((fourier_integrand_integrable w).mp hfi) ((fourier_integrand_integrable w).mp (hg_cont.integrable_of_hasCompactSupport hg_supp)), ← smul_sub, ← Pi.sub_apply] exact VectorFourier.norm_fourierIntegral_le_integral_norm e volume (BilinForm.toLin bilinFormOfRealInner) (f - g) w [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 g : V → E hg_supp : HasCompactSupport g hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2 hg_cont : Continuous g w : V hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2 ⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ ≤ ε / 2 [PROOFSTEP] refine' le_trans _ hfg [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 g : V → E hg_supp : HasCompactSupport g hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2 hg_cont : Continuous g w : V hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2 ⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ ≤ ∫ (x : V), ‖f x - g x‖ [PROOFSTEP] simp_rw [← integral_sub ((fourier_integrand_integrable w).mp hfi) ((fourier_integrand_integrable w).mp (hg_cont.integrable_of_hasCompactSupport hg_supp)), ← smul_sub, ← Pi.sub_apply] [GOAL] E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 g : V → E hg_supp : HasCompactSupport g hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2 hg_cont : Continuous g w : V hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2 ⊢ ‖∫ (a : V), ↑(↑e (↑Multiplicative.ofAdd (-inner a w))) • (f - g) a‖ ≤ ∫ (x : V), ‖(f - g) x‖ [PROOFSTEP] exact VectorFourier.norm_fourierIntegral_le_integral_norm e volume (BilinForm.toLin bilinFormOfRealInner) (f - g) w [GOAL] case pos.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 g : V → E hg_supp : HasCompactSupport g hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2 hg_cont : Continuous g w : V hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2 this : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ ≤ ε / 2 ⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - 0‖ < ε [PROOFSTEP] replace := add_lt_add_of_le_of_lt this hI [GOAL] case pos.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 g : V → E hg_supp : HasCompactSupport g hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2 hg_cont : Continuous g w : V hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2 this : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ + ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2 + ε / 2 ⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - 0‖ < ε [PROOFSTEP] rw [add_halves] at this [GOAL] case pos.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 g : V → E hg_supp : HasCompactSupport g hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2 hg_cont : Continuous g w : V hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2 this : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ + ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε ⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - 0‖ < ε [PROOFSTEP] refine' ((le_of_eq _).trans (norm_add_le _ _)).trans_lt this [GOAL] case pos.intro.intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁷ : NormedAddCommGroup E inst✝⁶ : NormedSpace ℂ E f : V → E inst✝⁵ : NormedAddCommGroup V inst✝⁴ : MeasurableSpace V inst✝³ : BorelSpace V inst✝² : InnerProductSpace ℝ V inst✝¹ : FiniteDimensional ℝ V inst✝ : CompleteSpace E hfi : Integrable f ε : ℝ hε : ε > 0 g : V → E hg_supp : HasCompactSupport g hfg : ∫ (x : V), ‖f x - g x‖ ≤ ε / 2 hg_cont : Continuous g w : V hI : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε / 2 this : ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v‖ + ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0‖ < ε ⊢ ‖(∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - 0‖ = ‖((∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) - ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) + ((∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • g v) - 0)‖ [PROOFSTEP] simp only [sub_zero, sub_add_cancel] [GOAL] E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] obtain ⟨C, _, _, hC⟩ := μ.isAddHaarMeasure_eq_smul_isAddHaarMeasure volume [GOAL] case intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] rw [hC] [GOAL] case intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂C • volume) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] simp_rw [integral_smul_measure] [GOAL] case intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume ⊢ Tendsto (fun w => ENNReal.toReal C • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] rw [← (smul_zero _ : C.toReal • (0 : E) = 0)] [GOAL] case intro.intro.intro E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume ⊢ Tendsto (fun w => ENNReal.toReal C • ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v) (cocompact (V →L[ℝ] ℝ)) (𝓝 (ENNReal.toReal C • 0)) [PROOFSTEP] apply Tendsto.const_smul [GOAL] case intro.intro.intro.hf E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume ⊢ Tendsto (fun x => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑x v))) • f v) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] let A := (InnerProductSpace.toDual ℝ V).symm [GOAL] case intro.intro.intro.hf E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V) ⊢ Tendsto (fun x => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑x v))) • f v) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] have : (fun w : V →L[ℝ] ℝ => ∫ v, e[-w v] • f v) = (fun w : V => ∫ v, e[-⟪v, w⟫] • f v) ∘ A := by ext1 w congr 1 with v : 1 rw [← inner_conj_symm, IsROrC.conj_to_real, InnerProductSpace.toDual_symm_apply, Real.fourierChar_apply] [GOAL] E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V) ⊢ (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v) = (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) ∘ ↑A [PROOFSTEP] ext1 w [GOAL] case h E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V) w : V →L[ℝ] ℝ ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v = ((fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) ∘ ↑A) w [PROOFSTEP] congr 1 with v : 1 [GOAL] case h.e_f.h E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V) w : V →L[ℝ] ℝ v : V ⊢ ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v = ↑(↑e (↑Multiplicative.ofAdd (-inner v (↑A w)))) • f v [PROOFSTEP] rw [← inner_conj_symm, IsROrC.conj_to_real, InnerProductSpace.toDual_symm_apply, Real.fourierChar_apply] [GOAL] case intro.intro.intro.hf E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V) this : (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v) = (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) ∘ ↑A ⊢ Tendsto (fun x => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑x v))) • f v) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] rw [this] [GOAL] case intro.intro.intro.hf E : Type u_1 V : Type u_2 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℂ E f : V → E inst✝⁶ : NormedAddCommGroup V inst✝⁵ : MeasurableSpace V inst✝⁴ : BorelSpace V inst✝³ : InnerProductSpace ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ C : ℝ≥0∞ left✝¹ : C ≠ 0 left✝ : C ≠ ⊤ hC : μ = C • volume A : NormedSpace.Dual ℝ V ≃ₗᵢ⋆[ℝ] V := LinearIsometryEquiv.symm (InnerProductSpace.toDual ℝ V) this : (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v) = (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) ∘ ↑A ⊢ Tendsto ((fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-inner v w))) • f v) ∘ ↑A) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] exact (tendsto_integral_exp_inner_smul_cocompact f).comp A.toHomeomorph.toCocompactMap.cocompact_tendsto' [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] let V' := EuclideanSpace ℝ (Fin (finrank ℝ V)) [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] have A : V ≃L[ℝ] V' := toEuclidean [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] borelize V' [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] let Aₘ : MeasurableEquiv V V' := A.toHomeomorph.toMeasurableEquiv [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] let Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ := { toFun := fun t => t.comp A.symm.toContinuousLinearMap invFun := fun t => t.comp A.toContinuousLinearMap map_add' := by intro t s ext1 v simp only [ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.add_apply] map_smul' := by intro x f ext1 v simp only [RingHom.id_apply, ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.smul_apply] left_inv := by intro w ext1 v simp only [ContinuousLinearMap.coe_comp', ContinuousLinearEquiv.coe_coe, Function.comp_apply, ContinuousLinearEquiv.symm_apply_apply] right_inv := by intro w ext1 v simp only [ContinuousLinearMap.coe_comp', ContinuousLinearEquiv.coe_coe, Function.comp_apply, ContinuousLinearEquiv.apply_symm_apply] } [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) ⊢ ∀ (x y : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (x + y) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) x + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) y [PROOFSTEP] intro t s [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) t s : V →L[ℝ] ℝ ⊢ (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s [PROOFSTEP] ext1 v [GOAL] case h E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) t s : V →L[ℝ] ℝ v : V' ⊢ ↑((fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s)) v = ↑((fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) v [PROOFSTEP] simp only [ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.add_apply] [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) ⊢ ∀ (r : ℝ) (x : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (r • x) = ↑(RingHom.id ℝ) r • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } x [PROOFSTEP] intro x f [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f✝ : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) x : ℝ f : V →L[ℝ] ℝ ⊢ AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f [PROOFSTEP] ext1 v [GOAL] case h E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f✝ : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) x : ℝ f : V →L[ℝ] ℝ v : V' ⊢ ↑(AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f)) v = ↑(↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) v [PROOFSTEP] simp only [RingHom.id_apply, ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.smul_apply] [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) ⊢ Function.LeftInverse (fun t => ContinuousLinearMap.comp t ↑A) { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom.toFun [PROOFSTEP] intro w [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) w : V →L[ℝ] ℝ ⊢ (fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w) = w [PROOFSTEP] ext1 v [GOAL] case h E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) w : V →L[ℝ] ℝ v : V ⊢ ↑((fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w)) v = ↑w v [PROOFSTEP] simp only [ContinuousLinearMap.coe_comp', ContinuousLinearEquiv.coe_coe, Function.comp_apply, ContinuousLinearEquiv.symm_apply_apply] [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) ⊢ Function.RightInverse (fun t => ContinuousLinearMap.comp t ↑A) { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom.toFun [PROOFSTEP] intro w [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) w : V' →L[ℝ] ℝ ⊢ AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w) = w [PROOFSTEP] ext1 v [GOAL] case h E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) w : V' →L[ℝ] ℝ v : V' ⊢ ↑(AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w)) v = ↑w v [PROOFSTEP] simp only [ContinuousLinearMap.coe_comp', ContinuousLinearEquiv.coe_coe, Function.comp_apply, ContinuousLinearEquiv.apply_symm_apply] [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ := { toLinearMap := { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }, invFun := fun t => ContinuousLinearMap.comp t ↑A, left_inv := (_ : ∀ (w : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w) = w), right_inv := (_ : ∀ (w : V' →L[ℝ] ℝ), AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w) = w) } ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] let Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ := { Adualₗ with continuous_toFun := Adualₗ.toLinearMap.continuous_of_finiteDimensional continuous_invFun := Adualₗ.symm.toLinearMap.continuous_of_finiteDimensional } [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ := { toLinearMap := { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }, invFun := fun t => ContinuousLinearMap.comp t ↑A, left_inv := (_ : ∀ (w : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w) = w), right_inv := (_ : ∀ (w : V' →L[ℝ] ℝ), AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w) = w) } Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ := ContinuousLinearEquiv.mk { toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun, left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun), right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) } ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] have : (μ.map Aₘ).IsAddHaarMeasure := Measure.MapContinuousLinearEquiv.isAddHaarMeasure _ A [GOAL] E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ := { toLinearMap := { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }, invFun := fun t => ContinuousLinearMap.comp t ↑A, left_inv := (_ : ∀ (w : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w) = w), right_inv := (_ : ∀ (w : V' →L[ℝ] ℝ), AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w) = w) } Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ := ContinuousLinearEquiv.mk { toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun, left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun), right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) } this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ) ⊢ Tendsto (fun w => ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ) (cocompact (V →L[ℝ] ℝ)) (𝓝 0) [PROOFSTEP] convert (tendsto_integral_exp_smul_cocompact_of_inner_product (f ∘ A.symm) (μ.map Aₘ)).comp Adual.toHomeomorph.toCocompactMap.cocompact_tendsto' with w [GOAL] case h.e'_3.h E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ := { toLinearMap := { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }, invFun := fun t => ContinuousLinearMap.comp t ↑A, left_inv := (_ : ∀ (w : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w) = w), right_inv := (_ : ∀ (w : V' →L[ℝ] ℝ), AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w) = w) } Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ := ContinuousLinearEquiv.mk { toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun, left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun), right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) } this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ) w : V →L[ℝ] ℝ ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ = ((fun w => ∫ (v : V'), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • (f ∘ ↑(ContinuousLinearEquiv.symm A)) v ∂Measure.map (↑Aₘ) μ) ∘ (Homeomorph.toCocompactMap (ContinuousLinearEquiv.toHomeomorph Adual)).toContinuousMap.toFun) w [PROOFSTEP] rw [Function.comp_apply, integral_map_equiv] [GOAL] case h.e'_3.h E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ := { toLinearMap := { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }, invFun := fun t => ContinuousLinearMap.comp t ↑A, left_inv := (_ : ∀ (w : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w) = w), right_inv := (_ : ∀ (w : V' →L[ℝ] ℝ), AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w) = w) } Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ := ContinuousLinearEquiv.mk { toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun, left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun), right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) } this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ) w : V →L[ℝ] ℝ ⊢ ∫ (v : V), ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v ∂μ = ∫ (x : V), ↑(↑e (↑Multiplicative.ofAdd (-↑(ContinuousMap.toFun (Homeomorph.toCocompactMap (ContinuousLinearEquiv.toHomeomorph Adual)).toContinuousMap w) (↑Aₘ x)))) • (f ∘ ↑(ContinuousLinearEquiv.symm A)) (↑Aₘ x) ∂μ [PROOFSTEP] congr 1 with v : 1 [GOAL] case h.e'_3.h.e_f.h E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ := { toLinearMap := { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }, invFun := fun t => ContinuousLinearMap.comp t ↑A, left_inv := (_ : ∀ (w : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w) = w), right_inv := (_ : ∀ (w : V' →L[ℝ] ℝ), AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w) = w) } Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ := ContinuousLinearEquiv.mk { toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun, left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun), right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) } this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ) w : V →L[ℝ] ℝ v : V ⊢ ↑(↑e (↑Multiplicative.ofAdd (-↑w v))) • f v = ↑(↑e (↑Multiplicative.ofAdd (-↑(ContinuousMap.toFun (Homeomorph.toCocompactMap (ContinuousLinearEquiv.toHomeomorph Adual)).toContinuousMap w) (↑Aₘ v)))) • (f ∘ ↑(ContinuousLinearEquiv.symm A)) (↑Aₘ v) [PROOFSTEP] congr [GOAL] case h.e'_3.h.e_f.h.e_a.e_self.h.e_6.h.h.e_6.h.e_a E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ := { toLinearMap := { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }, invFun := fun t => ContinuousLinearMap.comp t ↑A, left_inv := (_ : ∀ (w : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w) = w), right_inv := (_ : ∀ (w : V' →L[ℝ] ℝ), AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w) = w) } Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ := ContinuousLinearEquiv.mk { toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun, left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun), right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) } this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ) w : V →L[ℝ] ℝ v : V ⊢ ↑w v = ↑(ContinuousMap.toFun (Homeomorph.toCocompactMap (ContinuousLinearEquiv.toHomeomorph Adual)).toContinuousMap w) (↑Aₘ v) [PROOFSTEP] apply congr_arg w [GOAL] case h.e'_3.h.e_f.h.e_a.e_self.h.e_6.h.h.e_6.h.e_a E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ := { toLinearMap := { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }, invFun := fun t => ContinuousLinearMap.comp t ↑A, left_inv := (_ : ∀ (w : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w) = w), right_inv := (_ : ∀ (w : V' →L[ℝ] ℝ), AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w) = w) } Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ := ContinuousLinearEquiv.mk { toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun, left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun), right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) } this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ) w : V →L[ℝ] ℝ v : V ⊢ v = ↑↑↑(ContinuousLinearEquiv.symm A) (↑Aₘ v) [PROOFSTEP] exact (ContinuousLinearEquiv.symm_apply_apply A v).symm [GOAL] case h.e'_3.h.e_f.h.e_a.e_a E : Type u_1 V : Type u_2 inst✝¹² : NormedAddCommGroup E inst✝¹¹ : NormedSpace ℂ E f : V → E inst✝¹⁰ : AddCommGroup V inst✝⁹ : TopologicalSpace V inst✝⁸ : TopologicalAddGroup V inst✝⁷ : T2Space V inst✝⁶ : MeasurableSpace V inst✝⁵ : BorelSpace V inst✝⁴ : Module ℝ V inst✝³ : ContinuousSMul ℝ V inst✝² : FiniteDimensional ℝ V inst✝¹ : CompleteSpace E μ : Measure V inst✝ : Measure.IsAddHaarMeasure μ V' : Type := EuclideanSpace ℝ (Fin (finrank ℝ V)) A : V ≃L[ℝ] V' this✝¹ : MeasurableSpace V' := borel V' this✝ : BorelSpace V' Aₘ : V ≃ᵐ V' := Homeomorph.toMeasurableEquiv (ContinuousLinearEquiv.toHomeomorph A) Adualₗ : (V →L[ℝ] ℝ) ≃ₗ[ℝ] V' →L[ℝ] ℝ := { toLinearMap := { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }, invFun := fun t => ContinuousLinearMap.comp t ↑A, left_inv := (_ : ∀ (w : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑A) (AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom w) = w), right_inv := (_ : ∀ (w : V' →L[ℝ] ℝ), AddHom.toFun { toAddHom := { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) }, map_smul' := (_ : ∀ (x : ℝ) (f : V →L[ℝ] ℝ), AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } (x • f) = ↑(RingHom.id ℝ) x • AddHom.toFun { toFun := fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A), map_add' := (_ : ∀ (t s : V →L[ℝ] ℝ), (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) (t + s) = (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) t + (fun t => ContinuousLinearMap.comp t ↑(ContinuousLinearEquiv.symm A)) s) } f) }.toAddHom ((fun t => ContinuousLinearMap.comp t ↑A) w) = w) } Adual : (V →L[ℝ] ℝ) ≃L[ℝ] V' →L[ℝ] ℝ := ContinuousLinearEquiv.mk { toLinearMap := ↑Adualₗ, invFun := Adualₗ.invFun, left_inv := (_ : Function.LeftInverse Adualₗ.invFun Adualₗ.toFun), right_inv := (_ : Function.RightInverse Adualₗ.invFun Adualₗ.toFun) } this : Measure.IsAddHaarMeasure (Measure.map (↑Aₘ) μ) w : V →L[ℝ] ℝ v : V ⊢ v = ↑(ContinuousLinearEquiv.symm A) (↑Aₘ v) [PROOFSTEP] exact (ContinuousLinearEquiv.symm_apply_apply A v).symm
{"mathlib_filename": "Mathlib.Analysis.Fourier.RiemannLebesgueLemma", "llama_tokens": 87063}
{"mathlib_filename": "Mathlib.Tactic.InferParam", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Substs", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Existsi", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.UnsetOption", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Observe", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Use", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.SolveByElim", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.GuardGoalNums", "llama_tokens": 0}
[GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) f g : { x // x ∈ lp G 2 } ⊢ Summable fun i => inner (↑f i) (↑g i) [PROOFSTEP] refine' summable_of_norm_bounded (fun i => ‖f i‖ * ‖g i‖) (lp.summable_mul _ f g) _ [GOAL] case refine'_1 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) f g : { x // x ∈ lp G 2 } ⊢ Real.IsConjugateExponent (ENNReal.toReal 2) (ENNReal.toReal 2) [PROOFSTEP] rw [Real.isConjugateExponent_iff] [GOAL] case refine'_1 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) f g : { x // x ∈ lp G 2 } ⊢ ENNReal.toReal 2 = ENNReal.toReal 2 / (ENNReal.toReal 2 - 1) [PROOFSTEP] norm_num [GOAL] case refine'_1 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) f g : { x // x ∈ lp G 2 } ⊢ 1 < ENNReal.toReal 2 [PROOFSTEP] norm_num [GOAL] case refine'_2 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) f g : { x // x ∈ lp G 2 } ⊢ ∀ (i : ι), ‖inner (↑f i) (↑g i)‖ ≤ (fun i => ‖↑f i‖ * ‖↑g i‖) i [PROOFSTEP] intro i [GOAL] case refine'_2 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) f g : { x // x ∈ lp G 2 } i : ι ⊢ ‖inner (↑f i) (↑g i)‖ ≤ (fun i => ‖↑f i‖ * ‖↑g i‖) i [PROOFSTEP] exact norm_inner_le_norm (𝕜 := 𝕜) _ _ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f : { x // x ∈ lp G 2 } ⊢ ‖f‖ ^ 2 = ↑re (inner f f) [PROOFSTEP] calc ‖f‖ ^ 2 = ‖f‖ ^ (2 : ℝ≥0∞).toReal := by norm_cast _ = ∑' i, ‖f i‖ ^ (2 : ℝ≥0∞).toReal := (lp.norm_rpow_eq_tsum ?_ f) _ = ∑' i, ‖f i‖ ^ (2 : ℕ) := by norm_cast _ = ∑' i, re ⟪f i, f i⟫ := by congr funext i rw [norm_sq_eq_inner (𝕜 := 𝕜)] -- porting note: `simp` couldn't do this anymore _ = re (∑' i, ⟪f i, f i⟫) := (IsROrC.reClm.map_tsum ?_).symm [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f : { x // x ∈ lp G 2 } ⊢ ‖f‖ ^ 2 = ‖f‖ ^ ENNReal.toReal 2 [PROOFSTEP] norm_cast [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f : { x // x ∈ lp G 2 } ⊢ ∑' (i : ι), ‖↑f i‖ ^ ENNReal.toReal 2 = ∑' (i : ι), ‖↑f i‖ ^ 2 [PROOFSTEP] norm_cast [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f : { x // x ∈ lp G 2 } ⊢ ∑' (i : ι), ‖↑f i‖ ^ 2 = ∑' (i : ι), ↑re (inner (↑f i) (↑f i)) [PROOFSTEP] congr [GOAL] case e_f ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f : { x // x ∈ lp G 2 } ⊢ (fun i => ‖↑f i‖ ^ 2) = fun i => ↑re (inner (↑f i) (↑f i)) [PROOFSTEP] funext i [GOAL] case e_f.h ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f : { x // x ∈ lp G 2 } i : ι ⊢ ‖↑f i‖ ^ 2 = ↑re (inner (↑f i) (↑f i)) [PROOFSTEP] rw [norm_sq_eq_inner (𝕜 := 𝕜)] -- porting note: `simp` couldn't do this anymore [GOAL] case calc_1 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f : { x // x ∈ lp G 2 } ⊢ 0 < ENNReal.toReal 2 [PROOFSTEP] norm_num [GOAL] case calc_2 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f : { x // x ∈ lp G 2 } ⊢ Summable fun i => inner (↑f i) (↑f i) [PROOFSTEP] exact summable_inner f f [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f g : { x // x ∈ lp G 2 } ⊢ ↑(starRingEnd 𝕜) (inner g f) = inner f g [PROOFSTEP] calc conj _ = conj (∑' i, ⟪g i, f i⟫) := by congr _ = ∑' i, conj ⟪g i, f i⟫ := IsROrC.conjCle.map_tsum _ = ∑' i, ⟪f i, g i⟫ := by simp only [inner_conj_symm] _ = _ := by congr [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f g : { x // x ∈ lp G 2 } ⊢ ↑(starRingEnd 𝕜) (inner g f) = ↑(starRingEnd 𝕜) (∑' (i : ι), inner (↑g i) (↑f i)) [PROOFSTEP] congr [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f g : { x // x ∈ lp G 2 } ⊢ ∑' (i : ι), ↑(starRingEnd 𝕜) (inner (↑g i) (↑f i)) = ∑' (i : ι), inner (↑f i) (↑g i) [PROOFSTEP] simp only [inner_conj_symm] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f g : { x // x ∈ lp G 2 } ⊢ ∑' (i : ι), inner (↑f i) (↑g i) = inner f g [PROOFSTEP] congr [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f₁ f₂ g : { x // x ∈ lp G 2 } ⊢ inner (f₁ + f₂) g = inner f₁ g + inner f₂ g [PROOFSTEP] calc _ = ∑' i, ⟪(f₁ + f₂) i, g i⟫ := ?_ _ = ∑' i, (⟪f₁ i, g i⟫ + ⟪f₂ i, g i⟫) := by simp only [inner_add_left, Pi.add_apply, coeFn_add] _ = (∑' i, ⟪f₁ i, g i⟫) + ∑' i, ⟪f₂ i, g i⟫ := (tsum_add ?_ ?_) _ = _ := by congr [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f₁ f₂ g : { x // x ∈ lp G 2 } ⊢ ∑' (i : ι), inner (↑(f₁ + f₂) i) (↑g i) = ∑' (i : ι), (inner (↑f₁ i) (↑g i) + inner (↑f₂ i) (↑g i)) [PROOFSTEP] simp only [inner_add_left, Pi.add_apply, coeFn_add] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f₁ f₂ g : { x // x ∈ lp G 2 } ⊢ ∑' (i : ι), inner (↑f₁ i) (↑g i) + ∑' (i : ι), inner (↑f₂ i) (↑g i) = inner f₁ g + inner f₂ g [PROOFSTEP] congr [GOAL] case calc_1 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f₁ f₂ g : { x // x ∈ lp G 2 } ⊢ inner (f₁ + f₂) g = ∑' (i : ι), inner (↑(f₁ + f₂) i) (↑g i) [PROOFSTEP] congr [GOAL] case calc_2 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f₁ f₂ g : { x // x ∈ lp G 2 } ⊢ Summable fun i => inner (↑f₁ i) (↑g i) [PROOFSTEP] exact summable_inner f₁ g [GOAL] case calc_3 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f₁ f₂ g : { x // x ∈ lp G 2 } ⊢ Summable fun i => inner (↑f₂ i) (↑g i) [PROOFSTEP] exact summable_inner f₂ g [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f g : { x // x ∈ lp G 2 } c : 𝕜 ⊢ inner (c • f) g = ↑(starRingEnd 𝕜) c * inner f g [PROOFSTEP] calc _ = ∑' i, ⟪c • f i, g i⟫ := ?_ _ = ∑' i, conj c * ⟪f i, g i⟫ := by simp only [inner_smul_left] _ = conj c * ∑' i, ⟪f i, g i⟫ := tsum_mul_left _ = _ := ?_ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f g : { x // x ∈ lp G 2 } c : 𝕜 ⊢ ∑' (i : ι), inner (c • ↑f i) (↑g i) = ∑' (i : ι), ↑(starRingEnd 𝕜) c * inner (↑f i) (↑g i) [PROOFSTEP] simp only [inner_smul_left] [GOAL] case calc_1 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f g : { x // x ∈ lp G 2 } c : 𝕜 ⊢ inner (c • f) g = ∑' (i : ι), inner (c • ↑f i) (↑g i) [PROOFSTEP] simp only [coeFn_smul, Pi.smul_apply] [GOAL] case calc_2 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) src✝ : NormedAddCommGroup { x // x ∈ lp G 2 } := normedAddCommGroup f g : { x // x ∈ lp G 2 } c : 𝕜 ⊢ ↑(starRingEnd 𝕜) c * ∑' (i : ι), inner (↑f i) (↑g i) = ↑(starRingEnd 𝕜) c * inner f g [PROOFSTEP] congr [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) i : ι a : G i f : { x // x ∈ lp G 2 } ⊢ inner (lp.single 2 i a) f = inner a (↑f i) [PROOFSTEP] refine' (hasSum_inner (lp.single 2 i a) f).unique _ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) i : ι a : G i f : { x // x ∈ lp G 2 } ⊢ HasSum (fun i_1 => inner (↑(lp.single 2 i a) i_1) (↑f i_1)) (inner a (↑f i)) [PROOFSTEP] convert hasSum_ite_eq i ⟪a, f i⟫ using 1 [GOAL] case h.e'_5 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) i : ι a : G i f : { x // x ∈ lp G 2 } ⊢ (fun i_1 => inner (↑(lp.single 2 i a) i_1) (↑f i_1)) = fun b' => if b' = i then inner a (↑f i) else 0 [PROOFSTEP] ext j [GOAL] case h.e'_5.h ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) i : ι a : G i f : { x // x ∈ lp G 2 } j : ι ⊢ inner (↑(lp.single 2 i a) j) (↑f j) = if j = i then inner a (↑f i) else 0 [PROOFSTEP] rw [lp.single_apply] [GOAL] case h.e'_5.h ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) i : ι a : G i f : { x // x ∈ lp G 2 } j : ι ⊢ inner (if h : j = i then (_ : i = j) ▸ a else 0) (↑f j) = if j = i then inner a (↑f i) else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) i : ι a : G i f : { x // x ∈ lp G 2 } j : ι h : j = i ⊢ inner ((_ : i = j) ▸ a) (↑f j) = inner a (↑f i) [PROOFSTEP] subst h [GOAL] case pos ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) f : { x // x ∈ lp G 2 } j : ι a : G j ⊢ inner ((_ : j = j) ▸ a) (↑f j) = inner a (↑f j) [PROOFSTEP] rfl [GOAL] case neg ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) i : ι a : G i f : { x // x ∈ lp G 2 } j : ι h : ¬j = i ⊢ inner 0 (↑f j) = 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) i : ι a : G i f : { x // x ∈ lp G 2 } ⊢ inner f (lp.single 2 i a) = inner (↑f i) a [PROOFSTEP] simpa [inner_conj_symm] using congr_arg conj (@inner_single_left _ 𝕜 _ _ _ _ i a f) [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } ⊢ Summable fun i => ↑(V i) (↑f i) [PROOFSTEP] rw [hV.summable_iff_norm_sq_summable] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } ⊢ Summable fun i => ‖↑f i‖ ^ 2 [PROOFSTEP] convert (lp.memℓp f).summable _ [GOAL] case h.e'_5.h ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } x✝ : ι ⊢ ‖↑f x✝‖ ^ 2 = ‖↑f x✝‖ ^ ENNReal.toReal 2 [PROOFSTEP] norm_cast [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } ⊢ 0 < ENNReal.toReal 2 [PROOFSTEP] norm_num [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f g : { x // x ∈ lp G 2 } ⊢ (fun f => ∑' (i : ι), ↑(V i) (↑f i)) (f + g) = (fun f => ∑' (i : ι), ↑(V i) (↑f i)) f + (fun f => ∑' (i : ι), ↑(V i) (↑f i)) g [PROOFSTEP] simp only [tsum_add (hV.summable_of_lp f) (hV.summable_of_lp g), lp.coeFn_add, Pi.add_apply, LinearIsometry.map_add] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V c : 𝕜 f : { x // x ∈ lp G 2 } ⊢ AddHom.toFun { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) } (c • f) = ↑(RingHom.id 𝕜) c • AddHom.toFun { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) } f [PROOFSTEP] simpa only [LinearIsometry.map_smul, Pi.smul_apply, lp.coeFn_smul] using tsum_const_smul c (hV.summable_of_lp f) [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } ⊢ ‖↑{ toAddHom := { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }, map_smul' := (_ : ∀ (c : 𝕜) (f : { x // x ∈ lp G 2 }), AddHom.toFun { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) } (c • f) = ↑(RingHom.id 𝕜) c • AddHom.toFun { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) } f) } f‖ = ‖f‖ [PROOFSTEP] classical -- needed for lattice instance on `Finset ι`, for `Filter.atTop_neBot` have H : 0 < (2 : ℝ≥0∞).toReal := by norm_num suffices ‖∑' i : ι, V i (f i)‖ ^ (2 : ℝ≥0∞).toReal = ‖f‖ ^ (2 : ℝ≥0∞).toReal by exact Real.rpow_left_injOn H.ne' (norm_nonneg _) (norm_nonneg _) this refine' tendsto_nhds_unique _ (lp.hasSum_norm H f) convert (hV.summable_of_lp f).hasSum.norm.rpow_const (Or.inr H.le) using 1 ext s exact_mod_cast (hV.norm_sum f s).symm [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } ⊢ ‖↑{ toAddHom := { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }, map_smul' := (_ : ∀ (c : 𝕜) (f : { x // x ∈ lp G 2 }), AddHom.toFun { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) } (c • f) = ↑(RingHom.id 𝕜) c • AddHom.toFun { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) } f) } f‖ = ‖f‖ [PROOFSTEP] have H : 0 < (2 : ℝ≥0∞).toReal := by norm_num [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } ⊢ 0 < ENNReal.toReal 2 [PROOFSTEP] norm_num [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } H : 0 < ENNReal.toReal 2 ⊢ ‖↑{ toAddHom := { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }, map_smul' := (_ : ∀ (c : 𝕜) (f : { x // x ∈ lp G 2 }), AddHom.toFun { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) } (c • f) = ↑(RingHom.id 𝕜) c • AddHom.toFun { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) } f) } f‖ = ‖f‖ [PROOFSTEP] suffices ‖∑' i : ι, V i (f i)‖ ^ (2 : ℝ≥0∞).toReal = ‖f‖ ^ (2 : ℝ≥0∞).toReal by exact Real.rpow_left_injOn H.ne' (norm_nonneg _) (norm_nonneg _) this [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } H : 0 < ENNReal.toReal 2 this : ‖∑' (i : ι), ↑(V i) (↑f i)‖ ^ ENNReal.toReal 2 = ‖f‖ ^ ENNReal.toReal 2 ⊢ ‖↑{ toAddHom := { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) }, map_smul' := (_ : ∀ (c : 𝕜) (f : { x // x ∈ lp G 2 }), AddHom.toFun { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) } (c • f) = ↑(RingHom.id 𝕜) c • AddHom.toFun { toFun := fun f => ∑' (i : ι), ↑(V i) (↑f i), map_add' := (_ : ∀ (f g : { x // x ∈ lp G 2 }), ∑' (x : ι), ↑(V x) (↑f x + ↑g x) = ∑' (b : ι), ↑(V b) (↑f b) + ∑' (b : ι), ↑(V b) (↑g b)) } f) } f‖ = ‖f‖ [PROOFSTEP] exact Real.rpow_left_injOn H.ne' (norm_nonneg _) (norm_nonneg _) this [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } H : 0 < ENNReal.toReal 2 ⊢ ‖∑' (i : ι), ↑(V i) (↑f i)‖ ^ ENNReal.toReal 2 = ‖f‖ ^ ENNReal.toReal 2 [PROOFSTEP] refine' tendsto_nhds_unique _ (lp.hasSum_norm H f) [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } H : 0 < ENNReal.toReal 2 ⊢ Tendsto (fun s => ∑ b in s, (fun i => ‖↑f i‖ ^ ENNReal.toReal 2) b) atTop (𝓝 (‖∑' (i : ι), ↑(V i) (↑f i)‖ ^ ENNReal.toReal 2)) [PROOFSTEP] convert (hV.summable_of_lp f).hasSum.norm.rpow_const (Or.inr H.le) using 1 [GOAL] case h.e'_3 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } H : 0 < ENNReal.toReal 2 ⊢ (fun s => ∑ b in s, (fun i => ‖↑f i‖ ^ ENNReal.toReal 2) b) = fun a => ‖∑ b in a, (fun i => ↑(V i) (↑f i)) b‖ ^ ENNReal.toReal 2 [PROOFSTEP] ext s [GOAL] case h.e'_3.h ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V f : { x // x ∈ lp G 2 } H : 0 < ENNReal.toReal 2 s : Finset ι ⊢ ∑ b in s, (fun i => ‖↑f i‖ ^ ENNReal.toReal 2) b = ‖∑ b in s, (fun i => ↑(V i) (↑f i)) b‖ ^ ENNReal.toReal 2 [PROOFSTEP] exact_mod_cast (hV.norm_sum f s).symm [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V i : ι x : G i ⊢ ↑(OrthogonalFamily.linearIsometry hV) (lp.single 2 i x) = ↑(V i) x [PROOFSTEP] rw [hV.linearIsometry_apply, ← tsum_ite_eq i (V i x)] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V i : ι x : G i ⊢ ∑' (i_1 : ι), ↑(V i_1) (↑(lp.single 2 i x) i_1) = ∑' (b' : ι), if b' = i then ↑(V i) x else 0 [PROOFSTEP] congr [GOAL] case e_f ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V i : ι x : G i ⊢ (fun i_1 => ↑(V i_1) (↑(lp.single 2 i x) i_1)) = fun b' => if b' = i then ↑(V i) x else 0 [PROOFSTEP] ext j [GOAL] case e_f.h ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V i : ι x : G i j : ι ⊢ ↑(V j) (↑(lp.single 2 i x) j) = if j = i then ↑(V i) x else 0 [PROOFSTEP] rw [lp.single_apply] [GOAL] case e_f.h ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V i : ι x : G i j : ι ⊢ ↑(V j) (if h : j = i then (_ : i = j) ▸ x else 0) = if j = i then ↑(V i) x else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V i : ι x : G i j : ι h : j = i ⊢ ↑(V j) (if h : j = i then (_ : i = j) ▸ x else 0) = ↑(V i) x [PROOFSTEP] subst h [GOAL] case pos ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V j : ι x : G j ⊢ ↑(V j) (if h : j = j then (_ : j = j) ▸ x else 0) = ↑(V j) x [PROOFSTEP] simp [GOAL] case neg ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V i : ι x : G i j : ι h : ¬j = i ⊢ ↑(V j) (if h : j = i then (_ : i = j) ▸ x else 0) = 0 [PROOFSTEP] simp [h] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V W₀ : Π₀ (i : ι), G i ⊢ ↑(OrthogonalFamily.linearIsometry hV) (DFinsupp.sum W₀ (lp.single 2)) = DFinsupp.sum W₀ fun i => ↑(V i) [PROOFSTEP] have : hV.linearIsometry (∑ i in W₀.support, lp.single 2 i (W₀ i)) = ∑ i in W₀.support, hV.linearIsometry (lp.single 2 i (W₀ i)) := hV.linearIsometry.toLinearMap.map_sum [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V W₀ : Π₀ (i : ι), G i this : ↑(OrthogonalFamily.linearIsometry hV) (∑ i in DFinsupp.support W₀, lp.single 2 i (↑W₀ i)) = ∑ i in DFinsupp.support W₀, ↑(OrthogonalFamily.linearIsometry hV) (lp.single 2 i (↑W₀ i)) ⊢ ↑(OrthogonalFamily.linearIsometry hV) (DFinsupp.sum W₀ (lp.single 2)) = DFinsupp.sum W₀ fun i => ↑(V i) [PROOFSTEP] simp (config := { contextual := true }) [DFinsupp.sum, this] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) ⊢ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap = topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap) [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) ⊢ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap ≤ topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap) [PROOFSTEP] rintro x ⟨f, rfl⟩ [GOAL] case refine'_1.intro ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) f : { x // x ∈ lp G 2 } ⊢ ↑(OrthogonalFamily.linearIsometry hV).toLinearMap f ∈ topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap) [PROOFSTEP] refine' mem_closure_of_tendsto (hV.hasSum_linearIsometry f) (eventually_of_forall _) [GOAL] case refine'_1.intro ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) f : { x // x ∈ lp G 2 } ⊢ ∀ (x : Finset ι), ∑ b in x, (fun i => ↑(V i) (↑f i)) b ∈ ↑(⨆ (i : ι), LinearMap.range (V i).toLinearMap) [PROOFSTEP] intro s [GOAL] case refine'_1.intro ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) f : { x // x ∈ lp G 2 } s : Finset ι ⊢ ∑ b in s, (fun i => ↑(V i) (↑f i)) b ∈ ↑(⨆ (i : ι), LinearMap.range (V i).toLinearMap) [PROOFSTEP] rw [SetLike.mem_coe] [GOAL] case refine'_1.intro ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) f : { x // x ∈ lp G 2 } s : Finset ι ⊢ ∑ b in s, (fun i => ↑(V i) (↑f i)) b ∈ ⨆ (i : ι), LinearMap.range (V i).toLinearMap [PROOFSTEP] refine' sum_mem _ [GOAL] case refine'_1.intro ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) f : { x // x ∈ lp G 2 } s : Finset ι ⊢ ∀ (c : ι), c ∈ s → (fun i => ↑(V i) (↑f i)) c ∈ ⨆ (i : ι), LinearMap.range (V i).toLinearMap [PROOFSTEP] intro i _ [GOAL] case refine'_1.intro ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) f : { x // x ∈ lp G 2 } s : Finset ι i : ι a✝ : i ∈ s ⊢ (fun i => ↑(V i) (↑f i)) i ∈ ⨆ (i : ι), LinearMap.range (V i).toLinearMap [PROOFSTEP] refine' mem_iSup_of_mem i _ [GOAL] case refine'_1.intro ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) f : { x // x ∈ lp G 2 } s : Finset ι i : ι a✝ : i ∈ s ⊢ (fun i => ↑(V i) (↑f i)) i ∈ LinearMap.range (V i).toLinearMap [PROOFSTEP] exact LinearMap.mem_range_self _ (f i) [GOAL] case refine'_2 ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) ⊢ topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap) ≤ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap [PROOFSTEP] apply topologicalClosure_minimal [GOAL] case refine'_2.h ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) ⊢ ⨆ (i : ι), LinearMap.range (V i).toLinearMap ≤ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap [PROOFSTEP] refine' iSup_le _ [GOAL] case refine'_2.h ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) ⊢ ∀ (i : ι), LinearMap.range (V i).toLinearMap ≤ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap [PROOFSTEP] rintro i x ⟨x, rfl⟩ [GOAL] case refine'_2.h.intro ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) i : ι x : G i ⊢ ↑(V i).toLinearMap x ∈ LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap [PROOFSTEP] use lp.single 2 i x [GOAL] case h ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) i : ι x : G i ⊢ ↑(OrthogonalFamily.linearIsometry hV).toLinearMap (lp.single 2 i x) = ↑(V i).toLinearMap x [PROOFSTEP] exact hV.linearIsometry_apply_single x [GOAL] case refine'_2.ht ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E hV : OrthogonalFamily 𝕜 G V inst✝ : ∀ (i : ι), CompleteSpace (G i) ⊢ IsClosed ↑(LinearMap.range (OrthogonalFamily.linearIsometry hV).toLinearMap) [PROOFSTEP] exact hV.linearIsometry.isometry.uniformInducing.isComplete_range.isClosed [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E inst✝ : ∀ (i : ι), CompleteSpace (G i) hVortho : OrthogonalFamily 𝕜 G V hVtotal : ⊤ ≤ topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap) ⊢ Function.Surjective ↑(OrthogonalFamily.linearIsometry hVortho) [PROOFSTEP] rw [← LinearIsometry.coe_toLinearMap] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E inst✝ : ∀ (i : ι), CompleteSpace (G i) hVortho : OrthogonalFamily 𝕜 G V hVtotal : ⊤ ≤ topologicalClosure (⨆ (i : ι), LinearMap.range (V i).toLinearMap) ⊢ Function.Surjective ↑(OrthogonalFamily.linearIsometry hVortho).toLinearMap [PROOFSTEP] exact LinearMap.range_eq_top.mp (eq_top_iff.mpr <| hVtotal.trans_eq hVortho.range_linearIsometry.symm) [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E inst✝ : ∀ (i : ι), CompleteSpace { x // x ∈ F i } hFortho : OrthogonalFamily 𝕜 (fun i => { x // x ∈ F i }) fun i => subtypeₗᵢ (F i) hFtotal : ⊤ ≤ topologicalClosure (⨆ (i : ι), F i) ⊢ ⊤ ≤ topologicalClosure (⨆ (i : ι), LinearMap.range (subtypeₗᵢ (F i)).toLinearMap) [PROOFSTEP] simpa [subtypeₗᵢ_toLinearMap, range_subtype] using hFtotal [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E hV : IsHilbertSum 𝕜 G V w : { x // x ∈ lp G 2 } ⊢ ↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) w = ∑' (i : ι), ↑(V i) (↑w i) [PROOFSTEP] simp [IsHilbertSum.linearIsometryEquiv, OrthogonalFamily.linearIsometry_apply] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E hV : IsHilbertSum 𝕜 G V w : { x // x ∈ lp G 2 } ⊢ HasSum (fun i => ↑(V i) (↑w i)) (↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) w) [PROOFSTEP] simp [IsHilbertSum.linearIsometryEquiv, OrthogonalFamily.hasSum_linearIsometry] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E hV : IsHilbertSum 𝕜 G V i : ι x : G i ⊢ ↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) (lp.single 2 i x) = ↑(V i) x [PROOFSTEP] simp [IsHilbertSum.linearIsometryEquiv, OrthogonalFamily.linearIsometry_apply_single] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E hV : IsHilbertSum 𝕜 G V W₀ : Π₀ (i : ι), G i ⊢ ↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) (DFinsupp.sum W₀ (lp.single 2)) = DFinsupp.sum W₀ fun i => ↑(V i) [PROOFSTEP] simp [IsHilbertSum.linearIsometryEquiv, OrthogonalFamily.linearIsometry_apply_dfinsupp_sum_single] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E hV : IsHilbertSum 𝕜 G V W₀ : Π₀ (i : ι), G i ⊢ ↑(↑(linearIsometryEquiv hV) (DFinsupp.sum W₀ fun i => ↑(V i))) = ↑W₀ [PROOFSTEP] rw [← hV.linearIsometryEquiv_symm_apply_dfinsupp_sum_single] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E hV : IsHilbertSum 𝕜 G V W₀ : Π₀ (i : ι), G i ⊢ ↑(↑(linearIsometryEquiv hV) (↑(LinearIsometryEquiv.symm (linearIsometryEquiv hV)) (DFinsupp.sum W₀ (lp.single 2)))) = ↑W₀ [PROOFSTEP] rw [LinearIsometryEquiv.apply_symm_apply] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E hV : IsHilbertSum 𝕜 G V W₀ : Π₀ (i : ι), G i ⊢ ↑(DFinsupp.sum W₀ (lp.single 2)) = ↑W₀ [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E hV : IsHilbertSum 𝕜 G V W₀ : Π₀ (i : ι), G i i : ι ⊢ ↑(DFinsupp.sum W₀ (lp.single 2)) i = ↑W₀ i [PROOFSTEP] simp (config := { contextual := true }) [DFinsupp.sum, lp.single_apply] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E v : ι → E hv : Orthonormal 𝕜 v hsp : ⊤ ≤ topologicalClosure (span 𝕜 (Set.range v)) ⊢ ⊤ ≤ topologicalClosure (⨆ (i : ι), LinearMap.range (LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)).toLinearMap) [PROOFSTEP] convert hsp [GOAL] case h.e'_4.h.e'_9 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E v : ι → E hv : Orthonormal 𝕜 v hsp : ⊤ ≤ topologicalClosure (span 𝕜 (Set.range v)) ⊢ ⨆ (i : ι), LinearMap.range (LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)).toLinearMap = span 𝕜 (Set.range v) [PROOFSTEP] simp [← LinearMap.span_singleton_eq_range, ← Submodule.span_iUnion] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } ⊢ IsHilbertSum 𝕜 (fun b => { x // x ∈ bif b then K else Kᗮ }) fun b => subtypeₗᵢ (bif b then K else Kᗮ) [PROOFSTEP] have : ∀ b, CompleteSpace (↥(cond b K Kᗮ)) := by intro b cases b <;> first | exact instOrthogonalCompleteSpace K | assumption [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } ⊢ ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ } [PROOFSTEP] intro b [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } b : Bool ⊢ CompleteSpace { x // x ∈ bif b then K else Kᗮ } [PROOFSTEP] cases b [GOAL] case false ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } ⊢ CompleteSpace { x // x ∈ bif false then K else Kᗮ } [PROOFSTEP] first | exact instOrthogonalCompleteSpace K | assumption [GOAL] case false ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } ⊢ CompleteSpace { x // x ∈ bif false then K else Kᗮ } [PROOFSTEP] exact instOrthogonalCompleteSpace K [GOAL] case true ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } ⊢ CompleteSpace { x // x ∈ bif true then K else Kᗮ } [PROOFSTEP] first | exact instOrthogonalCompleteSpace K | assumption [GOAL] case true ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } ⊢ CompleteSpace { x // x ∈ bif true then K else Kᗮ } [PROOFSTEP] exact instOrthogonalCompleteSpace K [GOAL] case true ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } ⊢ CompleteSpace { x // x ∈ bif true then K else Kᗮ } [PROOFSTEP] assumption [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } this : ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ } ⊢ IsHilbertSum 𝕜 (fun b => { x // x ∈ bif b then K else Kᗮ }) fun b => subtypeₗᵢ (bif b then K else Kᗮ) [PROOFSTEP] refine' IsHilbertSum.mkInternal _ K.orthogonalFamily_self _ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } this : ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ } ⊢ ⊤ ≤ topologicalClosure (⨆ (i : Bool), bif i then K else Kᗮ) [PROOFSTEP] refine' le_trans _ (Submodule.le_topologicalClosure _) [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } this : ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ } ⊢ ⊤ ≤ ⨆ (i : Bool), bif i then K else Kᗮ [PROOFSTEP] rw [iSup_bool_eq, cond, cond] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } this : ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ } ⊢ ⊤ ≤ (match true with | true => K | false => Kᗮ) ⊔ match false with | true => K | false => Kᗮ [PROOFSTEP] refine' Codisjoint.top_le _ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) V : (i : ι) → G i →ₗᵢ[𝕜] E F : ι → Submodule 𝕜 E K : Submodule 𝕜 E hK : CompleteSpace { x // x ∈ K } this : ∀ (b : Bool), CompleteSpace { x // x ∈ bif b then K else Kᗮ } ⊢ Codisjoint (match true with | true => K | false => Kᗮ) (match false with | true => K | false => Kᗮ) [PROOFSTEP] exact Submodule.isCompl_orthogonal_of_completeSpace.codisjoint [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E i : ι ⊢ ↑b.repr ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = lp.single 2 i 1 [PROOFSTEP] simp [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E v : E i : ι ⊢ ↑(↑b.repr v) i = inner ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) v [PROOFSTEP] rw [← b.repr.inner_map_map (b i) v, b.repr_self, lp.inner_single_left] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E v : E i : ι ⊢ ↑(↑b.repr v) i = inner 1 (↑(↑b.repr v) i) [PROOFSTEP] simp [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E ⊢ Orthonormal 𝕜 fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1) [PROOFSTEP] rw [orthonormal_iff_ite] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E ⊢ ∀ (i j : ι), inner (↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) (↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 j 1)) = if i = j then 1 else 0 [PROOFSTEP] intro i j [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E i j : ι ⊢ inner (↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) (↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 j 1)) = if i = j then 1 else 0 [PROOFSTEP] rw [← b.repr.inner_map_map (b i) (b j), b.repr_self, b.repr_self, lp.inner_single_left, lp.single_apply] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E i j : ι ⊢ inner 1 (if h : i = j then (_ : j = i) ▸ 1 else 0) = if i = j then 1 else 0 [PROOFSTEP] simp [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } ⊢ HasSum (fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) (↑(LinearIsometryEquiv.symm b.repr) f) [PROOFSTEP] suffices H : (fun i : ι => f i • b i) = fun b_1 : ι => b.repr.symm.toContinuousLinearEquiv <| (fun i : ι => lp.single 2 i (f i) (E := (fun _ : ι => 𝕜))) b_1 [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } H : (fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = fun b_1 => ↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) b_1) ⊢ HasSum (fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) (↑(LinearIsometryEquiv.symm b.repr) f) [PROOFSTEP] rw [H] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } H : (fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = fun b_1 => ↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) b_1) ⊢ HasSum (fun b_1 => ↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) b_1)) (↑(LinearIsometryEquiv.symm b.repr) f) [PROOFSTEP] have : HasSum (fun i : ι => lp.single 2 i (f i)) f := lp.hasSum_single ENNReal.two_ne_top f [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } H : (fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = fun b_1 => ↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) b_1) this : HasSum (fun i => lp.single 2 i (↑f i)) f ⊢ HasSum (fun b_1 => ↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) b_1)) (↑(LinearIsometryEquiv.symm b.repr) f) [PROOFSTEP] exact (↑b.repr.symm.toContinuousLinearEquiv : ℓ²(ι, 𝕜) →L[𝕜] E).hasSum this [GOAL] case H ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } ⊢ (fun i => ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = fun b_1 => ↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) b_1) [PROOFSTEP] ext i [GOAL] case H.h ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } i : ι ⊢ ↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i = ↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) i) [PROOFSTEP] apply b.repr.injective [GOAL] case H.h.a ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } i : ι ⊢ ↑b.repr (↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = ↑b.repr (↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) i)) [PROOFSTEP] letI : NormedSpace 𝕜 (lp (fun _i : ι => 𝕜) 2) := by infer_instance [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } i : ι ⊢ NormedSpace 𝕜 { x // x ∈ lp (fun _i => 𝕜) 2 } [PROOFSTEP] infer_instance [GOAL] case H.h.a ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } i : ι this : NormedSpace 𝕜 { x // x ∈ lp (fun _i => 𝕜) 2 } := inferInstance ⊢ ↑b.repr (↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = ↑b.repr (↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) i)) [PROOFSTEP] have : lp.single (E := (fun _ : ι => 𝕜)) 2 i (f i * 1) = f i • lp.single 2 i 1 := lp.single_smul (E := (fun _ : ι => 𝕜)) 2 i (1 : 𝕜) (f i) [GOAL] case H.h.a ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } i : ι this✝ : NormedSpace 𝕜 { x // x ∈ lp (fun _i => 𝕜) 2 } := inferInstance this : lp.single 2 i (↑f i * 1) = ↑f i • lp.single 2 i 1 ⊢ ↑b.repr (↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = ↑b.repr (↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) i)) [PROOFSTEP] rw [mul_one] at this [GOAL] case H.h.a ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } i : ι this✝ : NormedSpace 𝕜 { x // x ∈ lp (fun _i => 𝕜) 2 } := inferInstance this : lp.single 2 i (↑f i) = ↑f i • lp.single 2 i 1 ⊢ ↑b.repr (↑f i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) = ↑b.repr (↑(LinearIsometryEquiv.toContinuousLinearEquiv (LinearIsometryEquiv.symm b.repr)) ((fun i => lp.single 2 i (↑f i)) i)) [PROOFSTEP] rw [LinearIsometryEquiv.map_smul, b.repr_self, ← this, LinearIsometryEquiv.coe_toContinuousLinearEquiv] [GOAL] case H.h.a ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E f : { x // x ∈ lp (fun i => 𝕜) 2 } i : ι this✝ : NormedSpace 𝕜 { x // x ∈ lp (fun _i => 𝕜) 2 } := inferInstance this : lp.single 2 i (↑f i) = ↑f i • lp.single 2 i 1 ⊢ lp.single 2 i (↑f i) = ↑b.repr (↑(LinearIsometryEquiv.symm b.repr) ((fun i => lp.single 2 i (↑f i)) i)) [PROOFSTEP] exact (b.repr.apply_symm_apply (lp.single 2 i (f i))).symm [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x : E ⊢ HasSum (fun i => ↑(↑b.repr x) i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) x [PROOFSTEP] simpa using b.hasSum_repr_symm (b.repr x) [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E ⊢ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) = ⊤ [PROOFSTEP] classical rw [eq_top_iff] rintro x - refine' mem_closure_of_tendsto (b.hasSum_repr x) (eventually_of_forall _) intro s simp only [SetLike.mem_coe] refine' sum_mem _ rintro i - refine' smul_mem _ _ _ exact subset_span ⟨i, rfl⟩ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E ⊢ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) = ⊤ [PROOFSTEP] rw [eq_top_iff] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E ⊢ ⊤ ≤ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) [PROOFSTEP] rintro x - [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x : E ⊢ x ∈ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) [PROOFSTEP] refine' mem_closure_of_tendsto (b.hasSum_repr x) (eventually_of_forall _) [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x : E ⊢ ∀ (x_1 : Finset ι), ∑ b_1 in x_1, (fun i => ↑(↑b.repr x) i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) b_1 ∈ ↑(span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) [PROOFSTEP] intro s [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x : E s : Finset ι ⊢ ∑ b_1 in s, (fun i => ↑(↑b.repr x) i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) b_1 ∈ ↑(span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) [PROOFSTEP] simp only [SetLike.mem_coe] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x : E s : Finset ι ⊢ ∑ x_1 in s, ↑(↑b.repr x) x_1 • ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 x_1 1) ∈ span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) [PROOFSTEP] refine' sum_mem _ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x : E s : Finset ι ⊢ ∀ (c : ι), c ∈ s → ↑(↑b.repr x) c • ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 c 1) ∈ span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) [PROOFSTEP] rintro i - [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x : E s : Finset ι i : ι ⊢ ↑(↑b.repr x) i • ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1) ∈ span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) [PROOFSTEP] refine' smul_mem _ _ _ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x : E s : Finset ι i : ι ⊢ ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1) ∈ span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) [PROOFSTEP] exact subset_span ⟨i, rfl⟩ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x y : E ⊢ HasSum (fun i => inner x ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) * inner ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) y) (inner x y) [PROOFSTEP] convert (b.hasSum_repr y).mapL (innerSL _ x) using 1 [GOAL] case h.e'_5 ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x y : E ⊢ (fun i => inner x ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) * inner ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) y) = fun b_1 => ↑(↑(innerSL 𝕜) x) (↑(↑b.repr y) b_1 • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) b_1) [PROOFSTEP] ext i [GOAL] case h.e'_5.h ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E x y : E i : ι ⊢ inner x ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) * inner ((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) y = ↑(↑(innerSL 𝕜) x) (↑(↑b.repr y) i • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) [PROOFSTEP] rw [innerSL_apply, b.repr_apply_apply, inner_smul_right, mul_comm] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) inst✝ : Fintype ι b : HilbertBasis ι 𝕜 E ⊢ ⊤ ≤ span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) [PROOFSTEP] refine' Eq.ge _ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) inst✝ : Fintype ι b : HilbertBasis ι 𝕜 E ⊢ span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) = ⊤ [PROOFSTEP] have := (span 𝕜 (Finset.univ.image b : Set E)).closed_of_finiteDimensional [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) inst✝ : Fintype ι b : HilbertBasis ι 𝕜 E this : IsClosed ↑(span 𝕜 ↑(Finset.image (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) Finset.univ)) ⊢ span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) = ⊤ [PROOFSTEP] simpa only [Finset.coe_image, Finset.coe_univ, Set.image_univ, HilbertBasis.dense_span] using this.submodule_topologicalClosure_eq.symm [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) U : Submodule 𝕜 E inst✝ : CompleteSpace { x // x ∈ U } b : HilbertBasis ι 𝕜 { x // x ∈ U } x : E ⊢ HasSum (fun i => inner (↑((fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i)) x • (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i) (↑(orthogonalProjection U) x) [PROOFSTEP] simpa only [b.repr_apply_apply, inner_orthogonalProjection_eq_of_mem_left] using b.hasSum_repr (orthogonalProjection U x) [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E ⊢ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) ≤ topologicalClosure (⨆ (J : Finset ι), span 𝕜 ↑(Finset.image (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) J)) [PROOFSTEP] simp_rw [← Submodule.span_iUnion] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) b : HilbertBasis ι 𝕜 E ⊢ topologicalClosure (span 𝕜 (Set.range fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1))) ≤ topologicalClosure (span 𝕜 (⋃ (i : Finset ι), ↑(Finset.image (fun i => ↑(LinearIsometryEquiv.symm b.repr) (lp.single 2 i 1)) i))) [PROOFSTEP] exact topologicalClosure_mono (span_mono <| Set.range_subset_iff.mpr fun i => Set.mem_iUnion_of_mem { i } <| Finset.mem_coe.mpr <| Finset.mem_image_of_mem _ <| Finset.mem_singleton_self i) [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) v : ι → E hv : Orthonormal 𝕜 v h : ⊤ ≤ topologicalClosure (span 𝕜 (Set.range v)) i : ι ⊢ ↑(LinearIsometryEquiv.symm (IsHilbertSum.linearIsometryEquiv (_ : IsHilbertSum 𝕜 (fun x => 𝕜) fun i => LinearIsometry.toSpanSingleton 𝕜 E (_ : ‖v i‖ = 1)))) (lp.single 2 i 1) = v i [PROOFSTEP] rw [IsHilbertSum.linearIsometryEquiv_symm_apply_single, LinearIsometry.toSpanSingleton_apply, one_smul] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) v : ι → E hv : Orthonormal 𝕜 v hsp : ⊤ ≤ topologicalClosure (span 𝕜 (Set.range v)) ⊢ (fun i => ↑(LinearIsometryEquiv.symm (HilbertBasis.mk hv hsp).repr) (lp.single 2 i 1)) = v [PROOFSTEP] apply funext <| Orthonormal.linearIsometryEquiv_symm_apply_single_one hv hsp [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) v : ι → E hv : Orthonormal 𝕜 v hsp : (span 𝕜 (Set.range v))ᗮ = ⊥ ⊢ ⊤ ≤ topologicalClosure (span 𝕜 (Set.range v)) [PROOFSTEP] rw [← orthogonal_orthogonal_eq_closure, ← eq_top_iff, orthogonal_eq_top_iff, hsp] [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁵ : IsROrC 𝕜 E : Type u_3 inst✝⁴ : NormedAddCommGroup E inst✝³ : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝² : (i : ι) → NormedAddCommGroup (G i) inst✝¹ : (i : ι) → InnerProductSpace 𝕜 (G i) v : ι → E hv : Orthonormal 𝕜 v inst✝ : Fintype ι b : OrthonormalBasis ι 𝕜 E ⊢ ⊤ ≤ topologicalClosure (span 𝕜 (Set.range ↑b)) [PROOFSTEP] simpa only [← OrthonormalBasis.coe_toBasis, b.toBasis.span_eq, eq_top_iff] using @subset_closure E _ _ [GOAL] ι : Type u_1 𝕜 : Type u_2 inst✝⁴ : IsROrC 𝕜 E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : InnerProductSpace 𝕜 E cplt : CompleteSpace E G : ι → Type u_4 inst✝¹ : (i : ι) → NormedAddCommGroup (G i) inst✝ : (i : ι) → InnerProductSpace 𝕜 (G i) v : ι → E hv : Orthonormal 𝕜 v s : Set E hs : Orthonormal 𝕜 Subtype.val w : Set E hws : w ⊇ s hw_ortho : Orthonormal 𝕜 Subtype.val hw_max : ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w ⊢ (span 𝕜 (Set.range Subtype.val))ᗮ = ⊥ [PROOFSTEP] simpa [maximal_orthonormal_iff_orthogonalComplement_eq_bot hw_ortho] using hw_max
{"mathlib_filename": "Mathlib.Analysis.InnerProductSpace.l2Space", "llama_tokens": 40302}
{"mathlib_filename": "Mathlib.Tactic.Core", "llama_tokens": 0}
[GOAL] a b : ℤ ⊢ a = b ↔ ↑a = ↑b [PROOFSTEP] simp only [Int.cast_inj] [GOAL] a b : ℤ ⊢ a ≠ b ↔ ↑a ≠ ↑b [PROOFSTEP] simp only [ne_eq, Int.cast_inj]
{"mathlib_filename": "Mathlib.Tactic.Qify", "llama_tokens": 92}
[GOAL] α α' : Sort u β β' : Sort v h : α = α' h' : α' → β = β' ⊢ (α → β) = (α' → β') [PROOFSTEP] cases h [GOAL] case refl α : Sort u β β' : Sort v h' : α → β = β' ⊢ (α → β) = (α → β') [PROOFSTEP] show (∀ (x : α), (fun _ => β) x) = _ [GOAL] case refl α : Sort u β β' : Sort v h' : α → β = β' ⊢ ((x : α) → (fun x => β) x) = (α → β') [PROOFSTEP] rw [funext h'] [GOAL] α✝ : Sort u_1 x y : α✝ p : HEq x y → Prop h : ∀ (he : x = y), p (_ : HEq x y) he : HEq x y ⊢ p he [PROOFSTEP] cases he [GOAL] case refl α✝ : Sort u_1 x : α✝ p : HEq x x → Prop h : ∀ (he : x = x), p (_ : HEq x x) ⊢ p (_ : HEq x x) [PROOFSTEP] exact h rfl [GOAL] x y : Prop p : x = y → Prop h : ∀ (he : x ↔ y), p (_ : x = y) he : x = y ⊢ p he [PROOFSTEP] cases he [GOAL] case refl x : Prop p : x = x → Prop h : ∀ (he : x ↔ x), p (_ : x = x) ⊢ p (_ : x = x) [PROOFSTEP] exact h Iff.rfl
{"mathlib_filename": "Mathlib.Tactic.Congr!", "llama_tokens": 489}
{"mathlib_filename": "Mathlib.Tactic.Alias", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.ToAdditive", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Tactic.Contrapose", "llama_tokens": 0}